The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_sockbuf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)uipc_socket2.c      8.1 (Berkeley) 6/10/93
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_kern_tls.h"
   38 #include "opt_param.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/aio.h> /* for aio_swake proto */
   42 #include <sys/kernel.h>
   43 #include <sys/ktls.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/mbuf.h>
   47 #include <sys/mutex.h>
   48 #include <sys/proc.h>
   49 #include <sys/protosw.h>
   50 #include <sys/resourcevar.h>
   51 #include <sys/signalvar.h>
   52 #include <sys/socket.h>
   53 #include <sys/socketvar.h>
   54 #include <sys/sx.h>
   55 #include <sys/sysctl.h>
   56 
   57 /*
   58  * Function pointer set by the AIO routines so that the socket buffer code
   59  * can call back into the AIO module if it is loaded.
   60  */
   61 void    (*aio_swake)(struct socket *, struct sockbuf *);
   62 
   63 /*
   64  * Primitive routines for operating on socket buffers
   65  */
   66 
   67 u_long  sb_max = SB_MAX;
   68 u_long sb_max_adj =
   69        (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
   70 
   71 static  u_long sb_efficiency = 8;       /* parameter for sbreserve() */
   72 
   73 #ifdef KERN_TLS
   74 static void     sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m,
   75     struct mbuf *n);
   76 #endif
   77 static struct mbuf      *sbcut_internal(struct sockbuf *sb, int len);
   78 static void     sbflush_internal(struct sockbuf *sb);
   79 
   80 /*
   81  * Our own version of m_clrprotoflags(), that can preserve M_NOTREADY.
   82  */
   83 static void
   84 sbm_clrprotoflags(struct mbuf *m, int flags)
   85 {
   86         int mask;
   87 
   88         mask = ~M_PROTOFLAGS;
   89         if (flags & PRUS_NOTREADY)
   90                 mask |= M_NOTREADY;
   91         while (m) {
   92                 m->m_flags &= mask;
   93                 m = m->m_next;
   94         }
   95 }
   96 
   97 /*
   98  * Compress M_NOTREADY mbufs after they have been readied by sbready().
   99  *
  100  * sbcompress() skips M_NOTREADY mbufs since the data is not available to
  101  * be copied at the time of sbcompress().  This function combines small
  102  * mbufs similar to sbcompress() once mbufs are ready.  'm0' is the first
  103  * mbuf sbready() marked ready, and 'end' is the first mbuf still not
  104  * ready.
  105  */
  106 static void
  107 sbready_compress(struct sockbuf *sb, struct mbuf *m0, struct mbuf *end)
  108 {
  109         struct mbuf *m, *n;
  110         int ext_size;
  111 
  112         SOCKBUF_LOCK_ASSERT(sb);
  113 
  114         if ((sb->sb_flags & SB_NOCOALESCE) != 0)
  115                 return;
  116 
  117         for (m = m0; m != end; m = m->m_next) {
  118                 MPASS((m->m_flags & M_NOTREADY) == 0);
  119                 /*
  120                  * NB: In sbcompress(), 'n' is the last mbuf in the
  121                  * socket buffer and 'm' is the new mbuf being copied
  122                  * into the trailing space of 'n'.  Here, the roles
  123                  * are reversed and 'n' is the next mbuf after 'm'
  124                  * that is being copied into the trailing space of
  125                  * 'm'.
  126                  */
  127                 n = m->m_next;
  128 #ifdef KERN_TLS
  129                 /* Try to coalesce adjacent ktls mbuf hdr/trailers. */
  130                 if ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
  131                     (m->m_flags & M_EXTPG) &&
  132                     (n->m_flags & M_EXTPG) &&
  133                     !mbuf_has_tls_session(m) &&
  134                     !mbuf_has_tls_session(n)) {
  135                         int hdr_len, trail_len;
  136 
  137                         hdr_len = n->m_epg_hdrlen;
  138                         trail_len = m->m_epg_trllen;
  139                         if (trail_len != 0 && hdr_len != 0 &&
  140                             trail_len + hdr_len <= MBUF_PEXT_TRAIL_LEN) {
  141                                 /* copy n's header to m's trailer */
  142                                 memcpy(&m->m_epg_trail[trail_len],
  143                                     n->m_epg_hdr, hdr_len);
  144                                 m->m_epg_trllen += hdr_len;
  145                                 m->m_len += hdr_len;
  146                                 n->m_epg_hdrlen = 0;
  147                                 n->m_len -= hdr_len;
  148                         }
  149                 }
  150 #endif
  151 
  152                 /* Compress small unmapped mbufs into plain mbufs. */
  153                 if ((m->m_flags & M_EXTPG) && m->m_len <= MLEN &&
  154                     !mbuf_has_tls_session(m)) {
  155                         ext_size = m->m_ext.ext_size;
  156                         if (mb_unmapped_compress(m) == 0) {
  157                                 sb->sb_mbcnt -= ext_size;
  158                                 sb->sb_ccnt -= 1;
  159                         }
  160                 }
  161 
  162                 while ((n != NULL) && (n != end) && (m->m_flags & M_EOR) == 0 &&
  163                     M_WRITABLE(m) &&
  164                     (m->m_flags & M_EXTPG) == 0 &&
  165                     !mbuf_has_tls_session(n) &&
  166                     !mbuf_has_tls_session(m) &&
  167                     n->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
  168                     n->m_len <= M_TRAILINGSPACE(m) &&
  169                     m->m_type == n->m_type) {
  170                         KASSERT(sb->sb_lastrecord != n,
  171                     ("%s: merging start of record (%p) into previous mbuf (%p)",
  172                             __func__, n, m));
  173                         m_copydata(n, 0, n->m_len, mtodo(m, m->m_len));
  174                         m->m_len += n->m_len;
  175                         m->m_next = n->m_next;
  176                         m->m_flags |= n->m_flags & M_EOR;
  177                         if (sb->sb_mbtail == n)
  178                                 sb->sb_mbtail = m;
  179 
  180                         sb->sb_mbcnt -= MSIZE;
  181                         sb->sb_mcnt -= 1;
  182                         if (n->m_flags & M_EXT) {
  183                                 sb->sb_mbcnt -= n->m_ext.ext_size;
  184                                 sb->sb_ccnt -= 1;
  185                         }
  186                         m_free(n);
  187                         n = m->m_next;
  188                 }
  189         }
  190         SBLASTRECORDCHK(sb);
  191         SBLASTMBUFCHK(sb);
  192 }
  193 
  194 /*
  195  * Mark ready "count" units of I/O starting with "m".  Most mbufs
  196  * count as a single unit of I/O except for M_EXTPG mbufs which
  197  * are backed by multiple pages.
  198  */
  199 int
  200 sbready(struct sockbuf *sb, struct mbuf *m0, int count)
  201 {
  202         struct mbuf *m;
  203         u_int blocker;
  204 
  205         SOCKBUF_LOCK_ASSERT(sb);
  206         KASSERT(sb->sb_fnrdy != NULL, ("%s: sb %p NULL fnrdy", __func__, sb));
  207         KASSERT(count > 0, ("%s: invalid count %d", __func__, count));
  208 
  209         m = m0;
  210         blocker = (sb->sb_fnrdy == m) ? M_BLOCKED : 0;
  211 
  212         while (count > 0) {
  213                 KASSERT(m->m_flags & M_NOTREADY,
  214                     ("%s: m %p !M_NOTREADY", __func__, m));
  215                 if ((m->m_flags & M_EXTPG) != 0 && m->m_epg_npgs != 0) {
  216                         if (count < m->m_epg_nrdy) {
  217                                 m->m_epg_nrdy -= count;
  218                                 count = 0;
  219                                 break;
  220                         }
  221                         count -= m->m_epg_nrdy;
  222                         m->m_epg_nrdy = 0;
  223                 } else
  224                         count--;
  225 
  226                 m->m_flags &= ~(M_NOTREADY | blocker);
  227                 if (blocker)
  228                         sb->sb_acc += m->m_len;
  229                 m = m->m_next;
  230         }
  231 
  232         /*
  233          * If the first mbuf is still not fully ready because only
  234          * some of its backing pages were readied, no further progress
  235          * can be made.
  236          */
  237         if (m0 == m) {
  238                 MPASS(m->m_flags & M_NOTREADY);
  239                 return (EINPROGRESS);
  240         }
  241 
  242         if (!blocker) {
  243                 sbready_compress(sb, m0, m);
  244                 return (EINPROGRESS);
  245         }
  246 
  247         /* This one was blocking all the queue. */
  248         for (; m && (m->m_flags & M_NOTREADY) == 0; m = m->m_next) {
  249                 KASSERT(m->m_flags & M_BLOCKED,
  250                     ("%s: m %p !M_BLOCKED", __func__, m));
  251                 m->m_flags &= ~M_BLOCKED;
  252                 sb->sb_acc += m->m_len;
  253         }
  254 
  255         sb->sb_fnrdy = m;
  256         sbready_compress(sb, m0, m);
  257 
  258         return (0);
  259 }
  260 
  261 /*
  262  * Adjust sockbuf state reflecting allocation of m.
  263  */
  264 void
  265 sballoc(struct sockbuf *sb, struct mbuf *m)
  266 {
  267 
  268         SOCKBUF_LOCK_ASSERT(sb);
  269 
  270         sb->sb_ccc += m->m_len;
  271 
  272         if (sb->sb_fnrdy == NULL) {
  273                 if (m->m_flags & M_NOTREADY)
  274                         sb->sb_fnrdy = m;
  275                 else
  276                         sb->sb_acc += m->m_len;
  277         } else
  278                 m->m_flags |= M_BLOCKED;
  279 
  280         if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
  281                 sb->sb_ctl += m->m_len;
  282 
  283         sb->sb_mbcnt += MSIZE;
  284         sb->sb_mcnt += 1;
  285 
  286         if (m->m_flags & M_EXT) {
  287                 sb->sb_mbcnt += m->m_ext.ext_size;
  288                 sb->sb_ccnt += 1;
  289         }
  290 }
  291 
  292 /*
  293  * Adjust sockbuf state reflecting freeing of m.
  294  */
  295 void
  296 sbfree(struct sockbuf *sb, struct mbuf *m)
  297 {
  298 
  299 #if 0   /* XXX: not yet: soclose() call path comes here w/o lock. */
  300         SOCKBUF_LOCK_ASSERT(sb);
  301 #endif
  302 
  303         sb->sb_ccc -= m->m_len;
  304 
  305         if (!(m->m_flags & M_NOTAVAIL))
  306                 sb->sb_acc -= m->m_len;
  307 
  308         if (m == sb->sb_fnrdy) {
  309                 struct mbuf *n;
  310 
  311                 KASSERT(m->m_flags & M_NOTREADY,
  312                     ("%s: m %p !M_NOTREADY", __func__, m));
  313 
  314                 n = m->m_next;
  315                 while (n != NULL && !(n->m_flags & M_NOTREADY)) {
  316                         n->m_flags &= ~M_BLOCKED;
  317                         sb->sb_acc += n->m_len;
  318                         n = n->m_next;
  319                 }
  320                 sb->sb_fnrdy = n;
  321         }
  322 
  323         if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
  324                 sb->sb_ctl -= m->m_len;
  325 
  326         sb->sb_mbcnt -= MSIZE;
  327         sb->sb_mcnt -= 1;
  328         if (m->m_flags & M_EXT) {
  329                 sb->sb_mbcnt -= m->m_ext.ext_size;
  330                 sb->sb_ccnt -= 1;
  331         }
  332 
  333         if (sb->sb_sndptr == m) {
  334                 sb->sb_sndptr = NULL;
  335                 sb->sb_sndptroff = 0;
  336         }
  337         if (sb->sb_sndptroff != 0)
  338                 sb->sb_sndptroff -= m->m_len;
  339 }
  340 
  341 #ifdef KERN_TLS
  342 /*
  343  * Similar to sballoc/sbfree but does not adjust state associated with
  344  * the sb_mb chain such as sb_fnrdy or sb_sndptr*.  Also assumes mbufs
  345  * are not ready.
  346  */
  347 void
  348 sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m)
  349 {
  350 
  351         SOCKBUF_LOCK_ASSERT(sb);
  352 
  353         sb->sb_ccc += m->m_len;
  354         sb->sb_tlscc += m->m_len;
  355 
  356         sb->sb_mbcnt += MSIZE;
  357         sb->sb_mcnt += 1;
  358 
  359         if (m->m_flags & M_EXT) {
  360                 sb->sb_mbcnt += m->m_ext.ext_size;
  361                 sb->sb_ccnt += 1;
  362         }
  363 }
  364 
  365 void
  366 sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m)
  367 {
  368 
  369 #if 0   /* XXX: not yet: soclose() call path comes here w/o lock. */
  370         SOCKBUF_LOCK_ASSERT(sb);
  371 #endif
  372 
  373         sb->sb_ccc -= m->m_len;
  374         sb->sb_tlscc -= m->m_len;
  375 
  376         sb->sb_mbcnt -= MSIZE;
  377         sb->sb_mcnt -= 1;
  378 
  379         if (m->m_flags & M_EXT) {
  380                 sb->sb_mbcnt -= m->m_ext.ext_size;
  381                 sb->sb_ccnt -= 1;
  382         }
  383 }
  384 #endif
  385 
  386 /*
  387  * Socantsendmore indicates that no more data will be sent on the socket; it
  388  * would normally be applied to a socket when the user informs the system
  389  * that no more data is to be sent, by the protocol code (in case
  390  * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
  391  * received, and will normally be applied to the socket by a protocol when it
  392  * detects that the peer will send no more data.  Data queued for reading in
  393  * the socket may yet be read.
  394  */
  395 void
  396 socantsendmore_locked(struct socket *so)
  397 {
  398 
  399         SOCKBUF_LOCK_ASSERT(&so->so_snd);
  400 
  401         so->so_snd.sb_state |= SBS_CANTSENDMORE;
  402         sowwakeup_locked(so);
  403         mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
  404 }
  405 
  406 void
  407 socantsendmore(struct socket *so)
  408 {
  409 
  410         SOCKBUF_LOCK(&so->so_snd);
  411         socantsendmore_locked(so);
  412         mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
  413 }
  414 
  415 void
  416 socantrcvmore_locked(struct socket *so)
  417 {
  418 
  419         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
  420 
  421         so->so_rcv.sb_state |= SBS_CANTRCVMORE;
  422 #ifdef KERN_TLS
  423         if (so->so_rcv.sb_flags & SB_TLS_RX)
  424                 ktls_check_rx(&so->so_rcv);
  425 #endif
  426         sorwakeup_locked(so);
  427         mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
  428 }
  429 
  430 void
  431 socantrcvmore(struct socket *so)
  432 {
  433 
  434         SOCKBUF_LOCK(&so->so_rcv);
  435         socantrcvmore_locked(so);
  436         mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
  437 }
  438 
  439 void
  440 soroverflow_locked(struct socket *so)
  441 {
  442 
  443         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
  444 
  445         if (so->so_options & SO_RERROR) {
  446                 so->so_rerror = ENOBUFS;
  447                 sorwakeup_locked(so);
  448         } else
  449                 SOCKBUF_UNLOCK(&so->so_rcv);
  450 
  451         mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
  452 }
  453 
  454 void
  455 soroverflow(struct socket *so)
  456 {
  457 
  458         SOCKBUF_LOCK(&so->so_rcv);
  459         soroverflow_locked(so);
  460         mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
  461 }
  462 
  463 /*
  464  * Wait for data to arrive at/drain from a socket buffer.
  465  */
  466 int
  467 sbwait(struct sockbuf *sb)
  468 {
  469 
  470         SOCKBUF_LOCK_ASSERT(sb);
  471 
  472         sb->sb_flags |= SB_WAIT;
  473         return (msleep_sbt(&sb->sb_acc, SOCKBUF_MTX(sb),
  474             (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
  475             sb->sb_timeo, 0, 0));
  476 }
  477 
  478 /*
  479  * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
  480  * via SIGIO if the socket has the SS_ASYNC flag set.
  481  *
  482  * Called with the socket buffer lock held; will release the lock by the end
  483  * of the function.  This allows the caller to acquire the socket buffer lock
  484  * while testing for the need for various sorts of wakeup and hold it through
  485  * to the point where it's no longer required.  We currently hold the lock
  486  * through calls out to other subsystems (with the exception of kqueue), and
  487  * then release it to avoid lock order issues.  It's not clear that's
  488  * correct.
  489  */
  490 void
  491 sowakeup(struct socket *so, struct sockbuf *sb)
  492 {
  493         int ret;
  494 
  495         SOCKBUF_LOCK_ASSERT(sb);
  496 
  497         selwakeuppri(sb->sb_sel, PSOCK);
  498         if (!SEL_WAITING(sb->sb_sel))
  499                 sb->sb_flags &= ~SB_SEL;
  500         if (sb->sb_flags & SB_WAIT) {
  501                 sb->sb_flags &= ~SB_WAIT;
  502                 wakeup(&sb->sb_acc);
  503         }
  504         KNOTE_LOCKED(&sb->sb_sel->si_note, 0);
  505         if (sb->sb_upcall != NULL) {
  506                 ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
  507                 if (ret == SU_ISCONNECTED) {
  508                         KASSERT(sb == &so->so_rcv,
  509                             ("SO_SND upcall returned SU_ISCONNECTED"));
  510                         soupcall_clear(so, SO_RCV);
  511                 }
  512         } else
  513                 ret = SU_OK;
  514         if (sb->sb_flags & SB_AIO)
  515                 sowakeup_aio(so, sb);
  516         SOCKBUF_UNLOCK(sb);
  517         if (ret == SU_ISCONNECTED)
  518                 soisconnected(so);
  519         if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
  520                 pgsigio(&so->so_sigio, SIGIO, 0);
  521         mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
  522 }
  523 
  524 /*
  525  * Socket buffer (struct sockbuf) utility routines.
  526  *
  527  * Each socket contains two socket buffers: one for sending data and one for
  528  * receiving data.  Each buffer contains a queue of mbufs, information about
  529  * the number of mbufs and amount of data in the queue, and other fields
  530  * allowing select() statements and notification on data availability to be
  531  * implemented.
  532  *
  533  * Data stored in a socket buffer is maintained as a list of records.  Each
  534  * record is a list of mbufs chained together with the m_next field.  Records
  535  * are chained together with the m_nextpkt field. The upper level routine
  536  * soreceive() expects the following conventions to be observed when placing
  537  * information in the receive buffer:
  538  *
  539  * 1. If the protocol requires each message be preceded by the sender's name,
  540  *    then a record containing that name must be present before any
  541  *    associated data (mbuf's must be of type MT_SONAME).
  542  * 2. If the protocol supports the exchange of ``access rights'' (really just
  543  *    additional data associated with the message), and there are ``rights''
  544  *    to be received, then a record containing this data should be present
  545  *    (mbuf's must be of type MT_RIGHTS).
  546  * 3. If a name or rights record exists, then it must be followed by a data
  547  *    record, perhaps of zero length.
  548  *
  549  * Before using a new socket structure it is first necessary to reserve
  550  * buffer space to the socket, by calling sbreserve().  This should commit
  551  * some of the available buffer space in the system buffer pool for the
  552  * socket (currently, it does nothing but enforce limits).  The space should
  553  * be released by calling sbrelease() when the socket is destroyed.
  554  */
  555 int
  556 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
  557 {
  558         struct thread *td = curthread;
  559 
  560         SOCKBUF_LOCK(&so->so_snd);
  561         SOCKBUF_LOCK(&so->so_rcv);
  562         if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
  563                 goto bad;
  564         if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
  565                 goto bad2;
  566         if (so->so_rcv.sb_lowat == 0)
  567                 so->so_rcv.sb_lowat = 1;
  568         if (so->so_snd.sb_lowat == 0)
  569                 so->so_snd.sb_lowat = MCLBYTES;
  570         if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
  571                 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
  572         SOCKBUF_UNLOCK(&so->so_rcv);
  573         SOCKBUF_UNLOCK(&so->so_snd);
  574         return (0);
  575 bad2:
  576         sbrelease_locked(&so->so_snd, so);
  577 bad:
  578         SOCKBUF_UNLOCK(&so->so_rcv);
  579         SOCKBUF_UNLOCK(&so->so_snd);
  580         return (ENOBUFS);
  581 }
  582 
  583 static int
  584 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
  585 {
  586         int error = 0;
  587         u_long tmp_sb_max = sb_max;
  588 
  589         error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
  590         if (error || !req->newptr)
  591                 return (error);
  592         if (tmp_sb_max < MSIZE + MCLBYTES)
  593                 return (EINVAL);
  594         sb_max = tmp_sb_max;
  595         sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
  596         return (0);
  597 }
  598 
  599 /*
  600  * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
  601  * become limiting if buffering efficiency is near the normal case.
  602  */
  603 int
  604 sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
  605     struct thread *td)
  606 {
  607         rlim_t sbsize_limit;
  608 
  609         SOCKBUF_LOCK_ASSERT(sb);
  610 
  611         /*
  612          * When a thread is passed, we take into account the thread's socket
  613          * buffer size limit.  The caller will generally pass curthread, but
  614          * in the TCP input path, NULL will be passed to indicate that no
  615          * appropriate thread resource limits are available.  In that case,
  616          * we don't apply a process limit.
  617          */
  618         if (cc > sb_max_adj)
  619                 return (0);
  620         if (td != NULL) {
  621                 sbsize_limit = lim_cur(td, RLIMIT_SBSIZE);
  622         } else
  623                 sbsize_limit = RLIM_INFINITY;
  624         if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
  625             sbsize_limit))
  626                 return (0);
  627         sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
  628         if (sb->sb_lowat > sb->sb_hiwat)
  629                 sb->sb_lowat = sb->sb_hiwat;
  630         return (1);
  631 }
  632 
  633 int
  634 sbsetopt(struct socket *so, int cmd, u_long cc)
  635 {
  636         struct sockbuf *sb;
  637         short *flags;
  638         u_int *hiwat, *lowat;
  639         int error;
  640 
  641         sb = NULL;
  642         SOCK_LOCK(so);
  643         if (SOLISTENING(so)) {
  644                 switch (cmd) {
  645                         case SO_SNDLOWAT:
  646                         case SO_SNDBUF:
  647                                 lowat = &so->sol_sbsnd_lowat;
  648                                 hiwat = &so->sol_sbsnd_hiwat;
  649                                 flags = &so->sol_sbsnd_flags;
  650                                 break;
  651                         case SO_RCVLOWAT:
  652                         case SO_RCVBUF:
  653                                 lowat = &so->sol_sbrcv_lowat;
  654                                 hiwat = &so->sol_sbrcv_hiwat;
  655                                 flags = &so->sol_sbrcv_flags;
  656                                 break;
  657                 }
  658         } else {
  659                 switch (cmd) {
  660                         case SO_SNDLOWAT:
  661                         case SO_SNDBUF:
  662                                 sb = &so->so_snd;
  663                                 break;
  664                         case SO_RCVLOWAT:
  665                         case SO_RCVBUF:
  666                                 sb = &so->so_rcv;
  667                                 break;
  668                 }
  669                 flags = &sb->sb_flags;
  670                 hiwat = &sb->sb_hiwat;
  671                 lowat = &sb->sb_lowat;
  672                 SOCKBUF_LOCK(sb);
  673         }
  674 
  675         error = 0;
  676         switch (cmd) {
  677         case SO_SNDBUF:
  678         case SO_RCVBUF:
  679                 if (SOLISTENING(so)) {
  680                         if (cc > sb_max_adj) {
  681                                 error = ENOBUFS;
  682                                 break;
  683                         }
  684                         *hiwat = cc;
  685                         if (*lowat > *hiwat)
  686                                 *lowat = *hiwat;
  687                 } else {
  688                         if (!sbreserve_locked(sb, cc, so, curthread))
  689                                 error = ENOBUFS;
  690                 }
  691                 if (error == 0)
  692                         *flags &= ~SB_AUTOSIZE;
  693                 break;
  694         case SO_SNDLOWAT:
  695         case SO_RCVLOWAT:
  696                 /*
  697                  * Make sure the low-water is never greater than the
  698                  * high-water.
  699                  */
  700                 *lowat = (cc > *hiwat) ? *hiwat : cc;
  701                 break;
  702         }
  703 
  704         if (!SOLISTENING(so))
  705                 SOCKBUF_UNLOCK(sb);
  706         SOCK_UNLOCK(so);
  707         return (error);
  708 }
  709 
  710 /*
  711  * Free mbufs held by a socket, and reserved mbuf space.
  712  */
  713 void
  714 sbrelease_internal(struct sockbuf *sb, struct socket *so)
  715 {
  716 
  717         sbflush_internal(sb);
  718         (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
  719             RLIM_INFINITY);
  720         sb->sb_mbmax = 0;
  721 }
  722 
  723 void
  724 sbrelease_locked(struct sockbuf *sb, struct socket *so)
  725 {
  726 
  727         SOCKBUF_LOCK_ASSERT(sb);
  728 
  729         sbrelease_internal(sb, so);
  730 }
  731 
  732 void
  733 sbrelease(struct sockbuf *sb, struct socket *so)
  734 {
  735 
  736         SOCKBUF_LOCK(sb);
  737         sbrelease_locked(sb, so);
  738         SOCKBUF_UNLOCK(sb);
  739 }
  740 
  741 void
  742 sbdestroy(struct sockbuf *sb, struct socket *so)
  743 {
  744 
  745         sbrelease_internal(sb, so);
  746 #ifdef KERN_TLS
  747         if (sb->sb_tls_info != NULL)
  748                 ktls_free(sb->sb_tls_info);
  749         sb->sb_tls_info = NULL;
  750 #endif
  751 }
  752 
  753 /*
  754  * Routines to add and remove data from an mbuf queue.
  755  *
  756  * The routines sbappend() or sbappendrecord() are normally called to append
  757  * new mbufs to a socket buffer, after checking that adequate space is
  758  * available, comparing the function sbspace() with the amount of data to be
  759  * added.  sbappendrecord() differs from sbappend() in that data supplied is
  760  * treated as the beginning of a new record.  To place a sender's address,
  761  * optional access rights, and data in a socket receive buffer,
  762  * sbappendaddr() should be used.  To place access rights and data in a
  763  * socket receive buffer, sbappendrights() should be used.  In either case,
  764  * the new data begins a new record.  Note that unlike sbappend() and
  765  * sbappendrecord(), these routines check for the caller that there will be
  766  * enough space to store the data.  Each fails if there is not enough space,
  767  * or if it cannot find mbufs to store additional information in.
  768  *
  769  * Reliable protocols may use the socket send buffer to hold data awaiting
  770  * acknowledgement.  Data is normally copied from a socket send buffer in a
  771  * protocol with m_copy for output to a peer, and then removing the data from
  772  * the socket buffer with sbdrop() or sbdroprecord() when the data is
  773  * acknowledged by the peer.
  774  */
  775 #ifdef SOCKBUF_DEBUG
  776 void
  777 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
  778 {
  779         struct mbuf *m = sb->sb_mb;
  780 
  781         SOCKBUF_LOCK_ASSERT(sb);
  782 
  783         while (m && m->m_nextpkt)
  784                 m = m->m_nextpkt;
  785 
  786         if (m != sb->sb_lastrecord) {
  787                 printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
  788                         __func__, sb->sb_mb, sb->sb_lastrecord, m);
  789                 printf("packet chain:\n");
  790                 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
  791                         printf("\t%p\n", m);
  792                 panic("%s from %s:%u", __func__, file, line);
  793         }
  794 }
  795 
  796 void
  797 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
  798 {
  799         struct mbuf *m = sb->sb_mb;
  800         struct mbuf *n;
  801 
  802         SOCKBUF_LOCK_ASSERT(sb);
  803 
  804         while (m && m->m_nextpkt)
  805                 m = m->m_nextpkt;
  806 
  807         while (m && m->m_next)
  808                 m = m->m_next;
  809 
  810         if (m != sb->sb_mbtail) {
  811                 printf("%s: sb_mb %p sb_mbtail %p last %p\n",
  812                         __func__, sb->sb_mb, sb->sb_mbtail, m);
  813                 printf("packet tree:\n");
  814                 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
  815                         printf("\t");
  816                         for (n = m; n != NULL; n = n->m_next)
  817                                 printf("%p ", n);
  818                         printf("\n");
  819                 }
  820                 panic("%s from %s:%u", __func__, file, line);
  821         }
  822 
  823 #ifdef KERN_TLS
  824         m = sb->sb_mtls;
  825         while (m && m->m_next)
  826                 m = m->m_next;
  827 
  828         if (m != sb->sb_mtlstail) {
  829                 printf("%s: sb_mtls %p sb_mtlstail %p last %p\n",
  830                         __func__, sb->sb_mtls, sb->sb_mtlstail, m);
  831                 printf("TLS packet tree:\n");
  832                 printf("\t");
  833                 for (m = sb->sb_mtls; m != NULL; m = m->m_next) {
  834                         printf("%p ", m);
  835                 }
  836                 printf("\n");
  837                 panic("%s from %s:%u", __func__, file, line);
  838         }
  839 #endif
  840 }
  841 #endif /* SOCKBUF_DEBUG */
  842 
  843 #define SBLINKRECORD(sb, m0) do {                                       \
  844         SOCKBUF_LOCK_ASSERT(sb);                                        \
  845         if ((sb)->sb_lastrecord != NULL)                                \
  846                 (sb)->sb_lastrecord->m_nextpkt = (m0);                  \
  847         else                                                            \
  848                 (sb)->sb_mb = (m0);                                     \
  849         (sb)->sb_lastrecord = (m0);                                     \
  850 } while (/*CONSTCOND*/0)
  851 
  852 /*
  853  * Append mbuf chain m to the last record in the socket buffer sb.  The
  854  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
  855  * are discarded and mbufs are compacted where possible.
  856  */
  857 void
  858 sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags)
  859 {
  860         struct mbuf *n;
  861 
  862         SOCKBUF_LOCK_ASSERT(sb);
  863 
  864         if (m == NULL)
  865                 return;
  866         sbm_clrprotoflags(m, flags);
  867         SBLASTRECORDCHK(sb);
  868         n = sb->sb_mb;
  869         if (n) {
  870                 while (n->m_nextpkt)
  871                         n = n->m_nextpkt;
  872                 do {
  873                         if (n->m_flags & M_EOR) {
  874                                 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
  875                                 return;
  876                         }
  877                 } while (n->m_next && (n = n->m_next));
  878         } else {
  879                 /*
  880                  * XXX Would like to simply use sb_mbtail here, but
  881                  * XXX I need to verify that I won't miss an EOR that
  882                  * XXX way.
  883                  */
  884                 if ((n = sb->sb_lastrecord) != NULL) {
  885                         do {
  886                                 if (n->m_flags & M_EOR) {
  887                                         sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
  888                                         return;
  889                                 }
  890                         } while (n->m_next && (n = n->m_next));
  891                 } else {
  892                         /*
  893                          * If this is the first record in the socket buffer,
  894                          * it's also the last record.
  895                          */
  896                         sb->sb_lastrecord = m;
  897                 }
  898         }
  899         sbcompress(sb, m, n);
  900         SBLASTRECORDCHK(sb);
  901 }
  902 
  903 /*
  904  * Append mbuf chain m to the last record in the socket buffer sb.  The
  905  * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
  906  * are discarded and mbufs are compacted where possible.
  907  */
  908 void
  909 sbappend(struct sockbuf *sb, struct mbuf *m, int flags)
  910 {
  911 
  912         SOCKBUF_LOCK(sb);
  913         sbappend_locked(sb, m, flags);
  914         SOCKBUF_UNLOCK(sb);
  915 }
  916 
  917 #ifdef KERN_TLS
  918 /*
  919  * Append an mbuf containing encrypted TLS data.  The data
  920  * is marked M_NOTREADY until it has been decrypted and
  921  * stored as a TLS record.
  922  */
  923 static void
  924 sbappend_ktls_rx(struct sockbuf *sb, struct mbuf *m)
  925 {
  926         struct mbuf *n;
  927 
  928         SBLASTMBUFCHK(sb);
  929 
  930         /* Remove all packet headers and mbuf tags to get a pure data chain. */
  931         m_demote(m, 1, 0);
  932 
  933         for (n = m; n != NULL; n = n->m_next)
  934                 n->m_flags |= M_NOTREADY;
  935         sbcompress_ktls_rx(sb, m, sb->sb_mtlstail);
  936         ktls_check_rx(sb);
  937 }
  938 #endif
  939 
  940 /*
  941  * This version of sbappend() should only be used when the caller absolutely
  942  * knows that there will never be more than one record in the socket buffer,
  943  * that is, a stream protocol (such as TCP).
  944  */
  945 void
  946 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags)
  947 {
  948         SOCKBUF_LOCK_ASSERT(sb);
  949 
  950         KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
  951 
  952 #ifdef KERN_TLS
  953         /*
  954          * Decrypted TLS records are appended as records via
  955          * sbappendrecord().  TCP passes encrypted TLS records to this
  956          * function which must be scheduled for decryption.
  957          */
  958         if (sb->sb_flags & SB_TLS_RX) {
  959                 sbappend_ktls_rx(sb, m);
  960                 return;
  961         }
  962 #endif
  963 
  964         KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
  965 
  966         SBLASTMBUFCHK(sb);
  967 
  968 #ifdef KERN_TLS
  969         if (sb->sb_tls_info != NULL)
  970                 ktls_seq(sb, m);
  971 #endif
  972 
  973         /* Remove all packet headers and mbuf tags to get a pure data chain. */
  974         m_demote(m, 1, flags & PRUS_NOTREADY ? M_NOTREADY : 0);
  975 
  976         sbcompress(sb, m, sb->sb_mbtail);
  977 
  978         sb->sb_lastrecord = sb->sb_mb;
  979         SBLASTRECORDCHK(sb);
  980 }
  981 
  982 /*
  983  * This version of sbappend() should only be used when the caller absolutely
  984  * knows that there will never be more than one record in the socket buffer,
  985  * that is, a stream protocol (such as TCP).
  986  */
  987 void
  988 sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags)
  989 {
  990 
  991         SOCKBUF_LOCK(sb);
  992         sbappendstream_locked(sb, m, flags);
  993         SOCKBUF_UNLOCK(sb);
  994 }
  995 
  996 #ifdef SOCKBUF_DEBUG
  997 void
  998 sbcheck(struct sockbuf *sb, const char *file, int line)
  999 {
 1000         struct mbuf *m, *n, *fnrdy;
 1001         u_long acc, ccc, mbcnt;
 1002 #ifdef KERN_TLS
 1003         u_long tlscc;
 1004 #endif
 1005 
 1006         SOCKBUF_LOCK_ASSERT(sb);
 1007 
 1008         acc = ccc = mbcnt = 0;
 1009         fnrdy = NULL;
 1010 
 1011         for (m = sb->sb_mb; m; m = n) {
 1012             n = m->m_nextpkt;
 1013             for (; m; m = m->m_next) {
 1014                 if (m->m_len == 0) {
 1015                         printf("sb %p empty mbuf %p\n", sb, m);
 1016                         goto fail;
 1017                 }
 1018                 if ((m->m_flags & M_NOTREADY) && fnrdy == NULL) {
 1019                         if (m != sb->sb_fnrdy) {
 1020                                 printf("sb %p: fnrdy %p != m %p\n",
 1021                                     sb, sb->sb_fnrdy, m);
 1022                                 goto fail;
 1023                         }
 1024                         fnrdy = m;
 1025                 }
 1026                 if (fnrdy) {
 1027                         if (!(m->m_flags & M_NOTAVAIL)) {
 1028                                 printf("sb %p: fnrdy %p, m %p is avail\n",
 1029                                     sb, sb->sb_fnrdy, m);
 1030                                 goto fail;
 1031                         }
 1032                 } else
 1033                         acc += m->m_len;
 1034                 ccc += m->m_len;
 1035                 mbcnt += MSIZE;
 1036                 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
 1037                         mbcnt += m->m_ext.ext_size;
 1038             }
 1039         }
 1040 #ifdef KERN_TLS
 1041         /*
 1042          * Account for mbufs "detached" by ktls_detach_record() while
 1043          * they are decrypted by ktls_decrypt().  tlsdcc gives a count
 1044          * of the detached bytes that are included in ccc.  The mbufs
 1045          * and clusters are not included in the socket buffer
 1046          * accounting.
 1047          */
 1048         ccc += sb->sb_tlsdcc;
 1049 
 1050         tlscc = 0;
 1051         for (m = sb->sb_mtls; m; m = m->m_next) {
 1052                 if (m->m_nextpkt != NULL) {
 1053                         printf("sb %p TLS mbuf %p with nextpkt\n", sb, m);
 1054                         goto fail;
 1055                 }
 1056                 if ((m->m_flags & M_NOTREADY) == 0) {
 1057                         printf("sb %p TLS mbuf %p ready\n", sb, m);
 1058                         goto fail;
 1059                 }
 1060                 tlscc += m->m_len;
 1061                 ccc += m->m_len;
 1062                 mbcnt += MSIZE;
 1063                 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
 1064                         mbcnt += m->m_ext.ext_size;
 1065         }
 1066 
 1067         if (sb->sb_tlscc != tlscc) {
 1068                 printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
 1069                     sb->sb_tlsdcc);
 1070                 goto fail;
 1071         }
 1072 #endif
 1073         if (acc != sb->sb_acc || ccc != sb->sb_ccc || mbcnt != sb->sb_mbcnt) {
 1074                 printf("acc %ld/%u ccc %ld/%u mbcnt %ld/%u\n",
 1075                     acc, sb->sb_acc, ccc, sb->sb_ccc, mbcnt, sb->sb_mbcnt);
 1076 #ifdef KERN_TLS
 1077                 printf("tlscc %ld/%u dcc %u\n", tlscc, sb->sb_tlscc,
 1078                     sb->sb_tlsdcc);
 1079 #endif
 1080                 goto fail;
 1081         }
 1082         return;
 1083 fail:
 1084         panic("%s from %s:%u", __func__, file, line);
 1085 }
 1086 #endif
 1087 
 1088 /*
 1089  * As above, except the mbuf chain begins a new record.
 1090  */
 1091 void
 1092 sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
 1093 {
 1094         struct mbuf *m;
 1095 
 1096         SOCKBUF_LOCK_ASSERT(sb);
 1097 
 1098         if (m0 == NULL)
 1099                 return;
 1100         m_clrprotoflags(m0);
 1101         /*
 1102          * Put the first mbuf on the queue.  Note this permits zero length
 1103          * records.
 1104          */
 1105         sballoc(sb, m0);
 1106         SBLASTRECORDCHK(sb);
 1107         SBLINKRECORD(sb, m0);
 1108         sb->sb_mbtail = m0;
 1109         m = m0->m_next;
 1110         m0->m_next = 0;
 1111         if (m && (m0->m_flags & M_EOR)) {
 1112                 m0->m_flags &= ~M_EOR;
 1113                 m->m_flags |= M_EOR;
 1114         }
 1115         /* always call sbcompress() so it can do SBLASTMBUFCHK() */
 1116         sbcompress(sb, m, m0);
 1117 }
 1118 
 1119 /*
 1120  * As above, except the mbuf chain begins a new record.
 1121  */
 1122 void
 1123 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
 1124 {
 1125 
 1126         SOCKBUF_LOCK(sb);
 1127         sbappendrecord_locked(sb, m0);
 1128         SOCKBUF_UNLOCK(sb);
 1129 }
 1130 
 1131 /* Helper routine that appends data, control, and address to a sockbuf. */
 1132 static int
 1133 sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
 1134     struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
 1135 {
 1136         struct mbuf *m, *n, *nlast;
 1137 #if MSIZE <= 256
 1138         if (asa->sa_len > MLEN)
 1139                 return (0);
 1140 #endif
 1141         m = m_get(M_NOWAIT, MT_SONAME);
 1142         if (m == NULL)
 1143                 return (0);
 1144         m->m_len = asa->sa_len;
 1145         bcopy(asa, mtod(m, caddr_t), asa->sa_len);
 1146         if (m0) {
 1147                 M_ASSERT_NO_SND_TAG(m0);
 1148                 m_clrprotoflags(m0);
 1149                 m_tag_delete_chain(m0, NULL);
 1150                 /*
 1151                  * Clear some persistent info from pkthdr.
 1152                  * We don't use m_demote(), because some netgraph consumers
 1153                  * expect M_PKTHDR presence.
 1154                  */
 1155                 m0->m_pkthdr.rcvif = NULL;
 1156                 m0->m_pkthdr.flowid = 0;
 1157                 m0->m_pkthdr.csum_flags = 0;
 1158                 m0->m_pkthdr.fibnum = 0;
 1159                 m0->m_pkthdr.rsstype = 0;
 1160         }
 1161         if (ctrl_last)
 1162                 ctrl_last->m_next = m0; /* concatenate data to control */
 1163         else
 1164                 control = m0;
 1165         m->m_next = control;
 1166         for (n = m; n->m_next != NULL; n = n->m_next)
 1167                 sballoc(sb, n);
 1168         sballoc(sb, n);
 1169         nlast = n;
 1170         SBLINKRECORD(sb, m);
 1171 
 1172         sb->sb_mbtail = nlast;
 1173         SBLASTMBUFCHK(sb);
 1174 
 1175         SBLASTRECORDCHK(sb);
 1176         return (1);
 1177 }
 1178 
 1179 /*
 1180  * Append address and data, and optionally, control (ancillary) data to the
 1181  * receive queue of a socket.  If present, m0 must include a packet header
 1182  * with total length.  Returns 0 if no space in sockbuf or insufficient
 1183  * mbufs.
 1184  */
 1185 int
 1186 sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
 1187     struct mbuf *m0, struct mbuf *control)
 1188 {
 1189         struct mbuf *ctrl_last;
 1190         int space = asa->sa_len;
 1191 
 1192         SOCKBUF_LOCK_ASSERT(sb);
 1193 
 1194         if (m0 && (m0->m_flags & M_PKTHDR) == 0)
 1195                 panic("sbappendaddr_locked");
 1196         if (m0)
 1197                 space += m0->m_pkthdr.len;
 1198         space += m_length(control, &ctrl_last);
 1199 
 1200         if (space > sbspace(sb))
 1201                 return (0);
 1202         return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
 1203 }
 1204 
 1205 /*
 1206  * Append address and data, and optionally, control (ancillary) data to the
 1207  * receive queue of a socket.  If present, m0 must include a packet header
 1208  * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
 1209  * on the receiving sockbuf.
 1210  */
 1211 int
 1212 sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
 1213     struct mbuf *m0, struct mbuf *control)
 1214 {
 1215         struct mbuf *ctrl_last;
 1216 
 1217         SOCKBUF_LOCK_ASSERT(sb);
 1218 
 1219         ctrl_last = (control == NULL) ? NULL : m_last(control);
 1220         return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
 1221 }
 1222 
 1223 /*
 1224  * Append address and data, and optionally, control (ancillary) data to the
 1225  * receive queue of a socket.  If present, m0 must include a packet header
 1226  * with total length.  Returns 0 if no space in sockbuf or insufficient
 1227  * mbufs.
 1228  */
 1229 int
 1230 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
 1231     struct mbuf *m0, struct mbuf *control)
 1232 {
 1233         int retval;
 1234 
 1235         SOCKBUF_LOCK(sb);
 1236         retval = sbappendaddr_locked(sb, asa, m0, control);
 1237         SOCKBUF_UNLOCK(sb);
 1238         return (retval);
 1239 }
 1240 
 1241 void
 1242 sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
 1243     struct mbuf *control, int flags)
 1244 {
 1245         struct mbuf *m, *mlast;
 1246 
 1247         sbm_clrprotoflags(m0, flags);
 1248         m_last(control)->m_next = m0;
 1249 
 1250         SBLASTRECORDCHK(sb);
 1251 
 1252         for (m = control; m->m_next; m = m->m_next)
 1253                 sballoc(sb, m);
 1254         sballoc(sb, m);
 1255         mlast = m;
 1256         SBLINKRECORD(sb, control);
 1257 
 1258         sb->sb_mbtail = mlast;
 1259         SBLASTMBUFCHK(sb);
 1260 
 1261         SBLASTRECORDCHK(sb);
 1262 }
 1263 
 1264 void
 1265 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
 1266     int flags)
 1267 {
 1268 
 1269         SOCKBUF_LOCK(sb);
 1270         sbappendcontrol_locked(sb, m0, control, flags);
 1271         SOCKBUF_UNLOCK(sb);
 1272 }
 1273 
 1274 /*
 1275  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
 1276  * (n).  If (n) is NULL, the buffer is presumed empty.
 1277  *
 1278  * When the data is compressed, mbufs in the chain may be handled in one of
 1279  * three ways:
 1280  *
 1281  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
 1282  *     record boundary, and no change in data type).
 1283  *
 1284  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
 1285  *     an mbuf already in the socket buffer.  This can occur if an
 1286  *     appropriate mbuf exists, there is room, both mbufs are not marked as
 1287  *     not ready, and no merging of data types will occur.
 1288  *
 1289  * (3) The mbuf may be appended to the end of the existing mbuf chain.
 1290  *
 1291  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
 1292  * end-of-record.
 1293  */
 1294 void
 1295 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
 1296 {
 1297         int eor = 0;
 1298         struct mbuf *o;
 1299 
 1300         SOCKBUF_LOCK_ASSERT(sb);
 1301 
 1302         while (m) {
 1303                 eor |= m->m_flags & M_EOR;
 1304                 if (m->m_len == 0 &&
 1305                     (eor == 0 ||
 1306                      (((o = m->m_next) || (o = n)) &&
 1307                       o->m_type == m->m_type))) {
 1308                         if (sb->sb_lastrecord == m)
 1309                                 sb->sb_lastrecord = m->m_next;
 1310                         m = m_free(m);
 1311                         continue;
 1312                 }
 1313                 if (n && (n->m_flags & M_EOR) == 0 &&
 1314                     M_WRITABLE(n) &&
 1315                     ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
 1316                     !(m->m_flags & M_NOTREADY) &&
 1317                     !(n->m_flags & (M_NOTREADY | M_EXTPG)) &&
 1318                     !mbuf_has_tls_session(m) &&
 1319                     !mbuf_has_tls_session(n) &&
 1320                     m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
 1321                     m->m_len <= M_TRAILINGSPACE(n) &&
 1322                     n->m_type == m->m_type) {
 1323                         m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
 1324                         n->m_len += m->m_len;
 1325                         sb->sb_ccc += m->m_len;
 1326                         if (sb->sb_fnrdy == NULL)
 1327                                 sb->sb_acc += m->m_len;
 1328                         if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
 1329                                 /* XXX: Probably don't need.*/
 1330                                 sb->sb_ctl += m->m_len;
 1331                         m = m_free(m);
 1332                         continue;
 1333                 }
 1334                 if (m->m_len <= MLEN && (m->m_flags & M_EXTPG) &&
 1335                     (m->m_flags & M_NOTREADY) == 0 &&
 1336                     !mbuf_has_tls_session(m))
 1337                         (void)mb_unmapped_compress(m);
 1338                 if (n)
 1339                         n->m_next = m;
 1340                 else
 1341                         sb->sb_mb = m;
 1342                 sb->sb_mbtail = m;
 1343                 sballoc(sb, m);
 1344                 n = m;
 1345                 m->m_flags &= ~M_EOR;
 1346                 m = m->m_next;
 1347                 n->m_next = 0;
 1348         }
 1349         if (eor) {
 1350                 KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
 1351                 n->m_flags |= eor;
 1352         }
 1353         SBLASTMBUFCHK(sb);
 1354 }
 1355 
 1356 #ifdef KERN_TLS
 1357 /*
 1358  * A version of sbcompress() for encrypted TLS RX mbufs.  These mbufs
 1359  * are appended to the 'sb_mtls' chain instead of 'sb_mb' and are also
 1360  * a bit simpler (no EOR markers, always MT_DATA, etc.).
 1361  */
 1362 static void
 1363 sbcompress_ktls_rx(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
 1364 {
 1365 
 1366         SOCKBUF_LOCK_ASSERT(sb);
 1367 
 1368         while (m) {
 1369                 KASSERT((m->m_flags & M_EOR) == 0,
 1370                     ("TLS RX mbuf %p with EOR", m));
 1371                 KASSERT(m->m_type == MT_DATA,
 1372                     ("TLS RX mbuf %p is not MT_DATA", m));
 1373                 KASSERT((m->m_flags & M_NOTREADY) != 0,
 1374                     ("TLS RX mbuf %p ready", m));
 1375                 KASSERT((m->m_flags & M_EXTPG) == 0,
 1376                     ("TLS RX mbuf %p unmapped", m));
 1377 
 1378                 if (m->m_len == 0) {
 1379                         m = m_free(m);
 1380                         continue;
 1381                 }
 1382 
 1383                 /*
 1384                  * Even though both 'n' and 'm' are NOTREADY, it's ok
 1385                  * to coalesce the data.
 1386                  */
 1387                 if (n &&
 1388                     M_WRITABLE(n) &&
 1389                     ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
 1390                     !(n->m_flags & (M_EXTPG)) &&
 1391                     m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
 1392                     m->m_len <= M_TRAILINGSPACE(n)) {
 1393                         m_copydata(m, 0, m->m_len, mtodo(n, n->m_len));
 1394                         n->m_len += m->m_len;
 1395                         sb->sb_ccc += m->m_len;
 1396                         sb->sb_tlscc += m->m_len;
 1397                         m = m_free(m);
 1398                         continue;
 1399                 }
 1400                 if (n)
 1401                         n->m_next = m;
 1402                 else
 1403                         sb->sb_mtls = m;
 1404                 sb->sb_mtlstail = m;
 1405                 sballoc_ktls_rx(sb, m);
 1406                 n = m;
 1407                 m = m->m_next;
 1408                 n->m_next = NULL;
 1409         }
 1410         SBLASTMBUFCHK(sb);
 1411 }
 1412 #endif
 1413 
 1414 /*
 1415  * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
 1416  */
 1417 static void
 1418 sbflush_internal(struct sockbuf *sb)
 1419 {
 1420 
 1421         while (sb->sb_mbcnt || sb->sb_tlsdcc) {
 1422                 /*
 1423                  * Don't call sbcut(sb, 0) if the leading mbuf is non-empty:
 1424                  * we would loop forever. Panic instead.
 1425                  */
 1426                 if (sb->sb_ccc == 0 && (sb->sb_mb == NULL || sb->sb_mb->m_len))
 1427                         break;
 1428                 m_freem(sbcut_internal(sb, (int)sb->sb_ccc));
 1429         }
 1430         KASSERT(sb->sb_ccc == 0 && sb->sb_mb == 0 && sb->sb_mbcnt == 0,
 1431             ("%s: ccc %u mb %p mbcnt %u", __func__,
 1432             sb->sb_ccc, (void *)sb->sb_mb, sb->sb_mbcnt));
 1433 }
 1434 
 1435 void
 1436 sbflush_locked(struct sockbuf *sb)
 1437 {
 1438 
 1439         SOCKBUF_LOCK_ASSERT(sb);
 1440         sbflush_internal(sb);
 1441 }
 1442 
 1443 void
 1444 sbflush(struct sockbuf *sb)
 1445 {
 1446 
 1447         SOCKBUF_LOCK(sb);
 1448         sbflush_locked(sb);
 1449         SOCKBUF_UNLOCK(sb);
 1450 }
 1451 
 1452 /*
 1453  * Cut data from (the front of) a sockbuf.
 1454  */
 1455 static struct mbuf *
 1456 sbcut_internal(struct sockbuf *sb, int len)
 1457 {
 1458         struct mbuf *m, *next, *mfree;
 1459         bool is_tls;
 1460 
 1461         KASSERT(len >= 0, ("%s: len is %d but it is supposed to be >= 0",
 1462             __func__, len));
 1463         KASSERT(len <= sb->sb_ccc, ("%s: len: %d is > ccc: %u",
 1464             __func__, len, sb->sb_ccc));
 1465 
 1466         next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
 1467         is_tls = false;
 1468         mfree = NULL;
 1469 
 1470         while (len > 0) {
 1471                 if (m == NULL) {
 1472 #ifdef KERN_TLS
 1473                         if (next == NULL && !is_tls) {
 1474                                 if (sb->sb_tlsdcc != 0) {
 1475                                         MPASS(len >= sb->sb_tlsdcc);
 1476                                         len -= sb->sb_tlsdcc;
 1477                                         sb->sb_ccc -= sb->sb_tlsdcc;
 1478                                         sb->sb_tlsdcc = 0;
 1479                                         if (len == 0)
 1480                                                 break;
 1481                                 }
 1482                                 next = sb->sb_mtls;
 1483                                 is_tls = true;
 1484                         }
 1485 #endif
 1486                         KASSERT(next, ("%s: no next, len %d", __func__, len));
 1487                         m = next;
 1488                         next = m->m_nextpkt;
 1489                 }
 1490                 if (m->m_len > len) {
 1491                         KASSERT(!(m->m_flags & M_NOTAVAIL),
 1492                             ("%s: m %p M_NOTAVAIL", __func__, m));
 1493                         m->m_len -= len;
 1494                         m->m_data += len;
 1495                         sb->sb_ccc -= len;
 1496                         sb->sb_acc -= len;
 1497                         if (sb->sb_sndptroff != 0)
 1498                                 sb->sb_sndptroff -= len;
 1499                         if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
 1500                                 sb->sb_ctl -= len;
 1501                         break;
 1502                 }
 1503                 len -= m->m_len;
 1504 #ifdef KERN_TLS
 1505                 if (is_tls)
 1506                         sbfree_ktls_rx(sb, m);
 1507                 else
 1508 #endif
 1509                         sbfree(sb, m);
 1510                 /*
 1511                  * Do not put M_NOTREADY buffers to the free list, they
 1512                  * are referenced from outside.
 1513                  */
 1514                 if (m->m_flags & M_NOTREADY && !is_tls)
 1515                         m = m->m_next;
 1516                 else {
 1517                         struct mbuf *n;
 1518 
 1519                         n = m->m_next;
 1520                         m->m_next = mfree;
 1521                         mfree = m;
 1522                         m = n;
 1523                 }
 1524         }
 1525         /*
 1526          * Free any zero-length mbufs from the buffer.
 1527          * For SOCK_DGRAM sockets such mbufs represent empty records.
 1528          * XXX: For SOCK_STREAM sockets such mbufs can appear in the buffer,
 1529          * when sosend_generic() needs to send only control data.
 1530          */
 1531         while (m && m->m_len == 0) {
 1532                 struct mbuf *n;
 1533 
 1534                 sbfree(sb, m);
 1535                 n = m->m_next;
 1536                 m->m_next = mfree;
 1537                 mfree = m;
 1538                 m = n;
 1539         }
 1540 #ifdef KERN_TLS
 1541         if (is_tls) {
 1542                 sb->sb_mb = NULL;
 1543                 sb->sb_mtls = m;
 1544                 if (m == NULL)
 1545                         sb->sb_mtlstail = NULL;
 1546         } else
 1547 #endif
 1548         if (m) {
 1549                 sb->sb_mb = m;
 1550                 m->m_nextpkt = next;
 1551         } else
 1552                 sb->sb_mb = next;
 1553         /*
 1554          * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
 1555          * sb_lastrecord is up-to-date if we dropped part of the last record.
 1556          */
 1557         m = sb->sb_mb;
 1558         if (m == NULL) {
 1559                 sb->sb_mbtail = NULL;
 1560                 sb->sb_lastrecord = NULL;
 1561         } else if (m->m_nextpkt == NULL) {
 1562                 sb->sb_lastrecord = m;
 1563         }
 1564 
 1565         return (mfree);
 1566 }
 1567 
 1568 /*
 1569  * Drop data from (the front of) a sockbuf.
 1570  */
 1571 void
 1572 sbdrop_locked(struct sockbuf *sb, int len)
 1573 {
 1574 
 1575         SOCKBUF_LOCK_ASSERT(sb);
 1576         m_freem(sbcut_internal(sb, len));
 1577 }
 1578 
 1579 /*
 1580  * Drop data from (the front of) a sockbuf,
 1581  * and return it to caller.
 1582  */
 1583 struct mbuf *
 1584 sbcut_locked(struct sockbuf *sb, int len)
 1585 {
 1586 
 1587         SOCKBUF_LOCK_ASSERT(sb);
 1588         return (sbcut_internal(sb, len));
 1589 }
 1590 
 1591 void
 1592 sbdrop(struct sockbuf *sb, int len)
 1593 {
 1594         struct mbuf *mfree;
 1595 
 1596         SOCKBUF_LOCK(sb);
 1597         mfree = sbcut_internal(sb, len);
 1598         SOCKBUF_UNLOCK(sb);
 1599 
 1600         m_freem(mfree);
 1601 }
 1602 
 1603 struct mbuf *
 1604 sbsndptr_noadv(struct sockbuf *sb, uint32_t off, uint32_t *moff)
 1605 {
 1606         struct mbuf *m;
 1607 
 1608         KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
 1609         if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
 1610                 *moff = off;
 1611                 if (sb->sb_sndptr == NULL) {
 1612                         sb->sb_sndptr = sb->sb_mb;
 1613                         sb->sb_sndptroff = 0;
 1614                 }
 1615                 return (sb->sb_mb);
 1616         } else {
 1617                 m = sb->sb_sndptr;
 1618                 off -= sb->sb_sndptroff;
 1619         }
 1620         *moff = off;
 1621         return (m);
 1622 }
 1623 
 1624 void
 1625 sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, uint32_t len)
 1626 {
 1627         /*
 1628          * A small copy was done, advance forward the sb_sbsndptr to cover
 1629          * it.
 1630          */
 1631         struct mbuf *m;
 1632 
 1633         if (mb != sb->sb_sndptr) {
 1634                 /* Did not copyout at the same mbuf */
 1635                 return;
 1636         }
 1637         m = mb;
 1638         while (m && (len > 0)) {
 1639                 if (len >= m->m_len) {
 1640                         len -= m->m_len;
 1641                         if (m->m_next) {
 1642                                 sb->sb_sndptroff += m->m_len;
 1643                                 sb->sb_sndptr = m->m_next;
 1644                         }
 1645                         m = m->m_next;
 1646                 } else {
 1647                         len = 0;
 1648                 }
 1649         }
 1650 }
 1651 
 1652 /*
 1653  * Return the first mbuf and the mbuf data offset for the provided
 1654  * send offset without changing the "sb_sndptroff" field.
 1655  */
 1656 struct mbuf *
 1657 sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff)
 1658 {
 1659         struct mbuf *m;
 1660 
 1661         KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
 1662 
 1663         /*
 1664          * If the "off" is below the stored offset, which happens on
 1665          * retransmits, just use "sb_mb":
 1666          */
 1667         if (sb->sb_sndptr == NULL || sb->sb_sndptroff > off) {
 1668                 m = sb->sb_mb;
 1669         } else {
 1670                 m = sb->sb_sndptr;
 1671                 off -= sb->sb_sndptroff;
 1672         }
 1673         while (off > 0 && m != NULL) {
 1674                 if (off < m->m_len)
 1675                         break;
 1676                 off -= m->m_len;
 1677                 m = m->m_next;
 1678         }
 1679         *moff = off;
 1680         return (m);
 1681 }
 1682 
 1683 /*
 1684  * Drop a record off the front of a sockbuf and move the next record to the
 1685  * front.
 1686  */
 1687 void
 1688 sbdroprecord_locked(struct sockbuf *sb)
 1689 {
 1690         struct mbuf *m;
 1691 
 1692         SOCKBUF_LOCK_ASSERT(sb);
 1693 
 1694         m = sb->sb_mb;
 1695         if (m) {
 1696                 sb->sb_mb = m->m_nextpkt;
 1697                 do {
 1698                         sbfree(sb, m);
 1699                         m = m_free(m);
 1700                 } while (m);
 1701         }
 1702         SB_EMPTY_FIXUP(sb);
 1703 }
 1704 
 1705 /*
 1706  * Drop a record off the front of a sockbuf and move the next record to the
 1707  * front.
 1708  */
 1709 void
 1710 sbdroprecord(struct sockbuf *sb)
 1711 {
 1712 
 1713         SOCKBUF_LOCK(sb);
 1714         sbdroprecord_locked(sb);
 1715         SOCKBUF_UNLOCK(sb);
 1716 }
 1717 
 1718 /*
 1719  * Create a "control" mbuf containing the specified data with the specified
 1720  * type for presentation on a socket buffer.
 1721  */
 1722 struct mbuf *
 1723 sbcreatecontrol_how(void *p, int size, int type, int level, int wait)
 1724 {
 1725         struct cmsghdr *cp;
 1726         struct mbuf *m;
 1727 
 1728         MBUF_CHECKSLEEP(wait);
 1729         if (CMSG_SPACE((u_int)size) > MCLBYTES)
 1730                 return ((struct mbuf *) NULL);
 1731         if (CMSG_SPACE((u_int)size) > MLEN)
 1732                 m = m_getcl(wait, MT_CONTROL, 0);
 1733         else
 1734                 m = m_get(wait, MT_CONTROL);
 1735         if (m == NULL)
 1736                 return ((struct mbuf *) NULL);
 1737         cp = mtod(m, struct cmsghdr *);
 1738         m->m_len = 0;
 1739         KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
 1740             ("sbcreatecontrol: short mbuf"));
 1741         /*
 1742          * Don't leave the padding between the msg header and the
 1743          * cmsg data and the padding after the cmsg data un-initialized.
 1744          */
 1745         bzero(cp, CMSG_SPACE((u_int)size));
 1746         if (p != NULL)
 1747                 (void)memcpy(CMSG_DATA(cp), p, size);
 1748         m->m_len = CMSG_SPACE(size);
 1749         cp->cmsg_len = CMSG_LEN(size);
 1750         cp->cmsg_level = level;
 1751         cp->cmsg_type = type;
 1752         return (m);
 1753 }
 1754 
 1755 struct mbuf *
 1756 sbcreatecontrol(caddr_t p, int size, int type, int level)
 1757 {
 1758 
 1759         return (sbcreatecontrol_how(p, size, type, level, M_NOWAIT));
 1760 }
 1761 
 1762 /*
 1763  * This does the same for socket buffers that sotoxsocket does for sockets:
 1764  * generate an user-format data structure describing the socket buffer.  Note
 1765  * that the xsockbuf structure, since it is always embedded in a socket, does
 1766  * not include a self pointer nor a length.  We make this entry point public
 1767  * in case some other mechanism needs it.
 1768  */
 1769 void
 1770 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
 1771 {
 1772 
 1773         xsb->sb_cc = sb->sb_ccc;
 1774         xsb->sb_hiwat = sb->sb_hiwat;
 1775         xsb->sb_mbcnt = sb->sb_mbcnt;
 1776         xsb->sb_mcnt = sb->sb_mcnt;     
 1777         xsb->sb_ccnt = sb->sb_ccnt;
 1778         xsb->sb_mbmax = sb->sb_mbmax;
 1779         xsb->sb_lowat = sb->sb_lowat;
 1780         xsb->sb_flags = sb->sb_flags;
 1781         xsb->sb_timeo = sb->sb_timeo;
 1782 }
 1783 
 1784 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
 1785 static int dummy;
 1786 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW | CTLFLAG_SKIP, &dummy, 0, "");
 1787 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
 1788     CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &sb_max, 0,
 1789     sysctl_handle_sb_max, "LU",
 1790     "Maximum socket buffer size");
 1791 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
 1792     &sb_efficiency, 0, "Socket buffer size waste factor");

Cache object: 19e5deb6e31e022c0bf3f2e7fbce310b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.