The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/sys_sched.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: sys_sched.c,v 1.49 2020/05/23 23:42:43 ad Exp $        */
    2 
    3 /*
    4  * Copyright (c) 2008, 2011 Mindaugas Rasiukevicius <rmind at NetBSD org>
    5  * All rights reserved.
    6  * 
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  */
   28 
   29 /*
   30  * System calls relating to the scheduler.
   31  *
   32  * Lock order:
   33  *
   34  *      cpu_lock ->
   35  *          proc_lock ->
   36  *              proc_t::p_lock ->
   37  *                  lwp_t::lwp_lock
   38  *
   39  * TODO:
   40  *  - Handle pthread_setschedprio() as defined by POSIX;
   41  */
   42 
   43 #include <sys/cdefs.h>
   44 __KERNEL_RCSID(0, "$NetBSD: sys_sched.c,v 1.49 2020/05/23 23:42:43 ad Exp $");
   45 
   46 #include <sys/param.h>
   47 
   48 #include <sys/cpu.h>
   49 #include <sys/kauth.h>
   50 #include <sys/kmem.h>
   51 #include <sys/lwp.h>
   52 #include <sys/mutex.h>
   53 #include <sys/proc.h>
   54 #include <sys/pset.h>
   55 #include <sys/sched.h>
   56 #include <sys/syscallargs.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/systm.h>
   59 #include <sys/types.h>
   60 #include <sys/unistd.h>
   61 
   62 static struct sysctllog *sched_sysctl_log;
   63 static kauth_listener_t sched_listener;
   64 
   65 /*
   66  * Convert user priority or the in-kernel priority or convert the current
   67  * priority to the appropriate range according to the policy change.
   68  */
   69 static pri_t
   70 convert_pri(lwp_t *l, int policy, pri_t pri)
   71 {
   72 
   73         /* Convert user priority to the in-kernel */
   74         if (pri != PRI_NONE) {
   75                 /* Only for real-time threads */
   76                 KASSERT(pri >= SCHED_PRI_MIN && pri <= SCHED_PRI_MAX);
   77                 KASSERT(policy != SCHED_OTHER);
   78                 return PRI_USER_RT + pri;
   79         }
   80 
   81         /* Neither policy, nor priority change */
   82         if (l->l_class == policy)
   83                 return l->l_priority;
   84 
   85         /* Time-sharing -> real-time */
   86         if (l->l_class == SCHED_OTHER) {
   87                 KASSERT(policy == SCHED_FIFO || policy == SCHED_RR);
   88                 return PRI_USER_RT;
   89         }
   90 
   91         /* Real-time -> time-sharing */
   92         if (policy == SCHED_OTHER) {
   93                 KASSERT(l->l_class == SCHED_FIFO || l->l_class == SCHED_RR);
   94                 /*
   95                  * this is a bit arbitrary because the priority is dynamic
   96                  * for SCHED_OTHER threads and will likely be changed by
   97                  * the scheduler soon anyway.
   98                  */
   99                 return l->l_priority - PRI_USER_RT;
  100         }
  101 
  102         /* Real-time -> real-time */
  103         return l->l_priority;
  104 }
  105 
  106 int
  107 do_sched_setparam(pid_t pid, lwpid_t lid, int policy,
  108     const struct sched_param *params)
  109 {
  110         struct proc *p;
  111         struct lwp *t;
  112         pri_t pri;
  113         u_int lcnt;
  114         int error;
  115 
  116         error = 0;
  117 
  118         pri = params->sched_priority;
  119 
  120         /* If no parameters specified, just return (this should not happen) */
  121         if (pri == PRI_NONE && policy == SCHED_NONE)
  122                 return 0;
  123 
  124         /* Validate scheduling class */
  125         if (policy != SCHED_NONE && (policy < SCHED_OTHER || policy > SCHED_RR))
  126                 return EINVAL;
  127 
  128         /* Validate priority */
  129         if (pri != PRI_NONE && (pri < SCHED_PRI_MIN || pri > SCHED_PRI_MAX))
  130                 return EINVAL;
  131 
  132         if (pid != 0) {
  133                 /* Find the process */
  134                 mutex_enter(&proc_lock);
  135                 p = proc_find(pid);
  136                 if (p == NULL) {
  137                         mutex_exit(&proc_lock);
  138                         return ESRCH;
  139                 }
  140                 mutex_enter(p->p_lock);
  141                 mutex_exit(&proc_lock);
  142                 /* Disallow modification of system processes */
  143                 if ((p->p_flag & PK_SYSTEM) != 0) {
  144                         mutex_exit(p->p_lock);
  145                         return EPERM;
  146                 }
  147         } else {
  148                 /* Use the calling process */
  149                 p = curlwp->l_proc;
  150                 mutex_enter(p->p_lock);
  151         }
  152 
  153         /* Find the LWP(s) */
  154         lcnt = 0;
  155         LIST_FOREACH(t, &p->p_lwps, l_sibling) {
  156                 pri_t kpri;
  157                 int lpolicy;
  158 
  159                 if (lid && lid != t->l_lid)
  160                         continue;
  161 
  162                 lcnt++;
  163                 lwp_lock(t);
  164                 lpolicy = (policy == SCHED_NONE) ? t->l_class : policy;
  165 
  166                 /* Disallow setting of priority for SCHED_OTHER threads */
  167                 if (lpolicy == SCHED_OTHER && pri != PRI_NONE) {
  168                         lwp_unlock(t);
  169                         error = EINVAL;
  170                         break;
  171                 }
  172 
  173                 /* Convert priority, if needed */
  174                 kpri = convert_pri(t, lpolicy, pri);
  175 
  176                 /* Check the permission */
  177                 error = kauth_authorize_process(kauth_cred_get(),
  178                     KAUTH_PROCESS_SCHEDULER_SETPARAM, p, t, KAUTH_ARG(lpolicy),
  179                     KAUTH_ARG(kpri));
  180                 if (error) {
  181                         lwp_unlock(t);
  182                         break;
  183                 }
  184 
  185                 /* Set the scheduling class, change the priority */
  186                 t->l_class = lpolicy;
  187                 lwp_changepri(t, kpri);
  188                 lwp_unlock(t);
  189         }
  190         mutex_exit(p->p_lock);
  191         return (lcnt == 0) ? ESRCH : error;
  192 }
  193 
  194 /*
  195  * Set scheduling parameters.
  196  */
  197 int
  198 sys__sched_setparam(struct lwp *l, const struct sys__sched_setparam_args *uap,
  199     register_t *retval)
  200 {
  201         /* {
  202                 syscallarg(pid_t) pid;
  203                 syscallarg(lwpid_t) lid;
  204                 syscallarg(int) policy;
  205                 syscallarg(const struct sched_param *) params;
  206         } */
  207         struct sched_param params;
  208         int error;
  209 
  210         /* Get the parameters from the user-space */
  211         error = copyin(SCARG(uap, params), &params, sizeof(params));
  212         if (error)
  213                 goto out;
  214 
  215         error = do_sched_setparam(SCARG(uap, pid), SCARG(uap, lid),
  216             SCARG(uap, policy), &params);
  217 out:
  218         return error;
  219 }
  220 
  221 /*
  222  * do_sched_getparam:
  223  *
  224  * if lid=0, returns the parameter of the first LWP in the process.
  225  */
  226 int
  227 do_sched_getparam(pid_t pid, lwpid_t lid, int *policy,
  228     struct sched_param *params)
  229 {
  230         struct sched_param lparams;
  231         struct lwp *t;
  232         int error, lpolicy;
  233 
  234         if (pid < 0 || lid < 0)
  235                 return EINVAL;
  236 
  237         t = lwp_find2(pid, lid); /* acquire p_lock */
  238         if (t == NULL)
  239                 return ESRCH;
  240 
  241         /* Check the permission */
  242         error = kauth_authorize_process(kauth_cred_get(),
  243             KAUTH_PROCESS_SCHEDULER_GETPARAM, t->l_proc, NULL, NULL, NULL);
  244         if (error != 0) {
  245                 mutex_exit(t->l_proc->p_lock);
  246                 return error;
  247         }
  248 
  249         lwp_lock(t);
  250         lparams.sched_priority = t->l_priority;
  251         lpolicy = t->l_class;
  252         lwp_unlock(t);
  253         mutex_exit(t->l_proc->p_lock);
  254 
  255         /*
  256          * convert to the user-visible priority value.
  257          * it's an inversion of convert_pri().
  258          *
  259          * the SCHED_OTHER case is a bit arbitrary given that
  260          *      - we don't allow setting the priority.
  261          *      - the priority is dynamic.
  262          */
  263         switch (lpolicy) {
  264         case SCHED_OTHER:
  265                 lparams.sched_priority -= PRI_USER;
  266                 break;
  267         case SCHED_RR:
  268         case SCHED_FIFO:
  269                 lparams.sched_priority -= PRI_USER_RT;
  270                 break;
  271         }
  272 
  273         if (policy != NULL)
  274                 *policy = lpolicy;
  275 
  276         if (params != NULL)
  277                 *params = lparams;
  278 
  279         return error;
  280 }
  281 
  282 /*
  283  * Get scheduling parameters.
  284  */
  285 int
  286 sys__sched_getparam(struct lwp *l, const struct sys__sched_getparam_args *uap,
  287     register_t *retval)
  288 {
  289         /* {
  290                 syscallarg(pid_t) pid;
  291                 syscallarg(lwpid_t) lid;
  292                 syscallarg(int *) policy;
  293                 syscallarg(struct sched_param *) params;
  294         } */
  295         struct sched_param params;
  296         int error, policy;
  297 
  298         error = do_sched_getparam(SCARG(uap, pid), SCARG(uap, lid), &policy,
  299             &params);
  300         if (error)
  301                 goto out;
  302 
  303         error = copyout(&params, SCARG(uap, params), sizeof(params));
  304         if (error == 0 && SCARG(uap, policy) != NULL)
  305                 error = copyout(&policy, SCARG(uap, policy), sizeof(int));
  306 out:
  307         return error;
  308 }
  309 
  310 /*
  311  * Allocate the CPU set, and get it from userspace.
  312  */
  313 static int
  314 genkcpuset(kcpuset_t **dset, const cpuset_t *sset, size_t size)
  315 {
  316         kcpuset_t *kset;
  317         int error;
  318 
  319         kcpuset_create(&kset, true);
  320         error = kcpuset_copyin(sset, kset, size);
  321         if (error) {
  322                 kcpuset_unuse(kset, NULL);
  323         } else {
  324                 *dset = kset;
  325         }
  326         return error;
  327 }
  328 
  329 /*
  330  * Set affinity.
  331  */
  332 int
  333 sys__sched_setaffinity(struct lwp *l,
  334     const struct sys__sched_setaffinity_args *uap, register_t *retval)
  335 {
  336         /* {
  337                 syscallarg(pid_t) pid;
  338                 syscallarg(lwpid_t) lid;
  339                 syscallarg(size_t) size;
  340                 syscallarg(const cpuset_t *) cpuset;
  341         } */
  342         kcpuset_t *kcset, *kcpulst = NULL;
  343         struct cpu_info *ici, *ci;
  344         struct proc *p;
  345         struct lwp *t;
  346         CPU_INFO_ITERATOR cii;
  347         bool alloff;
  348         lwpid_t lid;
  349         u_int lcnt;
  350         int error;
  351 
  352         error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
  353         if (error)
  354                 return error;
  355 
  356         /*
  357          * Traverse _each_ CPU to:
  358          *  - Check that CPUs in the mask have no assigned processor set.
  359          *  - Check that at least one CPU from the mask is online.
  360          *  - Find the first target CPU to migrate.
  361          *
  362          * To avoid the race with CPU online/offline calls and processor sets,
  363          * cpu_lock will be locked for the entire operation.
  364          */
  365         ci = NULL;
  366         alloff = false;
  367         mutex_enter(&cpu_lock);
  368         for (CPU_INFO_FOREACH(cii, ici)) {
  369                 struct schedstate_percpu *ispc;
  370 
  371                 if (!kcpuset_isset(kcset, cpu_index(ici))) {
  372                         continue;
  373                 }
  374 
  375                 ispc = &ici->ci_schedstate;
  376                 /* Check that CPU is not in the processor-set */
  377                 if (ispc->spc_psid != PS_NONE) {
  378                         error = EPERM;
  379                         goto out;
  380                 }
  381                 /* Skip offline CPUs */
  382                 if (ispc->spc_flags & SPCF_OFFLINE) {
  383                         alloff = true;
  384                         continue;
  385                 }
  386                 /* Target CPU to migrate */
  387                 if (ci == NULL) {
  388                         ci = ici;
  389                 }
  390         }
  391         if (ci == NULL) {
  392                 if (alloff) {
  393                         /* All CPUs in the set are offline */
  394                         error = EPERM;
  395                         goto out;
  396                 }
  397                 /* Empty set */
  398                 kcpuset_unuse(kcset, &kcpulst);
  399                 kcset = NULL;
  400         }
  401 
  402         if (SCARG(uap, pid) != 0) {
  403                 /* Find the process */
  404                 mutex_enter(&proc_lock);
  405                 p = proc_find(SCARG(uap, pid));
  406                 if (p == NULL) {
  407                         mutex_exit(&proc_lock);
  408                         error = ESRCH;
  409                         goto out;
  410                 }
  411                 mutex_enter(p->p_lock);
  412                 mutex_exit(&proc_lock);
  413                 /* Disallow modification of system processes. */
  414                 if ((p->p_flag & PK_SYSTEM) != 0) {
  415                         mutex_exit(p->p_lock);
  416                         error = EPERM;
  417                         goto out;
  418                 }
  419         } else {
  420                 /* Use the calling process */
  421                 p = l->l_proc;
  422                 mutex_enter(p->p_lock);
  423         }
  424 
  425         /*
  426          * Check the permission.
  427          */
  428         error = kauth_authorize_process(l->l_cred,
  429             KAUTH_PROCESS_SCHEDULER_SETAFFINITY, p, NULL, NULL, NULL);
  430         if (error != 0) {
  431                 mutex_exit(p->p_lock);
  432                 goto out;
  433         }
  434 
  435         /* Iterate through LWP(s). */
  436         lcnt = 0;
  437         lid = SCARG(uap, lid);
  438         LIST_FOREACH(t, &p->p_lwps, l_sibling) {
  439                 if (lid && lid != t->l_lid) {
  440                         continue;
  441                 }
  442                 lwp_lock(t);
  443                 /* No affinity for zombie LWPs. */
  444                 if (t->l_stat == LSZOMB) {
  445                         lwp_unlock(t);
  446                         continue;
  447                 }
  448                 /* First, release existing affinity, if any. */
  449                 if (t->l_affinity) {
  450                         kcpuset_unuse(t->l_affinity, &kcpulst);
  451                 }
  452                 if (kcset) {
  453                         /*
  454                          * Hold a reference on affinity mask, assign mask to
  455                          * LWP and migrate it to another CPU (unlocks LWP).
  456                          */
  457                         kcpuset_use(kcset);
  458                         t->l_affinity = kcset;
  459                         lwp_migrate(t, ci);
  460                 } else {
  461                         /* Old affinity mask is released, just clear. */
  462                         t->l_affinity = NULL;
  463                         lwp_unlock(t);
  464                 }
  465                 lcnt++;
  466         }
  467         mutex_exit(p->p_lock);
  468         if (lcnt == 0) {
  469                 error = ESRCH;
  470         }
  471 out:
  472         mutex_exit(&cpu_lock);
  473 
  474         /*
  475          * Drop the initial reference (LWPs, if any, have the ownership now),
  476          * and destroy whatever is in the G/C list, if filled.
  477          */
  478         if (kcset) {
  479                 kcpuset_unuse(kcset, &kcpulst);
  480         }
  481         if (kcpulst) {
  482                 kcpuset_destroy(kcpulst);
  483         }
  484         return error;
  485 }
  486 
  487 /*
  488  * Get affinity.
  489  */
  490 int
  491 sys__sched_getaffinity(struct lwp *l,
  492     const struct sys__sched_getaffinity_args *uap, register_t *retval)
  493 {
  494         /* {
  495                 syscallarg(pid_t) pid;
  496                 syscallarg(lwpid_t) lid;
  497                 syscallarg(size_t) size;
  498                 syscallarg(cpuset_t *) cpuset;
  499         } */
  500         struct lwp *t;
  501         kcpuset_t *kcset;
  502         int error;
  503 
  504         if (SCARG(uap, pid) < 0 || SCARG(uap, lid) < 0)
  505                 return EINVAL;
  506 
  507         error = genkcpuset(&kcset, SCARG(uap, cpuset), SCARG(uap, size));
  508         if (error)
  509                 return error;
  510 
  511         /* Locks the LWP */
  512         t = lwp_find2(SCARG(uap, pid), SCARG(uap, lid));
  513         if (t == NULL) {
  514                 error = ESRCH;
  515                 goto out;
  516         }
  517         /* Check the permission */
  518         if (kauth_authorize_process(l->l_cred,
  519             KAUTH_PROCESS_SCHEDULER_GETAFFINITY, t->l_proc, NULL, NULL, NULL)) {
  520                 mutex_exit(t->l_proc->p_lock);
  521                 error = EPERM;
  522                 goto out;
  523         }
  524         lwp_lock(t);
  525         if (t->l_affinity) {
  526                 kcpuset_copy(kcset, t->l_affinity);
  527         } else {
  528                 kcpuset_zero(kcset);
  529         }
  530         lwp_unlock(t);
  531         mutex_exit(t->l_proc->p_lock);
  532 
  533         error = kcpuset_copyout(kcset, SCARG(uap, cpuset), SCARG(uap, size));
  534 out:
  535         kcpuset_unuse(kcset, NULL);
  536         return error;
  537 }
  538 
  539 /*
  540  * Priority protection for PTHREAD_PRIO_PROTECT. This is a weak
  541  * analogue of priority inheritance: temp raise the priority
  542  * of the caller when accessing a protected resource.
  543  */
  544 int 
  545 sys__sched_protect(struct lwp *l, 
  546     const struct sys__sched_protect_args *uap, register_t *retval)
  547 {
  548         /* {
  549                 syscallarg(int) priority;
  550                 syscallarg(int *) opriority;
  551         } */
  552         int error;
  553         pri_t pri;
  554 
  555         KASSERT(l->l_inheritedprio == -1);
  556         KASSERT(l->l_auxprio == -1 || l->l_auxprio == l->l_protectprio);
  557         
  558         pri = SCARG(uap, priority);
  559         error = 0;
  560         lwp_lock(l);
  561         if (pri == -1) {
  562                 /* back out priority changes */
  563                 switch(l->l_protectdepth) {
  564                 case 0:
  565                         error = EINVAL;
  566                         break;
  567                 case 1:
  568                         l->l_protectdepth = 0;
  569                         l->l_protectprio = -1;
  570                         l->l_auxprio = -1;
  571                         break;
  572                 default:
  573                         l->l_protectdepth--;
  574                         break;
  575                 }
  576         } else if (pri < 0) {
  577                 /* Just retrieve the current value, for debugging */
  578                 if (l->l_protectprio == -1)
  579                         error = ENOENT;
  580                 else
  581                         *retval = l->l_protectprio - PRI_USER_RT;
  582         } else if (__predict_false(pri < SCHED_PRI_MIN ||
  583             pri > SCHED_PRI_MAX || l->l_priority > pri + PRI_USER_RT)) {
  584                 /* must fail if existing priority is higher */
  585                 error = EPERM;
  586         } else {
  587                 /* play along but make no changes if not a realtime LWP. */
  588                 l->l_protectdepth++;
  589                 pri += PRI_USER_RT;
  590                 if (__predict_true(l->l_class != SCHED_OTHER && 
  591                     pri > l->l_protectprio)) {
  592                         l->l_protectprio = pri;
  593                         l->l_auxprio = pri;
  594                 }
  595         }
  596         lwp_unlock(l);
  597 
  598         return error;
  599 }
  600 
  601 /*
  602  * Yield.
  603  */
  604 int
  605 sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
  606 {
  607 
  608         yield();
  609         return 0;
  610 }
  611 
  612 /*
  613  * Sysctl nodes and initialization.
  614  */
  615 static void
  616 sysctl_sched_setup(struct sysctllog **clog)
  617 {
  618         const struct sysctlnode *node = NULL;
  619 
  620         sysctl_createv(clog, 0, NULL, NULL,
  621                 CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
  622                 CTLTYPE_INT, "posix_sched",
  623                 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
  624                              "Process Scheduling option to which the "
  625                              "system attempts to conform"),
  626                 NULL, _POSIX_PRIORITY_SCHEDULING, NULL, 0,
  627                 CTL_KERN, CTL_CREATE, CTL_EOL);
  628         sysctl_createv(clog, 0, NULL, &node,
  629                 CTLFLAG_PERMANENT,
  630                 CTLTYPE_NODE, "sched",
  631                 SYSCTL_DESCR("Scheduler options"),
  632                 NULL, 0, NULL, 0,
  633                 CTL_KERN, CTL_CREATE, CTL_EOL);
  634 
  635         if (node == NULL)
  636                 return;
  637 
  638         sysctl_createv(clog, 0, &node, NULL,
  639                 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
  640                 CTLTYPE_INT, "pri_min",
  641                 SYSCTL_DESCR("Minimal POSIX real-time priority"),
  642                 NULL, SCHED_PRI_MIN, NULL, 0,
  643                 CTL_CREATE, CTL_EOL);
  644         sysctl_createv(clog, 0, &node, NULL,
  645                 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
  646                 CTLTYPE_INT, "pri_max",
  647                 SYSCTL_DESCR("Maximal POSIX real-time priority"),
  648                 NULL, SCHED_PRI_MAX, NULL, 0,
  649                 CTL_CREATE, CTL_EOL);
  650 }
  651 
  652 static int
  653 sched_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
  654     void *arg0, void *arg1, void *arg2, void *arg3)
  655 {
  656         struct proc *p;
  657         int result;
  658 
  659         result = KAUTH_RESULT_DEFER;
  660         p = arg0;
  661 
  662         switch (action) {
  663         case KAUTH_PROCESS_SCHEDULER_GETPARAM:
  664                 if (kauth_cred_uidmatch(cred, p->p_cred))
  665                         result = KAUTH_RESULT_ALLOW;
  666                 break;
  667 
  668         case KAUTH_PROCESS_SCHEDULER_SETPARAM:
  669                 if (kauth_cred_uidmatch(cred, p->p_cred)) {
  670                         struct lwp *l;
  671                         int policy;
  672                         pri_t priority;
  673 
  674                         l = arg1;
  675                         policy = (int)(unsigned long)arg2;
  676                         priority = (pri_t)(unsigned long)arg3;
  677 
  678                         if ((policy == l->l_class ||
  679                             (policy != SCHED_FIFO && policy != SCHED_RR)) &&
  680                             priority <= l->l_priority)
  681                                 result = KAUTH_RESULT_ALLOW;
  682                 }
  683 
  684                 break;
  685 
  686         case KAUTH_PROCESS_SCHEDULER_GETAFFINITY:
  687                 result = KAUTH_RESULT_ALLOW;
  688                 break;
  689 
  690         case KAUTH_PROCESS_SCHEDULER_SETAFFINITY:
  691                 /* Privileged; we let the secmodel handle this. */
  692                 break;
  693 
  694         default:
  695                 break;
  696         }
  697 
  698         return result;
  699 }
  700 
  701 void
  702 sched_init(void)
  703 {
  704 
  705         sysctl_sched_setup(&sched_sysctl_log);
  706 
  707         sched_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
  708             sched_listener_cb, NULL);
  709 }

Cache object: d40de701f572164f4ca6353fede109bd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.