FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*-
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 */
19
20 /*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27 /*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode. The small write mode acts like conventional pipes with
30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side. In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer. Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map. This value is normally
52 * autotuned, but may also be loader tuned.
53 *
54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55 * memory in use by pipes.
56 *
57 * Based on how large pipekva is relative to maxpipekva, the following
58 * will happen:
59 *
60 * 0% - 50%:
61 * New pipes are given 16K of memory backing, pipes may dynamically
62 * grow to as large as 64K where needed.
63 * 50% - 75%:
64 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
65 * existing pipes may NOT grow.
66 * 75% - 100%:
67 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 * existing pipes will be shrunk down to 4K whenever possible.
69 *
70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72 * resize which MUST occur for reverse-direction pipes when they are
73 * first used.
74 *
75 * Additional information about the current state of pipes may be obtained
76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77 * and kern.ipc.piperesizefail.
78 *
79 * Locking rules: There are two locks present here: A mutex, used via
80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
81 * the flag, as mutexes can not persist over uiomove. The mutex
82 * exists only to guard access to the flag, and is not in itself a
83 * locking mechanism. Also note that there is only a single mutex for
84 * both directions of a pipe.
85 *
86 * As pipelock() may have to sleep before it can acquire the flag, it
87 * is important to reread all data after a call to pipelock(); everything
88 * in the structure may have changed.
89 */
90
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD$");
93
94 #include "opt_mac.h"
95
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mutex.h>
105 #include <sys/ttycom.h>
106 #include <sys/stat.h>
107 #include <sys/malloc.h>
108 #include <sys/poll.h>
109 #include <sys/selinfo.h>
110 #include <sys/signalvar.h>
111 #include <sys/sysctl.h>
112 #include <sys/sysproto.h>
113 #include <sys/pipe.h>
114 #include <sys/proc.h>
115 #include <sys/vnode.h>
116 #include <sys/uio.h>
117 #include <sys/event.h>
118
119 #include <security/mac/mac_framework.h>
120
121 #include <vm/vm.h>
122 #include <vm/vm_param.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_kern.h>
125 #include <vm/vm_extern.h>
126 #include <vm/pmap.h>
127 #include <vm/vm_map.h>
128 #include <vm/vm_page.h>
129 #include <vm/uma.h>
130
131 /*
132 * Use this define if you want to disable *fancy* VM things. Expect an
133 * approx 30% decrease in transfer rate. This could be useful for
134 * NetBSD or OpenBSD.
135 */
136 /* #define PIPE_NODIRECT */
137
138 /*
139 * interfaces to the outside world
140 */
141 static fo_rdwr_t pipe_read;
142 static fo_rdwr_t pipe_write;
143 static fo_ioctl_t pipe_ioctl;
144 static fo_poll_t pipe_poll;
145 static fo_kqfilter_t pipe_kqfilter;
146 static fo_stat_t pipe_stat;
147 static fo_close_t pipe_close;
148
149 static struct fileops pipeops = {
150 .fo_read = pipe_read,
151 .fo_write = pipe_write,
152 .fo_ioctl = pipe_ioctl,
153 .fo_poll = pipe_poll,
154 .fo_kqfilter = pipe_kqfilter,
155 .fo_stat = pipe_stat,
156 .fo_close = pipe_close,
157 .fo_flags = DFLAG_PASSABLE
158 };
159
160 static void filt_pipedetach(struct knote *kn);
161 static int filt_piperead(struct knote *kn, long hint);
162 static int filt_pipewrite(struct knote *kn, long hint);
163
164 static struct filterops pipe_rfiltops =
165 { 1, NULL, filt_pipedetach, filt_piperead };
166 static struct filterops pipe_wfiltops =
167 { 1, NULL, filt_pipedetach, filt_pipewrite };
168
169 /*
170 * Default pipe buffer size(s), this can be kind-of large now because pipe
171 * space is pageable. The pipe code will try to maintain locality of
172 * reference for performance reasons, so small amounts of outstanding I/O
173 * will not wipe the cache.
174 */
175 #define MINPIPESIZE (PIPE_SIZE/3)
176 #define MAXPIPESIZE (2*PIPE_SIZE/3)
177
178 static int amountpipekva;
179 static int pipefragretry;
180 static int pipeallocfail;
181 static int piperesizefail;
182 static int piperesizeallowed = 1;
183
184 SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
185 &maxpipekva, 0, "Pipe KVA limit");
186 SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
187 &amountpipekva, 0, "Pipe KVA usage");
188 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
189 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
190 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
191 &pipeallocfail, 0, "Pipe allocation failures");
192 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
193 &piperesizefail, 0, "Pipe resize failures");
194 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
195 &piperesizeallowed, 0, "Pipe resizing allowed");
196
197 static void pipeinit(void *dummy __unused);
198 static void pipeclose(struct pipe *cpipe);
199 static void pipe_free_kmem(struct pipe *cpipe);
200 static int pipe_create(struct pipe *pipe, int backing);
201 static __inline int pipelock(struct pipe *cpipe, int catch);
202 static __inline void pipeunlock(struct pipe *cpipe);
203 static __inline void pipeselwakeup(struct pipe *cpipe);
204 #ifndef PIPE_NODIRECT
205 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
206 static void pipe_destroy_write_buffer(struct pipe *wpipe);
207 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
208 static void pipe_clone_write_buffer(struct pipe *wpipe);
209 #endif
210 static int pipespace(struct pipe *cpipe, int size);
211 static int pipespace_new(struct pipe *cpipe, int size);
212
213 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
214 static int pipe_zone_init(void *mem, int size, int flags);
215 static void pipe_zone_fini(void *mem, int size);
216
217 static uma_zone_t pipe_zone;
218
219 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
220
221 static void
222 pipeinit(void *dummy __unused)
223 {
224
225 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
226 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
227 UMA_ALIGN_PTR, 0);
228 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
229 }
230
231 static int
232 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
233 {
234 struct pipepair *pp;
235 struct pipe *rpipe, *wpipe;
236
237 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
238
239 pp = (struct pipepair *)mem;
240
241 /*
242 * We zero both pipe endpoints to make sure all the kmem pointers
243 * are NULL, flag fields are zero'd, etc. We timestamp both
244 * endpoints with the same time.
245 */
246 rpipe = &pp->pp_rpipe;
247 bzero(rpipe, sizeof(*rpipe));
248 vfs_timestamp(&rpipe->pipe_ctime);
249 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
250
251 wpipe = &pp->pp_wpipe;
252 bzero(wpipe, sizeof(*wpipe));
253 wpipe->pipe_ctime = rpipe->pipe_ctime;
254 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
255
256 rpipe->pipe_peer = wpipe;
257 rpipe->pipe_pair = pp;
258 wpipe->pipe_peer = rpipe;
259 wpipe->pipe_pair = pp;
260
261 /*
262 * Mark both endpoints as present; they will later get free'd
263 * one at a time. When both are free'd, then the whole pair
264 * is released.
265 */
266 rpipe->pipe_present = 1;
267 wpipe->pipe_present = 1;
268
269 /*
270 * Eventually, the MAC Framework may initialize the label
271 * in ctor or init, but for now we do it elswhere to avoid
272 * blocking in ctor or init.
273 */
274 pp->pp_label = NULL;
275
276 return (0);
277 }
278
279 static int
280 pipe_zone_init(void *mem, int size, int flags)
281 {
282 struct pipepair *pp;
283
284 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
285
286 pp = (struct pipepair *)mem;
287
288 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
289 return (0);
290 }
291
292 static void
293 pipe_zone_fini(void *mem, int size)
294 {
295 struct pipepair *pp;
296
297 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
298
299 pp = (struct pipepair *)mem;
300
301 mtx_destroy(&pp->pp_mtx);
302 }
303
304 /*
305 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
306 * the zone pick up the pieces via pipeclose().
307 */
308 /* ARGSUSED */
309 int
310 pipe(td, uap)
311 struct thread *td;
312 struct pipe_args /* {
313 int dummy;
314 } */ *uap;
315 {
316 struct filedesc *fdp = td->td_proc->p_fd;
317 struct file *rf, *wf;
318 struct pipepair *pp;
319 struct pipe *rpipe, *wpipe;
320 int fd, error;
321
322 pp = uma_zalloc(pipe_zone, M_WAITOK);
323 #ifdef MAC
324 /*
325 * The MAC label is shared between the connected endpoints. As a
326 * result mac_init_pipe() and mac_create_pipe() are called once
327 * for the pair, and not on the endpoints.
328 */
329 mac_init_pipe(pp);
330 mac_create_pipe(td->td_ucred, pp);
331 #endif
332 rpipe = &pp->pp_rpipe;
333 wpipe = &pp->pp_wpipe;
334
335 knlist_init(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe), NULL, NULL,
336 NULL);
337 knlist_init(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe), NULL, NULL,
338 NULL);
339
340 /* Only the forward direction pipe is backed by default */
341 if ((error = pipe_create(rpipe, 1)) != 0 ||
342 (error = pipe_create(wpipe, 0)) != 0) {
343 pipeclose(rpipe);
344 pipeclose(wpipe);
345 return (error);
346 }
347
348 rpipe->pipe_state |= PIPE_DIRECTOK;
349 wpipe->pipe_state |= PIPE_DIRECTOK;
350
351 error = falloc(td, &rf, &fd);
352 if (error) {
353 pipeclose(rpipe);
354 pipeclose(wpipe);
355 return (error);
356 }
357 /* An extra reference on `rf' has been held for us by falloc(). */
358 td->td_retval[0] = fd;
359
360 /*
361 * Warning: once we've gotten past allocation of the fd for the
362 * read-side, we can only drop the read side via fdrop() in order
363 * to avoid races against processes which manage to dup() the read
364 * side while we are blocked trying to allocate the write side.
365 */
366 FILE_LOCK(rf);
367 rf->f_flag = FREAD | FWRITE;
368 rf->f_type = DTYPE_PIPE;
369 rf->f_data = rpipe;
370 rf->f_ops = &pipeops;
371 FILE_UNLOCK(rf);
372 error = falloc(td, &wf, &fd);
373 if (error) {
374 fdclose(fdp, rf, td->td_retval[0], td);
375 fdrop(rf, td);
376 /* rpipe has been closed by fdrop(). */
377 pipeclose(wpipe);
378 return (error);
379 }
380 /* An extra reference on `wf' has been held for us by falloc(). */
381 FILE_LOCK(wf);
382 wf->f_flag = FREAD | FWRITE;
383 wf->f_type = DTYPE_PIPE;
384 wf->f_data = wpipe;
385 wf->f_ops = &pipeops;
386 FILE_UNLOCK(wf);
387 fdrop(wf, td);
388 td->td_retval[1] = fd;
389 fdrop(rf, td);
390
391 return (0);
392 }
393
394 /*
395 * Allocate kva for pipe circular buffer, the space is pageable
396 * This routine will 'realloc' the size of a pipe safely, if it fails
397 * it will retain the old buffer.
398 * If it fails it will return ENOMEM.
399 */
400 static int
401 pipespace_new(cpipe, size)
402 struct pipe *cpipe;
403 int size;
404 {
405 caddr_t buffer;
406 int error, cnt, firstseg;
407 static int curfail = 0;
408 static struct timeval lastfail;
409
410 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
411 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
412 ("pipespace: resize of direct writes not allowed"));
413 retry:
414 cnt = cpipe->pipe_buffer.cnt;
415 if (cnt > size)
416 size = cnt;
417
418 size = round_page(size);
419 buffer = (caddr_t) vm_map_min(pipe_map);
420
421 error = vm_map_find(pipe_map, NULL, 0,
422 (vm_offset_t *) &buffer, size, 1,
423 VM_PROT_ALL, VM_PROT_ALL, 0);
424 if (error != KERN_SUCCESS) {
425 if ((cpipe->pipe_buffer.buffer == NULL) &&
426 (size > SMALL_PIPE_SIZE)) {
427 size = SMALL_PIPE_SIZE;
428 pipefragretry++;
429 goto retry;
430 }
431 if (cpipe->pipe_buffer.buffer == NULL) {
432 pipeallocfail++;
433 if (ppsratecheck(&lastfail, &curfail, 1))
434 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
435 } else {
436 piperesizefail++;
437 }
438 return (ENOMEM);
439 }
440
441 /* copy data, then free old resources if we're resizing */
442 if (cnt > 0) {
443 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
444 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
445 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
446 buffer, firstseg);
447 if ((cnt - firstseg) > 0)
448 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
449 cpipe->pipe_buffer.in);
450 } else {
451 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
452 buffer, cnt);
453 }
454 }
455 pipe_free_kmem(cpipe);
456 cpipe->pipe_buffer.buffer = buffer;
457 cpipe->pipe_buffer.size = size;
458 cpipe->pipe_buffer.in = cnt;
459 cpipe->pipe_buffer.out = 0;
460 cpipe->pipe_buffer.cnt = cnt;
461 atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
462 return (0);
463 }
464
465 /*
466 * Wrapper for pipespace_new() that performs locking assertions.
467 */
468 static int
469 pipespace(cpipe, size)
470 struct pipe *cpipe;
471 int size;
472 {
473
474 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
475 ("Unlocked pipe passed to pipespace"));
476 return (pipespace_new(cpipe, size));
477 }
478
479 /*
480 * lock a pipe for I/O, blocking other access
481 */
482 static __inline int
483 pipelock(cpipe, catch)
484 struct pipe *cpipe;
485 int catch;
486 {
487 int error;
488
489 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
490 while (cpipe->pipe_state & PIPE_LOCKFL) {
491 cpipe->pipe_state |= PIPE_LWANT;
492 error = msleep(cpipe, PIPE_MTX(cpipe),
493 catch ? (PRIBIO | PCATCH) : PRIBIO,
494 "pipelk", 0);
495 if (error != 0)
496 return (error);
497 }
498 cpipe->pipe_state |= PIPE_LOCKFL;
499 return (0);
500 }
501
502 /*
503 * unlock a pipe I/O lock
504 */
505 static __inline void
506 pipeunlock(cpipe)
507 struct pipe *cpipe;
508 {
509
510 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
511 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
512 ("Unlocked pipe passed to pipeunlock"));
513 cpipe->pipe_state &= ~PIPE_LOCKFL;
514 if (cpipe->pipe_state & PIPE_LWANT) {
515 cpipe->pipe_state &= ~PIPE_LWANT;
516 wakeup(cpipe);
517 }
518 }
519
520 static __inline void
521 pipeselwakeup(cpipe)
522 struct pipe *cpipe;
523 {
524
525 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
526 if (cpipe->pipe_state & PIPE_SEL) {
527 cpipe->pipe_state &= ~PIPE_SEL;
528 selwakeuppri(&cpipe->pipe_sel, PSOCK);
529 }
530 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
531 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
532 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
533 }
534
535 /*
536 * Initialize and allocate VM and memory for pipe. The structure
537 * will start out zero'd from the ctor, so we just manage the kmem.
538 */
539 static int
540 pipe_create(pipe, backing)
541 struct pipe *pipe;
542 int backing;
543 {
544 int error;
545
546 if (backing) {
547 if (amountpipekva > maxpipekva / 2)
548 error = pipespace_new(pipe, SMALL_PIPE_SIZE);
549 else
550 error = pipespace_new(pipe, PIPE_SIZE);
551 } else {
552 /* If we're not backing this pipe, no need to do anything. */
553 error = 0;
554 }
555 return (error);
556 }
557
558 /* ARGSUSED */
559 static int
560 pipe_read(fp, uio, active_cred, flags, td)
561 struct file *fp;
562 struct uio *uio;
563 struct ucred *active_cred;
564 struct thread *td;
565 int flags;
566 {
567 struct pipe *rpipe = fp->f_data;
568 int error;
569 int nread = 0;
570 u_int size;
571
572 PIPE_LOCK(rpipe);
573 ++rpipe->pipe_busy;
574 error = pipelock(rpipe, 1);
575 if (error)
576 goto unlocked_error;
577
578 #ifdef MAC
579 error = mac_check_pipe_read(active_cred, rpipe->pipe_pair);
580 if (error)
581 goto locked_error;
582 #endif
583 if (amountpipekva > (3 * maxpipekva) / 4) {
584 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
585 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
586 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
587 (piperesizeallowed == 1)) {
588 PIPE_UNLOCK(rpipe);
589 pipespace(rpipe, SMALL_PIPE_SIZE);
590 PIPE_LOCK(rpipe);
591 }
592 }
593
594 while (uio->uio_resid) {
595 /*
596 * normal pipe buffer receive
597 */
598 if (rpipe->pipe_buffer.cnt > 0) {
599 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
600 if (size > rpipe->pipe_buffer.cnt)
601 size = rpipe->pipe_buffer.cnt;
602 if (size > (u_int) uio->uio_resid)
603 size = (u_int) uio->uio_resid;
604
605 PIPE_UNLOCK(rpipe);
606 error = uiomove(
607 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
608 size, uio);
609 PIPE_LOCK(rpipe);
610 if (error)
611 break;
612
613 rpipe->pipe_buffer.out += size;
614 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
615 rpipe->pipe_buffer.out = 0;
616
617 rpipe->pipe_buffer.cnt -= size;
618
619 /*
620 * If there is no more to read in the pipe, reset
621 * its pointers to the beginning. This improves
622 * cache hit stats.
623 */
624 if (rpipe->pipe_buffer.cnt == 0) {
625 rpipe->pipe_buffer.in = 0;
626 rpipe->pipe_buffer.out = 0;
627 }
628 nread += size;
629 #ifndef PIPE_NODIRECT
630 /*
631 * Direct copy, bypassing a kernel buffer.
632 */
633 } else if ((size = rpipe->pipe_map.cnt) &&
634 (rpipe->pipe_state & PIPE_DIRECTW)) {
635 if (size > (u_int) uio->uio_resid)
636 size = (u_int) uio->uio_resid;
637
638 PIPE_UNLOCK(rpipe);
639 error = uiomove_fromphys(rpipe->pipe_map.ms,
640 rpipe->pipe_map.pos, size, uio);
641 PIPE_LOCK(rpipe);
642 if (error)
643 break;
644 nread += size;
645 rpipe->pipe_map.pos += size;
646 rpipe->pipe_map.cnt -= size;
647 if (rpipe->pipe_map.cnt == 0) {
648 rpipe->pipe_state &= ~PIPE_DIRECTW;
649 wakeup(rpipe);
650 }
651 #endif
652 } else {
653 /*
654 * detect EOF condition
655 * read returns 0 on EOF, no need to set error
656 */
657 if (rpipe->pipe_state & PIPE_EOF)
658 break;
659
660 /*
661 * If the "write-side" has been blocked, wake it up now.
662 */
663 if (rpipe->pipe_state & PIPE_WANTW) {
664 rpipe->pipe_state &= ~PIPE_WANTW;
665 wakeup(rpipe);
666 }
667
668 /*
669 * Break if some data was read.
670 */
671 if (nread > 0)
672 break;
673
674 /*
675 * Unlock the pipe buffer for our remaining processing.
676 * We will either break out with an error or we will
677 * sleep and relock to loop.
678 */
679 pipeunlock(rpipe);
680
681 /*
682 * Handle non-blocking mode operation or
683 * wait for more data.
684 */
685 if (fp->f_flag & FNONBLOCK) {
686 error = EAGAIN;
687 } else {
688 rpipe->pipe_state |= PIPE_WANTR;
689 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
690 PRIBIO | PCATCH,
691 "piperd", 0)) == 0)
692 error = pipelock(rpipe, 1);
693 }
694 if (error)
695 goto unlocked_error;
696 }
697 }
698 #ifdef MAC
699 locked_error:
700 #endif
701 pipeunlock(rpipe);
702
703 /* XXX: should probably do this before getting any locks. */
704 if (error == 0)
705 vfs_timestamp(&rpipe->pipe_atime);
706 unlocked_error:
707 --rpipe->pipe_busy;
708
709 /*
710 * PIPE_WANT processing only makes sense if pipe_busy is 0.
711 */
712 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
713 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
714 wakeup(rpipe);
715 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
716 /*
717 * Handle write blocking hysteresis.
718 */
719 if (rpipe->pipe_state & PIPE_WANTW) {
720 rpipe->pipe_state &= ~PIPE_WANTW;
721 wakeup(rpipe);
722 }
723 }
724
725 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
726 pipeselwakeup(rpipe);
727
728 PIPE_UNLOCK(rpipe);
729 return (error);
730 }
731
732 #ifndef PIPE_NODIRECT
733 /*
734 * Map the sending processes' buffer into kernel space and wire it.
735 * This is similar to a physical write operation.
736 */
737 static int
738 pipe_build_write_buffer(wpipe, uio)
739 struct pipe *wpipe;
740 struct uio *uio;
741 {
742 pmap_t pmap;
743 u_int size;
744 int i, j;
745 vm_offset_t addr, endaddr;
746
747 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
748 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
749 ("Clone attempt on non-direct write pipe!"));
750
751 size = (u_int) uio->uio_iov->iov_len;
752 if (size > wpipe->pipe_buffer.size)
753 size = wpipe->pipe_buffer.size;
754
755 pmap = vmspace_pmap(curproc->p_vmspace);
756 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
757 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
758 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
759 /*
760 * vm_fault_quick() can sleep. Consequently,
761 * vm_page_lock_queue() and vm_page_unlock_queue()
762 * should not be performed outside of this loop.
763 */
764 race:
765 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
766 vm_page_lock_queues();
767 for (j = 0; j < i; j++)
768 vm_page_unhold(wpipe->pipe_map.ms[j]);
769 vm_page_unlock_queues();
770 return (EFAULT);
771 }
772 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
773 VM_PROT_READ);
774 if (wpipe->pipe_map.ms[i] == NULL)
775 goto race;
776 }
777
778 /*
779 * set up the control block
780 */
781 wpipe->pipe_map.npages = i;
782 wpipe->pipe_map.pos =
783 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
784 wpipe->pipe_map.cnt = size;
785
786 /*
787 * and update the uio data
788 */
789
790 uio->uio_iov->iov_len -= size;
791 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
792 if (uio->uio_iov->iov_len == 0)
793 uio->uio_iov++;
794 uio->uio_resid -= size;
795 uio->uio_offset += size;
796 return (0);
797 }
798
799 /*
800 * unmap and unwire the process buffer
801 */
802 static void
803 pipe_destroy_write_buffer(wpipe)
804 struct pipe *wpipe;
805 {
806 int i;
807
808 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
809 vm_page_lock_queues();
810 for (i = 0; i < wpipe->pipe_map.npages; i++) {
811 vm_page_unhold(wpipe->pipe_map.ms[i]);
812 }
813 vm_page_unlock_queues();
814 wpipe->pipe_map.npages = 0;
815 }
816
817 /*
818 * In the case of a signal, the writing process might go away. This
819 * code copies the data into the circular buffer so that the source
820 * pages can be freed without loss of data.
821 */
822 static void
823 pipe_clone_write_buffer(wpipe)
824 struct pipe *wpipe;
825 {
826 struct uio uio;
827 struct iovec iov;
828 int size;
829 int pos;
830
831 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
832 size = wpipe->pipe_map.cnt;
833 pos = wpipe->pipe_map.pos;
834
835 wpipe->pipe_buffer.in = size;
836 wpipe->pipe_buffer.out = 0;
837 wpipe->pipe_buffer.cnt = size;
838 wpipe->pipe_state &= ~PIPE_DIRECTW;
839
840 PIPE_UNLOCK(wpipe);
841 iov.iov_base = wpipe->pipe_buffer.buffer;
842 iov.iov_len = size;
843 uio.uio_iov = &iov;
844 uio.uio_iovcnt = 1;
845 uio.uio_offset = 0;
846 uio.uio_resid = size;
847 uio.uio_segflg = UIO_SYSSPACE;
848 uio.uio_rw = UIO_READ;
849 uio.uio_td = curthread;
850 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
851 PIPE_LOCK(wpipe);
852 pipe_destroy_write_buffer(wpipe);
853 }
854
855 /*
856 * This implements the pipe buffer write mechanism. Note that only
857 * a direct write OR a normal pipe write can be pending at any given time.
858 * If there are any characters in the pipe buffer, the direct write will
859 * be deferred until the receiving process grabs all of the bytes from
860 * the pipe buffer. Then the direct mapping write is set-up.
861 */
862 static int
863 pipe_direct_write(wpipe, uio)
864 struct pipe *wpipe;
865 struct uio *uio;
866 {
867 int error;
868
869 retry:
870 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
871 error = pipelock(wpipe, 1);
872 if (wpipe->pipe_state & PIPE_EOF)
873 error = EPIPE;
874 if (error) {
875 pipeunlock(wpipe);
876 goto error1;
877 }
878 while (wpipe->pipe_state & PIPE_DIRECTW) {
879 if (wpipe->pipe_state & PIPE_WANTR) {
880 wpipe->pipe_state &= ~PIPE_WANTR;
881 wakeup(wpipe);
882 }
883 pipeselwakeup(wpipe);
884 wpipe->pipe_state |= PIPE_WANTW;
885 pipeunlock(wpipe);
886 error = msleep(wpipe, PIPE_MTX(wpipe),
887 PRIBIO | PCATCH, "pipdww", 0);
888 if (error)
889 goto error1;
890 else
891 goto retry;
892 }
893 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
894 if (wpipe->pipe_buffer.cnt > 0) {
895 if (wpipe->pipe_state & PIPE_WANTR) {
896 wpipe->pipe_state &= ~PIPE_WANTR;
897 wakeup(wpipe);
898 }
899 pipeselwakeup(wpipe);
900 wpipe->pipe_state |= PIPE_WANTW;
901 pipeunlock(wpipe);
902 error = msleep(wpipe, PIPE_MTX(wpipe),
903 PRIBIO | PCATCH, "pipdwc", 0);
904 if (error)
905 goto error1;
906 else
907 goto retry;
908 }
909
910 wpipe->pipe_state |= PIPE_DIRECTW;
911
912 PIPE_UNLOCK(wpipe);
913 error = pipe_build_write_buffer(wpipe, uio);
914 PIPE_LOCK(wpipe);
915 if (error) {
916 wpipe->pipe_state &= ~PIPE_DIRECTW;
917 pipeunlock(wpipe);
918 goto error1;
919 }
920
921 error = 0;
922 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
923 if (wpipe->pipe_state & PIPE_EOF) {
924 pipe_destroy_write_buffer(wpipe);
925 pipeselwakeup(wpipe);
926 pipeunlock(wpipe);
927 error = EPIPE;
928 goto error1;
929 }
930 if (wpipe->pipe_state & PIPE_WANTR) {
931 wpipe->pipe_state &= ~PIPE_WANTR;
932 wakeup(wpipe);
933 }
934 pipeselwakeup(wpipe);
935 pipeunlock(wpipe);
936 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
937 "pipdwt", 0);
938 pipelock(wpipe, 0);
939 }
940
941 if (wpipe->pipe_state & PIPE_EOF)
942 error = EPIPE;
943 if (wpipe->pipe_state & PIPE_DIRECTW) {
944 /*
945 * this bit of trickery substitutes a kernel buffer for
946 * the process that might be going away.
947 */
948 pipe_clone_write_buffer(wpipe);
949 } else {
950 pipe_destroy_write_buffer(wpipe);
951 }
952 pipeunlock(wpipe);
953 return (error);
954
955 error1:
956 wakeup(wpipe);
957 return (error);
958 }
959 #endif
960
961 static int
962 pipe_write(fp, uio, active_cred, flags, td)
963 struct file *fp;
964 struct uio *uio;
965 struct ucred *active_cred;
966 struct thread *td;
967 int flags;
968 {
969 int error = 0;
970 int desiredsize, orig_resid;
971 struct pipe *wpipe, *rpipe;
972
973 rpipe = fp->f_data;
974 wpipe = rpipe->pipe_peer;
975
976 PIPE_LOCK(rpipe);
977 error = pipelock(wpipe, 1);
978 if (error) {
979 PIPE_UNLOCK(rpipe);
980 return (error);
981 }
982 /*
983 * detect loss of pipe read side, issue SIGPIPE if lost.
984 */
985 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
986 pipeunlock(wpipe);
987 PIPE_UNLOCK(rpipe);
988 return (EPIPE);
989 }
990 #ifdef MAC
991 error = mac_check_pipe_write(active_cred, wpipe->pipe_pair);
992 if (error) {
993 pipeunlock(wpipe);
994 PIPE_UNLOCK(rpipe);
995 return (error);
996 }
997 #endif
998 ++wpipe->pipe_busy;
999
1000 /* Choose a larger size if it's advantageous */
1001 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1002 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1003 if (piperesizeallowed != 1)
1004 break;
1005 if (amountpipekva > maxpipekva / 2)
1006 break;
1007 if (desiredsize == BIG_PIPE_SIZE)
1008 break;
1009 desiredsize = desiredsize * 2;
1010 }
1011
1012 /* Choose a smaller size if we're in a OOM situation */
1013 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1014 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1015 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1016 (piperesizeallowed == 1))
1017 desiredsize = SMALL_PIPE_SIZE;
1018
1019 /* Resize if the above determined that a new size was necessary */
1020 if ((desiredsize != wpipe->pipe_buffer.size) &&
1021 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1022 PIPE_UNLOCK(wpipe);
1023 pipespace(wpipe, desiredsize);
1024 PIPE_LOCK(wpipe);
1025 }
1026 if (wpipe->pipe_buffer.size == 0) {
1027 /*
1028 * This can only happen for reverse direction use of pipes
1029 * in a complete OOM situation.
1030 */
1031 error = ENOMEM;
1032 --wpipe->pipe_busy;
1033 pipeunlock(wpipe);
1034 PIPE_UNLOCK(wpipe);
1035 return (error);
1036 }
1037
1038 pipeunlock(wpipe);
1039
1040 orig_resid = uio->uio_resid;
1041
1042 while (uio->uio_resid) {
1043 int space;
1044
1045 pipelock(wpipe, 0);
1046 if (wpipe->pipe_state & PIPE_EOF) {
1047 pipeunlock(wpipe);
1048 error = EPIPE;
1049 break;
1050 }
1051 #ifndef PIPE_NODIRECT
1052 /*
1053 * If the transfer is large, we can gain performance if
1054 * we do process-to-process copies directly.
1055 * If the write is non-blocking, we don't use the
1056 * direct write mechanism.
1057 *
1058 * The direct write mechanism will detect the reader going
1059 * away on us.
1060 */
1061 if (uio->uio_segflg == UIO_USERSPACE &&
1062 uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1063 wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1064 (fp->f_flag & FNONBLOCK) == 0) {
1065 pipeunlock(wpipe);
1066 error = pipe_direct_write(wpipe, uio);
1067 if (error)
1068 break;
1069 continue;
1070 }
1071 #endif
1072
1073 /*
1074 * Pipe buffered writes cannot be coincidental with
1075 * direct writes. We wait until the currently executing
1076 * direct write is completed before we start filling the
1077 * pipe buffer. We break out if a signal occurs or the
1078 * reader goes away.
1079 */
1080 if (wpipe->pipe_state & PIPE_DIRECTW) {
1081 if (wpipe->pipe_state & PIPE_WANTR) {
1082 wpipe->pipe_state &= ~PIPE_WANTR;
1083 wakeup(wpipe);
1084 }
1085 pipeselwakeup(wpipe);
1086 wpipe->pipe_state |= PIPE_WANTW;
1087 pipeunlock(wpipe);
1088 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1089 "pipbww", 0);
1090 if (error)
1091 break;
1092 else
1093 continue;
1094 }
1095
1096 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1097
1098 /* Writes of size <= PIPE_BUF must be atomic. */
1099 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1100 space = 0;
1101
1102 if (space > 0) {
1103 int size; /* Transfer size */
1104 int segsize; /* first segment to transfer */
1105
1106 /*
1107 * Transfer size is minimum of uio transfer
1108 * and free space in pipe buffer.
1109 */
1110 if (space > uio->uio_resid)
1111 size = uio->uio_resid;
1112 else
1113 size = space;
1114 /*
1115 * First segment to transfer is minimum of
1116 * transfer size and contiguous space in
1117 * pipe buffer. If first segment to transfer
1118 * is less than the transfer size, we've got
1119 * a wraparound in the buffer.
1120 */
1121 segsize = wpipe->pipe_buffer.size -
1122 wpipe->pipe_buffer.in;
1123 if (segsize > size)
1124 segsize = size;
1125
1126 /* Transfer first segment */
1127
1128 PIPE_UNLOCK(rpipe);
1129 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1130 segsize, uio);
1131 PIPE_LOCK(rpipe);
1132
1133 if (error == 0 && segsize < size) {
1134 KASSERT(wpipe->pipe_buffer.in + segsize ==
1135 wpipe->pipe_buffer.size,
1136 ("Pipe buffer wraparound disappeared"));
1137 /*
1138 * Transfer remaining part now, to
1139 * support atomic writes. Wraparound
1140 * happened.
1141 */
1142
1143 PIPE_UNLOCK(rpipe);
1144 error = uiomove(
1145 &wpipe->pipe_buffer.buffer[0],
1146 size - segsize, uio);
1147 PIPE_LOCK(rpipe);
1148 }
1149 if (error == 0) {
1150 wpipe->pipe_buffer.in += size;
1151 if (wpipe->pipe_buffer.in >=
1152 wpipe->pipe_buffer.size) {
1153 KASSERT(wpipe->pipe_buffer.in ==
1154 size - segsize +
1155 wpipe->pipe_buffer.size,
1156 ("Expected wraparound bad"));
1157 wpipe->pipe_buffer.in = size - segsize;
1158 }
1159
1160 wpipe->pipe_buffer.cnt += size;
1161 KASSERT(wpipe->pipe_buffer.cnt <=
1162 wpipe->pipe_buffer.size,
1163 ("Pipe buffer overflow"));
1164 }
1165 pipeunlock(wpipe);
1166 if (error != 0)
1167 break;
1168 } else {
1169 /*
1170 * If the "read-side" has been blocked, wake it up now.
1171 */
1172 if (wpipe->pipe_state & PIPE_WANTR) {
1173 wpipe->pipe_state &= ~PIPE_WANTR;
1174 wakeup(wpipe);
1175 }
1176
1177 /*
1178 * don't block on non-blocking I/O
1179 */
1180 if (fp->f_flag & FNONBLOCK) {
1181 error = EAGAIN;
1182 pipeunlock(wpipe);
1183 break;
1184 }
1185
1186 /*
1187 * We have no more space and have something to offer,
1188 * wake up select/poll.
1189 */
1190 pipeselwakeup(wpipe);
1191
1192 wpipe->pipe_state |= PIPE_WANTW;
1193 pipeunlock(wpipe);
1194 error = msleep(wpipe, PIPE_MTX(rpipe),
1195 PRIBIO | PCATCH, "pipewr", 0);
1196 if (error != 0)
1197 break;
1198 }
1199 }
1200
1201 pipelock(wpipe, 0);
1202 --wpipe->pipe_busy;
1203
1204 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1205 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1206 wakeup(wpipe);
1207 } else if (wpipe->pipe_buffer.cnt > 0) {
1208 /*
1209 * If we have put any characters in the buffer, we wake up
1210 * the reader.
1211 */
1212 if (wpipe->pipe_state & PIPE_WANTR) {
1213 wpipe->pipe_state &= ~PIPE_WANTR;
1214 wakeup(wpipe);
1215 }
1216 }
1217
1218 /*
1219 * Don't return EPIPE if I/O was successful
1220 */
1221 if ((wpipe->pipe_buffer.cnt == 0) &&
1222 (uio->uio_resid == 0) &&
1223 (error == EPIPE)) {
1224 error = 0;
1225 }
1226
1227 if (error == 0)
1228 vfs_timestamp(&wpipe->pipe_mtime);
1229
1230 /*
1231 * We have something to offer,
1232 * wake up select/poll.
1233 */
1234 if (wpipe->pipe_buffer.cnt)
1235 pipeselwakeup(wpipe);
1236
1237 pipeunlock(wpipe);
1238 PIPE_UNLOCK(rpipe);
1239 return (error);
1240 }
1241
1242 /*
1243 * we implement a very minimal set of ioctls for compatibility with sockets.
1244 */
1245 static int
1246 pipe_ioctl(fp, cmd, data, active_cred, td)
1247 struct file *fp;
1248 u_long cmd;
1249 void *data;
1250 struct ucred *active_cred;
1251 struct thread *td;
1252 {
1253 struct pipe *mpipe = fp->f_data;
1254 int error;
1255
1256 PIPE_LOCK(mpipe);
1257
1258 #ifdef MAC
1259 error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1260 if (error) {
1261 PIPE_UNLOCK(mpipe);
1262 return (error);
1263 }
1264 #endif
1265
1266 error = 0;
1267 switch (cmd) {
1268
1269 case FIONBIO:
1270 break;
1271
1272 case FIOASYNC:
1273 if (*(int *)data) {
1274 mpipe->pipe_state |= PIPE_ASYNC;
1275 } else {
1276 mpipe->pipe_state &= ~PIPE_ASYNC;
1277 }
1278 break;
1279
1280 case FIONREAD:
1281 if (mpipe->pipe_state & PIPE_DIRECTW)
1282 *(int *)data = mpipe->pipe_map.cnt;
1283 else
1284 *(int *)data = mpipe->pipe_buffer.cnt;
1285 break;
1286
1287 case FIOSETOWN:
1288 PIPE_UNLOCK(mpipe);
1289 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1290 goto out_unlocked;
1291
1292 case FIOGETOWN:
1293 *(int *)data = fgetown(&mpipe->pipe_sigio);
1294 break;
1295
1296 /* This is deprecated, FIOSETOWN should be used instead. */
1297 case TIOCSPGRP:
1298 PIPE_UNLOCK(mpipe);
1299 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1300 goto out_unlocked;
1301
1302 /* This is deprecated, FIOGETOWN should be used instead. */
1303 case TIOCGPGRP:
1304 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1305 break;
1306
1307 default:
1308 error = ENOTTY;
1309 break;
1310 }
1311 PIPE_UNLOCK(mpipe);
1312 out_unlocked:
1313 return (error);
1314 }
1315
1316 static int
1317 pipe_poll(fp, events, active_cred, td)
1318 struct file *fp;
1319 int events;
1320 struct ucred *active_cred;
1321 struct thread *td;
1322 {
1323 struct pipe *rpipe = fp->f_data;
1324 struct pipe *wpipe;
1325 int revents = 0;
1326 #ifdef MAC
1327 int error;
1328 #endif
1329
1330 wpipe = rpipe->pipe_peer;
1331 PIPE_LOCK(rpipe);
1332 #ifdef MAC
1333 error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair);
1334 if (error)
1335 goto locked_error;
1336 #endif
1337 if (events & (POLLIN | POLLRDNORM))
1338 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1339 (rpipe->pipe_buffer.cnt > 0) ||
1340 (rpipe->pipe_state & PIPE_EOF))
1341 revents |= events & (POLLIN | POLLRDNORM);
1342
1343 if (events & (POLLOUT | POLLWRNORM))
1344 if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) ||
1345 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1346 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1347 revents |= events & (POLLOUT | POLLWRNORM);
1348
1349 if ((rpipe->pipe_state & PIPE_EOF) ||
1350 (!wpipe->pipe_present) ||
1351 (wpipe->pipe_state & PIPE_EOF))
1352 revents |= POLLHUP;
1353
1354 if (revents == 0) {
1355 if (events & (POLLIN | POLLRDNORM)) {
1356 selrecord(td, &rpipe->pipe_sel);
1357 rpipe->pipe_state |= PIPE_SEL;
1358 }
1359
1360 if (events & (POLLOUT | POLLWRNORM)) {
1361 selrecord(td, &wpipe->pipe_sel);
1362 wpipe->pipe_state |= PIPE_SEL;
1363 }
1364 }
1365 #ifdef MAC
1366 locked_error:
1367 #endif
1368 PIPE_UNLOCK(rpipe);
1369
1370 return (revents);
1371 }
1372
1373 /*
1374 * We shouldn't need locks here as we're doing a read and this should
1375 * be a natural race.
1376 */
1377 static int
1378 pipe_stat(fp, ub, active_cred, td)
1379 struct file *fp;
1380 struct stat *ub;
1381 struct ucred *active_cred;
1382 struct thread *td;
1383 {
1384 struct pipe *pipe = fp->f_data;
1385 #ifdef MAC
1386 int error;
1387
1388 PIPE_LOCK(pipe);
1389 error = mac_check_pipe_stat(active_cred, pipe->pipe_pair);
1390 PIPE_UNLOCK(pipe);
1391 if (error)
1392 return (error);
1393 #endif
1394 bzero(ub, sizeof(*ub));
1395 ub->st_mode = S_IFIFO;
1396 ub->st_blksize = PAGE_SIZE;
1397 if (pipe->pipe_state & PIPE_DIRECTW)
1398 ub->st_size = pipe->pipe_map.cnt;
1399 else
1400 ub->st_size = pipe->pipe_buffer.cnt;
1401 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1402 ub->st_atimespec = pipe->pipe_atime;
1403 ub->st_mtimespec = pipe->pipe_mtime;
1404 ub->st_ctimespec = pipe->pipe_ctime;
1405 ub->st_uid = fp->f_cred->cr_uid;
1406 ub->st_gid = fp->f_cred->cr_gid;
1407 /*
1408 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1409 * XXX (st_dev, st_ino) should be unique.
1410 */
1411 return (0);
1412 }
1413
1414 /* ARGSUSED */
1415 static int
1416 pipe_close(fp, td)
1417 struct file *fp;
1418 struct thread *td;
1419 {
1420 struct pipe *cpipe = fp->f_data;
1421
1422 fp->f_ops = &badfileops;
1423 fp->f_data = NULL;
1424 funsetown(&cpipe->pipe_sigio);
1425 pipeclose(cpipe);
1426 return (0);
1427 }
1428
1429 static void
1430 pipe_free_kmem(cpipe)
1431 struct pipe *cpipe;
1432 {
1433
1434 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1435 ("pipe_free_kmem: pipe mutex locked"));
1436
1437 if (cpipe->pipe_buffer.buffer != NULL) {
1438 atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
1439 vm_map_remove(pipe_map,
1440 (vm_offset_t)cpipe->pipe_buffer.buffer,
1441 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1442 cpipe->pipe_buffer.buffer = NULL;
1443 }
1444 #ifndef PIPE_NODIRECT
1445 {
1446 cpipe->pipe_map.cnt = 0;
1447 cpipe->pipe_map.pos = 0;
1448 cpipe->pipe_map.npages = 0;
1449 }
1450 #endif
1451 }
1452
1453 /*
1454 * shutdown the pipe
1455 */
1456 static void
1457 pipeclose(cpipe)
1458 struct pipe *cpipe;
1459 {
1460 struct pipepair *pp;
1461 struct pipe *ppipe;
1462
1463 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1464
1465 PIPE_LOCK(cpipe);
1466 pipelock(cpipe, 0);
1467 pp = cpipe->pipe_pair;
1468
1469 pipeselwakeup(cpipe);
1470
1471 /*
1472 * If the other side is blocked, wake it up saying that
1473 * we want to close it down.
1474 */
1475 cpipe->pipe_state |= PIPE_EOF;
1476 while (cpipe->pipe_busy) {
1477 wakeup(cpipe);
1478 cpipe->pipe_state |= PIPE_WANT;
1479 pipeunlock(cpipe);
1480 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1481 pipelock(cpipe, 0);
1482 }
1483
1484
1485 /*
1486 * Disconnect from peer, if any.
1487 */
1488 ppipe = cpipe->pipe_peer;
1489 if (ppipe->pipe_present != 0) {
1490 pipeselwakeup(ppipe);
1491
1492 ppipe->pipe_state |= PIPE_EOF;
1493 wakeup(ppipe);
1494 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1495 }
1496
1497 /*
1498 * Mark this endpoint as free. Release kmem resources. We
1499 * don't mark this endpoint as unused until we've finished
1500 * doing that, or the pipe might disappear out from under
1501 * us.
1502 */
1503 PIPE_UNLOCK(cpipe);
1504 pipe_free_kmem(cpipe);
1505 PIPE_LOCK(cpipe);
1506 cpipe->pipe_present = 0;
1507 pipeunlock(cpipe);
1508 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1509 knlist_destroy(&cpipe->pipe_sel.si_note);
1510
1511 /*
1512 * If both endpoints are now closed, release the memory for the
1513 * pipe pair. If not, unlock.
1514 */
1515 if (ppipe->pipe_present == 0) {
1516 PIPE_UNLOCK(cpipe);
1517 #ifdef MAC
1518 mac_destroy_pipe(pp);
1519 #endif
1520 uma_zfree(pipe_zone, cpipe->pipe_pair);
1521 } else
1522 PIPE_UNLOCK(cpipe);
1523 }
1524
1525 /*ARGSUSED*/
1526 static int
1527 pipe_kqfilter(struct file *fp, struct knote *kn)
1528 {
1529 struct pipe *cpipe;
1530
1531 cpipe = kn->kn_fp->f_data;
1532 PIPE_LOCK(cpipe);
1533 switch (kn->kn_filter) {
1534 case EVFILT_READ:
1535 kn->kn_fop = &pipe_rfiltops;
1536 break;
1537 case EVFILT_WRITE:
1538 kn->kn_fop = &pipe_wfiltops;
1539 if (!cpipe->pipe_peer->pipe_present) {
1540 /* other end of pipe has been closed */
1541 PIPE_UNLOCK(cpipe);
1542 return (EPIPE);
1543 }
1544 cpipe = cpipe->pipe_peer;
1545 break;
1546 default:
1547 PIPE_UNLOCK(cpipe);
1548 return (EINVAL);
1549 }
1550
1551 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1552 PIPE_UNLOCK(cpipe);
1553 return (0);
1554 }
1555
1556 static void
1557 filt_pipedetach(struct knote *kn)
1558 {
1559 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1560
1561 PIPE_LOCK(cpipe);
1562 if (kn->kn_filter == EVFILT_WRITE) {
1563 if (!cpipe->pipe_peer->pipe_present) {
1564 PIPE_UNLOCK(cpipe);
1565 return;
1566 }
1567 cpipe = cpipe->pipe_peer;
1568 }
1569 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1570 PIPE_UNLOCK(cpipe);
1571 }
1572
1573 /*ARGSUSED*/
1574 static int
1575 filt_piperead(struct knote *kn, long hint)
1576 {
1577 struct pipe *rpipe = kn->kn_fp->f_data;
1578 struct pipe *wpipe = rpipe->pipe_peer;
1579 int ret;
1580
1581 PIPE_LOCK(rpipe);
1582 kn->kn_data = rpipe->pipe_buffer.cnt;
1583 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1584 kn->kn_data = rpipe->pipe_map.cnt;
1585
1586 if ((rpipe->pipe_state & PIPE_EOF) ||
1587 (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1588 kn->kn_flags |= EV_EOF;
1589 PIPE_UNLOCK(rpipe);
1590 return (1);
1591 }
1592 ret = kn->kn_data > 0;
1593 PIPE_UNLOCK(rpipe);
1594 return ret;
1595 }
1596
1597 /*ARGSUSED*/
1598 static int
1599 filt_pipewrite(struct knote *kn, long hint)
1600 {
1601 struct pipe *rpipe = kn->kn_fp->f_data;
1602 struct pipe *wpipe = rpipe->pipe_peer;
1603
1604 PIPE_LOCK(rpipe);
1605 if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1606 kn->kn_data = 0;
1607 kn->kn_flags |= EV_EOF;
1608 PIPE_UNLOCK(rpipe);
1609 return (1);
1610 }
1611 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1612 if (wpipe->pipe_state & PIPE_DIRECTW)
1613 kn->kn_data = 0;
1614
1615 PIPE_UNLOCK(rpipe);
1616 return (kn->kn_data >= PIPE_BUF);
1617 }
Cache object: cbf092c480f31968fa04f928d6a6040e
|