FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_pipe.c
1 /*-
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 * John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 * are met.
18 */
19
20 /*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27 /*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode. The small write mode acts like conventional pipes with
30 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, the sending process pins the underlying pages in
33 * memory, and the receiving process copies directly from these pinned pages
34 * in the sending process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side. In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer. Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map. This value is normally
52 * autotuned, but may also be loader tuned.
53 *
54 * kern.ipc.pipekva - This read-only sysctl tracks the current amount of
55 * memory in use by pipes.
56 *
57 * Based on how large pipekva is relative to maxpipekva, the following
58 * will happen:
59 *
60 * 0% - 50%:
61 * New pipes are given 16K of memory backing, pipes may dynamically
62 * grow to as large as 64K where needed.
63 * 50% - 75%:
64 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
65 * existing pipes may NOT grow.
66 * 75% - 100%:
67 * New pipes are given 4K (or PAGE_SIZE) of memory backing,
68 * existing pipes will be shrunk down to 4K whenever possible.
69 *
70 * Resizing may be disabled by setting kern.ipc.piperesizeallowed=0. If
71 * that is set, the only resize that will occur is the 0 -> SMALL_PIPE_SIZE
72 * resize which MUST occur for reverse-direction pipes when they are
73 * first used.
74 *
75 * Additional information about the current state of pipes may be obtained
76 * from kern.ipc.pipes, kern.ipc.pipefragretry, kern.ipc.pipeallocfail,
77 * and kern.ipc.piperesizefail.
78 *
79 * Locking rules: There are two locks present here: A mutex, used via
80 * PIPE_LOCK, and a flag, used via pipelock(). All locking is done via
81 * the flag, as mutexes can not persist over uiomove. The mutex
82 * exists only to guard access to the flag, and is not in itself a
83 * locking mechanism. Also note that there is only a single mutex for
84 * both directions of a pipe.
85 *
86 * As pipelock() may have to sleep before it can acquire the flag, it
87 * is important to reread all data after a call to pipelock(); everything
88 * in the structure may have changed.
89 */
90
91 #include <sys/cdefs.h>
92 __FBSDID("$FreeBSD$");
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/conf.h>
97 #include <sys/fcntl.h>
98 #include <sys/file.h>
99 #include <sys/filedesc.h>
100 #include <sys/filio.h>
101 #include <sys/kernel.h>
102 #include <sys/lock.h>
103 #include <sys/mutex.h>
104 #include <sys/ttycom.h>
105 #include <sys/stat.h>
106 #include <sys/malloc.h>
107 #include <sys/poll.h>
108 #include <sys/selinfo.h>
109 #include <sys/signalvar.h>
110 #include <sys/syscallsubr.h>
111 #include <sys/sysctl.h>
112 #include <sys/sysproto.h>
113 #include <sys/pipe.h>
114 #include <sys/proc.h>
115 #include <sys/vnode.h>
116 #include <sys/uio.h>
117 #include <sys/event.h>
118
119 #include <security/mac/mac_framework.h>
120
121 #include <vm/vm.h>
122 #include <vm/vm_param.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_kern.h>
125 #include <vm/vm_extern.h>
126 #include <vm/pmap.h>
127 #include <vm/vm_map.h>
128 #include <vm/vm_page.h>
129 #include <vm/uma.h>
130
131 /* XXX */
132 int do_pipe(struct thread *td, int fildes[2], int flags);
133
134 /*
135 * Use this define if you want to disable *fancy* VM things. Expect an
136 * approx 30% decrease in transfer rate. This could be useful for
137 * NetBSD or OpenBSD.
138 */
139 /* #define PIPE_NODIRECT */
140
141 /*
142 * interfaces to the outside world
143 */
144 static fo_rdwr_t pipe_read;
145 static fo_rdwr_t pipe_write;
146 static fo_truncate_t pipe_truncate;
147 static fo_ioctl_t pipe_ioctl;
148 static fo_poll_t pipe_poll;
149 static fo_kqfilter_t pipe_kqfilter;
150 static fo_stat_t pipe_stat;
151 static fo_close_t pipe_close;
152
153 static struct fileops pipeops = {
154 .fo_read = pipe_read,
155 .fo_write = pipe_write,
156 .fo_truncate = pipe_truncate,
157 .fo_ioctl = pipe_ioctl,
158 .fo_poll = pipe_poll,
159 .fo_kqfilter = pipe_kqfilter,
160 .fo_stat = pipe_stat,
161 .fo_close = pipe_close,
162 .fo_chmod = invfo_chmod,
163 .fo_chown = invfo_chown,
164 .fo_flags = DFLAG_PASSABLE
165 };
166
167 static void filt_pipedetach(struct knote *kn);
168 static int filt_piperead(struct knote *kn, long hint);
169 static int filt_pipewrite(struct knote *kn, long hint);
170
171 static struct filterops pipe_rfiltops = {
172 .f_isfd = 1,
173 .f_detach = filt_pipedetach,
174 .f_event = filt_piperead
175 };
176 static struct filterops pipe_wfiltops = {
177 .f_isfd = 1,
178 .f_detach = filt_pipedetach,
179 .f_event = filt_pipewrite
180 };
181
182 /*
183 * Default pipe buffer size(s), this can be kind-of large now because pipe
184 * space is pageable. The pipe code will try to maintain locality of
185 * reference for performance reasons, so small amounts of outstanding I/O
186 * will not wipe the cache.
187 */
188 #define MINPIPESIZE (PIPE_SIZE/3)
189 #define MAXPIPESIZE (2*PIPE_SIZE/3)
190
191 static long amountpipekva;
192 static int pipefragretry;
193 static int pipeallocfail;
194 static int piperesizefail;
195 static int piperesizeallowed = 1;
196
197 SYSCTL_LONG(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
198 &maxpipekva, 0, "Pipe KVA limit");
199 SYSCTL_LONG(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
200 &amountpipekva, 0, "Pipe KVA usage");
201 SYSCTL_INT(_kern_ipc, OID_AUTO, pipefragretry, CTLFLAG_RD,
202 &pipefragretry, 0, "Pipe allocation retries due to fragmentation");
203 SYSCTL_INT(_kern_ipc, OID_AUTO, pipeallocfail, CTLFLAG_RD,
204 &pipeallocfail, 0, "Pipe allocation failures");
205 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizefail, CTLFLAG_RD,
206 &piperesizefail, 0, "Pipe resize failures");
207 SYSCTL_INT(_kern_ipc, OID_AUTO, piperesizeallowed, CTLFLAG_RW,
208 &piperesizeallowed, 0, "Pipe resizing allowed");
209
210 static void pipeinit(void *dummy __unused);
211 static void pipeclose(struct pipe *cpipe);
212 static void pipe_free_kmem(struct pipe *cpipe);
213 static int pipe_create(struct pipe *pipe, int backing);
214 static __inline int pipelock(struct pipe *cpipe, int catch);
215 static __inline void pipeunlock(struct pipe *cpipe);
216 static __inline void pipeselwakeup(struct pipe *cpipe);
217 #ifndef PIPE_NODIRECT
218 static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
219 static void pipe_destroy_write_buffer(struct pipe *wpipe);
220 static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
221 static void pipe_clone_write_buffer(struct pipe *wpipe);
222 #endif
223 static int pipespace(struct pipe *cpipe, int size);
224 static int pipespace_new(struct pipe *cpipe, int size);
225
226 static int pipe_zone_ctor(void *mem, int size, void *arg, int flags);
227 static int pipe_zone_init(void *mem, int size, int flags);
228 static void pipe_zone_fini(void *mem, int size);
229
230 static uma_zone_t pipe_zone;
231 static struct unrhdr *pipeino_unr;
232 static dev_t pipedev_ino;
233
234 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
235
236 static void
237 pipeinit(void *dummy __unused)
238 {
239
240 pipe_zone = uma_zcreate("pipe", sizeof(struct pipepair),
241 pipe_zone_ctor, NULL, pipe_zone_init, pipe_zone_fini,
242 UMA_ALIGN_PTR, 0);
243 KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
244 pipeino_unr = new_unrhdr(1, INT32_MAX, NULL);
245 KASSERT(pipeino_unr != NULL, ("pipe fake inodes not initialized"));
246 pipedev_ino = devfs_alloc_cdp_inode();
247 KASSERT(pipedev_ino > 0, ("pipe dev inode not initialized"));
248 }
249
250 static int
251 pipe_zone_ctor(void *mem, int size, void *arg, int flags)
252 {
253 struct pipepair *pp;
254 struct pipe *rpipe, *wpipe;
255
256 KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
257
258 pp = (struct pipepair *)mem;
259
260 /*
261 * We zero both pipe endpoints to make sure all the kmem pointers
262 * are NULL, flag fields are zero'd, etc. We timestamp both
263 * endpoints with the same time.
264 */
265 rpipe = &pp->pp_rpipe;
266 bzero(rpipe, sizeof(*rpipe));
267 vfs_timestamp(&rpipe->pipe_ctime);
268 rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
269
270 wpipe = &pp->pp_wpipe;
271 bzero(wpipe, sizeof(*wpipe));
272 wpipe->pipe_ctime = rpipe->pipe_ctime;
273 wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
274
275 rpipe->pipe_peer = wpipe;
276 rpipe->pipe_pair = pp;
277 wpipe->pipe_peer = rpipe;
278 wpipe->pipe_pair = pp;
279
280 /*
281 * Mark both endpoints as present; they will later get free'd
282 * one at a time. When both are free'd, then the whole pair
283 * is released.
284 */
285 rpipe->pipe_present = PIPE_ACTIVE;
286 wpipe->pipe_present = PIPE_ACTIVE;
287
288 /*
289 * Eventually, the MAC Framework may initialize the label
290 * in ctor or init, but for now we do it elswhere to avoid
291 * blocking in ctor or init.
292 */
293 pp->pp_label = NULL;
294
295 return (0);
296 }
297
298 static int
299 pipe_zone_init(void *mem, int size, int flags)
300 {
301 struct pipepair *pp;
302
303 KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
304
305 pp = (struct pipepair *)mem;
306
307 mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
308 return (0);
309 }
310
311 static void
312 pipe_zone_fini(void *mem, int size)
313 {
314 struct pipepair *pp;
315
316 KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
317
318 pp = (struct pipepair *)mem;
319
320 mtx_destroy(&pp->pp_mtx);
321 }
322
323 /*
324 * The pipe system call for the DTYPE_PIPE type of pipes. If we fail, let
325 * the zone pick up the pieces via pipeclose().
326 */
327 int
328 kern_pipe(struct thread *td, int fildes[2])
329 {
330
331 return (do_pipe(td, fildes, 0));
332 }
333
334 int
335 do_pipe(struct thread *td, int fildes[2], int flags)
336 {
337 struct filedesc *fdp = td->td_proc->p_fd;
338 struct file *rf, *wf;
339 struct pipepair *pp;
340 struct pipe *rpipe, *wpipe;
341 int fd, fflags, error;
342
343 pp = uma_zalloc(pipe_zone, M_WAITOK);
344 #ifdef MAC
345 /*
346 * The MAC label is shared between the connected endpoints. As a
347 * result mac_pipe_init() and mac_pipe_create() are called once
348 * for the pair, and not on the endpoints.
349 */
350 mac_pipe_init(pp);
351 mac_pipe_create(td->td_ucred, pp);
352 #endif
353 rpipe = &pp->pp_rpipe;
354 wpipe = &pp->pp_wpipe;
355
356 knlist_init_mtx(&rpipe->pipe_sel.si_note, PIPE_MTX(rpipe));
357 knlist_init_mtx(&wpipe->pipe_sel.si_note, PIPE_MTX(wpipe));
358
359 /* Only the forward direction pipe is backed by default */
360 if ((error = pipe_create(rpipe, 1)) != 0 ||
361 (error = pipe_create(wpipe, 0)) != 0) {
362 pipeclose(rpipe);
363 pipeclose(wpipe);
364 return (error);
365 }
366
367 rpipe->pipe_state |= PIPE_DIRECTOK;
368 wpipe->pipe_state |= PIPE_DIRECTOK;
369
370 error = falloc(td, &rf, &fd, flags);
371 if (error) {
372 pipeclose(rpipe);
373 pipeclose(wpipe);
374 return (error);
375 }
376 /* An extra reference on `rf' has been held for us by falloc(). */
377 fildes[0] = fd;
378
379 fflags = FREAD | FWRITE;
380 if ((flags & O_NONBLOCK) != 0)
381 fflags |= FNONBLOCK;
382
383 /*
384 * Warning: once we've gotten past allocation of the fd for the
385 * read-side, we can only drop the read side via fdrop() in order
386 * to avoid races against processes which manage to dup() the read
387 * side while we are blocked trying to allocate the write side.
388 */
389 finit(rf, fflags, DTYPE_PIPE, rpipe, &pipeops);
390 error = falloc(td, &wf, &fd, flags);
391 if (error) {
392 fdclose(fdp, rf, fildes[0], td);
393 fdrop(rf, td);
394 /* rpipe has been closed by fdrop(). */
395 pipeclose(wpipe);
396 return (error);
397 }
398 /* An extra reference on `wf' has been held for us by falloc(). */
399 finit(wf, fflags, DTYPE_PIPE, wpipe, &pipeops);
400 fdrop(wf, td);
401 fildes[1] = fd;
402 fdrop(rf, td);
403
404 return (0);
405 }
406
407 /* ARGSUSED */
408 int
409 sys_pipe(struct thread *td, struct pipe_args *uap)
410 {
411 int error;
412 int fildes[2];
413
414 error = kern_pipe(td, fildes);
415 if (error)
416 return (error);
417
418 td->td_retval[0] = fildes[0];
419 td->td_retval[1] = fildes[1];
420
421 return (0);
422 }
423
424 /*
425 * Allocate kva for pipe circular buffer, the space is pageable
426 * This routine will 'realloc' the size of a pipe safely, if it fails
427 * it will retain the old buffer.
428 * If it fails it will return ENOMEM.
429 */
430 static int
431 pipespace_new(cpipe, size)
432 struct pipe *cpipe;
433 int size;
434 {
435 caddr_t buffer;
436 int error, cnt, firstseg;
437 static int curfail = 0;
438 static struct timeval lastfail;
439
440 KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
441 KASSERT(!(cpipe->pipe_state & PIPE_DIRECTW),
442 ("pipespace: resize of direct writes not allowed"));
443 retry:
444 cnt = cpipe->pipe_buffer.cnt;
445 if (cnt > size)
446 size = cnt;
447
448 size = round_page(size);
449 buffer = (caddr_t) vm_map_min(pipe_map);
450
451 error = vm_map_find(pipe_map, NULL, 0,
452 (vm_offset_t *) &buffer, size, 1,
453 VM_PROT_ALL, VM_PROT_ALL, 0);
454 if (error != KERN_SUCCESS) {
455 if ((cpipe->pipe_buffer.buffer == NULL) &&
456 (size > SMALL_PIPE_SIZE)) {
457 size = SMALL_PIPE_SIZE;
458 pipefragretry++;
459 goto retry;
460 }
461 if (cpipe->pipe_buffer.buffer == NULL) {
462 pipeallocfail++;
463 if (ppsratecheck(&lastfail, &curfail, 1))
464 printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
465 } else {
466 piperesizefail++;
467 }
468 return (ENOMEM);
469 }
470
471 /* copy data, then free old resources if we're resizing */
472 if (cnt > 0) {
473 if (cpipe->pipe_buffer.in <= cpipe->pipe_buffer.out) {
474 firstseg = cpipe->pipe_buffer.size - cpipe->pipe_buffer.out;
475 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
476 buffer, firstseg);
477 if ((cnt - firstseg) > 0)
478 bcopy(cpipe->pipe_buffer.buffer, &buffer[firstseg],
479 cpipe->pipe_buffer.in);
480 } else {
481 bcopy(&cpipe->pipe_buffer.buffer[cpipe->pipe_buffer.out],
482 buffer, cnt);
483 }
484 }
485 pipe_free_kmem(cpipe);
486 cpipe->pipe_buffer.buffer = buffer;
487 cpipe->pipe_buffer.size = size;
488 cpipe->pipe_buffer.in = cnt;
489 cpipe->pipe_buffer.out = 0;
490 cpipe->pipe_buffer.cnt = cnt;
491 atomic_add_long(&amountpipekva, cpipe->pipe_buffer.size);
492 return (0);
493 }
494
495 /*
496 * Wrapper for pipespace_new() that performs locking assertions.
497 */
498 static int
499 pipespace(cpipe, size)
500 struct pipe *cpipe;
501 int size;
502 {
503
504 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
505 ("Unlocked pipe passed to pipespace"));
506 return (pipespace_new(cpipe, size));
507 }
508
509 /*
510 * lock a pipe for I/O, blocking other access
511 */
512 static __inline int
513 pipelock(cpipe, catch)
514 struct pipe *cpipe;
515 int catch;
516 {
517 int error;
518
519 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
520 while (cpipe->pipe_state & PIPE_LOCKFL) {
521 cpipe->pipe_state |= PIPE_LWANT;
522 error = msleep(cpipe, PIPE_MTX(cpipe),
523 catch ? (PRIBIO | PCATCH) : PRIBIO,
524 "pipelk", 0);
525 if (error != 0)
526 return (error);
527 }
528 cpipe->pipe_state |= PIPE_LOCKFL;
529 return (0);
530 }
531
532 /*
533 * unlock a pipe I/O lock
534 */
535 static __inline void
536 pipeunlock(cpipe)
537 struct pipe *cpipe;
538 {
539
540 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
541 KASSERT(cpipe->pipe_state & PIPE_LOCKFL,
542 ("Unlocked pipe passed to pipeunlock"));
543 cpipe->pipe_state &= ~PIPE_LOCKFL;
544 if (cpipe->pipe_state & PIPE_LWANT) {
545 cpipe->pipe_state &= ~PIPE_LWANT;
546 wakeup(cpipe);
547 }
548 }
549
550 static __inline void
551 pipeselwakeup(cpipe)
552 struct pipe *cpipe;
553 {
554
555 PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
556 if (cpipe->pipe_state & PIPE_SEL) {
557 selwakeuppri(&cpipe->pipe_sel, PSOCK);
558 if (!SEL_WAITING(&cpipe->pipe_sel))
559 cpipe->pipe_state &= ~PIPE_SEL;
560 }
561 if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
562 pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
563 KNOTE_LOCKED(&cpipe->pipe_sel.si_note, 0);
564 }
565
566 /*
567 * Initialize and allocate VM and memory for pipe. The structure
568 * will start out zero'd from the ctor, so we just manage the kmem.
569 */
570 static int
571 pipe_create(pipe, backing)
572 struct pipe *pipe;
573 int backing;
574 {
575 int error;
576
577 if (backing) {
578 if (amountpipekva > maxpipekva / 2)
579 error = pipespace_new(pipe, SMALL_PIPE_SIZE);
580 else
581 error = pipespace_new(pipe, PIPE_SIZE);
582 } else {
583 /* If we're not backing this pipe, no need to do anything. */
584 error = 0;
585 }
586 pipe->pipe_ino = -1;
587 return (error);
588 }
589
590 /* ARGSUSED */
591 static int
592 pipe_read(fp, uio, active_cred, flags, td)
593 struct file *fp;
594 struct uio *uio;
595 struct ucred *active_cred;
596 struct thread *td;
597 int flags;
598 {
599 struct pipe *rpipe = fp->f_data;
600 int error;
601 int nread = 0;
602 int size;
603
604 PIPE_LOCK(rpipe);
605 ++rpipe->pipe_busy;
606 error = pipelock(rpipe, 1);
607 if (error)
608 goto unlocked_error;
609
610 #ifdef MAC
611 error = mac_pipe_check_read(active_cred, rpipe->pipe_pair);
612 if (error)
613 goto locked_error;
614 #endif
615 if (amountpipekva > (3 * maxpipekva) / 4) {
616 if (!(rpipe->pipe_state & PIPE_DIRECTW) &&
617 (rpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
618 (rpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
619 (piperesizeallowed == 1)) {
620 PIPE_UNLOCK(rpipe);
621 pipespace(rpipe, SMALL_PIPE_SIZE);
622 PIPE_LOCK(rpipe);
623 }
624 }
625
626 while (uio->uio_resid) {
627 /*
628 * normal pipe buffer receive
629 */
630 if (rpipe->pipe_buffer.cnt > 0) {
631 size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
632 if (size > rpipe->pipe_buffer.cnt)
633 size = rpipe->pipe_buffer.cnt;
634 if (size > uio->uio_resid)
635 size = uio->uio_resid;
636
637 PIPE_UNLOCK(rpipe);
638 error = uiomove(
639 &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
640 size, uio);
641 PIPE_LOCK(rpipe);
642 if (error)
643 break;
644
645 rpipe->pipe_buffer.out += size;
646 if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
647 rpipe->pipe_buffer.out = 0;
648
649 rpipe->pipe_buffer.cnt -= size;
650
651 /*
652 * If there is no more to read in the pipe, reset
653 * its pointers to the beginning. This improves
654 * cache hit stats.
655 */
656 if (rpipe->pipe_buffer.cnt == 0) {
657 rpipe->pipe_buffer.in = 0;
658 rpipe->pipe_buffer.out = 0;
659 }
660 nread += size;
661 #ifndef PIPE_NODIRECT
662 /*
663 * Direct copy, bypassing a kernel buffer.
664 */
665 } else if ((size = rpipe->pipe_map.cnt) &&
666 (rpipe->pipe_state & PIPE_DIRECTW)) {
667 if (size > uio->uio_resid)
668 size = (u_int) uio->uio_resid;
669
670 PIPE_UNLOCK(rpipe);
671 error = uiomove_fromphys(rpipe->pipe_map.ms,
672 rpipe->pipe_map.pos, size, uio);
673 PIPE_LOCK(rpipe);
674 if (error)
675 break;
676 nread += size;
677 rpipe->pipe_map.pos += size;
678 rpipe->pipe_map.cnt -= size;
679 if (rpipe->pipe_map.cnt == 0) {
680 rpipe->pipe_state &= ~PIPE_DIRECTW;
681 wakeup(rpipe);
682 }
683 #endif
684 } else {
685 /*
686 * detect EOF condition
687 * read returns 0 on EOF, no need to set error
688 */
689 if (rpipe->pipe_state & PIPE_EOF)
690 break;
691
692 /*
693 * If the "write-side" has been blocked, wake it up now.
694 */
695 if (rpipe->pipe_state & PIPE_WANTW) {
696 rpipe->pipe_state &= ~PIPE_WANTW;
697 wakeup(rpipe);
698 }
699
700 /*
701 * Break if some data was read.
702 */
703 if (nread > 0)
704 break;
705
706 /*
707 * Unlock the pipe buffer for our remaining processing.
708 * We will either break out with an error or we will
709 * sleep and relock to loop.
710 */
711 pipeunlock(rpipe);
712
713 /*
714 * Handle non-blocking mode operation or
715 * wait for more data.
716 */
717 if (fp->f_flag & FNONBLOCK) {
718 error = EAGAIN;
719 } else {
720 rpipe->pipe_state |= PIPE_WANTR;
721 if ((error = msleep(rpipe, PIPE_MTX(rpipe),
722 PRIBIO | PCATCH,
723 "piperd", 0)) == 0)
724 error = pipelock(rpipe, 1);
725 }
726 if (error)
727 goto unlocked_error;
728 }
729 }
730 #ifdef MAC
731 locked_error:
732 #endif
733 pipeunlock(rpipe);
734
735 /* XXX: should probably do this before getting any locks. */
736 if (error == 0)
737 vfs_timestamp(&rpipe->pipe_atime);
738 unlocked_error:
739 --rpipe->pipe_busy;
740
741 /*
742 * PIPE_WANT processing only makes sense if pipe_busy is 0.
743 */
744 if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
745 rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
746 wakeup(rpipe);
747 } else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
748 /*
749 * Handle write blocking hysteresis.
750 */
751 if (rpipe->pipe_state & PIPE_WANTW) {
752 rpipe->pipe_state &= ~PIPE_WANTW;
753 wakeup(rpipe);
754 }
755 }
756
757 if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
758 pipeselwakeup(rpipe);
759
760 PIPE_UNLOCK(rpipe);
761 return (error);
762 }
763
764 #ifndef PIPE_NODIRECT
765 /*
766 * Map the sending processes' buffer into kernel space and wire it.
767 * This is similar to a physical write operation.
768 */
769 static int
770 pipe_build_write_buffer(wpipe, uio)
771 struct pipe *wpipe;
772 struct uio *uio;
773 {
774 u_int size;
775 int i;
776
777 PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
778 KASSERT(wpipe->pipe_state & PIPE_DIRECTW,
779 ("Clone attempt on non-direct write pipe!"));
780
781 if (uio->uio_iov->iov_len > wpipe->pipe_buffer.size)
782 size = wpipe->pipe_buffer.size;
783 else
784 size = uio->uio_iov->iov_len;
785
786 if ((i = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
787 (vm_offset_t)uio->uio_iov->iov_base, size, VM_PROT_READ,
788 wpipe->pipe_map.ms, PIPENPAGES)) < 0)
789 return (EFAULT);
790
791 /*
792 * set up the control block
793 */
794 wpipe->pipe_map.npages = i;
795 wpipe->pipe_map.pos =
796 ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
797 wpipe->pipe_map.cnt = size;
798
799 /*
800 * and update the uio data
801 */
802
803 uio->uio_iov->iov_len -= size;
804 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
805 if (uio->uio_iov->iov_len == 0)
806 uio->uio_iov++;
807 uio->uio_resid -= size;
808 uio->uio_offset += size;
809 return (0);
810 }
811
812 /*
813 * unmap and unwire the process buffer
814 */
815 static void
816 pipe_destroy_write_buffer(wpipe)
817 struct pipe *wpipe;
818 {
819
820 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
821 vm_page_unhold_pages(wpipe->pipe_map.ms, wpipe->pipe_map.npages);
822 wpipe->pipe_map.npages = 0;
823 }
824
825 /*
826 * In the case of a signal, the writing process might go away. This
827 * code copies the data into the circular buffer so that the source
828 * pages can be freed without loss of data.
829 */
830 static void
831 pipe_clone_write_buffer(wpipe)
832 struct pipe *wpipe;
833 {
834 struct uio uio;
835 struct iovec iov;
836 int size;
837 int pos;
838
839 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
840 size = wpipe->pipe_map.cnt;
841 pos = wpipe->pipe_map.pos;
842
843 wpipe->pipe_buffer.in = size;
844 wpipe->pipe_buffer.out = 0;
845 wpipe->pipe_buffer.cnt = size;
846 wpipe->pipe_state &= ~PIPE_DIRECTW;
847
848 PIPE_UNLOCK(wpipe);
849 iov.iov_base = wpipe->pipe_buffer.buffer;
850 iov.iov_len = size;
851 uio.uio_iov = &iov;
852 uio.uio_iovcnt = 1;
853 uio.uio_offset = 0;
854 uio.uio_resid = size;
855 uio.uio_segflg = UIO_SYSSPACE;
856 uio.uio_rw = UIO_READ;
857 uio.uio_td = curthread;
858 uiomove_fromphys(wpipe->pipe_map.ms, pos, size, &uio);
859 PIPE_LOCK(wpipe);
860 pipe_destroy_write_buffer(wpipe);
861 }
862
863 /*
864 * This implements the pipe buffer write mechanism. Note that only
865 * a direct write OR a normal pipe write can be pending at any given time.
866 * If there are any characters in the pipe buffer, the direct write will
867 * be deferred until the receiving process grabs all of the bytes from
868 * the pipe buffer. Then the direct mapping write is set-up.
869 */
870 static int
871 pipe_direct_write(wpipe, uio)
872 struct pipe *wpipe;
873 struct uio *uio;
874 {
875 int error;
876
877 retry:
878 PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
879 error = pipelock(wpipe, 1);
880 if (wpipe->pipe_state & PIPE_EOF)
881 error = EPIPE;
882 if (error) {
883 pipeunlock(wpipe);
884 goto error1;
885 }
886 while (wpipe->pipe_state & PIPE_DIRECTW) {
887 if (wpipe->pipe_state & PIPE_WANTR) {
888 wpipe->pipe_state &= ~PIPE_WANTR;
889 wakeup(wpipe);
890 }
891 pipeselwakeup(wpipe);
892 wpipe->pipe_state |= PIPE_WANTW;
893 pipeunlock(wpipe);
894 error = msleep(wpipe, PIPE_MTX(wpipe),
895 PRIBIO | PCATCH, "pipdww", 0);
896 if (error)
897 goto error1;
898 else
899 goto retry;
900 }
901 wpipe->pipe_map.cnt = 0; /* transfer not ready yet */
902 if (wpipe->pipe_buffer.cnt > 0) {
903 if (wpipe->pipe_state & PIPE_WANTR) {
904 wpipe->pipe_state &= ~PIPE_WANTR;
905 wakeup(wpipe);
906 }
907 pipeselwakeup(wpipe);
908 wpipe->pipe_state |= PIPE_WANTW;
909 pipeunlock(wpipe);
910 error = msleep(wpipe, PIPE_MTX(wpipe),
911 PRIBIO | PCATCH, "pipdwc", 0);
912 if (error)
913 goto error1;
914 else
915 goto retry;
916 }
917
918 wpipe->pipe_state |= PIPE_DIRECTW;
919
920 PIPE_UNLOCK(wpipe);
921 error = pipe_build_write_buffer(wpipe, uio);
922 PIPE_LOCK(wpipe);
923 if (error) {
924 wpipe->pipe_state &= ~PIPE_DIRECTW;
925 pipeunlock(wpipe);
926 goto error1;
927 }
928
929 error = 0;
930 while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
931 if (wpipe->pipe_state & PIPE_EOF) {
932 pipe_destroy_write_buffer(wpipe);
933 pipeselwakeup(wpipe);
934 pipeunlock(wpipe);
935 error = EPIPE;
936 goto error1;
937 }
938 if (wpipe->pipe_state & PIPE_WANTR) {
939 wpipe->pipe_state &= ~PIPE_WANTR;
940 wakeup(wpipe);
941 }
942 pipeselwakeup(wpipe);
943 pipeunlock(wpipe);
944 error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
945 "pipdwt", 0);
946 pipelock(wpipe, 0);
947 }
948
949 if (wpipe->pipe_state & PIPE_EOF)
950 error = EPIPE;
951 if (wpipe->pipe_state & PIPE_DIRECTW) {
952 /*
953 * this bit of trickery substitutes a kernel buffer for
954 * the process that might be going away.
955 */
956 pipe_clone_write_buffer(wpipe);
957 } else {
958 pipe_destroy_write_buffer(wpipe);
959 }
960 pipeunlock(wpipe);
961 return (error);
962
963 error1:
964 wakeup(wpipe);
965 return (error);
966 }
967 #endif
968
969 static int
970 pipe_write(fp, uio, active_cred, flags, td)
971 struct file *fp;
972 struct uio *uio;
973 struct ucred *active_cred;
974 struct thread *td;
975 int flags;
976 {
977 int error = 0;
978 int desiredsize;
979 ssize_t orig_resid;
980 struct pipe *wpipe, *rpipe;
981
982 rpipe = fp->f_data;
983 wpipe = rpipe->pipe_peer;
984
985 PIPE_LOCK(rpipe);
986 error = pipelock(wpipe, 1);
987 if (error) {
988 PIPE_UNLOCK(rpipe);
989 return (error);
990 }
991 /*
992 * detect loss of pipe read side, issue SIGPIPE if lost.
993 */
994 if (wpipe->pipe_present != PIPE_ACTIVE ||
995 (wpipe->pipe_state & PIPE_EOF)) {
996 pipeunlock(wpipe);
997 PIPE_UNLOCK(rpipe);
998 return (EPIPE);
999 }
1000 #ifdef MAC
1001 error = mac_pipe_check_write(active_cred, wpipe->pipe_pair);
1002 if (error) {
1003 pipeunlock(wpipe);
1004 PIPE_UNLOCK(rpipe);
1005 return (error);
1006 }
1007 #endif
1008 ++wpipe->pipe_busy;
1009
1010 /* Choose a larger size if it's advantageous */
1011 desiredsize = max(SMALL_PIPE_SIZE, wpipe->pipe_buffer.size);
1012 while (desiredsize < wpipe->pipe_buffer.cnt + uio->uio_resid) {
1013 if (piperesizeallowed != 1)
1014 break;
1015 if (amountpipekva > maxpipekva / 2)
1016 break;
1017 if (desiredsize == BIG_PIPE_SIZE)
1018 break;
1019 desiredsize = desiredsize * 2;
1020 }
1021
1022 /* Choose a smaller size if we're in a OOM situation */
1023 if ((amountpipekva > (3 * maxpipekva) / 4) &&
1024 (wpipe->pipe_buffer.size > SMALL_PIPE_SIZE) &&
1025 (wpipe->pipe_buffer.cnt <= SMALL_PIPE_SIZE) &&
1026 (piperesizeallowed == 1))
1027 desiredsize = SMALL_PIPE_SIZE;
1028
1029 /* Resize if the above determined that a new size was necessary */
1030 if ((desiredsize != wpipe->pipe_buffer.size) &&
1031 ((wpipe->pipe_state & PIPE_DIRECTW) == 0)) {
1032 PIPE_UNLOCK(wpipe);
1033 pipespace(wpipe, desiredsize);
1034 PIPE_LOCK(wpipe);
1035 }
1036 if (wpipe->pipe_buffer.size == 0) {
1037 /*
1038 * This can only happen for reverse direction use of pipes
1039 * in a complete OOM situation.
1040 */
1041 error = ENOMEM;
1042 --wpipe->pipe_busy;
1043 pipeunlock(wpipe);
1044 PIPE_UNLOCK(wpipe);
1045 return (error);
1046 }
1047
1048 pipeunlock(wpipe);
1049
1050 orig_resid = uio->uio_resid;
1051
1052 while (uio->uio_resid) {
1053 int space;
1054
1055 pipelock(wpipe, 0);
1056 if (wpipe->pipe_state & PIPE_EOF) {
1057 pipeunlock(wpipe);
1058 error = EPIPE;
1059 break;
1060 }
1061 #ifndef PIPE_NODIRECT
1062 /*
1063 * If the transfer is large, we can gain performance if
1064 * we do process-to-process copies directly.
1065 * If the write is non-blocking, we don't use the
1066 * direct write mechanism.
1067 *
1068 * The direct write mechanism will detect the reader going
1069 * away on us.
1070 */
1071 if (uio->uio_segflg == UIO_USERSPACE &&
1072 uio->uio_iov->iov_len >= PIPE_MINDIRECT &&
1073 wpipe->pipe_buffer.size >= PIPE_MINDIRECT &&
1074 (fp->f_flag & FNONBLOCK) == 0) {
1075 pipeunlock(wpipe);
1076 error = pipe_direct_write(wpipe, uio);
1077 if (error)
1078 break;
1079 continue;
1080 }
1081 #endif
1082
1083 /*
1084 * Pipe buffered writes cannot be coincidental with
1085 * direct writes. We wait until the currently executing
1086 * direct write is completed before we start filling the
1087 * pipe buffer. We break out if a signal occurs or the
1088 * reader goes away.
1089 */
1090 if (wpipe->pipe_state & PIPE_DIRECTW) {
1091 if (wpipe->pipe_state & PIPE_WANTR) {
1092 wpipe->pipe_state &= ~PIPE_WANTR;
1093 wakeup(wpipe);
1094 }
1095 pipeselwakeup(wpipe);
1096 wpipe->pipe_state |= PIPE_WANTW;
1097 pipeunlock(wpipe);
1098 error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1099 "pipbww", 0);
1100 if (error)
1101 break;
1102 else
1103 continue;
1104 }
1105
1106 space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1107
1108 /* Writes of size <= PIPE_BUF must be atomic. */
1109 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1110 space = 0;
1111
1112 if (space > 0) {
1113 int size; /* Transfer size */
1114 int segsize; /* first segment to transfer */
1115
1116 /*
1117 * Transfer size is minimum of uio transfer
1118 * and free space in pipe buffer.
1119 */
1120 if (space > uio->uio_resid)
1121 size = uio->uio_resid;
1122 else
1123 size = space;
1124 /*
1125 * First segment to transfer is minimum of
1126 * transfer size and contiguous space in
1127 * pipe buffer. If first segment to transfer
1128 * is less than the transfer size, we've got
1129 * a wraparound in the buffer.
1130 */
1131 segsize = wpipe->pipe_buffer.size -
1132 wpipe->pipe_buffer.in;
1133 if (segsize > size)
1134 segsize = size;
1135
1136 /* Transfer first segment */
1137
1138 PIPE_UNLOCK(rpipe);
1139 error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1140 segsize, uio);
1141 PIPE_LOCK(rpipe);
1142
1143 if (error == 0 && segsize < size) {
1144 KASSERT(wpipe->pipe_buffer.in + segsize ==
1145 wpipe->pipe_buffer.size,
1146 ("Pipe buffer wraparound disappeared"));
1147 /*
1148 * Transfer remaining part now, to
1149 * support atomic writes. Wraparound
1150 * happened.
1151 */
1152
1153 PIPE_UNLOCK(rpipe);
1154 error = uiomove(
1155 &wpipe->pipe_buffer.buffer[0],
1156 size - segsize, uio);
1157 PIPE_LOCK(rpipe);
1158 }
1159 if (error == 0) {
1160 wpipe->pipe_buffer.in += size;
1161 if (wpipe->pipe_buffer.in >=
1162 wpipe->pipe_buffer.size) {
1163 KASSERT(wpipe->pipe_buffer.in ==
1164 size - segsize +
1165 wpipe->pipe_buffer.size,
1166 ("Expected wraparound bad"));
1167 wpipe->pipe_buffer.in = size - segsize;
1168 }
1169
1170 wpipe->pipe_buffer.cnt += size;
1171 KASSERT(wpipe->pipe_buffer.cnt <=
1172 wpipe->pipe_buffer.size,
1173 ("Pipe buffer overflow"));
1174 }
1175 pipeunlock(wpipe);
1176 if (error != 0)
1177 break;
1178 } else {
1179 /*
1180 * If the "read-side" has been blocked, wake it up now.
1181 */
1182 if (wpipe->pipe_state & PIPE_WANTR) {
1183 wpipe->pipe_state &= ~PIPE_WANTR;
1184 wakeup(wpipe);
1185 }
1186
1187 /*
1188 * don't block on non-blocking I/O
1189 */
1190 if (fp->f_flag & FNONBLOCK) {
1191 error = EAGAIN;
1192 pipeunlock(wpipe);
1193 break;
1194 }
1195
1196 /*
1197 * We have no more space and have something to offer,
1198 * wake up select/poll.
1199 */
1200 pipeselwakeup(wpipe);
1201
1202 wpipe->pipe_state |= PIPE_WANTW;
1203 pipeunlock(wpipe);
1204 error = msleep(wpipe, PIPE_MTX(rpipe),
1205 PRIBIO | PCATCH, "pipewr", 0);
1206 if (error != 0)
1207 break;
1208 }
1209 }
1210
1211 pipelock(wpipe, 0);
1212 --wpipe->pipe_busy;
1213
1214 if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1215 wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1216 wakeup(wpipe);
1217 } else if (wpipe->pipe_buffer.cnt > 0) {
1218 /*
1219 * If we have put any characters in the buffer, we wake up
1220 * the reader.
1221 */
1222 if (wpipe->pipe_state & PIPE_WANTR) {
1223 wpipe->pipe_state &= ~PIPE_WANTR;
1224 wakeup(wpipe);
1225 }
1226 }
1227
1228 /*
1229 * Don't return EPIPE if I/O was successful
1230 */
1231 if ((wpipe->pipe_buffer.cnt == 0) &&
1232 (uio->uio_resid == 0) &&
1233 (error == EPIPE)) {
1234 error = 0;
1235 }
1236
1237 if (error == 0)
1238 vfs_timestamp(&wpipe->pipe_mtime);
1239
1240 /*
1241 * We have something to offer,
1242 * wake up select/poll.
1243 */
1244 if (wpipe->pipe_buffer.cnt)
1245 pipeselwakeup(wpipe);
1246
1247 pipeunlock(wpipe);
1248 PIPE_UNLOCK(rpipe);
1249 return (error);
1250 }
1251
1252 /* ARGSUSED */
1253 static int
1254 pipe_truncate(fp, length, active_cred, td)
1255 struct file *fp;
1256 off_t length;
1257 struct ucred *active_cred;
1258 struct thread *td;
1259 {
1260
1261 return (EINVAL);
1262 }
1263
1264 /*
1265 * we implement a very minimal set of ioctls for compatibility with sockets.
1266 */
1267 static int
1268 pipe_ioctl(fp, cmd, data, active_cred, td)
1269 struct file *fp;
1270 u_long cmd;
1271 void *data;
1272 struct ucred *active_cred;
1273 struct thread *td;
1274 {
1275 struct pipe *mpipe = fp->f_data;
1276 int error;
1277
1278 PIPE_LOCK(mpipe);
1279
1280 #ifdef MAC
1281 error = mac_pipe_check_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1282 if (error) {
1283 PIPE_UNLOCK(mpipe);
1284 return (error);
1285 }
1286 #endif
1287
1288 error = 0;
1289 switch (cmd) {
1290
1291 case FIONBIO:
1292 break;
1293
1294 case FIOASYNC:
1295 if (*(int *)data) {
1296 mpipe->pipe_state |= PIPE_ASYNC;
1297 } else {
1298 mpipe->pipe_state &= ~PIPE_ASYNC;
1299 }
1300 break;
1301
1302 case FIONREAD:
1303 if (mpipe->pipe_state & PIPE_DIRECTW)
1304 *(int *)data = mpipe->pipe_map.cnt;
1305 else
1306 *(int *)data = mpipe->pipe_buffer.cnt;
1307 break;
1308
1309 case FIOSETOWN:
1310 PIPE_UNLOCK(mpipe);
1311 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1312 goto out_unlocked;
1313
1314 case FIOGETOWN:
1315 *(int *)data = fgetown(&mpipe->pipe_sigio);
1316 break;
1317
1318 /* This is deprecated, FIOSETOWN should be used instead. */
1319 case TIOCSPGRP:
1320 PIPE_UNLOCK(mpipe);
1321 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1322 goto out_unlocked;
1323
1324 /* This is deprecated, FIOGETOWN should be used instead. */
1325 case TIOCGPGRP:
1326 *(int *)data = -fgetown(&mpipe->pipe_sigio);
1327 break;
1328
1329 default:
1330 error = ENOTTY;
1331 break;
1332 }
1333 PIPE_UNLOCK(mpipe);
1334 out_unlocked:
1335 return (error);
1336 }
1337
1338 static int
1339 pipe_poll(fp, events, active_cred, td)
1340 struct file *fp;
1341 int events;
1342 struct ucred *active_cred;
1343 struct thread *td;
1344 {
1345 struct pipe *rpipe = fp->f_data;
1346 struct pipe *wpipe;
1347 int revents = 0;
1348 #ifdef MAC
1349 int error;
1350 #endif
1351
1352 wpipe = rpipe->pipe_peer;
1353 PIPE_LOCK(rpipe);
1354 #ifdef MAC
1355 error = mac_pipe_check_poll(active_cred, rpipe->pipe_pair);
1356 if (error)
1357 goto locked_error;
1358 #endif
1359 if (events & (POLLIN | POLLRDNORM))
1360 if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1361 (rpipe->pipe_buffer.cnt > 0))
1362 revents |= events & (POLLIN | POLLRDNORM);
1363
1364 if (events & (POLLOUT | POLLWRNORM))
1365 if (wpipe->pipe_present != PIPE_ACTIVE ||
1366 (wpipe->pipe_state & PIPE_EOF) ||
1367 (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1368 ((wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF ||
1369 wpipe->pipe_buffer.size == 0)))
1370 revents |= events & (POLLOUT | POLLWRNORM);
1371
1372 if ((events & POLLINIGNEOF) == 0) {
1373 if (rpipe->pipe_state & PIPE_EOF) {
1374 revents |= (events & (POLLIN | POLLRDNORM));
1375 if (wpipe->pipe_present != PIPE_ACTIVE ||
1376 (wpipe->pipe_state & PIPE_EOF))
1377 revents |= POLLHUP;
1378 }
1379 }
1380
1381 if (revents == 0) {
1382 if (events & (POLLIN | POLLRDNORM)) {
1383 selrecord(td, &rpipe->pipe_sel);
1384 if (SEL_WAITING(&rpipe->pipe_sel))
1385 rpipe->pipe_state |= PIPE_SEL;
1386 }
1387
1388 if (events & (POLLOUT | POLLWRNORM)) {
1389 selrecord(td, &wpipe->pipe_sel);
1390 if (SEL_WAITING(&wpipe->pipe_sel))
1391 wpipe->pipe_state |= PIPE_SEL;
1392 }
1393 }
1394 #ifdef MAC
1395 locked_error:
1396 #endif
1397 PIPE_UNLOCK(rpipe);
1398
1399 return (revents);
1400 }
1401
1402 /*
1403 * We shouldn't need locks here as we're doing a read and this should
1404 * be a natural race.
1405 */
1406 static int
1407 pipe_stat(fp, ub, active_cred, td)
1408 struct file *fp;
1409 struct stat *ub;
1410 struct ucred *active_cred;
1411 struct thread *td;
1412 {
1413 struct pipe *pipe;
1414 int new_unr;
1415 #ifdef MAC
1416 int error;
1417 #endif
1418
1419 pipe = fp->f_data;
1420 PIPE_LOCK(pipe);
1421 #ifdef MAC
1422 error = mac_pipe_check_stat(active_cred, pipe->pipe_pair);
1423 if (error) {
1424 PIPE_UNLOCK(pipe);
1425 return (error);
1426 }
1427 #endif
1428 /*
1429 * Lazily allocate an inode number for the pipe. Most pipe
1430 * users do not call fstat(2) on the pipe, which means that
1431 * postponing the inode allocation until it is must be
1432 * returned to userland is useful. If alloc_unr failed,
1433 * assign st_ino zero instead of returning an error.
1434 * Special pipe_ino values:
1435 * -1 - not yet initialized;
1436 * 0 - alloc_unr failed, return 0 as st_ino forever.
1437 */
1438 if (pipe->pipe_ino == (ino_t)-1) {
1439 new_unr = alloc_unr(pipeino_unr);
1440 if (new_unr != -1)
1441 pipe->pipe_ino = new_unr;
1442 else
1443 pipe->pipe_ino = 0;
1444 }
1445 PIPE_UNLOCK(pipe);
1446
1447 bzero(ub, sizeof(*ub));
1448 ub->st_mode = S_IFIFO;
1449 ub->st_blksize = PAGE_SIZE;
1450 if (pipe->pipe_state & PIPE_DIRECTW)
1451 ub->st_size = pipe->pipe_map.cnt;
1452 else
1453 ub->st_size = pipe->pipe_buffer.cnt;
1454 ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1455 ub->st_atim = pipe->pipe_atime;
1456 ub->st_mtim = pipe->pipe_mtime;
1457 ub->st_ctim = pipe->pipe_ctime;
1458 ub->st_uid = fp->f_cred->cr_uid;
1459 ub->st_gid = fp->f_cred->cr_gid;
1460 ub->st_dev = pipedev_ino;
1461 ub->st_ino = pipe->pipe_ino;
1462 /*
1463 * Left as 0: st_nlink, st_rdev, st_flags, st_gen.
1464 */
1465 return (0);
1466 }
1467
1468 /* ARGSUSED */
1469 static int
1470 pipe_close(fp, td)
1471 struct file *fp;
1472 struct thread *td;
1473 {
1474 struct pipe *cpipe = fp->f_data;
1475
1476 fp->f_ops = &badfileops;
1477 fp->f_data = NULL;
1478 funsetown(&cpipe->pipe_sigio);
1479 pipeclose(cpipe);
1480 return (0);
1481 }
1482
1483 static void
1484 pipe_free_kmem(cpipe)
1485 struct pipe *cpipe;
1486 {
1487
1488 KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1489 ("pipe_free_kmem: pipe mutex locked"));
1490
1491 if (cpipe->pipe_buffer.buffer != NULL) {
1492 atomic_subtract_long(&amountpipekva, cpipe->pipe_buffer.size);
1493 vm_map_remove(pipe_map,
1494 (vm_offset_t)cpipe->pipe_buffer.buffer,
1495 (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1496 cpipe->pipe_buffer.buffer = NULL;
1497 }
1498 #ifndef PIPE_NODIRECT
1499 {
1500 cpipe->pipe_map.cnt = 0;
1501 cpipe->pipe_map.pos = 0;
1502 cpipe->pipe_map.npages = 0;
1503 }
1504 #endif
1505 }
1506
1507 /*
1508 * shutdown the pipe
1509 */
1510 static void
1511 pipeclose(cpipe)
1512 struct pipe *cpipe;
1513 {
1514 struct pipepair *pp;
1515 struct pipe *ppipe;
1516 ino_t ino;
1517
1518 KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1519
1520 PIPE_LOCK(cpipe);
1521 pipelock(cpipe, 0);
1522 pp = cpipe->pipe_pair;
1523
1524 pipeselwakeup(cpipe);
1525
1526 /*
1527 * If the other side is blocked, wake it up saying that
1528 * we want to close it down.
1529 */
1530 cpipe->pipe_state |= PIPE_EOF;
1531 while (cpipe->pipe_busy) {
1532 wakeup(cpipe);
1533 cpipe->pipe_state |= PIPE_WANT;
1534 pipeunlock(cpipe);
1535 msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1536 pipelock(cpipe, 0);
1537 }
1538
1539
1540 /*
1541 * Disconnect from peer, if any.
1542 */
1543 ppipe = cpipe->pipe_peer;
1544 if (ppipe->pipe_present == PIPE_ACTIVE) {
1545 pipeselwakeup(ppipe);
1546
1547 ppipe->pipe_state |= PIPE_EOF;
1548 wakeup(ppipe);
1549 KNOTE_LOCKED(&ppipe->pipe_sel.si_note, 0);
1550 }
1551
1552 /*
1553 * Mark this endpoint as free. Release kmem resources. We
1554 * don't mark this endpoint as unused until we've finished
1555 * doing that, or the pipe might disappear out from under
1556 * us.
1557 */
1558 PIPE_UNLOCK(cpipe);
1559 pipe_free_kmem(cpipe);
1560 PIPE_LOCK(cpipe);
1561 cpipe->pipe_present = PIPE_CLOSING;
1562 pipeunlock(cpipe);
1563
1564 /*
1565 * knlist_clear() may sleep dropping the PIPE_MTX. Set the
1566 * PIPE_FINALIZED, that allows other end to free the
1567 * pipe_pair, only after the knotes are completely dismantled.
1568 */
1569 knlist_clear(&cpipe->pipe_sel.si_note, 1);
1570 cpipe->pipe_present = PIPE_FINALIZED;
1571 seldrain(&cpipe->pipe_sel);
1572 knlist_destroy(&cpipe->pipe_sel.si_note);
1573
1574 /*
1575 * Postpone the destroy of the fake inode number allocated for
1576 * our end, until pipe mtx is unlocked.
1577 */
1578 ino = cpipe->pipe_ino;
1579
1580 /*
1581 * If both endpoints are now closed, release the memory for the
1582 * pipe pair. If not, unlock.
1583 */
1584 if (ppipe->pipe_present == PIPE_FINALIZED) {
1585 PIPE_UNLOCK(cpipe);
1586 #ifdef MAC
1587 mac_pipe_destroy(pp);
1588 #endif
1589 uma_zfree(pipe_zone, cpipe->pipe_pair);
1590 } else
1591 PIPE_UNLOCK(cpipe);
1592
1593 if (ino != 0 && ino != (ino_t)-1)
1594 free_unr(pipeino_unr, ino);
1595 }
1596
1597 /*ARGSUSED*/
1598 static int
1599 pipe_kqfilter(struct file *fp, struct knote *kn)
1600 {
1601 struct pipe *cpipe;
1602
1603 cpipe = kn->kn_fp->f_data;
1604 PIPE_LOCK(cpipe);
1605 switch (kn->kn_filter) {
1606 case EVFILT_READ:
1607 kn->kn_fop = &pipe_rfiltops;
1608 break;
1609 case EVFILT_WRITE:
1610 kn->kn_fop = &pipe_wfiltops;
1611 if (cpipe->pipe_peer->pipe_present != PIPE_ACTIVE) {
1612 /* other end of pipe has been closed */
1613 PIPE_UNLOCK(cpipe);
1614 return (EPIPE);
1615 }
1616 cpipe = cpipe->pipe_peer;
1617 break;
1618 default:
1619 PIPE_UNLOCK(cpipe);
1620 return (EINVAL);
1621 }
1622
1623 knlist_add(&cpipe->pipe_sel.si_note, kn, 1);
1624 PIPE_UNLOCK(cpipe);
1625 return (0);
1626 }
1627
1628 static void
1629 filt_pipedetach(struct knote *kn)
1630 {
1631 struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1632
1633 PIPE_LOCK(cpipe);
1634 if (kn->kn_filter == EVFILT_WRITE)
1635 cpipe = cpipe->pipe_peer;
1636 knlist_remove(&cpipe->pipe_sel.si_note, kn, 1);
1637 PIPE_UNLOCK(cpipe);
1638 }
1639
1640 /*ARGSUSED*/
1641 static int
1642 filt_piperead(struct knote *kn, long hint)
1643 {
1644 struct pipe *rpipe = kn->kn_fp->f_data;
1645 struct pipe *wpipe = rpipe->pipe_peer;
1646 int ret;
1647
1648 PIPE_LOCK(rpipe);
1649 kn->kn_data = rpipe->pipe_buffer.cnt;
1650 if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1651 kn->kn_data = rpipe->pipe_map.cnt;
1652
1653 if ((rpipe->pipe_state & PIPE_EOF) ||
1654 wpipe->pipe_present != PIPE_ACTIVE ||
1655 (wpipe->pipe_state & PIPE_EOF)) {
1656 kn->kn_flags |= EV_EOF;
1657 PIPE_UNLOCK(rpipe);
1658 return (1);
1659 }
1660 ret = kn->kn_data > 0;
1661 PIPE_UNLOCK(rpipe);
1662 return ret;
1663 }
1664
1665 /*ARGSUSED*/
1666 static int
1667 filt_pipewrite(struct knote *kn, long hint)
1668 {
1669 struct pipe *rpipe = kn->kn_fp->f_data;
1670 struct pipe *wpipe = rpipe->pipe_peer;
1671
1672 PIPE_LOCK(rpipe);
1673 if (wpipe->pipe_present != PIPE_ACTIVE ||
1674 (wpipe->pipe_state & PIPE_EOF)) {
1675 kn->kn_data = 0;
1676 kn->kn_flags |= EV_EOF;
1677 PIPE_UNLOCK(rpipe);
1678 return (1);
1679 }
1680 kn->kn_data = (wpipe->pipe_buffer.size > 0) ?
1681 (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) : PIPE_BUF;
1682 if (wpipe->pipe_state & PIPE_DIRECTW)
1683 kn->kn_data = 0;
1684
1685 PIPE_UNLOCK(rpipe);
1686 return (kn->kn_data >= PIPE_BUF);
1687 }
Cache object: 3f11d3562b60b6fb5160aeb1fe05fb25
|