FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*-
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 */
19
20 /*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27 /*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode. The small write mode acts like conventional pipes with
30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side. In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer. Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map. This value is normally
52 * autotuned, but may also be loader tuned.
53 *
54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55 * memory in use by pipes.
56 *
57 * Based on how large pipekva is relative to maxpipekva, the following
58 * will happen:
59 *
60 * 0% - 50%:
61 * New pipes are given 16K of memory backing, pipes may dynamically
62 * grow to as large as 64K where needed.
63 * 50% - 75%:
64 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
65 * existing pipes may NOT grow.
66 * 75% - 100%:
67 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 * existing pipes will be shrunk down to 4K whenever possible.
69 *
70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72 * resize which MUST occur for reverse-direction pipes when they are
73 * first used.
74 *
75 * Additional information about the current state of pipes may be obtained
76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77 * and kern.ipc.piperesizefail.
78 *
79 * Locking rules: There are two locks present here: A mutex, used via
80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
81 * the flag, as mutexes can not persist over uiomove. The mutex
82 * exists only to guard access to the flag, and is not in itself a
83 * locking mechanism. Also note that there is only a single mutex for
84 * both directions of a pipe.
85 *
86 * As pipelock() may have to sleep before it can acquire the flag, it
87 * is important to reread all data after a call to pipelock(); everything
88 * in the structure may have changed.
89 */
90
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD: releng/8.0/sys/kern/sys_pipe.c 195423 2009-07-07 09:43:44Z kib $");
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/fcntl.h>
97 #include <sys/file.h>
98 #include <sys/filedesc.h>
99 #include <sys/filio.h>
100 #include <sys/kernel.h>
101 #include <sys/lock.h>
102 #include <sys/mutex.h>
103 #include <sys/ttycom.h>
104 #include <sys/stat.h>
105 #include <sys/malloc.h>
106 #include <sys/poll.h>
107 #include <sys/selinfo.h>
108 #include <sys/signalvar.h>
109 #include <sys/syscallsubr.h>
110 #include <sys/sysctl.h>
111 #include <sys/sysproto.h>
112 #include <sys/pipe.h>
113 #include <sys/proc.h>
114 #include <sys/vnode.h>
115 #include <sys/uio.h>
116 #include <sys/event.h>
117
118 #include <security/mac/mac_framework.h>
119
120 #include <vm/vm.h>
121 #include <vm/vm_param.h>
122 #include <vm/vm_object.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_extern.h>
125 #include <vm/pmap.h>
126 #include <vm/vm_map.h>
127 #include <vm/vm_page.h>
128 #include <vm/uma.h>
129
130 /*
131 * Use this define if you want to disable *fancy* VM things. Expect an
132 * approx 30% decrease in transfer rate. This could be useful for
133 * NetBSD or OpenBSD.
134 */
135 /* #define PIPE_NODIRECT */
136
137 /*
138 * interfaces to the outside world
139 */
140 static fo_rdwr_t pipe_read;
141 static fo_rdwr_t pipe_write;
142 static fo_truncate_t pipe_truncate;
143 static fo_ioctl_t pipe_ioctl;
144 static fo_poll_t pipe_poll;
145 static fo_kqfilter_t pipe_kqfilter;
146 static fo_stat_t pipe_stat;
147 static fo_close_t pipe_close;
148
149 static struct fileops pipeops = {
150 .fo_read = pipe_read,
151 .fo_write = pipe_write,
152 .fo_truncate = pipe_truncate,
153 .fo_ioctl = pipe_ioctl,
154 .fo_poll = pipe_poll,
155 .fo_kqfilter = pipe_kqfilter,
156 .fo_stat = pipe_stat,
157 .fo_close = pipe_close,
158 .fo_flags = DFLAG_PASSABLE
159 };
160
161 static void filt_pipedetach(struct knote *kn);
162 static int filt_piperead(struct knote *kn, long hint);
163 static int filt_pipewrite(struct knote *kn, long hint);
164
165 static struct filterops pipe_rfiltops =
166 { 1, NULL, filt_pipedetach, filt_piperead };
167 static struct filterops pipe_wfiltops =
168 { 1, NULL, filt_pipedetach, filt_pipewrite };
169
170 /*
171 * Default pipe buffer size(s), this can be kind-of large now because pipe
172 * space is pageable. The pipe code will try to maintain locality of
173 * reference for performance reasons, so small amounts of outstanding I/O
174 * will not wipe the cache.
175 */
176 #define MINPIPESIZE (PIPE_SIZE/3)
177 #define MAXPIPESIZE (2*PIPE_SIZE/3)
178
179 static long amountpipekva;
180 static int pipefragretry;
181 static int pipeallocfail;
182 static int piperesizefail;
183 static int piperesizeallowed = 1;
184
185 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
186 &maxpipekva, 0, "Pipe KVA limit");
187 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
188 &amountpipekva, 0, "Pipe KVA usage");
189 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
190 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
191 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
192 &pipeallocfail, 0, "Pipe allocation failures");
193 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
194 &piperesizefail, 0, "Pipe resize failures");
195 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
196 &piperesizeallowed, 0, "Pipe resizing allowed");
197
198 static void pipeinit(void *dummy __unused);
199 static void pipeclose(struct pipe *cpipe);
200 static void pipe_free_kmem(struct pipe *cpipe);
201 static int pipe_create(struct pipe *pipe, int backing);
202 static __inline int pipelock(struct pipe *cpipe, int catch);
203 static __inline void pipeunlock(struct pipe *cpipe);
204 static __inline void pipeselwakeup(struct pipe *cpipe);
205 #ifndef PIPE_NODIRECT
206 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
207 static void pipe_destroy_write_buffer(struct pipe *wpipe);
208 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
209 static void pipe_clone_write_buffer(struct pipe *wpipe);
210 #endif
211 static int pipespace(struct pipe *cpipe, int size);
212 static int pipespace_new(struct pipe *cpipe, int size);
213
214 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
215 static int pipe_zone_init(void *mem, int size, int flags);
216 static void pipe_zone_fini(void *mem, int size);
217
218 static uma_zone_t pipe_zone;
219
220 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
221
222 static void
223 pipeinit(void *dummy __unused)
224 {
225
226 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
227 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
228 UMA_ALIGN_PTR, 0);
229 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
230 }
231
232 static int
233 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
234 {
235 struct pipepair *pp;
236 struct pipe *rpipe, *wpipe;
237
238 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
239
240 pp = (struct pipepair *)mem;
241
242 /*
243 * We zero both pipe endpoints to make sure all the kmem pointers
244 * are NULL, flag fields are zero'd, etc. We timestamp both
245 * endpoints with the same time.
246 */
247 rpipe = &pp->pp_rpipe;
248 bzero(rpipe, sizeof(*rpipe));
249 vfs_timestamp(&rpipe->pipe_ctime);
250 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
251
252 wpipe = &pp->pp_wpipe;
253 bzero(wpipe, sizeof(*wpipe));
254 wpipe->pipe_ctime = rpipe->pipe_ctime;
255 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
256
257 rpipe->pipe_peer = wpipe;
258 rpipe->pipe_pair = pp;
259 wpipe->pipe_peer = rpipe;
260 wpipe->pipe_pair = pp;
261
262 /*
263 * Mark both endpoints as present; they will later get free'd
264 * one at a time. When both are free'd, then the whole pair
265 * is released.
266 */
267 rpipe->pipe_present = PIPE_ACTIVE;
268 wpipe->pipe_present = PIPE_ACTIVE;
269
270 /*
271 * Eventually, the MAC Framework may initialize the label
272 * in ctor or init, but for now we do it elswhere to avoid
273 * blocking in ctor or init.
274 */
275 pp->pp_label = NULL;
276
277 return (0);
278 }
279
280 static int
281 pipe_zone_init(void *mem, int size, int flags)
282 {
283 struct pipepair *pp;
284
285 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
286
287 pp = (struct pipepair *)mem;
288
289 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
290 return (0);
291 }
292
293 static void
294 pipe_zone_fini(void *mem, int size)
295 {
296 struct pipepair *pp;
297
298 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
299
300 pp = (struct pipepair *)mem;
301
302 mtx_destroy(&pp->pp_mtx);
303 }
304
305 /*
306 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
307 * the zone pick up the pieces via pipeclose().
308 */
309 int
310 kern_pipe(struct thread *td, int fildes[2])
311 {
312 struct filedesc *fdp = td->td_proc->p_fd;
313 struct file *rf, *wf;
314 struct pipepair *pp;
315 struct pipe *rpipe, *wpipe;
316 int fd, error;
317
318 pp = uma_zalloc(pipe_zone, M_WAITOK);
319 #ifdef MAC
320 /*
321 * The MAC label is shared between the connected endpoints. As a
322 * result mac_pipe_init() and mac_pipe_create() are called once
323 * for the pair, and not on the endpoints.
324 */
325 mac_pipe_init(pp);
326 mac_pipe_create(td->td_ucred, pp);
327 #endif
328 rpipe = &pp->pp_rpipe;
329 wpipe = &pp->pp_wpipe;
330
331 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
332 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
333
334 /* Only the forward direction pipe is backed by default */
335 if ((error = pipe_create(rpipe, 1)) != 0 ||
336 (error = pipe_create(wpipe, 0)) != 0) {
337 pipeclose(rpipe);
338 pipeclose(wpipe);
339 return (error);
340 }
341
342 rpipe->pipe_state |= PIPE_DIRECTOK;
343 wpipe->pipe_state |= PIPE_DIRECTOK;
344
345 error = falloc(td, &rf, &fd);
346 if (error) {
347 pipeclose(rpipe);
348 pipeclose(wpipe);
349 return (error);
350 }
351 /* An extra reference on `rf' has been held for us by falloc(). */
352 fildes[0] = fd;
353
354 /*
355 * Warning: once we've gotten past allocation of the fd for the
356 * read-side, we can only drop the read side via fdrop() in order
357 * to avoid races against processes which manage to dup() the read
358 * side while we are blocked trying to allocate the write side.
359 */
360 finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops);
361 error = falloc(td, &wf, &fd);
362 if (error) {
363 fdclose(fdp, rf, fildes[0], td);
364 fdrop(rf, td);
365 /* rpipe has been closed by fdrop(). */
366 pipeclose(wpipe);
367 return (error);
368 }
369 /* An extra reference on `wf' has been held for us by falloc(). */
370 finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops);
371 fdrop(wf, td);
372 fildes[1] = fd;
373 fdrop(rf, td);
374
375 return (0);
376 }
377
378 /* ARGSUSED */
379 int
380 pipe(struct thread *td, struct pipe_args *uap)
381 {
382 int error;
383 int fildes[2];
384
385 error = kern_pipe(td, fildes);
386 if (error)
387 return (error);
388
389 td->td_retval[0] = fildes[0];
390 td->td_retval[1] = fildes[1];
391
392 return (0);
393 }
394
395 /*
396 * Allocate kva for pipe circular buffer, the space is pageable
397 * This routine will 'realloc' the size of a pipe safely, if it fails
398 * it will retain the old buffer.
399 * If it fails it will return ENOMEM.
400 */
401 static int
402 pipespace_new(cpipe, size)
403 struct pipe *cpipe;
404 int size;
405 {
406 caddr_t buffer;
407 int error, cnt, firstseg;
408 static int curfail = 0;
409 static struct timeval lastfail;
410
411 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
412 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
413 ("pipespace: resize of direct writes not allowed"));
414 retry:
415 cnt = cpipe->pipe_buffer.cnt;
416 if (cnt > size)
417 size = cnt;
418
419 size = round_page(size);
420 buffer = (caddr_t) vm_map_min(pipe_map);
421
422 error = vm_map_find(pipe_map, NULL, 0,
423 (vm_offset_t *) &buffer, size, 1,
424 VM_PROT_ALL, VM_PROT_ALL, 0);
425 if (error != KERN_SUCCESS) {
426 if ((cpipe->pipe_buffer.buffer == NULL) &&
427 (size > SMALL_PIPE_SIZE)) {
428 size = SMALL_PIPE_SIZE;
429 pipefragretry++;
430 goto retry;
431 }
432 if (cpipe->pipe_buffer.buffer == NULL) {
433 pipeallocfail++;
434 if (ppsratecheck(&lastfail, &curfail, 1))
435 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
436 } else {
437 piperesizefail++;
438 }
439 return (ENOMEM);
440 }
441
442 /* copy data, then free old resources if we're resizing */
443 if (cnt > 0) {
444 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
445 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
446 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
447 buffer, firstseg);
448 if ((cnt - firstseg) > 0)
449 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
450 cpipe->pipe_buffer.in);
451 } else {
452 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
453 buffer, cnt);
454 }
455 }
456 pipe_free_kmem(cpipe);
457 cpipe->pipe_buffer.buffer = buffer;
458 cpipe->pipe_buffer.size = size;
459 cpipe->pipe_buffer.in = cnt;
460 cpipe->pipe_buffer.out = 0;
461 cpipe->pipe_buffer.cnt = cnt;
462 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
463 return (0);
464 }
465
466 /*
467 * Wrapper for pipespace_new() that performs locking assertions.
468 */
469 static int
470 pipespace(cpipe, size)
471 struct pipe *cpipe;
472 int size;
473 {
474
475 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
476 ("Unlocked pipe passed to pipespace"));
477 return (pipespace_new(cpipe, size));
478 }
479
480 /*
481 * lock a pipe for I/O, blocking other access
482 */
483 static __inline int
484 pipelock(cpipe, catch)
485 struct pipe *cpipe;
486 int catch;
487 {
488 int error;
489
490 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
491 while (cpipe->pipe_state & PIPE_LOCKFL) {
492 cpipe->pipe_state |= PIPE_LWANT;
493 error = msleep(cpipe, PIPE_MTX(cpipe),
494 catch ? (PRIBIO | PCATCH) : PRIBIO,
495 "pipelk", 0);
496 if (error != 0)
497 return (error);
498 }
499 cpipe->pipe_state |= PIPE_LOCKFL;
500 return (0);
501 }
502
503 /*
504 * unlock a pipe I/O lock
505 */
506 static __inline void
507 pipeunlock(cpipe)
508 struct pipe *cpipe;
509 {
510
511 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
512 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
513 ("Unlocked pipe passed to pipeunlock"));
514 cpipe->pipe_state &= ~PIPE_LOCKFL;
515 if (cpipe->pipe_state & PIPE_LWANT) {
516 cpipe->pipe_state &= ~PIPE_LWANT;
517 wakeup(cpipe);
518 }
519 }
520
521 static __inline void
522 pipeselwakeup(cpipe)
523 struct pipe *cpipe;
524 {
525
526 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
527 if (cpipe->pipe_state & PIPE_SEL) {
528 selwakeuppri(&cpipe->pipe_sel, PSOCK);
529 if (!SEL_WAITING(&cpipe->pipe_sel))
530 cpipe->pipe_state &= ~PIPE_SEL;
531 }
532 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
533 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
534 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
535 }
536
537 /*
538 * Initialize and allocate VM and memory for pipe. The structure
539 * will start out zero'd from the ctor, so we just manage the kmem.
540 */
541 static int
542 pipe_create(pipe, backing)
543 struct pipe *pipe;
544 int backing;
545 {
546 int error;
547
548 if (backing) {
549 if (amountpipekva > maxpipekva / 2)
550 error = pipespace_new(pipe, SMALL_PIPE_SIZE);
551 else
552 error = pipespace_new(pipe, PIPE_SIZE);
553 } else {
554 /* If we're not backing this pipe, no need to do anything. */
555 error = 0;
556 }
557 return (error);
558 }
559
560 /* ARGSUSED */
561 static int
562 pipe_read(fp, uio, active_cred, flags, td)
563 struct file *fp;
564 struct uio *uio;
565 struct ucred *active_cred;
566 struct thread *td;
567 int flags;
568 {
569 struct pipe *rpipe = fp->f_data;
570 int error;
571 int nread = 0;
572 u_int size;
573
574 PIPE_LOCK(rpipe);
575 ++rpipe->pipe_busy;
576 error = pipelock(rpipe, 1);
577 if (error)
578 goto unlocked_error;
579
580 #ifdef MAC
581 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
582 if (error)
583 goto locked_error;
584 #endif
585 if (amountpipekva > (3 * maxpipekva) / 4) {
586 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
587 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
588 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
589 (piperesizeallowed == 1)) {
590 PIPE_UNLOCK(rpipe);
591 pipespace(rpipe, SMALL_PIPE_SIZE);
592 PIPE_LOCK(rpipe);
593 }
594 }
595
596 while (uio->uio_resid) {
597 /*
598 * normal pipe buffer receive
599 */
600 if (rpipe->pipe_buffer.cnt > 0) {
601 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
602 if (size > rpipe->pipe_buffer.cnt)
603 size = rpipe->pipe_buffer.cnt;
604 if (size > (u_int) uio->uio_resid)
605 size = (u_int) uio->uio_resid;
606
607 PIPE_UNLOCK(rpipe);
608 error = uiomove(
609 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
610 size, uio);
611 PIPE_LOCK(rpipe);
612 if (error)
613 break;
614
615 rpipe->pipe_buffer.out += size;
616 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
617 rpipe->pipe_buffer.out = 0;
618
619 rpipe->pipe_buffer.cnt -= size;
620
621 /*
622 * If there is no more to read in the pipe, reset
623 * its pointers to the beginning. This improves
624 * cache hit stats.
625 */
626 if (rpipe->pipe_buffer.cnt == 0) {
627 rpipe->pipe_buffer.in = 0;
628 rpipe->pipe_buffer.out = 0;
629 }
630 nread += size;
631 #ifndef PIPE_NODIRECT
632 /*
633 * Direct copy, bypassing a kernel buffer.
634 */
635 } else if ((size = rpipe->pipe_map.cnt) &&
636 (rpipe->pipe_state & PIPE_DIRECTW)) {
637 if (size > (u_int) uio->uio_resid)
638 size = (u_int) uio->uio_resid;
639
640 PIPE_UNLOCK(rpipe);
641 error = uiomove_fromphys(rpipe->pipe_map.ms,
642 rpipe->pipe_map.pos, size, uio);
643 PIPE_LOCK(rpipe);
644 if (error)
645 break;
646 nread += size;
647 rpipe->pipe_map.pos += size;
648 rpipe->pipe_map.cnt -= size;
649 if (rpipe->pipe_map.cnt == 0) {
650 rpipe->pipe_state &= ~PIPE_DIRECTW;
651 wakeup(rpipe);
652 }
653 #endif
654 } else {
655 /*
656 * detect EOF condition
657 * read returns 0 on EOF, no need to set error
658 */
659 if (rpipe->pipe_state & PIPE_EOF)
660 break;
661
662 /*
663 * If the "write-side" has been blocked, wake it up now.
664 */
665 if (rpipe->pipe_state & PIPE_WANTW) {
666 rpipe->pipe_state &= ~PIPE_WANTW;
667 wakeup(rpipe);
668 }
669
670 /*
671 * Break if some data was read.
672 */
673 if (nread > 0)
674 break;
675
676 /*
677 * Unlock the pipe buffer for our remaining processing.
678 * We will either break out with an error or we will
679 * sleep and relock to loop.
680 */
681 pipeunlock(rpipe);
682
683 /*
684 * Handle non-blocking mode operation or
685 * wait for more data.
686 */
687 if (fp->f_flag & FNONBLOCK) {
688 error = EAGAIN;
689 } else {
690 rpipe->pipe_state |= PIPE_WANTR;
691 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
692 PRIBIO | PCATCH,
693 "piperd", 0)) == 0)
694 error = pipelock(rpipe, 1);
695 }
696 if (error)
697 goto unlocked_error;
698 }
699 }
700 #ifdef MAC
701 locked_error:
702 #endif
703 pipeunlock(rpipe);
704
705 /* XXX: should probably do this before getting any locks. */
706 if (error == 0)
707 vfs_timestamp(&rpipe->pipe_atime);
708 unlocked_error:
709 --rpipe->pipe_busy;
710
711 /*
712 * PIPE_WANT processing only makes sense if pipe_busy is 0.
713 */
714 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
715 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
716 wakeup(rpipe);
717 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
718 /*
719 * Handle write blocking hysteresis.
720 */
721 if (rpipe->pipe_state & PIPE_WANTW) {
722 rpipe->pipe_state &= ~PIPE_WANTW;
723 wakeup(rpipe);
724 }
725 }
726
727 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
728 pipeselwakeup(rpipe);
729
730 PIPE_UNLOCK(rpipe);
731 return (error);
732 }
733
734 #ifndef PIPE_NODIRECT
735 /*
736 * Map the sending processes' buffer into kernel space and wire it.
737 * This is similar to a physical write operation.
738 */
739 static int
740 pipe_build_write_buffer(wpipe, uio)
741 struct pipe *wpipe;
742 struct uio *uio;
743 {
744 pmap_t pmap;
745 u_int size;
746 int i, j;
747 vm_offset_t addr, endaddr;
748
749 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
750 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
751 ("Clone attempt on non-direct write pipe!"));
752
753 size = (u_int) uio->uio_iov->iov_len;
754 if (size > wpipe->pipe_buffer.size)
755 size = wpipe->pipe_buffer.size;
756
757 pmap = vmspace_pmap(curproc->p_vmspace);
758 endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
759 addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
760 if (endaddr < addr)
761 return (EFAULT);
762 for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
763 /*
764 * vm_fault_quick() can sleep. Consequently,
765 * vm_page_lock_queue() and vm_page_unlock_queue()
766 * should not be performed outside of this loop.
767 */
768 race:
769 if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
770 vm_page_lock_queues();
771 for (j = 0; j < i; j++)
772 vm_page_unhold(wpipe->pipe_map.ms[j]);
773 vm_page_unlock_queues();
774 return (EFAULT);
775 }
776 wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
777 VM_PROT_READ);
778 if (wpipe->pipe_map.ms[i] == NULL)
779 goto race;
780 }
781
782 /*
783 * set up the control block
784 */
785 wpipe->pipe_map.npages = i;
786 wpipe->pipe_map.pos =
787 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
788 wpipe->pipe_map.cnt = size;
789
790 /*
791 * and update the uio data
792 */
793
794 uio->uio_iov->iov_len -= size;
795 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
796 if (uio->uio_iov->iov_len == 0)
797 uio->uio_iov++;
798 uio->uio_resid -= size;
799 uio->uio_offset += size;
800 return (0);
801 }
802
803 /*
804 * unmap and unwire the process buffer
805 */
806 static void
807 pipe_destroy_write_buffer(wpipe)
808 struct pipe *wpipe;
809 {
810 int i;
811
812 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
813 vm_page_lock_queues();
814 for (i = 0; i < wpipe->pipe_map.npages; i++) {
815 vm_page_unhold(wpipe->pipe_map.ms[i]);
816 }
817 vm_page_unlock_queues();
818 wpipe->pipe_map.npages = 0;
819 }
820
821 /*
822 * In the case of a signal, the writing process might go away. This
823 * code copies the data into the circular buffer so that the source
824 * pages can be freed without loss of data.
825 */
826 static void
827 pipe_clone_write_buffer(wpipe)
828 struct pipe *wpipe;
829 {
830 struct uio uio;
831 struct iovec iov;
832 int size;
833 int pos;
834
835 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
836 size = wpipe->pipe_map.cnt;
837 pos = wpipe->pipe_map.pos;
838
839 wpipe->pipe_buffer.in = size;
840 wpipe->pipe_buffer.out = 0;
841 wpipe->pipe_buffer.cnt = size;
842 wpipe->pipe_state &= ~PIPE_DIRECTW;
843
844 PIPE_UNLOCK(wpipe);
845 iov.iov_base = wpipe->pipe_buffer.buffer;
846 iov.iov_len = size;
847 uio.uio_iov = &iov;
848 uio.uio_iovcnt = 1;
849 uio.uio_offset = 0;
850 uio.uio_resid = size;
851 uio.uio_segflg = UIO_SYSSPACE;
852 uio.uio_rw = UIO_READ;
853 uio.uio_td = curthread;
854 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
855 PIPE_LOCK(wpipe);
856 pipe_destroy_write_buffer(wpipe);
857 }
858
859 /*
860 * This implements the pipe buffer write mechanism. Note that only
861 * a direct write OR a normal pipe write can be pending at any given time.
862 * If there are any characters in the pipe buffer, the direct write will
863 * be deferred until the receiving process grabs all of the bytes from
864 * the pipe buffer. Then the direct mapping write is set-up.
865 */
866 static int
867 pipe_direct_write(wpipe, uio)
868 struct pipe *wpipe;
869 struct uio *uio;
870 {
871 int error;
872
873 retry:
874 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
875 error = pipelock(wpipe, 1);
876 if (wpipe->pipe_state & PIPE_EOF)
877 error = EPIPE;
878 if (error) {
879 pipeunlock(wpipe);
880 goto error1;
881 }
882 while (wpipe->pipe_state & PIPE_DIRECTW) {
883 if (wpipe->pipe_state & PIPE_WANTR) {
884 wpipe->pipe_state &= ~PIPE_WANTR;
885 wakeup(wpipe);
886 }
887 pipeselwakeup(wpipe);
888 wpipe->pipe_state |= PIPE_WANTW;
889 pipeunlock(wpipe);
890 error = msleep(wpipe, PIPE_MTX(wpipe),
891 PRIBIO | PCATCH, "pipdww", 0);
892 if (error)
893 goto error1;
894 else
895 goto retry;
896 }
897 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
898 if (wpipe->pipe_buffer.cnt > 0) {
899 if (wpipe->pipe_state & PIPE_WANTR) {
900 wpipe->pipe_state &= ~PIPE_WANTR;
901 wakeup(wpipe);
902 }
903 pipeselwakeup(wpipe);
904 wpipe->pipe_state |= PIPE_WANTW;
905 pipeunlock(wpipe);
906 error = msleep(wpipe, PIPE_MTX(wpipe),
907 PRIBIO | PCATCH, "pipdwc", 0);
908 if (error)
909 goto error1;
910 else
911 goto retry;
912 }
913
914 wpipe->pipe_state |= PIPE_DIRECTW;
915
916 PIPE_UNLOCK(wpipe);
917 error = pipe_build_write_buffer(wpipe, uio);
918 PIPE_LOCK(wpipe);
919 if (error) {
920 wpipe->pipe_state &= ~PIPE_DIRECTW;
921 pipeunlock(wpipe);
922 goto error1;
923 }
924
925 error = 0;
926 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
927 if (wpipe->pipe_state & PIPE_EOF) {
928 pipe_destroy_write_buffer(wpipe);
929 pipeselwakeup(wpipe);
930 pipeunlock(wpipe);
931 error = EPIPE;
932 goto error1;
933 }
934 if (wpipe->pipe_state & PIPE_WANTR) {
935 wpipe->pipe_state &= ~PIPE_WANTR;
936 wakeup(wpipe);
937 }
938 pipeselwakeup(wpipe);
939 pipeunlock(wpipe);
940 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
941 "pipdwt", 0);
942 pipelock(wpipe, 0);
943 }
944
945 if (wpipe->pipe_state & PIPE_EOF)
946 error = EPIPE;
947 if (wpipe->pipe_state & PIPE_DIRECTW) {
948 /*
949 * this bit of trickery substitutes a kernel buffer for
950 * the process that might be going away.
951 */
952 pipe_clone_write_buffer(wpipe);
953 } else {
954 pipe_destroy_write_buffer(wpipe);
955 }
956 pipeunlock(wpipe);
957 return (error);
958
959 error1:
960 wakeup(wpipe);
961 return (error);
962 }
963 #endif
964
965 static int
966 pipe_write(fp, uio, active_cred, flags, td)
967 struct file *fp;
968 struct uio *uio;
969 struct ucred *active_cred;
970 struct thread *td;
971 int flags;
972 {
973 int error = 0;
974 int desiredsize, orig_resid;
975 struct pipe *wpipe, *rpipe;
976
977 rpipe = fp->f_data;
978 wpipe = rpipe->pipe_peer;
979
980 PIPE_LOCK(rpipe);
981 error = pipelock(wpipe, 1);
982 if (error) {
983 PIPE_UNLOCK(rpipe);
984 return (error);
985 }
986 /*
987 * detect loss of pipe read side, issue SIGPIPE if lost.
988 */
989 if (wpipe->pipe_present != PIPE_ACTIVE ||
990 (wpipe->pipe_state & PIPE_EOF)) {
991 pipeunlock(wpipe);
992 PIPE_UNLOCK(rpipe);
993 return (EPIPE);
994 }
995 #ifdef MAC
996 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
997 if (error) {
998 pipeunlock(wpipe);
999 PIPE_UNLOCK(rpipe);
1000 return (error);
1001 }
1002 #endif
1003 ++wpipe->pipe_busy;
1004
1005 /* Choose a larger size if it's advantageous */
1006 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1007 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1008 if (piperesizeallowed != 1)
1009 break;
1010 if (amountpipekva > maxpipekva / 2)
1011 break;
1012 if (desiredsize == BIG_PIPE_SIZE)
1013 break;
1014 desiredsize = desiredsize * 2;
1015 }
1016
1017 /* Choose a smaller size if we're in a OOM situation */
1018 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1019 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1020 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1021 (piperesizeallowed == 1))
1022 desiredsize = SMALL_PIPE_SIZE;
1023
1024 /* Resize if the above determined that a new size was necessary */
1025 if ((desiredsize != wpipe->pipe_buffer.size) &&
1026 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1027 PIPE_UNLOCK(wpipe);
1028 pipespace(wpipe, desiredsize);
1029 PIPE_LOCK(wpipe);
1030 }
1031 if (wpipe->pipe_buffer.size == 0) {
1032 /*
1033 * This can only happen for reverse direction use of pipes
1034 * in a complete OOM situation.
1035 */
1036 error = ENOMEM;
1037 --wpipe->pipe_busy;
1038 pipeunlock(wpipe);
1039 PIPE_UNLOCK(wpipe);
1040 return (error);
1041 }
1042
1043 pipeunlock(wpipe);
1044
1045 orig_resid = uio->uio_resid;
1046
1047 while (uio->uio_resid) {
1048 int space;
1049
1050 pipelock(wpipe, 0);
1051 if (wpipe->pipe_state & PIPE_EOF) {
1052 pipeunlock(wpipe);
1053 error = EPIPE;
1054 break;
1055 }
1056 #ifndef PIPE_NODIRECT
1057 /*
1058 * If the transfer is large, we can gain performance if
1059 * we do process-to-process copies directly.
1060 * If the write is non-blocking, we don't use the
1061 * direct write mechanism.
1062 *
1063 * The direct write mechanism will detect the reader going
1064 * away on us.
1065 */
1066 if (uio->uio_segflg == UIO_USERSPACE &&
1067 uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1068 wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1069 (fp->f_flag & FNONBLOCK) == 0) {
1070 pipeunlock(wpipe);
1071 error = pipe_direct_write(wpipe, uio);
1072 if (error)
1073 break;
1074 continue;
1075 }
1076 #endif
1077
1078 /*
1079 * Pipe buffered writes cannot be coincidental with
1080 * direct writes. We wait until the currently executing
1081 * direct write is completed before we start filling the
1082 * pipe buffer. We break out if a signal occurs or the
1083 * reader goes away.
1084 */
1085 if (wpipe->pipe_state & PIPE_DIRECTW) {
1086 if (wpipe->pipe_state & PIPE_WANTR) {
1087 wpipe->pipe_state &= ~PIPE_WANTR;
1088 wakeup(wpipe);
1089 }
1090 pipeselwakeup(wpipe);
1091 wpipe->pipe_state |= PIPE_WANTW;
1092 pipeunlock(wpipe);
1093 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1094 "pipbww", 0);
1095 if (error)
1096 break;
1097 else
1098 continue;
1099 }
1100
1101 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1102
1103 /* Writes of size <= PIPE_BUF must be atomic. */
1104 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1105 space = 0;
1106
1107 if (space > 0) {
1108 int size; /* Transfer size */
1109 int segsize; /* first segment to transfer */
1110
1111 /*
1112 * Transfer size is minimum of uio transfer
1113 * and free space in pipe buffer.
1114 */
1115 if (space > uio->uio_resid)
1116 size = uio->uio_resid;
1117 else
1118 size = space;
1119 /*
1120 * First segment to transfer is minimum of
1121 * transfer size and contiguous space in
1122 * pipe buffer. If first segment to transfer
1123 * is less than the transfer size, we've got
1124 * a wraparound in the buffer.
1125 */
1126 segsize = wpipe->pipe_buffer.size -
1127 wpipe->pipe_buffer.in;
1128 if (segsize > size)
1129 segsize = size;
1130
1131 /* Transfer first segment */
1132
1133 PIPE_UNLOCK(rpipe);
1134 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1135 segsize, uio);
1136 PIPE_LOCK(rpipe);
1137
1138 if (error == 0 && segsize < size) {
1139 KASSERT(wpipe->pipe_buffer.in + segsize ==
1140 wpipe->pipe_buffer.size,
1141 ("Pipe buffer wraparound disappeared"));
1142 /*
1143 * Transfer remaining part now, to
1144 * support atomic writes. Wraparound
1145 * happened.
1146 */
1147
1148 PIPE_UNLOCK(rpipe);
1149 error = uiomove(
1150 &wpipe->pipe_buffer.buffer[0],
1151 size - segsize, uio);
1152 PIPE_LOCK(rpipe);
1153 }
1154 if (error == 0) {
1155 wpipe->pipe_buffer.in += size;
1156 if (wpipe->pipe_buffer.in >=
1157 wpipe->pipe_buffer.size) {
1158 KASSERT(wpipe->pipe_buffer.in ==
1159 size - segsize +
1160 wpipe->pipe_buffer.size,
1161 ("Expected wraparound bad"));
1162 wpipe->pipe_buffer.in = size - segsize;
1163 }
1164
1165 wpipe->pipe_buffer.cnt += size;
1166 KASSERT(wpipe->pipe_buffer.cnt <=
1167 wpipe->pipe_buffer.size,
1168 ("Pipe buffer overflow"));
1169 }
1170 pipeunlock(wpipe);
1171 if (error != 0)
1172 break;
1173 } else {
1174 /*
1175 * If the "read-side" has been blocked, wake it up now.
1176 */
1177 if (wpipe->pipe_state & PIPE_WANTR) {
1178 wpipe->pipe_state &= ~PIPE_WANTR;
1179 wakeup(wpipe);
1180 }
1181
1182 /*
1183 * don't block on non-blocking I/O
1184 */
1185 if (fp->f_flag & FNONBLOCK) {
1186 error = EAGAIN;
1187 pipeunlock(wpipe);
1188 break;
1189 }
1190
1191 /*
1192 * We have no more space and have something to offer,
1193 * wake up select/poll.
1194 */
1195 pipeselwakeup(wpipe);
1196
1197 wpipe->pipe_state |= PIPE_WANTW;
1198 pipeunlock(wpipe);
1199 error = msleep(wpipe, PIPE_MTX(rpipe),
1200 PRIBIO | PCATCH, "pipewr", 0);
1201 if (error != 0)
1202 break;
1203 }
1204 }
1205
1206 pipelock(wpipe, 0);
1207 --wpipe->pipe_busy;
1208
1209 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1210 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1211 wakeup(wpipe);
1212 } else if (wpipe->pipe_buffer.cnt > 0) {
1213 /*
1214 * If we have put any characters in the buffer, we wake up
1215 * the reader.
1216 */
1217 if (wpipe->pipe_state & PIPE_WANTR) {
1218 wpipe->pipe_state &= ~PIPE_WANTR;
1219 wakeup(wpipe);
1220 }
1221 }
1222
1223 /*
1224 * Don't return EPIPE if I/O was successful
1225 */
1226 if ((wpipe->pipe_buffer.cnt == 0) &&
1227 (uio->uio_resid == 0) &&
1228 (error == EPIPE)) {
1229 error = 0;
1230 }
1231
1232 if (error == 0)
1233 vfs_timestamp(&wpipe->pipe_mtime);
1234
1235 /*
1236 * We have something to offer,
1237 * wake up select/poll.
1238 */
1239 if (wpipe->pipe_buffer.cnt)
1240 pipeselwakeup(wpipe);
1241
1242 pipeunlock(wpipe);
1243 PIPE_UNLOCK(rpipe);
1244 return (error);
1245 }
1246
1247 /* ARGSUSED */
1248 static int
1249 pipe_truncate(fp, length, active_cred, td)
1250 struct file *fp;
1251 off_t length;
1252 struct ucred *active_cred;
1253 struct thread *td;
1254 {
1255
1256 return (EINVAL);
1257 }
1258
1259 /*
1260 * we implement a very minimal set of ioctls for compatibility with sockets.
1261 */
1262 static int
1263 pipe_ioctl(fp, cmd, data, active_cred, td)
1264 struct file *fp;
1265 u_long cmd;
1266 void *data;
1267 struct ucred *active_cred;
1268 struct thread *td;
1269 {
1270 struct pipe *mpipe = fp->f_data;
1271 int error;
1272
1273 PIPE_LOCK(mpipe);
1274
1275 #ifdef MAC
1276 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1277 if (error) {
1278 PIPE_UNLOCK(mpipe);
1279 return (error);
1280 }
1281 #endif
1282
1283 error = 0;
1284 switch (cmd) {
1285
1286 case FIONBIO:
1287 break;
1288
1289 case FIOASYNC:
1290 if (*(int *)data) {
1291 mpipe->pipe_state |= PIPE_ASYNC;
1292 } else {
1293 mpipe->pipe_state &= ~PIPE_ASYNC;
1294 }
1295 break;
1296
1297 case FIONREAD:
1298 if (mpipe->pipe_state & PIPE_DIRECTW)
1299 *(int *)data = mpipe->pipe_map.cnt;
1300 else
1301 *(int *)data = mpipe->pipe_buffer.cnt;
1302 break;
1303
1304 case FIOSETOWN:
1305 PIPE_UNLOCK(mpipe);
1306 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1307 goto out_unlocked;
1308
1309 case FIOGETOWN:
1310 *(int *)data = fgetown(&mpipe->pipe_sigio);
1311 break;
1312
1313 /* This is deprecated, FIOSETOWN should be used instead. */
1314 case TIOCSPGRP:
1315 PIPE_UNLOCK(mpipe);
1316 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1317 goto out_unlocked;
1318
1319 /* This is deprecated, FIOGETOWN should be used instead. */
1320 case TIOCGPGRP:
1321 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1322 break;
1323
1324 default:
1325 error = ENOTTY;
1326 break;
1327 }
1328 PIPE_UNLOCK(mpipe);
1329 out_unlocked:
1330 return (error);
1331 }
1332
1333 static int
1334 pipe_poll(fp, events, active_cred, td)
1335 struct file *fp;
1336 int events;
1337 struct ucred *active_cred;
1338 struct thread *td;
1339 {
1340 struct pipe *rpipe = fp->f_data;
1341 struct pipe *wpipe;
1342 int revents = 0;
1343 #ifdef MAC
1344 int error;
1345 #endif
1346
1347 wpipe = rpipe->pipe_peer;
1348 PIPE_LOCK(rpipe);
1349 #ifdef MAC
1350 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1351 if (error)
1352 goto locked_error;
1353 #endif
1354 if (events & (POLLIN | POLLRDNORM))
1355 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1356 (rpipe->pipe_buffer.cnt > 0))
1357 revents |= events & (POLLIN | POLLRDNORM);
1358
1359 if (events & (POLLOUT | POLLWRNORM))
1360 if (wpipe->pipe_present != PIPE_ACTIVE ||
1361 (wpipe->pipe_state & PIPE_EOF) ||
1362 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1363 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1364 revents |= events & (POLLOUT | POLLWRNORM);
1365
1366 if ((events & POLLINIGNEOF) == 0) {
1367 if (rpipe->pipe_state & PIPE_EOF) {
1368 revents |= (events & (POLLIN | POLLRDNORM));
1369 if (wpipe->pipe_present != PIPE_ACTIVE ||
1370 (wpipe->pipe_state & PIPE_EOF))
1371 revents |= POLLHUP;
1372 }
1373 }
1374
1375 if (revents == 0) {
1376 if (events & (POLLIN | POLLRDNORM)) {
1377 selrecord(td, &rpipe->pipe_sel);
1378 if (SEL_WAITING(&rpipe->pipe_sel))
1379 rpipe->pipe_state |= PIPE_SEL;
1380 }
1381
1382 if (events & (POLLOUT | POLLWRNORM)) {
1383 selrecord(td, &wpipe->pipe_sel);
1384 if (SEL_WAITING(&wpipe->pipe_sel))
1385 wpipe->pipe_state |= PIPE_SEL;
1386 }
1387 }
1388 #ifdef MAC
1389 locked_error:
1390 #endif
1391 PIPE_UNLOCK(rpipe);
1392
1393 return (revents);
1394 }
1395
1396 /*
1397 * We shouldn't need locks here as we're doing a read and this should
1398 * be a natural race.
1399 */
1400 static int
1401 pipe_stat(fp, ub, active_cred, td)
1402 struct file *fp;
1403 struct stat *ub;
1404 struct ucred *active_cred;
1405 struct thread *td;
1406 {
1407 struct pipe *pipe = fp->f_data;
1408 #ifdef MAC
1409 int error;
1410
1411 PIPE_LOCK(pipe);
1412 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1413 PIPE_UNLOCK(pipe);
1414 if (error)
1415 return (error);
1416 #endif
1417 bzero(ub, sizeof(*ub));
1418 ub->st_mode = S_IFIFO;
1419 ub->st_blksize = PAGE_SIZE;
1420 if (pipe->pipe_state & PIPE_DIRECTW)
1421 ub->st_size = pipe->pipe_map.cnt;
1422 else
1423 ub->st_size = pipe->pipe_buffer.cnt;
1424 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1425 ub->st_atimespec = pipe->pipe_atime;
1426 ub->st_mtimespec = pipe->pipe_mtime;
1427 ub->st_ctimespec = pipe->pipe_ctime;
1428 ub->st_uid = fp->f_cred->cr_uid;
1429 ub->st_gid = fp->f_cred->cr_gid;
1430 /*
1431 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1432 * XXX (st_dev, st_ino) should be unique.
1433 */
1434 return (0);
1435 }
1436
1437 /* ARGSUSED */
1438 static int
1439 pipe_close(fp, td)
1440 struct file *fp;
1441 struct thread *td;
1442 {
1443 struct pipe *cpipe = fp->f_data;
1444
1445 fp->f_ops = &badfileops;
1446 fp->f_data = NULL;
1447 funsetown(&cpipe->pipe_sigio);
1448 pipeclose(cpipe);
1449 return (0);
1450 }
1451
1452 static void
1453 pipe_free_kmem(cpipe)
1454 struct pipe *cpipe;
1455 {
1456
1457 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1458 ("pipe_free_kmem: pipe mutex locked"));
1459
1460 if (cpipe->pipe_buffer.buffer != NULL) {
1461 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1462 vm_map_remove(pipe_map,
1463 (vm_offset_t)cpipe->pipe_buffer.buffer,
1464 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1465 cpipe->pipe_buffer.buffer = NULL;
1466 }
1467 #ifndef PIPE_NODIRECT
1468 {
1469 cpipe->pipe_map.cnt = 0;
1470 cpipe->pipe_map.pos = 0;
1471 cpipe->pipe_map.npages = 0;
1472 }
1473 #endif
1474 }
1475
1476 /*
1477 * shutdown the pipe
1478 */
1479 static void
1480 pipeclose(cpipe)
1481 struct pipe *cpipe;
1482 {
1483 struct pipepair *pp;
1484 struct pipe *ppipe;
1485
1486 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1487
1488 PIPE_LOCK(cpipe);
1489 pipelock(cpipe, 0);
1490 pp = cpipe->pipe_pair;
1491
1492 pipeselwakeup(cpipe);
1493
1494 /*
1495 * If the other side is blocked, wake it up saying that
1496 * we want to close it down.
1497 */
1498 cpipe->pipe_state |= PIPE_EOF;
1499 while (cpipe->pipe_busy) {
1500 wakeup(cpipe);
1501 cpipe->pipe_state |= PIPE_WANT;
1502 pipeunlock(cpipe);
1503 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1504 pipelock(cpipe, 0);
1505 }
1506
1507
1508 /*
1509 * Disconnect from peer, if any.
1510 */
1511 ppipe = cpipe->pipe_peer;
1512 if (ppipe->pipe_present == PIPE_ACTIVE) {
1513 pipeselwakeup(ppipe);
1514
1515 ppipe->pipe_state |= PIPE_EOF;
1516 wakeup(ppipe);
1517 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1518 }
1519
1520 /*
1521 * Mark this endpoint as free. Release kmem resources. We
1522 * don't mark this endpoint as unused until we've finished
1523 * doing that, or the pipe might disappear out from under
1524 * us.
1525 */
1526 PIPE_UNLOCK(cpipe);
1527 pipe_free_kmem(cpipe);
1528 PIPE_LOCK(cpipe);
1529 cpipe->pipe_present = PIPE_CLOSING;
1530 pipeunlock(cpipe);
1531
1532 /*
1533 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1534 * PIPE_FINALIZED, that allows other end to free the
1535 * pipe_pair, only after the knotes are completely dismantled.
1536 */
1537 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1538 cpipe->pipe_present = PIPE_FINALIZED;
1539 knlist_destroy(&cpipe->pipe_sel.si_note);
1540
1541 /*
1542 * If both endpoints are now closed, release the memory for the
1543 * pipe pair. If not, unlock.
1544 */
1545 if (ppipe->pipe_present == PIPE_FINALIZED) {
1546 PIPE_UNLOCK(cpipe);
1547 #ifdef MAC
1548 mac_pipe_destroy(pp);
1549 #endif
1550 uma_zfree(pipe_zone, cpipe->pipe_pair);
1551 } else
1552 PIPE_UNLOCK(cpipe);
1553 }
1554
1555 /*ARGSUSED*/
1556 static int
1557 pipe_kqfilter(struct file *fp, struct knote *kn)
1558 {
1559 struct pipe *cpipe;
1560
1561 cpipe = kn->kn_fp->f_data;
1562 PIPE_LOCK(cpipe);
1563 switch (kn->kn_filter) {
1564 case EVFILT_READ:
1565 kn->kn_fop = &pipe_rfiltops;
1566 break;
1567 case EVFILT_WRITE:
1568 kn->kn_fop = &pipe_wfiltops;
1569 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1570 /* other end of pipe has been closed */
1571 PIPE_UNLOCK(cpipe);
1572 return (EPIPE);
1573 }
1574 cpipe = cpipe->pipe_peer;
1575 break;
1576 default:
1577 PIPE_UNLOCK(cpipe);
1578 return (EINVAL);
1579 }
1580
1581 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1582 PIPE_UNLOCK(cpipe);
1583 return (0);
1584 }
1585
1586 static void
1587 filt_pipedetach(struct knote *kn)
1588 {
1589 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1590
1591 PIPE_LOCK(cpipe);
1592 if (kn->kn_filter == EVFILT_WRITE)
1593 cpipe = cpipe->pipe_peer;
1594 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1595 PIPE_UNLOCK(cpipe);
1596 }
1597
1598 /*ARGSUSED*/
1599 static int
1600 filt_piperead(struct knote *kn, long hint)
1601 {
1602 struct pipe *rpipe = kn->kn_fp->f_data;
1603 struct pipe *wpipe = rpipe->pipe_peer;
1604 int ret;
1605
1606 PIPE_LOCK(rpipe);
1607 kn->kn_data = rpipe->pipe_buffer.cnt;
1608 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1609 kn->kn_data = rpipe->pipe_map.cnt;
1610
1611 if ((rpipe->pipe_state & PIPE_EOF) ||
1612 wpipe->pipe_present != PIPE_ACTIVE ||
1613 (wpipe->pipe_state & PIPE_EOF)) {
1614 kn->kn_flags |= EV_EOF;
1615 PIPE_UNLOCK(rpipe);
1616 return (1);
1617 }
1618 ret = kn->kn_data > 0;
1619 PIPE_UNLOCK(rpipe);
1620 return ret;
1621 }
1622
1623 /*ARGSUSED*/
1624 static int
1625 filt_pipewrite(struct knote *kn, long hint)
1626 {
1627 struct pipe *rpipe = kn->kn_fp->f_data;
1628 struct pipe *wpipe = rpipe->pipe_peer;
1629
1630 PIPE_LOCK(rpipe);
1631 if (wpipe->pipe_present != PIPE_ACTIVE ||
1632 (wpipe->pipe_state & PIPE_EOF)) {
1633 kn->kn_data = 0;
1634 kn->kn_flags |= EV_EOF;
1635 PIPE_UNLOCK(rpipe);
1636 return (1);
1637 }
1638 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1639 if (wpipe->pipe_state & PIPE_DIRECTW)
1640 kn->kn_data = 0;
1641
1642 PIPE_UNLOCK(rpipe);
1643 return (kn->kn_data >= PIPE_BUF);
1644 }
Cache object: 17544863a4e78adb23b090fb04420ec3
|