FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*-
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 */
19
20 /*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27 /*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode. The small write mode acts like conventional pipes with
30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side. In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer. Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map. This value is normally
52 * autotuned, but may also be loader tuned.
53 *
54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55 * memory in use by pipes.
56 *
57 * Based on how large pipekva is relative to maxpipekva, the following
58 * will happen:
59 *
60 * 0% - 50%:
61 * New pipes are given 16K of memory backing, pipes may dynamically
62 * grow to as large as 64K where needed.
63 * 50% - 75%:
64 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
65 * existing pipes may NOT grow.
66 * 75% - 100%:
67 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 * existing pipes will be shrunk down to 4K whenever possible.
69 *
70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72 * resize which MUST occur for reverse-direction pipes when they are
73 * first used.
74 *
75 * Additional information about the current state of pipes may be obtained
76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77 * and kern.ipc.piperesizefail.
78 *
79 * Locking rules: There are two locks present here: A mutex, used via
80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
81 * the flag, as mutexes can not persist over uiomove. The mutex
82 * exists only to guard access to the flag, and is not in itself a
83 * locking mechanism. Also note that there is only a single mutex for
84 * both directions of a pipe.
85 *
86 * As pipelock() may have to sleep before it can acquire the flag, it
87 * is important to reread all data after a call to pipelock(); everything
88 * in the structure may have changed.
89 */
90
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD$");
93
94 #include "opt_mac.h"
95
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/fcntl.h>
99 #include <sys/file.h>
100 #include <sys/filedesc.h>
101 #include <sys/filio.h>
102 #include <sys/kernel.h>
103 #include <sys/lock.h>
104 #include <sys/mutex.h>
105 #include <sys/ttycom.h>
106 #include <sys/stat.h>
107 #include <sys/malloc.h>
108 #include <sys/poll.h>
109 #include <sys/selinfo.h>
110 #include <sys/signalvar.h>
111 #include <sys/sysctl.h>
112 #include <sys/sysproto.h>
113 #include <sys/pipe.h>
114 #include <sys/proc.h>
115 #include <sys/vnode.h>
116 #include <sys/uio.h>
117 #include <sys/event.h>
118
119 #include <security/mac/mac_framework.h>
120
121 #include <vm/vm.h>
122 #include <vm/vm_param.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_kern.h>
125 #include <vm/vm_extern.h>
126 #include <vm/pmap.h>
127 #include <vm/vm_map.h>
128 #include <vm/vm_page.h>
129 #include <vm/uma.h>
130
131 /*
132 * Use this define if you want to disable *fancy* VM things. Expect an
133 * approx 30% decrease in transfer rate. This could be useful for
134 * NetBSD or OpenBSD.
135 */
136 /* #define PIPE_NODIRECT */
137
138 /*
139 * interfaces to the outside world
140 */
141 static fo_rdwr_t pipe_read;
142 static fo_rdwr_t pipe_write;
143 static fo_ioctl_t pipe_ioctl;
144 static fo_poll_t pipe_poll;
145 static fo_kqfilter_t pipe_kqfilter;
146 static fo_stat_t pipe_stat;
147 static fo_close_t pipe_close;
148
149 static struct fileops pipeops = {
150 .fo_read = pipe_read,
151 .fo_write = pipe_write,
152 .fo_ioctl = pipe_ioctl,
153 .fo_poll = pipe_poll,
154 .fo_kqfilter = pipe_kqfilter,
155 .fo_stat = pipe_stat,
156 .fo_close = pipe_close,
157 .fo_flags = DFLAG_PASSABLE
158 };
159
160 static void filt_pipedetach(struct knote *kn);
161 static int filt_piperead(struct knote *kn, long hint);
162 static int filt_pipewrite(struct knote *kn, long hint);
163
164 static struct filterops pipe_rfiltops =
165 { 1, NULL, filt_pipedetach, filt_piperead };
166 static struct filterops pipe_wfiltops =
167 { 1, NULL, filt_pipedetach, filt_pipewrite };
168
169 /*
170 * Default pipe buffer size(s), this can be kind-of large now because pipe
171 * space is pageable. The pipe code will try to maintain locality of
172 * reference for performance reasons, so small amounts of outstanding I/O
173 * will not wipe the cache.
174 */
175 #define MINPIPESIZE (PIPE_SIZE/3)
176 #define MAXPIPESIZE (2*PIPE_SIZE/3)
177
178 static long amountpipekva;
179 static int pipefragretry;
180 static int pipeallocfail;
181 static int piperesizefail;
182 static int piperesizeallowed = 1;
183
184 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
185 &maxpipekva, 0, "Pipe KVA limit");
186 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
187 &amountpipekva, 0, "Pipe KVA usage");
188 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
189 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
190 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
191 &pipeallocfail, 0, "Pipe allocation failures");
192 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
193 &piperesizefail, 0, "Pipe resize failures");
194 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
195 &piperesizeallowed, 0, "Pipe resizing allowed");
196
197 static void pipeinit(void *dummy __unused);
198 static void pipeclose(struct pipe *cpipe);
199 static void pipe_free_kmem(struct pipe *cpipe);
200 static int pipe_create(struct pipe *pipe, int backing);
201 static __inline int pipelock(struct pipe *cpipe, int catch);
202 static __inline void pipeunlock(struct pipe *cpipe);
203 static __inline void pipeselwakeup(struct pipe *cpipe);
204 #ifndef PIPE_NODIRECT
205 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
206 static void pipe_destroy_write_buffer(struct pipe *wpipe);
207 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
208 static void pipe_clone_write_buffer(struct pipe *wpipe);
209 #endif
210 static int pipespace(struct pipe *cpipe, int size);
211 static int pipespace_new(struct pipe *cpipe, int size);
212
213 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
214 static int pipe_zone_init(void *mem, int size, int flags);
215 static void pipe_zone_fini(void *mem, int size);
216
217 static uma_zone_t pipe_zone;
218
219 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
220
221 static void
222 pipeinit(void *dummy __unused)
223 {
224
225 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
226 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
227 UMA_ALIGN_PTR, 0);
228 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
229 }
230
231 static int
232 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
233 {
234 struct pipepair *pp;
235 struct pipe *rpipe, *wpipe;
236
237 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
238
239 pp = (struct pipepair *)mem;
240
241 /*
242 * We zero both pipe endpoints to make sure all the kmem pointers
243 * are NULL, flag fields are zero'd, etc. We timestamp both
244 * endpoints with the same time.
245 */
246 rpipe = &pp->pp_rpipe;
247 bzero(rpipe, sizeof(*rpipe));
248 vfs_timestamp(&rpipe->pipe_ctime);
249 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
250
251 wpipe = &pp->pp_wpipe;
252 bzero(wpipe, sizeof(*wpipe));
253 wpipe->pipe_ctime = rpipe->pipe_ctime;
254 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
255
256 rpipe->pipe_peer = wpipe;
257 rpipe->pipe_pair = pp;
258 wpipe->pipe_peer = rpipe;
259 wpipe->pipe_pair = pp;
260
261 /*
262 * Mark both endpoints as present; they will later get free'd
263 * one at a time. When both are free'd, then the whole pair
264 * is released.
265 */
266 rpipe->pipe_present = PIPE_ACTIVE;
267 wpipe->pipe_present = PIPE_ACTIVE;
268
269 /*
270 * Eventually, the MAC Framework may initialize the label
271 * in ctor or init, but for now we do it elswhere to avoid
272 * blocking in ctor or init.
273 */
274 pp->pp_label = NULL;
275
276 return (0);
277 }
278
279 static int
280 pipe_zone_init(void *mem, int size, int flags)
281 {
282 struct pipepair *pp;
283
284 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
285
286 pp = (struct pipepair *)mem;
287
288 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
289 return (0);
290 }
291
292 static void
293 pipe_zone_fini(void *mem, int size)
294 {
295 struct pipepair *pp;
296
297 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
298
299 pp = (struct pipepair *)mem;
300
301 mtx_destroy(&pp->pp_mtx);
302 }
303
304 /*
305 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
306 * the zone pick up the pieces via pipeclose().
307 */
308 /* ARGSUSED */
309 int
310 pipe(td, uap)
311 struct thread *td;
312 struct pipe_args /* {
313 int dummy;
314 } */ *uap;
315 {
316 struct filedesc *fdp = td->td_proc->p_fd;
317 struct file *rf, *wf;
318 struct pipepair *pp;
319 struct pipe *rpipe, *wpipe;
320 int fd, error;
321
322 pp = uma_zalloc(pipe_zone, M_WAITOK);
323 #ifdef MAC
324 /*
325 * The MAC label is shared between the connected endpoints. As a
326 * result mac_init_pipe() and mac_create_pipe() are called once
327 * for the pair, and not on the endpoints.
328 */
329 mac_init_pipe(pp);
330 mac_create_pipe(td->td_ucred, pp);
331 #endif
332 rpipe = &pp->pp_rpipe;
333 wpipe = &pp->pp_wpipe;
334
335 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
336 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
337
338 /* Only the forward direction pipe is backed by default */
339 if ((error = pipe_create(rpipe, 1)) != 0 ||
340 (error = pipe_create(wpipe, 0)) != 0) {
341 pipeclose(rpipe);
342 pipeclose(wpipe);
343 return (error);
344 }
345
346 rpipe->pipe_state |= PIPE_DIRECTOK;
347 wpipe->pipe_state |= PIPE_DIRECTOK;
348
349 error = falloc(td, &rf, &fd);
350 if (error) {
351 pipeclose(rpipe);
352 pipeclose(wpipe);
353 return (error);
354 }
355 /* An extra reference on `rf' has been held for us by falloc(). */
356 td->td_retval[0] = fd;
357
358 /*
359 * Warning: once we've gotten past allocation of the fd for the
360 * read-side, we can only drop the read side via fdrop() in order
361 * to avoid races against processes which manage to dup() the read
362 * side while we are blocked trying to allocate the write side.
363 */
364 FILE_LOCK(rf);
365 rf->f_flag = FREAD | FWRITE;
366 rf->f_type = DTYPE_PIPE;
367 rf->f_data = rpipe;
368 rf->f_ops = &pipeops;
369 FILE_UNLOCK(rf);
370 error = falloc(td, &wf, &fd);
371 if (error) {
372 fdclose(fdp, rf, td->td_retval[0], td);
373 fdrop(rf, td);
374 /* rpipe has been closed by fdrop(). */
375 pipeclose(wpipe);
376 return (error);
377 }
378 /* An extra reference on `wf' has been held for us by falloc(). */
379 FILE_LOCK(wf);
380 wf->f_flag = FREAD | FWRITE;
381 wf->f_type = DTYPE_PIPE;
382 wf->f_data = wpipe;
383 wf->f_ops = &pipeops;
384 FILE_UNLOCK(wf);
385 fdrop(wf, td);
386 td->td_retval[1] = fd;
387 fdrop(rf, td);
388
389 return (0);
390 }
391
392 /*
393 * Allocate kva for pipe circular buffer, the space is pageable
394 * This routine will 'realloc' the size of a pipe safely, if it fails
395 * it will retain the old buffer.
396 * If it fails it will return ENOMEM.
397 */
398 static int
399 pipespace_new(cpipe, size)
400 struct pipe *cpipe;
401 int size;
402 {
403 caddr_t buffer;
404 int error, cnt, firstseg;
405 static int curfail = 0;
406 static struct timeval lastfail;
407
408 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
409 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
410 ("pipespace: resize of direct writes not allowed"));
411 retry:
412 cnt = cpipe->pipe_buffer.cnt;
413 if (cnt > size)
414 size = cnt;
415
416 size = round_page(size);
417 buffer = (caddr_t) vm_map_min(pipe_map);
418
419 error = vm_map_find(pipe_map, NULL, 0,
420 (vm_offset_t *) &buffer, size, 1,
421 VM_PROT_ALL, VM_PROT_ALL, 0);
422 if (error != KERN_SUCCESS) {
423 if ((cpipe->pipe_buffer.buffer == NULL) &&
424 (size > SMALL_PIPE_SIZE)) {
425 size = SMALL_PIPE_SIZE;
426 pipefragretry++;
427 goto retry;
428 }
429 if (cpipe->pipe_buffer.buffer == NULL) {
430 pipeallocfail++;
431 if (ppsratecheck(&lastfail, &curfail, 1))
432 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
433 } else {
434 piperesizefail++;
435 }
436 return (ENOMEM);
437 }
438
439 /* copy data, then free old resources if we're resizing */
440 if (cnt > 0) {
441 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
442 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
443 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
444 buffer, firstseg);
445 if ((cnt - firstseg) > 0)
446 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
447 cpipe->pipe_buffer.in);
448 } else {
449 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
450 buffer, cnt);
451 }
452 }
453 pipe_free_kmem(cpipe);
454 cpipe->pipe_buffer.buffer = buffer;
455 cpipe->pipe_buffer.size = size;
456 cpipe->pipe_buffer.in = cnt;
457 cpipe->pipe_buffer.out = 0;
458 cpipe->pipe_buffer.cnt = cnt;
459 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
460 return (0);
461 }
462
463 /*
464 * Wrapper for pipespace_new() that performs locking assertions.
465 */
466 static int
467 pipespace(cpipe, size)
468 struct pipe *cpipe;
469 int size;
470 {
471
472 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
473 ("Unlocked pipe passed to pipespace"));
474 return (pipespace_new(cpipe, size));
475 }
476
477 /*
478 * lock a pipe for I/O, blocking other access
479 */
480 static __inline int
481 pipelock(cpipe, catch)
482 struct pipe *cpipe;
483 int catch;
484 {
485 int error;
486
487 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
488 while (cpipe->pipe_state & PIPE_LOCKFL) {
489 cpipe->pipe_state |= PIPE_LWANT;
490 error = msleep(cpipe, PIPE_MTX(cpipe),
491 catch ? (PRIBIO | PCATCH) : PRIBIO,
492 "pipelk", 0);
493 if (error != 0)
494 return (error);
495 }
496 cpipe->pipe_state |= PIPE_LOCKFL;
497 return (0);
498 }
499
500 /*
501 * unlock a pipe I/O lock
502 */
503 static __inline void
504 pipeunlock(cpipe)
505 struct pipe *cpipe;
506 {
507
508 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
509 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
510 ("Unlocked pipe passed to pipeunlock"));
511 cpipe->pipe_state &= ~PIPE_LOCKFL;
512 if (cpipe->pipe_state & PIPE_LWANT) {
513 cpipe->pipe_state &= ~PIPE_LWANT;
514 wakeup(cpipe);
515 }
516 }
517
518 static __inline void
519 pipeselwakeup(cpipe)
520 struct pipe *cpipe;
521 {
522
523 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
524 if (cpipe->pipe_state & PIPE_SEL) {
525 cpipe->pipe_state &= ~PIPE_SEL;
526 selwakeuppri(&cpipe->pipe_sel, PSOCK);
527 }
528 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
529 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
530 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
531 }
532
533 /*
534 * Initialize and allocate VM and memory for pipe. The structure
535 * will start out zero'd from the ctor, so we just manage the kmem.
536 */
537 static int
538 pipe_create(pipe, backing)
539 struct pipe *pipe;
540 int backing;
541 {
542 int error;
543
544 if (backing) {
545 if (amountpipekva > maxpipekva / 2)
546 error = pipespace_new(pipe, SMALL_PIPE_SIZE);
547 else
548 error = pipespace_new(pipe, PIPE_SIZE);
549 } else {
550 /* If we're not backing this pipe, no need to do anything. */
551 error = 0;
552 }
553 return (error);
554 }
555
556 /* ARGSUSED */
557 static int
558 pipe_read(fp, uio, active_cred, flags, td)
559 struct file *fp;
560 struct uio *uio;
561 struct ucred *active_cred;
562 struct thread *td;
563 int flags;
564 {
565 struct pipe *rpipe = fp->f_data;
566 int error;
567 int nread = 0;
568 u_int size;
569
570 PIPE_LOCK(rpipe);
571 ++rpipe->pipe_busy;
572 error = pipelock(rpipe, 1);
573 if (error)
574 goto unlocked_error;
575
576 #ifdef MAC
577 error = mac_check_pipe_read(active_cred, rpipe->pipe_pair);
578 if (error)
579 goto locked_error;
580 #endif
581 if (amountpipekva > (3 * maxpipekva) / 4) {
582 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
583 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
584 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
585 (piperesizeallowed == 1)) {
586 PIPE_UNLOCK(rpipe);
587 pipespace(rpipe, SMALL_PIPE_SIZE);
588 PIPE_LOCK(rpipe);
589 }
590 }
591
592 while (uio->uio_resid) {
593 /*
594 * normal pipe buffer receive
595 */
596 if (rpipe->pipe_buffer.cnt > 0) {
597 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
598 if (size > rpipe->pipe_buffer.cnt)
599 size = rpipe->pipe_buffer.cnt;
600 if (size > (u_int) uio->uio_resid)
601 size = (u_int) uio->uio_resid;
602
603 PIPE_UNLOCK(rpipe);
604 error = uiomove(
605 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
606 size, uio);
607 PIPE_LOCK(rpipe);
608 if (error)
609 break;
610
611 rpipe->pipe_buffer.out += size;
612 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
613 rpipe->pipe_buffer.out = 0;
614
615 rpipe->pipe_buffer.cnt -= size;
616
617 /*
618 * If there is no more to read in the pipe, reset
619 * its pointers to the beginning. This improves
620 * cache hit stats.
621 */
622 if (rpipe->pipe_buffer.cnt == 0) {
623 rpipe->pipe_buffer.in = 0;
624 rpipe->pipe_buffer.out = 0;
625 }
626 nread += size;
627 #ifndef PIPE_NODIRECT
628 /*
629 * Direct copy, bypassing a kernel buffer.
630 */
631 } else if ((size = rpipe->pipe_map.cnt) &&
632 (rpipe->pipe_state & PIPE_DIRECTW)) {
633 if (size > (u_int) uio->uio_resid)
634 size = (u_int) uio->uio_resid;
635
636 PIPE_UNLOCK(rpipe);
637 error = uiomove_fromphys(rpipe->pipe_map.ms,
638 rpipe->pipe_map.pos, size, uio);
639 PIPE_LOCK(rpipe);
640 if (error)
641 break;
642 nread += size;
643 rpipe->pipe_map.pos += size;
644 rpipe->pipe_map.cnt -= size;
645 if (rpipe->pipe_map.cnt == 0) {
646 rpipe->pipe_state &= ~PIPE_DIRECTW;
647 wakeup(rpipe);
648 }
649 #endif
650 } else {
651 /*
652 * detect EOF condition
653 * read returns 0 on EOF, no need to set error
654 */
655 if (rpipe->pipe_state & PIPE_EOF)
656 break;
657
658 /*
659 * If the "write-side" has been blocked, wake it up now.
660 */
661 if (rpipe->pipe_state & PIPE_WANTW) {
662 rpipe->pipe_state &= ~PIPE_WANTW;
663 wakeup(rpipe);
664 }
665
666 /*
667 * Break if some data was read.
668 */
669 if (nread > 0)
670 break;
671
672 /*
673 * Unlock the pipe buffer for our remaining processing.
674 * We will either break out with an error or we will
675 * sleep and relock to loop.
676 */
677 pipeunlock(rpipe);
678
679 /*
680 * Handle non-blocking mode operation or
681 * wait for more data.
682 */
683 if (fp->f_flag & FNONBLOCK) {
684 error = EAGAIN;
685 } else {
686 rpipe->pipe_state |= PIPE_WANTR;
687 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
688 PRIBIO | PCATCH,
689 "piperd", 0)) == 0)
690 error = pipelock(rpipe, 1);
691 }
692 if (error)
693 goto unlocked_error;
694 }
695 }
696 #ifdef MAC
697 locked_error:
698 #endif
699 pipeunlock(rpipe);
700
701 /* XXX: should probably do this before getting any locks. */
702 if (error == 0)
703 vfs_timestamp(&rpipe->pipe_atime);
704 unlocked_error:
705 --rpipe->pipe_busy;
706
707 /*
708 * PIPE_WANT processing only makes sense if pipe_busy is 0.
709 */
710 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
711 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
712 wakeup(rpipe);
713 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
714 /*
715 * Handle write blocking hysteresis.
716 */
717 if (rpipe->pipe_state & PIPE_WANTW) {
718 rpipe->pipe_state &= ~PIPE_WANTW;
719 wakeup(rpipe);
720 }
721 }
722
723 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
724 pipeselwakeup(rpipe);
725
726 PIPE_UNLOCK(rpipe);
727 return (error);
728 }
729
730 #ifndef PIPE_NODIRECT
731 /*
732 * Map the sending processes' buffer into kernel space and wire it.
733 * This is similar to a physical write operation.
734 */
735 static int
736 pipe_build_write_buffer(wpipe, uio)
737 struct pipe *wpipe;
738 struct uio *uio;
739 {
740 pmap_t pmap;
741 u_int size;
742 int i, j;
743 vm_offset_t addr, endaddr;
744
745 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
746 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
747 ("Clone attempt on non-direct write pipe!"));
748
749 size = (u_int) uio->uio_iov->iov_len;
750 if (size > wpipe->pipe_buffer.size)
751 size = wpipe->pipe_buffer.size;
752
753 pmap = vmspace_pmap(curproc->p_vmspace);
754 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
755 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
756 if (endaddr < addr)
757 return (EFAULT);
758 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
759 /*
760 * vm_fault_quick() can sleep. Consequently,
761 * vm_page_lock_queue() and vm_page_unlock_queue()
762 * should not be performed outside of this loop.
763 */
764 race:
765 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
766 vm_page_lock_queues();
767 for (j = 0; j < i; j++)
768 vm_page_unhold(wpipe->pipe_map.ms[j]);
769 vm_page_unlock_queues();
770 return (EFAULT);
771 }
772 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
773 VM_PROT_READ);
774 if (wpipe->pipe_map.ms[i] == NULL)
775 goto race;
776 }
777
778 /*
779 * set up the control block
780 */
781 wpipe->pipe_map.npages = i;
782 wpipe->pipe_map.pos =
783 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
784 wpipe->pipe_map.cnt = size;
785
786 /*
787 * and update the uio data
788 */
789
790 uio->uio_iov->iov_len -= size;
791 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
792 if (uio->uio_iov->iov_len == 0)
793 uio->uio_iov++;
794 uio->uio_resid -= size;
795 uio->uio_offset += size;
796 return (0);
797 }
798
799 /*
800 * unmap and unwire the process buffer
801 */
802 static void
803 pipe_destroy_write_buffer(wpipe)
804 struct pipe *wpipe;
805 {
806 int i;
807
808 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
809 vm_page_lock_queues();
810 for (i = 0; i < wpipe->pipe_map.npages; i++) {
811 vm_page_unhold(wpipe->pipe_map.ms[i]);
812 }
813 vm_page_unlock_queues();
814 wpipe->pipe_map.npages = 0;
815 }
816
817 /*
818 * In the case of a signal, the writing process might go away. This
819 * code copies the data into the circular buffer so that the source
820 * pages can be freed without loss of data.
821 */
822 static void
823 pipe_clone_write_buffer(wpipe)
824 struct pipe *wpipe;
825 {
826 struct uio uio;
827 struct iovec iov;
828 int size;
829 int pos;
830
831 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
832 size = wpipe->pipe_map.cnt;
833 pos = wpipe->pipe_map.pos;
834
835 wpipe->pipe_buffer.in = size;
836 wpipe->pipe_buffer.out = 0;
837 wpipe->pipe_buffer.cnt = size;
838 wpipe->pipe_state &= ~PIPE_DIRECTW;
839
840 PIPE_UNLOCK(wpipe);
841 iov.iov_base = wpipe->pipe_buffer.buffer;
842 iov.iov_len = size;
843 uio.uio_iov = &iov;
844 uio.uio_iovcnt = 1;
845 uio.uio_offset = 0;
846 uio.uio_resid = size;
847 uio.uio_segflg = UIO_SYSSPACE;
848 uio.uio_rw = UIO_READ;
849 uio.uio_td = curthread;
850 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
851 PIPE_LOCK(wpipe);
852 pipe_destroy_write_buffer(wpipe);
853 }
854
855 /*
856 * This implements the pipe buffer write mechanism. Note that only
857 * a direct write OR a normal pipe write can be pending at any given time.
858 * If there are any characters in the pipe buffer, the direct write will
859 * be deferred until the receiving process grabs all of the bytes from
860 * the pipe buffer. Then the direct mapping write is set-up.
861 */
862 static int
863 pipe_direct_write(wpipe, uio)
864 struct pipe *wpipe;
865 struct uio *uio;
866 {
867 int error;
868
869 retry:
870 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
871 error = pipelock(wpipe, 1);
872 if (wpipe->pipe_state & PIPE_EOF)
873 error = EPIPE;
874 if (error) {
875 pipeunlock(wpipe);
876 goto error1;
877 }
878 while (wpipe->pipe_state & PIPE_DIRECTW) {
879 if (wpipe->pipe_state & PIPE_WANTR) {
880 wpipe->pipe_state &= ~PIPE_WANTR;
881 wakeup(wpipe);
882 }
883 pipeselwakeup(wpipe);
884 wpipe->pipe_state |= PIPE_WANTW;
885 pipeunlock(wpipe);
886 error = msleep(wpipe, PIPE_MTX(wpipe),
887 PRIBIO | PCATCH, "pipdww", 0);
888 if (error)
889 goto error1;
890 else
891 goto retry;
892 }
893 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
894 if (wpipe->pipe_buffer.cnt > 0) {
895 if (wpipe->pipe_state & PIPE_WANTR) {
896 wpipe->pipe_state &= ~PIPE_WANTR;
897 wakeup(wpipe);
898 }
899 pipeselwakeup(wpipe);
900 wpipe->pipe_state |= PIPE_WANTW;
901 pipeunlock(wpipe);
902 error = msleep(wpipe, PIPE_MTX(wpipe),
903 PRIBIO | PCATCH, "pipdwc", 0);
904 if (error)
905 goto error1;
906 else
907 goto retry;
908 }
909
910 wpipe->pipe_state |= PIPE_DIRECTW;
911
912 PIPE_UNLOCK(wpipe);
913 error = pipe_build_write_buffer(wpipe, uio);
914 PIPE_LOCK(wpipe);
915 if (error) {
916 wpipe->pipe_state &= ~PIPE_DIRECTW;
917 pipeunlock(wpipe);
918 goto error1;
919 }
920
921 error = 0;
922 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
923 if (wpipe->pipe_state & PIPE_EOF) {
924 pipe_destroy_write_buffer(wpipe);
925 pipeselwakeup(wpipe);
926 pipeunlock(wpipe);
927 error = EPIPE;
928 goto error1;
929 }
930 if (wpipe->pipe_state & PIPE_WANTR) {
931 wpipe->pipe_state &= ~PIPE_WANTR;
932 wakeup(wpipe);
933 }
934 pipeselwakeup(wpipe);
935 pipeunlock(wpipe);
936 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
937 "pipdwt", 0);
938 pipelock(wpipe, 0);
939 }
940
941 if (wpipe->pipe_state & PIPE_EOF)
942 error = EPIPE;
943 if (wpipe->pipe_state & PIPE_DIRECTW) {
944 /*
945 * this bit of trickery substitutes a kernel buffer for
946 * the process that might be going away.
947 */
948 pipe_clone_write_buffer(wpipe);
949 } else {
950 pipe_destroy_write_buffer(wpipe);
951 }
952 pipeunlock(wpipe);
953 return (error);
954
955 error1:
956 wakeup(wpipe);
957 return (error);
958 }
959 #endif
960
961 static int
962 pipe_write(fp, uio, active_cred, flags, td)
963 struct file *fp;
964 struct uio *uio;
965 struct ucred *active_cred;
966 struct thread *td;
967 int flags;
968 {
969 int error = 0;
970 int desiredsize, orig_resid;
971 struct pipe *wpipe, *rpipe;
972
973 rpipe = fp->f_data;
974 wpipe = rpipe->pipe_peer;
975
976 PIPE_LOCK(rpipe);
977 error = pipelock(wpipe, 1);
978 if (error) {
979 PIPE_UNLOCK(rpipe);
980 return (error);
981 }
982 /*
983 * detect loss of pipe read side, issue SIGPIPE if lost.
984 */
985 if (wpipe->pipe_present != PIPE_ACTIVE ||
986 (wpipe->pipe_state & PIPE_EOF)) {
987 pipeunlock(wpipe);
988 PIPE_UNLOCK(rpipe);
989 return (EPIPE);
990 }
991 #ifdef MAC
992 error = mac_check_pipe_write(active_cred, wpipe->pipe_pair);
993 if (error) {
994 pipeunlock(wpipe);
995 PIPE_UNLOCK(rpipe);
996 return (error);
997 }
998 #endif
999 ++wpipe->pipe_busy;
1000
1001 /* Choose a larger size if it's advantageous */
1002 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1003 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1004 if (piperesizeallowed != 1)
1005 break;
1006 if (amountpipekva > maxpipekva / 2)
1007 break;
1008 if (desiredsize == BIG_PIPE_SIZE)
1009 break;
1010 desiredsize = desiredsize * 2;
1011 }
1012
1013 /* Choose a smaller size if we're in a OOM situation */
1014 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1015 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1016 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1017 (piperesizeallowed == 1))
1018 desiredsize = SMALL_PIPE_SIZE;
1019
1020 /* Resize if the above determined that a new size was necessary */
1021 if ((desiredsize != wpipe->pipe_buffer.size) &&
1022 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1023 PIPE_UNLOCK(wpipe);
1024 pipespace(wpipe, desiredsize);
1025 PIPE_LOCK(wpipe);
1026 }
1027 if (wpipe->pipe_buffer.size == 0) {
1028 /*
1029 * This can only happen for reverse direction use of pipes
1030 * in a complete OOM situation.
1031 */
1032 error = ENOMEM;
1033 --wpipe->pipe_busy;
1034 pipeunlock(wpipe);
1035 PIPE_UNLOCK(wpipe);
1036 return (error);
1037 }
1038
1039 pipeunlock(wpipe);
1040
1041 orig_resid = uio->uio_resid;
1042
1043 while (uio->uio_resid) {
1044 int space;
1045
1046 pipelock(wpipe, 0);
1047 if (wpipe->pipe_state & PIPE_EOF) {
1048 pipeunlock(wpipe);
1049 error = EPIPE;
1050 break;
1051 }
1052 #ifndef PIPE_NODIRECT
1053 /*
1054 * If the transfer is large, we can gain performance if
1055 * we do process-to-process copies directly.
1056 * If the write is non-blocking, we don't use the
1057 * direct write mechanism.
1058 *
1059 * The direct write mechanism will detect the reader going
1060 * away on us.
1061 */
1062 if (uio->uio_segflg == UIO_USERSPACE &&
1063 uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1064 wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1065 (fp->f_flag & FNONBLOCK) == 0) {
1066 pipeunlock(wpipe);
1067 error = pipe_direct_write(wpipe, uio);
1068 if (error)
1069 break;
1070 continue;
1071 }
1072 #endif
1073
1074 /*
1075 * Pipe buffered writes cannot be coincidental with
1076 * direct writes. We wait until the currently executing
1077 * direct write is completed before we start filling the
1078 * pipe buffer. We break out if a signal occurs or the
1079 * reader goes away.
1080 */
1081 if (wpipe->pipe_state & PIPE_DIRECTW) {
1082 if (wpipe->pipe_state & PIPE_WANTR) {
1083 wpipe->pipe_state &= ~PIPE_WANTR;
1084 wakeup(wpipe);
1085 }
1086 pipeselwakeup(wpipe);
1087 wpipe->pipe_state |= PIPE_WANTW;
1088 pipeunlock(wpipe);
1089 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1090 "pipbww", 0);
1091 if (error)
1092 break;
1093 else
1094 continue;
1095 }
1096
1097 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1098
1099 /* Writes of size <= PIPE_BUF must be atomic. */
1100 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1101 space = 0;
1102
1103 if (space > 0) {
1104 int size; /* Transfer size */
1105 int segsize; /* first segment to transfer */
1106
1107 /*
1108 * Transfer size is minimum of uio transfer
1109 * and free space in pipe buffer.
1110 */
1111 if (space > uio->uio_resid)
1112 size = uio->uio_resid;
1113 else
1114 size = space;
1115 /*
1116 * First segment to transfer is minimum of
1117 * transfer size and contiguous space in
1118 * pipe buffer. If first segment to transfer
1119 * is less than the transfer size, we've got
1120 * a wraparound in the buffer.
1121 */
1122 segsize = wpipe->pipe_buffer.size -
1123 wpipe->pipe_buffer.in;
1124 if (segsize > size)
1125 segsize = size;
1126
1127 /* Transfer first segment */
1128
1129 PIPE_UNLOCK(rpipe);
1130 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1131 segsize, uio);
1132 PIPE_LOCK(rpipe);
1133
1134 if (error == 0 && segsize < size) {
1135 KASSERT(wpipe->pipe_buffer.in + segsize ==
1136 wpipe->pipe_buffer.size,
1137 ("Pipe buffer wraparound disappeared"));
1138 /*
1139 * Transfer remaining part now, to
1140 * support atomic writes. Wraparound
1141 * happened.
1142 */
1143
1144 PIPE_UNLOCK(rpipe);
1145 error = uiomove(
1146 &wpipe->pipe_buffer.buffer[0],
1147 size - segsize, uio);
1148 PIPE_LOCK(rpipe);
1149 }
1150 if (error == 0) {
1151 wpipe->pipe_buffer.in += size;
1152 if (wpipe->pipe_buffer.in >=
1153 wpipe->pipe_buffer.size) {
1154 KASSERT(wpipe->pipe_buffer.in ==
1155 size - segsize +
1156 wpipe->pipe_buffer.size,
1157 ("Expected wraparound bad"));
1158 wpipe->pipe_buffer.in = size - segsize;
1159 }
1160
1161 wpipe->pipe_buffer.cnt += size;
1162 KASSERT(wpipe->pipe_buffer.cnt <=
1163 wpipe->pipe_buffer.size,
1164 ("Pipe buffer overflow"));
1165 }
1166 pipeunlock(wpipe);
1167 if (error != 0)
1168 break;
1169 } else {
1170 /*
1171 * If the "read-side" has been blocked, wake it up now.
1172 */
1173 if (wpipe->pipe_state & PIPE_WANTR) {
1174 wpipe->pipe_state &= ~PIPE_WANTR;
1175 wakeup(wpipe);
1176 }
1177
1178 /*
1179 * don't block on non-blocking I/O
1180 */
1181 if (fp->f_flag & FNONBLOCK) {
1182 error = EAGAIN;
1183 pipeunlock(wpipe);
1184 break;
1185 }
1186
1187 /*
1188 * We have no more space and have something to offer,
1189 * wake up select/poll.
1190 */
1191 pipeselwakeup(wpipe);
1192
1193 wpipe->pipe_state |= PIPE_WANTW;
1194 pipeunlock(wpipe);
1195 error = msleep(wpipe, PIPE_MTX(rpipe),
1196 PRIBIO | PCATCH, "pipewr", 0);
1197 if (error != 0)
1198 break;
1199 }
1200 }
1201
1202 pipelock(wpipe, 0);
1203 --wpipe->pipe_busy;
1204
1205 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1206 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1207 wakeup(wpipe);
1208 } else if (wpipe->pipe_buffer.cnt > 0) {
1209 /*
1210 * If we have put any characters in the buffer, we wake up
1211 * the reader.
1212 */
1213 if (wpipe->pipe_state & PIPE_WANTR) {
1214 wpipe->pipe_state &= ~PIPE_WANTR;
1215 wakeup(wpipe);
1216 }
1217 }
1218
1219 /*
1220 * Don't return EPIPE if I/O was successful
1221 */
1222 if ((wpipe->pipe_buffer.cnt == 0) &&
1223 (uio->uio_resid == 0) &&
1224 (error == EPIPE)) {
1225 error = 0;
1226 }
1227
1228 if (error == 0)
1229 vfs_timestamp(&wpipe->pipe_mtime);
1230
1231 /*
1232 * We have something to offer,
1233 * wake up select/poll.
1234 */
1235 if (wpipe->pipe_buffer.cnt)
1236 pipeselwakeup(wpipe);
1237
1238 pipeunlock(wpipe);
1239 PIPE_UNLOCK(rpipe);
1240 return (error);
1241 }
1242
1243 /*
1244 * we implement a very minimal set of ioctls for compatibility with sockets.
1245 */
1246 static int
1247 pipe_ioctl(fp, cmd, data, active_cred, td)
1248 struct file *fp;
1249 u_long cmd;
1250 void *data;
1251 struct ucred *active_cred;
1252 struct thread *td;
1253 {
1254 struct pipe *mpipe = fp->f_data;
1255 int error;
1256
1257 PIPE_LOCK(mpipe);
1258
1259 #ifdef MAC
1260 error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1261 if (error) {
1262 PIPE_UNLOCK(mpipe);
1263 return (error);
1264 }
1265 #endif
1266
1267 error = 0;
1268 switch (cmd) {
1269
1270 case FIONBIO:
1271 break;
1272
1273 case FIOASYNC:
1274 if (*(int *)data) {
1275 mpipe->pipe_state |= PIPE_ASYNC;
1276 } else {
1277 mpipe->pipe_state &= ~PIPE_ASYNC;
1278 }
1279 break;
1280
1281 case FIONREAD:
1282 if (mpipe->pipe_state & PIPE_DIRECTW)
1283 *(int *)data = mpipe->pipe_map.cnt;
1284 else
1285 *(int *)data = mpipe->pipe_buffer.cnt;
1286 break;
1287
1288 case FIOSETOWN:
1289 PIPE_UNLOCK(mpipe);
1290 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1291 goto out_unlocked;
1292
1293 case FIOGETOWN:
1294 *(int *)data = fgetown(&mpipe->pipe_sigio);
1295 break;
1296
1297 /* This is deprecated, FIOSETOWN should be used instead. */
1298 case TIOCSPGRP:
1299 PIPE_UNLOCK(mpipe);
1300 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1301 goto out_unlocked;
1302
1303 /* This is deprecated, FIOGETOWN should be used instead. */
1304 case TIOCGPGRP:
1305 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1306 break;
1307
1308 default:
1309 error = ENOTTY;
1310 break;
1311 }
1312 PIPE_UNLOCK(mpipe);
1313 out_unlocked:
1314 return (error);
1315 }
1316
1317 static int
1318 pipe_poll(fp, events, active_cred, td)
1319 struct file *fp;
1320 int events;
1321 struct ucred *active_cred;
1322 struct thread *td;
1323 {
1324 struct pipe *rpipe = fp->f_data;
1325 struct pipe *wpipe;
1326 int revents = 0;
1327 #ifdef MAC
1328 int error;
1329 #endif
1330
1331 wpipe = rpipe->pipe_peer;
1332 PIPE_LOCK(rpipe);
1333 #ifdef MAC
1334 error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair);
1335 if (error)
1336 goto locked_error;
1337 #endif
1338 if (events & (POLLIN | POLLRDNORM))
1339 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1340 (rpipe->pipe_buffer.cnt > 0) ||
1341 (rpipe->pipe_state & PIPE_EOF))
1342 revents |= events & (POLLIN | POLLRDNORM);
1343
1344 if (events & (POLLOUT | POLLWRNORM))
1345 if (wpipe->pipe_present != PIPE_ACTIVE ||
1346 (wpipe->pipe_state & PIPE_EOF) ||
1347 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1348 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1349 revents |= events & (POLLOUT | POLLWRNORM);
1350
1351 if ((rpipe->pipe_state & PIPE_EOF) ||
1352 wpipe->pipe_present != PIPE_ACTIVE ||
1353 (wpipe->pipe_state & PIPE_EOF))
1354 revents |= POLLHUP;
1355
1356 if (revents == 0) {
1357 if (events & (POLLIN | POLLRDNORM)) {
1358 selrecord(td, &rpipe->pipe_sel);
1359 rpipe->pipe_state |= PIPE_SEL;
1360 }
1361
1362 if (events & (POLLOUT | POLLWRNORM)) {
1363 selrecord(td, &wpipe->pipe_sel);
1364 wpipe->pipe_state |= PIPE_SEL;
1365 }
1366 }
1367 #ifdef MAC
1368 locked_error:
1369 #endif
1370 PIPE_UNLOCK(rpipe);
1371
1372 return (revents);
1373 }
1374
1375 /*
1376 * We shouldn't need locks here as we're doing a read and this should
1377 * be a natural race.
1378 */
1379 static int
1380 pipe_stat(fp, ub, active_cred, td)
1381 struct file *fp;
1382 struct stat *ub;
1383 struct ucred *active_cred;
1384 struct thread *td;
1385 {
1386 struct pipe *pipe = fp->f_data;
1387 #ifdef MAC
1388 int error;
1389
1390 PIPE_LOCK(pipe);
1391 error = mac_check_pipe_stat(active_cred, pipe->pipe_pair);
1392 PIPE_UNLOCK(pipe);
1393 if (error)
1394 return (error);
1395 #endif
1396 bzero(ub, sizeof(*ub));
1397 ub->st_mode = S_IFIFO;
1398 ub->st_blksize = PAGE_SIZE;
1399 if (pipe->pipe_state & PIPE_DIRECTW)
1400 ub->st_size = pipe->pipe_map.cnt;
1401 else
1402 ub->st_size = pipe->pipe_buffer.cnt;
1403 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1404 ub->st_atimespec = pipe->pipe_atime;
1405 ub->st_mtimespec = pipe->pipe_mtime;
1406 ub->st_ctimespec = pipe->pipe_ctime;
1407 ub->st_uid = fp->f_cred->cr_uid;
1408 ub->st_gid = fp->f_cred->cr_gid;
1409 /*
1410 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1411 * XXX (st_dev, st_ino) should be unique.
1412 */
1413 return (0);
1414 }
1415
1416 /* ARGSUSED */
1417 static int
1418 pipe_close(fp, td)
1419 struct file *fp;
1420 struct thread *td;
1421 {
1422 struct pipe *cpipe = fp->f_data;
1423
1424 fp->f_ops = &badfileops;
1425 fp->f_data = NULL;
1426 funsetown(&cpipe->pipe_sigio);
1427 pipeclose(cpipe);
1428 return (0);
1429 }
1430
1431 static void
1432 pipe_free_kmem(cpipe)
1433 struct pipe *cpipe;
1434 {
1435
1436 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1437 ("pipe_free_kmem: pipe mutex locked"));
1438
1439 if (cpipe->pipe_buffer.buffer != NULL) {
1440 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1441 vm_map_remove(pipe_map,
1442 (vm_offset_t)cpipe->pipe_buffer.buffer,
1443 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1444 cpipe->pipe_buffer.buffer = NULL;
1445 }
1446 #ifndef PIPE_NODIRECT
1447 {
1448 cpipe->pipe_map.cnt = 0;
1449 cpipe->pipe_map.pos = 0;
1450 cpipe->pipe_map.npages = 0;
1451 }
1452 #endif
1453 }
1454
1455 /*
1456 * shutdown the pipe
1457 */
1458 static void
1459 pipeclose(cpipe)
1460 struct pipe *cpipe;
1461 {
1462 struct pipepair *pp;
1463 struct pipe *ppipe;
1464
1465 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1466
1467 PIPE_LOCK(cpipe);
1468 pipelock(cpipe, 0);
1469 pp = cpipe->pipe_pair;
1470
1471 pipeselwakeup(cpipe);
1472
1473 /*
1474 * If the other side is blocked, wake it up saying that
1475 * we want to close it down.
1476 */
1477 cpipe->pipe_state |= PIPE_EOF;
1478 while (cpipe->pipe_busy) {
1479 wakeup(cpipe);
1480 cpipe->pipe_state |= PIPE_WANT;
1481 pipeunlock(cpipe);
1482 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1483 pipelock(cpipe, 0);
1484 }
1485
1486
1487 /*
1488 * Disconnect from peer, if any.
1489 */
1490 ppipe = cpipe->pipe_peer;
1491 if (ppipe->pipe_present == PIPE_ACTIVE) {
1492 pipeselwakeup(ppipe);
1493
1494 ppipe->pipe_state |= PIPE_EOF;
1495 wakeup(ppipe);
1496 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1497 }
1498
1499 /*
1500 * Mark this endpoint as free. Release kmem resources. We
1501 * don't mark this endpoint as unused until we've finished
1502 * doing that, or the pipe might disappear out from under
1503 * us.
1504 */
1505 PIPE_UNLOCK(cpipe);
1506 pipe_free_kmem(cpipe);
1507 PIPE_LOCK(cpipe);
1508 cpipe->pipe_present = PIPE_CLOSING;
1509 pipeunlock(cpipe);
1510
1511 /*
1512 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1513 * PIPE_FINALIZED, that allows other end to free the
1514 * pipe_pair, only after the knotes are completely dismantled.
1515 */
1516 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1517 cpipe->pipe_present = PIPE_FINALIZED;
1518 knlist_destroy(&cpipe->pipe_sel.si_note);
1519
1520 /*
1521 * If both endpoints are now closed, release the memory for the
1522 * pipe pair. If not, unlock.
1523 */
1524 if (ppipe->pipe_present == PIPE_FINALIZED) {
1525 PIPE_UNLOCK(cpipe);
1526 #ifdef MAC
1527 mac_destroy_pipe(pp);
1528 #endif
1529 uma_zfree(pipe_zone, cpipe->pipe_pair);
1530 } else
1531 PIPE_UNLOCK(cpipe);
1532 }
1533
1534 /*ARGSUSED*/
1535 static int
1536 pipe_kqfilter(struct file *fp, struct knote *kn)
1537 {
1538 struct pipe *cpipe;
1539
1540 cpipe = kn->kn_fp->f_data;
1541 PIPE_LOCK(cpipe);
1542 switch (kn->kn_filter) {
1543 case EVFILT_READ:
1544 kn->kn_fop = &pipe_rfiltops;
1545 break;
1546 case EVFILT_WRITE:
1547 kn->kn_fop = &pipe_wfiltops;
1548 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1549 /* other end of pipe has been closed */
1550 PIPE_UNLOCK(cpipe);
1551 return (EPIPE);
1552 }
1553 cpipe = cpipe->pipe_peer;
1554 break;
1555 default:
1556 PIPE_UNLOCK(cpipe);
1557 return (EINVAL);
1558 }
1559
1560 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1561 PIPE_UNLOCK(cpipe);
1562 return (0);
1563 }
1564
1565 static void
1566 filt_pipedetach(struct knote *kn)
1567 {
1568 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1569
1570 PIPE_LOCK(cpipe);
1571 if (kn->kn_filter == EVFILT_WRITE)
1572 cpipe = cpipe->pipe_peer;
1573 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1574 PIPE_UNLOCK(cpipe);
1575 }
1576
1577 /*ARGSUSED*/
1578 static int
1579 filt_piperead(struct knote *kn, long hint)
1580 {
1581 struct pipe *rpipe = kn->kn_fp->f_data;
1582 struct pipe *wpipe = rpipe->pipe_peer;
1583 int ret;
1584
1585 PIPE_LOCK(rpipe);
1586 kn->kn_data = rpipe->pipe_buffer.cnt;
1587 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1588 kn->kn_data = rpipe->pipe_map.cnt;
1589
1590 if ((rpipe->pipe_state & PIPE_EOF) ||
1591 wpipe->pipe_present != PIPE_ACTIVE ||
1592 (wpipe->pipe_state & PIPE_EOF)) {
1593 kn->kn_flags |= EV_EOF;
1594 PIPE_UNLOCK(rpipe);
1595 return (1);
1596 }
1597 ret = kn->kn_data > 0;
1598 PIPE_UNLOCK(rpipe);
1599 return ret;
1600 }
1601
1602 /*ARGSUSED*/
1603 static int
1604 filt_pipewrite(struct knote *kn, long hint)
1605 {
1606 struct pipe *rpipe = kn->kn_fp->f_data;
1607 struct pipe *wpipe = rpipe->pipe_peer;
1608
1609 PIPE_LOCK(rpipe);
1610 if (wpipe->pipe_present != PIPE_ACTIVE ||
1611 (wpipe->pipe_state & PIPE_EOF)) {
1612 kn->kn_data = 0;
1613 kn->kn_flags |= EV_EOF;
1614 PIPE_UNLOCK(rpipe);
1615 return (1);
1616 }
1617 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1618 if (wpipe->pipe_state & PIPE_DIRECTW)
1619 kn->kn_data = 0;
1620
1621 PIPE_UNLOCK(rpipe);
1622 return (kn->kn_data >= PIPE_BUF);
1623 }
Cache object: f5bb63fa607429b33eb1d8499a74b1d7
|