The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_mbuf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_param.h"
   38 #include "opt_mbuf_stress_test.h"
   39 #include "opt_mbuf_profiling.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/kernel.h>
   44 #include <sys/limits.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mbuf.h>
   48 #include <sys/sysctl.h>
   49 #include <sys/domain.h>
   50 #include <sys/protosw.h>
   51 #include <sys/uio.h>
   52 #include <sys/vmmeter.h>
   53 #include <sys/sbuf.h>
   54 #include <sys/sdt.h>
   55 #include <vm/vm.h>
   56 #include <vm/vm_pageout.h>
   57 #include <vm/vm_page.h>
   58 
   59 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
   60     "struct mbuf *", "mbufinfo_t *",
   61     "uint32_t", "uint32_t",
   62     "uint16_t", "uint16_t",
   63     "uint32_t", "uint32_t",
   64     "uint32_t", "uint32_t");
   65 
   66 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
   67     "uint32_t", "uint32_t",
   68     "uint16_t", "uint16_t",
   69     "struct mbuf *", "mbufinfo_t *");
   70 
   71 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
   72     "uint32_t", "uint32_t",
   73     "uint16_t", "uint16_t",
   74     "struct mbuf *", "mbufinfo_t *");
   75 
   76 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
   77     "uint32_t", "uint32_t",
   78     "uint16_t", "uint16_t",
   79     "uint32_t", "uint32_t",
   80     "struct mbuf *", "mbufinfo_t *");
   81 
   82 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl,
   83     "uint32_t", "uint32_t",
   84     "uint16_t", "uint16_t",
   85     "uint32_t", "uint32_t",
   86     "uint32_t", "uint32_t",
   87     "struct mbuf *", "mbufinfo_t *");
   88 
   89 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
   90     "struct mbuf *", "mbufinfo_t *",
   91     "uint32_t", "uint32_t",
   92     "uint32_t", "uint32_t");
   93 
   94 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
   95     "struct mbuf *", "mbufinfo_t *",
   96     "uint32_t", "uint32_t",
   97     "uint32_t", "uint32_t",
   98     "void*", "void*");
   99 
  100 SDT_PROBE_DEFINE(sdt, , , m__cljset);
  101 
  102 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
  103         "struct mbuf *", "mbufinfo_t *");
  104 
  105 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
  106     "struct mbuf *", "mbufinfo_t *");
  107 
  108 #include <security/mac/mac_framework.h>
  109 
  110 int     max_linkhdr;
  111 int     max_protohdr;
  112 int     max_hdr;
  113 int     max_datalen;
  114 #ifdef MBUF_STRESS_TEST
  115 int     m_defragpackets;
  116 int     m_defragbytes;
  117 int     m_defraguseless;
  118 int     m_defragfailure;
  119 int     m_defragrandomfailures;
  120 #endif
  121 
  122 /*
  123  * sysctl(8) exported objects
  124  */
  125 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
  126            &max_linkhdr, 0, "Size of largest link layer header");
  127 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
  128            &max_protohdr, 0, "Size of largest protocol layer header");
  129 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
  130            &max_hdr, 0, "Size of largest link plus protocol header");
  131 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
  132            &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
  133 #ifdef MBUF_STRESS_TEST
  134 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
  135            &m_defragpackets, 0, "");
  136 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
  137            &m_defragbytes, 0, "");
  138 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
  139            &m_defraguseless, 0, "");
  140 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
  141            &m_defragfailure, 0, "");
  142 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
  143            &m_defragrandomfailures, 0, "");
  144 #endif
  145 
  146 /*
  147  * Ensure the correct size of various mbuf parameters.  It could be off due
  148  * to compiler-induced padding and alignment artifacts.
  149  */
  150 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
  151 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
  152 
  153 /*
  154  * mbuf data storage should be 64-bit aligned regardless of architectural
  155  * pointer size; check this is the case with and without a packet header.
  156  */
  157 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
  158 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
  159 
  160 /*
  161  * While the specific values here don't matter too much (i.e., +/- a few
  162  * words), we do want to ensure that changes to these values are carefully
  163  * reasoned about and properly documented.  This is especially the case as
  164  * network-protocol and device-driver modules encode these layouts, and must
  165  * be recompiled if the structures change.  Check these values at compile time
  166  * against the ones documented in comments in mbuf.h.
  167  *
  168  * NB: Possibly they should be documented there via #define's and not just
  169  * comments.
  170  */
  171 #if defined(__LP64__)
  172 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
  173 CTASSERT(sizeof(struct pkthdr) == 56);
  174 CTASSERT(sizeof(struct m_ext) == 160);
  175 #else
  176 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
  177 CTASSERT(sizeof(struct pkthdr) == 48);
  178 #if defined(__powerpc__) && defined(BOOKE)
  179 /* PowerPC booke has 64-bit physical pointers. */
  180 CTASSERT(sizeof(struct m_ext) == 184);
  181 #else
  182 CTASSERT(sizeof(struct m_ext) == 180);
  183 #endif
  184 #endif
  185 
  186 /*
  187  * Assert that the queue(3) macros produce code of the same size as an old
  188  * plain pointer does.
  189  */
  190 #ifdef INVARIANTS
  191 static struct mbuf __used m_assertbuf;
  192 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
  193 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
  194 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
  195 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
  196 #endif
  197 
  198 /*
  199  * Attach the cluster from *m to *n, set up m_ext in *n
  200  * and bump the refcount of the cluster.
  201  */
  202 void
  203 mb_dupcl(struct mbuf *n, struct mbuf *m)
  204 {
  205         volatile u_int *refcnt;
  206 
  207         KASSERT(m->m_flags & (M_EXT|M_EXTPG),
  208             ("%s: M_EXT|M_EXTPG not set on %p", __func__, m));
  209         KASSERT(!(n->m_flags & (M_EXT|M_EXTPG)),
  210             ("%s: M_EXT|M_EXTPG set on %p", __func__, n));
  211 
  212         /*
  213          * Cache access optimization.
  214          *
  215          * o Regular M_EXT storage doesn't need full copy of m_ext, since
  216          *   the holder of the 'ext_count' is responsible to carry the free
  217          *   routine and its arguments.
  218          * o M_EXTPG data is split between main part of mbuf and m_ext, the
  219          *   main part is copied in full, the m_ext part is similar to M_EXT.
  220          * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is
  221          *   special - it needs full copy of m_ext into each mbuf, since any
  222          *   copy could end up as the last to free.
  223          */
  224         if (m->m_flags & M_EXTPG) {
  225                 bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy,
  226                     __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy));
  227                 bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen);
  228         } else if (m->m_ext.ext_type == EXT_EXTREF)
  229                 bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
  230         else
  231                 bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
  232 
  233         n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG);
  234 
  235         /* See if this is the mbuf that holds the embedded refcount. */
  236         if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
  237                 refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
  238                 n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
  239         } else {
  240                 KASSERT(m->m_ext.ext_cnt != NULL,
  241                     ("%s: no refcounting pointer on %p", __func__, m));
  242                 refcnt = m->m_ext.ext_cnt;
  243         }
  244 
  245         if (*refcnt == 1)
  246                 *refcnt += 1;
  247         else
  248                 atomic_add_int(refcnt, 1);
  249 }
  250 
  251 void
  252 m_demote_pkthdr(struct mbuf *m)
  253 {
  254 
  255         M_ASSERTPKTHDR(m);
  256         M_ASSERT_NO_SND_TAG(m);
  257 
  258         m_tag_delete_chain(m, NULL);
  259         m->m_flags &= ~M_PKTHDR;
  260         bzero(&m->m_pkthdr, sizeof(struct pkthdr));
  261 }
  262 
  263 /*
  264  * Clean up mbuf (chain) from any tags and packet headers.
  265  * If "all" is set then the first mbuf in the chain will be
  266  * cleaned too.
  267  */
  268 void
  269 m_demote(struct mbuf *m0, int all, int flags)
  270 {
  271         struct mbuf *m;
  272 
  273         flags |= M_DEMOTEFLAGS;
  274 
  275         for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
  276                 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
  277                     __func__, m, m0));
  278                 if (m->m_flags & M_PKTHDR)
  279                         m_demote_pkthdr(m);
  280                 m->m_flags &= flags;
  281         }
  282 }
  283 
  284 /*
  285  * Sanity checks on mbuf (chain) for use in KASSERT() and general
  286  * debugging.
  287  * Returns 0 or panics when bad and 1 on all tests passed.
  288  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
  289  * blow up later.
  290  */
  291 int
  292 m_sanity(struct mbuf *m0, int sanitize)
  293 {
  294         struct mbuf *m;
  295         caddr_t a, b;
  296         int pktlen = 0;
  297 
  298 #ifdef INVARIANTS
  299 #define M_SANITY_ACTION(s)      panic("mbuf %p: " s, m)
  300 #else
  301 #define M_SANITY_ACTION(s)      printf("mbuf %p: " s, m)
  302 #endif
  303 
  304         for (m = m0; m != NULL; m = m->m_next) {
  305                 /*
  306                  * Basic pointer checks.  If any of these fails then some
  307                  * unrelated kernel memory before or after us is trashed.
  308                  * No way to recover from that.
  309                  */
  310                 a = M_START(m);
  311                 b = a + M_SIZE(m);
  312                 if ((caddr_t)m->m_data < a)
  313                         M_SANITY_ACTION("m_data outside mbuf data range left");
  314                 if ((caddr_t)m->m_data > b)
  315                         M_SANITY_ACTION("m_data outside mbuf data range right");
  316                 if ((caddr_t)m->m_data + m->m_len > b)
  317                         M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
  318 
  319                 /* m->m_nextpkt may only be set on first mbuf in chain. */
  320                 if (m != m0 && m->m_nextpkt != NULL) {
  321                         if (sanitize) {
  322                                 m_freem(m->m_nextpkt);
  323                                 m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
  324                         } else
  325                                 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
  326                 }
  327 
  328                 /* packet length (not mbuf length!) calculation */
  329                 if (m0->m_flags & M_PKTHDR)
  330                         pktlen += m->m_len;
  331 
  332                 /* m_tags may only be attached to first mbuf in chain. */
  333                 if (m != m0 && m->m_flags & M_PKTHDR &&
  334                     !SLIST_EMPTY(&m->m_pkthdr.tags)) {
  335                         if (sanitize) {
  336                                 m_tag_delete_chain(m, NULL);
  337                                 /* put in 0xDEADC0DE perhaps? */
  338                         } else
  339                                 M_SANITY_ACTION("m_tags on in-chain mbuf");
  340                 }
  341 
  342                 /* M_PKTHDR may only be set on first mbuf in chain */
  343                 if (m != m0 && m->m_flags & M_PKTHDR) {
  344                         if (sanitize) {
  345                                 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
  346                                 m->m_flags &= ~M_PKTHDR;
  347                                 /* put in 0xDEADCODE and leave hdr flag in */
  348                         } else
  349                                 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
  350                 }
  351         }
  352         m = m0;
  353         if (pktlen && pktlen != m->m_pkthdr.len) {
  354                 if (sanitize)
  355                         m->m_pkthdr.len = 0;
  356                 else
  357                         M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
  358         }
  359         return 1;
  360 
  361 #undef  M_SANITY_ACTION
  362 }
  363 
  364 /*
  365  * Non-inlined part of m_init().
  366  */
  367 int
  368 m_pkthdr_init(struct mbuf *m, int how)
  369 {
  370 #ifdef MAC
  371         int error;
  372 #endif
  373         m->m_data = m->m_pktdat;
  374         bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
  375 #ifdef NUMA
  376         m->m_pkthdr.numa_domain = M_NODOM;
  377 #endif
  378 #ifdef MAC
  379         /* If the label init fails, fail the alloc */
  380         error = mac_mbuf_init(m, how);
  381         if (error)
  382                 return (error);
  383 #endif
  384 
  385         return (0);
  386 }
  387 
  388 /*
  389  * "Move" mbuf pkthdr from "from" to "to".
  390  * "from" must have M_PKTHDR set, and "to" must be empty.
  391  */
  392 void
  393 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
  394 {
  395 
  396 #if 0
  397         /* see below for why these are not enabled */
  398         M_ASSERTPKTHDR(to);
  399         /* Note: with MAC, this may not be a good assertion. */
  400         KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
  401             ("m_move_pkthdr: to has tags"));
  402 #endif
  403 #ifdef MAC
  404         /*
  405          * XXXMAC: It could be this should also occur for non-MAC?
  406          */
  407         if (to->m_flags & M_PKTHDR)
  408                 m_tag_delete_chain(to, NULL);
  409 #endif
  410         to->m_flags = (from->m_flags & M_COPYFLAGS) |
  411             (to->m_flags & (M_EXT | M_EXTPG));
  412         if ((to->m_flags & M_EXT) == 0)
  413                 to->m_data = to->m_pktdat;
  414         to->m_pkthdr = from->m_pkthdr;          /* especially tags */
  415         SLIST_INIT(&from->m_pkthdr.tags);       /* purge tags from src */
  416         from->m_flags &= ~M_PKTHDR;
  417         if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) {
  418                 from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
  419                 from->m_pkthdr.snd_tag = NULL;
  420         }
  421 }
  422 
  423 /*
  424  * Duplicate "from"'s mbuf pkthdr in "to".
  425  * "from" must have M_PKTHDR set, and "to" must be empty.
  426  * In particular, this does a deep copy of the packet tags.
  427  */
  428 int
  429 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
  430 {
  431 
  432 #if 0
  433         /*
  434          * The mbuf allocator only initializes the pkthdr
  435          * when the mbuf is allocated with m_gethdr(). Many users
  436          * (e.g. m_copy*, m_prepend) use m_get() and then
  437          * smash the pkthdr as needed causing these
  438          * assertions to trip.  For now just disable them.
  439          */
  440         M_ASSERTPKTHDR(to);
  441         /* Note: with MAC, this may not be a good assertion. */
  442         KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
  443 #endif
  444         MBUF_CHECKSLEEP(how);
  445 #ifdef MAC
  446         if (to->m_flags & M_PKTHDR)
  447                 m_tag_delete_chain(to, NULL);
  448 #endif
  449         to->m_flags = (from->m_flags & M_COPYFLAGS) |
  450             (to->m_flags & (M_EXT | M_EXTPG));
  451         if ((to->m_flags & M_EXT) == 0)
  452                 to->m_data = to->m_pktdat;
  453         to->m_pkthdr = from->m_pkthdr;
  454         if (from->m_pkthdr.csum_flags & CSUM_SND_TAG)
  455                 m_snd_tag_ref(from->m_pkthdr.snd_tag);
  456         SLIST_INIT(&to->m_pkthdr.tags);
  457         return (m_tag_copy_chain(to, from, how));
  458 }
  459 
  460 /*
  461  * Lesser-used path for M_PREPEND:
  462  * allocate new mbuf to prepend to chain,
  463  * copy junk along.
  464  */
  465 struct mbuf *
  466 m_prepend(struct mbuf *m, int len, int how)
  467 {
  468         struct mbuf *mn;
  469 
  470         if (m->m_flags & M_PKTHDR)
  471                 mn = m_gethdr(how, m->m_type);
  472         else
  473                 mn = m_get(how, m->m_type);
  474         if (mn == NULL) {
  475                 m_freem(m);
  476                 return (NULL);
  477         }
  478         if (m->m_flags & M_PKTHDR)
  479                 m_move_pkthdr(mn, m);
  480         mn->m_next = m;
  481         m = mn;
  482         if (len < M_SIZE(m))
  483                 M_ALIGN(m, len);
  484         m->m_len = len;
  485         return (m);
  486 }
  487 
  488 /*
  489  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
  490  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
  491  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
  492  * Note that the copy is read-only, because clusters are not copied,
  493  * only their reference counts are incremented.
  494  */
  495 struct mbuf *
  496 m_copym(struct mbuf *m, int off0, int len, int wait)
  497 {
  498         struct mbuf *n, **np;
  499         int off = off0;
  500         struct mbuf *top;
  501         int copyhdr = 0;
  502 
  503         KASSERT(off >= 0, ("m_copym, negative off %d", off));
  504         KASSERT(len >= 0, ("m_copym, negative len %d", len));
  505         MBUF_CHECKSLEEP(wait);
  506         if (off == 0 && m->m_flags & M_PKTHDR)
  507                 copyhdr = 1;
  508         while (off > 0) {
  509                 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
  510                 if (off < m->m_len)
  511                         break;
  512                 off -= m->m_len;
  513                 m = m->m_next;
  514         }
  515         np = &top;
  516         top = NULL;
  517         while (len > 0) {
  518                 if (m == NULL) {
  519                         KASSERT(len == M_COPYALL,
  520                             ("m_copym, length > size of mbuf chain"));
  521                         break;
  522                 }
  523                 if (copyhdr)
  524                         n = m_gethdr(wait, m->m_type);
  525                 else
  526                         n = m_get(wait, m->m_type);
  527                 *np = n;
  528                 if (n == NULL)
  529                         goto nospace;
  530                 if (copyhdr) {
  531                         if (!m_dup_pkthdr(n, m, wait))
  532                                 goto nospace;
  533                         if (len == M_COPYALL)
  534                                 n->m_pkthdr.len -= off0;
  535                         else
  536                                 n->m_pkthdr.len = len;
  537                         copyhdr = 0;
  538                 }
  539                 n->m_len = min(len, m->m_len - off);
  540                 if (m->m_flags & (M_EXT|M_EXTPG)) {
  541                         n->m_data = m->m_data + off;
  542                         mb_dupcl(n, m);
  543                 } else
  544                         bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
  545                             (u_int)n->m_len);
  546                 if (len != M_COPYALL)
  547                         len -= n->m_len;
  548                 off = 0;
  549                 m = m->m_next;
  550                 np = &n->m_next;
  551         }
  552 
  553         return (top);
  554 nospace:
  555         m_freem(top);
  556         return (NULL);
  557 }
  558 
  559 /*
  560  * Copy an entire packet, including header (which must be present).
  561  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
  562  * Note that the copy is read-only, because clusters are not copied,
  563  * only their reference counts are incremented.
  564  * Preserve alignment of the first mbuf so if the creator has left
  565  * some room at the beginning (e.g. for inserting protocol headers)
  566  * the copies still have the room available.
  567  */
  568 struct mbuf *
  569 m_copypacket(struct mbuf *m, int how)
  570 {
  571         struct mbuf *top, *n, *o;
  572 
  573         MBUF_CHECKSLEEP(how);
  574         n = m_get(how, m->m_type);
  575         top = n;
  576         if (n == NULL)
  577                 goto nospace;
  578 
  579         if (!m_dup_pkthdr(n, m, how))
  580                 goto nospace;
  581         n->m_len = m->m_len;
  582         if (m->m_flags & (M_EXT|M_EXTPG)) {
  583                 n->m_data = m->m_data;
  584                 mb_dupcl(n, m);
  585         } else {
  586                 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
  587                 bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
  588         }
  589 
  590         m = m->m_next;
  591         while (m) {
  592                 o = m_get(how, m->m_type);
  593                 if (o == NULL)
  594                         goto nospace;
  595 
  596                 n->m_next = o;
  597                 n = n->m_next;
  598 
  599                 n->m_len = m->m_len;
  600                 if (m->m_flags & (M_EXT|M_EXTPG)) {
  601                         n->m_data = m->m_data;
  602                         mb_dupcl(n, m);
  603                 } else {
  604                         bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
  605                 }
  606 
  607                 m = m->m_next;
  608         }
  609         return top;
  610 nospace:
  611         m_freem(top);
  612         return (NULL);
  613 }
  614 
  615 static void
  616 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp)
  617 {
  618         struct iovec iov;
  619         struct uio uio;
  620         int error;
  621 
  622         KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off));
  623         KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len));
  624         KASSERT(off < m->m_len,
  625             ("m_copyfromunmapped: len exceeds mbuf length"));
  626         iov.iov_base = cp;
  627         iov.iov_len = len;
  628         uio.uio_resid = len;
  629         uio.uio_iov = &iov;
  630         uio.uio_segflg = UIO_SYSSPACE;
  631         uio.uio_iovcnt = 1;
  632         uio.uio_offset = 0;
  633         uio.uio_rw = UIO_READ;
  634         error = m_unmapped_uiomove(m, off, &uio, len);
  635         KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
  636            len));
  637 }
  638 
  639 /*
  640  * Copy data from an mbuf chain starting "off" bytes from the beginning,
  641  * continuing for "len" bytes, into the indicated buffer.
  642  */
  643 void
  644 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
  645 {
  646         u_int count;
  647 
  648         KASSERT(off >= 0, ("m_copydata, negative off %d", off));
  649         KASSERT(len >= 0, ("m_copydata, negative len %d", len));
  650         while (off > 0) {
  651                 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
  652                 if (off < m->m_len)
  653                         break;
  654                 off -= m->m_len;
  655                 m = m->m_next;
  656         }
  657         while (len > 0) {
  658                 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
  659                 count = min(m->m_len - off, len);
  660                 if ((m->m_flags & M_EXTPG) != 0)
  661                         m_copyfromunmapped(m, off, count, cp);
  662                 else
  663                         bcopy(mtod(m, caddr_t) + off, cp, count);
  664                 len -= count;
  665                 cp += count;
  666                 off = 0;
  667                 m = m->m_next;
  668         }
  669 }
  670 
  671 /*
  672  * Copy a packet header mbuf chain into a completely new chain, including
  673  * copying any mbuf clusters.  Use this instead of m_copypacket() when
  674  * you need a writable copy of an mbuf chain.
  675  */
  676 struct mbuf *
  677 m_dup(const struct mbuf *m, int how)
  678 {
  679         struct mbuf **p, *top = NULL;
  680         int remain, moff, nsize;
  681 
  682         MBUF_CHECKSLEEP(how);
  683         /* Sanity check */
  684         if (m == NULL)
  685                 return (NULL);
  686         M_ASSERTPKTHDR(m);
  687 
  688         /* While there's more data, get a new mbuf, tack it on, and fill it */
  689         remain = m->m_pkthdr.len;
  690         moff = 0;
  691         p = &top;
  692         while (remain > 0 || top == NULL) {     /* allow m->m_pkthdr.len == 0 */
  693                 struct mbuf *n;
  694 
  695                 /* Get the next new mbuf */
  696                 if (remain >= MINCLSIZE) {
  697                         n = m_getcl(how, m->m_type, 0);
  698                         nsize = MCLBYTES;
  699                 } else {
  700                         n = m_get(how, m->m_type);
  701                         nsize = MLEN;
  702                 }
  703                 if (n == NULL)
  704                         goto nospace;
  705 
  706                 if (top == NULL) {              /* First one, must be PKTHDR */
  707                         if (!m_dup_pkthdr(n, m, how)) {
  708                                 m_free(n);
  709                                 goto nospace;
  710                         }
  711                         if ((n->m_flags & M_EXT) == 0)
  712                                 nsize = MHLEN;
  713                         n->m_flags &= ~M_RDONLY;
  714                 }
  715                 n->m_len = 0;
  716 
  717                 /* Link it into the new chain */
  718                 *p = n;
  719                 p = &n->m_next;
  720 
  721                 /* Copy data from original mbuf(s) into new mbuf */
  722                 while (n->m_len < nsize && m != NULL) {
  723                         int chunk = min(nsize - n->m_len, m->m_len - moff);
  724 
  725                         m_copydata(m, moff, chunk, n->m_data + n->m_len);
  726                         moff += chunk;
  727                         n->m_len += chunk;
  728                         remain -= chunk;
  729                         if (moff == m->m_len) {
  730                                 m = m->m_next;
  731                                 moff = 0;
  732                         }
  733                 }
  734 
  735                 /* Check correct total mbuf length */
  736                 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
  737                         ("%s: bogus m_pkthdr.len", __func__));
  738         }
  739         return (top);
  740 
  741 nospace:
  742         m_freem(top);
  743         return (NULL);
  744 }
  745 
  746 /*
  747  * Concatenate mbuf chain n to m.
  748  * Both chains must be of the same type (e.g. MT_DATA).
  749  * Any m_pkthdr is not updated.
  750  */
  751 void
  752 m_cat(struct mbuf *m, struct mbuf *n)
  753 {
  754         while (m->m_next)
  755                 m = m->m_next;
  756         while (n) {
  757                 if (!M_WRITABLE(m) ||
  758                     (n->m_flags & M_EXTPG) != 0 ||
  759                     M_TRAILINGSPACE(m) < n->m_len) {
  760                         /* just join the two chains */
  761                         m->m_next = n;
  762                         return;
  763                 }
  764                 /* splat the data from one into the other */
  765                 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
  766                     (u_int)n->m_len);
  767                 m->m_len += n->m_len;
  768                 n = m_free(n);
  769         }
  770 }
  771 
  772 /*
  773  * Concatenate two pkthdr mbuf chains.
  774  */
  775 void
  776 m_catpkt(struct mbuf *m, struct mbuf *n)
  777 {
  778 
  779         M_ASSERTPKTHDR(m);
  780         M_ASSERTPKTHDR(n);
  781 
  782         m->m_pkthdr.len += n->m_pkthdr.len;
  783         m_demote(n, 1, 0);
  784 
  785         m_cat(m, n);
  786 }
  787 
  788 void
  789 m_adj(struct mbuf *mp, int req_len)
  790 {
  791         int len = req_len;
  792         struct mbuf *m;
  793         int count;
  794 
  795         if ((m = mp) == NULL)
  796                 return;
  797         if (len >= 0) {
  798                 /*
  799                  * Trim from head.
  800                  */
  801                 while (m != NULL && len > 0) {
  802                         if (m->m_len <= len) {
  803                                 len -= m->m_len;
  804                                 m->m_len = 0;
  805                                 m = m->m_next;
  806                         } else {
  807                                 m->m_len -= len;
  808                                 m->m_data += len;
  809                                 len = 0;
  810                         }
  811                 }
  812                 if (mp->m_flags & M_PKTHDR)
  813                         mp->m_pkthdr.len -= (req_len - len);
  814         } else {
  815                 /*
  816                  * Trim from tail.  Scan the mbuf chain,
  817                  * calculating its length and finding the last mbuf.
  818                  * If the adjustment only affects this mbuf, then just
  819                  * adjust and return.  Otherwise, rescan and truncate
  820                  * after the remaining size.
  821                  */
  822                 len = -len;
  823                 count = 0;
  824                 for (;;) {
  825                         count += m->m_len;
  826                         if (m->m_next == (struct mbuf *)0)
  827                                 break;
  828                         m = m->m_next;
  829                 }
  830                 if (m->m_len >= len) {
  831                         m->m_len -= len;
  832                         if (mp->m_flags & M_PKTHDR)
  833                                 mp->m_pkthdr.len -= len;
  834                         return;
  835                 }
  836                 count -= len;
  837                 if (count < 0)
  838                         count = 0;
  839                 /*
  840                  * Correct length for chain is "count".
  841                  * Find the mbuf with last data, adjust its length,
  842                  * and toss data from remaining mbufs on chain.
  843                  */
  844                 m = mp;
  845                 if (m->m_flags & M_PKTHDR)
  846                         m->m_pkthdr.len = count;
  847                 for (; m; m = m->m_next) {
  848                         if (m->m_len >= count) {
  849                                 m->m_len = count;
  850                                 if (m->m_next != NULL) {
  851                                         m_freem(m->m_next);
  852                                         m->m_next = NULL;
  853                                 }
  854                                 break;
  855                         }
  856                         count -= m->m_len;
  857                 }
  858         }
  859 }
  860 
  861 void
  862 m_adj_decap(struct mbuf *mp, int len)
  863 {
  864         uint8_t rsstype;
  865 
  866         m_adj(mp, len);
  867         if ((mp->m_flags & M_PKTHDR) != 0) {
  868                 /*
  869                  * If flowid was calculated by card from the inner
  870                  * headers, move flowid to the decapsulated mbuf
  871                  * chain, otherwise clear.  This depends on the
  872                  * internals of m_adj, which keeps pkthdr as is, in
  873                  * particular not changing rsstype and flowid.
  874                  */
  875                 rsstype = mp->m_pkthdr.rsstype;
  876                 if ((rsstype & M_HASHTYPE_INNER) != 0) {
  877                         M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER);
  878                 } else {
  879                         M_HASHTYPE_CLEAR(mp);
  880                 }
  881         }
  882 }
  883 
  884 /*
  885  * Rearange an mbuf chain so that len bytes are contiguous
  886  * and in the data area of an mbuf (so that mtod will work
  887  * for a structure of size len).  Returns the resulting
  888  * mbuf chain on success, frees it and returns null on failure.
  889  * If there is room, it will add up to max_protohdr-len extra bytes to the
  890  * contiguous region in an attempt to avoid being called next time.
  891  */
  892 struct mbuf *
  893 m_pullup(struct mbuf *n, int len)
  894 {
  895         struct mbuf *m;
  896         int count;
  897         int space;
  898 
  899         KASSERT((n->m_flags & M_EXTPG) == 0,
  900             ("%s: unmapped mbuf %p", __func__, n));
  901 
  902         /*
  903          * If first mbuf has no cluster, and has room for len bytes
  904          * without shifting current data, pullup into it,
  905          * otherwise allocate a new mbuf to prepend to the chain.
  906          */
  907         if ((n->m_flags & M_EXT) == 0 &&
  908             n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
  909                 if (n->m_len >= len)
  910                         return (n);
  911                 m = n;
  912                 n = n->m_next;
  913                 len -= m->m_len;
  914         } else {
  915                 if (len > MHLEN)
  916                         goto bad;
  917                 m = m_get(M_NOWAIT, n->m_type);
  918                 if (m == NULL)
  919                         goto bad;
  920                 if (n->m_flags & M_PKTHDR)
  921                         m_move_pkthdr(m, n);
  922         }
  923         space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
  924         do {
  925                 count = min(min(max(len, max_protohdr), space), n->m_len);
  926                 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
  927                   (u_int)count);
  928                 len -= count;
  929                 m->m_len += count;
  930                 n->m_len -= count;
  931                 space -= count;
  932                 if (n->m_len)
  933                         n->m_data += count;
  934                 else
  935                         n = m_free(n);
  936         } while (len > 0 && n);
  937         if (len > 0) {
  938                 (void) m_free(m);
  939                 goto bad;
  940         }
  941         m->m_next = n;
  942         return (m);
  943 bad:
  944         m_freem(n);
  945         return (NULL);
  946 }
  947 
  948 /*
  949  * Like m_pullup(), except a new mbuf is always allocated, and we allow
  950  * the amount of empty space before the data in the new mbuf to be specified
  951  * (in the event that the caller expects to prepend later).
  952  */
  953 struct mbuf *
  954 m_copyup(struct mbuf *n, int len, int dstoff)
  955 {
  956         struct mbuf *m;
  957         int count, space;
  958 
  959         if (len > (MHLEN - dstoff))
  960                 goto bad;
  961         m = m_get(M_NOWAIT, n->m_type);
  962         if (m == NULL)
  963                 goto bad;
  964         if (n->m_flags & M_PKTHDR)
  965                 m_move_pkthdr(m, n);
  966         m->m_data += dstoff;
  967         space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
  968         do {
  969                 count = min(min(max(len, max_protohdr), space), n->m_len);
  970                 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
  971                     (unsigned)count);
  972                 len -= count;
  973                 m->m_len += count;
  974                 n->m_len -= count;
  975                 space -= count;
  976                 if (n->m_len)
  977                         n->m_data += count;
  978                 else
  979                         n = m_free(n);
  980         } while (len > 0 && n);
  981         if (len > 0) {
  982                 (void) m_free(m);
  983                 goto bad;
  984         }
  985         m->m_next = n;
  986         return (m);
  987  bad:
  988         m_freem(n);
  989         return (NULL);
  990 }
  991 
  992 /*
  993  * Partition an mbuf chain in two pieces, returning the tail --
  994  * all but the first len0 bytes.  In case of failure, it returns NULL and
  995  * attempts to restore the chain to its original state.
  996  *
  997  * Note that the resulting mbufs might be read-only, because the new
  998  * mbuf can end up sharing an mbuf cluster with the original mbuf if
  999  * the "breaking point" happens to lie within a cluster mbuf. Use the
 1000  * M_WRITABLE() macro to check for this case.
 1001  */
 1002 struct mbuf *
 1003 m_split(struct mbuf *m0, int len0, int wait)
 1004 {
 1005         struct mbuf *m, *n;
 1006         u_int len = len0, remain;
 1007 
 1008         MBUF_CHECKSLEEP(wait);
 1009         for (m = m0; m && len > m->m_len; m = m->m_next)
 1010                 len -= m->m_len;
 1011         if (m == NULL)
 1012                 return (NULL);
 1013         remain = m->m_len - len;
 1014         if (m0->m_flags & M_PKTHDR && remain == 0) {
 1015                 n = m_gethdr(wait, m0->m_type);
 1016                 if (n == NULL)
 1017                         return (NULL);
 1018                 n->m_next = m->m_next;
 1019                 m->m_next = NULL;
 1020                 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
 1021                         n->m_pkthdr.snd_tag =
 1022                             m_snd_tag_ref(m0->m_pkthdr.snd_tag);
 1023                         n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
 1024                 } else
 1025                         n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
 1026                 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
 1027                 m0->m_pkthdr.len = len0;
 1028                 return (n);
 1029         } else if (m0->m_flags & M_PKTHDR) {
 1030                 n = m_gethdr(wait, m0->m_type);
 1031                 if (n == NULL)
 1032                         return (NULL);
 1033                 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
 1034                         n->m_pkthdr.snd_tag =
 1035                             m_snd_tag_ref(m0->m_pkthdr.snd_tag);
 1036                         n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
 1037                 } else
 1038                         n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
 1039                 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
 1040                 m0->m_pkthdr.len = len0;
 1041                 if (m->m_flags & (M_EXT|M_EXTPG))
 1042                         goto extpacket;
 1043                 if (remain > MHLEN) {
 1044                         /* m can't be the lead packet */
 1045                         M_ALIGN(n, 0);
 1046                         n->m_next = m_split(m, len, wait);
 1047                         if (n->m_next == NULL) {
 1048                                 (void) m_free(n);
 1049                                 return (NULL);
 1050                         } else {
 1051                                 n->m_len = 0;
 1052                                 return (n);
 1053                         }
 1054                 } else
 1055                         M_ALIGN(n, remain);
 1056         } else if (remain == 0) {
 1057                 n = m->m_next;
 1058                 m->m_next = NULL;
 1059                 return (n);
 1060         } else {
 1061                 n = m_get(wait, m->m_type);
 1062                 if (n == NULL)
 1063                         return (NULL);
 1064                 M_ALIGN(n, remain);
 1065         }
 1066 extpacket:
 1067         if (m->m_flags & (M_EXT|M_EXTPG)) {
 1068                 n->m_data = m->m_data + len;
 1069                 mb_dupcl(n, m);
 1070         } else {
 1071                 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
 1072         }
 1073         n->m_len = remain;
 1074         m->m_len = len;
 1075         n->m_next = m->m_next;
 1076         m->m_next = NULL;
 1077         return (n);
 1078 }
 1079 /*
 1080  * Routine to copy from device local memory into mbufs.
 1081  * Note that `off' argument is offset into first mbuf of target chain from
 1082  * which to begin copying the data to.
 1083  */
 1084 struct mbuf *
 1085 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
 1086     void (*copy)(char *from, caddr_t to, u_int len))
 1087 {
 1088         struct mbuf *m;
 1089         struct mbuf *top = NULL, **mp = &top;
 1090         int len;
 1091 
 1092         if (off < 0 || off > MHLEN)
 1093                 return (NULL);
 1094 
 1095         while (totlen > 0) {
 1096                 if (top == NULL) {      /* First one, must be PKTHDR */
 1097                         if (totlen + off >= MINCLSIZE) {
 1098                                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1099                                 len = MCLBYTES;
 1100                         } else {
 1101                                 m = m_gethdr(M_NOWAIT, MT_DATA);
 1102                                 len = MHLEN;
 1103 
 1104                                 /* Place initial small packet/header at end of mbuf */
 1105                                 if (m && totlen + off + max_linkhdr <= MHLEN) {
 1106                                         m->m_data += max_linkhdr;
 1107                                         len -= max_linkhdr;
 1108                                 }
 1109                         }
 1110                         if (m == NULL)
 1111                                 return NULL;
 1112                         m->m_pkthdr.rcvif = ifp;
 1113                         m->m_pkthdr.len = totlen;
 1114                 } else {
 1115                         if (totlen + off >= MINCLSIZE) {
 1116                                 m = m_getcl(M_NOWAIT, MT_DATA, 0);
 1117                                 len = MCLBYTES;
 1118                         } else {
 1119                                 m = m_get(M_NOWAIT, MT_DATA);
 1120                                 len = MLEN;
 1121                         }
 1122                         if (m == NULL) {
 1123                                 m_freem(top);
 1124                                 return NULL;
 1125                         }
 1126                 }
 1127                 if (off) {
 1128                         m->m_data += off;
 1129                         len -= off;
 1130                         off = 0;
 1131                 }
 1132                 m->m_len = len = min(totlen, len);
 1133                 if (copy)
 1134                         copy(buf, mtod(m, caddr_t), (u_int)len);
 1135                 else
 1136                         bcopy(buf, mtod(m, caddr_t), (u_int)len);
 1137                 buf += len;
 1138                 *mp = m;
 1139                 mp = &m->m_next;
 1140                 totlen -= len;
 1141         }
 1142         return (top);
 1143 }
 1144 
 1145 static void
 1146 m_copytounmapped(const struct mbuf *m, int off, int len, c_caddr_t cp)
 1147 {
 1148         struct iovec iov;
 1149         struct uio uio;
 1150         int error;
 1151 
 1152         KASSERT(off >= 0, ("m_copytounmapped: negative off %d", off));
 1153         KASSERT(len >= 0, ("m_copytounmapped: negative len %d", len));
 1154         KASSERT(off < m->m_len, ("m_copytounmapped: len exceeds mbuf length"));
 1155         iov.iov_base = __DECONST(caddr_t, cp);
 1156         iov.iov_len = len;
 1157         uio.uio_resid = len;
 1158         uio.uio_iov = &iov;
 1159         uio.uio_segflg = UIO_SYSSPACE;
 1160         uio.uio_iovcnt = 1;
 1161         uio.uio_offset = 0;
 1162         uio.uio_rw = UIO_WRITE;
 1163         error = m_unmapped_uiomove(m, off, &uio, len);
 1164         KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
 1165            len));
 1166 }
 1167 
 1168 /*
 1169  * Copy data from a buffer back into the indicated mbuf chain,
 1170  * starting "off" bytes from the beginning, extending the mbuf
 1171  * chain if necessary.
 1172  */
 1173 void
 1174 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
 1175 {
 1176         int mlen;
 1177         struct mbuf *m = m0, *n;
 1178         int totlen = 0;
 1179 
 1180         if (m0 == NULL)
 1181                 return;
 1182         while (off > (mlen = m->m_len)) {
 1183                 off -= mlen;
 1184                 totlen += mlen;
 1185                 if (m->m_next == NULL) {
 1186                         n = m_get(M_NOWAIT, m->m_type);
 1187                         if (n == NULL)
 1188                                 goto out;
 1189                         bzero(mtod(n, caddr_t), MLEN);
 1190                         n->m_len = min(MLEN, len + off);
 1191                         m->m_next = n;
 1192                 }
 1193                 m = m->m_next;
 1194         }
 1195         while (len > 0) {
 1196                 if (m->m_next == NULL && (len > m->m_len - off)) {
 1197                         m->m_len += min(len - (m->m_len - off),
 1198                             M_TRAILINGSPACE(m));
 1199                 }
 1200                 mlen = min (m->m_len - off, len);
 1201                 if ((m->m_flags & M_EXTPG) != 0)
 1202                         m_copytounmapped(m, off, mlen, cp);
 1203                 else
 1204                         bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
 1205                 cp += mlen;
 1206                 len -= mlen;
 1207                 mlen += off;
 1208                 off = 0;
 1209                 totlen += mlen;
 1210                 if (len == 0)
 1211                         break;
 1212                 if (m->m_next == NULL) {
 1213                         n = m_get(M_NOWAIT, m->m_type);
 1214                         if (n == NULL)
 1215                                 break;
 1216                         n->m_len = min(MLEN, len);
 1217                         m->m_next = n;
 1218                 }
 1219                 m = m->m_next;
 1220         }
 1221 out:    if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
 1222                 m->m_pkthdr.len = totlen;
 1223 }
 1224 
 1225 /*
 1226  * Append the specified data to the indicated mbuf chain,
 1227  * Extend the mbuf chain if the new data does not fit in
 1228  * existing space.
 1229  *
 1230  * Return 1 if able to complete the job; otherwise 0.
 1231  */
 1232 int
 1233 m_append(struct mbuf *m0, int len, c_caddr_t cp)
 1234 {
 1235         struct mbuf *m, *n;
 1236         int remainder, space;
 1237 
 1238         for (m = m0; m->m_next != NULL; m = m->m_next)
 1239                 ;
 1240         remainder = len;
 1241         space = M_TRAILINGSPACE(m);
 1242         if (space > 0) {
 1243                 /*
 1244                  * Copy into available space.
 1245                  */
 1246                 if (space > remainder)
 1247                         space = remainder;
 1248                 bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
 1249                 m->m_len += space;
 1250                 cp += space, remainder -= space;
 1251         }
 1252         while (remainder > 0) {
 1253                 /*
 1254                  * Allocate a new mbuf; could check space
 1255                  * and allocate a cluster instead.
 1256                  */
 1257                 n = m_get(M_NOWAIT, m->m_type);
 1258                 if (n == NULL)
 1259                         break;
 1260                 n->m_len = min(MLEN, remainder);
 1261                 bcopy(cp, mtod(n, caddr_t), n->m_len);
 1262                 cp += n->m_len, remainder -= n->m_len;
 1263                 m->m_next = n;
 1264                 m = n;
 1265         }
 1266         if (m0->m_flags & M_PKTHDR)
 1267                 m0->m_pkthdr.len += len - remainder;
 1268         return (remainder == 0);
 1269 }
 1270 
 1271 static int
 1272 m_apply_extpg_one(struct mbuf *m, int off, int len,
 1273     int (*f)(void *, void *, u_int), void *arg)
 1274 {
 1275         void *p;
 1276         u_int i, count, pgoff, pglen;
 1277         int rval;
 1278 
 1279         KASSERT(PMAP_HAS_DMAP,
 1280             ("m_apply_extpg_one does not support unmapped mbufs"));
 1281         off += mtod(m, vm_offset_t);
 1282         if (off < m->m_epg_hdrlen) {
 1283                 count = min(m->m_epg_hdrlen - off, len);
 1284                 rval = f(arg, m->m_epg_hdr + off, count);
 1285                 if (rval)
 1286                         return (rval);
 1287                 len -= count;
 1288                 off = 0;
 1289         } else
 1290                 off -= m->m_epg_hdrlen;
 1291         pgoff = m->m_epg_1st_off;
 1292         for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
 1293                 pglen = m_epg_pagelen(m, i, pgoff);
 1294                 if (off < pglen) {
 1295                         count = min(pglen - off, len);
 1296                         p = (void *)PHYS_TO_DMAP(m->m_epg_pa[i] + pgoff);
 1297                         rval = f(arg, p, count);
 1298                         if (rval)
 1299                                 return (rval);
 1300                         len -= count;
 1301                         off = 0;
 1302                 } else
 1303                         off -= pglen;
 1304                 pgoff = 0;
 1305         }
 1306         if (len > 0) {
 1307                 KASSERT(off < m->m_epg_trllen,
 1308                     ("m_apply_extpg_one: offset beyond trailer"));
 1309                 KASSERT(len <= m->m_epg_trllen - off,
 1310                     ("m_apply_extpg_one: length beyond trailer"));
 1311                 return (f(arg, m->m_epg_trail + off, len));
 1312         }
 1313         return (0);
 1314 }
 1315 
 1316 /* Apply function f to the data in a single mbuf. */
 1317 static int
 1318 m_apply_one(struct mbuf *m, int off, int len,
 1319     int (*f)(void *, void *, u_int), void *arg)
 1320 {
 1321         if ((m->m_flags & M_EXTPG) != 0)
 1322                 return (m_apply_extpg_one(m, off, len, f, arg));
 1323         else
 1324                 return (f(arg, mtod(m, caddr_t) + off, len));
 1325 }
 1326 
 1327 /*
 1328  * Apply function f to the data in an mbuf chain starting "off" bytes from
 1329  * the beginning, continuing for "len" bytes.
 1330  */
 1331 int
 1332 m_apply(struct mbuf *m, int off, int len,
 1333     int (*f)(void *, void *, u_int), void *arg)
 1334 {
 1335         u_int count;
 1336         int rval;
 1337 
 1338         KASSERT(off >= 0, ("m_apply, negative off %d", off));
 1339         KASSERT(len >= 0, ("m_apply, negative len %d", len));
 1340         while (off > 0) {
 1341                 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
 1342                 if (off < m->m_len)
 1343                         break;
 1344                 off -= m->m_len;
 1345                 m = m->m_next;
 1346         }
 1347         while (len > 0) {
 1348                 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
 1349                 count = min(m->m_len - off, len);
 1350                 rval = m_apply_one(m, off, count, f, arg);
 1351                 if (rval)
 1352                         return (rval);
 1353                 len -= count;
 1354                 off = 0;
 1355                 m = m->m_next;
 1356         }
 1357         return (0);
 1358 }
 1359 
 1360 /*
 1361  * Return a pointer to mbuf/offset of location in mbuf chain.
 1362  */
 1363 struct mbuf *
 1364 m_getptr(struct mbuf *m, int loc, int *off)
 1365 {
 1366 
 1367         while (loc >= 0) {
 1368                 /* Normal end of search. */
 1369                 if (m->m_len > loc) {
 1370                         *off = loc;
 1371                         return (m);
 1372                 } else {
 1373                         loc -= m->m_len;
 1374                         if (m->m_next == NULL) {
 1375                                 if (loc == 0) {
 1376                                         /* Point at the end of valid data. */
 1377                                         *off = m->m_len;
 1378                                         return (m);
 1379                                 }
 1380                                 return (NULL);
 1381                         }
 1382                         m = m->m_next;
 1383                 }
 1384         }
 1385         return (NULL);
 1386 }
 1387 
 1388 void
 1389 m_print(const struct mbuf *m, int maxlen)
 1390 {
 1391         int len;
 1392         int pdata;
 1393         const struct mbuf *m2;
 1394 
 1395         if (m == NULL) {
 1396                 printf("mbuf: %p\n", m);
 1397                 return;
 1398         }
 1399 
 1400         if (m->m_flags & M_PKTHDR)
 1401                 len = m->m_pkthdr.len;
 1402         else
 1403                 len = -1;
 1404         m2 = m;
 1405         while (m2 != NULL && (len == -1 || len)) {
 1406                 pdata = m2->m_len;
 1407                 if (maxlen != -1 && pdata > maxlen)
 1408                         pdata = maxlen;
 1409                 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
 1410                     m2->m_next, m2->m_flags, "\2\20freelist\17skipfw"
 1411                     "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
 1412                     "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
 1413                 if (pdata)
 1414                         printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
 1415                 if (len != -1)
 1416                         len -= m2->m_len;
 1417                 m2 = m2->m_next;
 1418         }
 1419         if (len > 0)
 1420                 printf("%d bytes unaccounted for.\n", len);
 1421         return;
 1422 }
 1423 
 1424 u_int
 1425 m_fixhdr(struct mbuf *m0)
 1426 {
 1427         u_int len;
 1428 
 1429         len = m_length(m0, NULL);
 1430         m0->m_pkthdr.len = len;
 1431         return (len);
 1432 }
 1433 
 1434 u_int
 1435 m_length(struct mbuf *m0, struct mbuf **last)
 1436 {
 1437         struct mbuf *m;
 1438         u_int len;
 1439 
 1440         len = 0;
 1441         for (m = m0; m != NULL; m = m->m_next) {
 1442                 len += m->m_len;
 1443                 if (m->m_next == NULL)
 1444                         break;
 1445         }
 1446         if (last != NULL)
 1447                 *last = m;
 1448         return (len);
 1449 }
 1450 
 1451 /*
 1452  * Defragment a mbuf chain, returning the shortest possible
 1453  * chain of mbufs and clusters.  If allocation fails and
 1454  * this cannot be completed, NULL will be returned, but
 1455  * the passed in chain will be unchanged.  Upon success,
 1456  * the original chain will be freed, and the new chain
 1457  * will be returned.
 1458  *
 1459  * If a non-packet header is passed in, the original
 1460  * mbuf (chain?) will be returned unharmed.
 1461  */
 1462 struct mbuf *
 1463 m_defrag(struct mbuf *m0, int how)
 1464 {
 1465         struct mbuf *m_new = NULL, *m_final = NULL;
 1466         int progress = 0, length;
 1467 
 1468         MBUF_CHECKSLEEP(how);
 1469         if (!(m0->m_flags & M_PKTHDR))
 1470                 return (m0);
 1471 
 1472         m_fixhdr(m0); /* Needed sanity check */
 1473 
 1474 #ifdef MBUF_STRESS_TEST
 1475         if (m_defragrandomfailures) {
 1476                 int temp = arc4random() & 0xff;
 1477                 if (temp == 0xba)
 1478                         goto nospace;
 1479         }
 1480 #endif
 1481 
 1482         if (m0->m_pkthdr.len > MHLEN)
 1483                 m_final = m_getcl(how, MT_DATA, M_PKTHDR);
 1484         else
 1485                 m_final = m_gethdr(how, MT_DATA);
 1486 
 1487         if (m_final == NULL)
 1488                 goto nospace;
 1489 
 1490         if (m_dup_pkthdr(m_final, m0, how) == 0)
 1491                 goto nospace;
 1492 
 1493         m_new = m_final;
 1494 
 1495         while (progress < m0->m_pkthdr.len) {
 1496                 length = m0->m_pkthdr.len - progress;
 1497                 if (length > MCLBYTES)
 1498                         length = MCLBYTES;
 1499 
 1500                 if (m_new == NULL) {
 1501                         if (length > MLEN)
 1502                                 m_new = m_getcl(how, MT_DATA, 0);
 1503                         else
 1504                                 m_new = m_get(how, MT_DATA);
 1505                         if (m_new == NULL)
 1506                                 goto nospace;
 1507                 }
 1508 
 1509                 m_copydata(m0, progress, length, mtod(m_new, caddr_t));
 1510                 progress += length;
 1511                 m_new->m_len = length;
 1512                 if (m_new != m_final)
 1513                         m_cat(m_final, m_new);
 1514                 m_new = NULL;
 1515         }
 1516 #ifdef MBUF_STRESS_TEST
 1517         if (m0->m_next == NULL)
 1518                 m_defraguseless++;
 1519 #endif
 1520         m_freem(m0);
 1521         m0 = m_final;
 1522 #ifdef MBUF_STRESS_TEST
 1523         m_defragpackets++;
 1524         m_defragbytes += m0->m_pkthdr.len;
 1525 #endif
 1526         return (m0);
 1527 nospace:
 1528 #ifdef MBUF_STRESS_TEST
 1529         m_defragfailure++;
 1530 #endif
 1531         if (m_final)
 1532                 m_freem(m_final);
 1533         return (NULL);
 1534 }
 1535 
 1536 /*
 1537  * Return the number of fragments an mbuf will use.  This is usually
 1538  * used as a proxy for the number of scatter/gather elements needed by
 1539  * a DMA engine to access an mbuf.  In general mapped mbufs are
 1540  * assumed to be backed by physically contiguous buffers that only
 1541  * need a single fragment.  Unmapped mbufs, on the other hand, can
 1542  * span disjoint physical pages.
 1543  */
 1544 static int
 1545 frags_per_mbuf(struct mbuf *m)
 1546 {
 1547         int frags;
 1548 
 1549         if ((m->m_flags & M_EXTPG) == 0)
 1550                 return (1);
 1551 
 1552         /*
 1553          * The header and trailer are counted as a single fragment
 1554          * each when present.
 1555          *
 1556          * XXX: This overestimates the number of fragments by assuming
 1557          * all the backing physical pages are disjoint.
 1558          */
 1559         frags = 0;
 1560         if (m->m_epg_hdrlen != 0)
 1561                 frags++;
 1562         frags += m->m_epg_npgs;
 1563         if (m->m_epg_trllen != 0)
 1564                 frags++;
 1565 
 1566         return (frags);
 1567 }
 1568 
 1569 /*
 1570  * Defragment an mbuf chain, returning at most maxfrags separate
 1571  * mbufs+clusters.  If this is not possible NULL is returned and
 1572  * the original mbuf chain is left in its present (potentially
 1573  * modified) state.  We use two techniques: collapsing consecutive
 1574  * mbufs and replacing consecutive mbufs by a cluster.
 1575  *
 1576  * NB: this should really be named m_defrag but that name is taken
 1577  */
 1578 struct mbuf *
 1579 m_collapse(struct mbuf *m0, int how, int maxfrags)
 1580 {
 1581         struct mbuf *m, *n, *n2, **prev;
 1582         u_int curfrags;
 1583 
 1584         /*
 1585          * Calculate the current number of frags.
 1586          */
 1587         curfrags = 0;
 1588         for (m = m0; m != NULL; m = m->m_next)
 1589                 curfrags += frags_per_mbuf(m);
 1590         /*
 1591          * First, try to collapse mbufs.  Note that we always collapse
 1592          * towards the front so we don't need to deal with moving the
 1593          * pkthdr.  This may be suboptimal if the first mbuf has much
 1594          * less data than the following.
 1595          */
 1596         m = m0;
 1597 again:
 1598         for (;;) {
 1599                 n = m->m_next;
 1600                 if (n == NULL)
 1601                         break;
 1602                 if (M_WRITABLE(m) &&
 1603                     n->m_len < M_TRAILINGSPACE(m)) {
 1604                         m_copydata(n, 0, n->m_len,
 1605                             mtod(m, char *) + m->m_len);
 1606                         m->m_len += n->m_len;
 1607                         m->m_next = n->m_next;
 1608                         curfrags -= frags_per_mbuf(n);
 1609                         m_free(n);
 1610                         if (curfrags <= maxfrags)
 1611                                 return m0;
 1612                 } else
 1613                         m = n;
 1614         }
 1615         KASSERT(maxfrags > 1,
 1616                 ("maxfrags %u, but normal collapse failed", maxfrags));
 1617         /*
 1618          * Collapse consecutive mbufs to a cluster.
 1619          */
 1620         prev = &m0->m_next;             /* NB: not the first mbuf */
 1621         while ((n = *prev) != NULL) {
 1622                 if ((n2 = n->m_next) != NULL &&
 1623                     n->m_len + n2->m_len < MCLBYTES) {
 1624                         m = m_getcl(how, MT_DATA, 0);
 1625                         if (m == NULL)
 1626                                 goto bad;
 1627                         m_copydata(n, 0,  n->m_len, mtod(m, char *));
 1628                         m_copydata(n2, 0,  n2->m_len,
 1629                             mtod(m, char *) + n->m_len);
 1630                         m->m_len = n->m_len + n2->m_len;
 1631                         m->m_next = n2->m_next;
 1632                         *prev = m;
 1633                         curfrags += 1;  /* For the new cluster */
 1634                         curfrags -= frags_per_mbuf(n);
 1635                         curfrags -= frags_per_mbuf(n2);
 1636                         m_free(n);
 1637                         m_free(n2);
 1638                         if (curfrags <= maxfrags)
 1639                                 return m0;
 1640                         /*
 1641                          * Still not there, try the normal collapse
 1642                          * again before we allocate another cluster.
 1643                          */
 1644                         goto again;
 1645                 }
 1646                 prev = &n->m_next;
 1647         }
 1648         /*
 1649          * No place where we can collapse to a cluster; punt.
 1650          * This can occur if, for example, you request 2 frags
 1651          * but the packet requires that both be clusters (we
 1652          * never reallocate the first mbuf to avoid moving the
 1653          * packet header).
 1654          */
 1655 bad:
 1656         return NULL;
 1657 }
 1658 
 1659 #ifdef MBUF_STRESS_TEST
 1660 
 1661 /*
 1662  * Fragment an mbuf chain.  There's no reason you'd ever want to do
 1663  * this in normal usage, but it's great for stress testing various
 1664  * mbuf consumers.
 1665  *
 1666  * If fragmentation is not possible, the original chain will be
 1667  * returned.
 1668  *
 1669  * Possible length values:
 1670  * 0     no fragmentation will occur
 1671  * > 0  each fragment will be of the specified length
 1672  * -1   each fragment will be the same random value in length
 1673  * -2   each fragment's length will be entirely random
 1674  * (Random values range from 1 to 256)
 1675  */
 1676 struct mbuf *
 1677 m_fragment(struct mbuf *m0, int how, int length)
 1678 {
 1679         struct mbuf *m_first, *m_last;
 1680         int divisor = 255, progress = 0, fraglen;
 1681 
 1682         if (!(m0->m_flags & M_PKTHDR))
 1683                 return (m0);
 1684 
 1685         if (length == 0 || length < -2)
 1686                 return (m0);
 1687         if (length > MCLBYTES)
 1688                 length = MCLBYTES;
 1689         if (length < 0 && divisor > MCLBYTES)
 1690                 divisor = MCLBYTES;
 1691         if (length == -1)
 1692                 length = 1 + (arc4random() % divisor);
 1693         if (length > 0)
 1694                 fraglen = length;
 1695 
 1696         m_fixhdr(m0); /* Needed sanity check */
 1697 
 1698         m_first = m_getcl(how, MT_DATA, M_PKTHDR);
 1699         if (m_first == NULL)
 1700                 goto nospace;
 1701 
 1702         if (m_dup_pkthdr(m_first, m0, how) == 0)
 1703                 goto nospace;
 1704 
 1705         m_last = m_first;
 1706 
 1707         while (progress < m0->m_pkthdr.len) {
 1708                 if (length == -2)
 1709                         fraglen = 1 + (arc4random() % divisor);
 1710                 if (fraglen > m0->m_pkthdr.len - progress)
 1711                         fraglen = m0->m_pkthdr.len - progress;
 1712 
 1713                 if (progress != 0) {
 1714                         struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
 1715                         if (m_new == NULL)
 1716                                 goto nospace;
 1717 
 1718                         m_last->m_next = m_new;
 1719                         m_last = m_new;
 1720                 }
 1721 
 1722                 m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
 1723                 progress += fraglen;
 1724                 m_last->m_len = fraglen;
 1725         }
 1726         m_freem(m0);
 1727         m0 = m_first;
 1728         return (m0);
 1729 nospace:
 1730         if (m_first)
 1731                 m_freem(m_first);
 1732         /* Return the original chain on failure */
 1733         return (m0);
 1734 }
 1735 
 1736 #endif
 1737 
 1738 /*
 1739  * Free pages from mbuf_ext_pgs, assuming they were allocated via
 1740  * vm_page_alloc() and aren't associated with any object.  Complement
 1741  * to allocator from m_uiotombuf_nomap().
 1742  */
 1743 void
 1744 mb_free_mext_pgs(struct mbuf *m)
 1745 {
 1746         vm_page_t pg;
 1747 
 1748         M_ASSERTEXTPG(m);
 1749         for (int i = 0; i < m->m_epg_npgs; i++) {
 1750                 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
 1751                 vm_page_unwire_noq(pg);
 1752                 vm_page_free(pg);
 1753         }
 1754 }
 1755 
 1756 static struct mbuf *
 1757 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags)
 1758 {
 1759         struct mbuf *m, *mb, *prev;
 1760         vm_page_t pg_array[MBUF_PEXT_MAX_PGS];
 1761         int error, length, i, needed;
 1762         ssize_t total;
 1763         int pflags = malloc2vm_flags(how) | VM_ALLOC_NODUMP | VM_ALLOC_WIRED;
 1764 
 1765         MPASS((flags & M_PKTHDR) == 0);
 1766         MPASS((how & M_ZERO) == 0);
 1767 
 1768         /*
 1769          * len can be zero or an arbitrary large value bound by
 1770          * the total data supplied by the uio.
 1771          */
 1772         if (len > 0)
 1773                 total = MIN(uio->uio_resid, len);
 1774         else
 1775                 total = uio->uio_resid;
 1776 
 1777         if (maxseg == 0)
 1778                 maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE;
 1779 
 1780         /*
 1781          * If total is zero, return an empty mbuf.  This can occur
 1782          * for TLS 1.0 connections which send empty fragments as
 1783          * a countermeasure against the known-IV weakness in CBC
 1784          * ciphersuites.
 1785          */
 1786         if (__predict_false(total == 0)) {
 1787                 mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
 1788                 if (mb == NULL)
 1789                         return (NULL);
 1790                 mb->m_epg_flags = EPG_FLAG_ANON;
 1791                 return (mb);
 1792         }
 1793 
 1794         /*
 1795          * Allocate the pages
 1796          */
 1797         m = NULL;
 1798         while (total > 0) {
 1799                 mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
 1800                 if (mb == NULL)
 1801                         goto failed;
 1802                 if (m == NULL)
 1803                         m = mb;
 1804                 else
 1805                         prev->m_next = mb;
 1806                 prev = mb;
 1807                 mb->m_epg_flags = EPG_FLAG_ANON;
 1808                 needed = length = MIN(maxseg, total);
 1809                 for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) {
 1810 retry_page:
 1811                         pg_array[i] = vm_page_alloc_noobj(pflags);
 1812                         if (pg_array[i] == NULL) {
 1813                                 if (how & M_NOWAIT) {
 1814                                         goto failed;
 1815                                 } else {
 1816                                         vm_wait(NULL);
 1817                                         goto retry_page;
 1818                                 }
 1819                         }
 1820                         mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]);
 1821                         mb->m_epg_npgs++;
 1822                 }
 1823                 mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1);
 1824                 MBUF_EXT_PGS_ASSERT_SANITY(mb);
 1825                 total -= length;
 1826                 error = uiomove_fromphys(pg_array, 0, length, uio);
 1827                 if (error != 0)
 1828                         goto failed;
 1829                 mb->m_len = length;
 1830                 mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs;
 1831                 if (flags & M_PKTHDR)
 1832                         m->m_pkthdr.len += length;
 1833         }
 1834         return (m);
 1835 
 1836 failed:
 1837         m_freem(m);
 1838         return (NULL);
 1839 }
 1840 
 1841 /*
 1842  * Copy the contents of uio into a properly sized mbuf chain.
 1843  */
 1844 struct mbuf *
 1845 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
 1846 {
 1847         struct mbuf *m, *mb;
 1848         int error, length;
 1849         ssize_t total;
 1850         int progress = 0;
 1851 
 1852         if (flags & M_EXTPG)
 1853                 return (m_uiotombuf_nomap(uio, how, len, align, flags));
 1854 
 1855         /*
 1856          * len can be zero or an arbitrary large value bound by
 1857          * the total data supplied by the uio.
 1858          */
 1859         if (len > 0)
 1860                 total = (uio->uio_resid < len) ? uio->uio_resid : len;
 1861         else
 1862                 total = uio->uio_resid;
 1863 
 1864         /*
 1865          * The smallest unit returned by m_getm2() is a single mbuf
 1866          * with pkthdr.  We can't align past it.
 1867          */
 1868         if (align >= MHLEN)
 1869                 return (NULL);
 1870 
 1871         /*
 1872          * Give us the full allocation or nothing.
 1873          * If len is zero return the smallest empty mbuf.
 1874          */
 1875         m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
 1876         if (m == NULL)
 1877                 return (NULL);
 1878         m->m_data += align;
 1879 
 1880         /* Fill all mbufs with uio data and update header information. */
 1881         for (mb = m; mb != NULL; mb = mb->m_next) {
 1882                 length = min(M_TRAILINGSPACE(mb), total - progress);
 1883 
 1884                 error = uiomove(mtod(mb, void *), length, uio);
 1885                 if (error) {
 1886                         m_freem(m);
 1887                         return (NULL);
 1888                 }
 1889 
 1890                 mb->m_len = length;
 1891                 progress += length;
 1892                 if (flags & M_PKTHDR)
 1893                         m->m_pkthdr.len += length;
 1894         }
 1895         KASSERT(progress == total, ("%s: progress != total", __func__));
 1896 
 1897         return (m);
 1898 }
 1899 
 1900 /*
 1901  * Copy data to/from an unmapped mbuf into a uio limited by len if set.
 1902  */
 1903 int
 1904 m_unmapped_uiomove(const struct mbuf *m, int m_off, struct uio *uio, int len)
 1905 {
 1906         vm_page_t pg;
 1907         int error, i, off, pglen, pgoff, seglen, segoff;
 1908 
 1909         M_ASSERTEXTPG(m);
 1910         error = 0;
 1911 
 1912         /* Skip over any data removed from the front. */
 1913         off = mtod(m, vm_offset_t);
 1914 
 1915         off += m_off;
 1916         if (m->m_epg_hdrlen != 0) {
 1917                 if (off >= m->m_epg_hdrlen) {
 1918                         off -= m->m_epg_hdrlen;
 1919                 } else {
 1920                         seglen = m->m_epg_hdrlen - off;
 1921                         segoff = off;
 1922                         seglen = min(seglen, len);
 1923                         off = 0;
 1924                         len -= seglen;
 1925                         error = uiomove(__DECONST(void *,
 1926                             &m->m_epg_hdr[segoff]), seglen, uio);
 1927                 }
 1928         }
 1929         pgoff = m->m_epg_1st_off;
 1930         for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
 1931                 pglen = m_epg_pagelen(m, i, pgoff);
 1932                 if (off >= pglen) {
 1933                         off -= pglen;
 1934                         pgoff = 0;
 1935                         continue;
 1936                 }
 1937                 seglen = pglen - off;
 1938                 segoff = pgoff + off;
 1939                 off = 0;
 1940                 seglen = min(seglen, len);
 1941                 len -= seglen;
 1942                 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
 1943                 error = uiomove_fromphys(&pg, segoff, seglen, uio);
 1944                 pgoff = 0;
 1945         };
 1946         if (len != 0 && error == 0) {
 1947                 KASSERT((off + len) <= m->m_epg_trllen,
 1948                     ("off + len > trail (%d + %d > %d, m_off = %d)", off, len,
 1949                     m->m_epg_trllen, m_off));
 1950                 error = uiomove(__DECONST(void *, &m->m_epg_trail[off]),
 1951                     len, uio);
 1952         }
 1953         return (error);
 1954 }
 1955 
 1956 /*
 1957  * Copy an mbuf chain into a uio limited by len if set.
 1958  */
 1959 int
 1960 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
 1961 {
 1962         int error, length, total;
 1963         int progress = 0;
 1964 
 1965         if (len > 0)
 1966                 total = min(uio->uio_resid, len);
 1967         else
 1968                 total = uio->uio_resid;
 1969 
 1970         /* Fill the uio with data from the mbufs. */
 1971         for (; m != NULL; m = m->m_next) {
 1972                 length = min(m->m_len, total - progress);
 1973 
 1974                 if ((m->m_flags & M_EXTPG) != 0)
 1975                         error = m_unmapped_uiomove(m, 0, uio, length);
 1976                 else
 1977                         error = uiomove(mtod(m, void *), length, uio);
 1978                 if (error)
 1979                         return (error);
 1980 
 1981                 progress += length;
 1982         }
 1983 
 1984         return (0);
 1985 }
 1986 
 1987 /*
 1988  * Create a writable copy of the mbuf chain.  While doing this
 1989  * we compact the chain with a goal of producing a chain with
 1990  * at most two mbufs.  The second mbuf in this chain is likely
 1991  * to be a cluster.  The primary purpose of this work is to create
 1992  * a writable packet for encryption, compression, etc.  The
 1993  * secondary goal is to linearize the data so the data can be
 1994  * passed to crypto hardware in the most efficient manner possible.
 1995  */
 1996 struct mbuf *
 1997 m_unshare(struct mbuf *m0, int how)
 1998 {
 1999         struct mbuf *m, *mprev;
 2000         struct mbuf *n, *mfirst, *mlast;
 2001         int len, off;
 2002 
 2003         mprev = NULL;
 2004         for (m = m0; m != NULL; m = mprev->m_next) {
 2005                 /*
 2006                  * Regular mbufs are ignored unless there's a cluster
 2007                  * in front of it that we can use to coalesce.  We do
 2008                  * the latter mainly so later clusters can be coalesced
 2009                  * also w/o having to handle them specially (i.e. convert
 2010                  * mbuf+cluster -> cluster).  This optimization is heavily
 2011                  * influenced by the assumption that we're running over
 2012                  * Ethernet where MCLBYTES is large enough that the max
 2013                  * packet size will permit lots of coalescing into a
 2014                  * single cluster.  This in turn permits efficient
 2015                  * crypto operations, especially when using hardware.
 2016                  */
 2017                 if ((m->m_flags & M_EXT) == 0) {
 2018                         if (mprev && (mprev->m_flags & M_EXT) &&
 2019                             m->m_len <= M_TRAILINGSPACE(mprev)) {
 2020                                 /* XXX: this ignores mbuf types */
 2021                                 memcpy(mtod(mprev, caddr_t) + mprev->m_len,
 2022                                     mtod(m, caddr_t), m->m_len);
 2023                                 mprev->m_len += m->m_len;
 2024                                 mprev->m_next = m->m_next;      /* unlink from chain */
 2025                                 m_free(m);                      /* reclaim mbuf */
 2026                         } else {
 2027                                 mprev = m;
 2028                         }
 2029                         continue;
 2030                 }
 2031                 /*
 2032                  * Writable mbufs are left alone (for now).
 2033                  */
 2034                 if (M_WRITABLE(m)) {
 2035                         mprev = m;
 2036                         continue;
 2037                 }
 2038 
 2039                 /*
 2040                  * Not writable, replace with a copy or coalesce with
 2041                  * the previous mbuf if possible (since we have to copy
 2042                  * it anyway, we try to reduce the number of mbufs and
 2043                  * clusters so that future work is easier).
 2044                  */
 2045                 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
 2046                 /* NB: we only coalesce into a cluster or larger */
 2047                 if (mprev != NULL && (mprev->m_flags & M_EXT) &&
 2048                     m->m_len <= M_TRAILINGSPACE(mprev)) {
 2049                         /* XXX: this ignores mbuf types */
 2050                         memcpy(mtod(mprev, caddr_t) + mprev->m_len,
 2051                             mtod(m, caddr_t), m->m_len);
 2052                         mprev->m_len += m->m_len;
 2053                         mprev->m_next = m->m_next;      /* unlink from chain */
 2054                         m_free(m);                      /* reclaim mbuf */
 2055                         continue;
 2056                 }
 2057 
 2058                 /*
 2059                  * Allocate new space to hold the copy and copy the data.
 2060                  * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
 2061                  * splitting them into clusters.  We could just malloc a
 2062                  * buffer and make it external but too many device drivers
 2063                  * don't know how to break up the non-contiguous memory when
 2064                  * doing DMA.
 2065                  */
 2066                 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
 2067                 if (n == NULL) {
 2068                         m_freem(m0);
 2069                         return (NULL);
 2070                 }
 2071                 if (m->m_flags & M_PKTHDR) {
 2072                         KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
 2073                             __func__, m0, m));
 2074                         m_move_pkthdr(n, m);
 2075                 }
 2076                 len = m->m_len;
 2077                 off = 0;
 2078                 mfirst = n;
 2079                 mlast = NULL;
 2080                 for (;;) {
 2081                         int cc = min(len, MCLBYTES);
 2082                         memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
 2083                         n->m_len = cc;
 2084                         if (mlast != NULL)
 2085                                 mlast->m_next = n;
 2086                         mlast = n;
 2087 #if 0
 2088                         newipsecstat.ips_clcopied++;
 2089 #endif
 2090 
 2091                         len -= cc;
 2092                         if (len <= 0)
 2093                                 break;
 2094                         off += cc;
 2095 
 2096                         n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
 2097                         if (n == NULL) {
 2098                                 m_freem(mfirst);
 2099                                 m_freem(m0);
 2100                                 return (NULL);
 2101                         }
 2102                 }
 2103                 n->m_next = m->m_next;
 2104                 if (mprev == NULL)
 2105                         m0 = mfirst;            /* new head of chain */
 2106                 else
 2107                         mprev->m_next = mfirst; /* replace old mbuf */
 2108                 m_free(m);                      /* release old mbuf */
 2109                 mprev = mfirst;
 2110         }
 2111         return (m0);
 2112 }
 2113 
 2114 #ifdef MBUF_PROFILING
 2115 
 2116 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
 2117 struct mbufprofile {
 2118         uintmax_t wasted[MP_BUCKETS];
 2119         uintmax_t used[MP_BUCKETS];
 2120         uintmax_t segments[MP_BUCKETS];
 2121 } mbprof;
 2122 
 2123 void
 2124 m_profile(struct mbuf *m)
 2125 {
 2126         int segments = 0;
 2127         int used = 0;
 2128         int wasted = 0;
 2129 
 2130         while (m) {
 2131                 segments++;
 2132                 used += m->m_len;
 2133                 if (m->m_flags & M_EXT) {
 2134                         wasted += MHLEN - sizeof(m->m_ext) +
 2135                             m->m_ext.ext_size - m->m_len;
 2136                 } else {
 2137                         if (m->m_flags & M_PKTHDR)
 2138                                 wasted += MHLEN - m->m_len;
 2139                         else
 2140                                 wasted += MLEN - m->m_len;
 2141                 }
 2142                 m = m->m_next;
 2143         }
 2144         /* be paranoid.. it helps */
 2145         if (segments > MP_BUCKETS - 1)
 2146                 segments = MP_BUCKETS - 1;
 2147         if (used > 100000)
 2148                 used = 100000;
 2149         if (wasted > 100000)
 2150                 wasted = 100000;
 2151         /* store in the appropriate bucket */
 2152         /* don't bother locking. if it's slightly off, so what? */
 2153         mbprof.segments[segments]++;
 2154         mbprof.used[fls(used)]++;
 2155         mbprof.wasted[fls(wasted)]++;
 2156 }
 2157 
 2158 static int
 2159 mbprof_handler(SYSCTL_HANDLER_ARGS)
 2160 {
 2161         char buf[256];
 2162         struct sbuf sb;
 2163         int error;
 2164         uint64_t *p;
 2165 
 2166         sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
 2167 
 2168         p = &mbprof.wasted[0];
 2169         sbuf_printf(&sb,
 2170             "wasted:\n"
 2171             "%ju %ju %ju %ju %ju %ju %ju %ju "
 2172             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 2173             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 2174             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 2175 #ifdef BIG_ARRAY
 2176         p = &mbprof.wasted[16];
 2177         sbuf_printf(&sb,
 2178             "%ju %ju %ju %ju %ju %ju %ju %ju "
 2179             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 2180             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 2181             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 2182 #endif
 2183         p = &mbprof.used[0];
 2184         sbuf_printf(&sb,
 2185             "used:\n"
 2186             "%ju %ju %ju %ju %ju %ju %ju %ju "
 2187             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 2188             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 2189             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 2190 #ifdef BIG_ARRAY
 2191         p = &mbprof.used[16];
 2192         sbuf_printf(&sb,
 2193             "%ju %ju %ju %ju %ju %ju %ju %ju "
 2194             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 2195             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 2196             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 2197 #endif
 2198         p = &mbprof.segments[0];
 2199         sbuf_printf(&sb,
 2200             "segments:\n"
 2201             "%ju %ju %ju %ju %ju %ju %ju %ju "
 2202             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 2203             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 2204             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 2205 #ifdef BIG_ARRAY
 2206         p = &mbprof.segments[16];
 2207         sbuf_printf(&sb,
 2208             "%ju %ju %ju %ju %ju %ju %ju %ju "
 2209             "%ju %ju %ju %ju %ju %ju %ju %jju",
 2210             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 2211             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 2212 #endif
 2213 
 2214         error = sbuf_finish(&sb);
 2215         sbuf_delete(&sb);
 2216         return (error);
 2217 }
 2218 
 2219 static int
 2220 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
 2221 {
 2222         int clear, error;
 2223 
 2224         clear = 0;
 2225         error = sysctl_handle_int(oidp, &clear, 0, req);
 2226         if (error || !req->newptr)
 2227                 return (error);
 2228 
 2229         if (clear) {
 2230                 bzero(&mbprof, sizeof(mbprof));
 2231         }
 2232 
 2233         return (error);
 2234 }
 2235 
 2236 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile,
 2237     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
 2238     mbprof_handler, "A",
 2239     "mbuf profiling statistics");
 2240 
 2241 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr,
 2242     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
 2243     mbprof_clr_handler, "I",
 2244     "clear mbuf profiling statistics");
 2245 #endif

Cache object: ce88c10864e0ece073288d038c1a6294


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.