The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_msg.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
    3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
    4  * 
    5  * This code is derived from software contributed to The DragonFly Project
    6  * by Jeffrey M. Hsu.
    7  * 
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 3. Neither the name of The DragonFly Project nor the names of its
   17  *    contributors may be used to endorse or promote products derived
   18  *    from this software without specific, prior written permission.
   19  * 
   20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
   24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
   26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
   28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
   29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
   30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  */
   33 
   34 #include <sys/param.h>
   35 #include <sys/systm.h>
   36 #include <sys/kernel.h>
   37 #include <sys/msgport.h>
   38 #include <sys/protosw.h>
   39 #include <sys/socket.h>
   40 #include <sys/socketvar.h>
   41 #include <sys/socketops.h>
   42 #include <sys/thread.h>
   43 #include <sys/thread2.h>
   44 #include <sys/msgport2.h>
   45 #include <sys/spinlock2.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/mbuf.h>
   48 #include <vm/pmap.h>
   49 
   50 #include <net/netmsg2.h>
   51 #include <sys/socketvar2.h>
   52 
   53 #include <net/netisr.h>
   54 #include <net/netmsg.h>
   55 
   56 static int async_rcvd_drop_race = 0;
   57 SYSCTL_INT(_kern_ipc, OID_AUTO, async_rcvd_drop_race, CTLFLAG_RW,
   58     &async_rcvd_drop_race, 0, "# of asynchronized pru_rcvd msg drop races");
   59 
   60 /*
   61  * Abort a socket and free it.  Called from soabort() only.  soabort()
   62  * got a ref on the socket which we must free on reply.
   63  */
   64 void
   65 so_pru_abort(struct socket *so)
   66 {
   67         struct netmsg_pru_abort msg;
   68 
   69         netmsg_init(&msg.base, so, &curthread->td_msgport,
   70                     0, so->so_proto->pr_usrreqs->pru_abort);
   71         (void)lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
   72         sofree(msg.base.nm_so);
   73 }
   74 
   75 /*
   76  * Abort a socket and free it, asynchronously.  Called from
   77  * soaborta() only.  soaborta() got a ref on the socket which we must
   78  * free on reply.
   79  */
   80 void
   81 so_pru_aborta(struct socket *so)
   82 {
   83         struct netmsg_pru_abort *msg;
   84 
   85         msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK | M_ZERO);
   86         netmsg_init(&msg->base, so, &netisr_afree_free_so_rport,
   87                     0, so->so_proto->pr_usrreqs->pru_abort);
   88         lwkt_sendmsg(so->so_port, &msg->base.lmsg);
   89 }
   90 
   91 /*
   92  * Abort a socket and free it.  Called from soabort_oncpu() only.
   93  * Caller must make sure that the current CPU is inpcb's owner CPU.
   94  */
   95 void
   96 so_pru_abort_oncpu(struct socket *so)
   97 {
   98         struct netmsg_pru_abort msg;
   99         netisr_fn_t func = so->so_proto->pr_usrreqs->pru_abort;
  100 
  101         netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
  102         msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
  103         msg.base.lmsg.ms_flags |= MSGF_SYNC;
  104         func((netmsg_t)&msg);
  105         KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
  106         sofree(msg.base.nm_so);
  107 }
  108 
  109 int
  110 so_pru_accept(struct socket *so, struct sockaddr **nam)
  111 {
  112         struct netmsg_pru_accept msg;
  113 
  114         netmsg_init(&msg.base, so, &curthread->td_msgport,
  115             0, so->so_proto->pr_usrreqs->pru_accept);
  116         msg.nm_nam = nam;
  117 
  118         return lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  119 }
  120 
  121 int
  122 so_pru_attach(struct socket *so, int proto, struct pru_attach_info *ai)
  123 {
  124         struct netmsg_pru_attach msg;
  125         int error;
  126 
  127         netmsg_init(&msg.base, so, &curthread->td_msgport,
  128                     0, so->so_proto->pr_usrreqs->pru_attach);
  129         msg.nm_proto = proto;
  130         msg.nm_ai = ai;
  131         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  132         return (error);
  133 }
  134 
  135 int
  136 so_pru_attach_direct(struct socket *so, int proto, struct pru_attach_info *ai)
  137 {
  138         struct netmsg_pru_attach msg;
  139         netisr_fn_t func = so->so_proto->pr_usrreqs->pru_attach;
  140 
  141         netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
  142         msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
  143         msg.base.lmsg.ms_flags |= MSGF_SYNC;
  144         msg.nm_proto = proto;
  145         msg.nm_ai = ai;
  146         func((netmsg_t)&msg);
  147         KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
  148         return(msg.base.lmsg.ms_error);
  149 }
  150 
  151 /*
  152  * NOTE: If the target port changes the bind operation will deal with it.
  153  */
  154 int
  155 so_pru_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
  156 {
  157         struct netmsg_pru_bind msg;
  158         int error;
  159 
  160         netmsg_init(&msg.base, so, &curthread->td_msgport,
  161                     0, so->so_proto->pr_usrreqs->pru_bind);
  162         msg.nm_nam = nam;
  163         msg.nm_td = td;         /* used only for prison_ip() */
  164         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  165         return (error);
  166 }
  167 
  168 int
  169 so_pru_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
  170 {
  171         struct netmsg_pru_connect msg;
  172         int error;
  173 
  174         netmsg_init(&msg.base, so, &curthread->td_msgport,
  175                     0, so->so_proto->pr_usrreqs->pru_connect);
  176         msg.nm_nam = nam;
  177         msg.nm_td = td;
  178         msg.nm_m = NULL;
  179         msg.nm_sndflags = 0;
  180         msg.nm_flags = 0;
  181         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  182         return (error);
  183 }
  184 
  185 int
  186 so_pru_connect_async(struct socket *so, struct sockaddr *nam, struct thread *td)
  187 {
  188         struct netmsg_pru_connect *msg;
  189         int error, flags;
  190 
  191         KASSERT(so->so_proto->pr_usrreqs->pru_preconnect != NULL,
  192             ("async pru_connect is not supported"));
  193 
  194         /* NOTE: sockaddr immediately follows netmsg */
  195         msg = kmalloc(sizeof(*msg) + nam->sa_len, M_LWKTMSG, M_NOWAIT);
  196         if (msg == NULL) {
  197                 /*
  198                  * Fail to allocate address w/o waiting;
  199                  * fallback to synchronized pru_connect.
  200                  */
  201                 return so_pru_connect(so, nam, td);
  202         }
  203 
  204         error = so->so_proto->pr_usrreqs->pru_preconnect(so, nam, td);
  205         if (error) {
  206                 kfree(msg, M_LWKTMSG);
  207                 return error;
  208         }
  209 
  210         flags = PRUC_ASYNC;
  211         if (td != NULL && (so->so_proto->pr_flags & PR_ACONN_HOLDTD)) {
  212                 lwkt_hold(td);
  213                 flags |= PRUC_HELDTD;
  214         }
  215 
  216         netmsg_init(&msg->base, so, &netisr_afree_rport, 0,
  217             so->so_proto->pr_usrreqs->pru_connect);
  218         msg->nm_nam = (struct sockaddr *)(msg + 1);
  219         memcpy(msg->nm_nam, nam, nam->sa_len);
  220         msg->nm_td = td;
  221         msg->nm_m = NULL;
  222         msg->nm_sndflags = 0;
  223         msg->nm_flags = flags;
  224         lwkt_sendmsg(so->so_port, &msg->base.lmsg);
  225         return 0;
  226 }
  227 
  228 int
  229 so_pru_connect2(struct socket *so1, struct socket *so2)
  230 {
  231         struct netmsg_pru_connect2 msg;
  232         int error;
  233 
  234         netmsg_init(&msg.base, so1, &curthread->td_msgport,
  235                     0, so1->so_proto->pr_usrreqs->pru_connect2);
  236         msg.nm_so1 = so1;
  237         msg.nm_so2 = so2;
  238         error = lwkt_domsg(so1->so_port, &msg.base.lmsg, 0);
  239         return (error);
  240 }
  241 
  242 /*
  243  * WARNING!  Synchronous call from user context.  Control function may do
  244  *           copyin/copyout.
  245  */
  246 int
  247 so_pru_control_direct(struct socket *so, u_long cmd, caddr_t data,
  248                       struct ifnet *ifp)
  249 {
  250         struct netmsg_pru_control msg;
  251         netisr_fn_t func = so->so_proto->pr_usrreqs->pru_control;
  252 
  253         netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
  254         msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
  255         msg.base.lmsg.ms_flags |= MSGF_SYNC;
  256         msg.nm_cmd = cmd;
  257         msg.nm_data = data;
  258         msg.nm_ifp = ifp;
  259         msg.nm_td = curthread;
  260         func((netmsg_t)&msg);
  261         KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
  262         return(msg.base.lmsg.ms_error);
  263 }
  264 
  265 int
  266 so_pru_detach(struct socket *so)
  267 {
  268         struct netmsg_pru_detach msg;
  269         int error;
  270 
  271         netmsg_init(&msg.base, so, &curthread->td_msgport,
  272                     0, so->so_proto->pr_usrreqs->pru_detach);
  273         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  274         return (error);
  275 }
  276 
  277 void
  278 so_pru_detach_direct(struct socket *so)
  279 {
  280         struct netmsg_pru_detach msg;
  281         netisr_fn_t func = so->so_proto->pr_usrreqs->pru_detach;
  282 
  283         netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
  284         msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
  285         msg.base.lmsg.ms_flags |= MSGF_SYNC;
  286         func((netmsg_t)&msg);
  287         KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
  288 }
  289 
  290 int
  291 so_pru_disconnect(struct socket *so)
  292 {
  293         struct netmsg_pru_disconnect msg;
  294         int error;
  295 
  296         netmsg_init(&msg.base, so, &curthread->td_msgport,
  297                     0, so->so_proto->pr_usrreqs->pru_disconnect);
  298         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  299         return (error);
  300 }
  301 
  302 void
  303 so_pru_disconnect_direct(struct socket *so)
  304 {
  305         struct netmsg_pru_disconnect msg;
  306         netisr_fn_t func = so->so_proto->pr_usrreqs->pru_disconnect;
  307 
  308         netmsg_init(&msg.base, so, &netisr_adone_rport, 0, func);
  309         msg.base.lmsg.ms_flags &= ~(MSGF_REPLY | MSGF_DONE);
  310         msg.base.lmsg.ms_flags |= MSGF_SYNC;
  311         func((netmsg_t)&msg);
  312         KKASSERT(msg.base.lmsg.ms_flags & MSGF_DONE);
  313 }
  314 
  315 int
  316 so_pru_listen(struct socket *so, struct thread *td)
  317 {
  318         struct netmsg_pru_listen msg;
  319         int error;
  320 
  321         netmsg_init(&msg.base, so, &curthread->td_msgport,
  322                     0, so->so_proto->pr_usrreqs->pru_listen);
  323         msg.nm_td = td;         /* used only for prison_ip() XXX JH */
  324         msg.nm_flags = 0;
  325         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  326         return (error);
  327 }
  328 
  329 int
  330 so_pru_peeraddr(struct socket *so, struct sockaddr **nam)
  331 {
  332         struct netmsg_pru_peeraddr msg;
  333         int error;
  334 
  335         netmsg_init(&msg.base, so, &curthread->td_msgport,
  336                     0, so->so_proto->pr_usrreqs->pru_peeraddr);
  337         msg.nm_nam = nam;
  338         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  339         return (error);
  340 }
  341 
  342 int
  343 so_pru_rcvd(struct socket *so, int flags)
  344 {
  345         struct netmsg_pru_rcvd msg;
  346         int error;
  347 
  348         netmsg_init(&msg.base, so, &curthread->td_msgport,
  349                     0, so->so_proto->pr_usrreqs->pru_rcvd);
  350         msg.nm_flags = flags;
  351         msg.nm_pru_flags = 0;
  352         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  353         return (error);
  354 }
  355 
  356 void
  357 so_pru_rcvd_async(struct socket *so)
  358 {
  359         lwkt_msg_t lmsg = &so->so_rcvd_msg.base.lmsg;
  360 
  361         KASSERT(so->so_proto->pr_flags & PR_ASYNC_RCVD,
  362             ("async pru_rcvd is not supported"));
  363 
  364         /*
  365          * WARNING!  Spinlock is a bit dodgy, use hacked up sendmsg
  366          *           to avoid deadlocking.
  367          */
  368         spin_lock(&so->so_rcvd_spin);
  369         if ((so->so_rcvd_msg.nm_pru_flags & PRUR_DEAD) == 0) {
  370                 if (lmsg->ms_flags & MSGF_DONE) {
  371                         lwkt_sendmsg_prepare(so->so_port, lmsg);
  372                         spin_unlock(&so->so_rcvd_spin);
  373                         lwkt_sendmsg_start(so->so_port, lmsg);
  374                 } else {
  375                         spin_unlock(&so->so_rcvd_spin);
  376                 }
  377         } else {
  378                 spin_unlock(&so->so_rcvd_spin);
  379         }
  380 }
  381 
  382 int
  383 so_pru_rcvoob(struct socket *so, struct mbuf *m, int flags)
  384 {
  385         struct netmsg_pru_rcvoob msg;
  386         int error;
  387 
  388         netmsg_init(&msg.base, so, &curthread->td_msgport,
  389                     0, so->so_proto->pr_usrreqs->pru_rcvoob);
  390         msg.nm_m = m;
  391         msg.nm_flags = flags;
  392         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  393         return (error);
  394 }
  395 
  396 /*
  397  * NOTE: If the target port changes the implied connect will deal with it.
  398  */
  399 int
  400 so_pru_send(struct socket *so, int flags, struct mbuf *m,
  401             struct sockaddr *addr, struct mbuf *control, struct thread *td)
  402 {
  403         struct netmsg_pru_send msg;
  404         int error;
  405 
  406         netmsg_init(&msg.base, so, &curthread->td_msgport,
  407                     0, so->so_proto->pr_usrreqs->pru_send);
  408         msg.nm_flags = flags;
  409         msg.nm_m = m;
  410         msg.nm_addr = addr;
  411         msg.nm_control = control;
  412         msg.nm_td = td;
  413         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  414         return (error);
  415 }
  416 
  417 void
  418 so_pru_sync(struct socket *so)
  419 {
  420         struct netmsg_base msg;
  421 
  422         netmsg_init(&msg, so, &curthread->td_msgport, 0,
  423             netmsg_sync_handler);
  424         lwkt_domsg(so->so_port, &msg.lmsg, 0);
  425 }
  426 
  427 void
  428 so_pru_send_async(struct socket *so, int flags, struct mbuf *m,
  429     struct sockaddr *addr0, struct mbuf *control, struct thread *td)
  430 {
  431         struct netmsg_pru_send *msg;
  432         struct sockaddr *addr = NULL;
  433 
  434         KASSERT(so->so_proto->pr_flags & PR_ASYNC_SEND,
  435             ("async pru_send is not supported"));
  436 
  437         if (addr0 != NULL) {
  438                 addr = kmalloc(addr0->sa_len, M_SONAME, M_NOWAIT);
  439                 if (addr == NULL) {
  440                         /*
  441                          * Fail to allocate address w/o waiting;
  442                          * fallback to synchronized pru_send.
  443                          */
  444                         so_pru_send(so, flags, m, addr0, control, td);
  445                         return;
  446                 }
  447                 memcpy(addr, addr0, addr0->sa_len);
  448                 flags |= PRUS_FREEADDR;
  449         }
  450         flags |= PRUS_NOREPLY;
  451 
  452         if (td != NULL && (so->so_proto->pr_flags & PR_ASEND_HOLDTD)) {
  453                 lwkt_hold(td);
  454                 flags |= PRUS_HELDTD;
  455         }
  456 
  457         msg = &m->m_hdr.mh_sndmsg;
  458         netmsg_init(&msg->base, so, &netisr_apanic_rport,
  459                     0, so->so_proto->pr_usrreqs->pru_send);
  460         msg->nm_flags = flags;
  461         msg->nm_m = m;
  462         msg->nm_addr = addr;
  463         msg->nm_control = control;
  464         msg->nm_td = td;
  465         lwkt_sendmsg(so->so_port, &msg->base.lmsg);
  466 }
  467 
  468 int
  469 so_pru_sense(struct socket *so, struct stat *sb)
  470 {
  471         struct netmsg_pru_sense msg;
  472         int error;
  473 
  474         netmsg_init(&msg.base, so, &curthread->td_msgport,
  475                     0, so->so_proto->pr_usrreqs->pru_sense);
  476         msg.nm_stat = sb;
  477         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  478         return (error);
  479 }
  480 
  481 int
  482 so_pru_shutdown(struct socket *so)
  483 {
  484         struct netmsg_pru_shutdown msg;
  485         int error;
  486 
  487         netmsg_init(&msg.base, so, &curthread->td_msgport,
  488                     0, so->so_proto->pr_usrreqs->pru_shutdown);
  489         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  490         return (error);
  491 }
  492 
  493 int
  494 so_pru_sockaddr(struct socket *so, struct sockaddr **nam)
  495 {
  496         struct netmsg_pru_sockaddr msg;
  497         int error;
  498 
  499         netmsg_init(&msg.base, so, &curthread->td_msgport,
  500                     0, so->so_proto->pr_usrreqs->pru_sockaddr);
  501         msg.nm_nam = nam;
  502         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  503         return (error);
  504 }
  505 
  506 int
  507 so_pr_ctloutput(struct socket *so, struct sockopt *sopt)
  508 {
  509         struct netmsg_pr_ctloutput msg;
  510         int error;
  511 
  512         KKASSERT(!sopt->sopt_val || kva_p(sopt->sopt_val));
  513         netmsg_init(&msg.base, so, &curthread->td_msgport,
  514                     0, so->so_proto->pr_ctloutput);
  515         msg.nm_sopt = sopt;
  516         error = lwkt_domsg(so->so_port, &msg.base.lmsg, 0);
  517         return (error);
  518 }
  519 
  520 /*
  521  * Protocol control input, typically via icmp.
  522  *
  523  * If the protocol pr_ctlport is not NULL we call it to figure out the
  524  * protocol port.  If NULL is returned we can just return, otherwise
  525  * we issue a netmsg to call pr_ctlinput in the proper thread.
  526  *
  527  * This must be done synchronously as arg and/or extra may point to
  528  * temporary data.
  529  */
  530 void
  531 so_pru_ctlinput(struct protosw *pr, int cmd, struct sockaddr *arg, void *extra)
  532 {
  533         struct netmsg_pru_ctlinput msg;
  534         lwkt_port_t port;
  535 
  536         if (pr->pr_ctlport == NULL)
  537                 return;
  538         KKASSERT(pr->pr_ctlinput != NULL);
  539         port = pr->pr_ctlport(cmd, arg, extra);
  540         if (port == NULL)
  541                 return;
  542         netmsg_init(&msg.base, NULL, &curthread->td_msgport,
  543                     0, pr->pr_ctlinput);
  544         msg.nm_cmd = cmd;
  545         msg.nm_arg = arg;
  546         msg.nm_extra = extra;
  547         lwkt_domsg(port, &msg.base.lmsg, 0);
  548 }
  549 
  550 /*
  551  * If we convert all the protosw pr_ functions for all the protocols
  552  * to take a message directly, this layer can go away.  For the moment
  553  * our dispatcher ignores the return value, but since we are handling
  554  * the replymsg ourselves we return EASYNC by convention.
  555  */
  556 
  557 /*
  558  * Handle a predicate event request.  This function is only called once
  559  * when the predicate message queueing request is received.
  560  */
  561 void
  562 netmsg_so_notify(netmsg_t msg)
  563 {
  564         struct lwkt_token *tok;
  565         struct signalsockbuf *ssb;
  566 
  567         ssb = (msg->notify.nm_etype & NM_REVENT) ?
  568                         &msg->base.nm_so->so_rcv :
  569                         &msg->base.nm_so->so_snd;
  570 
  571         /*
  572          * Reply immediately if the event has occured, otherwise queue the
  573          * request.
  574          *
  575          * NOTE: Socket can change if this is an accept predicate so cache
  576          *       the token.
  577          */
  578         tok = lwkt_token_pool_lookup(msg->base.nm_so);
  579         lwkt_gettoken(tok);
  580         atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
  581         if (msg->notify.nm_predicate(&msg->notify)) {
  582                 if (TAILQ_EMPTY(&ssb->ssb_kq.ki_mlist))
  583                         atomic_clear_int(&ssb->ssb_flags, SSB_MEVENT);
  584                 lwkt_reltoken(tok);
  585                 lwkt_replymsg(&msg->base.lmsg,
  586                               msg->base.lmsg.ms_error);
  587         } else {
  588                 TAILQ_INSERT_TAIL(&ssb->ssb_kq.ki_mlist, &msg->notify, nm_list);
  589                 /*
  590                  * NOTE:
  591                  * If predict ever blocks, 'tok' will be released, so
  592                  * SSB_MEVENT set beforehand could have been cleared
  593                  * when we reach here.  In case that happens, we set
  594                  * SSB_MEVENT again, after the notify has been queued.
  595                  */
  596                 atomic_set_int(&ssb->ssb_flags, SSB_MEVENT);
  597                 lwkt_reltoken(tok);
  598         }
  599 }
  600 
  601 /*
  602  * Called by doio when trying to abort a netmsg_so_notify message.
  603  * Unlike the other functions this one is dispatched directly by
  604  * the LWKT subsystem, so it takes a lwkt_msg_t as an argument.
  605  *
  606  * The original message, lmsg, is under the control of the caller and
  607  * will not be destroyed until we return so we can safely reference it
  608  * in our synchronous abort request.
  609  *
  610  * This part of the abort request occurs on the originating cpu which
  611  * means we may race the message flags and the original message may
  612  * not even have been processed by the target cpu yet.
  613  */
  614 void
  615 netmsg_so_notify_doabort(lwkt_msg_t lmsg)
  616 {
  617         struct netmsg_so_notify_abort msg;
  618 
  619         if ((lmsg->ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
  620                 const struct netmsg_base *nmsg =
  621                     (const struct netmsg_base *)lmsg;
  622 
  623                 netmsg_init(&msg.base, nmsg->nm_so, &curthread->td_msgport,
  624                             0, netmsg_so_notify_abort);
  625                 msg.nm_notifymsg = (void *)lmsg;
  626                 lwkt_domsg(lmsg->ms_target_port, &msg.base.lmsg, 0);
  627         }
  628 }
  629 
  630 /*
  631  * Predicate requests can be aborted.  This function is only called once
  632  * and will interlock against processing/reply races (since such races
  633  * occur on the same thread that controls the port where the abort is 
  634  * requeued).
  635  *
  636  * This part of the abort request occurs on the target cpu.  The message
  637  * flags must be tested again in case the test that we did on the
  638  * originating cpu raced.  Since messages are handled in sequence, the
  639  * original message will have already been handled by the loop and either
  640  * replied to or queued.
  641  *
  642  * We really only need to interlock with MSGF_REPLY (a bit that is set on
  643  * our cpu when we reply).  Note that MSGF_DONE is not set until the
  644  * reply reaches the originating cpu.  Test both bits anyway.
  645  */
  646 void
  647 netmsg_so_notify_abort(netmsg_t msg)
  648 {
  649         struct netmsg_so_notify_abort *abrtmsg = &msg->notify_abort;
  650         struct netmsg_so_notify *nmsg = abrtmsg->nm_notifymsg;
  651         struct signalsockbuf *ssb;
  652 
  653         /*
  654          * The original notify message is not destroyed until after the
  655          * abort request is returned, so we can check its state.
  656          */
  657         lwkt_getpooltoken(nmsg->base.nm_so);
  658         if ((nmsg->base.lmsg.ms_flags & (MSGF_DONE | MSGF_REPLY)) == 0) {
  659                 ssb = (nmsg->nm_etype & NM_REVENT) ?
  660                                 &nmsg->base.nm_so->so_rcv :
  661                                 &nmsg->base.nm_so->so_snd;
  662                 TAILQ_REMOVE(&ssb->ssb_kq.ki_mlist, nmsg, nm_list);
  663                 lwkt_relpooltoken(nmsg->base.nm_so);
  664                 lwkt_replymsg(&nmsg->base.lmsg, EINTR);
  665         } else {
  666                 lwkt_relpooltoken(nmsg->base.nm_so);
  667         }
  668 
  669         /*
  670          * Reply to the abort message
  671          */
  672         lwkt_replymsg(&abrtmsg->base.lmsg, 0);
  673 }
  674 
  675 void
  676 so_async_rcvd_reply(struct socket *so)
  677 {
  678         /*
  679          * Spinlock safe, reply runs to degenerate lwkt_null_replyport()
  680          */
  681         spin_lock(&so->so_rcvd_spin);
  682         lwkt_replymsg(&so->so_rcvd_msg.base.lmsg, 0);
  683         spin_unlock(&so->so_rcvd_spin);
  684 }
  685 
  686 void
  687 so_async_rcvd_drop(struct socket *so)
  688 {
  689         lwkt_msg_t lmsg = &so->so_rcvd_msg.base.lmsg;
  690 
  691         /*
  692          * Spinlock safe, drop runs to degenerate lwkt_spin_dropmsg()
  693          */
  694         spin_lock(&so->so_rcvd_spin);
  695         so->so_rcvd_msg.nm_pru_flags |= PRUR_DEAD;
  696 again:
  697         lwkt_dropmsg(lmsg);
  698         if ((lmsg->ms_flags & MSGF_DONE) == 0) {
  699                 ++async_rcvd_drop_race;
  700                 ssleep(so, &so->so_rcvd_spin, 0, "soadrop", 1);
  701                 goto again;
  702         }
  703         spin_unlock(&so->so_rcvd_spin);
  704 }

Cache object: 948bd808c16e10b64eb7afeaad7a92e3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.