FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*-
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 */
19
20 /*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27 /*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode. The small write mode acts like conventional pipes with
30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, the sending process pins the underlying pages in
33 * memory, and the receiving process copies directly from these pinned pages
34 * in the sending process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side. In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer. Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map. This value is normally
52 * autotuned, but may also be loader tuned.
53 *
54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55 * memory in use by pipes.
56 *
57 * Based on how large pipekva is relative to maxpipekva, the following
58 * will happen:
59 *
60 * 0% - 50%:
61 * New pipes are given 16K of memory backing, pipes may dynamically
62 * grow to as large as 64K where needed.
63 * 50% - 75%:
64 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
65 * existing pipes may NOT grow.
66 * 75% - 100%:
67 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 * existing pipes will be shrunk down to 4K whenever possible.
69 *
70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72 * resize which MUST occur for reverse-direction pipes when they are
73 * first used.
74 *
75 * Additional information about the current state of pipes may be obtained
76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77 * and kern.ipc.piperesizefail.
78 *
79 * Locking rules: There are two locks present here: A mutex, used via
80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
81 * the flag, as mutexes can not persist over uiomove. The mutex
82 * exists only to guard access to the flag, and is not in itself a
83 * locking mechanism. Also note that there is only a single mutex for
84 * both directions of a pipe.
85 *
86 * As pipelock() may have to sleep before it can acquire the flag, it
87 * is important to reread all data after a call to pipelock(); everything
88 * in the structure may have changed.
89 */
90
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD: releng/9.0/sys/kern/sys_pipe.c 226578 2011-10-20 18:54:05Z kib $");
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/conf.h>
97 #include <sys/fcntl.h>
98 #include <sys/file.h>
99 #include <sys/filedesc.h>
100 #include <sys/filio.h>
101 #include <sys/kernel.h>
102 #include <sys/lock.h>
103 #include <sys/mutex.h>
104 #include <sys/ttycom.h>
105 #include <sys/stat.h>
106 #include <sys/malloc.h>
107 #include <sys/poll.h>
108 #include <sys/selinfo.h>
109 #include <sys/signalvar.h>
110 #include <sys/syscallsubr.h>
111 #include <sys/sysctl.h>
112 #include <sys/sysproto.h>
113 #include <sys/pipe.h>
114 #include <sys/proc.h>
115 #include <sys/vnode.h>
116 #include <sys/uio.h>
117 #include <sys/event.h>
118
119 #include <security/mac/mac_framework.h>
120
121 #include <vm/vm.h>
122 #include <vm/vm_param.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_kern.h>
125 #include <vm/vm_extern.h>
126 #include <vm/pmap.h>
127 #include <vm/vm_map.h>
128 #include <vm/vm_page.h>
129 #include <vm/uma.h>
130
131 /*
132 * Use this define if you want to disable *fancy* VM things. Expect an
133 * approx 30% decrease in transfer rate. This could be useful for
134 * NetBSD or OpenBSD.
135 */
136 /* #define PIPE_NODIRECT */
137
138 /*
139 * interfaces to the outside world
140 */
141 static fo_rdwr_t pipe_read;
142 static fo_rdwr_t pipe_write;
143 static fo_truncate_t pipe_truncate;
144 static fo_ioctl_t pipe_ioctl;
145 static fo_poll_t pipe_poll;
146 static fo_kqfilter_t pipe_kqfilter;
147 static fo_stat_t pipe_stat;
148 static fo_close_t pipe_close;
149
150 static struct fileops pipeops = {
151 .fo_read = pipe_read,
152 .fo_write = pipe_write,
153 .fo_truncate = pipe_truncate,
154 .fo_ioctl = pipe_ioctl,
155 .fo_poll = pipe_poll,
156 .fo_kqfilter = pipe_kqfilter,
157 .fo_stat = pipe_stat,
158 .fo_close = pipe_close,
159 .fo_chmod = invfo_chmod,
160 .fo_chown = invfo_chown,
161 .fo_flags = DFLAG_PASSABLE
162 };
163
164 static void filt_pipedetach(struct knote *kn);
165 static int filt_piperead(struct knote *kn, long hint);
166 static int filt_pipewrite(struct knote *kn, long hint);
167
168 static struct filterops pipe_rfiltops = {
169 .f_isfd = 1,
170 .f_detach = filt_pipedetach,
171 .f_event = filt_piperead
172 };
173 static struct filterops pipe_wfiltops = {
174 .f_isfd = 1,
175 .f_detach = filt_pipedetach,
176 .f_event = filt_pipewrite
177 };
178
179 /*
180 * Default pipe buffer size(s), this can be kind-of large now because pipe
181 * space is pageable. The pipe code will try to maintain locality of
182 * reference for performance reasons, so small amounts of outstanding I/O
183 * will not wipe the cache.
184 */
185 #define MINPIPESIZE (PIPE_SIZE/3)
186 #define MAXPIPESIZE (2*PIPE_SIZE/3)
187
188 static long amountpipekva;
189 static int pipefragretry;
190 static int pipeallocfail;
191 static int piperesizefail;
192 static int piperesizeallowed = 1;
193
194 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
195 &maxpipekva, 0, "Pipe KVA limit");
196 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
197 &amountpipekva, 0, "Pipe KVA usage");
198 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
199 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
200 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
201 &pipeallocfail, 0, "Pipe allocation failures");
202 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
203 &piperesizefail, 0, "Pipe resize failures");
204 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
205 &piperesizeallowed, 0, "Pipe resizing allowed");
206
207 static void pipeinit(void *dummy __unused);
208 static void pipeclose(struct pipe *cpipe);
209 static void pipe_free_kmem(struct pipe *cpipe);
210 static int pipe_create(struct pipe *pipe, int backing);
211 static __inline int pipelock(struct pipe *cpipe, int catch);
212 static __inline void pipeunlock(struct pipe *cpipe);
213 static __inline void pipeselwakeup(struct pipe *cpipe);
214 #ifndef PIPE_NODIRECT
215 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
216 static void pipe_destroy_write_buffer(struct pipe *wpipe);
217 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
218 static void pipe_clone_write_buffer(struct pipe *wpipe);
219 #endif
220 static int pipespace(struct pipe *cpipe, int size);
221 static int pipespace_new(struct pipe *cpipe, int size);
222
223 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
224 static int pipe_zone_init(void *mem, int size, int flags);
225 static void pipe_zone_fini(void *mem, int size);
226
227 static uma_zone_t pipe_zone;
228 static struct unrhdr *pipeino_unr;
229 static dev_t pipedev_ino;
230
231 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
232
233 static void
234 pipeinit(void *dummy __unused)
235 {
236
237 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
238 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
239 UMA_ALIGN_PTR, 0);
240 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
241 pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
242 KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
243 pipedev_ino = devfs_alloc_cdp_inode();
244 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
245 }
246
247 static int
248 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
249 {
250 struct pipepair *pp;
251 struct pipe *rpipe, *wpipe;
252
253 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
254
255 pp = (struct pipepair *)mem;
256
257 /*
258 * We zero both pipe endpoints to make sure all the kmem pointers
259 * are NULL, flag fields are zero'd, etc. We timestamp both
260 * endpoints with the same time.
261 */
262 rpipe = &pp->pp_rpipe;
263 bzero(rpipe, sizeof(*rpipe));
264 vfs_timestamp(&rpipe->pipe_ctime);
265 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
266
267 wpipe = &pp->pp_wpipe;
268 bzero(wpipe, sizeof(*wpipe));
269 wpipe->pipe_ctime = rpipe->pipe_ctime;
270 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
271
272 rpipe->pipe_peer = wpipe;
273 rpipe->pipe_pair = pp;
274 wpipe->pipe_peer = rpipe;
275 wpipe->pipe_pair = pp;
276
277 /*
278 * Mark both endpoints as present; they will later get free'd
279 * one at a time. When both are free'd, then the whole pair
280 * is released.
281 */
282 rpipe->pipe_present = PIPE_ACTIVE;
283 wpipe->pipe_present = PIPE_ACTIVE;
284
285 /*
286 * Eventually, the MAC Framework may initialize the label
287 * in ctor or init, but for now we do it elswhere to avoid
288 * blocking in ctor or init.
289 */
290 pp->pp_label = NULL;
291
292 return (0);
293 }
294
295 static int
296 pipe_zone_init(void *mem, int size, int flags)
297 {
298 struct pipepair *pp;
299
300 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
301
302 pp = (struct pipepair *)mem;
303
304 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
305 return (0);
306 }
307
308 static void
309 pipe_zone_fini(void *mem, int size)
310 {
311 struct pipepair *pp;
312
313 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
314
315 pp = (struct pipepair *)mem;
316
317 mtx_destroy(&pp->pp_mtx);
318 }
319
320 /*
321 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
322 * the zone pick up the pieces via pipeclose().
323 */
324 int
325 kern_pipe(struct thread *td, int fildes[2])
326 {
327 struct filedesc *fdp = td->td_proc->p_fd;
328 struct file *rf, *wf;
329 struct pipepair *pp;
330 struct pipe *rpipe, *wpipe;
331 int fd, error;
332
333 pp = uma_zalloc(pipe_zone, M_WAITOK);
334 #ifdef MAC
335 /*
336 * The MAC label is shared between the connected endpoints. As a
337 * result mac_pipe_init() and mac_pipe_create() are called once
338 * for the pair, and not on the endpoints.
339 */
340 mac_pipe_init(pp);
341 mac_pipe_create(td->td_ucred, pp);
342 #endif
343 rpipe = &pp->pp_rpipe;
344 wpipe = &pp->pp_wpipe;
345
346 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
347 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
348
349 /* Only the forward direction pipe is backed by default */
350 if ((error = pipe_create(rpipe, 1)) != 0 ||
351 (error = pipe_create(wpipe, 0)) != 0) {
352 pipeclose(rpipe);
353 pipeclose(wpipe);
354 return (error);
355 }
356
357 rpipe->pipe_state |= PIPE_DIRECTOK;
358 wpipe->pipe_state |= PIPE_DIRECTOK;
359
360 error = falloc(td, &rf, &fd, 0);
361 if (error) {
362 pipeclose(rpipe);
363 pipeclose(wpipe);
364 return (error);
365 }
366 /* An extra reference on `rf' has been held for us by falloc(). */
367 fildes[0] = fd;
368
369 /*
370 * Warning: once we've gotten past allocation of the fd for the
371 * read-side, we can only drop the read side via fdrop() in order
372 * to avoid races against processes which manage to dup() the read
373 * side while we are blocked trying to allocate the write side.
374 */
375 finit(rf, FREAD | FWRITE, DTYPE_PIPE, rpipe, &pipeops);
376 error = falloc(td, &wf, &fd, 0);
377 if (error) {
378 fdclose(fdp, rf, fildes[0], td);
379 fdrop(rf, td);
380 /* rpipe has been closed by fdrop(). */
381 pipeclose(wpipe);
382 return (error);
383 }
384 /* An extra reference on `wf' has been held for us by falloc(). */
385 finit(wf, FREAD | FWRITE, DTYPE_PIPE, wpipe, &pipeops);
386 fdrop(wf, td);
387 fildes[1] = fd;
388 fdrop(rf, td);
389
390 return (0);
391 }
392
393 /* ARGSUSED */
394 int
395 sys_pipe(struct thread *td, struct pipe_args *uap)
396 {
397 int error;
398 int fildes[2];
399
400 error = kern_pipe(td, fildes);
401 if (error)
402 return (error);
403
404 td->td_retval[0] = fildes[0];
405 td->td_retval[1] = fildes[1];
406
407 return (0);
408 }
409
410 /*
411 * Allocate kva for pipe circular buffer, the space is pageable
412 * This routine will 'realloc' the size of a pipe safely, if it fails
413 * it will retain the old buffer.
414 * If it fails it will return ENOMEM.
415 */
416 static int
417 pipespace_new(cpipe, size)
418 struct pipe *cpipe;
419 int size;
420 {
421 caddr_t buffer;
422 int error, cnt, firstseg;
423 static int curfail = 0;
424 static struct timeval lastfail;
425
426 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
427 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
428 ("pipespace: resize of direct writes not allowed"));
429 retry:
430 cnt = cpipe->pipe_buffer.cnt;
431 if (cnt > size)
432 size = cnt;
433
434 size = round_page(size);
435 buffer = (caddr_t) vm_map_min(pipe_map);
436
437 error = vm_map_find(pipe_map, NULL, 0,
438 (vm_offset_t *) &buffer, size, 1,
439 VM_PROT_ALL, VM_PROT_ALL, 0);
440 if (error != KERN_SUCCESS) {
441 if ((cpipe->pipe_buffer.buffer == NULL) &&
442 (size > SMALL_PIPE_SIZE)) {
443 size = SMALL_PIPE_SIZE;
444 pipefragretry++;
445 goto retry;
446 }
447 if (cpipe->pipe_buffer.buffer == NULL) {
448 pipeallocfail++;
449 if (ppsratecheck(&lastfail, &curfail, 1))
450 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
451 } else {
452 piperesizefail++;
453 }
454 return (ENOMEM);
455 }
456
457 /* copy data, then free old resources if we're resizing */
458 if (cnt > 0) {
459 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
460 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
461 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
462 buffer, firstseg);
463 if ((cnt - firstseg) > 0)
464 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
465 cpipe->pipe_buffer.in);
466 } else {
467 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
468 buffer, cnt);
469 }
470 }
471 pipe_free_kmem(cpipe);
472 cpipe->pipe_buffer.buffer = buffer;
473 cpipe->pipe_buffer.size = size;
474 cpipe->pipe_buffer.in = cnt;
475 cpipe->pipe_buffer.out = 0;
476 cpipe->pipe_buffer.cnt = cnt;
477 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
478 return (0);
479 }
480
481 /*
482 * Wrapper for pipespace_new() that performs locking assertions.
483 */
484 static int
485 pipespace(cpipe, size)
486 struct pipe *cpipe;
487 int size;
488 {
489
490 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
491 ("Unlocked pipe passed to pipespace"));
492 return (pipespace_new(cpipe, size));
493 }
494
495 /*
496 * lock a pipe for I/O, blocking other access
497 */
498 static __inline int
499 pipelock(cpipe, catch)
500 struct pipe *cpipe;
501 int catch;
502 {
503 int error;
504
505 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
506 while (cpipe->pipe_state & PIPE_LOCKFL) {
507 cpipe->pipe_state |= PIPE_LWANT;
508 error = msleep(cpipe, PIPE_MTX(cpipe),
509 catch ? (PRIBIO | PCATCH) : PRIBIO,
510 "pipelk", 0);
511 if (error != 0)
512 return (error);
513 }
514 cpipe->pipe_state |= PIPE_LOCKFL;
515 return (0);
516 }
517
518 /*
519 * unlock a pipe I/O lock
520 */
521 static __inline void
522 pipeunlock(cpipe)
523 struct pipe *cpipe;
524 {
525
526 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
527 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
528 ("Unlocked pipe passed to pipeunlock"));
529 cpipe->pipe_state &= ~PIPE_LOCKFL;
530 if (cpipe->pipe_state & PIPE_LWANT) {
531 cpipe->pipe_state &= ~PIPE_LWANT;
532 wakeup(cpipe);
533 }
534 }
535
536 static __inline void
537 pipeselwakeup(cpipe)
538 struct pipe *cpipe;
539 {
540
541 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
542 if (cpipe->pipe_state & PIPE_SEL) {
543 selwakeuppri(&cpipe->pipe_sel, PSOCK);
544 if (!SEL_WAITING(&cpipe->pipe_sel))
545 cpipe->pipe_state &= ~PIPE_SEL;
546 }
547 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
548 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
549 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
550 }
551
552 /*
553 * Initialize and allocate VM and memory for pipe. The structure
554 * will start out zero'd from the ctor, so we just manage the kmem.
555 */
556 static int
557 pipe_create(pipe, backing)
558 struct pipe *pipe;
559 int backing;
560 {
561 int error;
562
563 if (backing) {
564 if (amountpipekva > maxpipekva / 2)
565 error = pipespace_new(pipe, SMALL_PIPE_SIZE);
566 else
567 error = pipespace_new(pipe, PIPE_SIZE);
568 } else {
569 /* If we're not backing this pipe, no need to do anything. */
570 error = 0;
571 }
572 if (error == 0) {
573 pipe->pipe_ino = alloc_unr(pipeino_unr);
574 if (pipe->pipe_ino == -1)
575 /* pipeclose will clear allocated kva */
576 error = ENOMEM;
577 }
578 return (error);
579 }
580
581 /* ARGSUSED */
582 static int
583 pipe_read(fp, uio, active_cred, flags, td)
584 struct file *fp;
585 struct uio *uio;
586 struct ucred *active_cred;
587 struct thread *td;
588 int flags;
589 {
590 struct pipe *rpipe = fp->f_data;
591 int error;
592 int nread = 0;
593 u_int size;
594
595 PIPE_LOCK(rpipe);
596 ++rpipe->pipe_busy;
597 error = pipelock(rpipe, 1);
598 if (error)
599 goto unlocked_error;
600
601 #ifdef MAC
602 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
603 if (error)
604 goto locked_error;
605 #endif
606 if (amountpipekva > (3 * maxpipekva) / 4) {
607 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
608 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
609 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
610 (piperesizeallowed == 1)) {
611 PIPE_UNLOCK(rpipe);
612 pipespace(rpipe, SMALL_PIPE_SIZE);
613 PIPE_LOCK(rpipe);
614 }
615 }
616
617 while (uio->uio_resid) {
618 /*
619 * normal pipe buffer receive
620 */
621 if (rpipe->pipe_buffer.cnt > 0) {
622 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
623 if (size > rpipe->pipe_buffer.cnt)
624 size = rpipe->pipe_buffer.cnt;
625 if (size > (u_int) uio->uio_resid)
626 size = (u_int) uio->uio_resid;
627
628 PIPE_UNLOCK(rpipe);
629 error = uiomove(
630 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
631 size, uio);
632 PIPE_LOCK(rpipe);
633 if (error)
634 break;
635
636 rpipe->pipe_buffer.out += size;
637 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
638 rpipe->pipe_buffer.out = 0;
639
640 rpipe->pipe_buffer.cnt -= size;
641
642 /*
643 * If there is no more to read in the pipe, reset
644 * its pointers to the beginning. This improves
645 * cache hit stats.
646 */
647 if (rpipe->pipe_buffer.cnt == 0) {
648 rpipe->pipe_buffer.in = 0;
649 rpipe->pipe_buffer.out = 0;
650 }
651 nread += size;
652 #ifndef PIPE_NODIRECT
653 /*
654 * Direct copy, bypassing a kernel buffer.
655 */
656 } else if ((size = rpipe->pipe_map.cnt) &&
657 (rpipe->pipe_state & PIPE_DIRECTW)) {
658 if (size > (u_int) uio->uio_resid)
659 size = (u_int) uio->uio_resid;
660
661 PIPE_UNLOCK(rpipe);
662 error = uiomove_fromphys(rpipe->pipe_map.ms,
663 rpipe->pipe_map.pos, size, uio);
664 PIPE_LOCK(rpipe);
665 if (error)
666 break;
667 nread += size;
668 rpipe->pipe_map.pos += size;
669 rpipe->pipe_map.cnt -= size;
670 if (rpipe->pipe_map.cnt == 0) {
671 rpipe->pipe_state &= ~PIPE_DIRECTW;
672 wakeup(rpipe);
673 }
674 #endif
675 } else {
676 /*
677 * detect EOF condition
678 * read returns 0 on EOF, no need to set error
679 */
680 if (rpipe->pipe_state & PIPE_EOF)
681 break;
682
683 /*
684 * If the "write-side" has been blocked, wake it up now.
685 */
686 if (rpipe->pipe_state & PIPE_WANTW) {
687 rpipe->pipe_state &= ~PIPE_WANTW;
688 wakeup(rpipe);
689 }
690
691 /*
692 * Break if some data was read.
693 */
694 if (nread > 0)
695 break;
696
697 /*
698 * Unlock the pipe buffer for our remaining processing.
699 * We will either break out with an error or we will
700 * sleep and relock to loop.
701 */
702 pipeunlock(rpipe);
703
704 /*
705 * Handle non-blocking mode operation or
706 * wait for more data.
707 */
708 if (fp->f_flag & FNONBLOCK) {
709 error = EAGAIN;
710 } else {
711 rpipe->pipe_state |= PIPE_WANTR;
712 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
713 PRIBIO | PCATCH,
714 "piperd", 0)) == 0)
715 error = pipelock(rpipe, 1);
716 }
717 if (error)
718 goto unlocked_error;
719 }
720 }
721 #ifdef MAC
722 locked_error:
723 #endif
724 pipeunlock(rpipe);
725
726 /* XXX: should probably do this before getting any locks. */
727 if (error == 0)
728 vfs_timestamp(&rpipe->pipe_atime);
729 unlocked_error:
730 --rpipe->pipe_busy;
731
732 /*
733 * PIPE_WANT processing only makes sense if pipe_busy is 0.
734 */
735 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
736 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
737 wakeup(rpipe);
738 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
739 /*
740 * Handle write blocking hysteresis.
741 */
742 if (rpipe->pipe_state & PIPE_WANTW) {
743 rpipe->pipe_state &= ~PIPE_WANTW;
744 wakeup(rpipe);
745 }
746 }
747
748 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
749 pipeselwakeup(rpipe);
750
751 PIPE_UNLOCK(rpipe);
752 return (error);
753 }
754
755 #ifndef PIPE_NODIRECT
756 /*
757 * Map the sending processes' buffer into kernel space and wire it.
758 * This is similar to a physical write operation.
759 */
760 static int
761 pipe_build_write_buffer(wpipe, uio)
762 struct pipe *wpipe;
763 struct uio *uio;
764 {
765 u_int size;
766 int i;
767
768 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
769 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
770 ("Clone attempt on non-direct write pipe!"));
771
772 size = (u_int) uio->uio_iov->iov_len;
773 if (size > wpipe->pipe_buffer.size)
774 size = wpipe->pipe_buffer.size;
775
776 if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
777 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
778 wpipe->pipe_map.ms, PIPENPAGES)) < 0)
779 return (EFAULT);
780
781 /*
782 * set up the control block
783 */
784 wpipe->pipe_map.npages = i;
785 wpipe->pipe_map.pos =
786 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
787 wpipe->pipe_map.cnt = size;
788
789 /*
790 * and update the uio data
791 */
792
793 uio->uio_iov->iov_len -= size;
794 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
795 if (uio->uio_iov->iov_len == 0)
796 uio->uio_iov++;
797 uio->uio_resid -= size;
798 uio->uio_offset += size;
799 return (0);
800 }
801
802 /*
803 * unmap and unwire the process buffer
804 */
805 static void
806 pipe_destroy_write_buffer(wpipe)
807 struct pipe *wpipe;
808 {
809
810 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
811 vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
812 wpipe->pipe_map.npages = 0;
813 }
814
815 /*
816 * In the case of a signal, the writing process might go away. This
817 * code copies the data into the circular buffer so that the source
818 * pages can be freed without loss of data.
819 */
820 static void
821 pipe_clone_write_buffer(wpipe)
822 struct pipe *wpipe;
823 {
824 struct uio uio;
825 struct iovec iov;
826 int size;
827 int pos;
828
829 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
830 size = wpipe->pipe_map.cnt;
831 pos = wpipe->pipe_map.pos;
832
833 wpipe->pipe_buffer.in = size;
834 wpipe->pipe_buffer.out = 0;
835 wpipe->pipe_buffer.cnt = size;
836 wpipe->pipe_state &= ~PIPE_DIRECTW;
837
838 PIPE_UNLOCK(wpipe);
839 iov.iov_base = wpipe->pipe_buffer.buffer;
840 iov.iov_len = size;
841 uio.uio_iov = &iov;
842 uio.uio_iovcnt = 1;
843 uio.uio_offset = 0;
844 uio.uio_resid = size;
845 uio.uio_segflg = UIO_SYSSPACE;
846 uio.uio_rw = UIO_READ;
847 uio.uio_td = curthread;
848 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
849 PIPE_LOCK(wpipe);
850 pipe_destroy_write_buffer(wpipe);
851 }
852
853 /*
854 * This implements the pipe buffer write mechanism. Note that only
855 * a direct write OR a normal pipe write can be pending at any given time.
856 * If there are any characters in the pipe buffer, the direct write will
857 * be deferred until the receiving process grabs all of the bytes from
858 * the pipe buffer. Then the direct mapping write is set-up.
859 */
860 static int
861 pipe_direct_write(wpipe, uio)
862 struct pipe *wpipe;
863 struct uio *uio;
864 {
865 int error;
866
867 retry:
868 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
869 error = pipelock(wpipe, 1);
870 if (wpipe->pipe_state & PIPE_EOF)
871 error = EPIPE;
872 if (error) {
873 pipeunlock(wpipe);
874 goto error1;
875 }
876 while (wpipe->pipe_state & PIPE_DIRECTW) {
877 if (wpipe->pipe_state & PIPE_WANTR) {
878 wpipe->pipe_state &= ~PIPE_WANTR;
879 wakeup(wpipe);
880 }
881 pipeselwakeup(wpipe);
882 wpipe->pipe_state |= PIPE_WANTW;
883 pipeunlock(wpipe);
884 error = msleep(wpipe, PIPE_MTX(wpipe),
885 PRIBIO | PCATCH, "pipdww", 0);
886 if (error)
887 goto error1;
888 else
889 goto retry;
890 }
891 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
892 if (wpipe->pipe_buffer.cnt > 0) {
893 if (wpipe->pipe_state & PIPE_WANTR) {
894 wpipe->pipe_state &= ~PIPE_WANTR;
895 wakeup(wpipe);
896 }
897 pipeselwakeup(wpipe);
898 wpipe->pipe_state |= PIPE_WANTW;
899 pipeunlock(wpipe);
900 error = msleep(wpipe, PIPE_MTX(wpipe),
901 PRIBIO | PCATCH, "pipdwc", 0);
902 if (error)
903 goto error1;
904 else
905 goto retry;
906 }
907
908 wpipe->pipe_state |= PIPE_DIRECTW;
909
910 PIPE_UNLOCK(wpipe);
911 error = pipe_build_write_buffer(wpipe, uio);
912 PIPE_LOCK(wpipe);
913 if (error) {
914 wpipe->pipe_state &= ~PIPE_DIRECTW;
915 pipeunlock(wpipe);
916 goto error1;
917 }
918
919 error = 0;
920 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
921 if (wpipe->pipe_state & PIPE_EOF) {
922 pipe_destroy_write_buffer(wpipe);
923 pipeselwakeup(wpipe);
924 pipeunlock(wpipe);
925 error = EPIPE;
926 goto error1;
927 }
928 if (wpipe->pipe_state & PIPE_WANTR) {
929 wpipe->pipe_state &= ~PIPE_WANTR;
930 wakeup(wpipe);
931 }
932 pipeselwakeup(wpipe);
933 pipeunlock(wpipe);
934 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
935 "pipdwt", 0);
936 pipelock(wpipe, 0);
937 }
938
939 if (wpipe->pipe_state & PIPE_EOF)
940 error = EPIPE;
941 if (wpipe->pipe_state & PIPE_DIRECTW) {
942 /*
943 * this bit of trickery substitutes a kernel buffer for
944 * the process that might be going away.
945 */
946 pipe_clone_write_buffer(wpipe);
947 } else {
948 pipe_destroy_write_buffer(wpipe);
949 }
950 pipeunlock(wpipe);
951 return (error);
952
953 error1:
954 wakeup(wpipe);
955 return (error);
956 }
957 #endif
958
959 static int
960 pipe_write(fp, uio, active_cred, flags, td)
961 struct file *fp;
962 struct uio *uio;
963 struct ucred *active_cred;
964 struct thread *td;
965 int flags;
966 {
967 int error = 0;
968 int desiredsize, orig_resid;
969 struct pipe *wpipe, *rpipe;
970
971 rpipe = fp->f_data;
972 wpipe = rpipe->pipe_peer;
973
974 PIPE_LOCK(rpipe);
975 error = pipelock(wpipe, 1);
976 if (error) {
977 PIPE_UNLOCK(rpipe);
978 return (error);
979 }
980 /*
981 * detect loss of pipe read side, issue SIGPIPE if lost.
982 */
983 if (wpipe->pipe_present != PIPE_ACTIVE ||
984 (wpipe->pipe_state & PIPE_EOF)) {
985 pipeunlock(wpipe);
986 PIPE_UNLOCK(rpipe);
987 return (EPIPE);
988 }
989 #ifdef MAC
990 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
991 if (error) {
992 pipeunlock(wpipe);
993 PIPE_UNLOCK(rpipe);
994 return (error);
995 }
996 #endif
997 ++wpipe->pipe_busy;
998
999 /* Choose a larger size if it's advantageous */
1000 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1001 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1002 if (piperesizeallowed != 1)
1003 break;
1004 if (amountpipekva > maxpipekva / 2)
1005 break;
1006 if (desiredsize == BIG_PIPE_SIZE)
1007 break;
1008 desiredsize = desiredsize * 2;
1009 }
1010
1011 /* Choose a smaller size if we're in a OOM situation */
1012 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1013 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1014 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1015 (piperesizeallowed == 1))
1016 desiredsize = SMALL_PIPE_SIZE;
1017
1018 /* Resize if the above determined that a new size was necessary */
1019 if ((desiredsize != wpipe->pipe_buffer.size) &&
1020 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1021 PIPE_UNLOCK(wpipe);
1022 pipespace(wpipe, desiredsize);
1023 PIPE_LOCK(wpipe);
1024 }
1025 if (wpipe->pipe_buffer.size == 0) {
1026 /*
1027 * This can only happen for reverse direction use of pipes
1028 * in a complete OOM situation.
1029 */
1030 error = ENOMEM;
1031 --wpipe->pipe_busy;
1032 pipeunlock(wpipe);
1033 PIPE_UNLOCK(wpipe);
1034 return (error);
1035 }
1036
1037 pipeunlock(wpipe);
1038
1039 orig_resid = uio->uio_resid;
1040
1041 while (uio->uio_resid) {
1042 int space;
1043
1044 pipelock(wpipe, 0);
1045 if (wpipe->pipe_state & PIPE_EOF) {
1046 pipeunlock(wpipe);
1047 error = EPIPE;
1048 break;
1049 }
1050 #ifndef PIPE_NODIRECT
1051 /*
1052 * If the transfer is large, we can gain performance if
1053 * we do process-to-process copies directly.
1054 * If the write is non-blocking, we don't use the
1055 * direct write mechanism.
1056 *
1057 * The direct write mechanism will detect the reader going
1058 * away on us.
1059 */
1060 if (uio->uio_segflg == UIO_USERSPACE &&
1061 uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1062 wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1063 (fp->f_flag & FNONBLOCK) == 0) {
1064 pipeunlock(wpipe);
1065 error = pipe_direct_write(wpipe, uio);
1066 if (error)
1067 break;
1068 continue;
1069 }
1070 #endif
1071
1072 /*
1073 * Pipe buffered writes cannot be coincidental with
1074 * direct writes. We wait until the currently executing
1075 * direct write is completed before we start filling the
1076 * pipe buffer. We break out if a signal occurs or the
1077 * reader goes away.
1078 */
1079 if (wpipe->pipe_state & PIPE_DIRECTW) {
1080 if (wpipe->pipe_state & PIPE_WANTR) {
1081 wpipe->pipe_state &= ~PIPE_WANTR;
1082 wakeup(wpipe);
1083 }
1084 pipeselwakeup(wpipe);
1085 wpipe->pipe_state |= PIPE_WANTW;
1086 pipeunlock(wpipe);
1087 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1088 "pipbww", 0);
1089 if (error)
1090 break;
1091 else
1092 continue;
1093 }
1094
1095 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1096
1097 /* Writes of size <= PIPE_BUF must be atomic. */
1098 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1099 space = 0;
1100
1101 if (space > 0) {
1102 int size; /* Transfer size */
1103 int segsize; /* first segment to transfer */
1104
1105 /*
1106 * Transfer size is minimum of uio transfer
1107 * and free space in pipe buffer.
1108 */
1109 if (space > uio->uio_resid)
1110 size = uio->uio_resid;
1111 else
1112 size = space;
1113 /*
1114 * First segment to transfer is minimum of
1115 * transfer size and contiguous space in
1116 * pipe buffer. If first segment to transfer
1117 * is less than the transfer size, we've got
1118 * a wraparound in the buffer.
1119 */
1120 segsize = wpipe->pipe_buffer.size -
1121 wpipe->pipe_buffer.in;
1122 if (segsize > size)
1123 segsize = size;
1124
1125 /* Transfer first segment */
1126
1127 PIPE_UNLOCK(rpipe);
1128 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1129 segsize, uio);
1130 PIPE_LOCK(rpipe);
1131
1132 if (error == 0 && segsize < size) {
1133 KASSERT(wpipe->pipe_buffer.in + segsize ==
1134 wpipe->pipe_buffer.size,
1135 ("Pipe buffer wraparound disappeared"));
1136 /*
1137 * Transfer remaining part now, to
1138 * support atomic writes. Wraparound
1139 * happened.
1140 */
1141
1142 PIPE_UNLOCK(rpipe);
1143 error = uiomove(
1144 &wpipe->pipe_buffer.buffer[0],
1145 size - segsize, uio);
1146 PIPE_LOCK(rpipe);
1147 }
1148 if (error == 0) {
1149 wpipe->pipe_buffer.in += size;
1150 if (wpipe->pipe_buffer.in >=
1151 wpipe->pipe_buffer.size) {
1152 KASSERT(wpipe->pipe_buffer.in ==
1153 size - segsize +
1154 wpipe->pipe_buffer.size,
1155 ("Expected wraparound bad"));
1156 wpipe->pipe_buffer.in = size - segsize;
1157 }
1158
1159 wpipe->pipe_buffer.cnt += size;
1160 KASSERT(wpipe->pipe_buffer.cnt <=
1161 wpipe->pipe_buffer.size,
1162 ("Pipe buffer overflow"));
1163 }
1164 pipeunlock(wpipe);
1165 if (error != 0)
1166 break;
1167 } else {
1168 /*
1169 * If the "read-side" has been blocked, wake it up now.
1170 */
1171 if (wpipe->pipe_state & PIPE_WANTR) {
1172 wpipe->pipe_state &= ~PIPE_WANTR;
1173 wakeup(wpipe);
1174 }
1175
1176 /*
1177 * don't block on non-blocking I/O
1178 */
1179 if (fp->f_flag & FNONBLOCK) {
1180 error = EAGAIN;
1181 pipeunlock(wpipe);
1182 break;
1183 }
1184
1185 /*
1186 * We have no more space and have something to offer,
1187 * wake up select/poll.
1188 */
1189 pipeselwakeup(wpipe);
1190
1191 wpipe->pipe_state |= PIPE_WANTW;
1192 pipeunlock(wpipe);
1193 error = msleep(wpipe, PIPE_MTX(rpipe),
1194 PRIBIO | PCATCH, "pipewr", 0);
1195 if (error != 0)
1196 break;
1197 }
1198 }
1199
1200 pipelock(wpipe, 0);
1201 --wpipe->pipe_busy;
1202
1203 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1204 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1205 wakeup(wpipe);
1206 } else if (wpipe->pipe_buffer.cnt > 0) {
1207 /*
1208 * If we have put any characters in the buffer, we wake up
1209 * the reader.
1210 */
1211 if (wpipe->pipe_state & PIPE_WANTR) {
1212 wpipe->pipe_state &= ~PIPE_WANTR;
1213 wakeup(wpipe);
1214 }
1215 }
1216
1217 /*
1218 * Don't return EPIPE if I/O was successful
1219 */
1220 if ((wpipe->pipe_buffer.cnt == 0) &&
1221 (uio->uio_resid == 0) &&
1222 (error == EPIPE)) {
1223 error = 0;
1224 }
1225
1226 if (error == 0)
1227 vfs_timestamp(&wpipe->pipe_mtime);
1228
1229 /*
1230 * We have something to offer,
1231 * wake up select/poll.
1232 */
1233 if (wpipe->pipe_buffer.cnt)
1234 pipeselwakeup(wpipe);
1235
1236 pipeunlock(wpipe);
1237 PIPE_UNLOCK(rpipe);
1238 return (error);
1239 }
1240
1241 /* ARGSUSED */
1242 static int
1243 pipe_truncate(fp, length, active_cred, td)
1244 struct file *fp;
1245 off_t length;
1246 struct ucred *active_cred;
1247 struct thread *td;
1248 {
1249
1250 return (EINVAL);
1251 }
1252
1253 /*
1254 * we implement a very minimal set of ioctls for compatibility with sockets.
1255 */
1256 static int
1257 pipe_ioctl(fp, cmd, data, active_cred, td)
1258 struct file *fp;
1259 u_long cmd;
1260 void *data;
1261 struct ucred *active_cred;
1262 struct thread *td;
1263 {
1264 struct pipe *mpipe = fp->f_data;
1265 int error;
1266
1267 PIPE_LOCK(mpipe);
1268
1269 #ifdef MAC
1270 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1271 if (error) {
1272 PIPE_UNLOCK(mpipe);
1273 return (error);
1274 }
1275 #endif
1276
1277 error = 0;
1278 switch (cmd) {
1279
1280 case FIONBIO:
1281 break;
1282
1283 case FIOASYNC:
1284 if (*(int *)data) {
1285 mpipe->pipe_state |= PIPE_ASYNC;
1286 } else {
1287 mpipe->pipe_state &= ~PIPE_ASYNC;
1288 }
1289 break;
1290
1291 case FIONREAD:
1292 if (mpipe->pipe_state & PIPE_DIRECTW)
1293 *(int *)data = mpipe->pipe_map.cnt;
1294 else
1295 *(int *)data = mpipe->pipe_buffer.cnt;
1296 break;
1297
1298 case FIOSETOWN:
1299 PIPE_UNLOCK(mpipe);
1300 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1301 goto out_unlocked;
1302
1303 case FIOGETOWN:
1304 *(int *)data = fgetown(&mpipe->pipe_sigio);
1305 break;
1306
1307 /* This is deprecated, FIOSETOWN should be used instead. */
1308 case TIOCSPGRP:
1309 PIPE_UNLOCK(mpipe);
1310 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1311 goto out_unlocked;
1312
1313 /* This is deprecated, FIOGETOWN should be used instead. */
1314 case TIOCGPGRP:
1315 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1316 break;
1317
1318 default:
1319 error = ENOTTY;
1320 break;
1321 }
1322 PIPE_UNLOCK(mpipe);
1323 out_unlocked:
1324 return (error);
1325 }
1326
1327 static int
1328 pipe_poll(fp, events, active_cred, td)
1329 struct file *fp;
1330 int events;
1331 struct ucred *active_cred;
1332 struct thread *td;
1333 {
1334 struct pipe *rpipe = fp->f_data;
1335 struct pipe *wpipe;
1336 int revents = 0;
1337 #ifdef MAC
1338 int error;
1339 #endif
1340
1341 wpipe = rpipe->pipe_peer;
1342 PIPE_LOCK(rpipe);
1343 #ifdef MAC
1344 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1345 if (error)
1346 goto locked_error;
1347 #endif
1348 if (events & (POLLIN | POLLRDNORM))
1349 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1350 (rpipe->pipe_buffer.cnt > 0))
1351 revents |= events & (POLLIN | POLLRDNORM);
1352
1353 if (events & (POLLOUT | POLLWRNORM))
1354 if (wpipe->pipe_present != PIPE_ACTIVE ||
1355 (wpipe->pipe_state & PIPE_EOF) ||
1356 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1357 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1358 revents |= events & (POLLOUT | POLLWRNORM);
1359
1360 if ((events & POLLINIGNEOF) == 0) {
1361 if (rpipe->pipe_state & PIPE_EOF) {
1362 revents |= (events & (POLLIN | POLLRDNORM));
1363 if (wpipe->pipe_present != PIPE_ACTIVE ||
1364 (wpipe->pipe_state & PIPE_EOF))
1365 revents |= POLLHUP;
1366 }
1367 }
1368
1369 if (revents == 0) {
1370 if (events & (POLLIN | POLLRDNORM)) {
1371 selrecord(td, &rpipe->pipe_sel);
1372 if (SEL_WAITING(&rpipe->pipe_sel))
1373 rpipe->pipe_state |= PIPE_SEL;
1374 }
1375
1376 if (events & (POLLOUT | POLLWRNORM)) {
1377 selrecord(td, &wpipe->pipe_sel);
1378 if (SEL_WAITING(&wpipe->pipe_sel))
1379 wpipe->pipe_state |= PIPE_SEL;
1380 }
1381 }
1382 #ifdef MAC
1383 locked_error:
1384 #endif
1385 PIPE_UNLOCK(rpipe);
1386
1387 return (revents);
1388 }
1389
1390 /*
1391 * We shouldn't need locks here as we're doing a read and this should
1392 * be a natural race.
1393 */
1394 static int
1395 pipe_stat(fp, ub, active_cred, td)
1396 struct file *fp;
1397 struct stat *ub;
1398 struct ucred *active_cred;
1399 struct thread *td;
1400 {
1401 struct pipe *pipe = fp->f_data;
1402 #ifdef MAC
1403 int error;
1404
1405 PIPE_LOCK(pipe);
1406 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1407 PIPE_UNLOCK(pipe);
1408 if (error)
1409 return (error);
1410 #endif
1411 bzero(ub, sizeof(*ub));
1412 ub->st_mode = S_IFIFO;
1413 ub->st_blksize = PAGE_SIZE;
1414 if (pipe->pipe_state & PIPE_DIRECTW)
1415 ub->st_size = pipe->pipe_map.cnt;
1416 else
1417 ub->st_size = pipe->pipe_buffer.cnt;
1418 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1419 ub->st_atim = pipe->pipe_atime;
1420 ub->st_mtim = pipe->pipe_mtime;
1421 ub->st_ctim = pipe->pipe_ctime;
1422 ub->st_uid = fp->f_cred->cr_uid;
1423 ub->st_gid = fp->f_cred->cr_gid;
1424 ub->st_dev = pipedev_ino;
1425 ub->st_ino = pipe->pipe_ino;
1426 /*
1427 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1428 */
1429 return (0);
1430 }
1431
1432 /* ARGSUSED */
1433 static int
1434 pipe_close(fp, td)
1435 struct file *fp;
1436 struct thread *td;
1437 {
1438 struct pipe *cpipe = fp->f_data;
1439
1440 fp->f_ops = &badfileops;
1441 fp->f_data = NULL;
1442 funsetown(&cpipe->pipe_sigio);
1443 pipeclose(cpipe);
1444 return (0);
1445 }
1446
1447 static void
1448 pipe_free_kmem(cpipe)
1449 struct pipe *cpipe;
1450 {
1451
1452 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1453 ("pipe_free_kmem: pipe mutex locked"));
1454
1455 if (cpipe->pipe_buffer.buffer != NULL) {
1456 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1457 vm_map_remove(pipe_map,
1458 (vm_offset_t)cpipe->pipe_buffer.buffer,
1459 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1460 cpipe->pipe_buffer.buffer = NULL;
1461 }
1462 #ifndef PIPE_NODIRECT
1463 {
1464 cpipe->pipe_map.cnt = 0;
1465 cpipe->pipe_map.pos = 0;
1466 cpipe->pipe_map.npages = 0;
1467 }
1468 #endif
1469 }
1470
1471 /*
1472 * shutdown the pipe
1473 */
1474 static void
1475 pipeclose(cpipe)
1476 struct pipe *cpipe;
1477 {
1478 struct pipepair *pp;
1479 struct pipe *ppipe;
1480 ino_t ino;
1481
1482 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1483
1484 PIPE_LOCK(cpipe);
1485 pipelock(cpipe, 0);
1486 pp = cpipe->pipe_pair;
1487
1488 pipeselwakeup(cpipe);
1489
1490 /*
1491 * If the other side is blocked, wake it up saying that
1492 * we want to close it down.
1493 */
1494 cpipe->pipe_state |= PIPE_EOF;
1495 while (cpipe->pipe_busy) {
1496 wakeup(cpipe);
1497 cpipe->pipe_state |= PIPE_WANT;
1498 pipeunlock(cpipe);
1499 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1500 pipelock(cpipe, 0);
1501 }
1502
1503
1504 /*
1505 * Disconnect from peer, if any.
1506 */
1507 ppipe = cpipe->pipe_peer;
1508 if (ppipe->pipe_present == PIPE_ACTIVE) {
1509 pipeselwakeup(ppipe);
1510
1511 ppipe->pipe_state |= PIPE_EOF;
1512 wakeup(ppipe);
1513 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1514 }
1515
1516 /*
1517 * Mark this endpoint as free. Release kmem resources. We
1518 * don't mark this endpoint as unused until we've finished
1519 * doing that, or the pipe might disappear out from under
1520 * us.
1521 */
1522 PIPE_UNLOCK(cpipe);
1523 pipe_free_kmem(cpipe);
1524 PIPE_LOCK(cpipe);
1525 cpipe->pipe_present = PIPE_CLOSING;
1526 pipeunlock(cpipe);
1527
1528 /*
1529 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1530 * PIPE_FINALIZED, that allows other end to free the
1531 * pipe_pair, only after the knotes are completely dismantled.
1532 */
1533 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1534 cpipe->pipe_present = PIPE_FINALIZED;
1535 seldrain(&cpipe->pipe_sel);
1536 knlist_destroy(&cpipe->pipe_sel.si_note);
1537
1538 /*
1539 * Postpone the destroy of the fake inode number allocated for
1540 * our end, until pipe mtx is unlocked.
1541 */
1542 ino = cpipe->pipe_ino;
1543
1544 /*
1545 * If both endpoints are now closed, release the memory for the
1546 * pipe pair. If not, unlock.
1547 */
1548 if (ppipe->pipe_present == PIPE_FINALIZED) {
1549 PIPE_UNLOCK(cpipe);
1550 #ifdef MAC
1551 mac_pipe_destroy(pp);
1552 #endif
1553 uma_zfree(pipe_zone, cpipe->pipe_pair);
1554 } else
1555 PIPE_UNLOCK(cpipe);
1556
1557 if (ino > 0)
1558 free_unr(pipeino_unr, cpipe->pipe_ino);
1559 }
1560
1561 /*ARGSUSED*/
1562 static int
1563 pipe_kqfilter(struct file *fp, struct knote *kn)
1564 {
1565 struct pipe *cpipe;
1566
1567 cpipe = kn->kn_fp->f_data;
1568 PIPE_LOCK(cpipe);
1569 switch (kn->kn_filter) {
1570 case EVFILT_READ:
1571 kn->kn_fop = &pipe_rfiltops;
1572 break;
1573 case EVFILT_WRITE:
1574 kn->kn_fop = &pipe_wfiltops;
1575 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1576 /* other end of pipe has been closed */
1577 PIPE_UNLOCK(cpipe);
1578 return (EPIPE);
1579 }
1580 cpipe = cpipe->pipe_peer;
1581 break;
1582 default:
1583 PIPE_UNLOCK(cpipe);
1584 return (EINVAL);
1585 }
1586
1587 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1588 PIPE_UNLOCK(cpipe);
1589 return (0);
1590 }
1591
1592 static void
1593 filt_pipedetach(struct knote *kn)
1594 {
1595 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1596
1597 PIPE_LOCK(cpipe);
1598 if (kn->kn_filter == EVFILT_WRITE)
1599 cpipe = cpipe->pipe_peer;
1600 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1601 PIPE_UNLOCK(cpipe);
1602 }
1603
1604 /*ARGSUSED*/
1605 static int
1606 filt_piperead(struct knote *kn, long hint)
1607 {
1608 struct pipe *rpipe = kn->kn_fp->f_data;
1609 struct pipe *wpipe = rpipe->pipe_peer;
1610 int ret;
1611
1612 PIPE_LOCK(rpipe);
1613 kn->kn_data = rpipe->pipe_buffer.cnt;
1614 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1615 kn->kn_data = rpipe->pipe_map.cnt;
1616
1617 if ((rpipe->pipe_state & PIPE_EOF) ||
1618 wpipe->pipe_present != PIPE_ACTIVE ||
1619 (wpipe->pipe_state & PIPE_EOF)) {
1620 kn->kn_flags |= EV_EOF;
1621 PIPE_UNLOCK(rpipe);
1622 return (1);
1623 }
1624 ret = kn->kn_data > 0;
1625 PIPE_UNLOCK(rpipe);
1626 return ret;
1627 }
1628
1629 /*ARGSUSED*/
1630 static int
1631 filt_pipewrite(struct knote *kn, long hint)
1632 {
1633 struct pipe *rpipe = kn->kn_fp->f_data;
1634 struct pipe *wpipe = rpipe->pipe_peer;
1635
1636 PIPE_LOCK(rpipe);
1637 if (wpipe->pipe_present != PIPE_ACTIVE ||
1638 (wpipe->pipe_state & PIPE_EOF)) {
1639 kn->kn_data = 0;
1640 kn->kn_flags |= EV_EOF;
1641 PIPE_UNLOCK(rpipe);
1642 return (1);
1643 }
1644 kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1645 if (wpipe->pipe_state & PIPE_DIRECTW)
1646 kn->kn_data = 0;
1647
1648 PIPE_UNLOCK(rpipe);
1649 return (kn->kn_data >= PIPE_BUF);
1650 }
Cache object: eec50b2cb7e91fe827e98cdf35a03623
|