The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_mbuf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_param.h"
   38 #include "opt_mbuf_stress_test.h"
   39 #include "opt_mbuf_profiling.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/kernel.h>
   44 #include <sys/limits.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mbuf.h>
   48 #include <sys/sysctl.h>
   49 #include <sys/domain.h>
   50 #include <sys/protosw.h>
   51 #include <sys/uio.h>
   52 #include <sys/sdt.h>
   53 
   54 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
   55     "struct mbuf *", "mbufinfo_t *",
   56     "uint32_t", "uint32_t",
   57     "uint16_t", "uint16_t",
   58     "uint32_t", "uint32_t",
   59     "uint32_t", "uint32_t");
   60 
   61 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
   62     "uint32_t", "uint32_t",
   63     "uint16_t", "uint16_t",
   64     "struct mbuf *", "mbufinfo_t *");
   65 
   66 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
   67     "uint32_t", "uint32_t",
   68     "uint16_t", "uint16_t",
   69     "struct mbuf *", "mbufinfo_t *");
   70 
   71 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
   72     "uint32_t", "uint32_t",
   73     "uint16_t", "uint16_t",
   74     "uint32_t", "uint32_t",
   75     "struct mbuf *", "mbufinfo_t *");
   76 
   77 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl,
   78     "uint32_t", "uint32_t",
   79     "uint16_t", "uint16_t",
   80     "uint32_t", "uint32_t",
   81     "uint32_t", "uint32_t",
   82     "struct mbuf *", "mbufinfo_t *");
   83 
   84 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
   85     "struct mbuf *", "mbufinfo_t *",
   86     "uint32_t", "uint32_t",
   87     "uint32_t", "uint32_t");
   88 
   89 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
   90     "struct mbuf *", "mbufinfo_t *",
   91     "uint32_t", "uint32_t",
   92     "uint32_t", "uint32_t",
   93     "void*", "void*");
   94 
   95 SDT_PROBE_DEFINE(sdt, , , m__cljset);
   96 
   97 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
   98         "struct mbuf *", "mbufinfo_t *");
   99 
  100 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
  101     "struct mbuf *", "mbufinfo_t *");
  102 
  103 #include <security/mac/mac_framework.h>
  104 
  105 int     max_linkhdr;
  106 int     max_protohdr;
  107 int     max_hdr;
  108 int     max_datalen;
  109 #ifdef MBUF_STRESS_TEST
  110 int     m_defragpackets;
  111 int     m_defragbytes;
  112 int     m_defraguseless;
  113 int     m_defragfailure;
  114 int     m_defragrandomfailures;
  115 #endif
  116 
  117 /*
  118  * sysctl(8) exported objects
  119  */
  120 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
  121            &max_linkhdr, 0, "Size of largest link layer header");
  122 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
  123            &max_protohdr, 0, "Size of largest protocol layer header");
  124 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
  125            &max_hdr, 0, "Size of largest link plus protocol header");
  126 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
  127            &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
  128 #ifdef MBUF_STRESS_TEST
  129 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
  130            &m_defragpackets, 0, "");
  131 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
  132            &m_defragbytes, 0, "");
  133 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
  134            &m_defraguseless, 0, "");
  135 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
  136            &m_defragfailure, 0, "");
  137 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
  138            &m_defragrandomfailures, 0, "");
  139 #endif
  140 
  141 /*
  142  * Ensure the correct size of various mbuf parameters.  It could be off due
  143  * to compiler-induced padding and alignment artifacts.
  144  */
  145 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
  146 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
  147 
  148 /*
  149  * mbuf data storage should be 64-bit aligned regardless of architectural
  150  * pointer size; check this is the case with and without a packet header.
  151  */
  152 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
  153 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
  154 
  155 /*
  156  * While the specific values here don't matter too much (i.e., +/- a few
  157  * words), we do want to ensure that changes to these values are carefully
  158  * reasoned about and properly documented.  This is especially the case as
  159  * network-protocol and device-driver modules encode these layouts, and must
  160  * be recompiled if the structures change.  Check these values at compile time
  161  * against the ones documented in comments in mbuf.h.
  162  *
  163  * NB: Possibly they should be documented there via #define's and not just
  164  * comments.
  165  */
  166 #if defined(__LP64__)
  167 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
  168 CTASSERT(sizeof(struct pkthdr) == 56);
  169 CTASSERT(sizeof(struct m_ext) == 48);
  170 #else
  171 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
  172 CTASSERT(sizeof(struct pkthdr) == 48);
  173 CTASSERT(sizeof(struct m_ext) == 28);
  174 #endif
  175 
  176 /*
  177  * Assert that the queue(3) macros produce code of the same size as an old
  178  * plain pointer does.
  179  */
  180 #ifdef INVARIANTS
  181 static struct mbuf __used m_assertbuf;
  182 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
  183 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
  184 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
  185 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
  186 #endif
  187 
  188 /*
  189  * Attach the cluster from *m to *n, set up m_ext in *n
  190  * and bump the refcount of the cluster.
  191  */
  192 void
  193 mb_dupcl(struct mbuf *n, struct mbuf *m)
  194 {
  195         volatile u_int *refcnt;
  196 
  197         KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
  198         KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n));
  199 
  200         /*
  201          * Cache access optimization.  For most kinds of external
  202          * storage we don't need full copy of m_ext, since the
  203          * holder of the 'ext_count' is responsible to carry the
  204          * free routine and its arguments.  Exclusion is EXT_EXTREF,
  205          * where 'ext_cnt' doesn't point into mbuf at all.
  206          */
  207         if (m->m_ext.ext_type == EXT_EXTREF)
  208                 bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
  209         else
  210                 bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
  211         n->m_flags |= M_EXT;
  212         n->m_flags |= m->m_flags & M_RDONLY;
  213 
  214         /* See if this is the mbuf that holds the embedded refcount. */
  215         if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
  216                 refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
  217                 n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
  218         } else {
  219                 KASSERT(m->m_ext.ext_cnt != NULL,
  220                     ("%s: no refcounting pointer on %p", __func__, m));
  221                 refcnt = m->m_ext.ext_cnt;
  222         }
  223 
  224         if (*refcnt == 1)
  225                 *refcnt += 1;
  226         else
  227                 atomic_add_int(refcnt, 1);
  228 }
  229 
  230 void
  231 m_demote_pkthdr(struct mbuf *m)
  232 {
  233 
  234         M_ASSERTPKTHDR(m);
  235 
  236         m_tag_delete_chain(m, NULL);
  237         m->m_flags &= ~M_PKTHDR;
  238         bzero(&m->m_pkthdr, sizeof(struct pkthdr));
  239 }
  240 
  241 /*
  242  * Clean up mbuf (chain) from any tags and packet headers.
  243  * If "all" is set then the first mbuf in the chain will be
  244  * cleaned too.
  245  */
  246 void
  247 m_demote(struct mbuf *m0, int all, int flags)
  248 {
  249         struct mbuf *m;
  250 
  251         for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
  252                 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
  253                     __func__, m, m0));
  254                 if (m->m_flags & M_PKTHDR)
  255                         m_demote_pkthdr(m);
  256                 m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags);
  257         }
  258 }
  259 
  260 /*
  261  * Sanity checks on mbuf (chain) for use in KASSERT() and general
  262  * debugging.
  263  * Returns 0 or panics when bad and 1 on all tests passed.
  264  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
  265  * blow up later.
  266  */
  267 int
  268 m_sanity(struct mbuf *m0, int sanitize)
  269 {
  270         struct mbuf *m;
  271         caddr_t a, b;
  272         int pktlen = 0;
  273 
  274 #ifdef INVARIANTS
  275 #define M_SANITY_ACTION(s)      panic("mbuf %p: " s, m)
  276 #else
  277 #define M_SANITY_ACTION(s)      printf("mbuf %p: " s, m)
  278 #endif
  279 
  280         for (m = m0; m != NULL; m = m->m_next) {
  281                 /*
  282                  * Basic pointer checks.  If any of these fails then some
  283                  * unrelated kernel memory before or after us is trashed.
  284                  * No way to recover from that.
  285                  */
  286                 a = M_START(m);
  287                 b = a + M_SIZE(m);
  288                 if ((caddr_t)m->m_data < a)
  289                         M_SANITY_ACTION("m_data outside mbuf data range left");
  290                 if ((caddr_t)m->m_data > b)
  291                         M_SANITY_ACTION("m_data outside mbuf data range right");
  292                 if ((caddr_t)m->m_data + m->m_len > b)
  293                         M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
  294 
  295                 /* m->m_nextpkt may only be set on first mbuf in chain. */
  296                 if (m != m0 && m->m_nextpkt != NULL) {
  297                         if (sanitize) {
  298                                 m_freem(m->m_nextpkt);
  299                                 m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
  300                         } else
  301                                 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
  302                 }
  303 
  304                 /* packet length (not mbuf length!) calculation */
  305                 if (m0->m_flags & M_PKTHDR)
  306                         pktlen += m->m_len;
  307 
  308                 /* m_tags may only be attached to first mbuf in chain. */
  309                 if (m != m0 && m->m_flags & M_PKTHDR &&
  310                     !SLIST_EMPTY(&m->m_pkthdr.tags)) {
  311                         if (sanitize) {
  312                                 m_tag_delete_chain(m, NULL);
  313                                 /* put in 0xDEADC0DE perhaps? */
  314                         } else
  315                                 M_SANITY_ACTION("m_tags on in-chain mbuf");
  316                 }
  317 
  318                 /* M_PKTHDR may only be set on first mbuf in chain */
  319                 if (m != m0 && m->m_flags & M_PKTHDR) {
  320                         if (sanitize) {
  321                                 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
  322                                 m->m_flags &= ~M_PKTHDR;
  323                                 /* put in 0xDEADCODE and leave hdr flag in */
  324                         } else
  325                                 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
  326                 }
  327         }
  328         m = m0;
  329         if (pktlen && pktlen != m->m_pkthdr.len) {
  330                 if (sanitize)
  331                         m->m_pkthdr.len = 0;
  332                 else
  333                         M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
  334         }
  335         return 1;
  336 
  337 #undef  M_SANITY_ACTION
  338 }
  339 
  340 /*
  341  * Non-inlined part of m_init().
  342  */
  343 int
  344 m_pkthdr_init(struct mbuf *m, int how)
  345 {
  346 #ifdef MAC
  347         int error;
  348 #endif
  349         m->m_data = m->m_pktdat;
  350         bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
  351 #ifdef MAC
  352         /* If the label init fails, fail the alloc */
  353         error = mac_mbuf_init(m, how);
  354         if (error)
  355                 return (error);
  356 #endif
  357 
  358         return (0);
  359 }
  360 
  361 /*
  362  * "Move" mbuf pkthdr from "from" to "to".
  363  * "from" must have M_PKTHDR set, and "to" must be empty.
  364  */
  365 void
  366 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
  367 {
  368 
  369 #if 0
  370         /* see below for why these are not enabled */
  371         M_ASSERTPKTHDR(to);
  372         /* Note: with MAC, this may not be a good assertion. */
  373         KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
  374             ("m_move_pkthdr: to has tags"));
  375 #endif
  376 #ifdef MAC
  377         /*
  378          * XXXMAC: It could be this should also occur for non-MAC?
  379          */
  380         if (to->m_flags & M_PKTHDR)
  381                 m_tag_delete_chain(to, NULL);
  382 #endif
  383         to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
  384         if ((to->m_flags & M_EXT) == 0)
  385                 to->m_data = to->m_pktdat;
  386         to->m_pkthdr = from->m_pkthdr;          /* especially tags */
  387         SLIST_INIT(&from->m_pkthdr.tags);       /* purge tags from src */
  388         from->m_flags &= ~M_PKTHDR;
  389 }
  390 
  391 /*
  392  * Duplicate "from"'s mbuf pkthdr in "to".
  393  * "from" must have M_PKTHDR set, and "to" must be empty.
  394  * In particular, this does a deep copy of the packet tags.
  395  */
  396 int
  397 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
  398 {
  399 
  400 #if 0
  401         /*
  402          * The mbuf allocator only initializes the pkthdr
  403          * when the mbuf is allocated with m_gethdr(). Many users
  404          * (e.g. m_copy*, m_prepend) use m_get() and then
  405          * smash the pkthdr as needed causing these
  406          * assertions to trip.  For now just disable them.
  407          */
  408         M_ASSERTPKTHDR(to);
  409         /* Note: with MAC, this may not be a good assertion. */
  410         KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
  411 #endif
  412         MBUF_CHECKSLEEP(how);
  413 #ifdef MAC
  414         if (to->m_flags & M_PKTHDR)
  415                 m_tag_delete_chain(to, NULL);
  416 #endif
  417         to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
  418         if ((to->m_flags & M_EXT) == 0)
  419                 to->m_data = to->m_pktdat;
  420         to->m_pkthdr = from->m_pkthdr;
  421         SLIST_INIT(&to->m_pkthdr.tags);
  422         return (m_tag_copy_chain(to, from, how));
  423 }
  424 
  425 /*
  426  * Lesser-used path for M_PREPEND:
  427  * allocate new mbuf to prepend to chain,
  428  * copy junk along.
  429  */
  430 struct mbuf *
  431 m_prepend(struct mbuf *m, int len, int how)
  432 {
  433         struct mbuf *mn;
  434 
  435         if (m->m_flags & M_PKTHDR)
  436                 mn = m_gethdr(how, m->m_type);
  437         else
  438                 mn = m_get(how, m->m_type);
  439         if (mn == NULL) {
  440                 m_freem(m);
  441                 return (NULL);
  442         }
  443         if (m->m_flags & M_PKTHDR)
  444                 m_move_pkthdr(mn, m);
  445         mn->m_next = m;
  446         m = mn;
  447         if (len < M_SIZE(m))
  448                 M_ALIGN(m, len);
  449         m->m_len = len;
  450         return (m);
  451 }
  452 
  453 /*
  454  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
  455  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
  456  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
  457  * Note that the copy is read-only, because clusters are not copied,
  458  * only their reference counts are incremented.
  459  */
  460 struct mbuf *
  461 m_copym(struct mbuf *m, int off0, int len, int wait)
  462 {
  463         struct mbuf *n, **np;
  464         int off = off0;
  465         struct mbuf *top;
  466         int copyhdr = 0;
  467 
  468         KASSERT(off >= 0, ("m_copym, negative off %d", off));
  469         KASSERT(len >= 0, ("m_copym, negative len %d", len));
  470         MBUF_CHECKSLEEP(wait);
  471         if (off == 0 && m->m_flags & M_PKTHDR)
  472                 copyhdr = 1;
  473         while (off > 0) {
  474                 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
  475                 if (off < m->m_len)
  476                         break;
  477                 off -= m->m_len;
  478                 m = m->m_next;
  479         }
  480         np = &top;
  481         top = NULL;
  482         while (len > 0) {
  483                 if (m == NULL) {
  484                         KASSERT(len == M_COPYALL,
  485                             ("m_copym, length > size of mbuf chain"));
  486                         break;
  487                 }
  488                 if (copyhdr)
  489                         n = m_gethdr(wait, m->m_type);
  490                 else
  491                         n = m_get(wait, m->m_type);
  492                 *np = n;
  493                 if (n == NULL)
  494                         goto nospace;
  495                 if (copyhdr) {
  496                         if (!m_dup_pkthdr(n, m, wait))
  497                                 goto nospace;
  498                         if (len == M_COPYALL)
  499                                 n->m_pkthdr.len -= off0;
  500                         else
  501                                 n->m_pkthdr.len = len;
  502                         copyhdr = 0;
  503                 }
  504                 n->m_len = min(len, m->m_len - off);
  505                 if (m->m_flags & M_EXT) {
  506                         n->m_data = m->m_data + off;
  507                         mb_dupcl(n, m);
  508                 } else
  509                         bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
  510                             (u_int)n->m_len);
  511                 if (len != M_COPYALL)
  512                         len -= n->m_len;
  513                 off = 0;
  514                 m = m->m_next;
  515                 np = &n->m_next;
  516         }
  517 
  518         return (top);
  519 nospace:
  520         m_freem(top);
  521         return (NULL);
  522 }
  523 
  524 /*
  525  * Copy an entire packet, including header (which must be present).
  526  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
  527  * Note that the copy is read-only, because clusters are not copied,
  528  * only their reference counts are incremented.
  529  * Preserve alignment of the first mbuf so if the creator has left
  530  * some room at the beginning (e.g. for inserting protocol headers)
  531  * the copies still have the room available.
  532  */
  533 struct mbuf *
  534 m_copypacket(struct mbuf *m, int how)
  535 {
  536         struct mbuf *top, *n, *o;
  537 
  538         MBUF_CHECKSLEEP(how);
  539         n = m_get(how, m->m_type);
  540         top = n;
  541         if (n == NULL)
  542                 goto nospace;
  543 
  544         if (!m_dup_pkthdr(n, m, how))
  545                 goto nospace;
  546         n->m_len = m->m_len;
  547         if (m->m_flags & M_EXT) {
  548                 n->m_data = m->m_data;
  549                 mb_dupcl(n, m);
  550         } else {
  551                 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
  552                 bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
  553         }
  554 
  555         m = m->m_next;
  556         while (m) {
  557                 o = m_get(how, m->m_type);
  558                 if (o == NULL)
  559                         goto nospace;
  560 
  561                 n->m_next = o;
  562                 n = n->m_next;
  563 
  564                 n->m_len = m->m_len;
  565                 if (m->m_flags & M_EXT) {
  566                         n->m_data = m->m_data;
  567                         mb_dupcl(n, m);
  568                 } else {
  569                         bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
  570                 }
  571 
  572                 m = m->m_next;
  573         }
  574         return top;
  575 nospace:
  576         m_freem(top);
  577         return (NULL);
  578 }
  579 
  580 /*
  581  * Copy data from an mbuf chain starting "off" bytes from the beginning,
  582  * continuing for "len" bytes, into the indicated buffer.
  583  */
  584 void
  585 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
  586 {
  587         u_int count;
  588 
  589         KASSERT(off >= 0, ("m_copydata, negative off %d", off));
  590         KASSERT(len >= 0, ("m_copydata, negative len %d", len));
  591         while (off > 0) {
  592                 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
  593                 if (off < m->m_len)
  594                         break;
  595                 off -= m->m_len;
  596                 m = m->m_next;
  597         }
  598         while (len > 0) {
  599                 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
  600                 count = min(m->m_len - off, len);
  601                 bcopy(mtod(m, caddr_t) + off, cp, count);
  602                 len -= count;
  603                 cp += count;
  604                 off = 0;
  605                 m = m->m_next;
  606         }
  607 }
  608 
  609 /*
  610  * Copy a packet header mbuf chain into a completely new chain, including
  611  * copying any mbuf clusters.  Use this instead of m_copypacket() when
  612  * you need a writable copy of an mbuf chain.
  613  */
  614 struct mbuf *
  615 m_dup(const struct mbuf *m, int how)
  616 {
  617         struct mbuf **p, *top = NULL;
  618         int remain, moff, nsize;
  619 
  620         MBUF_CHECKSLEEP(how);
  621         /* Sanity check */
  622         if (m == NULL)
  623                 return (NULL);
  624         M_ASSERTPKTHDR(m);
  625 
  626         /* While there's more data, get a new mbuf, tack it on, and fill it */
  627         remain = m->m_pkthdr.len;
  628         moff = 0;
  629         p = &top;
  630         while (remain > 0 || top == NULL) {     /* allow m->m_pkthdr.len == 0 */
  631                 struct mbuf *n;
  632 
  633                 /* Get the next new mbuf */
  634                 if (remain >= MINCLSIZE) {
  635                         n = m_getcl(how, m->m_type, 0);
  636                         nsize = MCLBYTES;
  637                 } else {
  638                         n = m_get(how, m->m_type);
  639                         nsize = MLEN;
  640                 }
  641                 if (n == NULL)
  642                         goto nospace;
  643 
  644                 if (top == NULL) {              /* First one, must be PKTHDR */
  645                         if (!m_dup_pkthdr(n, m, how)) {
  646                                 m_free(n);
  647                                 goto nospace;
  648                         }
  649                         if ((n->m_flags & M_EXT) == 0)
  650                                 nsize = MHLEN;
  651                         n->m_flags &= ~M_RDONLY;
  652                 }
  653                 n->m_len = 0;
  654 
  655                 /* Link it into the new chain */
  656                 *p = n;
  657                 p = &n->m_next;
  658 
  659                 /* Copy data from original mbuf(s) into new mbuf */
  660                 while (n->m_len < nsize && m != NULL) {
  661                         int chunk = min(nsize - n->m_len, m->m_len - moff);
  662 
  663                         bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
  664                         moff += chunk;
  665                         n->m_len += chunk;
  666                         remain -= chunk;
  667                         if (moff == m->m_len) {
  668                                 m = m->m_next;
  669                                 moff = 0;
  670                         }
  671                 }
  672 
  673                 /* Check correct total mbuf length */
  674                 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
  675                         ("%s: bogus m_pkthdr.len", __func__));
  676         }
  677         return (top);
  678 
  679 nospace:
  680         m_freem(top);
  681         return (NULL);
  682 }
  683 
  684 /*
  685  * Concatenate mbuf chain n to m.
  686  * Both chains must be of the same type (e.g. MT_DATA).
  687  * Any m_pkthdr is not updated.
  688  */
  689 void
  690 m_cat(struct mbuf *m, struct mbuf *n)
  691 {
  692         while (m->m_next)
  693                 m = m->m_next;
  694         while (n) {
  695                 if (!M_WRITABLE(m) ||
  696                     M_TRAILINGSPACE(m) < n->m_len) {
  697                         /* just join the two chains */
  698                         m->m_next = n;
  699                         return;
  700                 }
  701                 /* splat the data from one into the other */
  702                 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
  703                     (u_int)n->m_len);
  704                 m->m_len += n->m_len;
  705                 n = m_free(n);
  706         }
  707 }
  708 
  709 /*
  710  * Concatenate two pkthdr mbuf chains.
  711  */
  712 void
  713 m_catpkt(struct mbuf *m, struct mbuf *n)
  714 {
  715 
  716         M_ASSERTPKTHDR(m);
  717         M_ASSERTPKTHDR(n);
  718 
  719         m->m_pkthdr.len += n->m_pkthdr.len;
  720         m_demote(n, 1, 0);
  721 
  722         m_cat(m, n);
  723 }
  724 
  725 void
  726 m_adj(struct mbuf *mp, int req_len)
  727 {
  728         int len = req_len;
  729         struct mbuf *m;
  730         int count;
  731 
  732         if ((m = mp) == NULL)
  733                 return;
  734         if (len >= 0) {
  735                 /*
  736                  * Trim from head.
  737                  */
  738                 while (m != NULL && len > 0) {
  739                         if (m->m_len <= len) {
  740                                 len -= m->m_len;
  741                                 m->m_len = 0;
  742                                 m = m->m_next;
  743                         } else {
  744                                 m->m_len -= len;
  745                                 m->m_data += len;
  746                                 len = 0;
  747                         }
  748                 }
  749                 if (mp->m_flags & M_PKTHDR)
  750                         mp->m_pkthdr.len -= (req_len - len);
  751         } else {
  752                 /*
  753                  * Trim from tail.  Scan the mbuf chain,
  754                  * calculating its length and finding the last mbuf.
  755                  * If the adjustment only affects this mbuf, then just
  756                  * adjust and return.  Otherwise, rescan and truncate
  757                  * after the remaining size.
  758                  */
  759                 len = -len;
  760                 count = 0;
  761                 for (;;) {
  762                         count += m->m_len;
  763                         if (m->m_next == (struct mbuf *)0)
  764                                 break;
  765                         m = m->m_next;
  766                 }
  767                 if (m->m_len >= len) {
  768                         m->m_len -= len;
  769                         if (mp->m_flags & M_PKTHDR)
  770                                 mp->m_pkthdr.len -= len;
  771                         return;
  772                 }
  773                 count -= len;
  774                 if (count < 0)
  775                         count = 0;
  776                 /*
  777                  * Correct length for chain is "count".
  778                  * Find the mbuf with last data, adjust its length,
  779                  * and toss data from remaining mbufs on chain.
  780                  */
  781                 m = mp;
  782                 if (m->m_flags & M_PKTHDR)
  783                         m->m_pkthdr.len = count;
  784                 for (; m; m = m->m_next) {
  785                         if (m->m_len >= count) {
  786                                 m->m_len = count;
  787                                 if (m->m_next != NULL) {
  788                                         m_freem(m->m_next);
  789                                         m->m_next = NULL;
  790                                 }
  791                                 break;
  792                         }
  793                         count -= m->m_len;
  794                 }
  795         }
  796 }
  797 
  798 void
  799 m_adj_decap(struct mbuf *mp, int len)
  800 {
  801         uint8_t rsstype;
  802 
  803         m_adj(mp, len);
  804         if ((mp->m_flags & M_PKTHDR) != 0) {
  805                 /*
  806                  * If flowid was calculated by card from the inner
  807                  * headers, move flowid to the decapsulated mbuf
  808                  * chain, otherwise clear.  This depends on the
  809                  * internals of m_adj, which keeps pkthdr as is, in
  810                  * particular not changing rsstype and flowid.
  811                  */
  812                 rsstype = mp->m_pkthdr.rsstype;
  813                 if ((rsstype & M_HASHTYPE_INNER) != 0) {
  814                         M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER);
  815                 } else {
  816                         M_HASHTYPE_CLEAR(mp);
  817                 }
  818         }
  819 }
  820 
  821 /*
  822  * Rearange an mbuf chain so that len bytes are contiguous
  823  * and in the data area of an mbuf (so that mtod will work
  824  * for a structure of size len).  Returns the resulting
  825  * mbuf chain on success, frees it and returns null on failure.
  826  * If there is room, it will add up to max_protohdr-len extra bytes to the
  827  * contiguous region in an attempt to avoid being called next time.
  828  */
  829 struct mbuf *
  830 m_pullup(struct mbuf *n, int len)
  831 {
  832         struct mbuf *m;
  833         int count;
  834         int space;
  835 
  836         /*
  837          * If first mbuf has no cluster, and has room for len bytes
  838          * without shifting current data, pullup into it,
  839          * otherwise allocate a new mbuf to prepend to the chain.
  840          */
  841         if ((n->m_flags & M_EXT) == 0 &&
  842             n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
  843                 if (n->m_len >= len)
  844                         return (n);
  845                 m = n;
  846                 n = n->m_next;
  847                 len -= m->m_len;
  848         } else {
  849                 if (len > MHLEN)
  850                         goto bad;
  851                 m = m_get(M_NOWAIT, n->m_type);
  852                 if (m == NULL)
  853                         goto bad;
  854                 if (n->m_flags & M_PKTHDR)
  855                         m_move_pkthdr(m, n);
  856         }
  857         space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
  858         do {
  859                 count = min(min(max(len, max_protohdr), space), n->m_len);
  860                 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
  861                   (u_int)count);
  862                 len -= count;
  863                 m->m_len += count;
  864                 n->m_len -= count;
  865                 space -= count;
  866                 if (n->m_len)
  867                         n->m_data += count;
  868                 else
  869                         n = m_free(n);
  870         } while (len > 0 && n);
  871         if (len > 0) {
  872                 (void) m_free(m);
  873                 goto bad;
  874         }
  875         m->m_next = n;
  876         return (m);
  877 bad:
  878         m_freem(n);
  879         return (NULL);
  880 }
  881 
  882 /*
  883  * Like m_pullup(), except a new mbuf is always allocated, and we allow
  884  * the amount of empty space before the data in the new mbuf to be specified
  885  * (in the event that the caller expects to prepend later).
  886  */
  887 struct mbuf *
  888 m_copyup(struct mbuf *n, int len, int dstoff)
  889 {
  890         struct mbuf *m;
  891         int count, space;
  892 
  893         if (len > (MHLEN - dstoff))
  894                 goto bad;
  895         m = m_get(M_NOWAIT, n->m_type);
  896         if (m == NULL)
  897                 goto bad;
  898         if (n->m_flags & M_PKTHDR)
  899                 m_move_pkthdr(m, n);
  900         m->m_data += dstoff;
  901         space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
  902         do {
  903                 count = min(min(max(len, max_protohdr), space), n->m_len);
  904                 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
  905                     (unsigned)count);
  906                 len -= count;
  907                 m->m_len += count;
  908                 n->m_len -= count;
  909                 space -= count;
  910                 if (n->m_len)
  911                         n->m_data += count;
  912                 else
  913                         n = m_free(n);
  914         } while (len > 0 && n);
  915         if (len > 0) {
  916                 (void) m_free(m);
  917                 goto bad;
  918         }
  919         m->m_next = n;
  920         return (m);
  921  bad:
  922         m_freem(n);
  923         return (NULL);
  924 }
  925 
  926 /*
  927  * Partition an mbuf chain in two pieces, returning the tail --
  928  * all but the first len0 bytes.  In case of failure, it returns NULL and
  929  * attempts to restore the chain to its original state.
  930  *
  931  * Note that the resulting mbufs might be read-only, because the new
  932  * mbuf can end up sharing an mbuf cluster with the original mbuf if
  933  * the "breaking point" happens to lie within a cluster mbuf. Use the
  934  * M_WRITABLE() macro to check for this case.
  935  */
  936 struct mbuf *
  937 m_split(struct mbuf *m0, int len0, int wait)
  938 {
  939         struct mbuf *m, *n;
  940         u_int len = len0, remain;
  941 
  942         MBUF_CHECKSLEEP(wait);
  943         for (m = m0; m && len > m->m_len; m = m->m_next)
  944                 len -= m->m_len;
  945         if (m == NULL)
  946                 return (NULL);
  947         remain = m->m_len - len;
  948         if (m0->m_flags & M_PKTHDR && remain == 0) {
  949                 n = m_gethdr(wait, m0->m_type);
  950                 if (n == NULL)
  951                         return (NULL);
  952                 n->m_next = m->m_next;
  953                 m->m_next = NULL;
  954                 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
  955                 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
  956                 m0->m_pkthdr.len = len0;
  957                 return (n);
  958         } else if (m0->m_flags & M_PKTHDR) {
  959                 n = m_gethdr(wait, m0->m_type);
  960                 if (n == NULL)
  961                         return (NULL);
  962                 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
  963                 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
  964                 m0->m_pkthdr.len = len0;
  965                 if (m->m_flags & M_EXT)
  966                         goto extpacket;
  967                 if (remain > MHLEN) {
  968                         /* m can't be the lead packet */
  969                         M_ALIGN(n, 0);
  970                         n->m_next = m_split(m, len, wait);
  971                         if (n->m_next == NULL) {
  972                                 (void) m_free(n);
  973                                 return (NULL);
  974                         } else {
  975                                 n->m_len = 0;
  976                                 return (n);
  977                         }
  978                 } else
  979                         M_ALIGN(n, remain);
  980         } else if (remain == 0) {
  981                 n = m->m_next;
  982                 m->m_next = NULL;
  983                 return (n);
  984         } else {
  985                 n = m_get(wait, m->m_type);
  986                 if (n == NULL)
  987                         return (NULL);
  988                 M_ALIGN(n, remain);
  989         }
  990 extpacket:
  991         if (m->m_flags & M_EXT) {
  992                 n->m_data = m->m_data + len;
  993                 mb_dupcl(n, m);
  994         } else {
  995                 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
  996         }
  997         n->m_len = remain;
  998         m->m_len = len;
  999         n->m_next = m->m_next;
 1000         m->m_next = NULL;
 1001         return (n);
 1002 }
 1003 /*
 1004  * Routine to copy from device local memory into mbufs.
 1005  * Note that `off' argument is offset into first mbuf of target chain from
 1006  * which to begin copying the data to.
 1007  */
 1008 struct mbuf *
 1009 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
 1010     void (*copy)(char *from, caddr_t to, u_int len))
 1011 {
 1012         struct mbuf *m;
 1013         struct mbuf *top = NULL, **mp = &top;
 1014         int len;
 1015 
 1016         if (off < 0 || off > MHLEN)
 1017                 return (NULL);
 1018 
 1019         while (totlen > 0) {
 1020                 if (top == NULL) {      /* First one, must be PKTHDR */
 1021                         if (totlen + off >= MINCLSIZE) {
 1022                                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1023                                 len = MCLBYTES;
 1024                         } else {
 1025                                 m = m_gethdr(M_NOWAIT, MT_DATA);
 1026                                 len = MHLEN;
 1027 
 1028                                 /* Place initial small packet/header at end of mbuf */
 1029                                 if (m && totlen + off + max_linkhdr <= MHLEN) {
 1030                                         m->m_data += max_linkhdr;
 1031                                         len -= max_linkhdr;
 1032                                 }
 1033                         }
 1034                         if (m == NULL)
 1035                                 return NULL;
 1036                         m->m_pkthdr.rcvif = ifp;
 1037                         m->m_pkthdr.len = totlen;
 1038                 } else {
 1039                         if (totlen + off >= MINCLSIZE) {
 1040                                 m = m_getcl(M_NOWAIT, MT_DATA, 0);
 1041                                 len = MCLBYTES;
 1042                         } else {
 1043                                 m = m_get(M_NOWAIT, MT_DATA);
 1044                                 len = MLEN;
 1045                         }
 1046                         if (m == NULL) {
 1047                                 m_freem(top);
 1048                                 return NULL;
 1049                         }
 1050                 }
 1051                 if (off) {
 1052                         m->m_data += off;
 1053                         len -= off;
 1054                         off = 0;
 1055                 }
 1056                 m->m_len = len = min(totlen, len);
 1057                 if (copy)
 1058                         copy(buf, mtod(m, caddr_t), (u_int)len);
 1059                 else
 1060                         bcopy(buf, mtod(m, caddr_t), (u_int)len);
 1061                 buf += len;
 1062                 *mp = m;
 1063                 mp = &m->m_next;
 1064                 totlen -= len;
 1065         }
 1066         return (top);
 1067 }
 1068 
 1069 /*
 1070  * Copy data from a buffer back into the indicated mbuf chain,
 1071  * starting "off" bytes from the beginning, extending the mbuf
 1072  * chain if necessary.
 1073  */
 1074 void
 1075 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
 1076 {
 1077         int mlen;
 1078         struct mbuf *m = m0, *n;
 1079         int totlen = 0;
 1080 
 1081         if (m0 == NULL)
 1082                 return;
 1083         while (off > (mlen = m->m_len)) {
 1084                 off -= mlen;
 1085                 totlen += mlen;
 1086                 if (m->m_next == NULL) {
 1087                         n = m_get(M_NOWAIT, m->m_type);
 1088                         if (n == NULL)
 1089                                 goto out;
 1090                         bzero(mtod(n, caddr_t), MLEN);
 1091                         n->m_len = min(MLEN, len + off);
 1092                         m->m_next = n;
 1093                 }
 1094                 m = m->m_next;
 1095         }
 1096         while (len > 0) {
 1097                 if (m->m_next == NULL && (len > m->m_len - off)) {
 1098                         m->m_len += min(len - (m->m_len - off),
 1099                             M_TRAILINGSPACE(m));
 1100                 }
 1101                 mlen = min (m->m_len - off, len);
 1102                 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
 1103                 cp += mlen;
 1104                 len -= mlen;
 1105                 mlen += off;
 1106                 off = 0;
 1107                 totlen += mlen;
 1108                 if (len == 0)
 1109                         break;
 1110                 if (m->m_next == NULL) {
 1111                         n = m_get(M_NOWAIT, m->m_type);
 1112                         if (n == NULL)
 1113                                 break;
 1114                         n->m_len = min(MLEN, len);
 1115                         m->m_next = n;
 1116                 }
 1117                 m = m->m_next;
 1118         }
 1119 out:    if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
 1120                 m->m_pkthdr.len = totlen;
 1121 }
 1122 
 1123 /*
 1124  * Append the specified data to the indicated mbuf chain,
 1125  * Extend the mbuf chain if the new data does not fit in
 1126  * existing space.
 1127  *
 1128  * Return 1 if able to complete the job; otherwise 0.
 1129  */
 1130 int
 1131 m_append(struct mbuf *m0, int len, c_caddr_t cp)
 1132 {
 1133         struct mbuf *m, *n;
 1134         int remainder, space;
 1135 
 1136         for (m = m0; m->m_next != NULL; m = m->m_next)
 1137                 ;
 1138         remainder = len;
 1139         space = M_TRAILINGSPACE(m);
 1140         if (space > 0) {
 1141                 /*
 1142                  * Copy into available space.
 1143                  */
 1144                 if (space > remainder)
 1145                         space = remainder;
 1146                 bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
 1147                 m->m_len += space;
 1148                 cp += space, remainder -= space;
 1149         }
 1150         while (remainder > 0) {
 1151                 /*
 1152                  * Allocate a new mbuf; could check space
 1153                  * and allocate a cluster instead.
 1154                  */
 1155                 n = m_get(M_NOWAIT, m->m_type);
 1156                 if (n == NULL)
 1157                         break;
 1158                 n->m_len = min(MLEN, remainder);
 1159                 bcopy(cp, mtod(n, caddr_t), n->m_len);
 1160                 cp += n->m_len, remainder -= n->m_len;
 1161                 m->m_next = n;
 1162                 m = n;
 1163         }
 1164         if (m0->m_flags & M_PKTHDR)
 1165                 m0->m_pkthdr.len += len - remainder;
 1166         return (remainder == 0);
 1167 }
 1168 
 1169 /*
 1170  * Apply function f to the data in an mbuf chain starting "off" bytes from
 1171  * the beginning, continuing for "len" bytes.
 1172  */
 1173 int
 1174 m_apply(struct mbuf *m, int off, int len,
 1175     int (*f)(void *, void *, u_int), void *arg)
 1176 {
 1177         u_int count;
 1178         int rval;
 1179 
 1180         KASSERT(off >= 0, ("m_apply, negative off %d", off));
 1181         KASSERT(len >= 0, ("m_apply, negative len %d", len));
 1182         while (off > 0) {
 1183                 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
 1184                 if (off < m->m_len)
 1185                         break;
 1186                 off -= m->m_len;
 1187                 m = m->m_next;
 1188         }
 1189         while (len > 0) {
 1190                 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
 1191                 count = min(m->m_len - off, len);
 1192                 rval = (*f)(arg, mtod(m, caddr_t) + off, count);
 1193                 if (rval)
 1194                         return (rval);
 1195                 len -= count;
 1196                 off = 0;
 1197                 m = m->m_next;
 1198         }
 1199         return (0);
 1200 }
 1201 
 1202 /*
 1203  * Return a pointer to mbuf/offset of location in mbuf chain.
 1204  */
 1205 struct mbuf *
 1206 m_getptr(struct mbuf *m, int loc, int *off)
 1207 {
 1208 
 1209         while (loc >= 0) {
 1210                 /* Normal end of search. */
 1211                 if (m->m_len > loc) {
 1212                         *off = loc;
 1213                         return (m);
 1214                 } else {
 1215                         loc -= m->m_len;
 1216                         if (m->m_next == NULL) {
 1217                                 if (loc == 0) {
 1218                                         /* Point at the end of valid data. */
 1219                                         *off = m->m_len;
 1220                                         return (m);
 1221                                 }
 1222                                 return (NULL);
 1223                         }
 1224                         m = m->m_next;
 1225                 }
 1226         }
 1227         return (NULL);
 1228 }
 1229 
 1230 void
 1231 m_print(const struct mbuf *m, int maxlen)
 1232 {
 1233         int len;
 1234         int pdata;
 1235         const struct mbuf *m2;
 1236 
 1237         if (m == NULL) {
 1238                 printf("mbuf: %p\n", m);
 1239                 return;
 1240         }
 1241 
 1242         if (m->m_flags & M_PKTHDR)
 1243                 len = m->m_pkthdr.len;
 1244         else
 1245                 len = -1;
 1246         m2 = m;
 1247         while (m2 != NULL && (len == -1 || len)) {
 1248                 pdata = m2->m_len;
 1249                 if (maxlen != -1 && pdata > maxlen)
 1250                         pdata = maxlen;
 1251                 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
 1252                     m2->m_next, m2->m_flags, "\2\20freelist\17skipfw"
 1253                     "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
 1254                     "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
 1255                 if (pdata)
 1256                         printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
 1257                 if (len != -1)
 1258                         len -= m2->m_len;
 1259                 m2 = m2->m_next;
 1260         }
 1261         if (len > 0)
 1262                 printf("%d bytes unaccounted for.\n", len);
 1263         return;
 1264 }
 1265 
 1266 u_int
 1267 m_fixhdr(struct mbuf *m0)
 1268 {
 1269         u_int len;
 1270 
 1271         len = m_length(m0, NULL);
 1272         m0->m_pkthdr.len = len;
 1273         return (len);
 1274 }
 1275 
 1276 u_int
 1277 m_length(struct mbuf *m0, struct mbuf **last)
 1278 {
 1279         struct mbuf *m;
 1280         u_int len;
 1281 
 1282         len = 0;
 1283         for (m = m0; m != NULL; m = m->m_next) {
 1284                 len += m->m_len;
 1285                 if (m->m_next == NULL)
 1286                         break;
 1287         }
 1288         if (last != NULL)
 1289                 *last = m;
 1290         return (len);
 1291 }
 1292 
 1293 /*
 1294  * Defragment a mbuf chain, returning the shortest possible
 1295  * chain of mbufs and clusters.  If allocation fails and
 1296  * this cannot be completed, NULL will be returned, but
 1297  * the passed in chain will be unchanged.  Upon success,
 1298  * the original chain will be freed, and the new chain
 1299  * will be returned.
 1300  *
 1301  * If a non-packet header is passed in, the original
 1302  * mbuf (chain?) will be returned unharmed.
 1303  */
 1304 struct mbuf *
 1305 m_defrag(struct mbuf *m0, int how)
 1306 {
 1307         struct mbuf *m_new = NULL, *m_final = NULL;
 1308         int progress = 0, length;
 1309 
 1310         MBUF_CHECKSLEEP(how);
 1311         if (!(m0->m_flags & M_PKTHDR))
 1312                 return (m0);
 1313 
 1314         m_fixhdr(m0); /* Needed sanity check */
 1315 
 1316 #ifdef MBUF_STRESS_TEST
 1317         if (m_defragrandomfailures) {
 1318                 int temp = arc4random() & 0xff;
 1319                 if (temp == 0xba)
 1320                         goto nospace;
 1321         }
 1322 #endif
 1323 
 1324         if (m0->m_pkthdr.len > MHLEN)
 1325                 m_final = m_getcl(how, MT_DATA, M_PKTHDR);
 1326         else
 1327                 m_final = m_gethdr(how, MT_DATA);
 1328 
 1329         if (m_final == NULL)
 1330                 goto nospace;
 1331 
 1332         if (m_dup_pkthdr(m_final, m0, how) == 0)
 1333                 goto nospace;
 1334 
 1335         m_new = m_final;
 1336 
 1337         while (progress < m0->m_pkthdr.len) {
 1338                 length = m0->m_pkthdr.len - progress;
 1339                 if (length > MCLBYTES)
 1340                         length = MCLBYTES;
 1341 
 1342                 if (m_new == NULL) {
 1343                         if (length > MLEN)
 1344                                 m_new = m_getcl(how, MT_DATA, 0);
 1345                         else
 1346                                 m_new = m_get(how, MT_DATA);
 1347                         if (m_new == NULL)
 1348                                 goto nospace;
 1349                 }
 1350 
 1351                 m_copydata(m0, progress, length, mtod(m_new, caddr_t));
 1352                 progress += length;
 1353                 m_new->m_len = length;
 1354                 if (m_new != m_final)
 1355                         m_cat(m_final, m_new);
 1356                 m_new = NULL;
 1357         }
 1358 #ifdef MBUF_STRESS_TEST
 1359         if (m0->m_next == NULL)
 1360                 m_defraguseless++;
 1361 #endif
 1362         m_freem(m0);
 1363         m0 = m_final;
 1364 #ifdef MBUF_STRESS_TEST
 1365         m_defragpackets++;
 1366         m_defragbytes += m0->m_pkthdr.len;
 1367 #endif
 1368         return (m0);
 1369 nospace:
 1370 #ifdef MBUF_STRESS_TEST
 1371         m_defragfailure++;
 1372 #endif
 1373         if (m_final)
 1374                 m_freem(m_final);
 1375         return (NULL);
 1376 }
 1377 
 1378 /*
 1379  * Defragment an mbuf chain, returning at most maxfrags separate
 1380  * mbufs+clusters.  If this is not possible NULL is returned and
 1381  * the original mbuf chain is left in its present (potentially
 1382  * modified) state.  We use two techniques: collapsing consecutive
 1383  * mbufs and replacing consecutive mbufs by a cluster.
 1384  *
 1385  * NB: this should really be named m_defrag but that name is taken
 1386  */
 1387 struct mbuf *
 1388 m_collapse(struct mbuf *m0, int how, int maxfrags)
 1389 {
 1390         struct mbuf *m, *n, *n2, **prev;
 1391         u_int curfrags;
 1392 
 1393         /*
 1394          * Calculate the current number of frags.
 1395          */
 1396         curfrags = 0;
 1397         for (m = m0; m != NULL; m = m->m_next)
 1398                 curfrags++;
 1399         /*
 1400          * First, try to collapse mbufs.  Note that we always collapse
 1401          * towards the front so we don't need to deal with moving the
 1402          * pkthdr.  This may be suboptimal if the first mbuf has much
 1403          * less data than the following.
 1404          */
 1405         m = m0;
 1406 again:
 1407         for (;;) {
 1408                 n = m->m_next;
 1409                 if (n == NULL)
 1410                         break;
 1411                 if (M_WRITABLE(m) &&
 1412                     n->m_len < M_TRAILINGSPACE(m)) {
 1413                         bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
 1414                                 n->m_len);
 1415                         m->m_len += n->m_len;
 1416                         m->m_next = n->m_next;
 1417                         m_free(n);
 1418                         if (--curfrags <= maxfrags)
 1419                                 return m0;
 1420                 } else
 1421                         m = n;
 1422         }
 1423         KASSERT(maxfrags > 1,
 1424                 ("maxfrags %u, but normal collapse failed", maxfrags));
 1425         /*
 1426          * Collapse consecutive mbufs to a cluster.
 1427          */
 1428         prev = &m0->m_next;             /* NB: not the first mbuf */
 1429         while ((n = *prev) != NULL) {
 1430                 if ((n2 = n->m_next) != NULL &&
 1431                     n->m_len + n2->m_len < MCLBYTES) {
 1432                         m = m_getcl(how, MT_DATA, 0);
 1433                         if (m == NULL)
 1434                                 goto bad;
 1435                         bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
 1436                         bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
 1437                                 n2->m_len);
 1438                         m->m_len = n->m_len + n2->m_len;
 1439                         m->m_next = n2->m_next;
 1440                         *prev = m;
 1441                         m_free(n);
 1442                         m_free(n2);
 1443                         if (--curfrags <= maxfrags)     /* +1 cl -2 mbufs */
 1444                                 return m0;
 1445                         /*
 1446                          * Still not there, try the normal collapse
 1447                          * again before we allocate another cluster.
 1448                          */
 1449                         goto again;
 1450                 }
 1451                 prev = &n->m_next;
 1452         }
 1453         /*
 1454          * No place where we can collapse to a cluster; punt.
 1455          * This can occur if, for example, you request 2 frags
 1456          * but the packet requires that both be clusters (we
 1457          * never reallocate the first mbuf to avoid moving the
 1458          * packet header).
 1459          */
 1460 bad:
 1461         return NULL;
 1462 }
 1463 
 1464 #ifdef MBUF_STRESS_TEST
 1465 
 1466 /*
 1467  * Fragment an mbuf chain.  There's no reason you'd ever want to do
 1468  * this in normal usage, but it's great for stress testing various
 1469  * mbuf consumers.
 1470  *
 1471  * If fragmentation is not possible, the original chain will be
 1472  * returned.
 1473  *
 1474  * Possible length values:
 1475  * 0     no fragmentation will occur
 1476  * > 0  each fragment will be of the specified length
 1477  * -1   each fragment will be the same random value in length
 1478  * -2   each fragment's length will be entirely random
 1479  * (Random values range from 1 to 256)
 1480  */
 1481 struct mbuf *
 1482 m_fragment(struct mbuf *m0, int how, int length)
 1483 {
 1484         struct mbuf *m_first, *m_last;
 1485         int divisor = 255, progress = 0, fraglen;
 1486 
 1487         if (!(m0->m_flags & M_PKTHDR))
 1488                 return (m0);
 1489 
 1490         if (length == 0 || length < -2)
 1491                 return (m0);
 1492         if (length > MCLBYTES)
 1493                 length = MCLBYTES;
 1494         if (length < 0 && divisor > MCLBYTES)
 1495                 divisor = MCLBYTES;
 1496         if (length == -1)
 1497                 length = 1 + (arc4random() % divisor);
 1498         if (length > 0)
 1499                 fraglen = length;
 1500 
 1501         m_fixhdr(m0); /* Needed sanity check */
 1502 
 1503         m_first = m_getcl(how, MT_DATA, M_PKTHDR);
 1504         if (m_first == NULL)
 1505                 goto nospace;
 1506 
 1507         if (m_dup_pkthdr(m_first, m0, how) == 0)
 1508                 goto nospace;
 1509 
 1510         m_last = m_first;
 1511 
 1512         while (progress < m0->m_pkthdr.len) {
 1513                 if (length == -2)
 1514                         fraglen = 1 + (arc4random() % divisor);
 1515                 if (fraglen > m0->m_pkthdr.len - progress)
 1516                         fraglen = m0->m_pkthdr.len - progress;
 1517 
 1518                 if (progress != 0) {
 1519                         struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
 1520                         if (m_new == NULL)
 1521                                 goto nospace;
 1522 
 1523                         m_last->m_next = m_new;
 1524                         m_last = m_new;
 1525                 }
 1526 
 1527                 m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
 1528                 progress += fraglen;
 1529                 m_last->m_len = fraglen;
 1530         }
 1531         m_freem(m0);
 1532         m0 = m_first;
 1533         return (m0);
 1534 nospace:
 1535         if (m_first)
 1536                 m_freem(m_first);
 1537         /* Return the original chain on failure */
 1538         return (m0);
 1539 }
 1540 
 1541 #endif
 1542 
 1543 /*
 1544  * Copy the contents of uio into a properly sized mbuf chain.
 1545  */
 1546 struct mbuf *
 1547 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
 1548 {
 1549         struct mbuf *m, *mb;
 1550         int error, length;
 1551         ssize_t total;
 1552         int progress = 0;
 1553 
 1554         /*
 1555          * len can be zero or an arbitrary large value bound by
 1556          * the total data supplied by the uio.
 1557          */
 1558         if (len > 0)
 1559                 total = (uio->uio_resid < len) ? uio->uio_resid : len;
 1560         else
 1561                 total = uio->uio_resid;
 1562 
 1563         /*
 1564          * The smallest unit returned by m_getm2() is a single mbuf
 1565          * with pkthdr.  We can't align past it.
 1566          */
 1567         if (align >= MHLEN)
 1568                 return (NULL);
 1569 
 1570         /*
 1571          * Give us the full allocation or nothing.
 1572          * If len is zero return the smallest empty mbuf.
 1573          */
 1574         m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
 1575         if (m == NULL)
 1576                 return (NULL);
 1577         m->m_data += align;
 1578 
 1579         /* Fill all mbufs with uio data and update header information. */
 1580         for (mb = m; mb != NULL; mb = mb->m_next) {
 1581                 length = min(M_TRAILINGSPACE(mb), total - progress);
 1582 
 1583                 error = uiomove(mtod(mb, void *), length, uio);
 1584                 if (error) {
 1585                         m_freem(m);
 1586                         return (NULL);
 1587                 }
 1588 
 1589                 mb->m_len = length;
 1590                 progress += length;
 1591                 if (flags & M_PKTHDR)
 1592                         m->m_pkthdr.len += length;
 1593         }
 1594         KASSERT(progress == total, ("%s: progress != total", __func__));
 1595 
 1596         return (m);
 1597 }
 1598 
 1599 /*
 1600  * Copy an mbuf chain into a uio limited by len if set.
 1601  */
 1602 int
 1603 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
 1604 {
 1605         int error, length, total;
 1606         int progress = 0;
 1607 
 1608         if (len > 0)
 1609                 total = min(uio->uio_resid, len);
 1610         else
 1611                 total = uio->uio_resid;
 1612 
 1613         /* Fill the uio with data from the mbufs. */
 1614         for (; m != NULL; m = m->m_next) {
 1615                 length = min(m->m_len, total - progress);
 1616 
 1617                 error = uiomove(mtod(m, void *), length, uio);
 1618                 if (error)
 1619                         return (error);
 1620 
 1621                 progress += length;
 1622         }
 1623 
 1624         return (0);
 1625 }
 1626 
 1627 /*
 1628  * Create a writable copy of the mbuf chain.  While doing this
 1629  * we compact the chain with a goal of producing a chain with
 1630  * at most two mbufs.  The second mbuf in this chain is likely
 1631  * to be a cluster.  The primary purpose of this work is to create
 1632  * a writable packet for encryption, compression, etc.  The
 1633  * secondary goal is to linearize the data so the data can be
 1634  * passed to crypto hardware in the most efficient manner possible.
 1635  */
 1636 struct mbuf *
 1637 m_unshare(struct mbuf *m0, int how)
 1638 {
 1639         struct mbuf *m, *mprev;
 1640         struct mbuf *n, *mfirst, *mlast;
 1641         int len, off;
 1642 
 1643         mprev = NULL;
 1644         for (m = m0; m != NULL; m = mprev->m_next) {
 1645                 /*
 1646                  * Regular mbufs are ignored unless there's a cluster
 1647                  * in front of it that we can use to coalesce.  We do
 1648                  * the latter mainly so later clusters can be coalesced
 1649                  * also w/o having to handle them specially (i.e. convert
 1650                  * mbuf+cluster -> cluster).  This optimization is heavily
 1651                  * influenced by the assumption that we're running over
 1652                  * Ethernet where MCLBYTES is large enough that the max
 1653                  * packet size will permit lots of coalescing into a
 1654                  * single cluster.  This in turn permits efficient
 1655                  * crypto operations, especially when using hardware.
 1656                  */
 1657                 if ((m->m_flags & M_EXT) == 0) {
 1658                         if (mprev && (mprev->m_flags & M_EXT) &&
 1659                             m->m_len <= M_TRAILINGSPACE(mprev)) {
 1660                                 /* XXX: this ignores mbuf types */
 1661                                 memcpy(mtod(mprev, caddr_t) + mprev->m_len,
 1662                                     mtod(m, caddr_t), m->m_len);
 1663                                 mprev->m_len += m->m_len;
 1664                                 mprev->m_next = m->m_next;      /* unlink from chain */
 1665                                 m_free(m);                      /* reclaim mbuf */
 1666                         } else {
 1667                                 mprev = m;
 1668                         }
 1669                         continue;
 1670                 }
 1671                 /*
 1672                  * Writable mbufs are left alone (for now).
 1673                  */
 1674                 if (M_WRITABLE(m)) {
 1675                         mprev = m;
 1676                         continue;
 1677                 }
 1678 
 1679                 /*
 1680                  * Not writable, replace with a copy or coalesce with
 1681                  * the previous mbuf if possible (since we have to copy
 1682                  * it anyway, we try to reduce the number of mbufs and
 1683                  * clusters so that future work is easier).
 1684                  */
 1685                 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
 1686                 /* NB: we only coalesce into a cluster or larger */
 1687                 if (mprev != NULL && (mprev->m_flags & M_EXT) &&
 1688                     m->m_len <= M_TRAILINGSPACE(mprev)) {
 1689                         /* XXX: this ignores mbuf types */
 1690                         memcpy(mtod(mprev, caddr_t) + mprev->m_len,
 1691                             mtod(m, caddr_t), m->m_len);
 1692                         mprev->m_len += m->m_len;
 1693                         mprev->m_next = m->m_next;      /* unlink from chain */
 1694                         m_free(m);                      /* reclaim mbuf */
 1695                         continue;
 1696                 }
 1697 
 1698                 /*
 1699                  * Allocate new space to hold the copy and copy the data.
 1700                  * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
 1701                  * splitting them into clusters.  We could just malloc a
 1702                  * buffer and make it external but too many device drivers
 1703                  * don't know how to break up the non-contiguous memory when
 1704                  * doing DMA.
 1705                  */
 1706                 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
 1707                 if (n == NULL) {
 1708                         m_freem(m0);
 1709                         return (NULL);
 1710                 }
 1711                 if (m->m_flags & M_PKTHDR) {
 1712                         KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
 1713                             __func__, m0, m));
 1714                         m_move_pkthdr(n, m);
 1715                 }
 1716                 len = m->m_len;
 1717                 off = 0;
 1718                 mfirst = n;
 1719                 mlast = NULL;
 1720                 for (;;) {
 1721                         int cc = min(len, MCLBYTES);
 1722                         memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
 1723                         n->m_len = cc;
 1724                         if (mlast != NULL)
 1725                                 mlast->m_next = n;
 1726                         mlast = n;
 1727 #if 0
 1728                         newipsecstat.ips_clcopied++;
 1729 #endif
 1730 
 1731                         len -= cc;
 1732                         if (len <= 0)
 1733                                 break;
 1734                         off += cc;
 1735 
 1736                         n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
 1737                         if (n == NULL) {
 1738                                 m_freem(mfirst);
 1739                                 m_freem(m0);
 1740                                 return (NULL);
 1741                         }
 1742                 }
 1743                 n->m_next = m->m_next;
 1744                 if (mprev == NULL)
 1745                         m0 = mfirst;            /* new head of chain */
 1746                 else
 1747                         mprev->m_next = mfirst; /* replace old mbuf */
 1748                 m_free(m);                      /* release old mbuf */
 1749                 mprev = mfirst;
 1750         }
 1751         return (m0);
 1752 }
 1753 
 1754 #ifdef MBUF_PROFILING
 1755 
 1756 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
 1757 struct mbufprofile {
 1758         uintmax_t wasted[MP_BUCKETS];
 1759         uintmax_t used[MP_BUCKETS];
 1760         uintmax_t segments[MP_BUCKETS];
 1761 } mbprof;
 1762 
 1763 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */
 1764 #define MP_NUMLINES 6
 1765 #define MP_NUMSPERLINE 16
 1766 #define MP_EXTRABYTES 64        /* > strlen("used:\nwasted:\nsegments:\n") */
 1767 /* work out max space needed and add a bit of spare space too */
 1768 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
 1769 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
 1770 
 1771 char mbprofbuf[MP_BUFSIZE];
 1772 
 1773 void
 1774 m_profile(struct mbuf *m)
 1775 {
 1776         int segments = 0;
 1777         int used = 0;
 1778         int wasted = 0;
 1779 
 1780         while (m) {
 1781                 segments++;
 1782                 used += m->m_len;
 1783                 if (m->m_flags & M_EXT) {
 1784                         wasted += MHLEN - sizeof(m->m_ext) +
 1785                             m->m_ext.ext_size - m->m_len;
 1786                 } else {
 1787                         if (m->m_flags & M_PKTHDR)
 1788                                 wasted += MHLEN - m->m_len;
 1789                         else
 1790                                 wasted += MLEN - m->m_len;
 1791                 }
 1792                 m = m->m_next;
 1793         }
 1794         /* be paranoid.. it helps */
 1795         if (segments > MP_BUCKETS - 1)
 1796                 segments = MP_BUCKETS - 1;
 1797         if (used > 100000)
 1798                 used = 100000;
 1799         if (wasted > 100000)
 1800                 wasted = 100000;
 1801         /* store in the appropriate bucket */
 1802         /* don't bother locking. if it's slightly off, so what? */
 1803         mbprof.segments[segments]++;
 1804         mbprof.used[fls(used)]++;
 1805         mbprof.wasted[fls(wasted)]++;
 1806 }
 1807 
 1808 static void
 1809 mbprof_textify(void)
 1810 {
 1811         int offset;
 1812         char *c;
 1813         uint64_t *p;
 1814 
 1815         p = &mbprof.wasted[0];
 1816         c = mbprofbuf;
 1817         offset = snprintf(c, MP_MAXLINE + 10,
 1818             "wasted:\n"
 1819             "%ju %ju %ju %ju %ju %ju %ju %ju "
 1820             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 1821             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 1822             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 1823 #ifdef BIG_ARRAY
 1824         p = &mbprof.wasted[16];
 1825         c += offset;
 1826         offset = snprintf(c, MP_MAXLINE,
 1827             "%ju %ju %ju %ju %ju %ju %ju %ju "
 1828             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 1829             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 1830             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 1831 #endif
 1832         p = &mbprof.used[0];
 1833         c += offset;
 1834         offset = snprintf(c, MP_MAXLINE + 10,
 1835             "used:\n"
 1836             "%ju %ju %ju %ju %ju %ju %ju %ju "
 1837             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 1838             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 1839             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 1840 #ifdef BIG_ARRAY
 1841         p = &mbprof.used[16];
 1842         c += offset;
 1843         offset = snprintf(c, MP_MAXLINE,
 1844             "%ju %ju %ju %ju %ju %ju %ju %ju "
 1845             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 1846             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 1847             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 1848 #endif
 1849         p = &mbprof.segments[0];
 1850         c += offset;
 1851         offset = snprintf(c, MP_MAXLINE + 10,
 1852             "segments:\n"
 1853             "%ju %ju %ju %ju %ju %ju %ju %ju "
 1854             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 1855             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 1856             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 1857 #ifdef BIG_ARRAY
 1858         p = &mbprof.segments[16];
 1859         c += offset;
 1860         offset = snprintf(c, MP_MAXLINE,
 1861             "%ju %ju %ju %ju %ju %ju %ju %ju "
 1862             "%ju %ju %ju %ju %ju %ju %ju %jju",
 1863             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 1864             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 1865 #endif
 1866 }
 1867 
 1868 static int
 1869 mbprof_handler(SYSCTL_HANDLER_ARGS)
 1870 {
 1871         int error;
 1872 
 1873         mbprof_textify();
 1874         error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
 1875         return (error);
 1876 }
 1877 
 1878 static int
 1879 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
 1880 {
 1881         int clear, error;
 1882 
 1883         clear = 0;
 1884         error = sysctl_handle_int(oidp, &clear, 0, req);
 1885         if (error || !req->newptr)
 1886                 return (error);
 1887 
 1888         if (clear) {
 1889                 bzero(&mbprof, sizeof(mbprof));
 1890         }
 1891 
 1892         return (error);
 1893 }
 1894 
 1895 
 1896 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
 1897             NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
 1898 
 1899 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
 1900             NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
 1901 #endif
 1902 

Cache object: aad955d54a3f59ef87c86b9946fad4c0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.