The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_mbuf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_param.h"
   38 #include "opt_mbuf_stress_test.h"
   39 #include "opt_mbuf_profiling.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/kernel.h>
   44 #include <sys/limits.h>
   45 #include <sys/lock.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mbuf.h>
   48 #include <sys/sysctl.h>
   49 #include <sys/domain.h>
   50 #include <sys/protosw.h>
   51 #include <sys/uio.h>
   52 #include <sys/vmmeter.h>
   53 #include <sys/sdt.h>
   54 #include <vm/vm.h>
   55 #include <vm/vm_pageout.h>
   56 #include <vm/vm_page.h>
   57 
   58 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
   59     "struct mbuf *", "mbufinfo_t *",
   60     "uint32_t", "uint32_t",
   61     "uint16_t", "uint16_t",
   62     "uint32_t", "uint32_t",
   63     "uint32_t", "uint32_t");
   64 
   65 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
   66     "uint32_t", "uint32_t",
   67     "uint16_t", "uint16_t",
   68     "struct mbuf *", "mbufinfo_t *");
   69 
   70 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
   71     "uint32_t", "uint32_t",
   72     "uint16_t", "uint16_t",
   73     "struct mbuf *", "mbufinfo_t *");
   74 
   75 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
   76     "uint32_t", "uint32_t",
   77     "uint16_t", "uint16_t",
   78     "uint32_t", "uint32_t",
   79     "struct mbuf *", "mbufinfo_t *");
   80 
   81 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl,
   82     "uint32_t", "uint32_t",
   83     "uint16_t", "uint16_t",
   84     "uint32_t", "uint32_t",
   85     "uint32_t", "uint32_t",
   86     "struct mbuf *", "mbufinfo_t *");
   87 
   88 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
   89     "struct mbuf *", "mbufinfo_t *",
   90     "uint32_t", "uint32_t",
   91     "uint32_t", "uint32_t");
   92 
   93 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
   94     "struct mbuf *", "mbufinfo_t *",
   95     "uint32_t", "uint32_t",
   96     "uint32_t", "uint32_t",
   97     "void*", "void*");
   98 
   99 SDT_PROBE_DEFINE(sdt, , , m__cljset);
  100 
  101 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
  102         "struct mbuf *", "mbufinfo_t *");
  103 
  104 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
  105     "struct mbuf *", "mbufinfo_t *");
  106 
  107 #include <security/mac/mac_framework.h>
  108 
  109 int     max_linkhdr;
  110 int     max_protohdr;
  111 int     max_hdr;
  112 int     max_datalen;
  113 #ifdef MBUF_STRESS_TEST
  114 int     m_defragpackets;
  115 int     m_defragbytes;
  116 int     m_defraguseless;
  117 int     m_defragfailure;
  118 int     m_defragrandomfailures;
  119 #endif
  120 
  121 /*
  122  * sysctl(8) exported objects
  123  */
  124 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
  125            &max_linkhdr, 0, "Size of largest link layer header");
  126 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
  127            &max_protohdr, 0, "Size of largest protocol layer header");
  128 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
  129            &max_hdr, 0, "Size of largest link plus protocol header");
  130 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
  131            &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
  132 #ifdef MBUF_STRESS_TEST
  133 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
  134            &m_defragpackets, 0, "");
  135 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
  136            &m_defragbytes, 0, "");
  137 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
  138            &m_defraguseless, 0, "");
  139 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
  140            &m_defragfailure, 0, "");
  141 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
  142            &m_defragrandomfailures, 0, "");
  143 #endif
  144 
  145 /*
  146  * Ensure the correct size of various mbuf parameters.  It could be off due
  147  * to compiler-induced padding and alignment artifacts.
  148  */
  149 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
  150 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
  151 
  152 /*
  153  * mbuf data storage should be 64-bit aligned regardless of architectural
  154  * pointer size; check this is the case with and without a packet header.
  155  */
  156 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
  157 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
  158 
  159 /*
  160  * While the specific values here don't matter too much (i.e., +/- a few
  161  * words), we do want to ensure that changes to these values are carefully
  162  * reasoned about and properly documented.  This is especially the case as
  163  * network-protocol and device-driver modules encode these layouts, and must
  164  * be recompiled if the structures change.  Check these values at compile time
  165  * against the ones documented in comments in mbuf.h.
  166  *
  167  * NB: Possibly they should be documented there via #define's and not just
  168  * comments.
  169  */
  170 #if defined(__LP64__)
  171 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
  172 CTASSERT(sizeof(struct pkthdr) == 56);
  173 CTASSERT(sizeof(struct m_ext) == 160);
  174 #else
  175 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
  176 CTASSERT(sizeof(struct pkthdr) == 48);
  177 #if defined(__powerpc__) && defined(BOOKE)
  178 /* PowerPC booke has 64-bit physical pointers. */
  179 CTASSERT(sizeof(struct m_ext) == 184);
  180 #else
  181 CTASSERT(sizeof(struct m_ext) == 180);
  182 #endif
  183 #endif
  184 
  185 /*
  186  * Assert that the queue(3) macros produce code of the same size as an old
  187  * plain pointer does.
  188  */
  189 #ifdef INVARIANTS
  190 static struct mbuf __used m_assertbuf;
  191 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
  192 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
  193 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
  194 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
  195 #endif
  196 
  197 /*
  198  * Attach the cluster from *m to *n, set up m_ext in *n
  199  * and bump the refcount of the cluster.
  200  */
  201 void
  202 mb_dupcl(struct mbuf *n, struct mbuf *m)
  203 {
  204         volatile u_int *refcnt;
  205 
  206         KASSERT(m->m_flags & (M_EXT|M_EXTPG),
  207             ("%s: M_EXT|M_EXTPG not set on %p", __func__, m));
  208         KASSERT(!(n->m_flags & (M_EXT|M_EXTPG)),
  209             ("%s: M_EXT|M_EXTPG set on %p", __func__, n));
  210 
  211         /*
  212          * Cache access optimization.
  213          *
  214          * o Regular M_EXT storage doesn't need full copy of m_ext, since
  215          *   the holder of the 'ext_count' is responsible to carry the free
  216          *   routine and its arguments.
  217          * o M_EXTPG data is split between main part of mbuf and m_ext, the
  218          *   main part is copied in full, the m_ext part is similar to M_EXT.
  219          * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is
  220          *   special - it needs full copy of m_ext into each mbuf, since any
  221          *   copy could end up as the last to free.
  222          */
  223         if (m->m_flags & M_EXTPG) {
  224                 bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy,
  225                     __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy));
  226                 bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen);
  227         } else if (m->m_ext.ext_type == EXT_EXTREF)
  228                 bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
  229         else
  230                 bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
  231 
  232         n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG);
  233 
  234         /* See if this is the mbuf that holds the embedded refcount. */
  235         if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
  236                 refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
  237                 n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
  238         } else {
  239                 KASSERT(m->m_ext.ext_cnt != NULL,
  240                     ("%s: no refcounting pointer on %p", __func__, m));
  241                 refcnt = m->m_ext.ext_cnt;
  242         }
  243 
  244         if (*refcnt == 1)
  245                 *refcnt += 1;
  246         else
  247                 atomic_add_int(refcnt, 1);
  248 }
  249 
  250 void
  251 m_demote_pkthdr(struct mbuf *m)
  252 {
  253 
  254         M_ASSERTPKTHDR(m);
  255 
  256         m_tag_delete_chain(m, NULL);
  257         m->m_flags &= ~M_PKTHDR;
  258         bzero(&m->m_pkthdr, sizeof(struct pkthdr));
  259 }
  260 
  261 /*
  262  * Clean up mbuf (chain) from any tags and packet headers.
  263  * If "all" is set then the first mbuf in the chain will be
  264  * cleaned too.
  265  */
  266 void
  267 m_demote(struct mbuf *m0, int all, int flags)
  268 {
  269         struct mbuf *m;
  270 
  271         flags |= M_DEMOTEFLAGS;
  272 
  273         for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
  274                 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
  275                     __func__, m, m0));
  276                 if (m->m_flags & M_PKTHDR)
  277                         m_demote_pkthdr(m);
  278                 m->m_flags &= flags;
  279         }
  280 }
  281 
  282 /*
  283  * Sanity checks on mbuf (chain) for use in KASSERT() and general
  284  * debugging.
  285  * Returns 0 or panics when bad and 1 on all tests passed.
  286  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
  287  * blow up later.
  288  */
  289 int
  290 m_sanity(struct mbuf *m0, int sanitize)
  291 {
  292         struct mbuf *m;
  293         caddr_t a, b;
  294         int pktlen = 0;
  295 
  296 #ifdef INVARIANTS
  297 #define M_SANITY_ACTION(s)      panic("mbuf %p: " s, m)
  298 #else
  299 #define M_SANITY_ACTION(s)      printf("mbuf %p: " s, m)
  300 #endif
  301 
  302         for (m = m0; m != NULL; m = m->m_next) {
  303                 /*
  304                  * Basic pointer checks.  If any of these fails then some
  305                  * unrelated kernel memory before or after us is trashed.
  306                  * No way to recover from that.
  307                  */
  308                 a = M_START(m);
  309                 b = a + M_SIZE(m);
  310                 if ((caddr_t)m->m_data < a)
  311                         M_SANITY_ACTION("m_data outside mbuf data range left");
  312                 if ((caddr_t)m->m_data > b)
  313                         M_SANITY_ACTION("m_data outside mbuf data range right");
  314                 if ((caddr_t)m->m_data + m->m_len > b)
  315                         M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
  316 
  317                 /* m->m_nextpkt may only be set on first mbuf in chain. */
  318                 if (m != m0 && m->m_nextpkt != NULL) {
  319                         if (sanitize) {
  320                                 m_freem(m->m_nextpkt);
  321                                 m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
  322                         } else
  323                                 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
  324                 }
  325 
  326                 /* packet length (not mbuf length!) calculation */
  327                 if (m0->m_flags & M_PKTHDR)
  328                         pktlen += m->m_len;
  329 
  330                 /* m_tags may only be attached to first mbuf in chain. */
  331                 if (m != m0 && m->m_flags & M_PKTHDR &&
  332                     !SLIST_EMPTY(&m->m_pkthdr.tags)) {
  333                         if (sanitize) {
  334                                 m_tag_delete_chain(m, NULL);
  335                                 /* put in 0xDEADC0DE perhaps? */
  336                         } else
  337                                 M_SANITY_ACTION("m_tags on in-chain mbuf");
  338                 }
  339 
  340                 /* M_PKTHDR may only be set on first mbuf in chain */
  341                 if (m != m0 && m->m_flags & M_PKTHDR) {
  342                         if (sanitize) {
  343                                 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
  344                                 m->m_flags &= ~M_PKTHDR;
  345                                 /* put in 0xDEADCODE and leave hdr flag in */
  346                         } else
  347                                 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
  348                 }
  349         }
  350         m = m0;
  351         if (pktlen && pktlen != m->m_pkthdr.len) {
  352                 if (sanitize)
  353                         m->m_pkthdr.len = 0;
  354                 else
  355                         M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
  356         }
  357         return 1;
  358 
  359 #undef  M_SANITY_ACTION
  360 }
  361 
  362 /*
  363  * Non-inlined part of m_init().
  364  */
  365 int
  366 m_pkthdr_init(struct mbuf *m, int how)
  367 {
  368 #ifdef MAC
  369         int error;
  370 #endif
  371         m->m_data = m->m_pktdat;
  372         bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
  373 #ifdef NUMA
  374         m->m_pkthdr.numa_domain = M_NODOM;
  375 #endif
  376 #ifdef MAC
  377         /* If the label init fails, fail the alloc */
  378         error = mac_mbuf_init(m, how);
  379         if (error)
  380                 return (error);
  381 #endif
  382 
  383         return (0);
  384 }
  385 
  386 /*
  387  * "Move" mbuf pkthdr from "from" to "to".
  388  * "from" must have M_PKTHDR set, and "to" must be empty.
  389  */
  390 void
  391 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
  392 {
  393 
  394 #if 0
  395         /* see below for why these are not enabled */
  396         M_ASSERTPKTHDR(to);
  397         /* Note: with MAC, this may not be a good assertion. */
  398         KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
  399             ("m_move_pkthdr: to has tags"));
  400 #endif
  401 #ifdef MAC
  402         /*
  403          * XXXMAC: It could be this should also occur for non-MAC?
  404          */
  405         if (to->m_flags & M_PKTHDR)
  406                 m_tag_delete_chain(to, NULL);
  407 #endif
  408         to->m_flags = (from->m_flags & M_COPYFLAGS) |
  409             (to->m_flags & (M_EXT | M_EXTPG));
  410         if ((to->m_flags & M_EXT) == 0)
  411                 to->m_data = to->m_pktdat;
  412         to->m_pkthdr = from->m_pkthdr;          /* especially tags */
  413         SLIST_INIT(&from->m_pkthdr.tags);       /* purge tags from src */
  414         from->m_flags &= ~M_PKTHDR;
  415         if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) {
  416                 from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
  417                 from->m_pkthdr.snd_tag = NULL;
  418         }
  419 }
  420 
  421 /*
  422  * Duplicate "from"'s mbuf pkthdr in "to".
  423  * "from" must have M_PKTHDR set, and "to" must be empty.
  424  * In particular, this does a deep copy of the packet tags.
  425  */
  426 int
  427 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
  428 {
  429 
  430 #if 0
  431         /*
  432          * The mbuf allocator only initializes the pkthdr
  433          * when the mbuf is allocated with m_gethdr(). Many users
  434          * (e.g. m_copy*, m_prepend) use m_get() and then
  435          * smash the pkthdr as needed causing these
  436          * assertions to trip.  For now just disable them.
  437          */
  438         M_ASSERTPKTHDR(to);
  439         /* Note: with MAC, this may not be a good assertion. */
  440         KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
  441 #endif
  442         MBUF_CHECKSLEEP(how);
  443 #ifdef MAC
  444         if (to->m_flags & M_PKTHDR)
  445                 m_tag_delete_chain(to, NULL);
  446 #endif
  447         to->m_flags = (from->m_flags & M_COPYFLAGS) |
  448             (to->m_flags & (M_EXT | M_EXTPG));
  449         if ((to->m_flags & M_EXT) == 0)
  450                 to->m_data = to->m_pktdat;
  451         to->m_pkthdr = from->m_pkthdr;
  452         if (from->m_pkthdr.csum_flags & CSUM_SND_TAG)
  453                 m_snd_tag_ref(from->m_pkthdr.snd_tag);
  454         SLIST_INIT(&to->m_pkthdr.tags);
  455         return (m_tag_copy_chain(to, from, how));
  456 }
  457 
  458 /*
  459  * Lesser-used path for M_PREPEND:
  460  * allocate new mbuf to prepend to chain,
  461  * copy junk along.
  462  */
  463 struct mbuf *
  464 m_prepend(struct mbuf *m, int len, int how)
  465 {
  466         struct mbuf *mn;
  467 
  468         if (m->m_flags & M_PKTHDR)
  469                 mn = m_gethdr(how, m->m_type);
  470         else
  471                 mn = m_get(how, m->m_type);
  472         if (mn == NULL) {
  473                 m_freem(m);
  474                 return (NULL);
  475         }
  476         if (m->m_flags & M_PKTHDR)
  477                 m_move_pkthdr(mn, m);
  478         mn->m_next = m;
  479         m = mn;
  480         if (len < M_SIZE(m))
  481                 M_ALIGN(m, len);
  482         m->m_len = len;
  483         return (m);
  484 }
  485 
  486 /*
  487  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
  488  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
  489  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
  490  * Note that the copy is read-only, because clusters are not copied,
  491  * only their reference counts are incremented.
  492  */
  493 struct mbuf *
  494 m_copym(struct mbuf *m, int off0, int len, int wait)
  495 {
  496         struct mbuf *n, **np;
  497         int off = off0;
  498         struct mbuf *top;
  499         int copyhdr = 0;
  500 
  501         KASSERT(off >= 0, ("m_copym, negative off %d", off));
  502         KASSERT(len >= 0, ("m_copym, negative len %d", len));
  503         MBUF_CHECKSLEEP(wait);
  504         if (off == 0 && m->m_flags & M_PKTHDR)
  505                 copyhdr = 1;
  506         while (off > 0) {
  507                 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
  508                 if (off < m->m_len)
  509                         break;
  510                 off -= m->m_len;
  511                 m = m->m_next;
  512         }
  513         np = &top;
  514         top = NULL;
  515         while (len > 0) {
  516                 if (m == NULL) {
  517                         KASSERT(len == M_COPYALL,
  518                             ("m_copym, length > size of mbuf chain"));
  519                         break;
  520                 }
  521                 if (copyhdr)
  522                         n = m_gethdr(wait, m->m_type);
  523                 else
  524                         n = m_get(wait, m->m_type);
  525                 *np = n;
  526                 if (n == NULL)
  527                         goto nospace;
  528                 if (copyhdr) {
  529                         if (!m_dup_pkthdr(n, m, wait))
  530                                 goto nospace;
  531                         if (len == M_COPYALL)
  532                                 n->m_pkthdr.len -= off0;
  533                         else
  534                                 n->m_pkthdr.len = len;
  535                         copyhdr = 0;
  536                 }
  537                 n->m_len = min(len, m->m_len - off);
  538                 if (m->m_flags & (M_EXT|M_EXTPG)) {
  539                         n->m_data = m->m_data + off;
  540                         mb_dupcl(n, m);
  541                 } else
  542                         bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
  543                             (u_int)n->m_len);
  544                 if (len != M_COPYALL)
  545                         len -= n->m_len;
  546                 off = 0;
  547                 m = m->m_next;
  548                 np = &n->m_next;
  549         }
  550 
  551         return (top);
  552 nospace:
  553         m_freem(top);
  554         return (NULL);
  555 }
  556 
  557 /*
  558  * Copy an entire packet, including header (which must be present).
  559  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
  560  * Note that the copy is read-only, because clusters are not copied,
  561  * only their reference counts are incremented.
  562  * Preserve alignment of the first mbuf so if the creator has left
  563  * some room at the beginning (e.g. for inserting protocol headers)
  564  * the copies still have the room available.
  565  */
  566 struct mbuf *
  567 m_copypacket(struct mbuf *m, int how)
  568 {
  569         struct mbuf *top, *n, *o;
  570 
  571         MBUF_CHECKSLEEP(how);
  572         n = m_get(how, m->m_type);
  573         top = n;
  574         if (n == NULL)
  575                 goto nospace;
  576 
  577         if (!m_dup_pkthdr(n, m, how))
  578                 goto nospace;
  579         n->m_len = m->m_len;
  580         if (m->m_flags & (M_EXT|M_EXTPG)) {
  581                 n->m_data = m->m_data;
  582                 mb_dupcl(n, m);
  583         } else {
  584                 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
  585                 bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
  586         }
  587 
  588         m = m->m_next;
  589         while (m) {
  590                 o = m_get(how, m->m_type);
  591                 if (o == NULL)
  592                         goto nospace;
  593 
  594                 n->m_next = o;
  595                 n = n->m_next;
  596 
  597                 n->m_len = m->m_len;
  598                 if (m->m_flags & (M_EXT|M_EXTPG)) {
  599                         n->m_data = m->m_data;
  600                         mb_dupcl(n, m);
  601                 } else {
  602                         bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
  603                 }
  604 
  605                 m = m->m_next;
  606         }
  607         return top;
  608 nospace:
  609         m_freem(top);
  610         return (NULL);
  611 }
  612 
  613 static void
  614 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp)
  615 {
  616         struct iovec iov;
  617         struct uio uio;
  618         int error;
  619 
  620         KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off));
  621         KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len));
  622         KASSERT(off < m->m_len,
  623             ("m_copyfromunmapped: len exceeds mbuf length"));
  624         iov.iov_base = cp;
  625         iov.iov_len = len;
  626         uio.uio_resid = len;
  627         uio.uio_iov = &iov;
  628         uio.uio_segflg = UIO_SYSSPACE;
  629         uio.uio_iovcnt = 1;
  630         uio.uio_offset = 0;
  631         uio.uio_rw = UIO_READ;
  632         error = m_unmapped_uiomove(m, off, &uio, len);
  633         KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
  634            len));
  635 }
  636 
  637 /*
  638  * Copy data from an mbuf chain starting "off" bytes from the beginning,
  639  * continuing for "len" bytes, into the indicated buffer.
  640  */
  641 void
  642 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
  643 {
  644         u_int count;
  645 
  646         KASSERT(off >= 0, ("m_copydata, negative off %d", off));
  647         KASSERT(len >= 0, ("m_copydata, negative len %d", len));
  648         while (off > 0) {
  649                 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
  650                 if (off < m->m_len)
  651                         break;
  652                 off -= m->m_len;
  653                 m = m->m_next;
  654         }
  655         while (len > 0) {
  656                 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
  657                 count = min(m->m_len - off, len);
  658                 if ((m->m_flags & M_EXTPG) != 0)
  659                         m_copyfromunmapped(m, off, count, cp);
  660                 else
  661                         bcopy(mtod(m, caddr_t) + off, cp, count);
  662                 len -= count;
  663                 cp += count;
  664                 off = 0;
  665                 m = m->m_next;
  666         }
  667 }
  668 
  669 /*
  670  * Copy a packet header mbuf chain into a completely new chain, including
  671  * copying any mbuf clusters.  Use this instead of m_copypacket() when
  672  * you need a writable copy of an mbuf chain.
  673  */
  674 struct mbuf *
  675 m_dup(const struct mbuf *m, int how)
  676 {
  677         struct mbuf **p, *top = NULL;
  678         int remain, moff, nsize;
  679 
  680         MBUF_CHECKSLEEP(how);
  681         /* Sanity check */
  682         if (m == NULL)
  683                 return (NULL);
  684         M_ASSERTPKTHDR(m);
  685 
  686         /* While there's more data, get a new mbuf, tack it on, and fill it */
  687         remain = m->m_pkthdr.len;
  688         moff = 0;
  689         p = &top;
  690         while (remain > 0 || top == NULL) {     /* allow m->m_pkthdr.len == 0 */
  691                 struct mbuf *n;
  692 
  693                 /* Get the next new mbuf */
  694                 if (remain >= MINCLSIZE) {
  695                         n = m_getcl(how, m->m_type, 0);
  696                         nsize = MCLBYTES;
  697                 } else {
  698                         n = m_get(how, m->m_type);
  699                         nsize = MLEN;
  700                 }
  701                 if (n == NULL)
  702                         goto nospace;
  703 
  704                 if (top == NULL) {              /* First one, must be PKTHDR */
  705                         if (!m_dup_pkthdr(n, m, how)) {
  706                                 m_free(n);
  707                                 goto nospace;
  708                         }
  709                         if ((n->m_flags & M_EXT) == 0)
  710                                 nsize = MHLEN;
  711                         n->m_flags &= ~M_RDONLY;
  712                 }
  713                 n->m_len = 0;
  714 
  715                 /* Link it into the new chain */
  716                 *p = n;
  717                 p = &n->m_next;
  718 
  719                 /* Copy data from original mbuf(s) into new mbuf */
  720                 while (n->m_len < nsize && m != NULL) {
  721                         int chunk = min(nsize - n->m_len, m->m_len - moff);
  722 
  723                         m_copydata(m, moff, chunk, n->m_data + n->m_len);
  724                         moff += chunk;
  725                         n->m_len += chunk;
  726                         remain -= chunk;
  727                         if (moff == m->m_len) {
  728                                 m = m->m_next;
  729                                 moff = 0;
  730                         }
  731                 }
  732 
  733                 /* Check correct total mbuf length */
  734                 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
  735                         ("%s: bogus m_pkthdr.len", __func__));
  736         }
  737         return (top);
  738 
  739 nospace:
  740         m_freem(top);
  741         return (NULL);
  742 }
  743 
  744 /*
  745  * Concatenate mbuf chain n to m.
  746  * Both chains must be of the same type (e.g. MT_DATA).
  747  * Any m_pkthdr is not updated.
  748  */
  749 void
  750 m_cat(struct mbuf *m, struct mbuf *n)
  751 {
  752         while (m->m_next)
  753                 m = m->m_next;
  754         while (n) {
  755                 if (!M_WRITABLE(m) ||
  756                     (n->m_flags & M_EXTPG) != 0 ||
  757                     M_TRAILINGSPACE(m) < n->m_len) {
  758                         /* just join the two chains */
  759                         m->m_next = n;
  760                         return;
  761                 }
  762                 /* splat the data from one into the other */
  763                 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
  764                     (u_int)n->m_len);
  765                 m->m_len += n->m_len;
  766                 n = m_free(n);
  767         }
  768 }
  769 
  770 /*
  771  * Concatenate two pkthdr mbuf chains.
  772  */
  773 void
  774 m_catpkt(struct mbuf *m, struct mbuf *n)
  775 {
  776 
  777         M_ASSERTPKTHDR(m);
  778         M_ASSERTPKTHDR(n);
  779 
  780         m->m_pkthdr.len += n->m_pkthdr.len;
  781         m_demote(n, 1, 0);
  782 
  783         m_cat(m, n);
  784 }
  785 
  786 void
  787 m_adj(struct mbuf *mp, int req_len)
  788 {
  789         int len = req_len;
  790         struct mbuf *m;
  791         int count;
  792 
  793         if ((m = mp) == NULL)
  794                 return;
  795         if (len >= 0) {
  796                 /*
  797                  * Trim from head.
  798                  */
  799                 while (m != NULL && len > 0) {
  800                         if (m->m_len <= len) {
  801                                 len -= m->m_len;
  802                                 m->m_len = 0;
  803                                 m = m->m_next;
  804                         } else {
  805                                 m->m_len -= len;
  806                                 m->m_data += len;
  807                                 len = 0;
  808                         }
  809                 }
  810                 if (mp->m_flags & M_PKTHDR)
  811                         mp->m_pkthdr.len -= (req_len - len);
  812         } else {
  813                 /*
  814                  * Trim from tail.  Scan the mbuf chain,
  815                  * calculating its length and finding the last mbuf.
  816                  * If the adjustment only affects this mbuf, then just
  817                  * adjust and return.  Otherwise, rescan and truncate
  818                  * after the remaining size.
  819                  */
  820                 len = -len;
  821                 count = 0;
  822                 for (;;) {
  823                         count += m->m_len;
  824                         if (m->m_next == (struct mbuf *)0)
  825                                 break;
  826                         m = m->m_next;
  827                 }
  828                 if (m->m_len >= len) {
  829                         m->m_len -= len;
  830                         if (mp->m_flags & M_PKTHDR)
  831                                 mp->m_pkthdr.len -= len;
  832                         return;
  833                 }
  834                 count -= len;
  835                 if (count < 0)
  836                         count = 0;
  837                 /*
  838                  * Correct length for chain is "count".
  839                  * Find the mbuf with last data, adjust its length,
  840                  * and toss data from remaining mbufs on chain.
  841                  */
  842                 m = mp;
  843                 if (m->m_flags & M_PKTHDR)
  844                         m->m_pkthdr.len = count;
  845                 for (; m; m = m->m_next) {
  846                         if (m->m_len >= count) {
  847                                 m->m_len = count;
  848                                 if (m->m_next != NULL) {
  849                                         m_freem(m->m_next);
  850                                         m->m_next = NULL;
  851                                 }
  852                                 break;
  853                         }
  854                         count -= m->m_len;
  855                 }
  856         }
  857 }
  858 
  859 void
  860 m_adj_decap(struct mbuf *mp, int len)
  861 {
  862         uint8_t rsstype;
  863 
  864         m_adj(mp, len);
  865         if ((mp->m_flags & M_PKTHDR) != 0) {
  866                 /*
  867                  * If flowid was calculated by card from the inner
  868                  * headers, move flowid to the decapsulated mbuf
  869                  * chain, otherwise clear.  This depends on the
  870                  * internals of m_adj, which keeps pkthdr as is, in
  871                  * particular not changing rsstype and flowid.
  872                  */
  873                 rsstype = mp->m_pkthdr.rsstype;
  874                 if ((rsstype & M_HASHTYPE_INNER) != 0) {
  875                         M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER);
  876                 } else {
  877                         M_HASHTYPE_CLEAR(mp);
  878                 }
  879         }
  880 }
  881 
  882 /*
  883  * Rearange an mbuf chain so that len bytes are contiguous
  884  * and in the data area of an mbuf (so that mtod will work
  885  * for a structure of size len).  Returns the resulting
  886  * mbuf chain on success, frees it and returns null on failure.
  887  * If there is room, it will add up to max_protohdr-len extra bytes to the
  888  * contiguous region in an attempt to avoid being called next time.
  889  */
  890 struct mbuf *
  891 m_pullup(struct mbuf *n, int len)
  892 {
  893         struct mbuf *m;
  894         int count;
  895         int space;
  896 
  897         KASSERT((n->m_flags & M_EXTPG) == 0,
  898             ("%s: unmapped mbuf %p", __func__, n));
  899 
  900         /*
  901          * If first mbuf has no cluster, and has room for len bytes
  902          * without shifting current data, pullup into it,
  903          * otherwise allocate a new mbuf to prepend to the chain.
  904          */
  905         if ((n->m_flags & M_EXT) == 0 &&
  906             n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
  907                 if (n->m_len >= len)
  908                         return (n);
  909                 m = n;
  910                 n = n->m_next;
  911                 len -= m->m_len;
  912         } else {
  913                 if (len > MHLEN)
  914                         goto bad;
  915                 m = m_get(M_NOWAIT, n->m_type);
  916                 if (m == NULL)
  917                         goto bad;
  918                 if (n->m_flags & M_PKTHDR)
  919                         m_move_pkthdr(m, n);
  920         }
  921         space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
  922         do {
  923                 count = min(min(max(len, max_protohdr), space), n->m_len);
  924                 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
  925                   (u_int)count);
  926                 len -= count;
  927                 m->m_len += count;
  928                 n->m_len -= count;
  929                 space -= count;
  930                 if (n->m_len)
  931                         n->m_data += count;
  932                 else
  933                         n = m_free(n);
  934         } while (len > 0 && n);
  935         if (len > 0) {
  936                 (void) m_free(m);
  937                 goto bad;
  938         }
  939         m->m_next = n;
  940         return (m);
  941 bad:
  942         m_freem(n);
  943         return (NULL);
  944 }
  945 
  946 /*
  947  * Like m_pullup(), except a new mbuf is always allocated, and we allow
  948  * the amount of empty space before the data in the new mbuf to be specified
  949  * (in the event that the caller expects to prepend later).
  950  */
  951 struct mbuf *
  952 m_copyup(struct mbuf *n, int len, int dstoff)
  953 {
  954         struct mbuf *m;
  955         int count, space;
  956 
  957         if (len > (MHLEN - dstoff))
  958                 goto bad;
  959         m = m_get(M_NOWAIT, n->m_type);
  960         if (m == NULL)
  961                 goto bad;
  962         if (n->m_flags & M_PKTHDR)
  963                 m_move_pkthdr(m, n);
  964         m->m_data += dstoff;
  965         space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
  966         do {
  967                 count = min(min(max(len, max_protohdr), space), n->m_len);
  968                 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
  969                     (unsigned)count);
  970                 len -= count;
  971                 m->m_len += count;
  972                 n->m_len -= count;
  973                 space -= count;
  974                 if (n->m_len)
  975                         n->m_data += count;
  976                 else
  977                         n = m_free(n);
  978         } while (len > 0 && n);
  979         if (len > 0) {
  980                 (void) m_free(m);
  981                 goto bad;
  982         }
  983         m->m_next = n;
  984         return (m);
  985  bad:
  986         m_freem(n);
  987         return (NULL);
  988 }
  989 
  990 /*
  991  * Partition an mbuf chain in two pieces, returning the tail --
  992  * all but the first len0 bytes.  In case of failure, it returns NULL and
  993  * attempts to restore the chain to its original state.
  994  *
  995  * Note that the resulting mbufs might be read-only, because the new
  996  * mbuf can end up sharing an mbuf cluster with the original mbuf if
  997  * the "breaking point" happens to lie within a cluster mbuf. Use the
  998  * M_WRITABLE() macro to check for this case.
  999  */
 1000 struct mbuf *
 1001 m_split(struct mbuf *m0, int len0, int wait)
 1002 {
 1003         struct mbuf *m, *n;
 1004         u_int len = len0, remain;
 1005 
 1006         MBUF_CHECKSLEEP(wait);
 1007         for (m = m0; m && len > m->m_len; m = m->m_next)
 1008                 len -= m->m_len;
 1009         if (m == NULL)
 1010                 return (NULL);
 1011         remain = m->m_len - len;
 1012         if (m0->m_flags & M_PKTHDR && remain == 0) {
 1013                 n = m_gethdr(wait, m0->m_type);
 1014                 if (n == NULL)
 1015                         return (NULL);
 1016                 n->m_next = m->m_next;
 1017                 m->m_next = NULL;
 1018                 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
 1019                         n->m_pkthdr.snd_tag =
 1020                             m_snd_tag_ref(m0->m_pkthdr.snd_tag);
 1021                         n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
 1022                 } else
 1023                         n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
 1024                 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
 1025                 m0->m_pkthdr.len = len0;
 1026                 return (n);
 1027         } else if (m0->m_flags & M_PKTHDR) {
 1028                 n = m_gethdr(wait, m0->m_type);
 1029                 if (n == NULL)
 1030                         return (NULL);
 1031                 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
 1032                         n->m_pkthdr.snd_tag =
 1033                             m_snd_tag_ref(m0->m_pkthdr.snd_tag);
 1034                         n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
 1035                 } else
 1036                         n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
 1037                 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
 1038                 m0->m_pkthdr.len = len0;
 1039                 if (m->m_flags & (M_EXT|M_EXTPG))
 1040                         goto extpacket;
 1041                 if (remain > MHLEN) {
 1042                         /* m can't be the lead packet */
 1043                         M_ALIGN(n, 0);
 1044                         n->m_next = m_split(m, len, wait);
 1045                         if (n->m_next == NULL) {
 1046                                 (void) m_free(n);
 1047                                 return (NULL);
 1048                         } else {
 1049                                 n->m_len = 0;
 1050                                 return (n);
 1051                         }
 1052                 } else
 1053                         M_ALIGN(n, remain);
 1054         } else if (remain == 0) {
 1055                 n = m->m_next;
 1056                 m->m_next = NULL;
 1057                 return (n);
 1058         } else {
 1059                 n = m_get(wait, m->m_type);
 1060                 if (n == NULL)
 1061                         return (NULL);
 1062                 M_ALIGN(n, remain);
 1063         }
 1064 extpacket:
 1065         if (m->m_flags & (M_EXT|M_EXTPG)) {
 1066                 n->m_data = m->m_data + len;
 1067                 mb_dupcl(n, m);
 1068         } else {
 1069                 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
 1070         }
 1071         n->m_len = remain;
 1072         m->m_len = len;
 1073         n->m_next = m->m_next;
 1074         m->m_next = NULL;
 1075         return (n);
 1076 }
 1077 /*
 1078  * Routine to copy from device local memory into mbufs.
 1079  * Note that `off' argument is offset into first mbuf of target chain from
 1080  * which to begin copying the data to.
 1081  */
 1082 struct mbuf *
 1083 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
 1084     void (*copy)(char *from, caddr_t to, u_int len))
 1085 {
 1086         struct mbuf *m;
 1087         struct mbuf *top = NULL, **mp = &top;
 1088         int len;
 1089 
 1090         if (off < 0 || off > MHLEN)
 1091                 return (NULL);
 1092 
 1093         while (totlen > 0) {
 1094                 if (top == NULL) {      /* First one, must be PKTHDR */
 1095                         if (totlen + off >= MINCLSIZE) {
 1096                                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 1097                                 len = MCLBYTES;
 1098                         } else {
 1099                                 m = m_gethdr(M_NOWAIT, MT_DATA);
 1100                                 len = MHLEN;
 1101 
 1102                                 /* Place initial small packet/header at end of mbuf */
 1103                                 if (m && totlen + off + max_linkhdr <= MHLEN) {
 1104                                         m->m_data += max_linkhdr;
 1105                                         len -= max_linkhdr;
 1106                                 }
 1107                         }
 1108                         if (m == NULL)
 1109                                 return NULL;
 1110                         m->m_pkthdr.rcvif = ifp;
 1111                         m->m_pkthdr.len = totlen;
 1112                 } else {
 1113                         if (totlen + off >= MINCLSIZE) {
 1114                                 m = m_getcl(M_NOWAIT, MT_DATA, 0);
 1115                                 len = MCLBYTES;
 1116                         } else {
 1117                                 m = m_get(M_NOWAIT, MT_DATA);
 1118                                 len = MLEN;
 1119                         }
 1120                         if (m == NULL) {
 1121                                 m_freem(top);
 1122                                 return NULL;
 1123                         }
 1124                 }
 1125                 if (off) {
 1126                         m->m_data += off;
 1127                         len -= off;
 1128                         off = 0;
 1129                 }
 1130                 m->m_len = len = min(totlen, len);
 1131                 if (copy)
 1132                         copy(buf, mtod(m, caddr_t), (u_int)len);
 1133                 else
 1134                         bcopy(buf, mtod(m, caddr_t), (u_int)len);
 1135                 buf += len;
 1136                 *mp = m;
 1137                 mp = &m->m_next;
 1138                 totlen -= len;
 1139         }
 1140         return (top);
 1141 }
 1142 
 1143 static void
 1144 m_copytounmapped(const struct mbuf *m, int off, int len, c_caddr_t cp)
 1145 {
 1146         struct iovec iov;
 1147         struct uio uio;
 1148         int error;
 1149 
 1150         KASSERT(off >= 0, ("m_copytounmapped: negative off %d", off));
 1151         KASSERT(len >= 0, ("m_copytounmapped: negative len %d", len));
 1152         KASSERT(off < m->m_len, ("m_copytounmapped: len exceeds mbuf length"));
 1153         iov.iov_base = __DECONST(caddr_t, cp);
 1154         iov.iov_len = len;
 1155         uio.uio_resid = len;
 1156         uio.uio_iov = &iov;
 1157         uio.uio_segflg = UIO_SYSSPACE;
 1158         uio.uio_iovcnt = 1;
 1159         uio.uio_offset = 0;
 1160         uio.uio_rw = UIO_WRITE;
 1161         error = m_unmapped_uiomove(m, off, &uio, len);
 1162         KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
 1163            len));
 1164 }
 1165 
 1166 /*
 1167  * Copy data from a buffer back into the indicated mbuf chain,
 1168  * starting "off" bytes from the beginning, extending the mbuf
 1169  * chain if necessary.
 1170  */
 1171 void
 1172 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
 1173 {
 1174         int mlen;
 1175         struct mbuf *m = m0, *n;
 1176         int totlen = 0;
 1177 
 1178         if (m0 == NULL)
 1179                 return;
 1180         while (off > (mlen = m->m_len)) {
 1181                 off -= mlen;
 1182                 totlen += mlen;
 1183                 if (m->m_next == NULL) {
 1184                         n = m_get(M_NOWAIT, m->m_type);
 1185                         if (n == NULL)
 1186                                 goto out;
 1187                         bzero(mtod(n, caddr_t), MLEN);
 1188                         n->m_len = min(MLEN, len + off);
 1189                         m->m_next = n;
 1190                 }
 1191                 m = m->m_next;
 1192         }
 1193         while (len > 0) {
 1194                 if (m->m_next == NULL && (len > m->m_len - off)) {
 1195                         m->m_len += min(len - (m->m_len - off),
 1196                             M_TRAILINGSPACE(m));
 1197                 }
 1198                 mlen = min (m->m_len - off, len);
 1199                 if ((m->m_flags & M_EXTPG) != 0)
 1200                         m_copytounmapped(m, off, mlen, cp);
 1201                 else
 1202                         bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
 1203                 cp += mlen;
 1204                 len -= mlen;
 1205                 mlen += off;
 1206                 off = 0;
 1207                 totlen += mlen;
 1208                 if (len == 0)
 1209                         break;
 1210                 if (m->m_next == NULL) {
 1211                         n = m_get(M_NOWAIT, m->m_type);
 1212                         if (n == NULL)
 1213                                 break;
 1214                         n->m_len = min(MLEN, len);
 1215                         m->m_next = n;
 1216                 }
 1217                 m = m->m_next;
 1218         }
 1219 out:    if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
 1220                 m->m_pkthdr.len = totlen;
 1221 }
 1222 
 1223 /*
 1224  * Append the specified data to the indicated mbuf chain,
 1225  * Extend the mbuf chain if the new data does not fit in
 1226  * existing space.
 1227  *
 1228  * Return 1 if able to complete the job; otherwise 0.
 1229  */
 1230 int
 1231 m_append(struct mbuf *m0, int len, c_caddr_t cp)
 1232 {
 1233         struct mbuf *m, *n;
 1234         int remainder, space;
 1235 
 1236         for (m = m0; m->m_next != NULL; m = m->m_next)
 1237                 ;
 1238         remainder = len;
 1239         space = M_TRAILINGSPACE(m);
 1240         if (space > 0) {
 1241                 /*
 1242                  * Copy into available space.
 1243                  */
 1244                 if (space > remainder)
 1245                         space = remainder;
 1246                 bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
 1247                 m->m_len += space;
 1248                 cp += space, remainder -= space;
 1249         }
 1250         while (remainder > 0) {
 1251                 /*
 1252                  * Allocate a new mbuf; could check space
 1253                  * and allocate a cluster instead.
 1254                  */
 1255                 n = m_get(M_NOWAIT, m->m_type);
 1256                 if (n == NULL)
 1257                         break;
 1258                 n->m_len = min(MLEN, remainder);
 1259                 bcopy(cp, mtod(n, caddr_t), n->m_len);
 1260                 cp += n->m_len, remainder -= n->m_len;
 1261                 m->m_next = n;
 1262                 m = n;
 1263         }
 1264         if (m0->m_flags & M_PKTHDR)
 1265                 m0->m_pkthdr.len += len - remainder;
 1266         return (remainder == 0);
 1267 }
 1268 
 1269 static int
 1270 m_apply_extpg_one(struct mbuf *m, int off, int len,
 1271     int (*f)(void *, void *, u_int), void *arg)
 1272 {
 1273         void *p;
 1274         u_int i, count, pgoff, pglen;
 1275         int rval;
 1276 
 1277         KASSERT(PMAP_HAS_DMAP,
 1278             ("m_apply_extpg_one does not support unmapped mbufs"));
 1279         off += mtod(m, vm_offset_t);
 1280         if (off < m->m_epg_hdrlen) {
 1281                 count = min(m->m_epg_hdrlen - off, len);
 1282                 rval = f(arg, m->m_epg_hdr + off, count);
 1283                 if (rval)
 1284                         return (rval);
 1285                 len -= count;
 1286                 off = 0;
 1287         } else
 1288                 off -= m->m_epg_hdrlen;
 1289         pgoff = m->m_epg_1st_off;
 1290         for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
 1291                 pglen = m_epg_pagelen(m, i, pgoff);
 1292                 if (off < pglen) {
 1293                         count = min(pglen - off, len);
 1294                         p = (void *)PHYS_TO_DMAP(m->m_epg_pa[i] + pgoff);
 1295                         rval = f(arg, p, count);
 1296                         if (rval)
 1297                                 return (rval);
 1298                         len -= count;
 1299                         off = 0;
 1300                 } else
 1301                         off -= pglen;
 1302                 pgoff = 0;
 1303         }
 1304         if (len > 0) {
 1305                 KASSERT(off < m->m_epg_trllen,
 1306                     ("m_apply_extpg_one: offset beyond trailer"));
 1307                 KASSERT(len <= m->m_epg_trllen - off,
 1308                     ("m_apply_extpg_one: length beyond trailer"));
 1309                 return (f(arg, m->m_epg_trail + off, len));
 1310         }
 1311         return (0);
 1312 }
 1313 
 1314 /* Apply function f to the data in a single mbuf. */
 1315 static int
 1316 m_apply_one(struct mbuf *m, int off, int len,
 1317     int (*f)(void *, void *, u_int), void *arg)
 1318 {
 1319         if ((m->m_flags & M_EXTPG) != 0)
 1320                 return (m_apply_extpg_one(m, off, len, f, arg));
 1321         else
 1322                 return (f(arg, mtod(m, caddr_t) + off, len));
 1323 }
 1324 
 1325 /*
 1326  * Apply function f to the data in an mbuf chain starting "off" bytes from
 1327  * the beginning, continuing for "len" bytes.
 1328  */
 1329 int
 1330 m_apply(struct mbuf *m, int off, int len,
 1331     int (*f)(void *, void *, u_int), void *arg)
 1332 {
 1333         u_int count;
 1334         int rval;
 1335 
 1336         KASSERT(off >= 0, ("m_apply, negative off %d", off));
 1337         KASSERT(len >= 0, ("m_apply, negative len %d", len));
 1338         while (off > 0) {
 1339                 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
 1340                 if (off < m->m_len)
 1341                         break;
 1342                 off -= m->m_len;
 1343                 m = m->m_next;
 1344         }
 1345         while (len > 0) {
 1346                 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
 1347                 count = min(m->m_len - off, len);
 1348                 rval = m_apply_one(m, off, count, f, arg);
 1349                 if (rval)
 1350                         return (rval);
 1351                 len -= count;
 1352                 off = 0;
 1353                 m = m->m_next;
 1354         }
 1355         return (0);
 1356 }
 1357 
 1358 /*
 1359  * Return a pointer to mbuf/offset of location in mbuf chain.
 1360  */
 1361 struct mbuf *
 1362 m_getptr(struct mbuf *m, int loc, int *off)
 1363 {
 1364 
 1365         while (loc >= 0) {
 1366                 /* Normal end of search. */
 1367                 if (m->m_len > loc) {
 1368                         *off = loc;
 1369                         return (m);
 1370                 } else {
 1371                         loc -= m->m_len;
 1372                         if (m->m_next == NULL) {
 1373                                 if (loc == 0) {
 1374                                         /* Point at the end of valid data. */
 1375                                         *off = m->m_len;
 1376                                         return (m);
 1377                                 }
 1378                                 return (NULL);
 1379                         }
 1380                         m = m->m_next;
 1381                 }
 1382         }
 1383         return (NULL);
 1384 }
 1385 
 1386 void
 1387 m_print(const struct mbuf *m, int maxlen)
 1388 {
 1389         int len;
 1390         int pdata;
 1391         const struct mbuf *m2;
 1392 
 1393         if (m == NULL) {
 1394                 printf("mbuf: %p\n", m);
 1395                 return;
 1396         }
 1397 
 1398         if (m->m_flags & M_PKTHDR)
 1399                 len = m->m_pkthdr.len;
 1400         else
 1401                 len = -1;
 1402         m2 = m;
 1403         while (m2 != NULL && (len == -1 || len)) {
 1404                 pdata = m2->m_len;
 1405                 if (maxlen != -1 && pdata > maxlen)
 1406                         pdata = maxlen;
 1407                 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
 1408                     m2->m_next, m2->m_flags, "\2\20freelist\17skipfw"
 1409                     "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
 1410                     "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
 1411                 if (pdata)
 1412                         printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
 1413                 if (len != -1)
 1414                         len -= m2->m_len;
 1415                 m2 = m2->m_next;
 1416         }
 1417         if (len > 0)
 1418                 printf("%d bytes unaccounted for.\n", len);
 1419         return;
 1420 }
 1421 
 1422 u_int
 1423 m_fixhdr(struct mbuf *m0)
 1424 {
 1425         u_int len;
 1426 
 1427         len = m_length(m0, NULL);
 1428         m0->m_pkthdr.len = len;
 1429         return (len);
 1430 }
 1431 
 1432 u_int
 1433 m_length(struct mbuf *m0, struct mbuf **last)
 1434 {
 1435         struct mbuf *m;
 1436         u_int len;
 1437 
 1438         len = 0;
 1439         for (m = m0; m != NULL; m = m->m_next) {
 1440                 len += m->m_len;
 1441                 if (m->m_next == NULL)
 1442                         break;
 1443         }
 1444         if (last != NULL)
 1445                 *last = m;
 1446         return (len);
 1447 }
 1448 
 1449 /*
 1450  * Defragment a mbuf chain, returning the shortest possible
 1451  * chain of mbufs and clusters.  If allocation fails and
 1452  * this cannot be completed, NULL will be returned, but
 1453  * the passed in chain will be unchanged.  Upon success,
 1454  * the original chain will be freed, and the new chain
 1455  * will be returned.
 1456  *
 1457  * If a non-packet header is passed in, the original
 1458  * mbuf (chain?) will be returned unharmed.
 1459  */
 1460 struct mbuf *
 1461 m_defrag(struct mbuf *m0, int how)
 1462 {
 1463         struct mbuf *m_new = NULL, *m_final = NULL;
 1464         int progress = 0, length;
 1465 
 1466         MBUF_CHECKSLEEP(how);
 1467         if (!(m0->m_flags & M_PKTHDR))
 1468                 return (m0);
 1469 
 1470         m_fixhdr(m0); /* Needed sanity check */
 1471 
 1472 #ifdef MBUF_STRESS_TEST
 1473         if (m_defragrandomfailures) {
 1474                 int temp = arc4random() & 0xff;
 1475                 if (temp == 0xba)
 1476                         goto nospace;
 1477         }
 1478 #endif
 1479 
 1480         if (m0->m_pkthdr.len > MHLEN)
 1481                 m_final = m_getcl(how, MT_DATA, M_PKTHDR);
 1482         else
 1483                 m_final = m_gethdr(how, MT_DATA);
 1484 
 1485         if (m_final == NULL)
 1486                 goto nospace;
 1487 
 1488         if (m_dup_pkthdr(m_final, m0, how) == 0)
 1489                 goto nospace;
 1490 
 1491         m_new = m_final;
 1492 
 1493         while (progress < m0->m_pkthdr.len) {
 1494                 length = m0->m_pkthdr.len - progress;
 1495                 if (length > MCLBYTES)
 1496                         length = MCLBYTES;
 1497 
 1498                 if (m_new == NULL) {
 1499                         if (length > MLEN)
 1500                                 m_new = m_getcl(how, MT_DATA, 0);
 1501                         else
 1502                                 m_new = m_get(how, MT_DATA);
 1503                         if (m_new == NULL)
 1504                                 goto nospace;
 1505                 }
 1506 
 1507                 m_copydata(m0, progress, length, mtod(m_new, caddr_t));
 1508                 progress += length;
 1509                 m_new->m_len = length;
 1510                 if (m_new != m_final)
 1511                         m_cat(m_final, m_new);
 1512                 m_new = NULL;
 1513         }
 1514 #ifdef MBUF_STRESS_TEST
 1515         if (m0->m_next == NULL)
 1516                 m_defraguseless++;
 1517 #endif
 1518         m_freem(m0);
 1519         m0 = m_final;
 1520 #ifdef MBUF_STRESS_TEST
 1521         m_defragpackets++;
 1522         m_defragbytes += m0->m_pkthdr.len;
 1523 #endif
 1524         return (m0);
 1525 nospace:
 1526 #ifdef MBUF_STRESS_TEST
 1527         m_defragfailure++;
 1528 #endif
 1529         if (m_final)
 1530                 m_freem(m_final);
 1531         return (NULL);
 1532 }
 1533 
 1534 /*
 1535  * Return the number of fragments an mbuf will use.  This is usually
 1536  * used as a proxy for the number of scatter/gather elements needed by
 1537  * a DMA engine to access an mbuf.  In general mapped mbufs are
 1538  * assumed to be backed by physically contiguous buffers that only
 1539  * need a single fragment.  Unmapped mbufs, on the other hand, can
 1540  * span disjoint physical pages.
 1541  */
 1542 static int
 1543 frags_per_mbuf(struct mbuf *m)
 1544 {
 1545         int frags;
 1546 
 1547         if ((m->m_flags & M_EXTPG) == 0)
 1548                 return (1);
 1549 
 1550         /*
 1551          * The header and trailer are counted as a single fragment
 1552          * each when present.
 1553          *
 1554          * XXX: This overestimates the number of fragments by assuming
 1555          * all the backing physical pages are disjoint.
 1556          */
 1557         frags = 0;
 1558         if (m->m_epg_hdrlen != 0)
 1559                 frags++;
 1560         frags += m->m_epg_npgs;
 1561         if (m->m_epg_trllen != 0)
 1562                 frags++;
 1563 
 1564         return (frags);
 1565 }
 1566 
 1567 /*
 1568  * Defragment an mbuf chain, returning at most maxfrags separate
 1569  * mbufs+clusters.  If this is not possible NULL is returned and
 1570  * the original mbuf chain is left in its present (potentially
 1571  * modified) state.  We use two techniques: collapsing consecutive
 1572  * mbufs and replacing consecutive mbufs by a cluster.
 1573  *
 1574  * NB: this should really be named m_defrag but that name is taken
 1575  */
 1576 struct mbuf *
 1577 m_collapse(struct mbuf *m0, int how, int maxfrags)
 1578 {
 1579         struct mbuf *m, *n, *n2, **prev;
 1580         u_int curfrags;
 1581 
 1582         /*
 1583          * Calculate the current number of frags.
 1584          */
 1585         curfrags = 0;
 1586         for (m = m0; m != NULL; m = m->m_next)
 1587                 curfrags += frags_per_mbuf(m);
 1588         /*
 1589          * First, try to collapse mbufs.  Note that we always collapse
 1590          * towards the front so we don't need to deal with moving the
 1591          * pkthdr.  This may be suboptimal if the first mbuf has much
 1592          * less data than the following.
 1593          */
 1594         m = m0;
 1595 again:
 1596         for (;;) {
 1597                 n = m->m_next;
 1598                 if (n == NULL)
 1599                         break;
 1600                 if (M_WRITABLE(m) &&
 1601                     n->m_len < M_TRAILINGSPACE(m)) {
 1602                         m_copydata(n, 0, n->m_len,
 1603                             mtod(m, char *) + m->m_len);
 1604                         m->m_len += n->m_len;
 1605                         m->m_next = n->m_next;
 1606                         curfrags -= frags_per_mbuf(n);
 1607                         m_free(n);
 1608                         if (curfrags <= maxfrags)
 1609                                 return m0;
 1610                 } else
 1611                         m = n;
 1612         }
 1613         KASSERT(maxfrags > 1,
 1614                 ("maxfrags %u, but normal collapse failed", maxfrags));
 1615         /*
 1616          * Collapse consecutive mbufs to a cluster.
 1617          */
 1618         prev = &m0->m_next;             /* NB: not the first mbuf */
 1619         while ((n = *prev) != NULL) {
 1620                 if ((n2 = n->m_next) != NULL &&
 1621                     n->m_len + n2->m_len < MCLBYTES) {
 1622                         m = m_getcl(how, MT_DATA, 0);
 1623                         if (m == NULL)
 1624                                 goto bad;
 1625                         m_copydata(n, 0,  n->m_len, mtod(m, char *));
 1626                         m_copydata(n2, 0,  n2->m_len,
 1627                             mtod(m, char *) + n->m_len);
 1628                         m->m_len = n->m_len + n2->m_len;
 1629                         m->m_next = n2->m_next;
 1630                         *prev = m;
 1631                         curfrags += 1;  /* For the new cluster */
 1632                         curfrags -= frags_per_mbuf(n);
 1633                         curfrags -= frags_per_mbuf(n2);
 1634                         m_free(n);
 1635                         m_free(n2);
 1636                         if (curfrags <= maxfrags)
 1637                                 return m0;
 1638                         /*
 1639                          * Still not there, try the normal collapse
 1640                          * again before we allocate another cluster.
 1641                          */
 1642                         goto again;
 1643                 }
 1644                 prev = &n->m_next;
 1645         }
 1646         /*
 1647          * No place where we can collapse to a cluster; punt.
 1648          * This can occur if, for example, you request 2 frags
 1649          * but the packet requires that both be clusters (we
 1650          * never reallocate the first mbuf to avoid moving the
 1651          * packet header).
 1652          */
 1653 bad:
 1654         return NULL;
 1655 }
 1656 
 1657 #ifdef MBUF_STRESS_TEST
 1658 
 1659 /*
 1660  * Fragment an mbuf chain.  There's no reason you'd ever want to do
 1661  * this in normal usage, but it's great for stress testing various
 1662  * mbuf consumers.
 1663  *
 1664  * If fragmentation is not possible, the original chain will be
 1665  * returned.
 1666  *
 1667  * Possible length values:
 1668  * 0     no fragmentation will occur
 1669  * > 0  each fragment will be of the specified length
 1670  * -1   each fragment will be the same random value in length
 1671  * -2   each fragment's length will be entirely random
 1672  * (Random values range from 1 to 256)
 1673  */
 1674 struct mbuf *
 1675 m_fragment(struct mbuf *m0, int how, int length)
 1676 {
 1677         struct mbuf *m_first, *m_last;
 1678         int divisor = 255, progress = 0, fraglen;
 1679 
 1680         if (!(m0->m_flags & M_PKTHDR))
 1681                 return (m0);
 1682 
 1683         if (length == 0 || length < -2)
 1684                 return (m0);
 1685         if (length > MCLBYTES)
 1686                 length = MCLBYTES;
 1687         if (length < 0 && divisor > MCLBYTES)
 1688                 divisor = MCLBYTES;
 1689         if (length == -1)
 1690                 length = 1 + (arc4random() % divisor);
 1691         if (length > 0)
 1692                 fraglen = length;
 1693 
 1694         m_fixhdr(m0); /* Needed sanity check */
 1695 
 1696         m_first = m_getcl(how, MT_DATA, M_PKTHDR);
 1697         if (m_first == NULL)
 1698                 goto nospace;
 1699 
 1700         if (m_dup_pkthdr(m_first, m0, how) == 0)
 1701                 goto nospace;
 1702 
 1703         m_last = m_first;
 1704 
 1705         while (progress < m0->m_pkthdr.len) {
 1706                 if (length == -2)
 1707                         fraglen = 1 + (arc4random() % divisor);
 1708                 if (fraglen > m0->m_pkthdr.len - progress)
 1709                         fraglen = m0->m_pkthdr.len - progress;
 1710 
 1711                 if (progress != 0) {
 1712                         struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
 1713                         if (m_new == NULL)
 1714                                 goto nospace;
 1715 
 1716                         m_last->m_next = m_new;
 1717                         m_last = m_new;
 1718                 }
 1719 
 1720                 m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
 1721                 progress += fraglen;
 1722                 m_last->m_len = fraglen;
 1723         }
 1724         m_freem(m0);
 1725         m0 = m_first;
 1726         return (m0);
 1727 nospace:
 1728         if (m_first)
 1729                 m_freem(m_first);
 1730         /* Return the original chain on failure */
 1731         return (m0);
 1732 }
 1733 
 1734 #endif
 1735 
 1736 /*
 1737  * Free pages from mbuf_ext_pgs, assuming they were allocated via
 1738  * vm_page_alloc() and aren't associated with any object.  Complement
 1739  * to allocator from m_uiotombuf_nomap().
 1740  */
 1741 void
 1742 mb_free_mext_pgs(struct mbuf *m)
 1743 {
 1744         vm_page_t pg;
 1745 
 1746         M_ASSERTEXTPG(m);
 1747         for (int i = 0; i < m->m_epg_npgs; i++) {
 1748                 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
 1749                 vm_page_unwire_noq(pg);
 1750                 vm_page_free(pg);
 1751         }
 1752 }
 1753 
 1754 static struct mbuf *
 1755 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags)
 1756 {
 1757         struct mbuf *m, *mb, *prev;
 1758         vm_page_t pg_array[MBUF_PEXT_MAX_PGS];
 1759         int error, length, i, needed;
 1760         ssize_t total;
 1761         int pflags = malloc2vm_flags(how) | VM_ALLOC_NODUMP | VM_ALLOC_WIRED;
 1762 
 1763         MPASS((flags & M_PKTHDR) == 0);
 1764         MPASS((how & M_ZERO) == 0);
 1765 
 1766         /*
 1767          * len can be zero or an arbitrary large value bound by
 1768          * the total data supplied by the uio.
 1769          */
 1770         if (len > 0)
 1771                 total = MIN(uio->uio_resid, len);
 1772         else
 1773                 total = uio->uio_resid;
 1774 
 1775         if (maxseg == 0)
 1776                 maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE;
 1777 
 1778         /*
 1779          * If total is zero, return an empty mbuf.  This can occur
 1780          * for TLS 1.0 connections which send empty fragments as
 1781          * a countermeasure against the known-IV weakness in CBC
 1782          * ciphersuites.
 1783          */
 1784         if (__predict_false(total == 0)) {
 1785                 mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
 1786                 if (mb == NULL)
 1787                         return (NULL);
 1788                 mb->m_epg_flags = EPG_FLAG_ANON;
 1789                 return (mb);
 1790         }
 1791 
 1792         /*
 1793          * Allocate the pages
 1794          */
 1795         m = NULL;
 1796         while (total > 0) {
 1797                 mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
 1798                 if (mb == NULL)
 1799                         goto failed;
 1800                 if (m == NULL)
 1801                         m = mb;
 1802                 else
 1803                         prev->m_next = mb;
 1804                 prev = mb;
 1805                 mb->m_epg_flags = EPG_FLAG_ANON;
 1806                 needed = length = MIN(maxseg, total);
 1807                 for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) {
 1808 retry_page:
 1809                         pg_array[i] = vm_page_alloc_noobj(pflags);
 1810                         if (pg_array[i] == NULL) {
 1811                                 if (how & M_NOWAIT) {
 1812                                         goto failed;
 1813                                 } else {
 1814                                         vm_wait(NULL);
 1815                                         goto retry_page;
 1816                                 }
 1817                         }
 1818                         mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]);
 1819                         mb->m_epg_npgs++;
 1820                 }
 1821                 mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1);
 1822                 MBUF_EXT_PGS_ASSERT_SANITY(mb);
 1823                 total -= length;
 1824                 error = uiomove_fromphys(pg_array, 0, length, uio);
 1825                 if (error != 0)
 1826                         goto failed;
 1827                 mb->m_len = length;
 1828                 mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs;
 1829                 if (flags & M_PKTHDR)
 1830                         m->m_pkthdr.len += length;
 1831         }
 1832         return (m);
 1833 
 1834 failed:
 1835         m_freem(m);
 1836         return (NULL);
 1837 }
 1838 
 1839 /*
 1840  * Copy the contents of uio into a properly sized mbuf chain.
 1841  */
 1842 struct mbuf *
 1843 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
 1844 {
 1845         struct mbuf *m, *mb;
 1846         int error, length;
 1847         ssize_t total;
 1848         int progress = 0;
 1849 
 1850         if (flags & M_EXTPG)
 1851                 return (m_uiotombuf_nomap(uio, how, len, align, flags));
 1852 
 1853         /*
 1854          * len can be zero or an arbitrary large value bound by
 1855          * the total data supplied by the uio.
 1856          */
 1857         if (len > 0)
 1858                 total = (uio->uio_resid < len) ? uio->uio_resid : len;
 1859         else
 1860                 total = uio->uio_resid;
 1861 
 1862         /*
 1863          * The smallest unit returned by m_getm2() is a single mbuf
 1864          * with pkthdr.  We can't align past it.
 1865          */
 1866         if (align >= MHLEN)
 1867                 return (NULL);
 1868 
 1869         /*
 1870          * Give us the full allocation or nothing.
 1871          * If len is zero return the smallest empty mbuf.
 1872          */
 1873         m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
 1874         if (m == NULL)
 1875                 return (NULL);
 1876         m->m_data += align;
 1877 
 1878         /* Fill all mbufs with uio data and update header information. */
 1879         for (mb = m; mb != NULL; mb = mb->m_next) {
 1880                 length = min(M_TRAILINGSPACE(mb), total - progress);
 1881 
 1882                 error = uiomove(mtod(mb, void *), length, uio);
 1883                 if (error) {
 1884                         m_freem(m);
 1885                         return (NULL);
 1886                 }
 1887 
 1888                 mb->m_len = length;
 1889                 progress += length;
 1890                 if (flags & M_PKTHDR)
 1891                         m->m_pkthdr.len += length;
 1892         }
 1893         KASSERT(progress == total, ("%s: progress != total", __func__));
 1894 
 1895         return (m);
 1896 }
 1897 
 1898 /*
 1899  * Copy data to/from an unmapped mbuf into a uio limited by len if set.
 1900  */
 1901 int
 1902 m_unmapped_uiomove(const struct mbuf *m, int m_off, struct uio *uio, int len)
 1903 {
 1904         vm_page_t pg;
 1905         int error, i, off, pglen, pgoff, seglen, segoff;
 1906 
 1907         M_ASSERTEXTPG(m);
 1908         error = 0;
 1909 
 1910         /* Skip over any data removed from the front. */
 1911         off = mtod(m, vm_offset_t);
 1912 
 1913         off += m_off;
 1914         if (m->m_epg_hdrlen != 0) {
 1915                 if (off >= m->m_epg_hdrlen) {
 1916                         off -= m->m_epg_hdrlen;
 1917                 } else {
 1918                         seglen = m->m_epg_hdrlen - off;
 1919                         segoff = off;
 1920                         seglen = min(seglen, len);
 1921                         off = 0;
 1922                         len -= seglen;
 1923                         error = uiomove(__DECONST(void *,
 1924                             &m->m_epg_hdr[segoff]), seglen, uio);
 1925                 }
 1926         }
 1927         pgoff = m->m_epg_1st_off;
 1928         for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
 1929                 pglen = m_epg_pagelen(m, i, pgoff);
 1930                 if (off >= pglen) {
 1931                         off -= pglen;
 1932                         pgoff = 0;
 1933                         continue;
 1934                 }
 1935                 seglen = pglen - off;
 1936                 segoff = pgoff + off;
 1937                 off = 0;
 1938                 seglen = min(seglen, len);
 1939                 len -= seglen;
 1940                 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
 1941                 error = uiomove_fromphys(&pg, segoff, seglen, uio);
 1942                 pgoff = 0;
 1943         };
 1944         if (len != 0 && error == 0) {
 1945                 KASSERT((off + len) <= m->m_epg_trllen,
 1946                     ("off + len > trail (%d + %d > %d, m_off = %d)", off, len,
 1947                     m->m_epg_trllen, m_off));
 1948                 error = uiomove(__DECONST(void *, &m->m_epg_trail[off]),
 1949                     len, uio);
 1950         }
 1951         return (error);
 1952 }
 1953 
 1954 /*
 1955  * Copy an mbuf chain into a uio limited by len if set.
 1956  */
 1957 int
 1958 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
 1959 {
 1960         int error, length, total;
 1961         int progress = 0;
 1962 
 1963         if (len > 0)
 1964                 total = min(uio->uio_resid, len);
 1965         else
 1966                 total = uio->uio_resid;
 1967 
 1968         /* Fill the uio with data from the mbufs. */
 1969         for (; m != NULL; m = m->m_next) {
 1970                 length = min(m->m_len, total - progress);
 1971 
 1972                 if ((m->m_flags & M_EXTPG) != 0)
 1973                         error = m_unmapped_uiomove(m, 0, uio, length);
 1974                 else
 1975                         error = uiomove(mtod(m, void *), length, uio);
 1976                 if (error)
 1977                         return (error);
 1978 
 1979                 progress += length;
 1980         }
 1981 
 1982         return (0);
 1983 }
 1984 
 1985 /*
 1986  * Create a writable copy of the mbuf chain.  While doing this
 1987  * we compact the chain with a goal of producing a chain with
 1988  * at most two mbufs.  The second mbuf in this chain is likely
 1989  * to be a cluster.  The primary purpose of this work is to create
 1990  * a writable packet for encryption, compression, etc.  The
 1991  * secondary goal is to linearize the data so the data can be
 1992  * passed to crypto hardware in the most efficient manner possible.
 1993  */
 1994 struct mbuf *
 1995 m_unshare(struct mbuf *m0, int how)
 1996 {
 1997         struct mbuf *m, *mprev;
 1998         struct mbuf *n, *mfirst, *mlast;
 1999         int len, off;
 2000 
 2001         mprev = NULL;
 2002         for (m = m0; m != NULL; m = mprev->m_next) {
 2003                 /*
 2004                  * Regular mbufs are ignored unless there's a cluster
 2005                  * in front of it that we can use to coalesce.  We do
 2006                  * the latter mainly so later clusters can be coalesced
 2007                  * also w/o having to handle them specially (i.e. convert
 2008                  * mbuf+cluster -> cluster).  This optimization is heavily
 2009                  * influenced by the assumption that we're running over
 2010                  * Ethernet where MCLBYTES is large enough that the max
 2011                  * packet size will permit lots of coalescing into a
 2012                  * single cluster.  This in turn permits efficient
 2013                  * crypto operations, especially when using hardware.
 2014                  */
 2015                 if ((m->m_flags & M_EXT) == 0) {
 2016                         if (mprev && (mprev->m_flags & M_EXT) &&
 2017                             m->m_len <= M_TRAILINGSPACE(mprev)) {
 2018                                 /* XXX: this ignores mbuf types */
 2019                                 memcpy(mtod(mprev, caddr_t) + mprev->m_len,
 2020                                     mtod(m, caddr_t), m->m_len);
 2021                                 mprev->m_len += m->m_len;
 2022                                 mprev->m_next = m->m_next;      /* unlink from chain */
 2023                                 m_free(m);                      /* reclaim mbuf */
 2024                         } else {
 2025                                 mprev = m;
 2026                         }
 2027                         continue;
 2028                 }
 2029                 /*
 2030                  * Writable mbufs are left alone (for now).
 2031                  */
 2032                 if (M_WRITABLE(m)) {
 2033                         mprev = m;
 2034                         continue;
 2035                 }
 2036 
 2037                 /*
 2038                  * Not writable, replace with a copy or coalesce with
 2039                  * the previous mbuf if possible (since we have to copy
 2040                  * it anyway, we try to reduce the number of mbufs and
 2041                  * clusters so that future work is easier).
 2042                  */
 2043                 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
 2044                 /* NB: we only coalesce into a cluster or larger */
 2045                 if (mprev != NULL && (mprev->m_flags & M_EXT) &&
 2046                     m->m_len <= M_TRAILINGSPACE(mprev)) {
 2047                         /* XXX: this ignores mbuf types */
 2048                         memcpy(mtod(mprev, caddr_t) + mprev->m_len,
 2049                             mtod(m, caddr_t), m->m_len);
 2050                         mprev->m_len += m->m_len;
 2051                         mprev->m_next = m->m_next;      /* unlink from chain */
 2052                         m_free(m);                      /* reclaim mbuf */
 2053                         continue;
 2054                 }
 2055 
 2056                 /*
 2057                  * Allocate new space to hold the copy and copy the data.
 2058                  * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
 2059                  * splitting them into clusters.  We could just malloc a
 2060                  * buffer and make it external but too many device drivers
 2061                  * don't know how to break up the non-contiguous memory when
 2062                  * doing DMA.
 2063                  */
 2064                 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
 2065                 if (n == NULL) {
 2066                         m_freem(m0);
 2067                         return (NULL);
 2068                 }
 2069                 if (m->m_flags & M_PKTHDR) {
 2070                         KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
 2071                             __func__, m0, m));
 2072                         m_move_pkthdr(n, m);
 2073                 }
 2074                 len = m->m_len;
 2075                 off = 0;
 2076                 mfirst = n;
 2077                 mlast = NULL;
 2078                 for (;;) {
 2079                         int cc = min(len, MCLBYTES);
 2080                         memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
 2081                         n->m_len = cc;
 2082                         if (mlast != NULL)
 2083                                 mlast->m_next = n;
 2084                         mlast = n;
 2085 #if 0
 2086                         newipsecstat.ips_clcopied++;
 2087 #endif
 2088 
 2089                         len -= cc;
 2090                         if (len <= 0)
 2091                                 break;
 2092                         off += cc;
 2093 
 2094                         n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
 2095                         if (n == NULL) {
 2096                                 m_freem(mfirst);
 2097                                 m_freem(m0);
 2098                                 return (NULL);
 2099                         }
 2100                 }
 2101                 n->m_next = m->m_next;
 2102                 if (mprev == NULL)
 2103                         m0 = mfirst;            /* new head of chain */
 2104                 else
 2105                         mprev->m_next = mfirst; /* replace old mbuf */
 2106                 m_free(m);                      /* release old mbuf */
 2107                 mprev = mfirst;
 2108         }
 2109         return (m0);
 2110 }
 2111 
 2112 #ifdef MBUF_PROFILING
 2113 
 2114 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
 2115 struct mbufprofile {
 2116         uintmax_t wasted[MP_BUCKETS];
 2117         uintmax_t used[MP_BUCKETS];
 2118         uintmax_t segments[MP_BUCKETS];
 2119 } mbprof;
 2120 
 2121 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */
 2122 #define MP_NUMLINES 6
 2123 #define MP_NUMSPERLINE 16
 2124 #define MP_EXTRABYTES 64        /* > strlen("used:\nwasted:\nsegments:\n") */
 2125 /* work out max space needed and add a bit of spare space too */
 2126 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
 2127 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
 2128 
 2129 char mbprofbuf[MP_BUFSIZE];
 2130 
 2131 void
 2132 m_profile(struct mbuf *m)
 2133 {
 2134         int segments = 0;
 2135         int used = 0;
 2136         int wasted = 0;
 2137 
 2138         while (m) {
 2139                 segments++;
 2140                 used += m->m_len;
 2141                 if (m->m_flags & M_EXT) {
 2142                         wasted += MHLEN - sizeof(m->m_ext) +
 2143                             m->m_ext.ext_size - m->m_len;
 2144                 } else {
 2145                         if (m->m_flags & M_PKTHDR)
 2146                                 wasted += MHLEN - m->m_len;
 2147                         else
 2148                                 wasted += MLEN - m->m_len;
 2149                 }
 2150                 m = m->m_next;
 2151         }
 2152         /* be paranoid.. it helps */
 2153         if (segments > MP_BUCKETS - 1)
 2154                 segments = MP_BUCKETS - 1;
 2155         if (used > 100000)
 2156                 used = 100000;
 2157         if (wasted > 100000)
 2158                 wasted = 100000;
 2159         /* store in the appropriate bucket */
 2160         /* don't bother locking. if it's slightly off, so what? */
 2161         mbprof.segments[segments]++;
 2162         mbprof.used[fls(used)]++;
 2163         mbprof.wasted[fls(wasted)]++;
 2164 }
 2165 
 2166 static void
 2167 mbprof_textify(void)
 2168 {
 2169         int offset;
 2170         char *c;
 2171         uint64_t *p;
 2172 
 2173         p = &mbprof.wasted[0];
 2174         c = mbprofbuf;
 2175         offset = snprintf(c, MP_MAXLINE + 10,
 2176             "wasted:\n"
 2177             "%ju %ju %ju %ju %ju %ju %ju %ju "
 2178             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 2179             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 2180             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 2181 #ifdef BIG_ARRAY
 2182         p = &mbprof.wasted[16];
 2183         c += offset;
 2184         offset = snprintf(c, MP_MAXLINE,
 2185             "%ju %ju %ju %ju %ju %ju %ju %ju "
 2186             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 2187             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 2188             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 2189 #endif
 2190         p = &mbprof.used[0];
 2191         c += offset;
 2192         offset = snprintf(c, MP_MAXLINE + 10,
 2193             "used:\n"
 2194             "%ju %ju %ju %ju %ju %ju %ju %ju "
 2195             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 2196             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 2197             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 2198 #ifdef BIG_ARRAY
 2199         p = &mbprof.used[16];
 2200         c += offset;
 2201         offset = snprintf(c, MP_MAXLINE,
 2202             "%ju %ju %ju %ju %ju %ju %ju %ju "
 2203             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 2204             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 2205             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 2206 #endif
 2207         p = &mbprof.segments[0];
 2208         c += offset;
 2209         offset = snprintf(c, MP_MAXLINE + 10,
 2210             "segments:\n"
 2211             "%ju %ju %ju %ju %ju %ju %ju %ju "
 2212             "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 2213             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 2214             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 2215 #ifdef BIG_ARRAY
 2216         p = &mbprof.segments[16];
 2217         c += offset;
 2218         offset = snprintf(c, MP_MAXLINE,
 2219             "%ju %ju %ju %ju %ju %ju %ju %ju "
 2220             "%ju %ju %ju %ju %ju %ju %ju %jju",
 2221             p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 2222             p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 2223 #endif
 2224 }
 2225 
 2226 static int
 2227 mbprof_handler(SYSCTL_HANDLER_ARGS)
 2228 {
 2229         int error;
 2230 
 2231         mbprof_textify();
 2232         error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
 2233         return (error);
 2234 }
 2235 
 2236 static int
 2237 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
 2238 {
 2239         int clear, error;
 2240 
 2241         clear = 0;
 2242         error = sysctl_handle_int(oidp, &clear, 0, req);
 2243         if (error || !req->newptr)
 2244                 return (error);
 2245 
 2246         if (clear) {
 2247                 bzero(&mbprof, sizeof(mbprof));
 2248         }
 2249 
 2250         return (error);
 2251 }
 2252 
 2253 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile,
 2254     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
 2255     mbprof_handler, "A",
 2256     "mbuf profiling statistics");
 2257 
 2258 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr,
 2259     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
 2260     mbprof_clr_handler, "I",
 2261     "clear mbuf profiling statistics");
 2262 #endif

Cache object: f7d056a2f98bdfcac9e59dfa5bd8503d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.