FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*-
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 */
19
20 /*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27 /*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode. The small write mode acts like conventional pipes with
30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side. In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer. Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map. This value is normally
52 * autotuned, but may also be loader tuned.
53 *
54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55 * memory in use by pipes.
56 *
57 * Based on how large pipekva is relative to maxpipekva, the following
58 * will happen:
59 *
60 * 0% - 50%:
61 * New pipes are given 16K of memory backing, pipes may dynamically
62 * grow to as large as 64K where needed.
63 * 50% - 75%:
64 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
65 * existing pipes may NOT grow.
66 * 75% - 100%:
67 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 * existing pipes will be shrunk down to 4K whenever possible.
69 *
70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72 * resize which MUST occur for reverse-direction pipes when they are
73 * first used.
74 *
75 * Additional information about the current state of pipes may be obtained
76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77 * and kern.ipc.piperesizefail.
78 *
79 * Locking rules: There are two locks present here: A mutex, used via
80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
81 * the flag, as mutexes can not persist over uiomove. The mutex
82 * exists only to guard access to the flag, and is not in itself a
83 * locking mechanism. Also note that there is only a single mutex for
84 * both directions of a pipe.
85 *
86 * As pipelock() may have to sleep before it can acquire the flag, it
87 * is important to reread all data after a call to pipelock(); everything
88 * in the structure may have changed.
89 */
90
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD: releng/6.0/sys/kern/sys_pipe.c 147730 2005-07-01 16:28:32Z ssouhlal $");
93
94 #include "opt_mac.h"
95
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mac.h>
105 #include <sys/mutex.h>
106 #include <sys/ttycom.h>
107 #include <sys/stat.h>
108 #include <sys/malloc.h>
109 #include <sys/poll.h>
110 #include <sys/selinfo.h>
111 #include <sys/signalvar.h>
112 #include <sys/sysctl.h>
113 #include <sys/sysproto.h>
114 #include <sys/pipe.h>
115 #include <sys/proc.h>
116 #include <sys/vnode.h>
117 #include <sys/uio.h>
118 #include <sys/event.h>
119
120 #include <vm/vm.h>
121 #include <vm/vm_param.h>
122 #include <vm/vm_object.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_extern.h>
125 #include <vm/pmap.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_page.h>
128 #include <vm/uma.h>
129
130 /*
131 * Use this define if you want to disable *fancy* VM things. Expect an
132 * approx 30% decrease in transfer rate. This could be useful for
133 * NetBSD or OpenBSD.
134 */
135 /* #define PIPE_NODIRECT */
136
137 /*
138 * interfaces to the outside world
139 */
140 static fo_rdwr_t pipe_read;
141 static fo_rdwr_t pipe_write;
142 static fo_ioctl_t pipe_ioctl;
143 static fo_poll_t pipe_poll;
144 static fo_kqfilter_t pipe_kqfilter;
145 static fo_stat_t pipe_stat;
146 static fo_close_t pipe_close;
147
148 static struct fileops pipeops = {
149 .fo_read = pipe_read,
150 .fo_write = pipe_write,
151 .fo_ioctl = pipe_ioctl,
152 .fo_poll = pipe_poll,
153 .fo_kqfilter = pipe_kqfilter,
154 .fo_stat = pipe_stat,
155 .fo_close = pipe_close,
156 .fo_flags = DFLAG_PASSABLE
157 };
158
159 static void filt_pipedetach(struct knote *kn);
160 static int filt_piperead(struct knote *kn, long hint);
161 static int filt_pipewrite(struct knote *kn, long hint);
162
163 static struct filterops pipe_rfiltops =
164 { 1, NULL, filt_pipedetach, filt_piperead };
165 static struct filterops pipe_wfiltops =
166 { 1, NULL, filt_pipedetach, filt_pipewrite };
167
168 /*
169 * Default pipe buffer size(s), this can be kind-of large now because pipe
170 * space is pageable. The pipe code will try to maintain locality of
171 * reference for performance reasons, so small amounts of outstanding I/O
172 * will not wipe the cache.
173 */
174 #define MINPIPESIZE (PIPE_SIZE/3)
175 #define MAXPIPESIZE (2*PIPE_SIZE/3)
176
177 static int amountpipes;
178 static int amountpipekva;
179 static int pipefragretry;
180 static int pipeallocfail;
181 static int piperesizefail;
182 static int piperesizeallowed = 1;
183
184 SYSCTL_DECL(_kern_ipc);
185
186 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
187 &maxpipekva, 0, "Pipe KVA limit");
188 SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
189 &amountpipes, 0, "Current # of pipes");
190 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
191 &amountpipekva, 0, "Pipe KVA usage");
192 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
193 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
194 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
195 &pipeallocfail, 0, "Pipe allocation failures");
196 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
197 &piperesizefail, 0, "Pipe resize failures");
198 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
199 &piperesizeallowed, 0, "Pipe resizing allowed");
200
201 static void pipeinit(void *dummy __unused);
202 static void pipeclose(struct pipe *cpipe);
203 static void pipe_free_kmem(struct pipe *cpipe);
204 static int pipe_create(struct pipe *pipe, int backing);
205 static __inline int pipelock(struct pipe *cpipe, int catch);
206 static __inline void pipeunlock(struct pipe *cpipe);
207 static __inline void pipeselwakeup(struct pipe *cpipe);
208 #ifndef PIPE_NODIRECT
209 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
210 static void pipe_destroy_write_buffer(struct pipe *wpipe);
211 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
212 static void pipe_clone_write_buffer(struct pipe *wpipe);
213 #endif
214 static int pipespace(struct pipe *cpipe, int size);
215 static int pipespace_new(struct pipe *cpipe, int size);
216
217 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
218 static void pipe_zone_dtor(void *mem, int size, void *arg);
219 static int pipe_zone_init(void *mem, int size, int flags);
220 static void pipe_zone_fini(void *mem, int size);
221
222 static uma_zone_t pipe_zone;
223
224 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
225
226 static void
227 pipeinit(void *dummy __unused)
228 {
229
230 pipe_zone = uma_zcreate("PIPE", sizeof(struct pipepair),
231 pipe_zone_ctor, pipe_zone_dtor, pipe_zone_init, pipe_zone_fini,
232 UMA_ALIGN_PTR, 0);
233 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
234 }
235
236 static int
237 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
238 {
239 struct pipepair *pp;
240 struct pipe *rpipe, *wpipe;
241
242 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
243
244 pp = (struct pipepair *)mem;
245
246 /*
247 * We zero both pipe endpoints to make sure all the kmem pointers
248 * are NULL, flag fields are zero'd, etc. We timestamp both
249 * endpoints with the same time.
250 */
251 rpipe = &pp->pp_rpipe;
252 bzero(rpipe, sizeof(*rpipe));
253 vfs_timestamp(&rpipe->pipe_ctime);
254 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
255
256 wpipe = &pp->pp_wpipe;
257 bzero(wpipe, sizeof(*wpipe));
258 wpipe->pipe_ctime = rpipe->pipe_ctime;
259 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
260
261 rpipe->pipe_peer = wpipe;
262 rpipe->pipe_pair = pp;
263 wpipe->pipe_peer = rpipe;
264 wpipe->pipe_pair = pp;
265
266 /*
267 * Mark both endpoints as present; they will later get free'd
268 * one at a time. When both are free'd, then the whole pair
269 * is released.
270 */
271 rpipe->pipe_present = 1;
272 wpipe->pipe_present = 1;
273
274 /*
275 * Eventually, the MAC Framework may initialize the label
276 * in ctor or init, but for now we do it elswhere to avoid
277 * blocking in ctor or init.
278 */
279 pp->pp_label = NULL;
280
281 atomic_add_int(&amountpipes, 2);
282 return (0);
283 }
284
285 static void
286 pipe_zone_dtor(void *mem, int size, void *arg)
287 {
288 struct pipepair *pp;
289
290 KASSERT(size == sizeof(*pp), ("pipe_zone_dtor: wrong size"));
291
292 pp = (struct pipepair *)mem;
293
294 atomic_subtract_int(&amountpipes, 2);
295 }
296
297 static int
298 pipe_zone_init(void *mem, int size, int flags)
299 {
300 struct pipepair *pp;
301
302 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
303
304 pp = (struct pipepair *)mem;
305
306 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
307 return (0);
308 }
309
310 static void
311 pipe_zone_fini(void *mem, int size)
312 {
313 struct pipepair *pp;
314
315 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
316
317 pp = (struct pipepair *)mem;
318
319 mtx_destroy(&pp->pp_mtx);
320 }
321
322 /*
323 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail,
324 * let the zone pick up the pieces via pipeclose().
325 */
326
327 /* ARGSUSED */
328 int
329 pipe(td, uap)
330 struct thread *td;
331 struct pipe_args /* {
332 int dummy;
333 } */ *uap;
334 {
335 struct filedesc *fdp = td->td_proc->p_fd;
336 struct file *rf, *wf;
337 struct pipepair *pp;
338 struct pipe *rpipe, *wpipe;
339 int fd, error;
340
341 pp = uma_zalloc(pipe_zone, M_WAITOK);
342 #ifdef MAC
343 /*
344 * The MAC label is shared between the connected endpoints. As a
345 * result mac_init_pipe() and mac_create_pipe() are called once
346 * for the pair, and not on the endpoints.
347 */
348 mac_init_pipe(pp);
349 mac_create_pipe(td->td_ucred, pp);
350 #endif
351 rpipe = &pp->pp_rpipe;
352 wpipe = &pp->pp_wpipe;
353
354 knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe), NULL, NULL,
355 NULL);
356 knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe), NULL, NULL,
357 NULL);
358
359 /* Only the forward direction pipe is backed by default */
360 if (pipe_create(rpipe, 1) || pipe_create(wpipe, 0)) {
361 pipeclose(rpipe);
362 pipeclose(wpipe);
363 return (ENFILE);
364 }
365
366 rpipe->pipe_state |= PIPE_DIRECTOK;
367 wpipe->pipe_state |= PIPE_DIRECTOK;
368
369 error = falloc(td, &rf, &fd);
370 if (error) {
371 pipeclose(rpipe);
372 pipeclose(wpipe);
373 return (error);
374 }
375 /* An extra reference on `rf' has been held for us by falloc(). */
376 td->td_retval[0] = fd;
377
378 /*
379 * Warning: once we've gotten past allocation of the fd for the
380 * read-side, we can only drop the read side via fdrop() in order
381 * to avoid races against processes which manage to dup() the read
382 * side while we are blocked trying to allocate the write side.
383 */
384 FILE_LOCK(rf);
385 rf->f_flag = FREAD | FWRITE;
386 rf->f_type = DTYPE_PIPE;
387 rf->f_data = rpipe;
388 rf->f_ops = &pipeops;
389 FILE_UNLOCK(rf);
390 error = falloc(td, &wf, &fd);
391 if (error) {
392 fdclose(fdp, rf, td->td_retval[0], td);
393 fdrop(rf, td);
394 /* rpipe has been closed by fdrop(). */
395 pipeclose(wpipe);
396 return (error);
397 }
398 /* An extra reference on `wf' has been held for us by falloc(). */
399 FILE_LOCK(wf);
400 wf->f_flag = FREAD | FWRITE;
401 wf->f_type = DTYPE_PIPE;
402 wf->f_data = wpipe;
403 wf->f_ops = &pipeops;
404 FILE_UNLOCK(wf);
405 fdrop(wf, td);
406 td->td_retval[1] = fd;
407 fdrop(rf, td);
408
409 return (0);
410 }
411
412 /*
413 * Allocate kva for pipe circular buffer, the space is pageable
414 * This routine will 'realloc' the size of a pipe safely, if it fails
415 * it will retain the old buffer.
416 * If it fails it will return ENOMEM.
417 */
418 static int
419 pipespace_new(cpipe, size)
420 struct pipe *cpipe;
421 int size;
422 {
423 caddr_t buffer;
424 int error, cnt, firstseg;
425 static int curfail = 0;
426 static struct timeval lastfail;
427
428 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
429 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
430 ("pipespace: resize of direct writes not allowed"));
431 retry:
432 cnt = cpipe->pipe_buffer.cnt;
433 if (cnt > size)
434 size = cnt;
435
436 size = round_page(size);
437 buffer = (caddr_t) vm_map_min(pipe_map);
438
439 error = vm_map_find(pipe_map, NULL, 0,
440 (vm_offset_t *) &buffer, size, 1,
441 VM_PROT_ALL, VM_PROT_ALL, 0);
442 if (error != KERN_SUCCESS) {
443 if ((cpipe->pipe_buffer.buffer == NULL) &&
444 (size > SMALL_PIPE_SIZE)) {
445 size = SMALL_PIPE_SIZE;
446 pipefragretry++;
447 goto retry;
448 }
449 if (cpipe->pipe_buffer.buffer == NULL) {
450 pipeallocfail++;
451 if (ppsratecheck(&lastfail, &curfail, 1))
452 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
453 } else {
454 piperesizefail++;
455 }
456 return (ENOMEM);
457 }
458
459 /* copy data, then free old resources if we're resizing */
460 if (cnt > 0) {
461 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
462 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
463 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
464 buffer, firstseg);
465 if ((cnt - firstseg) > 0)
466 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
467 cpipe->pipe_buffer.in);
468 } else {
469 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
470 buffer, cnt);
471 }
472 }
473 pipe_free_kmem(cpipe);
474 cpipe->pipe_buffer.buffer = buffer;
475 cpipe->pipe_buffer.size = size;
476 cpipe->pipe_buffer.in = cnt;
477 cpipe->pipe_buffer.out = 0;
478 cpipe->pipe_buffer.cnt = cnt;
479 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
480 return (0);
481 }
482
483 /*
484 * Wrapper for pipespace_new() that performs locking assertions.
485 */
486 static int
487 pipespace(cpipe, size)
488 struct pipe *cpipe;
489 int size;
490 {
491
492 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
493 ("Unlocked pipe passed to pipespace"));
494 return (pipespace_new(cpipe, size));
495 }
496
497 /*
498 * lock a pipe for I/O, blocking other access
499 */
500 static __inline int
501 pipelock(cpipe, catch)
502 struct pipe *cpipe;
503 int catch;
504 {
505 int error;
506
507 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
508 while (cpipe->pipe_state & PIPE_LOCKFL) {
509 cpipe->pipe_state |= PIPE_LWANT;
510 error = msleep(cpipe, PIPE_MTX(cpipe),
511 catch ? (PRIBIO | PCATCH) : PRIBIO,
512 "pipelk", 0);
513 if (error != 0)
514 return (error);
515 }
516 cpipe->pipe_state |= PIPE_LOCKFL;
517 return (0);
518 }
519
520 /*
521 * unlock a pipe I/O lock
522 */
523 static __inline void
524 pipeunlock(cpipe)
525 struct pipe *cpipe;
526 {
527
528 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
529 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
530 ("Unlocked pipe passed to pipeunlock"));
531 cpipe->pipe_state &= ~PIPE_LOCKFL;
532 if (cpipe->pipe_state & PIPE_LWANT) {
533 cpipe->pipe_state &= ~PIPE_LWANT;
534 wakeup(cpipe);
535 }
536 }
537
538 static __inline void
539 pipeselwakeup(cpipe)
540 struct pipe *cpipe;
541 {
542
543 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
544 if (cpipe->pipe_state & PIPE_SEL) {
545 cpipe->pipe_state &= ~PIPE_SEL;
546 selwakeuppri(&cpipe->pipe_sel, PSOCK);
547 }
548 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
549 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
550 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
551 }
552
553 /*
554 * Initialize and allocate VM and memory for pipe. The structure
555 * will start out zero'd from the ctor, so we just manage the kmem.
556 */
557 static int
558 pipe_create(pipe, backing)
559 struct pipe *pipe;
560 int backing;
561 {
562 int error;
563
564 if (backing) {
565 if (amountpipekva > maxpipekva / 2)
566 error = pipespace_new(pipe, SMALL_PIPE_SIZE);
567 else
568 error = pipespace_new(pipe, PIPE_SIZE);
569 } else {
570 /* If we're not backing this pipe, no need to do anything. */
571 error = 0;
572 }
573 return (error);
574 }
575
576 /* ARGSUSED */
577 static int
578 pipe_read(fp, uio, active_cred, flags, td)
579 struct file *fp;
580 struct uio *uio;
581 struct ucred *active_cred;
582 struct thread *td;
583 int flags;
584 {
585 struct pipe *rpipe = fp->f_data;
586 int error;
587 int nread = 0;
588 u_int size;
589
590 PIPE_LOCK(rpipe);
591 ++rpipe->pipe_busy;
592 error = pipelock(rpipe, 1);
593 if (error)
594 goto unlocked_error;
595
596 #ifdef MAC
597 error = mac_check_pipe_read(active_cred, rpipe->pipe_pair);
598 if (error)
599 goto locked_error;
600 #endif
601 if (amountpipekva > (3 * maxpipekva) / 4) {
602 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
603 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
604 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
605 (piperesizeallowed == 1)) {
606 PIPE_UNLOCK(rpipe);
607 pipespace(rpipe, SMALL_PIPE_SIZE);
608 PIPE_LOCK(rpipe);
609 }
610 }
611
612 while (uio->uio_resid) {
613 /*
614 * normal pipe buffer receive
615 */
616 if (rpipe->pipe_buffer.cnt > 0) {
617 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
618 if (size > rpipe->pipe_buffer.cnt)
619 size = rpipe->pipe_buffer.cnt;
620 if (size > (u_int) uio->uio_resid)
621 size = (u_int) uio->uio_resid;
622
623 PIPE_UNLOCK(rpipe);
624 error = uiomove(
625 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
626 size, uio);
627 PIPE_LOCK(rpipe);
628 if (error)
629 break;
630
631 rpipe->pipe_buffer.out += size;
632 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
633 rpipe->pipe_buffer.out = 0;
634
635 rpipe->pipe_buffer.cnt -= size;
636
637 /*
638 * If there is no more to read in the pipe, reset
639 * its pointers to the beginning. This improves
640 * cache hit stats.
641 */
642 if (rpipe->pipe_buffer.cnt == 0) {
643 rpipe->pipe_buffer.in = 0;
644 rpipe->pipe_buffer.out = 0;
645 }
646 nread += size;
647 #ifndef PIPE_NODIRECT
648 /*
649 * Direct copy, bypassing a kernel buffer.
650 */
651 } else if ((size = rpipe->pipe_map.cnt) &&
652 (rpipe->pipe_state & PIPE_DIRECTW)) {
653 if (size > (u_int) uio->uio_resid)
654 size = (u_int) uio->uio_resid;
655
656 PIPE_UNLOCK(rpipe);
657 error = uiomove_fromphys(rpipe->pipe_map.ms,
658 rpipe->pipe_map.pos, size, uio);
659 PIPE_LOCK(rpipe);
660 if (error)
661 break;
662 nread += size;
663 rpipe->pipe_map.pos += size;
664 rpipe->pipe_map.cnt -= size;
665 if (rpipe->pipe_map.cnt == 0) {
666 rpipe->pipe_state &= ~PIPE_DIRECTW;
667 wakeup(rpipe);
668 }
669 #endif
670 } else {
671 /*
672 * detect EOF condition
673 * read returns 0 on EOF, no need to set error
674 */
675 if (rpipe->pipe_state & PIPE_EOF)
676 break;
677
678 /*
679 * If the "write-side" has been blocked, wake it up now.
680 */
681 if (rpipe->pipe_state & PIPE_WANTW) {
682 rpipe->pipe_state &= ~PIPE_WANTW;
683 wakeup(rpipe);
684 }
685
686 /*
687 * Break if some data was read.
688 */
689 if (nread > 0)
690 break;
691
692 /*
693 * Unlock the pipe buffer for our remaining processing.
694 * We will either break out with an error or we will
695 * sleep and relock to loop.
696 */
697 pipeunlock(rpipe);
698
699 /*
700 * Handle non-blocking mode operation or
701 * wait for more data.
702 */
703 if (fp->f_flag & FNONBLOCK) {
704 error = EAGAIN;
705 } else {
706 rpipe->pipe_state |= PIPE_WANTR;
707 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
708 PRIBIO | PCATCH,
709 "piperd", 0)) == 0)
710 error = pipelock(rpipe, 1);
711 }
712 if (error)
713 goto unlocked_error;
714 }
715 }
716 #ifdef MAC
717 locked_error:
718 #endif
719 pipeunlock(rpipe);
720
721 /* XXX: should probably do this before getting any locks. */
722 if (error == 0)
723 vfs_timestamp(&rpipe->pipe_atime);
724 unlocked_error:
725 --rpipe->pipe_busy;
726
727 /*
728 * PIPE_WANT processing only makes sense if pipe_busy is 0.
729 */
730 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
731 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
732 wakeup(rpipe);
733 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
734 /*
735 * Handle write blocking hysteresis.
736 */
737 if (rpipe->pipe_state & PIPE_WANTW) {
738 rpipe->pipe_state &= ~PIPE_WANTW;
739 wakeup(rpipe);
740 }
741 }
742
743 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
744 pipeselwakeup(rpipe);
745
746 PIPE_UNLOCK(rpipe);
747 return (error);
748 }
749
750 #ifndef PIPE_NODIRECT
751 /*
752 * Map the sending processes' buffer into kernel space and wire it.
753 * This is similar to a physical write operation.
754 */
755 static int
756 pipe_build_write_buffer(wpipe, uio)
757 struct pipe *wpipe;
758 struct uio *uio;
759 {
760 pmap_t pmap;
761 u_int size;
762 int i, j;
763 vm_offset_t addr, endaddr;
764
765 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
766 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
767 ("Clone attempt on non-direct write pipe!"));
768
769 size = (u_int) uio->uio_iov->iov_len;
770 if (size > wpipe->pipe_buffer.size)
771 size = wpipe->pipe_buffer.size;
772
773 pmap = vmspace_pmap(curproc->p_vmspace);
774 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
775 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
776 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
777 /*
778 * vm_fault_quick() can sleep. Consequently,
779 * vm_page_lock_queue() and vm_page_unlock_queue()
780 * should not be performed outside of this loop.
781 */
782 race:
783 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
784 vm_page_lock_queues();
785 for (j = 0; j < i; j++)
786 vm_page_unhold(wpipe->pipe_map.ms[j]);
787 vm_page_unlock_queues();
788 return (EFAULT);
789 }
790 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
791 VM_PROT_READ);
792 if (wpipe->pipe_map.ms[i] == NULL)
793 goto race;
794 }
795
796 /*
797 * set up the control block
798 */
799 wpipe->pipe_map.npages = i;
800 wpipe->pipe_map.pos =
801 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
802 wpipe->pipe_map.cnt = size;
803
804 /*
805 * and update the uio data
806 */
807
808 uio->uio_iov->iov_len -= size;
809 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
810 if (uio->uio_iov->iov_len == 0)
811 uio->uio_iov++;
812 uio->uio_resid -= size;
813 uio->uio_offset += size;
814 return (0);
815 }
816
817 /*
818 * unmap and unwire the process buffer
819 */
820 static void
821 pipe_destroy_write_buffer(wpipe)
822 struct pipe *wpipe;
823 {
824 int i;
825
826 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
827 vm_page_lock_queues();
828 for (i = 0; i < wpipe->pipe_map.npages; i++) {
829 vm_page_unhold(wpipe->pipe_map.ms[i]);
830 }
831 vm_page_unlock_queues();
832 wpipe->pipe_map.npages = 0;
833 }
834
835 /*
836 * In the case of a signal, the writing process might go away. This
837 * code copies the data into the circular buffer so that the source
838 * pages can be freed without loss of data.
839 */
840 static void
841 pipe_clone_write_buffer(wpipe)
842 struct pipe *wpipe;
843 {
844 struct uio uio;
845 struct iovec iov;
846 int size;
847 int pos;
848
849 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
850 size = wpipe->pipe_map.cnt;
851 pos = wpipe->pipe_map.pos;
852
853 wpipe->pipe_buffer.in = size;
854 wpipe->pipe_buffer.out = 0;
855 wpipe->pipe_buffer.cnt = size;
856 wpipe->pipe_state &= ~PIPE_DIRECTW;
857
858 PIPE_UNLOCK(wpipe);
859 iov.iov_base = wpipe->pipe_buffer.buffer;
860 iov.iov_len = size;
861 uio.uio_iov = &iov;
862 uio.uio_iovcnt = 1;
863 uio.uio_offset = 0;
864 uio.uio_resid = size;
865 uio.uio_segflg = UIO_SYSSPACE;
866 uio.uio_rw = UIO_READ;
867 uio.uio_td = curthread;
868 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
869 PIPE_LOCK(wpipe);
870 pipe_destroy_write_buffer(wpipe);
871 }
872
873 /*
874 * This implements the pipe buffer write mechanism. Note that only
875 * a direct write OR a normal pipe write can be pending at any given time.
876 * If there are any characters in the pipe buffer, the direct write will
877 * be deferred until the receiving process grabs all of the bytes from
878 * the pipe buffer. Then the direct mapping write is set-up.
879 */
880 static int
881 pipe_direct_write(wpipe, uio)
882 struct pipe *wpipe;
883 struct uio *uio;
884 {
885 int error;
886
887 retry:
888 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
889 error = pipelock(wpipe, 1);
890 if (wpipe->pipe_state & PIPE_EOF)
891 error = EPIPE;
892 if (error) {
893 pipeunlock(wpipe);
894 goto error1;
895 }
896 while (wpipe->pipe_state & PIPE_DIRECTW) {
897 if (wpipe->pipe_state & PIPE_WANTR) {
898 wpipe->pipe_state &= ~PIPE_WANTR;
899 wakeup(wpipe);
900 }
901 wpipe->pipe_state |= PIPE_WANTW;
902 pipeunlock(wpipe);
903 error = msleep(wpipe, PIPE_MTX(wpipe),
904 PRIBIO | PCATCH, "pipdww", 0);
905 if (error)
906 goto error1;
907 else
908 goto retry;
909 }
910 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
911 if (wpipe->pipe_buffer.cnt > 0) {
912 if (wpipe->pipe_state & PIPE_WANTR) {
913 wpipe->pipe_state &= ~PIPE_WANTR;
914 wakeup(wpipe);
915 }
916 wpipe->pipe_state |= PIPE_WANTW;
917 pipeunlock(wpipe);
918 error = msleep(wpipe, PIPE_MTX(wpipe),
919 PRIBIO | PCATCH, "pipdwc", 0);
920 if (error)
921 goto error1;
922 else
923 goto retry;
924 }
925
926 wpipe->pipe_state |= PIPE_DIRECTW;
927
928 PIPE_UNLOCK(wpipe);
929 error = pipe_build_write_buffer(wpipe, uio);
930 PIPE_LOCK(wpipe);
931 if (error) {
932 wpipe->pipe_state &= ~PIPE_DIRECTW;
933 pipeunlock(wpipe);
934 goto error1;
935 }
936
937 error = 0;
938 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
939 if (wpipe->pipe_state & PIPE_EOF) {
940 pipe_destroy_write_buffer(wpipe);
941 pipeselwakeup(wpipe);
942 pipeunlock(wpipe);
943 error = EPIPE;
944 goto error1;
945 }
946 if (wpipe->pipe_state & PIPE_WANTR) {
947 wpipe->pipe_state &= ~PIPE_WANTR;
948 wakeup(wpipe);
949 }
950 pipeselwakeup(wpipe);
951 pipeunlock(wpipe);
952 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
953 "pipdwt", 0);
954 pipelock(wpipe, 0);
955 }
956
957 if (wpipe->pipe_state & PIPE_EOF)
958 error = EPIPE;
959 if (wpipe->pipe_state & PIPE_DIRECTW) {
960 /*
961 * this bit of trickery substitutes a kernel buffer for
962 * the process that might be going away.
963 */
964 pipe_clone_write_buffer(wpipe);
965 } else {
966 pipe_destroy_write_buffer(wpipe);
967 }
968 pipeunlock(wpipe);
969 return (error);
970
971 error1:
972 wakeup(wpipe);
973 return (error);
974 }
975 #endif
976
977 static int
978 pipe_write(fp, uio, active_cred, flags, td)
979 struct file *fp;
980 struct uio *uio;
981 struct ucred *active_cred;
982 struct thread *td;
983 int flags;
984 {
985 int error = 0;
986 int desiredsize, orig_resid;
987 struct pipe *wpipe, *rpipe;
988
989 rpipe = fp->f_data;
990 wpipe = rpipe->pipe_peer;
991
992 PIPE_LOCK(rpipe);
993 error = pipelock(wpipe, 1);
994 if (error) {
995 PIPE_UNLOCK(rpipe);
996 return (error);
997 }
998 /*
999 * detect loss of pipe read side, issue SIGPIPE if lost.
1000 */
1001 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1002 pipeunlock(wpipe);
1003 PIPE_UNLOCK(rpipe);
1004 return (EPIPE);
1005 }
1006 #ifdef MAC
1007 error = mac_check_pipe_write(active_cred, wpipe->pipe_pair);
1008 if (error) {
1009 pipeunlock(wpipe);
1010 PIPE_UNLOCK(rpipe);
1011 return (error);
1012 }
1013 #endif
1014 ++wpipe->pipe_busy;
1015
1016 /* Choose a larger size if it's advantageous */
1017 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1018 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1019 if (piperesizeallowed != 1)
1020 break;
1021 if (amountpipekva > maxpipekva / 2)
1022 break;
1023 if (desiredsize == BIG_PIPE_SIZE)
1024 break;
1025 desiredsize = desiredsize * 2;
1026 }
1027
1028 /* Choose a smaller size if we're in a OOM situation */
1029 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1030 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1031 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1032 (piperesizeallowed == 1))
1033 desiredsize = SMALL_PIPE_SIZE;
1034
1035 /* Resize if the above determined that a new size was necessary */
1036 if ((desiredsize != wpipe->pipe_buffer.size) &&
1037 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1038 PIPE_UNLOCK(wpipe);
1039 pipespace(wpipe, desiredsize);
1040 PIPE_LOCK(wpipe);
1041 }
1042 if (wpipe->pipe_buffer.size == 0) {
1043 /*
1044 * This can only happen for reverse direction use of pipes
1045 * in a complete OOM situation.
1046 */
1047 error = ENOMEM;
1048 --wpipe->pipe_busy;
1049 pipeunlock(wpipe);
1050 PIPE_UNLOCK(wpipe);
1051 return (error);
1052 }
1053
1054 pipeunlock(wpipe);
1055
1056 orig_resid = uio->uio_resid;
1057
1058 while (uio->uio_resid) {
1059 int space;
1060
1061 pipelock(wpipe, 0);
1062 if (wpipe->pipe_state & PIPE_EOF) {
1063 pipeunlock(wpipe);
1064 error = EPIPE;
1065 break;
1066 }
1067 #ifndef PIPE_NODIRECT
1068 /*
1069 * If the transfer is large, we can gain performance if
1070 * we do process-to-process copies directly.
1071 * If the write is non-blocking, we don't use the
1072 * direct write mechanism.
1073 *
1074 * The direct write mechanism will detect the reader going
1075 * away on us.
1076 */
1077 if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
1078 (wpipe->pipe_buffer.size >= PIPE_MINDIRECT) &&
1079 (fp->f_flag & FNONBLOCK) == 0) {
1080 pipeunlock(wpipe);
1081 error = pipe_direct_write(wpipe, uio);
1082 if (error)
1083 break;
1084 continue;
1085 }
1086 #endif
1087
1088 /*
1089 * Pipe buffered writes cannot be coincidental with
1090 * direct writes. We wait until the currently executing
1091 * direct write is completed before we start filling the
1092 * pipe buffer. We break out if a signal occurs or the
1093 * reader goes away.
1094 */
1095 if (wpipe->pipe_state & PIPE_DIRECTW) {
1096 if (wpipe->pipe_state & PIPE_WANTR) {
1097 wpipe->pipe_state &= ~PIPE_WANTR;
1098 wakeup(wpipe);
1099 }
1100 pipeunlock(wpipe);
1101 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1102 "pipbww", 0);
1103 if (error)
1104 break;
1105 else
1106 continue;
1107 }
1108
1109 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1110
1111 /* Writes of size <= PIPE_BUF must be atomic. */
1112 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1113 space = 0;
1114
1115 if (space > 0) {
1116 int size; /* Transfer size */
1117 int segsize; /* first segment to transfer */
1118
1119 /*
1120 * Transfer size is minimum of uio transfer
1121 * and free space in pipe buffer.
1122 */
1123 if (space > uio->uio_resid)
1124 size = uio->uio_resid;
1125 else
1126 size = space;
1127 /*
1128 * First segment to transfer is minimum of
1129 * transfer size and contiguous space in
1130 * pipe buffer. If first segment to transfer
1131 * is less than the transfer size, we've got
1132 * a wraparound in the buffer.
1133 */
1134 segsize = wpipe->pipe_buffer.size -
1135 wpipe->pipe_buffer.in;
1136 if (segsize > size)
1137 segsize = size;
1138
1139 /* Transfer first segment */
1140
1141 PIPE_UNLOCK(rpipe);
1142 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1143 segsize, uio);
1144 PIPE_LOCK(rpipe);
1145
1146 if (error == 0 && segsize < size) {
1147 KASSERT(wpipe->pipe_buffer.in + segsize ==
1148 wpipe->pipe_buffer.size,
1149 ("Pipe buffer wraparound disappeared"));
1150 /*
1151 * Transfer remaining part now, to
1152 * support atomic writes. Wraparound
1153 * happened.
1154 */
1155
1156 PIPE_UNLOCK(rpipe);
1157 error = uiomove(
1158 &wpipe->pipe_buffer.buffer[0],
1159 size - segsize, uio);
1160 PIPE_LOCK(rpipe);
1161 }
1162 if (error == 0) {
1163 wpipe->pipe_buffer.in += size;
1164 if (wpipe->pipe_buffer.in >=
1165 wpipe->pipe_buffer.size) {
1166 KASSERT(wpipe->pipe_buffer.in ==
1167 size - segsize +
1168 wpipe->pipe_buffer.size,
1169 ("Expected wraparound bad"));
1170 wpipe->pipe_buffer.in = size - segsize;
1171 }
1172
1173 wpipe->pipe_buffer.cnt += size;
1174 KASSERT(wpipe->pipe_buffer.cnt <=
1175 wpipe->pipe_buffer.size,
1176 ("Pipe buffer overflow"));
1177 }
1178 pipeunlock(wpipe);
1179 } else {
1180 /*
1181 * If the "read-side" has been blocked, wake it up now.
1182 */
1183 if (wpipe->pipe_state & PIPE_WANTR) {
1184 wpipe->pipe_state &= ~PIPE_WANTR;
1185 wakeup(wpipe);
1186 }
1187
1188 /*
1189 * don't block on non-blocking I/O
1190 */
1191 if (fp->f_flag & FNONBLOCK) {
1192 error = EAGAIN;
1193 pipeunlock(wpipe);
1194 break;
1195 }
1196
1197 /*
1198 * We have no more space and have something to offer,
1199 * wake up select/poll.
1200 */
1201 pipeselwakeup(wpipe);
1202
1203 wpipe->pipe_state |= PIPE_WANTW;
1204 pipeunlock(wpipe);
1205 error = msleep(wpipe, PIPE_MTX(rpipe),
1206 PRIBIO | PCATCH, "pipewr", 0);
1207 if (error != 0)
1208 break;
1209 }
1210 }
1211
1212 pipelock(wpipe, 0);
1213 --wpipe->pipe_busy;
1214
1215 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1216 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1217 wakeup(wpipe);
1218 } else if (wpipe->pipe_buffer.cnt > 0) {
1219 /*
1220 * If we have put any characters in the buffer, we wake up
1221 * the reader.
1222 */
1223 if (wpipe->pipe_state & PIPE_WANTR) {
1224 wpipe->pipe_state &= ~PIPE_WANTR;
1225 wakeup(wpipe);
1226 }
1227 }
1228
1229 /*
1230 * Don't return EPIPE if I/O was successful
1231 */
1232 if ((wpipe->pipe_buffer.cnt == 0) &&
1233 (uio->uio_resid == 0) &&
1234 (error == EPIPE)) {
1235 error = 0;
1236 }
1237
1238 if (error == 0)
1239 vfs_timestamp(&wpipe->pipe_mtime);
1240
1241 /*
1242 * We have something to offer,
1243 * wake up select/poll.
1244 */
1245 if (wpipe->pipe_buffer.cnt)
1246 pipeselwakeup(wpipe);
1247
1248 pipeunlock(wpipe);
1249 PIPE_UNLOCK(rpipe);
1250 return (error);
1251 }
1252
1253 /*
1254 * we implement a very minimal set of ioctls for compatibility with sockets.
1255 */
1256 static int
1257 pipe_ioctl(fp, cmd, data, active_cred, td)
1258 struct file *fp;
1259 u_long cmd;
1260 void *data;
1261 struct ucred *active_cred;
1262 struct thread *td;
1263 {
1264 struct pipe *mpipe = fp->f_data;
1265 int error;
1266
1267 PIPE_LOCK(mpipe);
1268
1269 #ifdef MAC
1270 error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1271 if (error) {
1272 PIPE_UNLOCK(mpipe);
1273 return (error);
1274 }
1275 #endif
1276
1277 error = 0;
1278 switch (cmd) {
1279
1280 case FIONBIO:
1281 break;
1282
1283 case FIOASYNC:
1284 if (*(int *)data) {
1285 mpipe->pipe_state |= PIPE_ASYNC;
1286 } else {
1287 mpipe->pipe_state &= ~PIPE_ASYNC;
1288 }
1289 break;
1290
1291 case FIONREAD:
1292 if (mpipe->pipe_state & PIPE_DIRECTW)
1293 *(int *)data = mpipe->pipe_map.cnt;
1294 else
1295 *(int *)data = mpipe->pipe_buffer.cnt;
1296 break;
1297
1298 case FIOSETOWN:
1299 PIPE_UNLOCK(mpipe);
1300 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1301 goto out_unlocked;
1302
1303 case FIOGETOWN:
1304 *(int *)data = fgetown(&mpipe->pipe_sigio);
1305 break;
1306
1307 /* This is deprecated, FIOSETOWN should be used instead. */
1308 case TIOCSPGRP:
1309 PIPE_UNLOCK(mpipe);
1310 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1311 goto out_unlocked;
1312
1313 /* This is deprecated, FIOGETOWN should be used instead. */
1314 case TIOCGPGRP:
1315 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1316 break;
1317
1318 default:
1319 error = ENOTTY;
1320 break;
1321 }
1322 PIPE_UNLOCK(mpipe);
1323 out_unlocked:
1324 return (error);
1325 }
1326
1327 static int
1328 pipe_poll(fp, events, active_cred, td)
1329 struct file *fp;
1330 int events;
1331 struct ucred *active_cred;
1332 struct thread *td;
1333 {
1334 struct pipe *rpipe = fp->f_data;
1335 struct pipe *wpipe;
1336 int revents = 0;
1337 #ifdef MAC
1338 int error;
1339 #endif
1340
1341 wpipe = rpipe->pipe_peer;
1342 PIPE_LOCK(rpipe);
1343 #ifdef MAC
1344 error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair);
1345 if (error)
1346 goto locked_error;
1347 #endif
1348 if (events & (POLLIN | POLLRDNORM))
1349 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1350 (rpipe->pipe_buffer.cnt > 0) ||
1351 (rpipe->pipe_state & PIPE_EOF))
1352 revents |= events & (POLLIN | POLLRDNORM);
1353
1354 if (events & (POLLOUT | POLLWRNORM))
1355 if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) ||
1356 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1357 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1358 revents |= events & (POLLOUT | POLLWRNORM);
1359
1360 if ((rpipe->pipe_state & PIPE_EOF) ||
1361 (!wpipe->pipe_present) ||
1362 (wpipe->pipe_state & PIPE_EOF))
1363 revents |= POLLHUP;
1364
1365 if (revents == 0) {
1366 if (events & (POLLIN | POLLRDNORM)) {
1367 selrecord(td, &rpipe->pipe_sel);
1368 rpipe->pipe_state |= PIPE_SEL;
1369 }
1370
1371 if (events & (POLLOUT | POLLWRNORM)) {
1372 selrecord(td, &wpipe->pipe_sel);
1373 wpipe->pipe_state |= PIPE_SEL;
1374 }
1375 }
1376 #ifdef MAC
1377 locked_error:
1378 #endif
1379 PIPE_UNLOCK(rpipe);
1380
1381 return (revents);
1382 }
1383
1384 /*
1385 * We shouldn't need locks here as we're doing a read and this should
1386 * be a natural race.
1387 */
1388 static int
1389 pipe_stat(fp, ub, active_cred, td)
1390 struct file *fp;
1391 struct stat *ub;
1392 struct ucred *active_cred;
1393 struct thread *td;
1394 {
1395 struct pipe *pipe = fp->f_data;
1396 #ifdef MAC
1397 int error;
1398
1399 PIPE_LOCK(pipe);
1400 error = mac_check_pipe_stat(active_cred, pipe->pipe_pair);
1401 PIPE_UNLOCK(pipe);
1402 if (error)
1403 return (error);
1404 #endif
1405 bzero(ub, sizeof(*ub));
1406 ub->st_mode = S_IFIFO;
1407 ub->st_blksize = PAGE_SIZE;
1408 if (pipe->pipe_state & PIPE_DIRECTW)
1409 ub->st_size = pipe->pipe_map.cnt;
1410 else
1411 ub->st_size = pipe->pipe_buffer.cnt;
1412 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1413 ub->st_atimespec = pipe->pipe_atime;
1414 ub->st_mtimespec = pipe->pipe_mtime;
1415 ub->st_ctimespec = pipe->pipe_ctime;
1416 ub->st_uid = fp->f_cred->cr_uid;
1417 ub->st_gid = fp->f_cred->cr_gid;
1418 /*
1419 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1420 * XXX (st_dev, st_ino) should be unique.
1421 */
1422 return (0);
1423 }
1424
1425 /* ARGSUSED */
1426 static int
1427 pipe_close(fp, td)
1428 struct file *fp;
1429 struct thread *td;
1430 {
1431 struct pipe *cpipe = fp->f_data;
1432
1433 fp->f_ops = &badfileops;
1434 fp->f_data = NULL;
1435 funsetown(&cpipe->pipe_sigio);
1436 pipeclose(cpipe);
1437 return (0);
1438 }
1439
1440 static void
1441 pipe_free_kmem(cpipe)
1442 struct pipe *cpipe;
1443 {
1444
1445 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1446 ("pipe_free_kmem: pipe mutex locked"));
1447
1448 if (cpipe->pipe_buffer.buffer != NULL) {
1449 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
1450 vm_map_remove(pipe_map,
1451 (vm_offset_t)cpipe->pipe_buffer.buffer,
1452 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1453 cpipe->pipe_buffer.buffer = NULL;
1454 }
1455 #ifndef PIPE_NODIRECT
1456 {
1457 cpipe->pipe_map.cnt = 0;
1458 cpipe->pipe_map.pos = 0;
1459 cpipe->pipe_map.npages = 0;
1460 }
1461 #endif
1462 }
1463
1464 /*
1465 * shutdown the pipe
1466 */
1467 static void
1468 pipeclose(cpipe)
1469 struct pipe *cpipe;
1470 {
1471 struct pipepair *pp;
1472 struct pipe *ppipe;
1473
1474 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1475
1476 PIPE_LOCK(cpipe);
1477 pipelock(cpipe, 0);
1478 pp = cpipe->pipe_pair;
1479
1480 pipeselwakeup(cpipe);
1481
1482 /*
1483 * If the other side is blocked, wake it up saying that
1484 * we want to close it down.
1485 */
1486 cpipe->pipe_state |= PIPE_EOF;
1487 while (cpipe->pipe_busy) {
1488 wakeup(cpipe);
1489 cpipe->pipe_state |= PIPE_WANT;
1490 pipeunlock(cpipe);
1491 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1492 pipelock(cpipe, 0);
1493 }
1494
1495
1496 /*
1497 * Disconnect from peer, if any.
1498 */
1499 ppipe = cpipe->pipe_peer;
1500 if (ppipe->pipe_present != 0) {
1501 pipeselwakeup(ppipe);
1502
1503 ppipe->pipe_state |= PIPE_EOF;
1504 wakeup(ppipe);
1505 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1506 }
1507
1508 /*
1509 * Mark this endpoint as free. Release kmem resources. We
1510 * don't mark this endpoint as unused until we've finished
1511 * doing that, or the pipe might disappear out from under
1512 * us.
1513 */
1514 PIPE_UNLOCK(cpipe);
1515 pipe_free_kmem(cpipe);
1516 PIPE_LOCK(cpipe);
1517 cpipe->pipe_present = 0;
1518 pipeunlock(cpipe);
1519 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1520 knlist_destroy(&cpipe->pipe_sel.si_note);
1521
1522 /*
1523 * If both endpoints are now closed, release the memory for the
1524 * pipe pair. If not, unlock.
1525 */
1526 if (ppipe->pipe_present == 0) {
1527 PIPE_UNLOCK(cpipe);
1528 #ifdef MAC
1529 mac_destroy_pipe(pp);
1530 #endif
1531 uma_zfree(pipe_zone, cpipe->pipe_pair);
1532 } else
1533 PIPE_UNLOCK(cpipe);
1534 }
1535
1536 /*ARGSUSED*/
1537 static int
1538 pipe_kqfilter(struct file *fp, struct knote *kn)
1539 {
1540 struct pipe *cpipe;
1541
1542 cpipe = kn->kn_fp->f_data;
1543 PIPE_LOCK(cpipe);
1544 switch (kn->kn_filter) {
1545 case EVFILT_READ:
1546 kn->kn_fop = &pipe_rfiltops;
1547 break;
1548 case EVFILT_WRITE:
1549 kn->kn_fop = &pipe_wfiltops;
1550 if (!cpipe->pipe_peer->pipe_present) {
1551 /* other end of pipe has been closed */
1552 PIPE_UNLOCK(cpipe);
1553 return (EPIPE);
1554 }
1555 cpipe = cpipe->pipe_peer;
1556 break;
1557 default:
1558 PIPE_UNLOCK(cpipe);
1559 return (EINVAL);
1560 }
1561
1562 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1563 PIPE_UNLOCK(cpipe);
1564 return (0);
1565 }
1566
1567 static void
1568 filt_pipedetach(struct knote *kn)
1569 {
1570 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1571
1572 PIPE_LOCK(cpipe);
1573 if (kn->kn_filter == EVFILT_WRITE) {
1574 if (!cpipe->pipe_peer->pipe_present) {
1575 PIPE_UNLOCK(cpipe);
1576 return;
1577 }
1578 cpipe = cpipe->pipe_peer;
1579 }
1580 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1581 PIPE_UNLOCK(cpipe);
1582 }
1583
1584 /*ARGSUSED*/
1585 static int
1586 filt_piperead(struct knote *kn, long hint)
1587 {
1588 struct pipe *rpipe = kn->kn_fp->f_data;
1589 struct pipe *wpipe = rpipe->pipe_peer;
1590 int ret;
1591
1592 PIPE_LOCK(rpipe);
1593 kn->kn_data = rpipe->pipe_buffer.cnt;
1594 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1595 kn->kn_data = rpipe->pipe_map.cnt;
1596
1597 if ((rpipe->pipe_state & PIPE_EOF) ||
1598 (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1599 kn->kn_flags |= EV_EOF;
1600 PIPE_UNLOCK(rpipe);
1601 return (1);
1602 }
1603 ret = kn->kn_data > 0;
1604 PIPE_UNLOCK(rpipe);
1605 return ret;
1606 }
1607
1608 /*ARGSUSED*/
1609 static int
1610 filt_pipewrite(struct knote *kn, long hint)
1611 {
1612 struct pipe *rpipe = kn->kn_fp->f_data;
1613 struct pipe *wpipe = rpipe->pipe_peer;
1614
1615 PIPE_LOCK(rpipe);
1616 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1617 kn->kn_data = 0;
1618 kn->kn_flags |= EV_EOF;
1619 PIPE_UNLOCK(rpipe);
1620 return (1);
1621 }
1622 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1623 if (wpipe->pipe_state & PIPE_DIRECTW)
1624 kn->kn_data = 0;
1625
1626 PIPE_UNLOCK(rpipe);
1627 return (kn->kn_data >= PIPE_BUF);
1628 }
Cache object: 492ce5760384ee4113f4b54541071ad7
|