The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_mbuf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include "opt_param.h"
   36 #include "opt_mbuf_stress_test.h"
   37 #include "opt_mbuf_profiling.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/kernel.h>
   42 #include <sys/limits.h>
   43 #include <sys/lock.h>
   44 #include <sys/malloc.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/domain.h>
   48 #include <sys/protosw.h>
   49 #include <sys/uio.h>
   50 #include <sys/sdt.h>
   51 
   52 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
   53     "struct mbuf *", "mbufinfo_t *",
   54     "uint32_t", "uint32_t",
   55     "uint16_t", "uint16_t",
   56     "uint32_t", "uint32_t",
   57     "uint32_t", "uint32_t");
   58 
   59 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
   60     "uint32_t", "uint32_t",
   61     "uint16_t", "uint16_t",
   62     "struct mbuf *", "mbufinfo_t *");
   63 
   64 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
   65     "uint32_t", "uint32_t",
   66     "uint16_t", "uint16_t",
   67     "struct mbuf *", "mbufinfo_t *");
   68 
   69 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
   70     "uint32_t", "uint32_t",
   71     "uint16_t", "uint16_t",
   72     "uint32_t", "uint32_t",
   73     "struct mbuf *", "mbufinfo_t *");
   74 
   75 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl,
   76     "uint32_t", "uint32_t",
   77     "uint16_t", "uint16_t",
   78     "uint32_t", "uint32_t",
   79     "uint32_t", "uint32_t",
   80     "struct mbuf *", "mbufinfo_t *");
   81 
   82 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
   83     "struct mbuf *", "mbufinfo_t *",
   84     "uint32_t", "uint32_t",
   85     "uint32_t", "uint32_t");
   86 
   87 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
   88     "struct mbuf *", "mbufinfo_t *",
   89     "uint32_t", "uint32_t",
   90     "uint32_t", "uint32_t",
   91     "void*", "void*");
   92 
   93 SDT_PROBE_DEFINE(sdt, , , m__cljset);
   94 
   95 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
   96         "struct mbuf *", "mbufinfo_t *");
   97 
   98 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
   99     "struct mbuf *", "mbufinfo_t *");
  100 
  101 #include <security/mac/mac_framework.h>
  102 
  103 int     max_linkhdr;
  104 int     max_protohdr;
  105 int     max_hdr;
  106 int     max_datalen;
  107 #ifdef MBUF_STRESS_TEST
  108 int     m_defragpackets;
  109 int     m_defragbytes;
  110 int     m_defraguseless;
  111 int     m_defragfailure;
  112 int     m_defragrandomfailures;
  113 #endif
  114 
  115 /*
  116  * sysctl(8) exported objects
  117  */
  118 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
  119            &max_linkhdr, 0, "Size of largest link layer header");
  120 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
  121            &max_protohdr, 0, "Size of largest protocol layer header");
  122 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
  123            &max_hdr, 0, "Size of largest link plus protocol header");
  124 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
  125            &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
  126 #ifdef MBUF_STRESS_TEST
  127 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
  128            &m_defragpackets, 0, "");
  129 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
  130            &m_defragbytes, 0, "");
  131 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
  132            &m_defraguseless, 0, "");
  133 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
  134            &m_defragfailure, 0, "");
  135 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
  136            &m_defragrandomfailures, 0, "");
  137 #endif
  138 
  139 /*
  140  * Ensure the correct size of various mbuf parameters.  It could be off due
  141  * to compiler-induced padding and alignment artifacts.
  142  */
  143 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
  144 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
  145 
  146 /*
  147  * mbuf data storage should be 64-bit aligned regardless of architectural
  148  * pointer size; check this is the case with and without a packet header.
  149  */
  150 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
  151 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
  152 
  153 /*
  154  * While the specific values here don't matter too much (i.e., +/- a few
  155  * words), we do want to ensure that changes to these values are carefully
  156  * reasoned about and properly documented.  This is especially the case as
  157  * network-protocol and device-driver modules encode these layouts, and must
  158  * be recompiled if the structures change.  Check these values at compile time
  159  * against the ones documented in comments in mbuf.h.
  160  *
  161  * NB: Possibly they should be documented there via #define's and not just
  162  * comments.
  163  */
  164 #if defined(__LP64__)
  165 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
  166 CTASSERT(sizeof(struct pkthdr) == 56);
  167 CTASSERT(sizeof(struct m_ext) == 48);
  168 #else
  169 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
  170 CTASSERT(sizeof(struct pkthdr) == 48);
  171 CTASSERT(sizeof(struct m_ext) == 28);
  172 #endif
  173 
  174 /*
  175  * Assert that the queue(3) macros produce code of the same size as an old
  176  * plain pointer does.
  177  */
  178 #ifdef INVARIANTS
  179 static struct mbuf __used m_assertbuf;
  180 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
  181 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
  182 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
  183 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
  184 #endif
  185 
  186 /*
  187  * Attach the cluster from *m to *n, set up m_ext in *n
  188  * and bump the refcount of the cluster.
  189  */
  190 void
  191 mb_dupcl(struct mbuf *n, struct mbuf *m)
  192 {
  193         volatile u_int *refcnt;
  194 
  195         KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
  196         KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n));
  197 
  198         n->m_ext = m->m_ext;
  199         n->m_flags |= M_EXT;
  200         n->m_flags |= m->m_flags & M_RDONLY;
  201 
  202         /* See if this is the mbuf that holds the embedded refcount. */
  203         if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
  204                 refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
  205                 n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
  206         } else {
  207                 KASSERT(m->m_ext.ext_cnt != NULL,
  208                     ("%s: no refcounting pointer on %p", __func__, m));
  209                 refcnt = m->m_ext.ext_cnt;
  210         }
  211 
  212         if (*refcnt == 1)
  213                 *refcnt += 1;
  214         else
  215                 atomic_add_int(refcnt, 1);
  216 }
  217 
  218 void
  219 m_demote_pkthdr(struct mbuf *m)
  220 {
  221 
  222         M_ASSERTPKTHDR(m);
  223 
  224         m_tag_delete_chain(m, NULL);
  225         m->m_flags &= ~M_PKTHDR;
  226         bzero(&m->m_pkthdr, sizeof(struct pkthdr));
  227 }
  228 
  229 /*
  230  * Clean up mbuf (chain) from any tags and packet headers.
  231  * If "all" is set then the first mbuf in the chain will be
  232  * cleaned too.
  233  */
  234 void
  235 m_demote(struct mbuf *m0, int all, int flags)
  236 {
  237         struct mbuf *m;
  238 
  239         for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
  240                 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
  241                     __func__, m, m0));
  242                 if (m->m_flags & M_PKTHDR)
  243                         m_demote_pkthdr(m);
  244                 m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags);
  245         }
  246 }
  247 
  248 /*
  249  * Sanity checks on mbuf (chain) for use in KASSERT() and general
  250  * debugging.
  251  * Returns 0 or panics when bad and 1 on all tests passed.
  252  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
  253  * blow up later.
  254  */
  255 int
  256 m_sanity(struct mbuf *m0, int sanitize)
  257 {
  258         struct mbuf *m;
  259         caddr_t a, b;
  260         int pktlen = 0;
  261 
  262 #ifdef INVARIANTS
  263 #define M_SANITY_ACTION(s)      panic("mbuf %p: " s, m)
  264 #else
  265 #define M_SANITY_ACTION(s)      printf("mbuf %p: " s, m)
  266 #endif
  267 
  268         for (m = m0; m != NULL; m = m->m_next) {
  269                 /*
  270                  * Basic pointer checks.  If any of these fails then some
  271                  * unrelated kernel memory before or after us is trashed.
  272                  * No way to recover from that.
  273                  */
  274                 a = M_START(m);
  275                 b = a + M_SIZE(m);
  276                 if ((caddr_t)m->m_data < a)
  277                         M_SANITY_ACTION("m_data outside mbuf data range left");
  278                 if ((caddr_t)m->m_data > b)
  279                         M_SANITY_ACTION("m_data outside mbuf data range right");
  280                 if ((caddr_t)m->m_data + m->m_len > b)
  281                         M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
  282 
  283                 /* m->m_nextpkt may only be set on first mbuf in chain. */
  284                 if (m != m0 && m->m_nextpkt != NULL) {
  285                         if (sanitize) {
  286                                 m_freem(m->m_nextpkt);
  287                                 m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
  288                         } else
  289                                 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
  290                 }
  291 
  292                 /* packet length (not mbuf length!) calculation */
  293                 if (m0->m_flags & M_PKTHDR)
  294                         pktlen += m->m_len;
  295 
  296                 /* m_tags may only be attached to first mbuf in chain. */
  297                 if (m != m0 && m->m_flags & M_PKTHDR &&
  298                     !SLIST_EMPTY(&m->m_pkthdr.tags)) {
  299                         if (sanitize) {
  300                                 m_tag_delete_chain(m, NULL);
  301                                 /* put in 0xDEADC0DE perhaps? */
  302                         } else
  303                                 M_SANITY_ACTION("m_tags on in-chain mbuf");
  304                 }
  305 
  306                 /* M_PKTHDR may only be set on first mbuf in chain */
  307                 if (m != m0 && m->m_flags & M_PKTHDR) {
  308                         if (sanitize) {
  309                                 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
  310                                 m->m_flags &= ~M_PKTHDR;
  311                                 /* put in 0xDEADCODE and leave hdr flag in */
  312                         } else
  313                                 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
  314                 }
  315         }
  316         m = m0;
  317         if (pktlen && pktlen != m->m_pkthdr.len) {
  318                 if (sanitize)
  319                         m->m_pkthdr.len = 0;
  320                 else
  321                         M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
  322         }
  323         return 1;
  324 
  325 #undef  M_SANITY_ACTION
  326 }
  327 
  328 /*
  329  * Non-inlined part of m_init().
  330  */
  331 int
  332 m_pkthdr_init(struct mbuf *m, int how)
  333 {
  334 #ifdef MAC
  335         int error;
  336 #endif
  337         m->m_data = m->m_pktdat;
  338         bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
  339 #ifdef MAC
  340         /* If the label init fails, fail the alloc */
  341         error = mac_mbuf_init(m, how);
  342         if (error)
  343                 return (error);
  344 #endif
  345 
  346         return (0);
  347 }
  348 
  349 /*
  350  * "Move" mbuf pkthdr from "from" to "to".
  351  * "from" must have M_PKTHDR set, and "to" must be empty.
  352  */
  353 void
  354 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
  355 {
  356 
  357 #if 0
  358         /* see below for why these are not enabled */
  359         M_ASSERTPKTHDR(to);
  360         /* Note: with MAC, this may not be a good assertion. */
  361         KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
  362             ("m_move_pkthdr: to has tags"));
  363 #endif
  364 #ifdef MAC
  365         /*
  366          * XXXMAC: It could be this should also occur for non-MAC?
  367          */
  368         if (to->m_flags & M_PKTHDR)
  369                 m_tag_delete_chain(to, NULL);
  370 #endif
  371         to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
  372         if ((to->m_flags & M_EXT) == 0)
  373                 to->m_data = to->m_pktdat;
  374         to->m_pkthdr = from->m_pkthdr;          /* especially tags */
  375         SLIST_INIT(&from->m_pkthdr.tags);       /* purge tags from src */
  376         from->m_flags &= ~M_PKTHDR;
  377 }
  378 
  379 /*
  380  * Duplicate "from"'s mbuf pkthdr in "to".
  381  * "from" must have M_PKTHDR set, and "to" must be empty.
  382  * In particular, this does a deep copy of the packet tags.
  383  */
  384 int
  385 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
  386 {
  387 
  388 #if 0
  389         /*
  390          * The mbuf allocator only initializes the pkthdr
  391          * when the mbuf is allocated with m_gethdr(). Many users
  392          * (e.g. m_copy*, m_prepend) use m_get() and then
  393          * smash the pkthdr as needed causing these
  394          * assertions to trip.  For now just disable them.
  395          */
  396         M_ASSERTPKTHDR(to);
  397         /* Note: with MAC, this may not be a good assertion. */
  398         KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
  399 #endif
  400         MBUF_CHECKSLEEP(how);
  401 #ifdef MAC
  402         if (to->m_flags & M_PKTHDR)
  403                 m_tag_delete_chain(to, NULL);
  404 #endif
  405         to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
  406         if ((to->m_flags & M_EXT) == 0)
  407                 to->m_data = to->m_pktdat;
  408         to->m_pkthdr = from->m_pkthdr;
  409         SLIST_INIT(&to->m_pkthdr.tags);
  410         return (m_tag_copy_chain(to, from, how));
  411 }
  412 
  413 /*
  414  * Lesser-used path for M_PREPEND:
  415  * allocate new mbuf to prepend to chain,
  416  * copy junk along.
  417  */
  418 struct mbuf *
  419 m_prepend(struct mbuf *m, int len, int how)
  420 {
  421         struct mbuf *mn;
  422 
  423         if (m->m_flags & M_PKTHDR)
  424                 mn = m_gethdr(how, m->m_type);
  425         else
  426                 mn = m_get(how, m->m_type);
  427         if (mn == NULL) {
  428                 m_freem(m);
  429                 return (NULL);
  430         }
  431         if (m->m_flags & M_PKTHDR)
  432                 m_move_pkthdr(mn, m);
  433         mn->m_next = m;
  434         m = mn;
  435         if (len < M_SIZE(m))
  436                 M_ALIGN(m, len);
  437         m->m_len = len;
  438         return (m);
  439 }
  440 
  441 /*
  442  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
  443  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
  444  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
  445  * Note that the copy is read-only, because clusters are not copied,
  446  * only their reference counts are incremented.
  447  */
  448 struct mbuf *
  449 m_copym(struct mbuf *m, int off0, int len, int wait)
  450 {
  451         struct mbuf *n, **np;
  452         int off = off0;
  453         struct mbuf *top;
  454         int copyhdr = 0;
  455 
  456         KASSERT(off >= 0, ("m_copym, negative off %d", off));
  457         KASSERT(len >= 0, ("m_copym, negative len %d", len));
  458         MBUF_CHECKSLEEP(wait);
  459         if (off == 0 && m->m_flags & M_PKTHDR)
  460                 copyhdr = 1;
  461         while (off > 0) {
  462                 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
  463                 if (off < m->m_len)
  464                         break;
  465                 off -= m->m_len;
  466                 m = m->m_next;
  467         }
  468         np = &top;
  469         top = NULL;
  470         while (len > 0) {
  471                 if (m == NULL) {
  472                         KASSERT(len == M_COPYALL,
  473                             ("m_copym, length > size of mbuf chain"));
  474                         break;
  475                 }
  476                 if (copyhdr)
  477                         n = m_gethdr(wait, m->m_type);
  478                 else
  479                         n = m_get(wait, m->m_type);
  480                 *np = n;
  481                 if (n == NULL)
  482                         goto nospace;
  483                 if (copyhdr) {
  484                         if (!m_dup_pkthdr(n, m, wait))
  485                                 goto nospace;
  486                         if (len == M_COPYALL)
  487                                 n->m_pkthdr.len -= off0;
  488                         else
  489                                 n->m_pkthdr.len = len;
  490                         copyhdr = 0;
  491                 }
  492                 n->m_len = min(len, m->m_len - off);
  493                 if (m->m_flags & M_EXT) {
  494                         n->m_data = m->m_data + off;
  495                         mb_dupcl(n, m);
  496                 } else
  497                         bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
  498                             (u_int)n->m_len);
  499                 if (len != M_COPYALL)
  500                         len -= n->m_len;
  501                 off = 0;
  502                 m = m->m_next;
  503                 np = &n->m_next;
  504         }
  505 
  506         return (top);
  507 nospace:
  508         m_freem(top);
  509         return (NULL);
  510 }
  511 
  512 /*
  513  * Copy an entire packet, including header (which must be present).
  514  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
  515  * Note that the copy is read-only, because clusters are not copied,
  516  * only their reference counts are incremented.
  517  * Preserve alignment of the first mbuf so if the creator has left
  518  * some room at the beginning (e.g. for inserting protocol headers)
  519  * the copies still have the room available.
  520  */
  521 struct mbuf *
  522 m_copypacket(struct mbuf *m, int how)
  523 {
  524         struct mbuf *top, *n, *o;
  525 
  526         MBUF_CHECKSLEEP(how);
  527         n = m_get(how, m->m_type);
  528         top = n;
  529         if (n == NULL)
  530                 goto nospace;
  531 
  532         if (!m_dup_pkthdr(n, m, how))
  533                 goto nospace;
  534         n->m_len = m->m_len;
  535         if (m->m_flags & M_EXT) {
  536                 n->m_data = m->m_data;
  537                 mb_dupcl(n, m);
  538         } else {
  539                 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
  540                 bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
  541         }
  542 
  543         m = m->m_next;
  544         while (m) {
  545                 o = m_get(how, m->m_type);
  546                 if (o == NULL)
  547                         goto nospace;
  548 
  549                 n->m_next = o;
  550                 n = n->m_next;
  551 
  552                 n->m_len = m->m_len;
  553                 if (m->m_flags & M_EXT) {
  554                         n->m_data = m->m_data;
  555                         mb_dupcl(n, m);
  556                 } else {
  557                         bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
  558                 }
  559 
  560                 m = m->m_next;
  561         }
  562         return top;
  563 nospace:
  564         m_freem(top);
  565         return (NULL);
  566 }
  567 
  568 /*
  569  * Copy data from an mbuf chain starting "off" bytes from the beginning,
  570  * continuing for "len" bytes, into the indicated buffer.
  571  */
  572 void
  573 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
  574 {
  575         u_int count;
  576 
  577         KASSERT(off >= 0, ("m_copydata, negative off %d", off));
  578         KASSERT(len >= 0, ("m_copydata, negative len %d", len));
  579         while (off > 0) {
  580                 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
  581                 if (off < m->m_len)
  582                         break;
  583                 off -= m->m_len;
  584                 m = m->m_next;
  585         }
  586         while (len > 0) {
  587                 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
  588                 count = min(m->m_len - off, len);
  589                 bcopy(mtod(m, caddr_t) + off, cp, count);
  590                 len -= count;
  591                 cp += count;
  592                 off = 0;
  593                 m = m->m_next;
  594         }
  595 }
  596 
  597 /*
  598  * Copy a packet header mbuf chain into a completely new chain, including
  599  * copying any mbuf clusters.  Use this instead of m_copypacket() when
  600  * you need a writable copy of an mbuf chain.
  601  */
  602 struct mbuf *
  603 m_dup(const struct mbuf *m, int how)
  604 {
  605         struct mbuf **p, *top = NULL;
  606         int remain, moff, nsize;
  607 
  608         MBUF_CHECKSLEEP(how);
  609         /* Sanity check */
  610         if (m == NULL)
  611                 return (NULL);
  612         M_ASSERTPKTHDR(m);
  613 
  614         /* While there's more data, get a new mbuf, tack it on, and fill it */
  615         remain = m->m_pkthdr.len;
  616         moff = 0;
  617         p = &top;
  618         while (remain > 0 || top == NULL) {     /* allow m->m_pkthdr.len == 0 */
  619                 struct mbuf *n;
  620 
  621                 /* Get the next new mbuf */
  622                 if (remain >= MINCLSIZE) {
  623                         n = m_getcl(how, m->m_type, 0);
  624                         nsize = MCLBYTES;
  625                 } else {
  626                         n = m_get(how, m->m_type);
  627                         nsize = MLEN;
  628                 }
  629                 if (n == NULL)
  630                         goto nospace;
  631 
  632                 if (top == NULL) {              /* First one, must be PKTHDR */
  633                         if (!m_dup_pkthdr(n, m, how)) {
  634                                 m_free(n);
  635                                 goto nospace;
  636                         }
  637                         if ((n->m_flags & M_EXT) == 0)
  638                                 nsize = MHLEN;
  639                         n->m_flags &= ~M_RDONLY;
  640                 }
  641                 n->m_len = 0;
  642 
  643                 /* Link it into the new chain */
  644                 *p = n;
  645                 p = &n->m_next;
  646 
  647                 /* Copy data from original mbuf(s) into new mbuf */
  648                 while (n->m_len < nsize && m != NULL) {
  649                         int chunk = min(nsize - n->m_len, m->m_len - moff);
  650 
  651                         bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
  652                         moff += chunk;
  653                         n->m_len += chunk;
  654                         remain -= chunk;
  655                         if (moff == m->m_len) {
  656                                 m = m->m_next;
  657                                 moff = 0;
  658                         }
  659                 }
  660 
  661                 /* Check correct total mbuf length */
  662                 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
  663                         ("%s: bogus m_pkthdr.len", __func__));
  664         }
  665         return (top);
  666 
  667 nospace:
  668         m_freem(top);
  669         return (NULL);
  670 }
  671 
  672 /*
  673  * Concatenate mbuf chain n to m.
  674  * Both chains must be of the same type (e.g. MT_DATA).
  675  * Any m_pkthdr is not updated.
  676  */
  677 void
  678 m_cat(struct mbuf *m, struct mbuf *n)
  679 {
  680         while (m->m_next)
  681                 m = m->m_next;
  682         while (n) {
  683                 if (!M_WRITABLE(m) ||
  684                     M_TRAILINGSPACE(m) < n->m_len) {
  685                         /* just join the two chains */
  686                         m->m_next = n;
  687                         return;
  688                 }
  689                 /* splat the data from one into the other */
  690                 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
  691                     (u_int)n->m_len);
  692                 m->m_len += n->m_len;
  693                 n = m_free(n);
  694         }
  695 }
  696 
  697 /*
  698  * Concatenate two pkthdr mbuf chains.
  699  */
  700 void
  701 m_catpkt(struct mbuf *m, struct mbuf *n)
  702 {
  703 
  704         M_ASSERTPKTHDR(m);
  705         M_ASSERTPKTHDR(n);
  706 
  707         m->m_pkthdr.len += n->m_pkthdr.len;
  708         m_demote(n, 1, 0);
  709 
  710         m_cat(m, n);
  711 }
  712 
  713 void
  714 m_adj(struct mbuf *mp, int req_len)
  715 {
  716         int len = req_len;
  717         struct mbuf *m;
  718         int count;
  719 
  720         if ((m = mp) == NULL)
  721                 return;
  722         if (len >= 0) {
  723                 /*
  724                  * Trim from head.
  725                  */
  726                 while (m != NULL && len > 0) {
  727                         if (m->m_len <= len) {
  728                                 len -= m->m_len;
  729                                 m->m_len = 0;
  730                                 m = m->m_next;
  731                         } else {
  732                                 m->m_len -= len;
  733                                 m->m_data += len;
  734                                 len = 0;
  735                         }
  736                 }
  737                 if (mp->m_flags & M_PKTHDR)
  738                         mp->m_pkthdr.len -= (req_len - len);
  739         } else {
  740                 /*
  741                  * Trim from tail.  Scan the mbuf chain,
  742                  * calculating its length and finding the last mbuf.
  743                  * If the adjustment only affects this mbuf, then just
  744                  * adjust and return.  Otherwise, rescan and truncate
  745                  * after the remaining size.
  746                  */
  747                 len = -len;
  748                 count = 0;
  749                 for (;;) {
  750                         count += m->m_len;
  751                         if (m->m_next == (struct mbuf *)0)
  752                                 break;
  753                         m = m->m_next;
  754                 }
  755                 if (m->m_len >= len) {
  756                         m->m_len -= len;
  757                         if (mp->m_flags & M_PKTHDR)
  758                                 mp->m_pkthdr.len -= len;
  759                         return;
  760                 }
  761                 count -= len;
  762                 if (count < 0)
  763                         count = 0;
  764                 /*
  765                  * Correct length for chain is "count".
  766                  * Find the mbuf with last data, adjust its length,
  767                  * and toss data from remaining mbufs on chain.
  768                  */
  769                 m = mp;
  770                 if (m->m_flags & M_PKTHDR)
  771                         m->m_pkthdr.len = count;
  772                 for (; m; m = m->m_next) {
  773                         if (m->m_len >= count) {
  774                                 m->m_len = count;
  775                                 if (m->m_next != NULL) {
  776                                         m_freem(m->m_next);
  777                                         m->m_next = NULL;
  778                                 }
  779                                 break;
  780                         }
  781                         count -= m->m_len;
  782                 }
  783         }
  784 }
  785 
  786 /*
  787  * Rearange an mbuf chain so that len bytes are contiguous
  788  * and in the data area of an mbuf (so that mtod will work
  789  * for a structure of size len).  Returns the resulting
  790  * mbuf chain on success, frees it and returns null on failure.
  791  * If there is room, it will add up to max_protohdr-len extra bytes to the
  792  * contiguous region in an attempt to avoid being called next time.
  793  */
  794 struct mbuf *
  795 m_pullup(struct mbuf *n, int len)
  796 {
  797         struct mbuf *m;
  798         int count;
  799         int space;
  800 
  801         /*
  802          * If first mbuf has no cluster, and has room for len bytes
  803          * without shifting current data, pullup into it,
  804          * otherwise allocate a new mbuf to prepend to the chain.
  805          */
  806         if ((n->m_flags & M_EXT) == 0 &&
  807             n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
  808                 if (n->m_len >= len)
  809                         return (n);
  810                 m = n;
  811                 n = n->m_next;
  812                 len -= m->m_len;
  813         } else {
  814                 if (len > MHLEN)
  815                         goto bad;
  816                 m = m_get(M_NOWAIT, n->m_type);
  817                 if (m == NULL)
  818                         goto bad;
  819                 if (n->m_flags & M_PKTHDR)
  820                         m_move_pkthdr(m, n);
  821         }
  822         space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
  823         do {
  824                 count = min(min(max(len, max_protohdr), space), n->m_len);
  825                 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
  826                   (u_int)count);
  827                 len -= count;
  828                 m->m_len += count;
  829                 n->m_len -= count;
  830                 space -= count;
  831                 if (n->m_len)
  832                         n->m_data += count;
  833                 else
  834                         n = m_free(n);
  835         } while (len > 0 && n);
  836         if (len > 0) {
  837                 (void) m_free(m);
  838                 goto bad;
  839         }
  840         m->m_next = n;
  841         return (m);
  842 bad:
  843         m_freem(n);
  844         return (NULL);
  845 }
  846 
  847 /*
  848  * Like m_pullup(), except a new mbuf is always allocated, and we allow
  849  * the amount of empty space before the data in the new mbuf to be specified
  850  * (in the event that the caller expects to prepend later).
  851  */
  852 struct mbuf *
  853 m_copyup(struct mbuf *n, int len, int dstoff)
  854 {
  855         struct mbuf *m;
  856         int count, space;
  857 
  858         if (len > (MHLEN - dstoff))
  859                 goto bad;
  860         m = m_get(M_NOWAIT, n->m_type);
  861         if (m == NULL)
  862                 goto bad;
  863         if (n->m_flags & M_PKTHDR)
  864                 m_move_pkthdr(m, n);
  865         m->m_data += dstoff;
  866         space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
  867         do {
  868                 count = min(min(max(len, max_protohdr), space), n->m_len);
  869                 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
  870                     (unsigned)count);
  871                 len -= count;
  872                 m->m_len += count;
  873                 n->m_len -= count;
  874                 space -= count;
  875                 if (n->m_len)
  876                         n->m_data += count;
  877                 else
  878                         n = m_free(n);
  879         } while (len > 0 && n);
  880         if (len > 0) {
  881                 (void) m_free(m);
  882                 goto bad;
  883         }
  884         m->m_next = n;
  885         return (m);
  886  bad:
  887         m_freem(n);
  888         return (NULL);
  889 }
  890 
  891 /*
  892  * Partition an mbuf chain in two pieces, returning the tail --
  893  * all but the first len0 bytes.  In case of failure, it returns NULL and
  894  * attempts to restore the chain to its original state.
  895  *
  896  * Note that the resulting mbufs might be read-only, because the new
  897  * mbuf can end up sharing an mbuf cluster with the original mbuf if
  898  * the "breaking point" happens to lie within a cluster mbuf. Use the
  899  * M_WRITABLE() macro to check for this case.
  900  */
  901 struct mbuf *
  902 m_split(struct mbuf *m0, int len0, int wait)
  903 {
  904         struct mbuf *m, *n;
  905         u_int len = len0, remain;
  906 
  907         MBUF_CHECKSLEEP(wait);
  908         for (m = m0; m && len > m->m_len; m = m->m_next)
  909                 len -= m->m_len;
  910         if (m == NULL)
  911                 return (NULL);
  912         remain = m->m_len - len;
  913         if (m0->m_flags & M_PKTHDR && remain == 0) {
  914                 n = m_gethdr(wait, m0->m_type);
  915                 if (n == NULL)
  916                         return (NULL);
  917                 n->m_next = m->m_next;
  918                 m->m_next = NULL;
  919                 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
  920                 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
  921                 m0->m_pkthdr.len = len0;
  922                 return (n);
  923         } else if (m0->m_flags & M_PKTHDR) {
  924                 n = m_gethdr(wait, m0->m_type);
  925                 if (n == NULL)
  926                         return (NULL);
  927                 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
  928                 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
  929                 m0->m_pkthdr.len = len0;
  930                 if (m->m_flags & M_EXT)
  931                         goto extpacket;
  932                 if (remain > MHLEN) {
  933                         /* m can't be the lead packet */
  934                         M_ALIGN(n, 0);
  935                         n->m_next = m_split(m, len, wait);
  936                         if (n->m_next == NULL) {
  937                                 (void) m_free(n);
  938                                 return (NULL);
  939                         } else {
  940                                 n->m_len = 0;
  941                                 return (n);
  942                         }
  943                 } else
  944                         M_ALIGN(n, remain);
  945         } else if (remain == 0) {
  946                 n = m->m_next;
  947                 m->m_next = NULL;
  948                 return (n);
  949         } else {
  950                 n = m_get(wait, m->m_type);
  951                 if (n == NULL)
  952                         return (NULL);
  953                 M_ALIGN(n, remain);
  954         }
  955 extpacket:
  956         if (m->m_flags & M_EXT) {
  957                 n->m_data = m->m_data + len;
  958                 mb_dupcl(n, m);
  959         } else {
  960                 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
  961         }
  962         n->m_len = remain;
  963         m->m_len = len;
  964         n->m_next = m->m_next;
  965         m->m_next = NULL;
  966         return (n);
  967 }
  968 /*
  969  * Routine to copy from device local memory into mbufs.
  970  * Note that `off' argument is offset into first mbuf of target chain from
  971  * which to begin copying the data to.
  972  */
  973 struct mbuf *
  974 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
  975     void (*copy)(char *from, caddr_t to, u_int len))
  976 {
  977         struct mbuf *m;
  978         struct mbuf *top = NULL, **mp = &top;
  979         int len;
  980 
  981         if (off < 0 || off > MHLEN)
  982                 return (NULL);
  983 
  984         while (totlen > 0) {
  985                 if (top == NULL) {      /* First one, must be PKTHDR */
  986                         if (totlen + off >= MINCLSIZE) {
  987                                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
  988                                 len = MCLBYTES;
  989                         } else {
  990                                 m = m_gethdr(M_NOWAIT, MT_DATA);
  991                                 len = MHLEN;
  992 
  993                                 /* Place initial small packet/header at end of mbuf */
  994                                 if (m && totlen + off + max_linkhdr <= MHLEN) {
  995                                         m->m_data += max_linkhdr;
  996                                         len -= max_linkhdr;
  997                                 }
  998                         }
  999                         if (m == NULL)
 1000                                 return NULL;
 1001                         m->m_pkthdr.rcvif = ifp;
 1002                         m->m_pkthdr.len = totlen;
 1003                 } else {
 1004                         if (totlen + off >= MINCLSIZE) {
 1005                                 m = m_getcl(M_NOWAIT, MT_DATA, 0);
 1006                                 len = MCLBYTES;
 1007                         } else {
 1008                                 m = m_get(M_NOWAIT, MT_DATA);
 1009                                 len = MLEN;
 1010                         }
 1011                         if (m == NULL) {
 1012                                 m_freem(top);
 1013                                 return NULL;
 1014                         }
 1015                 }
 1016                 if (off) {
 1017                         m->m_data += off;
 1018                         len -= off;
 1019                         off = 0;
 1020                 }
 1021                 m->m_len = len = min(totlen, len);
 1022                 if (copy)
 1023                         copy(buf, mtod(m, caddr_t), (u_int)len);
 1024                 else
 1025                         bcopy(buf, mtod(m, caddr_t), (u_int)len);
 1026                 buf += len;
 1027                 *mp = m;
 1028                 mp = &m->m_next;
 1029                 totlen -= len;
 1030         }
 1031         return (top);
 1032 }
 1033 
 1034 /*
 1035  * Copy data from a buffer back into the indicated mbuf chain,
 1036  * starting "off" bytes from the beginning, extending the mbuf
 1037  * chain if necessary.
 1038  */
 1039 void
 1040 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
 1041 {
 1042         int mlen;
 1043         struct mbuf *m = m0, *n;
 1044         int totlen = 0;
 1045 
 1046         if (m0 == NULL)
 1047                 return;
 1048         while (off > (mlen = m->m_len)) {
 1049                 off -= mlen;
 1050                 totlen += mlen;
 1051                 if (m->m_next == NULL) {
 1052                         n = m_get(M_NOWAIT, m->m_type);
 1053                         if (n == NULL)
 1054                                 goto out;
 1055                         bzero(mtod(n, caddr_t), MLEN);
 1056                         n->m_len = min(MLEN, len + off);
 1057                         m->m_next = n;
 1058                 }
 1059                 m = m->m_next;
 1060         }
 1061         while (len > 0) {
 1062                 if (m->m_next == NULL && (len > m->m_len - off)) {
 1063                         m->m_len += min(len - (m->m_len - off),
 1064                             M_TRAILINGSPACE(m));
 1065                 }
 1066                 mlen = min (m->m_len - off, len);
 1067                 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
 1068                 cp += mlen;
 1069                 len -= mlen;
 1070                 mlen += off;
 1071                 off = 0;
 1072                 totlen += mlen;
 1073                 if (len == 0)
 1074                         break;
 1075                 if (m->m_next == NULL) {
 1076                         n = m_get(M_NOWAIT, m->m_type);
 1077                         if (n == NULL)
 1078                                 break;
 1079                         n->m_len = min(MLEN, len);
 1080                         m->m_next = n;
 1081                 }
 1082                 m = m->m_next;
 1083         }
 1084 out:    if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
 1085                 m->m_pkthdr.len = totlen;
 1086 }
 1087 
 1088 /*
 1089  * Append the specified data to the indicated mbuf chain,
 1090  * Extend the mbuf chain if the new data does not fit in
 1091  * existing space.
 1092  *
 1093  * Return 1 if able to complete the job; otherwise 0.
 1094  */
 1095 int
 1096 m_append(struct mbuf *m0, int len, c_caddr_t cp)
 1097 {
 1098         struct mbuf *m, *n;
 1099         int remainder, space;
 1100 
 1101         for (m = m0; m->m_next != NULL; m = m->m_next)
 1102                 ;
 1103         remainder = len;
 1104         space = M_TRAILINGSPACE(m);
 1105         if (space > 0) {
 1106                 /*
 1107                  * Copy into available space.
 1108                  */
 1109                 if (space > remainder)
 1110                         space = remainder;
 1111                 bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
 1112                 m->m_len += space;
 1113                 cp += space, remainder -= space;
 1114         }
 1115         while (remainder > 0) {
 1116                 /*
 1117                  * Allocate a new mbuf; could check space
 1118                  * and allocate a cluster instead.
 1119                  */
 1120                 n = m_get(M_NOWAIT, m->m_type);
 1121                 if (n == NULL)
 1122                         break;
 1123                 n->m_len = min(MLEN, remainder);
 1124                 bcopy(cp, mtod(n, caddr_t), n->m_len);
 1125                 cp += n->m_len, remainder -= n->m_len;
 1126                 m->m_next = n;
 1127                 m = n;
 1128         }
 1129         if (m0->m_flags & M_PKTHDR)
 1130                 m0->m_pkthdr.len += len - remainder;
 1131         return (remainder == 0);
 1132 }
 1133 
 1134 /*
 1135  * Apply function f to the data in an mbuf chain starting "off" bytes from
 1136  * the beginning, continuing for "len" bytes.
 1137  */
 1138 int
 1139 m_apply(struct mbuf *m, int off, int len,
 1140     int (*f)(void *, void *, u_int), void *arg)
 1141 {
 1142         u_int count;
 1143         int rval;
 1144 
 1145         KASSERT(off >= 0, ("m_apply, negative off %d", off));
 1146         KASSERT(len >= 0, ("m_apply, negative len %d", len));
 1147         while (off > 0) {
 1148                 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
 1149                 if (off < m->m_len)
 1150                         break;
 1151                 off -= m->m_len;
 1152                 m = m->m_next;
 1153         }
 1154         while (len > 0) {
 1155                 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
 1156                 count = min(m->m_len - off, len);
 1157                 rval = (*f)(arg, mtod(m, caddr_t) + off, count);
 1158                 if (rval)
 1159                         return (rval);
 1160                 len -= count;
 1161                 off = 0;
 1162                 m = m->m_next;
 1163         }
 1164         return (0);
 1165 }
 1166 
 1167 /*
 1168  * Return a pointer to mbuf/offset of location in mbuf chain.
 1169  */
 1170 struct mbuf *
 1171 m_getptr(struct mbuf *m, int loc, int *off)
 1172 {
 1173 
 1174         while (loc >= 0) {
 1175                 /* Normal end of search. */
 1176                 if (m->m_len > loc) {
 1177                         *off = loc;
 1178                         return (m);
 1179                 } else {
 1180                         loc -= m->m_len;
 1181                         if (m->m_next == NULL) {
 1182                                 if (loc == 0) {
 1183                                         /* Point at the end of valid data. */
 1184                                         *off = m->m_len;
 1185                                         return (m);
 1186                                 }
 1187                                 return (NULL);
 1188                         }
 1189                         m = m->m_next;
 1190                 }
 1191         }
 1192         return (NULL);
 1193 }
 1194 
 1195 void
 1196 m_print(const struct mbuf *m, int maxlen)
 1197 {
 1198         int len;
 1199         int pdata;
 1200         const struct mbuf *m2;
 1201 
 1202         if (m == NULL) {
 1203                 printf("mbuf: %p\n", m);
 1204                 return;
 1205         }
 1206 
 1207         if (m->m_flags & M_PKTHDR)
 1208                 len = m->m_pkthdr.len;
 1209         else
 1210                 len = -1;
 1211         m2 = m;
 1212         while (m2 != NULL && (len == -1 || len)) {
 1213                 pdata = m2->m_len;
 1214                 if (maxlen != -1 && pdata > maxlen)
 1215                         pdata = maxlen;
 1216                 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
 1217                     m2->m_next, m2->m_flags, "\2\20freelist\17skipfw"
 1218                     "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
 1219                     "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
 1220                 if (pdata)
 1221                         printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
 1222                 if (len != -1)
 1223                         len -= m2->m_len;
 1224                 m2 = m2->m_next;
 1225         }
 1226         if (len > 0)
 1227                 printf("%d bytes unaccounted for.\n", len);
 1228         return;
 1229 }
 1230 
 1231 u_int
 1232 m_fixhdr(struct mbuf *m0)
 1233 {
 1234         u_int len;
 1235 
 1236         len = m_length(m0, NULL);
 1237         m0->m_pkthdr.len = len;
 1238         return (len);
 1239 }
 1240 
 1241 u_int
 1242 m_length(struct mbuf *m0, struct mbuf **last)
 1243 {
 1244         struct mbuf *m;
 1245         u_int len;
 1246 
 1247         len = 0;
 1248         for (m = m0; m != NULL; m = m->m_next) {
 1249                 len += m->m_len;
 1250                 if (m->m_next == NULL)
 1251                         break;
 1252         }
 1253         if (last != NULL)
 1254                 *last = m;
 1255         return (len);
 1256 }
 1257 
 1258 /*
 1259  * Defragment a mbuf chain, returning the shortest possible
 1260  * chain of mbufs and clusters.  If allocation fails and
 1261  * this cannot be completed, NULL will be returned, but
 1262  * the passed in chain will be unchanged.  Upon success,
 1263  * the original chain will be freed, and the new chain
 1264  * will be returned.
 1265  *
 1266  * If a non-packet header is passed in, the original
 1267  * mbuf (chain?) will be returned unharmed.
 1268  */
 1269 struct mbuf *
 1270 m_defrag(struct mbuf *m0, int how)
 1271 {
 1272         struct mbuf *m_new = NULL, *m_final = NULL;
 1273         int progress = 0, length;
 1274 
 1275         MBUF_CHECKSLEEP(how);
 1276         if (!(m0->m_flags & M_PKTHDR))
 1277                 return (m0);
 1278 
 1279         m_fixhdr(m0); /* Needed sanity check */
 1280 
 1281 #ifdef MBUF_STRESS_TEST
 1282         if (m_defragrandomfailures) {
 1283                 int temp = arc4random() & 0xff;
 1284                 if (temp == 0xba)
 1285                         goto nospace;
 1286         }
 1287 #endif
 1288 
 1289         if (m0->m_pkthdr.len > MHLEN)
 1290                 m_final = m_getcl(how, MT_DATA, M_PKTHDR);
 1291         else
 1292                 m_final = m_gethdr(how, MT_DATA);
 1293 
 1294         if (m_final == NULL)
 1295                 goto nospace;
 1296 
 1297         if (m_dup_pkthdr(m_final, m0, how) == 0)
 1298                 goto nospace;
 1299 
 1300         m_new = m_final;
 1301 
 1302         while (progress < m0->m_pkthdr.len) {
 1303                 length = m0->m_pkthdr.len - progress;
 1304                 if (length > MCLBYTES)
 1305                         length = MCLBYTES;
 1306 
 1307                 if (m_new == NULL) {
 1308                         if (length > MLEN)
 1309                                 m_new = m_getcl(how, MT_DATA, 0);
 1310                         else
 1311                                 m_new = m_get(how, MT_DATA);
 1312                         if (m_new == NULL)
 1313                                 goto nospace;
 1314                 }
 1315 
 1316                 m_copydata(m0, progress, length, mtod(m_new, caddr_t));
 1317                 progress += length;
 1318                 m_new->m_len = length;
 1319                 if (m_new != m_final)
 1320                         m_cat(m_final, m_new);
 1321                 m_new = NULL;
 1322         }
 1323 #ifdef MBUF_STRESS_TEST
 1324         if (m0->m_next == NULL)
 1325                 m_defraguseless++;
 1326 #endif
 1327         m_freem(m0);
 1328         m0 = m_final;
 1329 #ifdef MBUF_STRESS_TEST
 1330         m_defragpackets++;
 1331         m_defragbytes += m0->m_pkthdr.len;
 1332 #endif
 1333         return (m0);
 1334 nospace:
 1335 #ifdef MBUF_STRESS_TEST
 1336         m_defragfailure++;
 1337 #endif
 1338         if (m_final)
 1339                 m_freem(m_final);
 1340         return (NULL);
 1341 }
 1342 
 1343 /*
 1344  * Defragment an mbuf chain, returning at most maxfrags separate
 1345  * mbufs+clusters.  If this is not possible NULL is returned and
 1346  * the original mbuf chain is left in it's present (potentially
 1347  * modified) state.  We use two techniques: collapsing consecutive
 1348  * mbufs and replacing consecutive mbufs by a cluster.
 1349  *
 1350  * NB: this should really be named m_defrag but that name is taken
 1351  */
 1352 struct mbuf *
 1353 m_collapse(struct mbuf *m0, int how, int maxfrags)
 1354 {
 1355         struct mbuf *m, *n, *n2, **prev;
 1356         u_int curfrags;
 1357 
 1358         /*
 1359          * Calculate the current number of frags.
 1360          */
 1361         curfrags = 0;
 1362         for (m = m0; m != NULL; m = m->m_next)
 1363                 curfrags++;
 1364         /*
 1365          * First, try to collapse mbufs.  Note that we always collapse
 1366          * towards the front so we don't need to deal with moving the
 1367          * pkthdr.  This may be suboptimal if the first mbuf has much
 1368          * less data than the following.
 1369          */
 1370         m = m0;
 1371 again:
 1372         for (;;) {
 1373                 n = m->m_next;
 1374                 if (n == NULL)
 1375                         break;
 1376                 if (M_WRITABLE(m) &&
 1377                     n->m_len < M_TRAILINGSPACE(m)) {
 1378                         bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
 1379                                 n->m_len);
 1380                         m->m_len += n->m_len;
 1381                         m->m_next = n->m_next;
 1382                         m_free(n);
 1383                         if (--curfrags <= maxfrags)
 1384                                 return m0;
 1385                 } else
 1386                         m = n;
 1387         }
 1388         KASSERT(maxfrags > 1,
 1389                 ("maxfrags %u, but normal collapse failed", maxfrags));
 1390         /*
 1391          * Collapse consecutive mbufs to a cluster.
 1392          */
 1393         prev = &m0->m_next;             /* NB: not the first mbuf */
 1394         while ((n = *prev) != NULL) {
 1395                 if ((n2 = n->m_next) != NULL &&
 1396                     n->m_len + n2->m_len < MCLBYTES) {
 1397                         m = m_getcl(how, MT_DATA, 0);
 1398                         if (m == NULL)
 1399                                 goto bad;
 1400                         bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
 1401                         bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
 1402                                 n2->m_len);
 1403                         m->m_len = n->m_len + n2->m_len;
 1404                         m->m_next = n2->m_next;
 1405                         *prev = m;
 1406                         m_free(n);
 1407                         m_free(n2);
 1408                         if (--curfrags <= maxfrags)     /* +1 cl -2 mbufs */
 1409                                 return m0;
 1410                         /*
 1411                          * Still not there, try the normal collapse
 1412                          * again before we allocate another cluster.
 1413                          */
 1414                         goto again;
 1415                 }
 1416                 prev = &n->m_next;
 1417         }
 1418         /*
 1419          * No place where we can collapse to a cluster; punt.
 1420          * This can occur if, for example, you request 2 frags
 1421          * but the packet requires that both be clusters (we
 1422          * never reallocate the first mbuf to avoid moving the
 1423          * packet header).
 1424          */
 1425 bad:
 1426         return NULL;
 1427 }
 1428 
 1429 #ifdef MBUF_STRESS_TEST
 1430 
 1431 /*
 1432  * Fragment an mbuf chain.  There's no reason you'd ever want to do
 1433  * this in normal usage, but it's great for stress testing various
 1434  * mbuf consumers.
 1435  *
 1436  * If fragmentation is not possible, the original chain will be
 1437  * returned.
 1438  *
 1439  * Possible length values:
 1440  * 0     no fragmentation will occur
 1441  * > 0  each fragment will be of the specified length
 1442  * -1   each fragment will be the same random value in length
 1443  * -2   each fragment's length will be entirely random
 1444  * (Random values range from 1 to 256)
 1445  */
 1446 struct mbuf *
 1447 m_fragment(struct mbuf *m0, int how, int length)
 1448 {
 1449         struct mbuf *m_first, *m_last;
 1450         int divisor = 255, progress = 0, fraglen;
 1451 
 1452         if (!(m0->m_flags & M_PKTHDR))
 1453                 return (m0);
 1454 
 1455         if (length == 0 || length < -2)
 1456                 return (m0);
 1457         if (length > MCLBYTES)
 1458                 length = MCLBYTES;
 1459         if (length < 0 && divisor > MCLBYTES)
 1460                 divisor = MCLBYTES;
 1461         if (length == -1)
 1462                 length = 1 + (arc4random() % divisor);
 1463         if (length > 0)
 1464                 fraglen = length;
 1465 
 1466         m_fixhdr(m0); /* Needed sanity check */
 1467 
 1468         m_first = m_getcl(how, MT_DATA, M_PKTHDR);
 1469         if (m_first == NULL)
 1470                 goto nospace;
 1471 
 1472         if (m_dup_pkthdr(m_first, m0, how) == 0)
 1473                 goto nospace;
 1474 
 1475         m_last = m_first;
 1476 
 1477         while (progress < m0->m_pkthdr.len) {
 1478                 if (length == -2)
 1479                         fraglen = 1 + (arc4random() % divisor);
 1480                 if (fraglen > m0->m_pkthdr.len - progress)
 1481                         fraglen = m0->m_pkthdr.len - progress;
 1482 
 1483                 if (progress != 0) {
 1484                         struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
 1485                         if (m_new == NULL)
 1486                                 goto nospace;
 1487 
 1488                         m_last->m_next = m_new;
 1489                         m_last = m_new;
 1490                 }
 1491 
 1492                 m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
 1493                 progress += fraglen;
 1494                 m_last->m_len = fraglen;
 1495         }
 1496         m_freem(m0);
 1497         m0 = m_first;
 1498         return (m0);
 1499 nospace:
 1500         if (m_first)
 1501                 m_freem(m_first);
 1502         /* Return the original chain on failure */
 1503         return (m0);
 1504 }
 1505 
 1506 #endif
 1507 
 1508 /*
 1509  * Copy the contents of uio into a properly sized mbuf chain.
 1510  */
 1511 struct mbuf *
 1512 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
 1513 {
 1514         struct mbuf *m, *mb;
 1515         int error, length;
 1516         ssize_t total;
 1517         int progress = 0;
 1518 
 1519         /*
 1520          * len can be zero or an arbitrary large value bound by
 1521          * the total data supplied by the uio.
 1522          */
 1523         if (len > 0)
 1524                 total = min(uio->uio_resid, len);
 1525         else
 1526                 total = uio->uio_resid;
 1527 
 1528         /*
 1529          * The smallest unit returned by m_getm2() is a single mbuf
 1530          * with pkthdr.  We can't align past it.
 1531          */
 1532         if (align >= MHLEN)
 1533                 return (NULL);
 1534 
 1535         /*
 1536          * Give us the full allocation or nothing.
 1537          * If len is zero return the smallest empty mbuf.
 1538          */
 1539         m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
 1540         if (m == NULL)
 1541                 return (NULL);
 1542         m->m_data += align;
 1543 
 1544         /* Fill all mbufs with uio data and update header information. */
 1545         for (mb = m; mb != NULL; mb = mb->m_next) {
 1546                 length = min(M_TRAILINGSPACE(mb), total - progress);
 1547 
 1548                 error = uiomove(mtod(mb, void *), length, uio);
 1549                 if (error) {
 1550                         m_freem(m);
 1551                         return (NULL);
 1552                 }
 1553 
 1554                 mb->m_len = length;
 1555                 progress += length;
 1556                 if (flags & M_PKTHDR)
 1557                         m->m_pkthdr.len += length;
 1558         }
 1559         KASSERT(progress == total, ("%s: progress != total", __func__));
 1560 
 1561         return (m);
 1562 }
 1563 
 1564 /*
 1565  * Copy an mbuf chain into a uio limited by len if set.
 1566  */
 1567 int
 1568 m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
 1569 {
 1570         int error, length, total;
 1571         int progress = 0;
 1572 
 1573         if (len > 0)
 1574                 total = min(uio->uio_resid, len);
 1575         else
 1576                 total = uio->uio_resid;
 1577 
 1578         /* Fill the uio with data from the mbufs. */
 1579         for (; m != NULL; m = m->m_next) {
 1580                 length = min(m->m_len, total - progress);
 1581 
 1582                 error = uiomove(mtod(m, void *), length, uio);
 1583                 if (error)
 1584                         return (error);
 1585 
 1586                 progress += length;
 1587         }
 1588 
 1589         return (0);
 1590 }
 1591 
 1592 /*
 1593  * Create a writable copy of the mbuf chain.  While doing this
 1594  * we compact the chain with a goal of producing a chain with
 1595  * at most two mbufs.  The second mbuf in this chain is likely
 1596  * to be a cluster.  The primary purpose of this work is to create
 1597  * a writable packet for encryption, compression, etc.  The
 1598  * secondary goal is to linearize the data so the data can be
 1599  * passed to crypto hardware in the most efficient manner possible.
 1600  */
 1601 struct mbuf *
 1602 m_unshare(struct mbuf *m0, int how)
 1603 {
 1604         struct mbuf *m, *mprev;
 1605         struct mbuf *n, *mfirst, *mlast;
 1606         int len, off;
 1607 
 1608         mprev = NULL;
 1609         for (m = m0; m != NULL; m = mprev->m_next) {
 1610                 /*
 1611                  * Regular mbufs are ignored unless there's a cluster
 1612                  * in front of it that we can use to coalesce.  We do
 1613                  * the latter mainly so later clusters can be coalesced
 1614                  * also w/o having to handle them specially (i.e. convert
 1615                  * mbuf+cluster -> cluster).  This optimization is heavily
 1616                  * influenced by the assumption that we're running over
 1617                  * Ethernet where MCLBYTES is large enough that the max
 1618                  * packet size will permit lots of coalescing into a
 1619                  * single cluster.  This in turn permits efficient
 1620                  * crypto operations, especially when using hardware.
 1621                  */
 1622                 if ((m->m_flags & M_EXT) == 0) {
 1623                         if (mprev && (mprev->m_flags & M_EXT) &&
 1624                             m->m_len <= M_TRAILINGSPACE(mprev)) {
 1625                                 /* XXX: this ignores mbuf types */
 1626                                 memcpy(mtod(mprev, caddr_t) + mprev->m_len,
 1627                                     mtod(m, caddr_t), m->m_len);
 1628                                 mprev->m_len += m->m_len;
 1629                                 mprev->m_next = m->m_next;      /* unlink from chain */
 1630                                 m_free(m);                      /* reclaim mbuf */
 1631 #if 0
 1632                                 newipsecstat.ips_mbcoalesced++;
 1633 #endif
 1634                         } else {
 1635                                 mprev = m;
 1636                         }
 1637                         continue;
 1638                 }
 1639                 /*
 1640                  * Writable mbufs are left alone (for now).
 1641                  */
 1642                 if (M_WRITABLE(m)) {
 1643                         mprev = m;
 1644                         continue;
 1645                 }
 1646 
 1647                 /*
 1648                  * Not writable, replace with a copy or coalesce with
 1649                  * the previous mbuf if possible (since we have to copy
 1650                  * it anyway, we try to reduce the number of mbufs and
 1651                  * clusters so that future work is easier).
 1652                  */
 1653                 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
 1654                 /* NB: we only coalesce into a cluster or larger */
 1655                 if (mprev != NULL && (mprev->m_flags & M_EXT) &&
 1656                     m->m_len <= M_TRAILINGSPACE(mprev)) {
 1657                         /* XXX: this ignores mbuf types */
 1658                         memcpy(mtod(mprev, caddr_t) + mprev->m_len,
 1659                             mtod(m, caddr_t), m->m_len);
 1660                         mprev->m_len += m->m_len;
 1661                         mprev->m_next = m->m_next;      /* unlink from chain */
 1662                         m_free(m);                      /* reclaim mbuf */
 1663 #if 0
 1664                         newipsecstat.ips_clcoalesced++;
 1665 #endif
 1666                         continue;
 1667                 }
 1668 
 1669                 /*
 1670                  * Allocate new space to hold the copy and copy the data.
 1671                  * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
 1672                  * splitting them into clusters.  We could just malloc a
 1673                  * buffer and make it external but too many device drivers
 1674                  * don't know how to break up the non-contiguous memory when
 1675                  * doing DMA.
 1676                  */
 1677                 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
 1678                 if (n == NULL) {
 1679                         m_freem(m0);
 1680                         return (NULL);
 1681                 }
 1682                 if (m->m_flags & M_PKTHDR) {
 1683                         KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
 1684                             __func__, m0, m));
 1685                         m_move_pkthdr(n, m);
 1686                 }
 1687                 len = m->m_len;
 1688                 off = 0;
 1689                 mfirst = n;
 1690                 mlast = NULL;
 1691                 for (;;) {
 1692                         int cc = min(len, MCLBYTES);
 1693                         memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
 1694                         n->m_len = cc;
 1695                         if (mlast != NULL)
 1696                                 mlast->m_next = n;
 1697                         mlast = n;
 1698 #if 0
 1699                         newipsecstat.ips_clcopied++;
 1700 #endif
 1701 
 1702                         len -= cc;
 1703                         if (len <= 0)
 1704                                 break;
 1705                         off += cc;
 1706 
 1707                         n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
 1708                         if (n == NULL) {
 1709                                 m_freem(mfirst);
 1710                                 m_freem(m0);
 1711                                 return (NULL);
 1712                         }
 1713                 }
 1714                 n->m_next = m->m_next;
 1715                 if (mprev == NULL)
 1716                         m0 = mfirst;            /* new head of chain */
 1717                 else
 1718                         mprev->m_next = mfirst; /* replace old mbuf */
 1719                 m_free(m);                      /* release old mbuf */
 1720                 mprev = mfirst;
 1721         }
 1722         return (m0);
 1723 }
 1724 
 1725 #ifdef MBUF_PROFILING
 1726 
 1727 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
 1728 struct mbufprofile {
 1729         uintmax_t wasted[MP_BUCKETS];
 1730         uintmax_t used[MP_BUCKETS];
 1731         uintmax_t segments[MP_BUCKETS];
 1732 } mbprof;
 1733 
 1734 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */
 1735 #define MP_NUMLINES 6
 1736 #define MP_NUMSPERLINE 16
 1737 #define MP_EXTRABYTES 64        /* > strlen("used:\nwasted:\nsegments:\n") */
 1738 /* work out max space needed and add a bit of spare space too */
 1739 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
 1740 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
 1741 
 1742 char mbprofbuf[MP_BUFSIZE];
 1743 
 1744 void
 1745 m_profile(struct mbuf *m)
 1746 {
 1747         int segments = 0;
 1748         int used = 0;
 1749         int wasted = 0;
 1750 
 1751         while (m) {
 1752                 segments++;
 1753                 used += m->m_len;
 1754                 if (m->m_flags & M_EXT) {
 1755                         wasted += MHLEN - sizeof(m->m_ext) +
 1756                             m->m_ext.ext_size - m->m_len;
 1757                 } else {
 1758                         if (m->m_flags & M_PKTHDR)
 1759                                 wasted += MHLEN - m->m_len;
 1760                         else
 1761                                 wasted += MLEN - m->m_len;
 1762                 }
 1763                 m = m->m_next;
 1764         }
 1765         /* be paranoid.. it helps */
 1766         if (segments > MP_BUCKETS - 1)
 1767                 segments = MP_BUCKETS - 1;
 1768         if (used > 100000)
 1769                 used = 100000;
 1770         if (wasted > 100000)
 1771                 wasted = 100000;
 1772         /* store in the appropriate bucket */
 1773         /* don't bother locking. if it's slightly off, so what? */
 1774         mbprof.segments[segments]++;
 1775         mbprof.used[fls(used)]++;
 1776         mbprof.wasted[fls(wasted)]++;
 1777 }
 1778 
 1779 static void
 1780 mbprof_textify(void)
 1781 {
 1782         int offset;
 1783         char *c;
 1784         uint64_t *p;
 1785 
 1786         p = &mbprof.wasted[0];
 1787         c = mbprofbuf;
 1788         offset = snprintf(c, MP_MAXLINE + 10,
 1789             "wasted:\n"
 1790             "%ju %ju %ju %ju %ju %ju %ju %ju "
 1791             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 1792             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 1793             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 1794 #ifdef BIG_ARRAY
 1795         p = &mbprof.wasted[16];
 1796         c += offset;
 1797         offset = snprintf(c, MP_MAXLINE,
 1798             "%ju %ju %ju %ju %ju %ju %ju %ju "
 1799             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 1800             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 1801             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 1802 #endif
 1803         p = &mbprof.used[0];
 1804         c += offset;
 1805         offset = snprintf(c, MP_MAXLINE + 10,
 1806             "used:\n"
 1807             "%ju %ju %ju %ju %ju %ju %ju %ju "
 1808             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 1809             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 1810             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 1811 #ifdef BIG_ARRAY
 1812         p = &mbprof.used[16];
 1813         c += offset;
 1814         offset = snprintf(c, MP_MAXLINE,
 1815             "%ju %ju %ju %ju %ju %ju %ju %ju "
 1816             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 1817             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 1818             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 1819 #endif
 1820         p = &mbprof.segments[0];
 1821         c += offset;
 1822         offset = snprintf(c, MP_MAXLINE + 10,
 1823             "segments:\n"
 1824             "%ju %ju %ju %ju %ju %ju %ju %ju "
 1825             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 1826             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 1827             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 1828 #ifdef BIG_ARRAY
 1829         p = &mbprof.segments[16];
 1830         c += offset;
 1831         offset = snprintf(c, MP_MAXLINE,
 1832             "%ju %ju %ju %ju %ju %ju %ju %ju "
 1833             "%ju %ju %ju %ju %ju %ju %ju %jju",
 1834             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 1835             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 1836 #endif
 1837 }
 1838 
 1839 static int
 1840 mbprof_handler(SYSCTL_HANDLER_ARGS)
 1841 {
 1842         int error;
 1843 
 1844         mbprof_textify();
 1845         error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
 1846         return (error);
 1847 }
 1848 
 1849 static int
 1850 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
 1851 {
 1852         int clear, error;
 1853 
 1854         clear = 0;
 1855         error = sysctl_handle_int(oidp, &clear, 0, req);
 1856         if (error || !req->newptr)
 1857                 return (error);
 1858 
 1859         if (clear) {
 1860                 bzero(&mbprof, sizeof(mbprof));
 1861         }
 1862 
 1863         return (error);
 1864 }
 1865 
 1866 
 1867 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
 1868             NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
 1869 
 1870 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
 1871             NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
 1872 #endif
 1873 

Cache object: 0ea41b878b10309f648a887d28284754


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.