The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_sockbuf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)uipc_socket2.c      8.1 (Berkeley) 6/10/93
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_param.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/aio.h> /* for aio_swake proto */
   41 #include <sys/kernel.h>
   42 #include <sys/lock.h>
   43 #include <sys/malloc.h>
   44 #include <sys/mbuf.h>
   45 #include <sys/mutex.h>
   46 #include <sys/proc.h>
   47 #include <sys/protosw.h>
   48 #include <sys/resourcevar.h>
   49 #include <sys/signalvar.h>
   50 #include <sys/socket.h>
   51 #include <sys/socketvar.h>
   52 #include <sys/sx.h>
   53 #include <sys/sysctl.h>
   54 
   55 /*
   56  * Function pointer set by the AIO routines so that the socket buffer code
   57  * can call back into the AIO module if it is loaded.
   58  */
   59 void    (*aio_swake)(struct socket *, struct sockbuf *);
   60 
   61 /*
   62  * Primitive routines for operating on socket buffers
   63  */
   64 
   65 u_long  sb_max = SB_MAX;
   66 u_long sb_max_adj =
   67        (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
   68 
   69 static  u_long sb_efficiency = 8;       /* parameter for sbreserve() */
   70 
   71 static struct mbuf      *sbcut_internal(struct sockbuf *sb, int len);
   72 static void     sbflush_internal(struct sockbuf *sb);
   73 
   74 /*
   75  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
   76  */
   77 static void
   78 sbm_clrprotoflags(struct mbuf *m, int flags)
   79 {
   80         int mask;
   81 
   82         mask = ~M_PROTOFLAGS;
   83         if (flags & PRUS_NOTREADY)
   84                 mask |= M_NOTREADY;
   85         while (m) {
   86                 m->m_flags &= mask;
   87                 m = m->m_next;
   88         }
   89 }
   90 
   91 /*
   92  * Mark ready "count" mbufs starting with "m".
   93  */
   94 int
   95 sbready(struct sockbuf *sb, struct mbuf *m, int count)
   96 {
   97         u_int blocker;
   98 
   99         SOCKBUF_LOCK_ASSERT(sb);
  100         KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
  101 
  102         blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
  103 
  104         for (int i = 0; i < count; i++, m = m->m_next) {
  105                 KASSERT(m->m_flags & M_NOTREADY,
  106                     ("%s: m %p !M_NOTREADY", __func__, m));
  107                 m->m_flags &= ~(M_NOTREADY | blocker);
  108                 if (blocker)
  109                         sb->sb_acc += m->m_len;
  110         }
  111 
  112         if (!blocker)
  113                 return (EINPROGRESS);
  114 
  115         /* This one was blocking all the queue. */
  116         for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
  117                 KASSERT(m->m_flags & M_BLOCKED,
  118                     ("%s: m %p !M_BLOCKED", __func__, m));
  119                 m->m_flags &= ~M_BLOCKED;
  120                 sb->sb_acc += m->m_len;
  121         }
  122 
  123         sb->sb_fnrdy = m;
  124 
  125         return (0);
  126 }
  127 
  128 /*
  129  * Adjust sockbuf state reflecting allocation of m.
  130  */
  131 void
  132 sballoc(struct sockbuf *sb, struct mbuf *m)
  133 {
  134 
  135         SOCKBUF_LOCK_ASSERT(sb);
  136 
  137         sb->sb_ccc += m->m_len;
  138 
  139         if (sb->sb_fnrdy == NULL) {
  140                 if (m->m_flags & M_NOTREADY)
  141                         sb->sb_fnrdy = m;
  142                 else
  143                         sb->sb_acc += m->m_len;
  144         } else
  145                 m->m_flags |= M_BLOCKED;
  146 
  147         if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
  148                 sb->sb_ctl += m->m_len;
  149 
  150         sb->sb_mbcnt += MSIZE;
  151         sb->sb_mcnt += 1;
  152 
  153         if (m->m_flags & M_EXT) {
  154                 sb->sb_mbcnt += m->m_ext.ext_size;
  155                 sb->sb_ccnt += 1;
  156         }
  157 }
  158 
  159 /*
  160  * Adjust sockbuf state reflecting freeing of m.
  161  */
  162 void
  163 sbfree(struct sockbuf *sb, struct mbuf *m)
  164 {
  165 
  166 #if 0   /* XXX: not yet: soclose() call path comes here w/o lock. */
  167         SOCKBUF_LOCK_ASSERT(sb);
  168 #endif
  169 
  170         sb->sb_ccc -= m->m_len;
  171 
  172         if (!(m->m_flags & M_NOTAVAIL))
  173                 sb->sb_acc -= m->m_len;
  174 
  175         if (m == sb->sb_fnrdy) {
  176                 struct mbuf *n;
  177 
  178                 KASSERT(m->m_flags & M_NOTREADY,
  179                     ("%s: m %p !M_NOTREADY", __func__, m));
  180 
  181                 n = m->m_next;
  182                 while (n != NULL && !(n->m_flags & M_NOTREADY)) {
  183                         n->m_flags &= ~M_BLOCKED;
  184                         sb->sb_acc += n->m_len;
  185                         n = n->m_next;
  186                 }
  187                 sb->sb_fnrdy = n;
  188         }
  189 
  190         if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
  191                 sb->sb_ctl -= m->m_len;
  192 
  193         sb->sb_mbcnt -= MSIZE;
  194         sb->sb_mcnt -= 1;
  195         if (m->m_flags & M_EXT) {
  196                 sb->sb_mbcnt -= m->m_ext.ext_size;
  197                 sb->sb_ccnt -= 1;
  198         }
  199 
  200         if (sb->sb_sndptr == m) {
  201                 sb->sb_sndptr = NULL;
  202                 sb->sb_sndptroff = 0;
  203         }
  204         if (sb->sb_sndptroff != 0)
  205                 sb->sb_sndptroff -= m->m_len;
  206 }
  207 
  208 /*
  209  * Socantsendmore indicates that no more data will be sent on the socket; it
  210  * would normally be applied to a socket when the user informs the system
  211  * that no more data is to be sent, by the protocol code (in case
  212  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
  213  * received, and will normally be applied to the socket by a protocol when it
  214  * detects that the peer will send no more data.  Data queued for reading in
  215  * the socket may yet be read.
  216  */
  217 void
  218 socantsendmore_locked(struct socket *so)
  219 {
  220 
  221         SOCKBUF_LOCK_ASSERT(&so->so_snd);
  222 
  223         so->so_snd.sb_state |= SBS_CANTSENDMORE;
  224         sowwakeup_locked(so);
  225         mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
  226 }
  227 
  228 void
  229 socantsendmore(struct socket *so)
  230 {
  231 
  232         SOCKBUF_LOCK(&so->so_snd);
  233         socantsendmore_locked(so);
  234         mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
  235 }
  236 
  237 void
  238 socantrcvmore_locked(struct socket *so)
  239 {
  240 
  241         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
  242 
  243         so->so_rcv.sb_state |= SBS_CANTRCVMORE;
  244         sorwakeup_locked(so);
  245         mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
  246 }
  247 
  248 void
  249 socantrcvmore(struct socket *so)
  250 {
  251 
  252         SOCKBUF_LOCK(&so->so_rcv);
  253         socantrcvmore_locked(so);
  254         mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
  255 }
  256 
  257 void
  258 soroverflow_locked(struct socket *so)
  259 {
  260 
  261         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
  262 
  263         if (so->so_options & SO_RERROR) {
  264                 so->so_rerror = ENOBUFS;
  265                 sorwakeup_locked(so);
  266         } else
  267                 SOCKBUF_UNLOCK(&so->so_rcv);
  268 
  269         mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
  270 }
  271 
  272 void
  273 soroverflow(struct socket *so)
  274 {
  275 
  276         SOCKBUF_LOCK(&so->so_rcv);
  277         soroverflow_locked(so);
  278         mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
  279 }
  280 
  281 /*
  282  * Wait for data to arrive at/drain from a socket buffer.
  283  */
  284 int
  285 sbwait(struct sockbuf *sb)
  286 {
  287 
  288         SOCKBUF_LOCK_ASSERT(sb);
  289 
  290         sb->sb_flags |= SB_WAIT;
  291         return (msleep_sbt(&sb->sb_acc, &sb->sb_mtx,
  292             (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
  293             sb->sb_timeo, 0, 0));
  294 }
  295 
  296 int
  297 sblock(struct sockbuf *sb, int flags)
  298 {
  299 
  300         KASSERT((flags & SBL_VALID) == flags,
  301             ("sblock: flags invalid (0x%x)", flags));
  302 
  303         if (flags & SBL_WAIT) {
  304                 if ((sb->sb_flags & SB_NOINTR) ||
  305                     (flags & SBL_NOINTR)) {
  306                         sx_xlock(&sb->sb_sx);
  307                         return (0);
  308                 }
  309                 return (sx_xlock_sig(&sb->sb_sx));
  310         } else {
  311                 if (sx_try_xlock(&sb->sb_sx) == 0)
  312                         return (EWOULDBLOCK);
  313                 return (0);
  314         }
  315 }
  316 
  317 void
  318 sbunlock(struct sockbuf *sb)
  319 {
  320 
  321         sx_xunlock(&sb->sb_sx);
  322 }
  323 
  324 /*
  325  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
  326  * via SIGIO if the socket has the SS_ASYNC flag set.
  327  *
  328  * Called with the socket buffer lock held; will release the lock by the end
  329  * of the function.  This allows the caller to acquire the socket buffer lock
  330  * while testing for the need for various sorts of wakeup and hold it through
  331  * to the point where it's no longer required.  We currently hold the lock
  332  * through calls out to other subsystems (with the exception of kqueue), and
  333  * then release it to avoid lock order issues.  It's not clear that's
  334  * correct.
  335  */
  336 void
  337 sowakeup(struct socket *so, struct sockbuf *sb)
  338 {
  339         int ret;
  340 
  341         SOCKBUF_LOCK_ASSERT(sb);
  342 
  343         selwakeuppri(sb->sb_sel, PSOCK);
  344         if (!SEL_WAITING(sb->sb_sel))
  345                 sb->sb_flags &= ~SB_SEL;
  346         if (sb->sb_flags & SB_WAIT) {
  347                 sb->sb_flags &= ~SB_WAIT;
  348                 wakeup(&sb->sb_acc);
  349         }
  350         KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
  351         if (sb->sb_upcall != NULL) {
  352                 ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
  353                 if (ret == SU_ISCONNECTED) {
  354                         KASSERT(sb == &so->so_rcv,
  355                             ("SO_SND upcall returned SU_ISCONNECTED"));
  356                         soupcall_clear(so, SO_RCV);
  357                 }
  358         } else
  359                 ret = SU_OK;
  360         if (sb->sb_flags & SB_AIO)
  361                 sowakeup_aio(so, sb);
  362         SOCKBUF_UNLOCK(sb);
  363         if (ret == SU_ISCONNECTED)
  364                 soisconnected(so);
  365         if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
  366                 pgsigio(&so->so_sigio, SIGIO, 0);
  367         mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
  368 }
  369 
  370 /*
  371  * Socket buffer (struct sockbuf) utility routines.
  372  *
  373  * Each socket contains two socket buffers: one for sending data and one for
  374  * receiving data.  Each buffer contains a queue of mbufs, information about
  375  * the number of mbufs and amount of data in the queue, and other fields
  376  * allowing select() statements and notification on data availability to be
  377  * implemented.
  378  *
  379  * Data stored in a socket buffer is maintained as a list of records.  Each
  380  * record is a list of mbufs chained together with the m_next field.  Records
  381  * are chained together with the m_nextpkt field. The upper level routine
  382  * soreceive() expects the following conventions to be observed when placing
  383  * information in the receive buffer:
  384  *
  385  * 1. If the protocol requires each message be preceded by the sender's name,
  386  *    then a record containing that name must be present before any
  387  *    associated data (mbuf's must be of type MT_SONAME).
  388  * 2. If the protocol supports the exchange of ``access rights'' (really just
  389  *    additional data associated with the message), and there are ``rights''
  390  *    to be received, then a record containing this data should be present
  391  *    (mbuf's must be of type MT_RIGHTS).
  392  * 3. If a name or rights record exists, then it must be followed by a data
  393  *    record, perhaps of zero length.
  394  *
  395  * Before using a new socket structure it is first necessary to reserve
  396  * buffer space to the socket, by calling sbreserve().  This should commit
  397  * some of the available buffer space in the system buffer pool for the
  398  * socket (currently, it does nothing but enforce limits).  The space should
  399  * be released by calling sbrelease() when the socket is destroyed.
  400  */
  401 int
  402 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
  403 {
  404         struct thread *td = curthread;
  405 
  406         SOCKBUF_LOCK(&so->so_snd);
  407         SOCKBUF_LOCK(&so->so_rcv);
  408         if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
  409                 goto bad;
  410         if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
  411                 goto bad2;
  412         if (so->so_rcv.sb_lowat == 0)
  413                 so->so_rcv.sb_lowat = 1;
  414         if (so->so_snd.sb_lowat == 0)
  415                 so->so_snd.sb_lowat = MCLBYTES;
  416         if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
  417                 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
  418         SOCKBUF_UNLOCK(&so->so_rcv);
  419         SOCKBUF_UNLOCK(&so->so_snd);
  420         return (0);
  421 bad2:
  422         sbrelease_locked(&so->so_snd, so);
  423 bad:
  424         SOCKBUF_UNLOCK(&so->so_rcv);
  425         SOCKBUF_UNLOCK(&so->so_snd);
  426         return (ENOBUFS);
  427 }
  428 
  429 static int
  430 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
  431 {
  432         int error = 0;
  433         u_long tmp_sb_max = sb_max;
  434 
  435         error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
  436         if (error || !req->newptr)
  437                 return (error);
  438         if (tmp_sb_max < MSIZE + MCLBYTES)
  439                 return (EINVAL);
  440         sb_max = tmp_sb_max;
  441         sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
  442         return (0);
  443 }
  444         
  445 /*
  446  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
  447  * become limiting if buffering efficiency is near the normal case.
  448  */
  449 int
  450 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
  451     struct thread *td)
  452 {
  453         rlim_t sbsize_limit;
  454 
  455         SOCKBUF_LOCK_ASSERT(sb);
  456 
  457         /*
  458          * When a thread is passed, we take into account the thread's socket
  459          * buffer size limit.  The caller will generally pass curthread, but
  460          * in the TCP input path, NULL will be passed to indicate that no
  461          * appropriate thread resource limits are available.  In that case,
  462          * we don't apply a process limit.
  463          */
  464         if (cc > sb_max_adj)
  465                 return (0);
  466         if (td != NULL) {
  467                 sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
  468         } else
  469                 sbsize_limit = RLIM_INFINITY;
  470         if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
  471             sbsize_limit))
  472                 return (0);
  473         sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
  474         if (sb->sb_lowat > sb->sb_hiwat)
  475                 sb->sb_lowat = sb->sb_hiwat;
  476         return (1);
  477 }
  478 
  479 int
  480 sbsetopt(struct socket *so, int cmd, u_long cc)
  481 {
  482         struct sockbuf *sb;
  483         short *flags;
  484         u_int *hiwat, *lowat;
  485         int error;
  486 
  487         sb = NULL;
  488         SOCK_LOCK(so);
  489         if (SOLISTENING(so)) {
  490                 switch (cmd) {
  491                         case SO_SNDLOWAT:
  492                         case SO_SNDBUF:
  493                                 lowat = &so->sol_sbsnd_lowat;
  494                                 hiwat = &so->sol_sbsnd_hiwat;
  495                                 flags = &so->sol_sbsnd_flags;
  496                                 break;
  497                         case SO_RCVLOWAT:
  498                         case SO_RCVBUF:
  499                                 lowat = &so->sol_sbrcv_lowat;
  500                                 hiwat = &so->sol_sbrcv_hiwat;
  501                                 flags = &so->sol_sbrcv_flags;
  502                                 break;
  503                 }
  504         } else {
  505                 switch (cmd) {
  506                         case SO_SNDLOWAT:
  507                         case SO_SNDBUF:
  508                                 sb = &so->so_snd;
  509                                 break;
  510                         case SO_RCVLOWAT:
  511                         case SO_RCVBUF:
  512                                 sb = &so->so_rcv;
  513                                 break;
  514                 }
  515                 flags = &sb->sb_flags;
  516                 hiwat = &sb->sb_hiwat;
  517                 lowat = &sb->sb_lowat;
  518                 SOCKBUF_LOCK(sb);
  519         }
  520 
  521         error = 0;
  522         switch (cmd) {
  523         case SO_SNDBUF:
  524         case SO_RCVBUF:
  525                 if (SOLISTENING(so)) {
  526                         if (cc > sb_max_adj) {
  527                                 error = ENOBUFS;
  528                                 break;
  529                         }
  530                         *hiwat = cc;
  531                         if (*lowat > *hiwat)
  532                                 *lowat = *hiwat;
  533                 } else {
  534                         if (!sbreserve_locked(sb, cc, so, curthread))
  535                                 error = ENOBUFS;
  536                 }
  537                 if (error == 0)
  538                         *flags &= ~SB_AUTOSIZE;
  539                 break;
  540         case SO_SNDLOWAT:
  541         case SO_RCVLOWAT:
  542                 /*
  543                  * Make sure the low-water is never greater than the
  544                  * high-water.
  545                  */
  546                 *lowat = (cc > *hiwat) ? *hiwat : cc;
  547                 break;
  548         }
  549 
  550         if (!SOLISTENING(so))
  551                 SOCKBUF_UNLOCK(sb);
  552         SOCK_UNLOCK(so);
  553         return (error);
  554 }
  555 
  556 /*
  557  * Free mbufs held by a socket, and reserved mbuf space.
  558  */
  559 void
  560 sbrelease_internal(struct sockbuf *sb, struct socket *so)
  561 {
  562 
  563         sbflush_internal(sb);
  564         (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
  565             RLIM_INFINITY);
  566         sb->sb_mbmax = 0;
  567 }
  568 
  569 void
  570 sbrelease_locked(struct sockbuf *sb, struct socket *so)
  571 {
  572 
  573         SOCKBUF_LOCK_ASSERT(sb);
  574 
  575         sbrelease_internal(sb, so);
  576 }
  577 
  578 void
  579 sbrelease(struct sockbuf *sb, struct socket *so)
  580 {
  581 
  582         SOCKBUF_LOCK(sb);
  583         sbrelease_locked(sb, so);
  584         SOCKBUF_UNLOCK(sb);
  585 }
  586 
  587 void
  588 sbdestroy(struct sockbuf *sb, struct socket *so)
  589 {
  590 
  591         sbrelease_internal(sb, so);
  592 }
  593 
  594 /*
  595  * Routines to add and remove data from an mbuf queue.
  596  *
  597  * The routines sbappend() or sbappendrecord() are normally called to append
  598  * new mbufs to a socket buffer, after checking that adequate space is
  599  * available, comparing the function sbspace() with the amount of data to be
  600  * added.  sbappendrecord() differs from sbappend() in that data supplied is
  601  * treated as the beginning of a new record.  To place a sender's address,
  602  * optional access rights, and data in a socket receive buffer,
  603  * sbappendaddr() should be used.  To place access rights and data in a
  604  * socket receive buffer, sbappendrights() should be used.  In either case,
  605  * the new data begins a new record.  Note that unlike sbappend() and
  606  * sbappendrecord(), these routines check for the caller that there will be
  607  * enough space to store the data.  Each fails if there is not enough space,
  608  * or if it cannot find mbufs to store additional information in.
  609  *
  610  * Reliable protocols may use the socket send buffer to hold data awaiting
  611  * acknowledgement.  Data is normally copied from a socket send buffer in a
  612  * protocol with m_copy for output to a peer, and then removing the data from
  613  * the socket buffer with sbdrop() or sbdroprecord() when the data is
  614  * acknowledged by the peer.
  615  */
  616 #ifdef SOCKBUF_DEBUG
  617 void
  618 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
  619 {
  620         struct mbuf *m = sb->sb_mb;
  621 
  622         SOCKBUF_LOCK_ASSERT(sb);
  623 
  624         while (m && m->m_nextpkt)
  625                 m = m->m_nextpkt;
  626 
  627         if (m != sb->sb_lastrecord) {
  628                 printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
  629                         __func__, sb->sb_mb, sb->sb_lastrecord, m);
  630                 printf("packet chain:\n");
  631                 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
  632                         printf("\t%p\n", m);
  633                 panic("%s from %s:%u", __func__, file, line);
  634         }
  635 }
  636 
  637 void
  638 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
  639 {
  640         struct mbuf *m = sb->sb_mb;
  641         struct mbuf *n;
  642 
  643         SOCKBUF_LOCK_ASSERT(sb);
  644 
  645         while (m && m->m_nextpkt)
  646                 m = m->m_nextpkt;
  647 
  648         while (m && m->m_next)
  649                 m = m->m_next;
  650 
  651         if (m != sb->sb_mbtail) {
  652                 printf("%s: sb_mb %p sb_mbtail %p last %p\n",
  653                         __func__, sb->sb_mb, sb->sb_mbtail, m);
  654                 printf("packet tree:\n");
  655                 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
  656                         printf("\t");
  657                         for (n = m; n != NULL; n = n->m_next)
  658                                 printf("%p ", n);
  659                         printf("\n");
  660                 }
  661                 panic("%s from %s:%u", __func__, file, line);
  662         }
  663 }
  664 #endif /* SOCKBUF_DEBUG */
  665 
  666 #define SBLINKRECORD(sb, m0) do {                                       \
  667         SOCKBUF_LOCK_ASSERT(sb);                                        \
  668         if ((sb)->sb_lastrecord != NULL)                                \
  669                 (sb)->sb_lastrecord->m_nextpkt = (m0);                  \
  670         else                                                            \
  671                 (sb)->sb_mb = (m0);                                     \
  672         (sb)->sb_lastrecord = (m0);                                     \
  673 } while (/*CONSTCOND*/0)
  674 
  675 /*
  676  * Append mbuf chain m to the last record in the socket buffer sb.  The
  677  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
  678  * are discarded and mbufs are compacted where possible.
  679  */
  680 void
  681 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
  682 {
  683         struct mbuf *n;
  684 
  685         SOCKBUF_LOCK_ASSERT(sb);
  686 
  687         if (m == NULL)
  688                 return;
  689         sbm_clrprotoflags(m, flags);
  690         SBLASTRECORDCHK(sb);
  691         n = sb->sb_mb;
  692         if (n) {
  693                 while (n->m_nextpkt)
  694                         n = n->m_nextpkt;
  695                 do {
  696                         if (n->m_flags & M_EOR) {
  697                                 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
  698                                 return;
  699                         }
  700                 } while (n->m_next && (n = n->m_next));
  701         } else {
  702                 /*
  703                  * XXX Would like to simply use sb_mbtail here, but
  704                  * XXX I need to verify that I won't miss an EOR that
  705                  * XXX way.
  706                  */
  707                 if ((n = sb->sb_lastrecord) != NULL) {
  708                         do {
  709                                 if (n->m_flags & M_EOR) {
  710                                         sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
  711                                         return;
  712                                 }
  713                         } while (n->m_next && (n = n->m_next));
  714                 } else {
  715                         /*
  716                          * If this is the first record in the socket buffer,
  717                          * it's also the last record.
  718                          */
  719                         sb->sb_lastrecord = m;
  720                 }
  721         }
  722         sbcompress(sb, m, n);
  723         SBLASTRECORDCHK(sb);
  724 }
  725 
  726 /*
  727  * Append mbuf chain m to the last record in the socket buffer sb.  The
  728  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
  729  * are discarded and mbufs are compacted where possible.
  730  */
  731 void
  732 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
  733 {
  734 
  735         SOCKBUF_LOCK(sb);
  736         sbappend_locked(sb, m, flags);
  737         SOCKBUF_UNLOCK(sb);
  738 }
  739 
  740 /*
  741  * This version of sbappend() should only be used when the caller absolutely
  742  * knows that there will never be more than one record in the socket buffer,
  743  * that is, a stream protocol (such as TCP).
  744  */
  745 void
  746 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
  747 {
  748         SOCKBUF_LOCK_ASSERT(sb);
  749 
  750         KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
  751         KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
  752 
  753         SBLASTMBUFCHK(sb);
  754 
  755         /* Remove all packet headers and mbuf tags to get a pure data chain. */
  756         m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
  757 
  758         sbcompress(sb, m, sb->sb_mbtail);
  759 
  760         sb->sb_lastrecord = sb->sb_mb;
  761         SBLASTRECORDCHK(sb);
  762 }
  763 
  764 /*
  765  * This version of sbappend() should only be used when the caller absolutely
  766  * knows that there will never be more than one record in the socket buffer,
  767  * that is, a stream protocol (such as TCP).
  768  */
  769 void
  770 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
  771 {
  772 
  773         SOCKBUF_LOCK(sb);
  774         sbappendstream_locked(sb, m, flags);
  775         SOCKBUF_UNLOCK(sb);
  776 }
  777 
  778 #ifdef SOCKBUF_DEBUG
  779 void
  780 sbcheck(struct sockbuf *sb, const char *file, int line)
  781 {
  782         struct mbuf *m, *n, *fnrdy;
  783         u_long acc, ccc, mbcnt;
  784 
  785         SOCKBUF_LOCK_ASSERT(sb);
  786 
  787         acc = ccc = mbcnt = 0;
  788         fnrdy = NULL;
  789 
  790         for (m = sb->sb_mb; m; m = n) {
  791             n = m->m_nextpkt;
  792             for (; m; m = m->m_next) {
  793                 if (m->m_len == 0) {
  794                         printf("sb %p empty mbuf %p\n", sb, m);
  795                         goto fail;
  796                 }
  797                 if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
  798                         if (m != sb->sb_fnrdy) {
  799                                 printf("sb %p: fnrdy %p != m %p\n",
  800                                     sb, sb->sb_fnrdy, m);
  801                                 goto fail;
  802                         }
  803                         fnrdy = m;
  804                 }
  805                 if (fnrdy) {
  806                         if (!(m->m_flags & M_NOTAVAIL)) {
  807                                 printf("sb %p: fnrdy %p, m %p is avail\n",
  808                                     sb, sb->sb_fnrdy, m);
  809                                 goto fail;
  810                         }
  811                 } else
  812                         acc += m->m_len;
  813                 ccc += m->m_len;
  814                 mbcnt += MSIZE;
  815                 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
  816                         mbcnt += m->m_ext.ext_size;
  817             }
  818         }
  819         if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
  820                 printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
  821                     acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
  822                 goto fail;
  823         }
  824         return;
  825 fail:
  826         panic("%s from %s:%u", __func__, file, line);
  827 }
  828 #endif
  829 
  830 /*
  831  * As above, except the mbuf chain begins a new record.
  832  */
  833 void
  834 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
  835 {
  836         struct mbuf *m;
  837 
  838         SOCKBUF_LOCK_ASSERT(sb);
  839 
  840         if (m0 == NULL)
  841                 return;
  842         m_clrprotoflags(m0);
  843         /*
  844          * Put the first mbuf on the queue.  Note this permits zero length
  845          * records.
  846          */
  847         sballoc(sb, m0);
  848         SBLASTRECORDCHK(sb);
  849         SBLINKRECORD(sb, m0);
  850         sb->sb_mbtail = m0;
  851         m = m0->m_next;
  852         m0->m_next = 0;
  853         if (m && (m0->m_flags & M_EOR)) {
  854                 m0->m_flags &= ~M_EOR;
  855                 m->m_flags |= M_EOR;
  856         }
  857         /* always call sbcompress() so it can do SBLASTMBUFCHK() */
  858         sbcompress(sb, m, m0);
  859 }
  860 
  861 /*
  862  * As above, except the mbuf chain begins a new record.
  863  */
  864 void
  865 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
  866 {
  867 
  868         SOCKBUF_LOCK(sb);
  869         sbappendrecord_locked(sb, m0);
  870         SOCKBUF_UNLOCK(sb);
  871 }
  872 
  873 /* Helper routine that appends data, control, and address to a sockbuf. */
  874 static int
  875 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
  876     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
  877 {
  878         struct mbuf *m, *n, *nlast;
  879 #if MSIZE <= 256
  880         if (asa->sa_len > MLEN)
  881                 return (0);
  882 #endif
  883         m = m_get(M_NOWAIT, MT_SONAME);
  884         if (m == NULL)
  885                 return (0);
  886         m->m_len = asa->sa_len;
  887         bcopy(asa, mtod(m, caddr_t), asa->sa_len);
  888         if (m0) {
  889                 m_clrprotoflags(m0);
  890                 m_tag_delete_chain(m0, NULL);
  891                 /*
  892                  * Clear some persistent info from pkthdr.
  893                  * We don't use m_demote(), because some netgraph consumers
  894                  * expect M_PKTHDR presence.
  895                  */
  896                 m0->m_pkthdr.rcvif = NULL;
  897                 m0->m_pkthdr.flowid = 0;
  898                 m0->m_pkthdr.csum_flags = 0;
  899                 m0->m_pkthdr.fibnum = 0;
  900                 m0->m_pkthdr.rsstype = 0;
  901         }
  902         if (ctrl_last)
  903                 ctrl_last->m_next = m0; /* concatenate data to control */
  904         else
  905                 control = m0;
  906         m->m_next = control;
  907         for (n = m; n->m_next != NULL; n = n->m_next)
  908                 sballoc(sb, n);
  909         sballoc(sb, n);
  910         nlast = n;
  911         SBLINKRECORD(sb, m);
  912 
  913         sb->sb_mbtail = nlast;
  914         SBLASTMBUFCHK(sb);
  915 
  916         SBLASTRECORDCHK(sb);
  917         return (1);
  918 }
  919 
  920 /*
  921  * Append address and data, and optionally, control (ancillary) data to the
  922  * receive queue of a socket.  If present, m0 must include a packet header
  923  * with total length.  Returns 0 if no space in sockbuf or insufficient
  924  * mbufs.
  925  */
  926 int
  927 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
  928     struct mbuf *m0, struct mbuf *control)
  929 {
  930         struct mbuf *ctrl_last;
  931         int space = asa->sa_len;
  932 
  933         SOCKBUF_LOCK_ASSERT(sb);
  934 
  935         if (m0 && (m0->m_flags & M_PKTHDR) == 0)
  936                 panic("sbappendaddr_locked");
  937         if (m0)
  938                 space += m0->m_pkthdr.len;
  939         space += m_length(control, &ctrl_last);
  940 
  941         if (space > sbspace(sb))
  942                 return (0);
  943         return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
  944 }
  945 
  946 /*
  947  * Append address and data, and optionally, control (ancillary) data to the
  948  * receive queue of a socket.  If present, m0 must include a packet header
  949  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
  950  * on the receiving sockbuf.
  951  */
  952 int
  953 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
  954     struct mbuf *m0, struct mbuf *control)
  955 {
  956         struct mbuf *ctrl_last;
  957 
  958         SOCKBUF_LOCK_ASSERT(sb);
  959 
  960         ctrl_last = (control == NULL) ? NULL : m_last(control);
  961         return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
  962 }
  963 
  964 /*
  965  * Append address and data, and optionally, control (ancillary) data to the
  966  * receive queue of a socket.  If present, m0 must include a packet header
  967  * with total length.  Returns 0 if no space in sockbuf or insufficient
  968  * mbufs.
  969  */
  970 int
  971 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
  972     struct mbuf *m0, struct mbuf *control)
  973 {
  974         int retval;
  975 
  976         SOCKBUF_LOCK(sb);
  977         retval = sbappendaddr_locked(sb, asa, m0, control);
  978         SOCKBUF_UNLOCK(sb);
  979         return (retval);
  980 }
  981 
  982 void
  983 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
  984     struct mbuf *control, int flags)
  985 {
  986         struct mbuf *m, *mlast;
  987 
  988         sbm_clrprotoflags(m0, flags);
  989         m_last(control)->m_next = m0;
  990 
  991         SBLASTRECORDCHK(sb);
  992 
  993         for (m = control; m->m_next; m = m->m_next)
  994                 sballoc(sb, m);
  995         sballoc(sb, m);
  996         mlast = m;
  997         SBLINKRECORD(sb, control);
  998 
  999         sb->sb_mbtail = mlast;
 1000         SBLASTMBUFCHK(sb);
 1001 
 1002         SBLASTRECORDCHK(sb);
 1003 }
 1004 
 1005 void
 1006 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
 1007     int flags)
 1008 {
 1009 
 1010         SOCKBUF_LOCK(sb);
 1011         sbappendcontrol_locked(sb, m0, control, flags);
 1012         SOCKBUF_UNLOCK(sb);
 1013 }
 1014 
 1015 /*
 1016  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
 1017  * (n).  If (n) is NULL, the buffer is presumed empty.
 1018  *
 1019  * When the data is compressed, mbufs in the chain may be handled in one of
 1020  * three ways:
 1021  *
 1022  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
 1023  *     record boundary, and no change in data type).
 1024  *
 1025  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
 1026  *     an mbuf already in the socket buffer.  This can occur if an
 1027  *     appropriate mbuf exists, there is room, both mbufs are not marked as
 1028  *     not ready, and no merging of data types will occur.
 1029  *
 1030  * (3) The mbuf may be appended to the end of the existing mbuf chain.
 1031  *
 1032  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
 1033  * end-of-record.
 1034  */
 1035 void
 1036 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
 1037 {
 1038         int eor = 0;
 1039         struct mbuf *o;
 1040 
 1041         SOCKBUF_LOCK_ASSERT(sb);
 1042 
 1043         while (m) {
 1044                 eor |= m->m_flags & M_EOR;
 1045                 if (m->m_len == 0 &&
 1046                     (eor == 0 ||
 1047                      (((o = m->m_next) || (o = n)) &&
 1048                       o->m_type == m->m_type))) {
 1049                         if (sb->sb_lastrecord == m)
 1050                                 sb->sb_lastrecord = m->m_next;
 1051                         m = m_free(m);
 1052                         continue;
 1053                 }
 1054                 if (n && (n->m_flags & M_EOR) == 0 &&
 1055                     M_WRITABLE(n) &&
 1056                     ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
 1057                     !(m->m_flags & M_NOTREADY) &&
 1058                     !(n->m_flags & M_NOTREADY) &&
 1059                     m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
 1060                     m->m_len <= M_TRAILINGSPACE(n) &&
 1061                     n->m_type == m->m_type) {
 1062                         bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
 1063                             (unsigned)m->m_len);
 1064                         n->m_len += m->m_len;
 1065                         sb->sb_ccc += m->m_len;
 1066                         if (sb->sb_fnrdy == NULL)
 1067                                 sb->sb_acc += m->m_len;
 1068                         if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
 1069                                 /* XXX: Probably don't need.*/
 1070                                 sb->sb_ctl += m->m_len;
 1071                         m = m_free(m);
 1072                         continue;
 1073                 }
 1074                 if (n)
 1075                         n->m_next = m;
 1076                 else
 1077                         sb->sb_mb = m;
 1078                 sb->sb_mbtail = m;
 1079                 sballoc(sb, m);
 1080                 n = m;
 1081                 m->m_flags &= ~M_EOR;
 1082                 m = m->m_next;
 1083                 n->m_next = 0;
 1084         }
 1085         if (eor) {
 1086                 KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
 1087                 n->m_flags |= eor;
 1088         }
 1089         SBLASTMBUFCHK(sb);
 1090 }
 1091 
 1092 /*
 1093  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
 1094  */
 1095 static void
 1096 sbflush_internal(struct sockbuf *sb)
 1097 {
 1098 
 1099         while (sb->sb_mbcnt) {
 1100                 /*
 1101                  * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
 1102                  * we would loop forever. Panic instead.
 1103                  */
 1104                 if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
 1105                         break;
 1106                 m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
 1107         }
 1108         KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
 1109             ("%s: ccc %u mb %p mbcnt %u", __func__,
 1110             sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
 1111 }
 1112 
 1113 void
 1114 sbflush_locked(struct sockbuf *sb)
 1115 {
 1116 
 1117         SOCKBUF_LOCK_ASSERT(sb);
 1118         sbflush_internal(sb);
 1119 }
 1120 
 1121 void
 1122 sbflush(struct sockbuf *sb)
 1123 {
 1124 
 1125         SOCKBUF_LOCK(sb);
 1126         sbflush_locked(sb);
 1127         SOCKBUF_UNLOCK(sb);
 1128 }
 1129 
 1130 /*
 1131  * Cut data from (the front of) a sockbuf.
 1132  */
 1133 static struct mbuf *
 1134 sbcut_internal(struct sockbuf *sb, int len)
 1135 {
 1136         struct mbuf *m, *next, *mfree;
 1137 
 1138         KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
 1139             __func__, len));
 1140         KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
 1141             __func__, len, sb->sb_ccc));
 1142 
 1143         next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
 1144         mfree = NULL;
 1145 
 1146         while (len > 0) {
 1147                 if (m == NULL) {
 1148                         KASSERT(next, ("%s: no next, len %d", __func__, len));
 1149                         m = next;
 1150                         next = m->m_nextpkt;
 1151                 }
 1152                 if (m->m_len > len) {
 1153                         KASSERT(!(m->m_flags & M_NOTAVAIL),
 1154                             ("%s: m %p M_NOTAVAIL", __func__, m));
 1155                         m->m_len -= len;
 1156                         m->m_data += len;
 1157                         sb->sb_ccc -= len;
 1158                         sb->sb_acc -= len;
 1159                         if (sb->sb_sndptroff != 0)
 1160                                 sb->sb_sndptroff -= len;
 1161                         if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
 1162                                 sb->sb_ctl -= len;
 1163                         break;
 1164                 }
 1165                 len -= m->m_len;
 1166                 sbfree(sb, m);
 1167                 /*
 1168                  * Do not put M_NOTREADY buffers to the free list, they
 1169                  * are referenced from outside.
 1170                  */
 1171                 if (m->m_flags & M_NOTREADY)
 1172                         m = m->m_next;
 1173                 else {
 1174                         struct mbuf *n;
 1175 
 1176                         n = m->m_next;
 1177                         m->m_next = mfree;
 1178                         mfree = m;
 1179                         m = n;
 1180                 }
 1181         }
 1182         /*
 1183          * Free any zero-length mbufs from the buffer.
 1184          * For SOCK_DGRAM sockets such mbufs represent empty records.
 1185          * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
 1186          * when sosend_generic() needs to send only control data.
 1187          */
 1188         while (m && m->m_len == 0) {
 1189                 struct mbuf *n;
 1190 
 1191                 sbfree(sb, m);
 1192                 n = m->m_next;
 1193                 m->m_next = mfree;
 1194                 mfree = m;
 1195                 m = n;
 1196         }
 1197         if (m) {
 1198                 sb->sb_mb = m;
 1199                 m->m_nextpkt = next;
 1200         } else
 1201                 sb->sb_mb = next;
 1202         /*
 1203          * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
 1204          * sb_lastrecord is up-to-date if we dropped part of the last record.
 1205          */
 1206         m = sb->sb_mb;
 1207         if (m == NULL) {
 1208                 sb->sb_mbtail = NULL;
 1209                 sb->sb_lastrecord = NULL;
 1210         } else if (m->m_nextpkt == NULL) {
 1211                 sb->sb_lastrecord = m;
 1212         }
 1213 
 1214         return (mfree);
 1215 }
 1216 
 1217 /*
 1218  * Drop data from (the front of) a sockbuf.
 1219  */
 1220 void
 1221 sbdrop_locked(struct sockbuf *sb, int len)
 1222 {
 1223 
 1224         SOCKBUF_LOCK_ASSERT(sb);
 1225         m_freem(sbcut_internal(sb, len));
 1226 }
 1227 
 1228 /*
 1229  * Drop data from (the front of) a sockbuf,
 1230  * and return it to caller.
 1231  */
 1232 struct mbuf *
 1233 sbcut_locked(struct sockbuf *sb, int len)
 1234 {
 1235 
 1236         SOCKBUF_LOCK_ASSERT(sb);
 1237         return (sbcut_internal(sb, len));
 1238 }
 1239 
 1240 void
 1241 sbdrop(struct sockbuf *sb, int len)
 1242 {
 1243         struct mbuf *mfree;
 1244 
 1245         SOCKBUF_LOCK(sb);
 1246         mfree = sbcut_internal(sb, len);
 1247         SOCKBUF_UNLOCK(sb);
 1248 
 1249         m_freem(mfree);
 1250 }
 1251 
 1252 /*
 1253  * Maintain a pointer and offset pair into the socket buffer mbuf chain to
 1254  * avoid traversal of the entire socket buffer for larger offsets.
 1255  */
 1256 struct mbuf *
 1257 sbsndptr(struct sockbuf *sb, u_int off, u_int len, u_int *moff)
 1258 {
 1259         struct mbuf *m, *ret;
 1260 
 1261         KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
 1262         KASSERT(off + len <= sb->sb_acc, ("%s: beyond sb", __func__));
 1263         KASSERT(sb->sb_sndptroff <= sb->sb_acc, ("%s: sndptroff broken", __func__));
 1264 
 1265         /*
 1266          * Is off below stored offset? Happens on retransmits.
 1267          * Just return, we can't help here.
 1268          */
 1269         if (sb->sb_sndptroff > off) {
 1270                 *moff = off;
 1271                 return (sb->sb_mb);
 1272         }
 1273 
 1274         /* Return closest mbuf in chain for current offset. */
 1275         *moff = off - sb->sb_sndptroff;
 1276         m = ret = sb->sb_sndptr ? sb->sb_sndptr : sb->sb_mb;
 1277         if (*moff == m->m_len) {
 1278                 *moff = 0;
 1279                 sb->sb_sndptroff += m->m_len;
 1280                 m = ret = m->m_next;
 1281                 KASSERT(ret->m_len > 0,
 1282                     ("mbuf %p in sockbuf %p chain has no valid data", ret, sb));
 1283         }
 1284 
 1285         /* Advance by len to be as close as possible for the next transmit. */
 1286         for (off = off - sb->sb_sndptroff + len - 1;
 1287              off > 0 && m != NULL && off >= m->m_len;
 1288              m = m->m_next) {
 1289                 sb->sb_sndptroff += m->m_len;
 1290                 off -= m->m_len;
 1291         }
 1292         if (off > 0 && m == NULL)
 1293                 panic("%s: sockbuf %p and mbuf %p clashing", __func__, sb, ret);
 1294         sb->sb_sndptr = m;
 1295 
 1296         return (ret);
 1297 }
 1298 
 1299 struct mbuf *
 1300 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
 1301 {
 1302         struct mbuf *m;
 1303 
 1304         KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
 1305         if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
 1306                 *moff = off;
 1307                 if (sb->sb_sndptr == NULL) {
 1308                         sb->sb_sndptr = sb->sb_mb;
 1309                         sb->sb_sndptroff = 0;
 1310                 }
 1311                 return (sb->sb_mb);
 1312         } else {
 1313                 m = sb->sb_sndptr;
 1314                 off -= sb->sb_sndptroff;
 1315         }
 1316         *moff = off;
 1317         return (m);
 1318 }
 1319 
 1320 void
 1321 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
 1322 {
 1323         /*
 1324          * A small copy was done, advance forward the sb_sbsndptr to cover
 1325          * it.
 1326          */
 1327         struct mbuf *m;
 1328 
 1329         if (mb != sb->sb_sndptr) {
 1330                 /* Did not copyout at the same mbuf */
 1331                 return;
 1332         }
 1333         m = mb;
 1334         while (m && (len > 0)) {
 1335                 if (len >= m->m_len) {
 1336                         len -= m->m_len;
 1337                         if (m->m_next) {
 1338                                 sb->sb_sndptroff += m->m_len;
 1339                                 sb->sb_sndptr = m->m_next;
 1340                         }
 1341                         m = m->m_next;
 1342                 } else {
 1343                         len = 0;
 1344                 }
 1345         }
 1346 }
 1347 
 1348 /*
 1349  * Return the first mbuf and the mbuf data offset for the provided
 1350  * send offset without changing the "sb_sndptroff" field.
 1351  */
 1352 struct mbuf *
 1353 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
 1354 {
 1355         struct mbuf *m;
 1356 
 1357         KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
 1358 
 1359         /*
 1360          * If the "off" is below the stored offset, which happens on
 1361          * retransmits, just use "sb_mb":
 1362          */
 1363         if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
 1364                 m = sb->sb_mb;
 1365         } else {
 1366                 m = sb->sb_sndptr;
 1367                 off -= sb->sb_sndptroff;
 1368         }
 1369         while (off > 0 && m != NULL) {
 1370                 if (off < m->m_len)
 1371                         break;
 1372                 off -= m->m_len;
 1373                 m = m->m_next;
 1374         }
 1375         *moff = off;
 1376         return (m);
 1377 }
 1378 
 1379 /*
 1380  * Drop a record off the front of a sockbuf and move the next record to the
 1381  * front.
 1382  */
 1383 void
 1384 sbdroprecord_locked(struct sockbuf *sb)
 1385 {
 1386         struct mbuf *m;
 1387 
 1388         SOCKBUF_LOCK_ASSERT(sb);
 1389 
 1390         m = sb->sb_mb;
 1391         if (m) {
 1392                 sb->sb_mb = m->m_nextpkt;
 1393                 do {
 1394                         sbfree(sb, m);
 1395                         m = m_free(m);
 1396                 } while (m);
 1397         }
 1398         SB_EMPTY_FIXUP(sb);
 1399 }
 1400 
 1401 /*
 1402  * Drop a record off the front of a sockbuf and move the next record to the
 1403  * front.
 1404  */
 1405 void
 1406 sbdroprecord(struct sockbuf *sb)
 1407 {
 1408 
 1409         SOCKBUF_LOCK(sb);
 1410         sbdroprecord_locked(sb);
 1411         SOCKBUF_UNLOCK(sb);
 1412 }
 1413 
 1414 /*
 1415  * Create a "control" mbuf containing the specified data with the specified
 1416  * type for presentation on a socket buffer.
 1417  */
 1418 struct mbuf *
 1419 sbcreatecontrol(caddr_t p, int size, int type, int level)
 1420 {
 1421         struct cmsghdr *cp;
 1422         struct mbuf *m;
 1423 
 1424         if (CMSG_SPACE((u_int)size) > MCLBYTES)
 1425                 return ((struct mbuf *) NULL);
 1426         if (CMSG_SPACE((u_int)size) > MLEN)
 1427                 m = m_getcl(M_NOWAIT, MT_CONTROL, 0);
 1428         else
 1429                 m = m_get(M_NOWAIT, MT_CONTROL);
 1430         if (m == NULL)
 1431                 return ((struct mbuf *) NULL);
 1432         cp = mtod(m, struct cmsghdr *);
 1433         m->m_len = 0;
 1434         KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
 1435             ("sbcreatecontrol: short mbuf"));
 1436         /*
 1437          * Don't leave the padding between the msg header and the
 1438          * cmsg data and the padding after the cmsg data un-initialized.
 1439          */
 1440         bzero(cp, CMSG_SPACE((u_int)size));
 1441         if (p != NULL)
 1442                 (void)memcpy(CMSG_DATA(cp), p, size);
 1443         m->m_len = CMSG_SPACE(size);
 1444         cp->cmsg_len = CMSG_LEN(size);
 1445         cp->cmsg_level = level;
 1446         cp->cmsg_type = type;
 1447         return (m);
 1448 }
 1449 
 1450 /*
 1451  * This does the same for socket buffers that sotoxsocket does for sockets:
 1452  * generate an user-format data structure describing the socket buffer.  Note
 1453  * that the xsockbuf structure, since it is always embedded in a socket, does
 1454  * not include a self pointer nor a length.  We make this entry point public
 1455  * in case some other mechanism needs it.
 1456  */
 1457 void
 1458 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
 1459 {
 1460 
 1461         xsb->sb_cc = sb->sb_ccc;
 1462         xsb->sb_hiwat = sb->sb_hiwat;
 1463         xsb->sb_mbcnt = sb->sb_mbcnt;
 1464         xsb->sb_mcnt = sb->sb_mcnt;     
 1465         xsb->sb_ccnt = sb->sb_ccnt;
 1466         xsb->sb_mbmax = sb->sb_mbmax;
 1467         xsb->sb_lowat = sb->sb_lowat;
 1468         xsb->sb_flags = sb->sb_flags;
 1469         xsb->sb_timeo = sb->sb_timeo;
 1470 }
 1471 
 1472 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
 1473 static int dummy;
 1474 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
 1475 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
 1476     &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
 1477 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
 1478     &sb_efficiency, 0, "Socket buffer size waste factor");

Cache object: 01c8ea09a9b01e82ecd7f7a3d79bec9d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.