The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_socket.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
    5  *      The Regents of the University of California.
    6  * Copyright (c) 2004 The FreeBSD Foundation
    7  * Copyright (c) 2004-2008 Robert N. M. Watson
    8  * All rights reserved.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)uipc_socket.c       8.3 (Berkeley) 4/15/94
   35  */
   36 
   37 /*
   38  * Comments on the socket life cycle:
   39  *
   40  * soalloc() sets of socket layer state for a socket, called only by
   41  * socreate() and sonewconn().  Socket layer private.
   42  *
   43  * sodealloc() tears down socket layer state for a socket, called only by
   44  * sofree() and sonewconn().  Socket layer private.
   45  *
   46  * pru_attach() associates protocol layer state with an allocated socket;
   47  * called only once, may fail, aborting socket allocation.  This is called
   48  * from socreate() and sonewconn().  Socket layer private.
   49  *
   50  * pru_detach() disassociates protocol layer state from an attached socket,
   51  * and will be called exactly once for sockets in which pru_attach() has
   52  * been successfully called.  If pru_attach() returned an error,
   53  * pru_detach() will not be called.  Socket layer private.
   54  *
   55  * pru_abort() and pru_close() notify the protocol layer that the last
   56  * consumer of a socket is starting to tear down the socket, and that the
   57  * protocol should terminate the connection.  Historically, pru_abort() also
   58  * detached protocol state from the socket state, but this is no longer the
   59  * case.
   60  *
   61  * socreate() creates a socket and attaches protocol state.  This is a public
   62  * interface that may be used by socket layer consumers to create new
   63  * sockets.
   64  *
   65  * sonewconn() creates a socket and attaches protocol state.  This is a
   66  * public interface  that may be used by protocols to create new sockets when
   67  * a new connection is received and will be available for accept() on a
   68  * listen socket.
   69  *
   70  * soclose() destroys a socket after possibly waiting for it to disconnect.
   71  * This is a public interface that socket consumers should use to close and
   72  * release a socket when done with it.
   73  *
   74  * soabort() destroys a socket without waiting for it to disconnect (used
   75  * only for incoming connections that are already partially or fully
   76  * connected).  This is used internally by the socket layer when clearing
   77  * listen socket queues (due to overflow or close on the listen socket), but
   78  * is also a public interface protocols may use to abort connections in
   79  * their incomplete listen queues should they no longer be required.  Sockets
   80  * placed in completed connection listen queues should not be aborted for
   81  * reasons described in the comment above the soclose() implementation.  This
   82  * is not a general purpose close routine, and except in the specific
   83  * circumstances described here, should not be used.
   84  *
   85  * sofree() will free a socket and its protocol state if all references on
   86  * the socket have been released, and is the public interface to attempt to
   87  * free a socket when a reference is removed.  This is a socket layer private
   88  * interface.
   89  *
   90  * NOTE: In addition to socreate() and soclose(), which provide a single
   91  * socket reference to the consumer to be managed as required, there are two
   92  * calls to explicitly manage socket references, soref(), and sorele().
   93  * Currently, these are generally required only when transitioning a socket
   94  * from a listen queue to a file descriptor, in order to prevent garbage
   95  * collection of the socket at an untimely moment.  For a number of reasons,
   96  * these interfaces are not preferred, and should be avoided.
   97  *
   98  * NOTE: With regard to VNETs the general rule is that callers do not set
   99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
  100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
  101  * and sorflush(), which are usually called from a pre-set VNET context.
  102  * sopoll() currently does not need a VNET context to be set.
  103  */
  104 
  105 #include <sys/cdefs.h>
  106 __FBSDID("$FreeBSD$");
  107 
  108 #include "opt_inet.h"
  109 #include "opt_inet6.h"
  110 #include "opt_kern_tls.h"
  111 #include "opt_sctp.h"
  112 
  113 #include <sys/param.h>
  114 #include <sys/systm.h>
  115 #include <sys/capsicum.h>
  116 #include <sys/fcntl.h>
  117 #include <sys/limits.h>
  118 #include <sys/lock.h>
  119 #include <sys/mac.h>
  120 #include <sys/malloc.h>
  121 #include <sys/mbuf.h>
  122 #include <sys/mutex.h>
  123 #include <sys/domain.h>
  124 #include <sys/file.h>                   /* for struct knote */
  125 #include <sys/hhook.h>
  126 #include <sys/kernel.h>
  127 #include <sys/khelp.h>
  128 #include <sys/ktls.h>
  129 #include <sys/event.h>
  130 #include <sys/eventhandler.h>
  131 #include <sys/poll.h>
  132 #include <sys/proc.h>
  133 #include <sys/protosw.h>
  134 #include <sys/sbuf.h>
  135 #include <sys/socket.h>
  136 #include <sys/socketvar.h>
  137 #include <sys/resourcevar.h>
  138 #include <net/route.h>
  139 #include <sys/signalvar.h>
  140 #include <sys/stat.h>
  141 #include <sys/sx.h>
  142 #include <sys/sysctl.h>
  143 #include <sys/taskqueue.h>
  144 #include <sys/uio.h>
  145 #include <sys/un.h>
  146 #include <sys/unpcb.h>
  147 #include <sys/jail.h>
  148 #include <sys/syslog.h>
  149 #include <netinet/in.h>
  150 #include <netinet/in_pcb.h>
  151 #include <netinet/tcp.h>
  152 
  153 #include <net/vnet.h>
  154 
  155 #include <security/mac/mac_framework.h>
  156 
  157 #include <vm/uma.h>
  158 
  159 #ifdef COMPAT_FREEBSD32
  160 #include <sys/mount.h>
  161 #include <sys/sysent.h>
  162 #include <compat/freebsd32/freebsd32.h>
  163 #endif
  164 
  165 static int      soreceive_rcvoob(struct socket *so, struct uio *uio,
  166                     int flags);
  167 static void     so_rdknl_lock(void *);
  168 static void     so_rdknl_unlock(void *);
  169 static void     so_rdknl_assert_lock(void *, int);
  170 static void     so_wrknl_lock(void *);
  171 static void     so_wrknl_unlock(void *);
  172 static void     so_wrknl_assert_lock(void *, int);
  173 
  174 static void     filt_sordetach(struct knote *kn);
  175 static int      filt_soread(struct knote *kn, long hint);
  176 static void     filt_sowdetach(struct knote *kn);
  177 static int      filt_sowrite(struct knote *kn, long hint);
  178 static int      filt_soempty(struct knote *kn, long hint);
  179 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
  180 fo_kqfilter_t   soo_kqfilter;
  181 
  182 static struct filterops soread_filtops = {
  183         .f_isfd = 1,
  184         .f_detach = filt_sordetach,
  185         .f_event = filt_soread,
  186 };
  187 static struct filterops sowrite_filtops = {
  188         .f_isfd = 1,
  189         .f_detach = filt_sowdetach,
  190         .f_event = filt_sowrite,
  191 };
  192 static struct filterops soempty_filtops = {
  193         .f_isfd = 1,
  194         .f_detach = filt_sowdetach,
  195         .f_event = filt_soempty,
  196 };
  197 
  198 so_gen_t        so_gencnt;      /* generation count for sockets */
  199 
  200 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
  201 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
  202 
  203 #define VNET_SO_ASSERT(so)                                              \
  204         VNET_ASSERT(curvnet != NULL,                                    \
  205             ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
  206 
  207 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
  208 #define V_socket_hhh            VNET(socket_hhh)
  209 
  210 /*
  211  * Limit on the number of connections in the listen queue waiting
  212  * for accept(2).
  213  * NB: The original sysctl somaxconn is still available but hidden
  214  * to prevent confusion about the actual purpose of this number.
  215  */
  216 static u_int somaxconn = SOMAXCONN;
  217 
  218 static int
  219 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
  220 {
  221         int error;
  222         int val;
  223 
  224         val = somaxconn;
  225         error = sysctl_handle_int(oidp, &val, 0, req);
  226         if (error || !req->newptr )
  227                 return (error);
  228 
  229         /*
  230          * The purpose of the UINT_MAX / 3 limit, is so that the formula
  231          *   3 * so_qlimit / 2
  232          * below, will not overflow.
  233          */
  234 
  235         if (val < 1 || val > UINT_MAX / 3)
  236                 return (EINVAL);
  237 
  238         somaxconn = val;
  239         return (0);
  240 }
  241 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
  242     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
  243     sysctl_somaxconn, "I",
  244     "Maximum listen socket pending connection accept queue size");
  245 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
  246     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0,
  247     sizeof(int), sysctl_somaxconn, "I",
  248     "Maximum listen socket pending connection accept queue size (compat)");
  249 
  250 static int numopensockets;
  251 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
  252     &numopensockets, 0, "Number of open sockets");
  253 
  254 /*
  255  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
  256  * so_gencnt field.
  257  */
  258 static struct mtx so_global_mtx;
  259 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
  260 
  261 /*
  262  * General IPC sysctl name space, used by sockets and a variety of other IPC
  263  * types.
  264  */
  265 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  266     "IPC");
  267 
  268 /*
  269  * Initialize the socket subsystem and set up the socket
  270  * memory allocator.
  271  */
  272 static uma_zone_t socket_zone;
  273 int     maxsockets;
  274 
  275 static void
  276 socket_zone_change(void *tag)
  277 {
  278 
  279         maxsockets = uma_zone_set_max(socket_zone, maxsockets);
  280 }
  281 
  282 static void
  283 socket_hhook_register(int subtype)
  284 {
  285 
  286         if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
  287             &V_socket_hhh[subtype],
  288             HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
  289                 printf("%s: WARNING: unable to register hook\n", __func__);
  290 }
  291 
  292 static void
  293 socket_hhook_deregister(int subtype)
  294 {
  295 
  296         if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
  297                 printf("%s: WARNING: unable to deregister hook\n", __func__);
  298 }
  299 
  300 static void
  301 socket_init(void *tag)
  302 {
  303 
  304         socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
  305             NULL, NULL, UMA_ALIGN_PTR, 0);
  306         maxsockets = uma_zone_set_max(socket_zone, maxsockets);
  307         uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
  308         EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
  309             EVENTHANDLER_PRI_FIRST);
  310 }
  311 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
  312 
  313 static void
  314 socket_vnet_init(const void *unused __unused)
  315 {
  316         int i;
  317 
  318         /* We expect a contiguous range */
  319         for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
  320                 socket_hhook_register(i);
  321 }
  322 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
  323     socket_vnet_init, NULL);
  324 
  325 static void
  326 socket_vnet_uninit(const void *unused __unused)
  327 {
  328         int i;
  329 
  330         for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
  331                 socket_hhook_deregister(i);
  332 }
  333 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
  334     socket_vnet_uninit, NULL);
  335 
  336 /*
  337  * Initialise maxsockets.  This SYSINIT must be run after
  338  * tunable_mbinit().
  339  */
  340 static void
  341 init_maxsockets(void *ignored)
  342 {
  343 
  344         TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
  345         maxsockets = imax(maxsockets, maxfiles);
  346 }
  347 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
  348 
  349 /*
  350  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
  351  * of the change so that they can update their dependent limits as required.
  352  */
  353 static int
  354 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
  355 {
  356         int error, newmaxsockets;
  357 
  358         newmaxsockets = maxsockets;
  359         error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
  360         if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
  361                 if (newmaxsockets > maxsockets &&
  362                     newmaxsockets <= maxfiles) {
  363                         maxsockets = newmaxsockets;
  364                         EVENTHANDLER_INVOKE(maxsockets_change);
  365                 } else
  366                         error = EINVAL;
  367         }
  368         return (error);
  369 }
  370 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
  371     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0,
  372     sysctl_maxsockets, "IU",
  373     "Maximum number of sockets available");
  374 
  375 /*
  376  * Socket operation routines.  These routines are called by the routines in
  377  * sys_socket.c or from a system process, and implement the semantics of
  378  * socket operations by switching out to the protocol specific routines.
  379  */
  380 
  381 /*
  382  * Get a socket structure from our zone, and initialize it.  Note that it
  383  * would probably be better to allocate socket and PCB at the same time, but
  384  * I'm not convinced that all the protocols can be easily modified to do
  385  * this.
  386  *
  387  * soalloc() returns a socket with a ref count of 0.
  388  */
  389 static struct socket *
  390 soalloc(struct vnet *vnet)
  391 {
  392         struct socket *so;
  393 
  394         so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
  395         if (so == NULL)
  396                 return (NULL);
  397 #ifdef MAC
  398         if (mac_socket_init(so, M_NOWAIT) != 0) {
  399                 uma_zfree(socket_zone, so);
  400                 return (NULL);
  401         }
  402 #endif
  403         if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
  404                 uma_zfree(socket_zone, so);
  405                 return (NULL);
  406         }
  407 
  408         /*
  409          * The socket locking protocol allows to lock 2 sockets at a time,
  410          * however, the first one must be a listening socket.  WITNESS lacks
  411          * a feature to change class of an existing lock, so we use DUPOK.
  412          */
  413         mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
  414         mtx_init(&so->so_snd_mtx, "so_snd", NULL, MTX_DEF);
  415         mtx_init(&so->so_rcv_mtx, "so_rcv", NULL, MTX_DEF);
  416         so->so_rcv.sb_sel = &so->so_rdsel;
  417         so->so_snd.sb_sel = &so->so_wrsel;
  418         sx_init(&so->so_snd_sx, "so_snd_sx");
  419         sx_init(&so->so_rcv_sx, "so_rcv_sx");
  420         TAILQ_INIT(&so->so_snd.sb_aiojobq);
  421         TAILQ_INIT(&so->so_rcv.sb_aiojobq);
  422         TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
  423         TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
  424 #ifdef VIMAGE
  425         VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
  426             __func__, __LINE__, so));
  427         so->so_vnet = vnet;
  428 #endif
  429         /* We shouldn't need the so_global_mtx */
  430         if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
  431                 /* Do we need more comprehensive error returns? */
  432                 uma_zfree(socket_zone, so);
  433                 return (NULL);
  434         }
  435         mtx_lock(&so_global_mtx);
  436         so->so_gencnt = ++so_gencnt;
  437         ++numopensockets;
  438 #ifdef VIMAGE
  439         vnet->vnet_sockcnt++;
  440 #endif
  441         mtx_unlock(&so_global_mtx);
  442 
  443         return (so);
  444 }
  445 
  446 /*
  447  * Free the storage associated with a socket at the socket layer, tear down
  448  * locks, labels, etc.  All protocol state is assumed already to have been
  449  * torn down (and possibly never set up) by the caller.
  450  */
  451 void
  452 sodealloc(struct socket *so)
  453 {
  454 
  455         KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
  456         KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
  457 
  458         mtx_lock(&so_global_mtx);
  459         so->so_gencnt = ++so_gencnt;
  460         --numopensockets;       /* Could be below, but faster here. */
  461 #ifdef VIMAGE
  462         VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
  463             __func__, __LINE__, so));
  464         so->so_vnet->vnet_sockcnt--;
  465 #endif
  466         mtx_unlock(&so_global_mtx);
  467 #ifdef MAC
  468         mac_socket_destroy(so);
  469 #endif
  470         hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
  471 
  472         khelp_destroy_osd(&so->osd);
  473         if (SOLISTENING(so)) {
  474                 if (so->sol_accept_filter != NULL)
  475                         accept_filt_setopt(so, NULL);
  476         } else {
  477                 if (so->so_rcv.sb_hiwat)
  478                         (void)chgsbsize(so->so_cred->cr_uidinfo,
  479                             &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
  480                 if (so->so_snd.sb_hiwat)
  481                         (void)chgsbsize(so->so_cred->cr_uidinfo,
  482                             &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
  483                 sx_destroy(&so->so_snd_sx);
  484                 sx_destroy(&so->so_rcv_sx);
  485                 mtx_destroy(&so->so_snd_mtx);
  486                 mtx_destroy(&so->so_rcv_mtx);
  487         }
  488         crfree(so->so_cred);
  489         mtx_destroy(&so->so_lock);
  490         uma_zfree(socket_zone, so);
  491 }
  492 
  493 /*
  494  * socreate returns a socket with a ref count of 1 and a file descriptor
  495  * reference.  The socket should be closed with soclose().
  496  */
  497 int
  498 socreate(int dom, struct socket **aso, int type, int proto,
  499     struct ucred *cred, struct thread *td)
  500 {
  501         struct protosw *prp;
  502         struct socket *so;
  503         int error;
  504 
  505         /*
  506          * XXX: divert(4) historically abused PF_INET.  Keep this compatibility
  507          * shim until all applications have been updated.
  508          */
  509         if (__predict_false(dom == PF_INET && type == SOCK_RAW &&
  510             proto == IPPROTO_DIVERT)) {
  511                 dom = PF_DIVERT;
  512                 printf("%s uses obsolete way to create divert(4) socket\n",
  513                     td->td_proc->p_comm);
  514         }
  515 
  516         prp = pffindproto(dom, type, proto);
  517         if (prp == NULL) {
  518                 /* No support for domain. */
  519                 if (pffinddomain(dom) == NULL)
  520                         return (EAFNOSUPPORT);
  521                 /* No support for socket type. */
  522                 if (proto == 0 && type != 0)
  523                         return (EPROTOTYPE);
  524                 return (EPROTONOSUPPORT);
  525         }
  526 
  527         MPASS(prp->pr_attach);
  528 
  529         if (IN_CAPABILITY_MODE(td) && (prp->pr_flags & PR_CAPATTACH) == 0)
  530                 return (ECAPMODE);
  531 
  532         if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
  533                 return (EPROTONOSUPPORT);
  534 
  535         so = soalloc(CRED_TO_VNET(cred));
  536         if (so == NULL)
  537                 return (ENOBUFS);
  538 
  539         so->so_type = type;
  540         so->so_cred = crhold(cred);
  541         if ((prp->pr_domain->dom_family == PF_INET) ||
  542             (prp->pr_domain->dom_family == PF_INET6) ||
  543             (prp->pr_domain->dom_family == PF_ROUTE))
  544                 so->so_fibnum = td->td_proc->p_fibnum;
  545         else
  546                 so->so_fibnum = 0;
  547         so->so_proto = prp;
  548 #ifdef MAC
  549         mac_socket_create(cred, so);
  550 #endif
  551         knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
  552             so_rdknl_assert_lock);
  553         knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
  554             so_wrknl_assert_lock);
  555         if ((prp->pr_flags & PR_SOCKBUF) == 0) {
  556                 so->so_snd.sb_mtx = &so->so_snd_mtx;
  557                 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
  558         }
  559         /*
  560          * Auto-sizing of socket buffers is managed by the protocols and
  561          * the appropriate flags must be set in the pru_attach function.
  562          */
  563         CURVNET_SET(so->so_vnet);
  564         error = prp->pr_attach(so, proto, td);
  565         CURVNET_RESTORE();
  566         if (error) {
  567                 sodealloc(so);
  568                 return (error);
  569         }
  570         soref(so);
  571         *aso = so;
  572         return (0);
  573 }
  574 
  575 #ifdef REGRESSION
  576 static int regression_sonewconn_earlytest = 1;
  577 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
  578     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
  579 #endif
  580 
  581 static struct timeval overinterval = { 60, 0 };
  582 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
  583     &overinterval,
  584     "Delay in seconds between warnings for listen socket overflows");
  585 
  586 /*
  587  * When an attempt at a new connection is noted on a socket which supports
  588  * accept(2), the protocol has two options:
  589  * 1) Call legacy sonewconn() function, which would call protocol attach
  590  *    method, same as used for socket(2).
  591  * 2) Call solisten_clone(), do attach that is specific to a cloned connection,
  592  *    and then call solisten_enqueue().
  593  *
  594  * Note: the ref count on the socket is 0 on return.
  595  */
  596 struct socket *
  597 solisten_clone(struct socket *head)
  598 {
  599         struct sbuf descrsb;
  600         struct socket *so;
  601         int len, overcount;
  602         u_int qlen;
  603         const char localprefix[] = "local:";
  604         char descrbuf[SUNPATHLEN + sizeof(localprefix)];
  605 #if defined(INET6)
  606         char addrbuf[INET6_ADDRSTRLEN];
  607 #elif defined(INET)
  608         char addrbuf[INET_ADDRSTRLEN];
  609 #endif
  610         bool dolog, over;
  611 
  612         SOLISTEN_LOCK(head);
  613         over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
  614 #ifdef REGRESSION
  615         if (regression_sonewconn_earlytest && over) {
  616 #else
  617         if (over) {
  618 #endif
  619                 head->sol_overcount++;
  620                 dolog = !!ratecheck(&head->sol_lastover, &overinterval);
  621 
  622                 /*
  623                  * If we're going to log, copy the overflow count and queue
  624                  * length from the listen socket before dropping the lock.
  625                  * Also, reset the overflow count.
  626                  */
  627                 if (dolog) {
  628                         overcount = head->sol_overcount;
  629                         head->sol_overcount = 0;
  630                         qlen = head->sol_qlen;
  631                 }
  632                 SOLISTEN_UNLOCK(head);
  633 
  634                 if (dolog) {
  635                         /*
  636                          * Try to print something descriptive about the
  637                          * socket for the error message.
  638                          */
  639                         sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
  640                             SBUF_FIXEDLEN);
  641                         switch (head->so_proto->pr_domain->dom_family) {
  642 #if defined(INET) || defined(INET6)
  643 #ifdef INET
  644                         case AF_INET:
  645 #endif
  646 #ifdef INET6
  647                         case AF_INET6:
  648                                 if (head->so_proto->pr_domain->dom_family ==
  649                                     AF_INET6 ||
  650                                     (sotoinpcb(head)->inp_inc.inc_flags &
  651                                     INC_ISIPV6)) {
  652                                         ip6_sprintf(addrbuf,
  653                                             &sotoinpcb(head)->inp_inc.inc6_laddr);
  654                                         sbuf_printf(&descrsb, "[%s]", addrbuf);
  655                                 } else
  656 #endif
  657                                 {
  658 #ifdef INET
  659                                         inet_ntoa_r(
  660                                             sotoinpcb(head)->inp_inc.inc_laddr,
  661                                             addrbuf);
  662                                         sbuf_cat(&descrsb, addrbuf);
  663 #endif
  664                                 }
  665                                 sbuf_printf(&descrsb, ":%hu (proto %u)",
  666                                     ntohs(sotoinpcb(head)->inp_inc.inc_lport),
  667                                     head->so_proto->pr_protocol);
  668                                 break;
  669 #endif /* INET || INET6 */
  670                         case AF_UNIX:
  671                                 sbuf_cat(&descrsb, localprefix);
  672                                 if (sotounpcb(head)->unp_addr != NULL)
  673                                         len =
  674                                             sotounpcb(head)->unp_addr->sun_len -
  675                                             offsetof(struct sockaddr_un,
  676                                             sun_path);
  677                                 else
  678                                         len = 0;
  679                                 if (len > 0)
  680                                         sbuf_bcat(&descrsb,
  681                                             sotounpcb(head)->unp_addr->sun_path,
  682                                             len);
  683                                 else
  684                                         sbuf_cat(&descrsb, "(unknown)");
  685                                 break;
  686                         }
  687 
  688                         /*
  689                          * If we can't print something more specific, at least
  690                          * print the domain name.
  691                          */
  692                         if (sbuf_finish(&descrsb) != 0 ||
  693                             sbuf_len(&descrsb) <= 0) {
  694                                 sbuf_clear(&descrsb);
  695                                 sbuf_cat(&descrsb,
  696                                     head->so_proto->pr_domain->dom_name ?:
  697                                     "unknown");
  698                                 sbuf_finish(&descrsb);
  699                         }
  700                         KASSERT(sbuf_len(&descrsb) > 0,
  701                             ("%s: sbuf creation failed", __func__));
  702                         /*
  703                          * Preserve the historic listen queue overflow log
  704                          * message, that starts with "sonewconn:".  It has
  705                          * been known to sysadmins for years and also test
  706                          * sys/kern/sonewconn_overflow checks for it.
  707                          */
  708                         if (head->so_cred == 0) {
  709                                 log(LOG_DEBUG, "sonewconn: pcb %p (%s): "
  710                                     "Listen queue overflow: %i already in "
  711                                     "queue awaiting acceptance (%d "
  712                                     "occurrences)\n", head->so_pcb,
  713                                     sbuf_data(&descrsb),
  714                                 qlen, overcount);
  715                         } else {
  716                                 log(LOG_DEBUG, "sonewconn: pcb %p (%s): "
  717                                     "Listen queue overflow: "
  718                                     "%i already in queue awaiting acceptance "
  719                                     "(%d occurrences), euid %d, rgid %d, jail %s\n",
  720                                     head->so_pcb, sbuf_data(&descrsb), qlen,
  721                                     overcount, head->so_cred->cr_uid,
  722                                     head->so_cred->cr_rgid,
  723                                     head->so_cred->cr_prison ?
  724                                         head->so_cred->cr_prison->pr_name :
  725                                         "not_jailed");
  726                         }
  727                         sbuf_delete(&descrsb);
  728 
  729                         overcount = 0;
  730                 }
  731 
  732                 return (NULL);
  733         }
  734         SOLISTEN_UNLOCK(head);
  735         VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
  736             __func__, head));
  737         so = soalloc(head->so_vnet);
  738         if (so == NULL) {
  739                 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
  740                     "limit reached or out of memory\n",
  741                     __func__, head->so_pcb);
  742                 return (NULL);
  743         }
  744         so->so_listen = head;
  745         so->so_type = head->so_type;
  746         so->so_options = head->so_options & ~SO_ACCEPTCONN;
  747         so->so_linger = head->so_linger;
  748         so->so_state = head->so_state;
  749         so->so_fibnum = head->so_fibnum;
  750         so->so_proto = head->so_proto;
  751         so->so_cred = crhold(head->so_cred);
  752 #ifdef MAC
  753         mac_socket_newconn(head, so);
  754 #endif
  755         knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
  756             so_rdknl_assert_lock);
  757         knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
  758             so_wrknl_assert_lock);
  759         VNET_SO_ASSERT(head);
  760         if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
  761                 sodealloc(so);
  762                 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
  763                     __func__, head->so_pcb);
  764                 return (NULL);
  765         }
  766         so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
  767         so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
  768         so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
  769         so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
  770         so->so_rcv.sb_flags = head->sol_sbrcv_flags & SB_AUTOSIZE;
  771         so->so_snd.sb_flags = head->sol_sbsnd_flags & SB_AUTOSIZE;
  772         if ((so->so_proto->pr_flags & PR_SOCKBUF) == 0) {
  773                 so->so_snd.sb_mtx = &so->so_snd_mtx;
  774                 so->so_rcv.sb_mtx = &so->so_rcv_mtx;
  775         }
  776 
  777         return (so);
  778 }
  779 
  780 /* Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED. */
  781 struct socket *
  782 sonewconn(struct socket *head, int connstatus)
  783 {
  784         struct socket *so;
  785 
  786         if ((so = solisten_clone(head)) == NULL)
  787                 return (NULL);
  788 
  789         if (so->so_proto->pr_attach(so, 0, NULL) != 0) {
  790                 sodealloc(so);
  791                 log(LOG_DEBUG, "%s: pcb %p: pr_attach() failed\n",
  792                     __func__, head->so_pcb);
  793                 return (NULL);
  794         }
  795 
  796         (void)solisten_enqueue(so, connstatus);
  797 
  798         return (so);
  799 }
  800 
  801 /*
  802  * Enqueue socket cloned by solisten_clone() to the listen queue of the
  803  * listener it has been cloned from.
  804  *
  805  * Return 'true' if socket landed on complete queue, otherwise 'false'.
  806  */
  807 bool
  808 solisten_enqueue(struct socket *so, int connstatus)
  809 {
  810         struct socket *head = so->so_listen;
  811 
  812         MPASS(refcount_load(&so->so_count) == 0);
  813         refcount_init(&so->so_count, 1);
  814 
  815         SOLISTEN_LOCK(head);
  816         if (head->sol_accept_filter != NULL)
  817                 connstatus = 0;
  818         so->so_state |= connstatus;
  819         soref(head); /* A socket on (in)complete queue refs head. */
  820         if (connstatus) {
  821                 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
  822                 so->so_qstate = SQ_COMP;
  823                 head->sol_qlen++;
  824                 solisten_wakeup(head);  /* unlocks */
  825                 return (true);
  826         } else {
  827                 /*
  828                  * Keep removing sockets from the head until there's room for
  829                  * us to insert on the tail.  In pre-locking revisions, this
  830                  * was a simple if(), but as we could be racing with other
  831                  * threads and soabort() requires dropping locks, we must
  832                  * loop waiting for the condition to be true.
  833                  */
  834                 while (head->sol_incqlen > head->sol_qlimit) {
  835                         struct socket *sp;
  836 
  837                         sp = TAILQ_FIRST(&head->sol_incomp);
  838                         TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
  839                         head->sol_incqlen--;
  840                         SOCK_LOCK(sp);
  841                         sp->so_qstate = SQ_NONE;
  842                         sp->so_listen = NULL;
  843                         SOCK_UNLOCK(sp);
  844                         sorele_locked(head);    /* does SOLISTEN_UNLOCK, head stays */
  845                         soabort(sp);
  846                         SOLISTEN_LOCK(head);
  847                 }
  848                 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
  849                 so->so_qstate = SQ_INCOMP;
  850                 head->sol_incqlen++;
  851                 SOLISTEN_UNLOCK(head);
  852                 return (false);
  853         }
  854 }
  855 
  856 #if defined(SCTP) || defined(SCTP_SUPPORT)
  857 /*
  858  * Socket part of sctp_peeloff().  Detach a new socket from an
  859  * association.  The new socket is returned with a reference.
  860  *
  861  * XXXGL: reduce copy-paste with solisten_clone().
  862  */
  863 struct socket *
  864 sopeeloff(struct socket *head)
  865 {
  866         struct socket *so;
  867 
  868         VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
  869             __func__, __LINE__, head));
  870         so = soalloc(head->so_vnet);
  871         if (so == NULL) {
  872                 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
  873                     "limit reached or out of memory\n",
  874                     __func__, head->so_pcb);
  875                 return (NULL);
  876         }
  877         so->so_type = head->so_type;
  878         so->so_options = head->so_options;
  879         so->so_linger = head->so_linger;
  880         so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
  881         so->so_fibnum = head->so_fibnum;
  882         so->so_proto = head->so_proto;
  883         so->so_cred = crhold(head->so_cred);
  884 #ifdef MAC
  885         mac_socket_newconn(head, so);
  886 #endif
  887         knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
  888             so_rdknl_assert_lock);
  889         knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
  890             so_wrknl_assert_lock);
  891         VNET_SO_ASSERT(head);
  892         if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
  893                 sodealloc(so);
  894                 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
  895                     __func__, head->so_pcb);
  896                 return (NULL);
  897         }
  898         if ((*so->so_proto->pr_attach)(so, 0, NULL)) {
  899                 sodealloc(so);
  900                 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
  901                     __func__, head->so_pcb);
  902                 return (NULL);
  903         }
  904         so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
  905         so->so_snd.sb_lowat = head->so_snd.sb_lowat;
  906         so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
  907         so->so_snd.sb_timeo = head->so_snd.sb_timeo;
  908         so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
  909         so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
  910 
  911         soref(so);
  912 
  913         return (so);
  914 }
  915 #endif  /* SCTP */
  916 
  917 int
  918 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
  919 {
  920         int error;
  921 
  922         CURVNET_SET(so->so_vnet);
  923         error = so->so_proto->pr_bind(so, nam, td);
  924         CURVNET_RESTORE();
  925         return (error);
  926 }
  927 
  928 int
  929 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
  930 {
  931         int error;
  932 
  933         CURVNET_SET(so->so_vnet);
  934         error = so->so_proto->pr_bindat(fd, so, nam, td);
  935         CURVNET_RESTORE();
  936         return (error);
  937 }
  938 
  939 /*
  940  * solisten() transitions a socket from a non-listening state to a listening
  941  * state, but can also be used to update the listen queue depth on an
  942  * existing listen socket.  The protocol will call back into the sockets
  943  * layer using solisten_proto_check() and solisten_proto() to check and set
  944  * socket-layer listen state.  Call backs are used so that the protocol can
  945  * acquire both protocol and socket layer locks in whatever order is required
  946  * by the protocol.
  947  *
  948  * Protocol implementors are advised to hold the socket lock across the
  949  * socket-layer test and set to avoid races at the socket layer.
  950  */
  951 int
  952 solisten(struct socket *so, int backlog, struct thread *td)
  953 {
  954         int error;
  955 
  956         CURVNET_SET(so->so_vnet);
  957         error = so->so_proto->pr_listen(so, backlog, td);
  958         CURVNET_RESTORE();
  959         return (error);
  960 }
  961 
  962 /*
  963  * Prepare for a call to solisten_proto().  Acquire all socket buffer locks in
  964  * order to interlock with socket I/O.
  965  */
  966 int
  967 solisten_proto_check(struct socket *so)
  968 {
  969         SOCK_LOCK_ASSERT(so);
  970 
  971         if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
  972             SS_ISDISCONNECTING)) != 0)
  973                 return (EINVAL);
  974 
  975         /*
  976          * Sleeping is not permitted here, so simply fail if userspace is
  977          * attempting to transmit or receive on the socket.  This kind of
  978          * transient failure is not ideal, but it should occur only if userspace
  979          * is misusing the socket interfaces.
  980          */
  981         if (!sx_try_xlock(&so->so_snd_sx))
  982                 return (EAGAIN);
  983         if (!sx_try_xlock(&so->so_rcv_sx)) {
  984                 sx_xunlock(&so->so_snd_sx);
  985                 return (EAGAIN);
  986         }
  987         mtx_lock(&so->so_snd_mtx);
  988         mtx_lock(&so->so_rcv_mtx);
  989 
  990         /* Interlock with soo_aio_queue(). */
  991         if (!SOLISTENING(so) &&
  992            ((so->so_snd.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0 ||
  993            (so->so_rcv.sb_flags & (SB_AIO | SB_AIO_RUNNING)) != 0)) {
  994                 solisten_proto_abort(so);
  995                 return (EINVAL);
  996         }
  997         return (0);
  998 }
  999 
 1000 /*
 1001  * Undo the setup done by solisten_proto_check().
 1002  */
 1003 void
 1004 solisten_proto_abort(struct socket *so)
 1005 {
 1006         mtx_unlock(&so->so_snd_mtx);
 1007         mtx_unlock(&so->so_rcv_mtx);
 1008         sx_xunlock(&so->so_snd_sx);
 1009         sx_xunlock(&so->so_rcv_sx);
 1010 }
 1011 
 1012 void
 1013 solisten_proto(struct socket *so, int backlog)
 1014 {
 1015         int sbrcv_lowat, sbsnd_lowat;
 1016         u_int sbrcv_hiwat, sbsnd_hiwat;
 1017         short sbrcv_flags, sbsnd_flags;
 1018         sbintime_t sbrcv_timeo, sbsnd_timeo;
 1019 
 1020         SOCK_LOCK_ASSERT(so);
 1021         KASSERT((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
 1022             SS_ISDISCONNECTING)) == 0,
 1023             ("%s: bad socket state %p", __func__, so));
 1024 
 1025         if (SOLISTENING(so))
 1026                 goto listening;
 1027 
 1028         /*
 1029          * Change this socket to listening state.
 1030          */
 1031         sbrcv_lowat = so->so_rcv.sb_lowat;
 1032         sbsnd_lowat = so->so_snd.sb_lowat;
 1033         sbrcv_hiwat = so->so_rcv.sb_hiwat;
 1034         sbsnd_hiwat = so->so_snd.sb_hiwat;
 1035         sbrcv_flags = so->so_rcv.sb_flags;
 1036         sbsnd_flags = so->so_snd.sb_flags;
 1037         sbrcv_timeo = so->so_rcv.sb_timeo;
 1038         sbsnd_timeo = so->so_snd.sb_timeo;
 1039 
 1040         sbdestroy(so, SO_SND);
 1041         sbdestroy(so, SO_RCV);
 1042 
 1043 #ifdef INVARIANTS
 1044         bzero(&so->so_rcv,
 1045             sizeof(struct socket) - offsetof(struct socket, so_rcv));
 1046 #endif
 1047 
 1048         so->sol_sbrcv_lowat = sbrcv_lowat;
 1049         so->sol_sbsnd_lowat = sbsnd_lowat;
 1050         so->sol_sbrcv_hiwat = sbrcv_hiwat;
 1051         so->sol_sbsnd_hiwat = sbsnd_hiwat;
 1052         so->sol_sbrcv_flags = sbrcv_flags;
 1053         so->sol_sbsnd_flags = sbsnd_flags;
 1054         so->sol_sbrcv_timeo = sbrcv_timeo;
 1055         so->sol_sbsnd_timeo = sbsnd_timeo;
 1056 
 1057         so->sol_qlen = so->sol_incqlen = 0;
 1058         TAILQ_INIT(&so->sol_incomp);
 1059         TAILQ_INIT(&so->sol_comp);
 1060 
 1061         so->sol_accept_filter = NULL;
 1062         so->sol_accept_filter_arg = NULL;
 1063         so->sol_accept_filter_str = NULL;
 1064 
 1065         so->sol_upcall = NULL;
 1066         so->sol_upcallarg = NULL;
 1067 
 1068         so->so_options |= SO_ACCEPTCONN;
 1069 
 1070 listening:
 1071         if (backlog < 0 || backlog > somaxconn)
 1072                 backlog = somaxconn;
 1073         so->sol_qlimit = backlog;
 1074 
 1075         mtx_unlock(&so->so_snd_mtx);
 1076         mtx_unlock(&so->so_rcv_mtx);
 1077         sx_xunlock(&so->so_snd_sx);
 1078         sx_xunlock(&so->so_rcv_sx);
 1079 }
 1080 
 1081 /*
 1082  * Wakeup listeners/subsystems once we have a complete connection.
 1083  * Enters with lock, returns unlocked.
 1084  */
 1085 void
 1086 solisten_wakeup(struct socket *sol)
 1087 {
 1088 
 1089         if (sol->sol_upcall != NULL)
 1090                 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
 1091         else {
 1092                 selwakeuppri(&sol->so_rdsel, PSOCK);
 1093                 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
 1094         }
 1095         SOLISTEN_UNLOCK(sol);
 1096         wakeup_one(&sol->sol_comp);
 1097         if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
 1098                 pgsigio(&sol->so_sigio, SIGIO, 0);
 1099 }
 1100 
 1101 /*
 1102  * Return single connection off a listening socket queue.  Main consumer of
 1103  * the function is kern_accept4().  Some modules, that do their own accept
 1104  * management also use the function.  The socket reference held by the
 1105  * listen queue is handed to the caller.
 1106  *
 1107  * Listening socket must be locked on entry and is returned unlocked on
 1108  * return.
 1109  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
 1110  */
 1111 int
 1112 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
 1113 {
 1114         struct socket *so;
 1115         int error;
 1116 
 1117         SOLISTEN_LOCK_ASSERT(head);
 1118 
 1119         while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
 1120             head->so_error == 0) {
 1121                 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
 1122                     "accept", 0);
 1123                 if (error != 0) {
 1124                         SOLISTEN_UNLOCK(head);
 1125                         return (error);
 1126                 }
 1127         }
 1128         if (head->so_error) {
 1129                 error = head->so_error;
 1130                 head->so_error = 0;
 1131         } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
 1132                 error = EWOULDBLOCK;
 1133         else
 1134                 error = 0;
 1135         if (error) {
 1136                 SOLISTEN_UNLOCK(head);
 1137                 return (error);
 1138         }
 1139         so = TAILQ_FIRST(&head->sol_comp);
 1140         SOCK_LOCK(so);
 1141         KASSERT(so->so_qstate == SQ_COMP,
 1142             ("%s: so %p not SQ_COMP", __func__, so));
 1143         head->sol_qlen--;
 1144         so->so_qstate = SQ_NONE;
 1145         so->so_listen = NULL;
 1146         TAILQ_REMOVE(&head->sol_comp, so, so_list);
 1147         if (flags & ACCEPT4_INHERIT)
 1148                 so->so_state |= (head->so_state & SS_NBIO);
 1149         else
 1150                 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
 1151         SOCK_UNLOCK(so);
 1152         sorele_locked(head);
 1153 
 1154         *ret = so;
 1155         return (0);
 1156 }
 1157 
 1158 /*
 1159  * Free socket upon release of the very last reference.
 1160  */
 1161 static void
 1162 sofree(struct socket *so)
 1163 {
 1164         struct protosw *pr = so->so_proto;
 1165 
 1166         SOCK_LOCK_ASSERT(so);
 1167         KASSERT(refcount_load(&so->so_count) == 0,
 1168             ("%s: so %p has references", __func__, so));
 1169         KASSERT(SOLISTENING(so) || so->so_qstate == SQ_NONE,
 1170             ("%s: so %p is on listen queue", __func__, so));
 1171 
 1172         SOCK_UNLOCK(so);
 1173 
 1174         if (so->so_dtor != NULL)
 1175                 so->so_dtor(so);
 1176 
 1177         VNET_SO_ASSERT(so);
 1178         if ((pr->pr_flags & PR_RIGHTS) && !SOLISTENING(so)) {
 1179                 MPASS(pr->pr_domain->dom_dispose != NULL);
 1180                 (*pr->pr_domain->dom_dispose)(so);
 1181         }
 1182         if (pr->pr_detach != NULL)
 1183                 pr->pr_detach(so);
 1184 
 1185         /*
 1186          * From this point on, we assume that no other references to this
 1187          * socket exist anywhere else in the stack.  Therefore, no locks need
 1188          * to be acquired or held.
 1189          */
 1190         if (!(pr->pr_flags & PR_SOCKBUF) && !SOLISTENING(so)) {
 1191                 sbdestroy(so, SO_SND);
 1192                 sbdestroy(so, SO_RCV);
 1193         }
 1194         seldrain(&so->so_rdsel);
 1195         seldrain(&so->so_wrsel);
 1196         knlist_destroy(&so->so_rdsel.si_note);
 1197         knlist_destroy(&so->so_wrsel.si_note);
 1198         sodealloc(so);
 1199 }
 1200 
 1201 /*
 1202  * Release a reference on a socket while holding the socket lock.
 1203  * Unlocks the socket lock before returning.
 1204  */
 1205 void
 1206 sorele_locked(struct socket *so)
 1207 {
 1208         SOCK_LOCK_ASSERT(so);
 1209         if (refcount_release(&so->so_count))
 1210                 sofree(so);
 1211         else
 1212                 SOCK_UNLOCK(so);
 1213 }
 1214 
 1215 /*
 1216  * Close a socket on last file table reference removal.  Initiate disconnect
 1217  * if connected.  Free socket when disconnect complete.
 1218  *
 1219  * This function will sorele() the socket.  Note that soclose() may be called
 1220  * prior to the ref count reaching zero.  The actual socket structure will
 1221  * not be freed until the ref count reaches zero.
 1222  */
 1223 int
 1224 soclose(struct socket *so)
 1225 {
 1226         struct accept_queue lqueue;
 1227         int error = 0;
 1228         bool listening, last __diagused;
 1229 
 1230         CURVNET_SET(so->so_vnet);
 1231         funsetown(&so->so_sigio);
 1232         if (so->so_state & SS_ISCONNECTED) {
 1233                 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
 1234                         error = sodisconnect(so);
 1235                         if (error) {
 1236                                 if (error == ENOTCONN)
 1237                                         error = 0;
 1238                                 goto drop;
 1239                         }
 1240                 }
 1241 
 1242                 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
 1243                         if ((so->so_state & SS_ISDISCONNECTING) &&
 1244                             (so->so_state & SS_NBIO))
 1245                                 goto drop;
 1246                         while (so->so_state & SS_ISCONNECTED) {
 1247                                 error = tsleep(&so->so_timeo,
 1248                                     PSOCK | PCATCH, "soclos",
 1249                                     so->so_linger * hz);
 1250                                 if (error)
 1251                                         break;
 1252                         }
 1253                 }
 1254         }
 1255 
 1256 drop:
 1257         if (so->so_proto->pr_close != NULL)
 1258                 so->so_proto->pr_close(so);
 1259 
 1260         SOCK_LOCK(so);
 1261         if ((listening = SOLISTENING(so))) {
 1262                 struct socket *sp;
 1263 
 1264                 TAILQ_INIT(&lqueue);
 1265                 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
 1266                 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
 1267 
 1268                 so->sol_qlen = so->sol_incqlen = 0;
 1269 
 1270                 TAILQ_FOREACH(sp, &lqueue, so_list) {
 1271                         SOCK_LOCK(sp);
 1272                         sp->so_qstate = SQ_NONE;
 1273                         sp->so_listen = NULL;
 1274                         SOCK_UNLOCK(sp);
 1275                         last = refcount_release(&so->so_count);
 1276                         KASSERT(!last, ("%s: released last reference for %p",
 1277                             __func__, so));
 1278                 }
 1279         }
 1280         sorele_locked(so);
 1281         if (listening) {
 1282                 struct socket *sp, *tsp;
 1283 
 1284                 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp)
 1285                         soabort(sp);
 1286         }
 1287         CURVNET_RESTORE();
 1288         return (error);
 1289 }
 1290 
 1291 /*
 1292  * soabort() is used to abruptly tear down a connection, such as when a
 1293  * resource limit is reached (listen queue depth exceeded), or if a listen
 1294  * socket is closed while there are sockets waiting to be accepted.
 1295  *
 1296  * This interface is tricky, because it is called on an unreferenced socket,
 1297  * and must be called only by a thread that has actually removed the socket
 1298  * from the listen queue it was on.  Likely this thread holds the last
 1299  * reference on the socket and soabort() will proceed with sofree().  But
 1300  * it might be not the last, as the sockets on the listen queues are seen
 1301  * from the protocol side.
 1302  *
 1303  * This interface will call into the protocol code, so must not be called
 1304  * with any socket locks held.  Protocols do call it while holding their own
 1305  * recursible protocol mutexes, but this is something that should be subject
 1306  * to review in the future.
 1307  *
 1308  * Usually socket should have a single reference left, but this is not a
 1309  * requirement.  In the past, when we have had named references for file
 1310  * descriptor and protocol, we asserted that none of them are being held.
 1311  */
 1312 void
 1313 soabort(struct socket *so)
 1314 {
 1315 
 1316         VNET_SO_ASSERT(so);
 1317 
 1318         if (so->so_proto->pr_abort != NULL)
 1319                 so->so_proto->pr_abort(so);
 1320         SOCK_LOCK(so);
 1321         sorele_locked(so);
 1322 }
 1323 
 1324 int
 1325 soaccept(struct socket *so, struct sockaddr **nam)
 1326 {
 1327         int error;
 1328 
 1329         CURVNET_SET(so->so_vnet);
 1330         error = so->so_proto->pr_accept(so, nam);
 1331         CURVNET_RESTORE();
 1332         return (error);
 1333 }
 1334 
 1335 int
 1336 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
 1337 {
 1338 
 1339         return (soconnectat(AT_FDCWD, so, nam, td));
 1340 }
 1341 
 1342 int
 1343 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
 1344 {
 1345         int error;
 1346 
 1347         CURVNET_SET(so->so_vnet);
 1348         /*
 1349          * If protocol is connection-based, can only connect once.
 1350          * Otherwise, if connected, try to disconnect first.  This allows
 1351          * user to disconnect by connecting to, e.g., a null address.
 1352          */
 1353         if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
 1354             ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
 1355             (error = sodisconnect(so)))) {
 1356                 error = EISCONN;
 1357         } else {
 1358                 /*
 1359                  * Prevent accumulated error from previous connection from
 1360                  * biting us.
 1361                  */
 1362                 so->so_error = 0;
 1363                 if (fd == AT_FDCWD) {
 1364                         error = so->so_proto->pr_connect(so, nam, td);
 1365                 } else {
 1366                         error = so->so_proto->pr_connectat(fd, so, nam, td);
 1367                 }
 1368         }
 1369         CURVNET_RESTORE();
 1370 
 1371         return (error);
 1372 }
 1373 
 1374 int
 1375 soconnect2(struct socket *so1, struct socket *so2)
 1376 {
 1377         int error;
 1378 
 1379         CURVNET_SET(so1->so_vnet);
 1380         error = so1->so_proto->pr_connect2(so1, so2);
 1381         CURVNET_RESTORE();
 1382         return (error);
 1383 }
 1384 
 1385 int
 1386 sodisconnect(struct socket *so)
 1387 {
 1388         int error;
 1389 
 1390         if ((so->so_state & SS_ISCONNECTED) == 0)
 1391                 return (ENOTCONN);
 1392         if (so->so_state & SS_ISDISCONNECTING)
 1393                 return (EALREADY);
 1394         VNET_SO_ASSERT(so);
 1395         error = so->so_proto->pr_disconnect(so);
 1396         return (error);
 1397 }
 1398 
 1399 int
 1400 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1401     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1402 {
 1403         long space;
 1404         ssize_t resid;
 1405         int clen = 0, error, dontroute;
 1406 
 1407         KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
 1408         KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
 1409             ("sosend_dgram: !PR_ATOMIC"));
 1410 
 1411         if (uio != NULL)
 1412                 resid = uio->uio_resid;
 1413         else
 1414                 resid = top->m_pkthdr.len;
 1415         /*
 1416          * In theory resid should be unsigned.  However, space must be
 1417          * signed, as it might be less than 0 if we over-committed, and we
 1418          * must use a signed comparison of space and resid.  On the other
 1419          * hand, a negative resid causes us to loop sending 0-length
 1420          * segments to the protocol.
 1421          */
 1422         if (resid < 0) {
 1423                 error = EINVAL;
 1424                 goto out;
 1425         }
 1426 
 1427         dontroute =
 1428             (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
 1429         if (td != NULL)
 1430                 td->td_ru.ru_msgsnd++;
 1431         if (control != NULL)
 1432                 clen = control->m_len;
 1433 
 1434         SOCKBUF_LOCK(&so->so_snd);
 1435         if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 1436                 SOCKBUF_UNLOCK(&so->so_snd);
 1437                 error = EPIPE;
 1438                 goto out;
 1439         }
 1440         if (so->so_error) {
 1441                 error = so->so_error;
 1442                 so->so_error = 0;
 1443                 SOCKBUF_UNLOCK(&so->so_snd);
 1444                 goto out;
 1445         }
 1446         if ((so->so_state & SS_ISCONNECTED) == 0) {
 1447                 /*
 1448                  * `sendto' and `sendmsg' is allowed on a connection-based
 1449                  * socket if it supports implied connect.  Return ENOTCONN if
 1450                  * not connected and no address is supplied.
 1451                  */
 1452                 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
 1453                     (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
 1454                         if ((so->so_state & SS_ISCONFIRMING) == 0 &&
 1455                             !(resid == 0 && clen != 0)) {
 1456                                 SOCKBUF_UNLOCK(&so->so_snd);
 1457                                 error = ENOTCONN;
 1458                                 goto out;
 1459                         }
 1460                 } else if (addr == NULL) {
 1461                         if (so->so_proto->pr_flags & PR_CONNREQUIRED)
 1462                                 error = ENOTCONN;
 1463                         else
 1464                                 error = EDESTADDRREQ;
 1465                         SOCKBUF_UNLOCK(&so->so_snd);
 1466                         goto out;
 1467                 }
 1468         }
 1469 
 1470         /*
 1471          * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
 1472          * problem and need fixing.
 1473          */
 1474         space = sbspace(&so->so_snd);
 1475         if (flags & MSG_OOB)
 1476                 space += 1024;
 1477         space -= clen;
 1478         SOCKBUF_UNLOCK(&so->so_snd);
 1479         if (resid > space) {
 1480                 error = EMSGSIZE;
 1481                 goto out;
 1482         }
 1483         if (uio == NULL) {
 1484                 resid = 0;
 1485                 if (flags & MSG_EOR)
 1486                         top->m_flags |= M_EOR;
 1487         } else {
 1488                 /*
 1489                  * Copy the data from userland into a mbuf chain.
 1490                  * If no data is to be copied in, a single empty mbuf
 1491                  * is returned.
 1492                  */
 1493                 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
 1494                     (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
 1495                 if (top == NULL) {
 1496                         error = EFAULT; /* only possible error */
 1497                         goto out;
 1498                 }
 1499                 space -= resid - uio->uio_resid;
 1500                 resid = uio->uio_resid;
 1501         }
 1502         KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
 1503         /*
 1504          * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
 1505          * than with.
 1506          */
 1507         if (dontroute) {
 1508                 SOCK_LOCK(so);
 1509                 so->so_options |= SO_DONTROUTE;
 1510                 SOCK_UNLOCK(so);
 1511         }
 1512         /*
 1513          * XXX all the SBS_CANTSENDMORE checks previously done could be out
 1514          * of date.  We could have received a reset packet in an interrupt or
 1515          * maybe we slept while doing page faults in uiomove() etc.  We could
 1516          * probably recheck again inside the locking protection here, but
 1517          * there are probably other places that this also happens.  We must
 1518          * rethink this.
 1519          */
 1520         VNET_SO_ASSERT(so);
 1521         error = so->so_proto->pr_send(so, (flags & MSG_OOB) ? PRUS_OOB :
 1522         /*
 1523          * If the user set MSG_EOF, the protocol understands this flag and
 1524          * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
 1525          */
 1526             ((flags & MSG_EOF) &&
 1527              (so->so_proto->pr_flags & PR_IMPLOPCL) &&
 1528              (resid <= 0)) ?
 1529                 PRUS_EOF :
 1530                 /* If there is more to send set PRUS_MORETOCOME */
 1531                 (flags & MSG_MORETOCOME) ||
 1532                 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
 1533                 top, addr, control, td);
 1534         if (dontroute) {
 1535                 SOCK_LOCK(so);
 1536                 so->so_options &= ~SO_DONTROUTE;
 1537                 SOCK_UNLOCK(so);
 1538         }
 1539         clen = 0;
 1540         control = NULL;
 1541         top = NULL;
 1542 out:
 1543         if (top != NULL)
 1544                 m_freem(top);
 1545         if (control != NULL)
 1546                 m_freem(control);
 1547         return (error);
 1548 }
 1549 
 1550 /*
 1551  * Send on a socket.  If send must go all at once and message is larger than
 1552  * send buffering, then hard error.  Lock against other senders.  If must go
 1553  * all at once and not enough room now, then inform user that this would
 1554  * block and do nothing.  Otherwise, if nonblocking, send as much as
 1555  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
 1556  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
 1557  * in mbuf chain must be small enough to send all at once.
 1558  *
 1559  * Returns nonzero on error, timeout or signal; callers must check for short
 1560  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
 1561  * on return.
 1562  */
 1563 int
 1564 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1565     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1566 {
 1567         long space;
 1568         ssize_t resid;
 1569         int clen = 0, error, dontroute;
 1570         int atomic = sosendallatonce(so) || top;
 1571         int pr_send_flag;
 1572 #ifdef KERN_TLS
 1573         struct ktls_session *tls;
 1574         int tls_enq_cnt, tls_send_flag;
 1575         uint8_t tls_rtype;
 1576 
 1577         tls = NULL;
 1578         tls_rtype = TLS_RLTYPE_APP;
 1579 #endif
 1580         if (uio != NULL)
 1581                 resid = uio->uio_resid;
 1582         else if ((top->m_flags & M_PKTHDR) != 0)
 1583                 resid = top->m_pkthdr.len;
 1584         else
 1585                 resid = m_length(top, NULL);
 1586         /*
 1587          * In theory resid should be unsigned.  However, space must be
 1588          * signed, as it might be less than 0 if we over-committed, and we
 1589          * must use a signed comparison of space and resid.  On the other
 1590          * hand, a negative resid causes us to loop sending 0-length
 1591          * segments to the protocol.
 1592          *
 1593          * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
 1594          * type sockets since that's an error.
 1595          */
 1596         if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
 1597                 error = EINVAL;
 1598                 goto out;
 1599         }
 1600 
 1601         dontroute =
 1602             (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
 1603             (so->so_proto->pr_flags & PR_ATOMIC);
 1604         if (td != NULL)
 1605                 td->td_ru.ru_msgsnd++;
 1606         if (control != NULL)
 1607                 clen = control->m_len;
 1608 
 1609         error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
 1610         if (error)
 1611                 goto out;
 1612 
 1613 #ifdef KERN_TLS
 1614         tls_send_flag = 0;
 1615         tls = ktls_hold(so->so_snd.sb_tls_info);
 1616         if (tls != NULL) {
 1617                 if (tls->mode == TCP_TLS_MODE_SW)
 1618                         tls_send_flag = PRUS_NOTREADY;
 1619 
 1620                 if (control != NULL) {
 1621                         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
 1622 
 1623                         if (clen >= sizeof(*cm) &&
 1624                             cm->cmsg_type == TLS_SET_RECORD_TYPE) {
 1625                                 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
 1626                                 clen = 0;
 1627                                 m_freem(control);
 1628                                 control = NULL;
 1629                                 atomic = 1;
 1630                         }
 1631                 }
 1632 
 1633                 if (resid == 0 && !ktls_permit_empty_frames(tls)) {
 1634                         error = EINVAL;
 1635                         goto release;
 1636                 }
 1637         }
 1638 #endif
 1639 
 1640 restart:
 1641         do {
 1642                 SOCKBUF_LOCK(&so->so_snd);
 1643                 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 1644                         SOCKBUF_UNLOCK(&so->so_snd);
 1645                         error = EPIPE;
 1646                         goto release;
 1647                 }
 1648                 if (so->so_error) {
 1649                         error = so->so_error;
 1650                         so->so_error = 0;
 1651                         SOCKBUF_UNLOCK(&so->so_snd);
 1652                         goto release;
 1653                 }
 1654                 if ((so->so_state & SS_ISCONNECTED) == 0) {
 1655                         /*
 1656                          * `sendto' and `sendmsg' is allowed on a connection-
 1657                          * based socket if it supports implied connect.
 1658                          * Return ENOTCONN if not connected and no address is
 1659                          * supplied.
 1660                          */
 1661                         if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
 1662                             (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
 1663                                 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
 1664                                     !(resid == 0 && clen != 0)) {
 1665                                         SOCKBUF_UNLOCK(&so->so_snd);
 1666                                         error = ENOTCONN;
 1667                                         goto release;
 1668                                 }
 1669                         } else if (addr == NULL) {
 1670                                 SOCKBUF_UNLOCK(&so->so_snd);
 1671                                 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
 1672                                         error = ENOTCONN;
 1673                                 else
 1674                                         error = EDESTADDRREQ;
 1675                                 goto release;
 1676                         }
 1677                 }
 1678                 space = sbspace(&so->so_snd);
 1679                 if (flags & MSG_OOB)
 1680                         space += 1024;
 1681                 if ((atomic && resid > so->so_snd.sb_hiwat) ||
 1682                     clen > so->so_snd.sb_hiwat) {
 1683                         SOCKBUF_UNLOCK(&so->so_snd);
 1684                         error = EMSGSIZE;
 1685                         goto release;
 1686                 }
 1687                 if (space < resid + clen &&
 1688                     (atomic || space < so->so_snd.sb_lowat || space < clen)) {
 1689                         if ((so->so_state & SS_NBIO) ||
 1690                             (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
 1691                                 SOCKBUF_UNLOCK(&so->so_snd);
 1692                                 error = EWOULDBLOCK;
 1693                                 goto release;
 1694                         }
 1695                         error = sbwait(so, SO_SND);
 1696                         SOCKBUF_UNLOCK(&so->so_snd);
 1697                         if (error)
 1698                                 goto release;
 1699                         goto restart;
 1700                 }
 1701                 SOCKBUF_UNLOCK(&so->so_snd);
 1702                 space -= clen;
 1703                 do {
 1704                         if (uio == NULL) {
 1705                                 resid = 0;
 1706                                 if (flags & MSG_EOR)
 1707                                         top->m_flags |= M_EOR;
 1708 #ifdef KERN_TLS
 1709                                 if (tls != NULL) {
 1710                                         ktls_frame(top, tls, &tls_enq_cnt,
 1711                                             tls_rtype);
 1712                                         tls_rtype = TLS_RLTYPE_APP;
 1713                                 }
 1714 #endif
 1715                         } else {
 1716                                 /*
 1717                                  * Copy the data from userland into a mbuf
 1718                                  * chain.  If resid is 0, which can happen
 1719                                  * only if we have control to send, then
 1720                                  * a single empty mbuf is returned.  This
 1721                                  * is a workaround to prevent protocol send
 1722                                  * methods to panic.
 1723                                  */
 1724 #ifdef KERN_TLS
 1725                                 if (tls != NULL) {
 1726                                         top = m_uiotombuf(uio, M_WAITOK, space,
 1727                                             tls->params.max_frame_len,
 1728                                             M_EXTPG |
 1729                                             ((flags & MSG_EOR) ? M_EOR : 0));
 1730                                         if (top != NULL) {
 1731                                                 ktls_frame(top, tls,
 1732                                                     &tls_enq_cnt, tls_rtype);
 1733                                         }
 1734                                         tls_rtype = TLS_RLTYPE_APP;
 1735                                 } else
 1736 #endif
 1737                                         top = m_uiotombuf(uio, M_WAITOK, space,
 1738                                             (atomic ? max_hdr : 0),
 1739                                             (atomic ? M_PKTHDR : 0) |
 1740                                             ((flags & MSG_EOR) ? M_EOR : 0));
 1741                                 if (top == NULL) {
 1742                                         error = EFAULT; /* only possible error */
 1743                                         goto release;
 1744                                 }
 1745                                 space -= resid - uio->uio_resid;
 1746                                 resid = uio->uio_resid;
 1747                         }
 1748                         if (dontroute) {
 1749                                 SOCK_LOCK(so);
 1750                                 so->so_options |= SO_DONTROUTE;
 1751                                 SOCK_UNLOCK(so);
 1752                         }
 1753                         /*
 1754                          * XXX all the SBS_CANTSENDMORE checks previously
 1755                          * done could be out of date.  We could have received
 1756                          * a reset packet in an interrupt or maybe we slept
 1757                          * while doing page faults in uiomove() etc.  We
 1758                          * could probably recheck again inside the locking
 1759                          * protection here, but there are probably other
 1760                          * places that this also happens.  We must rethink
 1761                          * this.
 1762                          */
 1763                         VNET_SO_ASSERT(so);
 1764 
 1765                         pr_send_flag = (flags & MSG_OOB) ? PRUS_OOB :
 1766                         /*
 1767                          * If the user set MSG_EOF, the protocol understands
 1768                          * this flag and nothing left to send then use
 1769                          * PRU_SEND_EOF instead of PRU_SEND.
 1770                          */
 1771                             ((flags & MSG_EOF) &&
 1772                              (so->so_proto->pr_flags & PR_IMPLOPCL) &&
 1773                              (resid <= 0)) ?
 1774                                 PRUS_EOF :
 1775                         /* If there is more to send set PRUS_MORETOCOME. */
 1776                             (flags & MSG_MORETOCOME) ||
 1777                             (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
 1778 
 1779 #ifdef KERN_TLS
 1780                         pr_send_flag |= tls_send_flag;
 1781 #endif
 1782 
 1783                         error = so->so_proto->pr_send(so, pr_send_flag, top,
 1784                             addr, control, td);
 1785 
 1786                         if (dontroute) {
 1787                                 SOCK_LOCK(so);
 1788                                 so->so_options &= ~SO_DONTROUTE;
 1789                                 SOCK_UNLOCK(so);
 1790                         }
 1791 
 1792 #ifdef KERN_TLS
 1793                         if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
 1794                                 if (error != 0) {
 1795                                         m_freem(top);
 1796                                         top = NULL;
 1797                                 } else {
 1798                                         soref(so);
 1799                                         ktls_enqueue(top, so, tls_enq_cnt);
 1800                                 }
 1801                         }
 1802 #endif
 1803                         clen = 0;
 1804                         control = NULL;
 1805                         top = NULL;
 1806                         if (error)
 1807                                 goto release;
 1808                 } while (resid && space > 0);
 1809         } while (resid);
 1810 
 1811 release:
 1812         SOCK_IO_SEND_UNLOCK(so);
 1813 out:
 1814 #ifdef KERN_TLS
 1815         if (tls != NULL)
 1816                 ktls_free(tls);
 1817 #endif
 1818         if (top != NULL)
 1819                 m_freem(top);
 1820         if (control != NULL)
 1821                 m_freem(control);
 1822         return (error);
 1823 }
 1824 
 1825 /*
 1826  * Send to a socket from a kernel thread.
 1827  *
 1828  * XXXGL: in almost all cases uio is NULL and the mbuf is supplied.
 1829  * Exception is nfs/bootp_subr.c.  It is arguable that the VNET context needs
 1830  * to be set at all.  This function should just boil down to a static inline
 1831  * calling the protocol method.
 1832  */
 1833 int
 1834 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1835     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1836 {
 1837         int error;
 1838 
 1839         CURVNET_SET(so->so_vnet);
 1840         error = so->so_proto->pr_sosend(so, addr, uio,
 1841             top, control, flags, td);
 1842         CURVNET_RESTORE();
 1843         return (error);
 1844 }
 1845 
 1846 /*
 1847  * send(2), write(2) or aio_write(2) on a socket.
 1848  */
 1849 int
 1850 sousrsend(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1851     struct mbuf *control, int flags, struct proc *userproc)
 1852 {
 1853         struct thread *td;
 1854         ssize_t len;
 1855         int error;
 1856 
 1857         td = uio->uio_td;
 1858         len = uio->uio_resid;
 1859         CURVNET_SET(so->so_vnet);
 1860         error = so->so_proto->pr_sosend(so, addr, uio, NULL, control, flags,
 1861             td);
 1862         CURVNET_RESTORE();
 1863         if (error != 0) {
 1864                 if (uio->uio_resid != len &&
 1865                     (so->so_proto->pr_flags & PR_ATOMIC) == 0 &&
 1866                     (error == ERESTART || error == EINTR ||
 1867                     error == EWOULDBLOCK))
 1868                         error = 0;
 1869                 /* Generation of SIGPIPE can be controlled per socket. */
 1870                 if (error == EPIPE && (so->so_options & SO_NOSIGPIPE) == 0 &&
 1871                     (flags & MSG_NOSIGNAL) == 0) {
 1872                         if (userproc != NULL) {
 1873                                 /* aio(4) job */
 1874                                 PROC_LOCK(userproc);
 1875                                 kern_psignal(userproc, SIGPIPE);
 1876                                 PROC_UNLOCK(userproc);
 1877                         } else {
 1878                                 PROC_LOCK(td->td_proc);
 1879                                 tdsignal(td, SIGPIPE);
 1880                                 PROC_UNLOCK(td->td_proc);
 1881                         }
 1882                 }
 1883         }
 1884         return (error);
 1885 }
 1886 
 1887 /*
 1888  * The part of soreceive() that implements reading non-inline out-of-band
 1889  * data from a socket.  For more complete comments, see soreceive(), from
 1890  * which this code originated.
 1891  *
 1892  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
 1893  * unable to return an mbuf chain to the caller.
 1894  */
 1895 static int
 1896 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
 1897 {
 1898         struct protosw *pr = so->so_proto;
 1899         struct mbuf *m;
 1900         int error;
 1901 
 1902         KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
 1903         VNET_SO_ASSERT(so);
 1904 
 1905         m = m_get(M_WAITOK, MT_DATA);
 1906         error = pr->pr_rcvoob(so, m, flags & MSG_PEEK);
 1907         if (error)
 1908                 goto bad;
 1909         do {
 1910                 error = uiomove(mtod(m, void *),
 1911                     (int) min(uio->uio_resid, m->m_len), uio);
 1912                 m = m_free(m);
 1913         } while (uio->uio_resid && error == 0 && m);
 1914 bad:
 1915         if (m != NULL)
 1916                 m_freem(m);
 1917         return (error);
 1918 }
 1919 
 1920 /*
 1921  * Following replacement or removal of the first mbuf on the first mbuf chain
 1922  * of a socket buffer, push necessary state changes back into the socket
 1923  * buffer so that other consumers see the values consistently.  'nextrecord'
 1924  * is the callers locally stored value of the original value of
 1925  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
 1926  * NOTE: 'nextrecord' may be NULL.
 1927  */
 1928 static __inline void
 1929 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
 1930 {
 1931 
 1932         SOCKBUF_LOCK_ASSERT(sb);
 1933         /*
 1934          * First, update for the new value of nextrecord.  If necessary, make
 1935          * it the first record.
 1936          */
 1937         if (sb->sb_mb != NULL)
 1938                 sb->sb_mb->m_nextpkt = nextrecord;
 1939         else
 1940                 sb->sb_mb = nextrecord;
 1941 
 1942         /*
 1943          * Now update any dependent socket buffer fields to reflect the new
 1944          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
 1945          * addition of a second clause that takes care of the case where
 1946          * sb_mb has been updated, but remains the last record.
 1947          */
 1948         if (sb->sb_mb == NULL) {
 1949                 sb->sb_mbtail = NULL;
 1950                 sb->sb_lastrecord = NULL;
 1951         } else if (sb->sb_mb->m_nextpkt == NULL)
 1952                 sb->sb_lastrecord = sb->sb_mb;
 1953 }
 1954 
 1955 /*
 1956  * Implement receive operations on a socket.  We depend on the way that
 1957  * records are added to the sockbuf by sbappend.  In particular, each record
 1958  * (mbufs linked through m_next) must begin with an address if the protocol
 1959  * so specifies, followed by an optional mbuf or mbufs containing ancillary
 1960  * data, and then zero or more mbufs of data.  In order to allow parallelism
 1961  * between network receive and copying to user space, as well as avoid
 1962  * sleeping with a mutex held, we release the socket buffer mutex during the
 1963  * user space copy.  Although the sockbuf is locked, new data may still be
 1964  * appended, and thus we must maintain consistency of the sockbuf during that
 1965  * time.
 1966  *
 1967  * The caller may receive the data as a single mbuf chain by supplying an
 1968  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
 1969  * the count in uio_resid.
 1970  */
 1971 int
 1972 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
 1973     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 1974 {
 1975         struct mbuf *m, **mp;
 1976         int flags, error, offset;
 1977         ssize_t len;
 1978         struct protosw *pr = so->so_proto;
 1979         struct mbuf *nextrecord;
 1980         int moff, type = 0;
 1981         ssize_t orig_resid = uio->uio_resid;
 1982         bool report_real_len = false;
 1983 
 1984         mp = mp0;
 1985         if (psa != NULL)
 1986                 *psa = NULL;
 1987         if (controlp != NULL)
 1988                 *controlp = NULL;
 1989         if (flagsp != NULL) {
 1990                 report_real_len = *flagsp & MSG_TRUNC;
 1991                 *flagsp &= ~MSG_TRUNC;
 1992                 flags = *flagsp &~ MSG_EOR;
 1993         } else
 1994                 flags = 0;
 1995         if (flags & MSG_OOB)
 1996                 return (soreceive_rcvoob(so, uio, flags));
 1997         if (mp != NULL)
 1998                 *mp = NULL;
 1999         if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
 2000             && uio->uio_resid) {
 2001                 VNET_SO_ASSERT(so);
 2002                 pr->pr_rcvd(so, 0);
 2003         }
 2004 
 2005         error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
 2006         if (error)
 2007                 return (error);
 2008 
 2009 restart:
 2010         SOCKBUF_LOCK(&so->so_rcv);
 2011         m = so->so_rcv.sb_mb;
 2012         /*
 2013          * If we have less data than requested, block awaiting more (subject
 2014          * to any timeout) if:
 2015          *   1. the current count is less than the low water mark, or
 2016          *   2. MSG_DONTWAIT is not set
 2017          */
 2018         if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
 2019             sbavail(&so->so_rcv) < uio->uio_resid) &&
 2020             sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
 2021             m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
 2022                 KASSERT(m != NULL || !sbavail(&so->so_rcv),
 2023                     ("receive: m == %p sbavail == %u",
 2024                     m, sbavail(&so->so_rcv)));
 2025                 if (so->so_error || so->so_rerror) {
 2026                         if (m != NULL)
 2027                                 goto dontblock;
 2028                         if (so->so_error)
 2029                                 error = so->so_error;
 2030                         else
 2031                                 error = so->so_rerror;
 2032                         if ((flags & MSG_PEEK) == 0) {
 2033                                 if (so->so_error)
 2034                                         so->so_error = 0;
 2035                                 else
 2036                                         so->so_rerror = 0;
 2037                         }
 2038                         SOCKBUF_UNLOCK(&so->so_rcv);
 2039                         goto release;
 2040                 }
 2041                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2042                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 2043                         if (m != NULL)
 2044                                 goto dontblock;
 2045 #ifdef KERN_TLS
 2046                         else if (so->so_rcv.sb_tlsdcc == 0 &&
 2047                             so->so_rcv.sb_tlscc == 0) {
 2048 #else
 2049                         else {
 2050 #endif
 2051                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2052                                 goto release;
 2053                         }
 2054                 }
 2055                 for (; m != NULL; m = m->m_next)
 2056                         if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
 2057                                 m = so->so_rcv.sb_mb;
 2058                                 goto dontblock;
 2059                         }
 2060                 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
 2061                     SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
 2062                     (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
 2063                         SOCKBUF_UNLOCK(&so->so_rcv);
 2064                         error = ENOTCONN;
 2065                         goto release;
 2066                 }
 2067                 if (uio->uio_resid == 0 && !report_real_len) {
 2068                         SOCKBUF_UNLOCK(&so->so_rcv);
 2069                         goto release;
 2070                 }
 2071                 if ((so->so_state & SS_NBIO) ||
 2072                     (flags & (MSG_DONTWAIT|MSG_NBIO))) {
 2073                         SOCKBUF_UNLOCK(&so->so_rcv);
 2074                         error = EWOULDBLOCK;
 2075                         goto release;
 2076                 }
 2077                 SBLASTRECORDCHK(&so->so_rcv);
 2078                 SBLASTMBUFCHK(&so->so_rcv);
 2079                 error = sbwait(so, SO_RCV);
 2080                 SOCKBUF_UNLOCK(&so->so_rcv);
 2081                 if (error)
 2082                         goto release;
 2083                 goto restart;
 2084         }
 2085 dontblock:
 2086         /*
 2087          * From this point onward, we maintain 'nextrecord' as a cache of the
 2088          * pointer to the next record in the socket buffer.  We must keep the
 2089          * various socket buffer pointers and local stack versions of the
 2090          * pointers in sync, pushing out modifications before dropping the
 2091          * socket buffer mutex, and re-reading them when picking it up.
 2092          *
 2093          * Otherwise, we will race with the network stack appending new data
 2094          * or records onto the socket buffer by using inconsistent/stale
 2095          * versions of the field, possibly resulting in socket buffer
 2096          * corruption.
 2097          *
 2098          * By holding the high-level sblock(), we prevent simultaneous
 2099          * readers from pulling off the front of the socket buffer.
 2100          */
 2101         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2102         if (uio->uio_td)
 2103                 uio->uio_td->td_ru.ru_msgrcv++;
 2104         KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
 2105         SBLASTRECORDCHK(&so->so_rcv);
 2106         SBLASTMBUFCHK(&so->so_rcv);
 2107         nextrecord = m->m_nextpkt;
 2108         if (pr->pr_flags & PR_ADDR) {
 2109                 KASSERT(m->m_type == MT_SONAME,
 2110                     ("m->m_type == %d", m->m_type));
 2111                 orig_resid = 0;
 2112                 if (psa != NULL)
 2113                         *psa = sodupsockaddr(mtod(m, struct sockaddr *),
 2114                             M_NOWAIT);
 2115                 if (flags & MSG_PEEK) {
 2116                         m = m->m_next;
 2117                 } else {
 2118                         sbfree(&so->so_rcv, m);
 2119                         so->so_rcv.sb_mb = m_free(m);
 2120                         m = so->so_rcv.sb_mb;
 2121                         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2122                 }
 2123         }
 2124 
 2125         /*
 2126          * Process one or more MT_CONTROL mbufs present before any data mbufs
 2127          * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
 2128          * just copy the data; if !MSG_PEEK, we call into the protocol to
 2129          * perform externalization (or freeing if controlp == NULL).
 2130          */
 2131         if (m != NULL && m->m_type == MT_CONTROL) {
 2132                 struct mbuf *cm = NULL, *cmn;
 2133                 struct mbuf **cme = &cm;
 2134 #ifdef KERN_TLS
 2135                 struct cmsghdr *cmsg;
 2136                 struct tls_get_record tgr;
 2137 
 2138                 /*
 2139                  * For MSG_TLSAPPDATA, check for an alert record.
 2140                  * If found, return ENXIO without removing
 2141                  * it from the receive queue.  This allows a subsequent
 2142                  * call without MSG_TLSAPPDATA to receive it.
 2143                  * Note that, for TLS, there should only be a single
 2144                  * control mbuf with the TLS_GET_RECORD message in it.
 2145                  */
 2146                 if (flags & MSG_TLSAPPDATA) {
 2147                         cmsg = mtod(m, struct cmsghdr *);
 2148                         if (cmsg->cmsg_type == TLS_GET_RECORD &&
 2149                             cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
 2150                                 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
 2151                                 if (__predict_false(tgr.tls_type ==
 2152                                     TLS_RLTYPE_ALERT)) {
 2153                                         SOCKBUF_UNLOCK(&so->so_rcv);
 2154                                         error = ENXIO;
 2155                                         goto release;
 2156                                 }
 2157                         }
 2158                 }
 2159 #endif
 2160 
 2161                 do {
 2162                         if (flags & MSG_PEEK) {
 2163                                 if (controlp != NULL) {
 2164                                         *controlp = m_copym(m, 0, m->m_len,
 2165                                             M_NOWAIT);
 2166                                         controlp = &(*controlp)->m_next;
 2167                                 }
 2168                                 m = m->m_next;
 2169                         } else {
 2170                                 sbfree(&so->so_rcv, m);
 2171                                 so->so_rcv.sb_mb = m->m_next;
 2172                                 m->m_next = NULL;
 2173                                 *cme = m;
 2174                                 cme = &(*cme)->m_next;
 2175                                 m = so->so_rcv.sb_mb;
 2176                         }
 2177                 } while (m != NULL && m->m_type == MT_CONTROL);
 2178                 if ((flags & MSG_PEEK) == 0)
 2179                         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2180                 while (cm != NULL) {
 2181                         cmn = cm->m_next;
 2182                         cm->m_next = NULL;
 2183                         if (pr->pr_domain->dom_externalize != NULL) {
 2184                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2185                                 VNET_SO_ASSERT(so);
 2186                                 error = (*pr->pr_domain->dom_externalize)
 2187                                     (cm, controlp, flags);
 2188                                 SOCKBUF_LOCK(&so->so_rcv);
 2189                         } else if (controlp != NULL)
 2190                                 *controlp = cm;
 2191                         else
 2192                                 m_freem(cm);
 2193                         if (controlp != NULL) {
 2194                                 while (*controlp != NULL)
 2195                                         controlp = &(*controlp)->m_next;
 2196                         }
 2197                         cm = cmn;
 2198                 }
 2199                 if (m != NULL)
 2200                         nextrecord = so->so_rcv.sb_mb->m_nextpkt;
 2201                 else
 2202                         nextrecord = so->so_rcv.sb_mb;
 2203                 orig_resid = 0;
 2204         }
 2205         if (m != NULL) {
 2206                 if ((flags & MSG_PEEK) == 0) {
 2207                         KASSERT(m->m_nextpkt == nextrecord,
 2208                             ("soreceive: post-control, nextrecord !sync"));
 2209                         if (nextrecord == NULL) {
 2210                                 KASSERT(so->so_rcv.sb_mb == m,
 2211                                     ("soreceive: post-control, sb_mb!=m"));
 2212                                 KASSERT(so->so_rcv.sb_lastrecord == m,
 2213                                     ("soreceive: post-control, lastrecord!=m"));
 2214                         }
 2215                 }
 2216                 type = m->m_type;
 2217                 if (type == MT_OOBDATA)
 2218                         flags |= MSG_OOB;
 2219         } else {
 2220                 if ((flags & MSG_PEEK) == 0) {
 2221                         KASSERT(so->so_rcv.sb_mb == nextrecord,
 2222                             ("soreceive: sb_mb != nextrecord"));
 2223                         if (so->so_rcv.sb_mb == NULL) {
 2224                                 KASSERT(so->so_rcv.sb_lastrecord == NULL,
 2225                                     ("soreceive: sb_lastercord != NULL"));
 2226                         }
 2227                 }
 2228         }
 2229         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2230         SBLASTRECORDCHK(&so->so_rcv);
 2231         SBLASTMBUFCHK(&so->so_rcv);
 2232 
 2233         /*
 2234          * Now continue to read any data mbufs off of the head of the socket
 2235          * buffer until the read request is satisfied.  Note that 'type' is
 2236          * used to store the type of any mbuf reads that have happened so far
 2237          * such that soreceive() can stop reading if the type changes, which
 2238          * causes soreceive() to return only one of regular data and inline
 2239          * out-of-band data in a single socket receive operation.
 2240          */
 2241         moff = 0;
 2242         offset = 0;
 2243         while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
 2244             && error == 0) {
 2245                 /*
 2246                  * If the type of mbuf has changed since the last mbuf
 2247                  * examined ('type'), end the receive operation.
 2248                  */
 2249                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2250                 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
 2251                         if (type != m->m_type)
 2252                                 break;
 2253                 } else if (type == MT_OOBDATA)
 2254                         break;
 2255                 else
 2256                     KASSERT(m->m_type == MT_DATA,
 2257                         ("m->m_type == %d", m->m_type));
 2258                 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
 2259                 len = uio->uio_resid;
 2260                 if (so->so_oobmark && len > so->so_oobmark - offset)
 2261                         len = so->so_oobmark - offset;
 2262                 if (len > m->m_len - moff)
 2263                         len = m->m_len - moff;
 2264                 /*
 2265                  * If mp is set, just pass back the mbufs.  Otherwise copy
 2266                  * them out via the uio, then free.  Sockbuf must be
 2267                  * consistent here (points to current mbuf, it points to next
 2268                  * record) when we drop priority; we must note any additions
 2269                  * to the sockbuf when we block interrupts again.
 2270                  */
 2271                 if (mp == NULL) {
 2272                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2273                         SBLASTRECORDCHK(&so->so_rcv);
 2274                         SBLASTMBUFCHK(&so->so_rcv);
 2275                         SOCKBUF_UNLOCK(&so->so_rcv);
 2276                         if ((m->m_flags & M_EXTPG) != 0)
 2277                                 error = m_unmapped_uiomove(m, moff, uio,
 2278                                     (int)len);
 2279                         else
 2280                                 error = uiomove(mtod(m, char *) + moff,
 2281                                     (int)len, uio);
 2282                         SOCKBUF_LOCK(&so->so_rcv);
 2283                         if (error) {
 2284                                 /*
 2285                                  * The MT_SONAME mbuf has already been removed
 2286                                  * from the record, so it is necessary to
 2287                                  * remove the data mbufs, if any, to preserve
 2288                                  * the invariant in the case of PR_ADDR that
 2289                                  * requires MT_SONAME mbufs at the head of
 2290                                  * each record.
 2291                                  */
 2292                                 if (pr->pr_flags & PR_ATOMIC &&
 2293                                     ((flags & MSG_PEEK) == 0))
 2294                                         (void)sbdroprecord_locked(&so->so_rcv);
 2295                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2296                                 goto release;
 2297                         }
 2298                 } else
 2299                         uio->uio_resid -= len;
 2300                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2301                 if (len == m->m_len - moff) {
 2302                         if (m->m_flags & M_EOR)
 2303                                 flags |= MSG_EOR;
 2304                         if (flags & MSG_PEEK) {
 2305                                 m = m->m_next;
 2306                                 moff = 0;
 2307                         } else {
 2308                                 nextrecord = m->m_nextpkt;
 2309                                 sbfree(&so->so_rcv, m);
 2310                                 if (mp != NULL) {
 2311                                         m->m_nextpkt = NULL;
 2312                                         *mp = m;
 2313                                         mp = &m->m_next;
 2314                                         so->so_rcv.sb_mb = m = m->m_next;
 2315                                         *mp = NULL;
 2316                                 } else {
 2317                                         so->so_rcv.sb_mb = m_free(m);
 2318                                         m = so->so_rcv.sb_mb;
 2319                                 }
 2320                                 sockbuf_pushsync(&so->so_rcv, nextrecord);
 2321                                 SBLASTRECORDCHK(&so->so_rcv);
 2322                                 SBLASTMBUFCHK(&so->so_rcv);
 2323                         }
 2324                 } else {
 2325                         if (flags & MSG_PEEK)
 2326                                 moff += len;
 2327                         else {
 2328                                 if (mp != NULL) {
 2329                                         if (flags & MSG_DONTWAIT) {
 2330                                                 *mp = m_copym(m, 0, len,
 2331                                                     M_NOWAIT);
 2332                                                 if (*mp == NULL) {
 2333                                                         /*
 2334                                                          * m_copym() couldn't
 2335                                                          * allocate an mbuf.
 2336                                                          * Adjust uio_resid back
 2337                                                          * (it was adjusted
 2338                                                          * down by len bytes,
 2339                                                          * which we didn't end
 2340                                                          * up "copying" over).
 2341                                                          */
 2342                                                         uio->uio_resid += len;
 2343                                                         break;
 2344                                                 }
 2345                                         } else {
 2346                                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2347                                                 *mp = m_copym(m, 0, len,
 2348                                                     M_WAITOK);
 2349                                                 SOCKBUF_LOCK(&so->so_rcv);
 2350                                         }
 2351                                 }
 2352                                 sbcut_locked(&so->so_rcv, len);
 2353                         }
 2354                 }
 2355                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2356                 if (so->so_oobmark) {
 2357                         if ((flags & MSG_PEEK) == 0) {
 2358                                 so->so_oobmark -= len;
 2359                                 if (so->so_oobmark == 0) {
 2360                                         so->so_rcv.sb_state |= SBS_RCVATMARK;
 2361                                         break;
 2362                                 }
 2363                         } else {
 2364                                 offset += len;
 2365                                 if (offset == so->so_oobmark)
 2366                                         break;
 2367                         }
 2368                 }
 2369                 if (flags & MSG_EOR)
 2370                         break;
 2371                 /*
 2372                  * If the MSG_WAITALL flag is set (for non-atomic socket), we
 2373                  * must not quit until "uio->uio_resid == 0" or an error
 2374                  * termination.  If a signal/timeout occurs, return with a
 2375                  * short count but without error.  Keep sockbuf locked
 2376                  * against other readers.
 2377                  */
 2378                 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
 2379                     !sosendallatonce(so) && nextrecord == NULL) {
 2380                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2381                         if (so->so_error || so->so_rerror ||
 2382                             so->so_rcv.sb_state & SBS_CANTRCVMORE)
 2383                                 break;
 2384                         /*
 2385                          * Notify the protocol that some data has been
 2386                          * drained before blocking.
 2387                          */
 2388                         if (pr->pr_flags & PR_WANTRCVD) {
 2389                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2390                                 VNET_SO_ASSERT(so);
 2391                                 pr->pr_rcvd(so, flags);
 2392                                 SOCKBUF_LOCK(&so->so_rcv);
 2393                         }
 2394                         SBLASTRECORDCHK(&so->so_rcv);
 2395                         SBLASTMBUFCHK(&so->so_rcv);
 2396                         /*
 2397                          * We could receive some data while was notifying
 2398                          * the protocol. Skip blocking in this case.
 2399                          */
 2400                         if (so->so_rcv.sb_mb == NULL) {
 2401                                 error = sbwait(so, SO_RCV);
 2402                                 if (error) {
 2403                                         SOCKBUF_UNLOCK(&so->so_rcv);
 2404                                         goto release;
 2405                                 }
 2406                         }
 2407                         m = so->so_rcv.sb_mb;
 2408                         if (m != NULL)
 2409                                 nextrecord = m->m_nextpkt;
 2410                 }
 2411         }
 2412 
 2413         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2414         if (m != NULL && pr->pr_flags & PR_ATOMIC) {
 2415                 if (report_real_len)
 2416                         uio->uio_resid -= m_length(m, NULL) - moff;
 2417                 flags |= MSG_TRUNC;
 2418                 if ((flags & MSG_PEEK) == 0)
 2419                         (void) sbdroprecord_locked(&so->so_rcv);
 2420         }
 2421         if ((flags & MSG_PEEK) == 0) {
 2422                 if (m == NULL) {
 2423                         /*
 2424                          * First part is an inline SB_EMPTY_FIXUP().  Second
 2425                          * part makes sure sb_lastrecord is up-to-date if
 2426                          * there is still data in the socket buffer.
 2427                          */
 2428                         so->so_rcv.sb_mb = nextrecord;
 2429                         if (so->so_rcv.sb_mb == NULL) {
 2430                                 so->so_rcv.sb_mbtail = NULL;
 2431                                 so->so_rcv.sb_lastrecord = NULL;
 2432                         } else if (nextrecord->m_nextpkt == NULL)
 2433                                 so->so_rcv.sb_lastrecord = nextrecord;
 2434                 }
 2435                 SBLASTRECORDCHK(&so->so_rcv);
 2436                 SBLASTMBUFCHK(&so->so_rcv);
 2437                 /*
 2438                  * If soreceive() is being done from the socket callback,
 2439                  * then don't need to generate ACK to peer to update window,
 2440                  * since ACK will be generated on return to TCP.
 2441                  */
 2442                 if (!(flags & MSG_SOCALLBCK) &&
 2443                     (pr->pr_flags & PR_WANTRCVD)) {
 2444                         SOCKBUF_UNLOCK(&so->so_rcv);
 2445                         VNET_SO_ASSERT(so);
 2446                         pr->pr_rcvd(so, flags);
 2447                         SOCKBUF_LOCK(&so->so_rcv);
 2448                 }
 2449         }
 2450         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2451         if (orig_resid == uio->uio_resid && orig_resid &&
 2452             (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
 2453                 SOCKBUF_UNLOCK(&so->so_rcv);
 2454                 goto restart;
 2455         }
 2456         SOCKBUF_UNLOCK(&so->so_rcv);
 2457 
 2458         if (flagsp != NULL)
 2459                 *flagsp |= flags;
 2460 release:
 2461         SOCK_IO_RECV_UNLOCK(so);
 2462         return (error);
 2463 }
 2464 
 2465 /*
 2466  * Optimized version of soreceive() for stream (TCP) sockets.
 2467  */
 2468 int
 2469 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2470     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2471 {
 2472         int len = 0, error = 0, flags, oresid;
 2473         struct sockbuf *sb;
 2474         struct mbuf *m, *n = NULL;
 2475 
 2476         /* We only do stream sockets. */
 2477         if (so->so_type != SOCK_STREAM)
 2478                 return (EINVAL);
 2479         if (psa != NULL)
 2480                 *psa = NULL;
 2481         if (flagsp != NULL)
 2482                 flags = *flagsp &~ MSG_EOR;
 2483         else
 2484                 flags = 0;
 2485         if (controlp != NULL)
 2486                 *controlp = NULL;
 2487         if (flags & MSG_OOB)
 2488                 return (soreceive_rcvoob(so, uio, flags));
 2489         if (mp0 != NULL)
 2490                 *mp0 = NULL;
 2491 
 2492         sb = &so->so_rcv;
 2493 
 2494 #ifdef KERN_TLS
 2495         /*
 2496          * KTLS store TLS records as records with a control message to
 2497          * describe the framing.
 2498          *
 2499          * We check once here before acquiring locks to optimize the
 2500          * common case.
 2501          */
 2502         if (sb->sb_tls_info != NULL)
 2503                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2504                     flagsp));
 2505 #endif
 2506 
 2507         /* Prevent other readers from entering the socket. */
 2508         error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
 2509         if (error)
 2510                 return (error);
 2511         SOCKBUF_LOCK(sb);
 2512 
 2513 #ifdef KERN_TLS
 2514         if (sb->sb_tls_info != NULL) {
 2515                 SOCKBUF_UNLOCK(sb);
 2516                 SOCK_IO_RECV_UNLOCK(so);
 2517                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2518                     flagsp));
 2519         }
 2520 #endif
 2521 
 2522         /* Easy one, no space to copyout anything. */
 2523         if (uio->uio_resid == 0) {
 2524                 error = EINVAL;
 2525                 goto out;
 2526         }
 2527         oresid = uio->uio_resid;
 2528 
 2529         /* We will never ever get anything unless we are or were connected. */
 2530         if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
 2531                 error = ENOTCONN;
 2532                 goto out;
 2533         }
 2534 
 2535 restart:
 2536         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2537 
 2538         /* Abort if socket has reported problems. */
 2539         if (so->so_error) {
 2540                 if (sbavail(sb) > 0)
 2541                         goto deliver;
 2542                 if (oresid > uio->uio_resid)
 2543                         goto out;
 2544                 error = so->so_error;
 2545                 if (!(flags & MSG_PEEK))
 2546                         so->so_error = 0;
 2547                 goto out;
 2548         }
 2549 
 2550         /* Door is closed.  Deliver what is left, if any. */
 2551         if (sb->sb_state & SBS_CANTRCVMORE) {
 2552                 if (sbavail(sb) > 0)
 2553                         goto deliver;
 2554                 else
 2555                         goto out;
 2556         }
 2557 
 2558         /* Socket buffer is empty and we shall not block. */
 2559         if (sbavail(sb) == 0 &&
 2560             ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
 2561                 error = EAGAIN;
 2562                 goto out;
 2563         }
 2564 
 2565         /* Socket buffer got some data that we shall deliver now. */
 2566         if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
 2567             ((so->so_state & SS_NBIO) ||
 2568              (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
 2569              sbavail(sb) >= sb->sb_lowat ||
 2570              sbavail(sb) >= uio->uio_resid ||
 2571              sbavail(sb) >= sb->sb_hiwat) ) {
 2572                 goto deliver;
 2573         }
 2574 
 2575         /* On MSG_WAITALL we must wait until all data or error arrives. */
 2576         if ((flags & MSG_WAITALL) &&
 2577             (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
 2578                 goto deliver;
 2579 
 2580         /*
 2581          * Wait and block until (more) data comes in.
 2582          * NB: Drops the sockbuf lock during wait.
 2583          */
 2584         error = sbwait(so, SO_RCV);
 2585         if (error)
 2586                 goto out;
 2587         goto restart;
 2588 
 2589 deliver:
 2590         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2591         KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
 2592         KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
 2593 
 2594         /* Statistics. */
 2595         if (uio->uio_td)
 2596                 uio->uio_td->td_ru.ru_msgrcv++;
 2597 
 2598         /* Fill uio until full or current end of socket buffer is reached. */
 2599         len = min(uio->uio_resid, sbavail(sb));
 2600         if (mp0 != NULL) {
 2601                 /* Dequeue as many mbufs as possible. */
 2602                 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
 2603                         if (*mp0 == NULL)
 2604                                 *mp0 = sb->sb_mb;
 2605                         else
 2606                                 m_cat(*mp0, sb->sb_mb);
 2607                         for (m = sb->sb_mb;
 2608                              m != NULL && m->m_len <= len;
 2609                              m = m->m_next) {
 2610                                 KASSERT(!(m->m_flags & M_NOTAVAIL),
 2611                                     ("%s: m %p not available", __func__, m));
 2612                                 len -= m->m_len;
 2613                                 uio->uio_resid -= m->m_len;
 2614                                 sbfree(sb, m);
 2615                                 n = m;
 2616                         }
 2617                         n->m_next = NULL;
 2618                         sb->sb_mb = m;
 2619                         sb->sb_lastrecord = sb->sb_mb;
 2620                         if (sb->sb_mb == NULL)
 2621                                 SB_EMPTY_FIXUP(sb);
 2622                 }
 2623                 /* Copy the remainder. */
 2624                 if (len > 0) {
 2625                         KASSERT(sb->sb_mb != NULL,
 2626                             ("%s: len > 0 && sb->sb_mb empty", __func__));
 2627 
 2628                         m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
 2629                         if (m == NULL)
 2630                                 len = 0;        /* Don't flush data from sockbuf. */
 2631                         else
 2632                                 uio->uio_resid -= len;
 2633                         if (*mp0 != NULL)
 2634                                 m_cat(*mp0, m);
 2635                         else
 2636                                 *mp0 = m;
 2637                         if (*mp0 == NULL) {
 2638                                 error = ENOBUFS;
 2639                                 goto out;
 2640                         }
 2641                 }
 2642         } else {
 2643                 /* NB: Must unlock socket buffer as uiomove may sleep. */
 2644                 SOCKBUF_UNLOCK(sb);
 2645                 error = m_mbuftouio(uio, sb->sb_mb, len);
 2646                 SOCKBUF_LOCK(sb);
 2647                 if (error)
 2648                         goto out;
 2649         }
 2650         SBLASTRECORDCHK(sb);
 2651         SBLASTMBUFCHK(sb);
 2652 
 2653         /*
 2654          * Remove the delivered data from the socket buffer unless we
 2655          * were only peeking.
 2656          */
 2657         if (!(flags & MSG_PEEK)) {
 2658                 if (len > 0)
 2659                         sbdrop_locked(sb, len);
 2660 
 2661                 /* Notify protocol that we drained some data. */
 2662                 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
 2663                     (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
 2664                      !(flags & MSG_SOCALLBCK))) {
 2665                         SOCKBUF_UNLOCK(sb);
 2666                         VNET_SO_ASSERT(so);
 2667                         so->so_proto->pr_rcvd(so, flags);
 2668                         SOCKBUF_LOCK(sb);
 2669                 }
 2670         }
 2671 
 2672         /*
 2673          * For MSG_WAITALL we may have to loop again and wait for
 2674          * more data to come in.
 2675          */
 2676         if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
 2677                 goto restart;
 2678 out:
 2679         SBLASTRECORDCHK(sb);
 2680         SBLASTMBUFCHK(sb);
 2681         SOCKBUF_UNLOCK(sb);
 2682         SOCK_IO_RECV_UNLOCK(so);
 2683         return (error);
 2684 }
 2685 
 2686 /*
 2687  * Optimized version of soreceive() for simple datagram cases from userspace.
 2688  * Unlike in the stream case, we're able to drop a datagram if copyout()
 2689  * fails, and because we handle datagrams atomically, we don't need to use a
 2690  * sleep lock to prevent I/O interlacing.
 2691  */
 2692 int
 2693 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2694     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2695 {
 2696         struct mbuf *m, *m2;
 2697         int flags, error;
 2698         ssize_t len;
 2699         struct protosw *pr = so->so_proto;
 2700         struct mbuf *nextrecord;
 2701 
 2702         if (psa != NULL)
 2703                 *psa = NULL;
 2704         if (controlp != NULL)
 2705                 *controlp = NULL;
 2706         if (flagsp != NULL)
 2707                 flags = *flagsp &~ MSG_EOR;
 2708         else
 2709                 flags = 0;
 2710 
 2711         /*
 2712          * For any complicated cases, fall back to the full
 2713          * soreceive_generic().
 2714          */
 2715         if (mp0 != NULL || (flags & (MSG_PEEK | MSG_OOB | MSG_TRUNC)))
 2716                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2717                     flagsp));
 2718 
 2719         /*
 2720          * Enforce restrictions on use.
 2721          */
 2722         KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
 2723             ("soreceive_dgram: wantrcvd"));
 2724         KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
 2725         KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
 2726             ("soreceive_dgram: SBS_RCVATMARK"));
 2727         KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
 2728             ("soreceive_dgram: P_CONNREQUIRED"));
 2729 
 2730         /*
 2731          * Loop blocking while waiting for a datagram.
 2732          */
 2733         SOCKBUF_LOCK(&so->so_rcv);
 2734         while ((m = so->so_rcv.sb_mb) == NULL) {
 2735                 KASSERT(sbavail(&so->so_rcv) == 0,
 2736                     ("soreceive_dgram: sb_mb NULL but sbavail %u",
 2737                     sbavail(&so->so_rcv)));
 2738                 if (so->so_error) {
 2739                         error = so->so_error;
 2740                         so->so_error = 0;
 2741                         SOCKBUF_UNLOCK(&so->so_rcv);
 2742                         return (error);
 2743                 }
 2744                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
 2745                     uio->uio_resid == 0) {
 2746                         SOCKBUF_UNLOCK(&so->so_rcv);
 2747                         return (0);
 2748                 }
 2749                 if ((so->so_state & SS_NBIO) ||
 2750                     (flags & (MSG_DONTWAIT|MSG_NBIO))) {
 2751                         SOCKBUF_UNLOCK(&so->so_rcv);
 2752                         return (EWOULDBLOCK);
 2753                 }
 2754                 SBLASTRECORDCHK(&so->so_rcv);
 2755                 SBLASTMBUFCHK(&so->so_rcv);
 2756                 error = sbwait(so, SO_RCV);
 2757                 if (error) {
 2758                         SOCKBUF_UNLOCK(&so->so_rcv);
 2759                         return (error);
 2760                 }
 2761         }
 2762         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2763 
 2764         if (uio->uio_td)
 2765                 uio->uio_td->td_ru.ru_msgrcv++;
 2766         SBLASTRECORDCHK(&so->so_rcv);
 2767         SBLASTMBUFCHK(&so->so_rcv);
 2768         nextrecord = m->m_nextpkt;
 2769         if (nextrecord == NULL) {
 2770                 KASSERT(so->so_rcv.sb_lastrecord == m,
 2771                     ("soreceive_dgram: lastrecord != m"));
 2772         }
 2773 
 2774         KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
 2775             ("soreceive_dgram: m_nextpkt != nextrecord"));
 2776 
 2777         /*
 2778          * Pull 'm' and its chain off the front of the packet queue.
 2779          */
 2780         so->so_rcv.sb_mb = NULL;
 2781         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2782 
 2783         /*
 2784          * Walk 'm's chain and free that many bytes from the socket buffer.
 2785          */
 2786         for (m2 = m; m2 != NULL; m2 = m2->m_next)
 2787                 sbfree(&so->so_rcv, m2);
 2788 
 2789         /*
 2790          * Do a few last checks before we let go of the lock.
 2791          */
 2792         SBLASTRECORDCHK(&so->so_rcv);
 2793         SBLASTMBUFCHK(&so->so_rcv);
 2794         SOCKBUF_UNLOCK(&so->so_rcv);
 2795 
 2796         if (pr->pr_flags & PR_ADDR) {
 2797                 KASSERT(m->m_type == MT_SONAME,
 2798                     ("m->m_type == %d", m->m_type));
 2799                 if (psa != NULL)
 2800                         *psa = sodupsockaddr(mtod(m, struct sockaddr *),
 2801                             M_NOWAIT);
 2802                 m = m_free(m);
 2803         }
 2804         if (m == NULL) {
 2805                 /* XXXRW: Can this happen? */
 2806                 return (0);
 2807         }
 2808 
 2809         /*
 2810          * Packet to copyout() is now in 'm' and it is disconnected from the
 2811          * queue.
 2812          *
 2813          * Process one or more MT_CONTROL mbufs present before any data mbufs
 2814          * in the first mbuf chain on the socket buffer.  We call into the
 2815          * protocol to perform externalization (or freeing if controlp ==
 2816          * NULL). In some cases there can be only MT_CONTROL mbufs without
 2817          * MT_DATA mbufs.
 2818          */
 2819         if (m->m_type == MT_CONTROL) {
 2820                 struct mbuf *cm = NULL, *cmn;
 2821                 struct mbuf **cme = &cm;
 2822 
 2823                 do {
 2824                         m2 = m->m_next;
 2825                         m->m_next = NULL;
 2826                         *cme = m;
 2827                         cme = &(*cme)->m_next;
 2828                         m = m2;
 2829                 } while (m != NULL && m->m_type == MT_CONTROL);
 2830                 while (cm != NULL) {
 2831                         cmn = cm->m_next;
 2832                         cm->m_next = NULL;
 2833                         if (pr->pr_domain->dom_externalize != NULL) {
 2834                                 error = (*pr->pr_domain->dom_externalize)
 2835                                     (cm, controlp, flags);
 2836                         } else if (controlp != NULL)
 2837                                 *controlp = cm;
 2838                         else
 2839                                 m_freem(cm);
 2840                         if (controlp != NULL) {
 2841                                 while (*controlp != NULL)
 2842                                         controlp = &(*controlp)->m_next;
 2843                         }
 2844                         cm = cmn;
 2845                 }
 2846         }
 2847         KASSERT(m == NULL || m->m_type == MT_DATA,
 2848             ("soreceive_dgram: !data"));
 2849         while (m != NULL && uio->uio_resid > 0) {
 2850                 len = uio->uio_resid;
 2851                 if (len > m->m_len)
 2852                         len = m->m_len;
 2853                 error = uiomove(mtod(m, char *), (int)len, uio);
 2854                 if (error) {
 2855                         m_freem(m);
 2856                         return (error);
 2857                 }
 2858                 if (len == m->m_len)
 2859                         m = m_free(m);
 2860                 else {
 2861                         m->m_data += len;
 2862                         m->m_len -= len;
 2863                 }
 2864         }
 2865         if (m != NULL) {
 2866                 flags |= MSG_TRUNC;
 2867                 m_freem(m);
 2868         }
 2869         if (flagsp != NULL)
 2870                 *flagsp |= flags;
 2871         return (0);
 2872 }
 2873 
 2874 int
 2875 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2876     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2877 {
 2878         int error;
 2879 
 2880         CURVNET_SET(so->so_vnet);
 2881         error = so->so_proto->pr_soreceive(so, psa, uio, mp0, controlp, flagsp);
 2882         CURVNET_RESTORE();
 2883         return (error);
 2884 }
 2885 
 2886 int
 2887 soshutdown(struct socket *so, int how)
 2888 {
 2889         struct protosw *pr;
 2890         int error, soerror_enotconn;
 2891 
 2892         if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
 2893                 return (EINVAL);
 2894 
 2895         soerror_enotconn = 0;
 2896         SOCK_LOCK(so);
 2897         if ((so->so_state &
 2898             (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
 2899                 /*
 2900                  * POSIX mandates us to return ENOTCONN when shutdown(2) is
 2901                  * invoked on a datagram sockets, however historically we would
 2902                  * actually tear socket down. This is known to be leveraged by
 2903                  * some applications to unblock process waiting in recvXXX(2)
 2904                  * by other process that it shares that socket with. Try to meet
 2905                  * both backward-compatibility and POSIX requirements by forcing
 2906                  * ENOTCONN but still asking protocol to perform pru_shutdown().
 2907                  */
 2908                 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so)) {
 2909                         SOCK_UNLOCK(so);
 2910                         return (ENOTCONN);
 2911                 }
 2912                 soerror_enotconn = 1;
 2913         }
 2914 
 2915         if (SOLISTENING(so)) {
 2916                 if (how != SHUT_WR) {
 2917                         so->so_error = ECONNABORTED;
 2918                         solisten_wakeup(so);    /* unlocks so */
 2919                 } else {
 2920                         SOCK_UNLOCK(so);
 2921                 }
 2922                 goto done;
 2923         }
 2924         SOCK_UNLOCK(so);
 2925 
 2926         CURVNET_SET(so->so_vnet);
 2927         pr = so->so_proto;
 2928         if (pr->pr_flush != NULL)
 2929                 pr->pr_flush(so, how);
 2930         if (how != SHUT_WR)
 2931                 sorflush(so);
 2932         if (how != SHUT_RD) {
 2933                 error = pr->pr_shutdown(so);
 2934                 wakeup(&so->so_timeo);
 2935                 CURVNET_RESTORE();
 2936                 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
 2937         }
 2938         wakeup(&so->so_timeo);
 2939         CURVNET_RESTORE();
 2940 
 2941 done:
 2942         return (soerror_enotconn ? ENOTCONN : 0);
 2943 }
 2944 
 2945 void
 2946 sorflush(struct socket *so)
 2947 {
 2948         struct protosw *pr;
 2949         int error;
 2950 
 2951         VNET_SO_ASSERT(so);
 2952 
 2953         /*
 2954          * Dislodge threads currently blocked in receive and wait to acquire
 2955          * a lock against other simultaneous readers before clearing the
 2956          * socket buffer.  Don't let our acquire be interrupted by a signal
 2957          * despite any existing socket disposition on interruptable waiting.
 2958          */
 2959         socantrcvmore(so);
 2960 
 2961         error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
 2962         if (error != 0) {
 2963                 KASSERT(SOLISTENING(so),
 2964                     ("%s: soiolock(%p) failed", __func__, so));
 2965                 return;
 2966         }
 2967 
 2968         pr = so->so_proto;
 2969         if (pr->pr_flags & PR_RIGHTS) {
 2970                 MPASS(pr->pr_domain->dom_dispose != NULL);
 2971                 (*pr->pr_domain->dom_dispose)(so);
 2972         } else {
 2973                 sbrelease(so, SO_RCV);
 2974                 SOCK_IO_RECV_UNLOCK(so);
 2975         }
 2976 
 2977 }
 2978 
 2979 /*
 2980  * Wrapper for Socket established helper hook.
 2981  * Parameters: socket, context of the hook point, hook id.
 2982  */
 2983 static int inline
 2984 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
 2985 {
 2986         struct socket_hhook_data hhook_data = {
 2987                 .so = so,
 2988                 .hctx = hctx,
 2989                 .m = NULL,
 2990                 .status = 0
 2991         };
 2992 
 2993         CURVNET_SET(so->so_vnet);
 2994         HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
 2995         CURVNET_RESTORE();
 2996 
 2997         /* Ugly but needed, since hhooks return void for now */
 2998         return (hhook_data.status);
 2999 }
 3000 
 3001 /*
 3002  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
 3003  * additional variant to handle the case where the option value needs to be
 3004  * some kind of integer, but not a specific size.  In addition to their use
 3005  * here, these functions are also called by the protocol-level pr_ctloutput()
 3006  * routines.
 3007  */
 3008 int
 3009 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
 3010 {
 3011         size_t  valsize;
 3012 
 3013         /*
 3014          * If the user gives us more than we wanted, we ignore it, but if we
 3015          * don't get the minimum length the caller wants, we return EINVAL.
 3016          * On success, sopt->sopt_valsize is set to however much we actually
 3017          * retrieved.
 3018          */
 3019         if ((valsize = sopt->sopt_valsize) < minlen)
 3020                 return EINVAL;
 3021         if (valsize > len)
 3022                 sopt->sopt_valsize = valsize = len;
 3023 
 3024         if (sopt->sopt_td != NULL)
 3025                 return (copyin(sopt->sopt_val, buf, valsize));
 3026 
 3027         bcopy(sopt->sopt_val, buf, valsize);
 3028         return (0);
 3029 }
 3030 
 3031 /*
 3032  * Kernel version of setsockopt(2).
 3033  *
 3034  * XXX: optlen is size_t, not socklen_t
 3035  */
 3036 int
 3037 so_setsockopt(struct socket *so, int level, int optname, void *optval,
 3038     size_t optlen)
 3039 {
 3040         struct sockopt sopt;
 3041 
 3042         sopt.sopt_level = level;
 3043         sopt.sopt_name = optname;
 3044         sopt.sopt_dir = SOPT_SET;
 3045         sopt.sopt_val = optval;
 3046         sopt.sopt_valsize = optlen;
 3047         sopt.sopt_td = NULL;
 3048         return (sosetopt(so, &sopt));
 3049 }
 3050 
 3051 int
 3052 sosetopt(struct socket *so, struct sockopt *sopt)
 3053 {
 3054         int     error, optval;
 3055         struct  linger l;
 3056         struct  timeval tv;
 3057         sbintime_t val, *valp;
 3058         uint32_t val32;
 3059 #ifdef MAC
 3060         struct mac extmac;
 3061 #endif
 3062 
 3063         CURVNET_SET(so->so_vnet);
 3064         error = 0;
 3065         if (sopt->sopt_level != SOL_SOCKET) {
 3066                 if (so->so_proto->pr_ctloutput != NULL)
 3067                         error = (*so->so_proto->pr_ctloutput)(so, sopt);
 3068                 else
 3069                         error = ENOPROTOOPT;
 3070         } else {
 3071                 switch (sopt->sopt_name) {
 3072                 case SO_ACCEPTFILTER:
 3073                         error = accept_filt_setopt(so, sopt);
 3074                         if (error)
 3075                                 goto bad;
 3076                         break;
 3077 
 3078                 case SO_LINGER:
 3079                         error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
 3080                         if (error)
 3081                                 goto bad;
 3082                         if (l.l_linger < 0 ||
 3083                             l.l_linger > USHRT_MAX ||
 3084                             l.l_linger > (INT_MAX / hz)) {
 3085                                 error = EDOM;
 3086                                 goto bad;
 3087                         }
 3088                         SOCK_LOCK(so);
 3089                         so->so_linger = l.l_linger;
 3090                         if (l.l_onoff)
 3091                                 so->so_options |= SO_LINGER;
 3092                         else
 3093                                 so->so_options &= ~SO_LINGER;
 3094                         SOCK_UNLOCK(so);
 3095                         break;
 3096 
 3097                 case SO_DEBUG:
 3098                 case SO_KEEPALIVE:
 3099                 case SO_DONTROUTE:
 3100                 case SO_USELOOPBACK:
 3101                 case SO_BROADCAST:
 3102                 case SO_REUSEADDR:
 3103                 case SO_REUSEPORT:
 3104                 case SO_REUSEPORT_LB:
 3105                 case SO_OOBINLINE:
 3106                 case SO_TIMESTAMP:
 3107                 case SO_BINTIME:
 3108                 case SO_NOSIGPIPE:
 3109                 case SO_NO_DDP:
 3110                 case SO_NO_OFFLOAD:
 3111                 case SO_RERROR:
 3112                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3113                             sizeof optval);
 3114                         if (error)
 3115                                 goto bad;
 3116                         SOCK_LOCK(so);
 3117                         if (optval)
 3118                                 so->so_options |= sopt->sopt_name;
 3119                         else
 3120                                 so->so_options &= ~sopt->sopt_name;
 3121                         SOCK_UNLOCK(so);
 3122                         break;
 3123 
 3124                 case SO_SETFIB:
 3125                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3126                             sizeof optval);
 3127                         if (error)
 3128                                 goto bad;
 3129 
 3130                         if (optval < 0 || optval >= rt_numfibs) {
 3131                                 error = EINVAL;
 3132                                 goto bad;
 3133                         }
 3134                         if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
 3135                            (so->so_proto->pr_domain->dom_family == PF_INET6) ||
 3136                            (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
 3137                                 so->so_fibnum = optval;
 3138                         else
 3139                                 so->so_fibnum = 0;
 3140                         break;
 3141 
 3142                 case SO_USER_COOKIE:
 3143                         error = sooptcopyin(sopt, &val32, sizeof val32,
 3144                             sizeof val32);
 3145                         if (error)
 3146                                 goto bad;
 3147                         so->so_user_cookie = val32;
 3148                         break;
 3149 
 3150                 case SO_SNDBUF:
 3151                 case SO_RCVBUF:
 3152                 case SO_SNDLOWAT:
 3153                 case SO_RCVLOWAT:
 3154                         error = so->so_proto->pr_setsbopt(so, sopt);
 3155                         if (error)
 3156                                 goto bad;
 3157                         break;
 3158 
 3159                 case SO_SNDTIMEO:
 3160                 case SO_RCVTIMEO:
 3161 #ifdef COMPAT_FREEBSD32
 3162                         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3163                                 struct timeval32 tv32;
 3164 
 3165                                 error = sooptcopyin(sopt, &tv32, sizeof tv32,
 3166                                     sizeof tv32);
 3167                                 CP(tv32, tv, tv_sec);
 3168                                 CP(tv32, tv, tv_usec);
 3169                         } else
 3170 #endif
 3171                                 error = sooptcopyin(sopt, &tv, sizeof tv,
 3172                                     sizeof tv);
 3173                         if (error)
 3174                                 goto bad;
 3175                         if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
 3176                             tv.tv_usec >= 1000000) {
 3177                                 error = EDOM;
 3178                                 goto bad;
 3179                         }
 3180                         if (tv.tv_sec > INT32_MAX)
 3181                                 val = SBT_MAX;
 3182                         else
 3183                                 val = tvtosbt(tv);
 3184                         SOCK_LOCK(so);
 3185                         valp = sopt->sopt_name == SO_SNDTIMEO ?
 3186                             (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
 3187                             &so->so_snd.sb_timeo) :
 3188                             (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
 3189                             &so->so_rcv.sb_timeo);
 3190                         *valp = val;
 3191                         SOCK_UNLOCK(so);
 3192                         break;
 3193 
 3194                 case SO_LABEL:
 3195 #ifdef MAC
 3196                         error = sooptcopyin(sopt, &extmac, sizeof extmac,
 3197                             sizeof extmac);
 3198                         if (error)
 3199                                 goto bad;
 3200                         error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
 3201                             so, &extmac);
 3202 #else
 3203                         error = EOPNOTSUPP;
 3204 #endif
 3205                         break;
 3206 
 3207                 case SO_TS_CLOCK:
 3208                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3209                             sizeof optval);
 3210                         if (error)
 3211                                 goto bad;
 3212                         if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
 3213                                 error = EINVAL;
 3214                                 goto bad;
 3215                         }
 3216                         so->so_ts_clock = optval;
 3217                         break;
 3218 
 3219                 case SO_MAX_PACING_RATE:
 3220                         error = sooptcopyin(sopt, &val32, sizeof(val32),
 3221                             sizeof(val32));
 3222                         if (error)
 3223                                 goto bad;
 3224                         so->so_max_pacing_rate = val32;
 3225                         break;
 3226 
 3227                 default:
 3228                         if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
 3229                                 error = hhook_run_socket(so, sopt,
 3230                                     HHOOK_SOCKET_OPT);
 3231                         else
 3232                                 error = ENOPROTOOPT;
 3233                         break;
 3234                 }
 3235                 if (error == 0 && so->so_proto->pr_ctloutput != NULL)
 3236                         (void)(*so->so_proto->pr_ctloutput)(so, sopt);
 3237         }
 3238 bad:
 3239         CURVNET_RESTORE();
 3240         return (error);
 3241 }
 3242 
 3243 /*
 3244  * Helper routine for getsockopt.
 3245  */
 3246 int
 3247 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
 3248 {
 3249         int     error;
 3250         size_t  valsize;
 3251 
 3252         error = 0;
 3253 
 3254         /*
 3255          * Documented get behavior is that we always return a value, possibly
 3256          * truncated to fit in the user's buffer.  Traditional behavior is
 3257          * that we always tell the user precisely how much we copied, rather
 3258          * than something useful like the total amount we had available for
 3259          * her.  Note that this interface is not idempotent; the entire
 3260          * answer must be generated ahead of time.
 3261          */
 3262         valsize = min(len, sopt->sopt_valsize);
 3263         sopt->sopt_valsize = valsize;
 3264         if (sopt->sopt_val != NULL) {
 3265                 if (sopt->sopt_td != NULL)
 3266                         error = copyout(buf, sopt->sopt_val, valsize);
 3267                 else
 3268                         bcopy(buf, sopt->sopt_val, valsize);
 3269         }
 3270         return (error);
 3271 }
 3272 
 3273 int
 3274 sogetopt(struct socket *so, struct sockopt *sopt)
 3275 {
 3276         int     error, optval;
 3277         struct  linger l;
 3278         struct  timeval tv;
 3279 #ifdef MAC
 3280         struct mac extmac;
 3281 #endif
 3282 
 3283         CURVNET_SET(so->so_vnet);
 3284         error = 0;
 3285         if (sopt->sopt_level != SOL_SOCKET) {
 3286                 if (so->so_proto->pr_ctloutput != NULL)
 3287                         error = (*so->so_proto->pr_ctloutput)(so, sopt);
 3288                 else
 3289                         error = ENOPROTOOPT;
 3290                 CURVNET_RESTORE();
 3291                 return (error);
 3292         } else {
 3293                 switch (sopt->sopt_name) {
 3294                 case SO_ACCEPTFILTER:
 3295                         error = accept_filt_getopt(so, sopt);
 3296                         break;
 3297 
 3298                 case SO_LINGER:
 3299                         SOCK_LOCK(so);
 3300                         l.l_onoff = so->so_options & SO_LINGER;
 3301                         l.l_linger = so->so_linger;
 3302                         SOCK_UNLOCK(so);
 3303                         error = sooptcopyout(sopt, &l, sizeof l);
 3304                         break;
 3305 
 3306                 case SO_USELOOPBACK:
 3307                 case SO_DONTROUTE:
 3308                 case SO_DEBUG:
 3309                 case SO_KEEPALIVE:
 3310                 case SO_REUSEADDR:
 3311                 case SO_REUSEPORT:
 3312                 case SO_REUSEPORT_LB:
 3313                 case SO_BROADCAST:
 3314                 case SO_OOBINLINE:
 3315                 case SO_ACCEPTCONN:
 3316                 case SO_TIMESTAMP:
 3317                 case SO_BINTIME:
 3318                 case SO_NOSIGPIPE:
 3319                 case SO_NO_DDP:
 3320                 case SO_NO_OFFLOAD:
 3321                 case SO_RERROR:
 3322                         optval = so->so_options & sopt->sopt_name;
 3323 integer:
 3324                         error = sooptcopyout(sopt, &optval, sizeof optval);
 3325                         break;
 3326 
 3327                 case SO_DOMAIN:
 3328                         optval = so->so_proto->pr_domain->dom_family;
 3329                         goto integer;
 3330 
 3331                 case SO_TYPE:
 3332                         optval = so->so_type;
 3333                         goto integer;
 3334 
 3335                 case SO_PROTOCOL:
 3336                         optval = so->so_proto->pr_protocol;
 3337                         goto integer;
 3338 
 3339                 case SO_ERROR:
 3340                         SOCK_LOCK(so);
 3341                         if (so->so_error) {
 3342                                 optval = so->so_error;
 3343                                 so->so_error = 0;
 3344                         } else {
 3345                                 optval = so->so_rerror;
 3346                                 so->so_rerror = 0;
 3347                         }
 3348                         SOCK_UNLOCK(so);
 3349                         goto integer;
 3350 
 3351                 case SO_SNDBUF:
 3352                         optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
 3353                             so->so_snd.sb_hiwat;
 3354                         goto integer;
 3355 
 3356                 case SO_RCVBUF:
 3357                         optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
 3358                             so->so_rcv.sb_hiwat;
 3359                         goto integer;
 3360 
 3361                 case SO_SNDLOWAT:
 3362                         optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
 3363                             so->so_snd.sb_lowat;
 3364                         goto integer;
 3365 
 3366                 case SO_RCVLOWAT:
 3367                         optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
 3368                             so->so_rcv.sb_lowat;
 3369                         goto integer;
 3370 
 3371                 case SO_SNDTIMEO:
 3372                 case SO_RCVTIMEO:
 3373                         SOCK_LOCK(so);
 3374                         tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
 3375                             (SOLISTENING(so) ? so->sol_sbsnd_timeo :
 3376                             so->so_snd.sb_timeo) :
 3377                             (SOLISTENING(so) ? so->sol_sbrcv_timeo :
 3378                             so->so_rcv.sb_timeo));
 3379                         SOCK_UNLOCK(so);
 3380 #ifdef COMPAT_FREEBSD32
 3381                         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3382                                 struct timeval32 tv32;
 3383 
 3384                                 CP(tv, tv32, tv_sec);
 3385                                 CP(tv, tv32, tv_usec);
 3386                                 error = sooptcopyout(sopt, &tv32, sizeof tv32);
 3387                         } else
 3388 #endif
 3389                                 error = sooptcopyout(sopt, &tv, sizeof tv);
 3390                         break;
 3391 
 3392                 case SO_LABEL:
 3393 #ifdef MAC
 3394                         error = sooptcopyin(sopt, &extmac, sizeof(extmac),
 3395                             sizeof(extmac));
 3396                         if (error)
 3397                                 goto bad;
 3398                         error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
 3399                             so, &extmac);
 3400                         if (error)
 3401                                 goto bad;
 3402                         error = sooptcopyout(sopt, &extmac, sizeof extmac);
 3403 #else
 3404                         error = EOPNOTSUPP;
 3405 #endif
 3406                         break;
 3407 
 3408                 case SO_PEERLABEL:
 3409 #ifdef MAC
 3410                         error = sooptcopyin(sopt, &extmac, sizeof(extmac),
 3411                             sizeof(extmac));
 3412                         if (error)
 3413                                 goto bad;
 3414                         error = mac_getsockopt_peerlabel(
 3415                             sopt->sopt_td->td_ucred, so, &extmac);
 3416                         if (error)
 3417                                 goto bad;
 3418                         error = sooptcopyout(sopt, &extmac, sizeof extmac);
 3419 #else
 3420                         error = EOPNOTSUPP;
 3421 #endif
 3422                         break;
 3423 
 3424                 case SO_LISTENQLIMIT:
 3425                         optval = SOLISTENING(so) ? so->sol_qlimit : 0;
 3426                         goto integer;
 3427 
 3428                 case SO_LISTENQLEN:
 3429                         optval = SOLISTENING(so) ? so->sol_qlen : 0;
 3430                         goto integer;
 3431 
 3432                 case SO_LISTENINCQLEN:
 3433                         optval = SOLISTENING(so) ? so->sol_incqlen : 0;
 3434                         goto integer;
 3435 
 3436                 case SO_TS_CLOCK:
 3437                         optval = so->so_ts_clock;
 3438                         goto integer;
 3439 
 3440                 case SO_MAX_PACING_RATE:
 3441                         optval = so->so_max_pacing_rate;
 3442                         goto integer;
 3443 
 3444                 default:
 3445                         if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
 3446                                 error = hhook_run_socket(so, sopt,
 3447                                     HHOOK_SOCKET_OPT);
 3448                         else
 3449                                 error = ENOPROTOOPT;
 3450                         break;
 3451                 }
 3452         }
 3453 #ifdef MAC
 3454 bad:
 3455 #endif
 3456         CURVNET_RESTORE();
 3457         return (error);
 3458 }
 3459 
 3460 int
 3461 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
 3462 {
 3463         struct mbuf *m, *m_prev;
 3464         int sopt_size = sopt->sopt_valsize;
 3465 
 3466         MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
 3467         if (m == NULL)
 3468                 return ENOBUFS;
 3469         if (sopt_size > MLEN) {
 3470                 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
 3471                 if ((m->m_flags & M_EXT) == 0) {
 3472                         m_free(m);
 3473                         return ENOBUFS;
 3474                 }
 3475                 m->m_len = min(MCLBYTES, sopt_size);
 3476         } else {
 3477                 m->m_len = min(MLEN, sopt_size);
 3478         }
 3479         sopt_size -= m->m_len;
 3480         *mp = m;
 3481         m_prev = m;
 3482 
 3483         while (sopt_size) {
 3484                 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
 3485                 if (m == NULL) {
 3486                         m_freem(*mp);
 3487                         return ENOBUFS;
 3488                 }
 3489                 if (sopt_size > MLEN) {
 3490                         MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
 3491                             M_NOWAIT);
 3492                         if ((m->m_flags & M_EXT) == 0) {
 3493                                 m_freem(m);
 3494                                 m_freem(*mp);
 3495                                 return ENOBUFS;
 3496                         }
 3497                         m->m_len = min(MCLBYTES, sopt_size);
 3498                 } else {
 3499                         m->m_len = min(MLEN, sopt_size);
 3500                 }
 3501                 sopt_size -= m->m_len;
 3502                 m_prev->m_next = m;
 3503                 m_prev = m;
 3504         }
 3505         return (0);
 3506 }
 3507 
 3508 int
 3509 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
 3510 {
 3511         struct mbuf *m0 = m;
 3512 
 3513         if (sopt->sopt_val == NULL)
 3514                 return (0);
 3515         while (m != NULL && sopt->sopt_valsize >= m->m_len) {
 3516                 if (sopt->sopt_td != NULL) {
 3517                         int error;
 3518 
 3519                         error = copyin(sopt->sopt_val, mtod(m, char *),
 3520                             m->m_len);
 3521                         if (error != 0) {
 3522                                 m_freem(m0);
 3523                                 return(error);
 3524                         }
 3525                 } else
 3526                         bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
 3527                 sopt->sopt_valsize -= m->m_len;
 3528                 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
 3529                 m = m->m_next;
 3530         }
 3531         if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
 3532                 panic("ip6_sooptmcopyin");
 3533         return (0);
 3534 }
 3535 
 3536 int
 3537 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
 3538 {
 3539         struct mbuf *m0 = m;
 3540         size_t valsize = 0;
 3541 
 3542         if (sopt->sopt_val == NULL)
 3543                 return (0);
 3544         while (m != NULL && sopt->sopt_valsize >= m->m_len) {
 3545                 if (sopt->sopt_td != NULL) {
 3546                         int error;
 3547 
 3548                         error = copyout(mtod(m, char *), sopt->sopt_val,
 3549                             m->m_len);
 3550                         if (error != 0) {
 3551                                 m_freem(m0);
 3552                                 return(error);
 3553                         }
 3554                 } else
 3555                         bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
 3556                 sopt->sopt_valsize -= m->m_len;
 3557                 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
 3558                 valsize += m->m_len;
 3559                 m = m->m_next;
 3560         }
 3561         if (m != NULL) {
 3562                 /* enough soopt buffer should be given from user-land */
 3563                 m_freem(m0);
 3564                 return(EINVAL);
 3565         }
 3566         sopt->sopt_valsize = valsize;
 3567         return (0);
 3568 }
 3569 
 3570 /*
 3571  * sohasoutofband(): protocol notifies socket layer of the arrival of new
 3572  * out-of-band data, which will then notify socket consumers.
 3573  */
 3574 void
 3575 sohasoutofband(struct socket *so)
 3576 {
 3577 
 3578         if (so->so_sigio != NULL)
 3579                 pgsigio(&so->so_sigio, SIGURG, 0);
 3580         selwakeuppri(&so->so_rdsel, PSOCK);
 3581 }
 3582 
 3583 int
 3584 sopoll(struct socket *so, int events, struct ucred *active_cred,
 3585     struct thread *td)
 3586 {
 3587 
 3588         /*
 3589          * We do not need to set or assert curvnet as long as everyone uses
 3590          * sopoll_generic().
 3591          */
 3592         return (so->so_proto->pr_sopoll(so, events, active_cred, td));
 3593 }
 3594 
 3595 int
 3596 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
 3597     struct thread *td)
 3598 {
 3599         int revents;
 3600 
 3601         SOCK_LOCK(so);
 3602         if (SOLISTENING(so)) {
 3603                 if (!(events & (POLLIN | POLLRDNORM)))
 3604                         revents = 0;
 3605                 else if (!TAILQ_EMPTY(&so->sol_comp))
 3606                         revents = events & (POLLIN | POLLRDNORM);
 3607                 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
 3608                         revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
 3609                 else {
 3610                         selrecord(td, &so->so_rdsel);
 3611                         revents = 0;
 3612                 }
 3613         } else {
 3614                 revents = 0;
 3615                 SOCK_SENDBUF_LOCK(so);
 3616                 SOCK_RECVBUF_LOCK(so);
 3617                 if (events & (POLLIN | POLLRDNORM))
 3618                         if (soreadabledata(so))
 3619                                 revents |= events & (POLLIN | POLLRDNORM);
 3620                 if (events & (POLLOUT | POLLWRNORM))
 3621                         if (sowriteable(so))
 3622                                 revents |= events & (POLLOUT | POLLWRNORM);
 3623                 if (events & (POLLPRI | POLLRDBAND))
 3624                         if (so->so_oobmark ||
 3625                             (so->so_rcv.sb_state & SBS_RCVATMARK))
 3626                                 revents |= events & (POLLPRI | POLLRDBAND);
 3627                 if ((events & POLLINIGNEOF) == 0) {
 3628                         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 3629                                 revents |= events & (POLLIN | POLLRDNORM);
 3630                                 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
 3631                                         revents |= POLLHUP;
 3632                         }
 3633                 }
 3634                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
 3635                         revents |= events & POLLRDHUP;
 3636                 if (revents == 0) {
 3637                         if (events &
 3638                             (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
 3639                                 selrecord(td, &so->so_rdsel);
 3640                                 so->so_rcv.sb_flags |= SB_SEL;
 3641                         }
 3642                         if (events & (POLLOUT | POLLWRNORM)) {
 3643                                 selrecord(td, &so->so_wrsel);
 3644                                 so->so_snd.sb_flags |= SB_SEL;
 3645                         }
 3646                 }
 3647                 SOCK_RECVBUF_UNLOCK(so);
 3648                 SOCK_SENDBUF_UNLOCK(so);
 3649         }
 3650         SOCK_UNLOCK(so);
 3651         return (revents);
 3652 }
 3653 
 3654 int
 3655 soo_kqfilter(struct file *fp, struct knote *kn)
 3656 {
 3657         struct socket *so = kn->kn_fp->f_data;
 3658         struct sockbuf *sb;
 3659         sb_which which;
 3660         struct knlist *knl;
 3661 
 3662         switch (kn->kn_filter) {
 3663         case EVFILT_READ:
 3664                 kn->kn_fop = &soread_filtops;
 3665                 knl = &so->so_rdsel.si_note;
 3666                 sb = &so->so_rcv;
 3667                 which = SO_RCV;
 3668                 break;
 3669         case EVFILT_WRITE:
 3670                 kn->kn_fop = &sowrite_filtops;
 3671                 knl = &so->so_wrsel.si_note;
 3672                 sb = &so->so_snd;
 3673                 which = SO_SND;
 3674                 break;
 3675         case EVFILT_EMPTY:
 3676                 kn->kn_fop = &soempty_filtops;
 3677                 knl = &so->so_wrsel.si_note;
 3678                 sb = &so->so_snd;
 3679                 which = SO_SND;
 3680                 break;
 3681         default:
 3682                 return (EINVAL);
 3683         }
 3684 
 3685         SOCK_LOCK(so);
 3686         if (SOLISTENING(so)) {
 3687                 knlist_add(knl, kn, 1);
 3688         } else {
 3689                 SOCK_BUF_LOCK(so, which);
 3690                 knlist_add(knl, kn, 1);
 3691                 sb->sb_flags |= SB_KNOTE;
 3692                 SOCK_BUF_UNLOCK(so, which);
 3693         }
 3694         SOCK_UNLOCK(so);
 3695         return (0);
 3696 }
 3697 
 3698 static void
 3699 filt_sordetach(struct knote *kn)
 3700 {
 3701         struct socket *so = kn->kn_fp->f_data;
 3702 
 3703         so_rdknl_lock(so);
 3704         knlist_remove(&so->so_rdsel.si_note, kn, 1);
 3705         if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
 3706                 so->so_rcv.sb_flags &= ~SB_KNOTE;
 3707         so_rdknl_unlock(so);
 3708 }
 3709 
 3710 /*ARGSUSED*/
 3711 static int
 3712 filt_soread(struct knote *kn, long hint)
 3713 {
 3714         struct socket *so;
 3715 
 3716         so = kn->kn_fp->f_data;
 3717 
 3718         if (SOLISTENING(so)) {
 3719                 SOCK_LOCK_ASSERT(so);
 3720                 kn->kn_data = so->sol_qlen;
 3721                 if (so->so_error) {
 3722                         kn->kn_flags |= EV_EOF;
 3723                         kn->kn_fflags = so->so_error;
 3724                         return (1);
 3725                 }
 3726                 return (!TAILQ_EMPTY(&so->sol_comp));
 3727         }
 3728 
 3729         SOCK_RECVBUF_LOCK_ASSERT(so);
 3730 
 3731         kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
 3732         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 3733                 kn->kn_flags |= EV_EOF;
 3734                 kn->kn_fflags = so->so_error;
 3735                 return (1);
 3736         } else if (so->so_error || so->so_rerror)
 3737                 return (1);
 3738 
 3739         if (kn->kn_sfflags & NOTE_LOWAT) {
 3740                 if (kn->kn_data >= kn->kn_sdata)
 3741                         return (1);
 3742         } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
 3743                 return (1);
 3744 
 3745         /* This hook returning non-zero indicates an event, not error */
 3746         return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
 3747 }
 3748 
 3749 static void
 3750 filt_sowdetach(struct knote *kn)
 3751 {
 3752         struct socket *so = kn->kn_fp->f_data;
 3753 
 3754         so_wrknl_lock(so);
 3755         knlist_remove(&so->so_wrsel.si_note, kn, 1);
 3756         if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
 3757                 so->so_snd.sb_flags &= ~SB_KNOTE;
 3758         so_wrknl_unlock(so);
 3759 }
 3760 
 3761 /*ARGSUSED*/
 3762 static int
 3763 filt_sowrite(struct knote *kn, long hint)
 3764 {
 3765         struct socket *so;
 3766 
 3767         so = kn->kn_fp->f_data;
 3768 
 3769         if (SOLISTENING(so))
 3770                 return (0);
 3771 
 3772         SOCK_SENDBUF_LOCK_ASSERT(so);
 3773         kn->kn_data = sbspace(&so->so_snd);
 3774 
 3775         hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
 3776 
 3777         if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 3778                 kn->kn_flags |= EV_EOF;
 3779                 kn->kn_fflags = so->so_error;
 3780                 return (1);
 3781         } else if (so->so_error)        /* temporary udp error */
 3782                 return (1);
 3783         else if (((so->so_state & SS_ISCONNECTED) == 0) &&
 3784             (so->so_proto->pr_flags & PR_CONNREQUIRED))
 3785                 return (0);
 3786         else if (kn->kn_sfflags & NOTE_LOWAT)
 3787                 return (kn->kn_data >= kn->kn_sdata);
 3788         else
 3789                 return (kn->kn_data >= so->so_snd.sb_lowat);
 3790 }
 3791 
 3792 static int
 3793 filt_soempty(struct knote *kn, long hint)
 3794 {
 3795         struct socket *so;
 3796 
 3797         so = kn->kn_fp->f_data;
 3798 
 3799         if (SOLISTENING(so))
 3800                 return (1);
 3801 
 3802         SOCK_SENDBUF_LOCK_ASSERT(so);
 3803         kn->kn_data = sbused(&so->so_snd);
 3804 
 3805         if (kn->kn_data == 0)
 3806                 return (1);
 3807         else
 3808                 return (0);
 3809 }
 3810 
 3811 int
 3812 socheckuid(struct socket *so, uid_t uid)
 3813 {
 3814 
 3815         if (so == NULL)
 3816                 return (EPERM);
 3817         if (so->so_cred->cr_uid != uid)
 3818                 return (EPERM);
 3819         return (0);
 3820 }
 3821 
 3822 /*
 3823  * These functions are used by protocols to notify the socket layer (and its
 3824  * consumers) of state changes in the sockets driven by protocol-side events.
 3825  */
 3826 
 3827 /*
 3828  * Procedures to manipulate state flags of socket and do appropriate wakeups.
 3829  *
 3830  * Normal sequence from the active (originating) side is that
 3831  * soisconnecting() is called during processing of connect() call, resulting
 3832  * in an eventual call to soisconnected() if/when the connection is
 3833  * established.  When the connection is torn down soisdisconnecting() is
 3834  * called during processing of disconnect() call, and soisdisconnected() is
 3835  * called when the connection to the peer is totally severed.  The semantics
 3836  * of these routines are such that connectionless protocols can call
 3837  * soisconnected() and soisdisconnected() only, bypassing the in-progress
 3838  * calls when setting up a ``connection'' takes no time.
 3839  *
 3840  * From the passive side, a socket is created with two queues of sockets:
 3841  * so_incomp for connections in progress and so_comp for connections already
 3842  * made and awaiting user acceptance.  As a protocol is preparing incoming
 3843  * connections, it creates a socket structure queued on so_incomp by calling
 3844  * sonewconn().  When the connection is established, soisconnected() is
 3845  * called, and transfers the socket structure to so_comp, making it available
 3846  * to accept().
 3847  *
 3848  * If a socket is closed with sockets on either so_incomp or so_comp, these
 3849  * sockets are dropped.
 3850  *
 3851  * If higher-level protocols are implemented in the kernel, the wakeups done
 3852  * here will sometimes cause software-interrupt process scheduling.
 3853  */
 3854 void
 3855 soisconnecting(struct socket *so)
 3856 {
 3857 
 3858         SOCK_LOCK(so);
 3859         so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
 3860         so->so_state |= SS_ISCONNECTING;
 3861         SOCK_UNLOCK(so);
 3862 }
 3863 
 3864 void
 3865 soisconnected(struct socket *so)
 3866 {
 3867         bool last __diagused;
 3868 
 3869         SOCK_LOCK(so);
 3870         so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
 3871         so->so_state |= SS_ISCONNECTED;
 3872 
 3873         if (so->so_qstate == SQ_INCOMP) {
 3874                 struct socket *head = so->so_listen;
 3875                 int ret;
 3876 
 3877                 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
 3878                 /*
 3879                  * Promoting a socket from incomplete queue to complete, we
 3880                  * need to go through reverse order of locking.  We first do
 3881                  * trylock, and if that doesn't succeed, we go the hard way
 3882                  * leaving a reference and rechecking consistency after proper
 3883                  * locking.
 3884                  */
 3885                 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
 3886                         soref(head);
 3887                         SOCK_UNLOCK(so);
 3888                         SOLISTEN_LOCK(head);
 3889                         SOCK_LOCK(so);
 3890                         if (__predict_false(head != so->so_listen)) {
 3891                                 /*
 3892                                  * The socket went off the listen queue,
 3893                                  * should be lost race to close(2) of sol.
 3894                                  * The socket is about to soabort().
 3895                                  */
 3896                                 SOCK_UNLOCK(so);
 3897                                 sorele_locked(head);
 3898                                 return;
 3899                         }
 3900                         last = refcount_release(&head->so_count);
 3901                         KASSERT(!last, ("%s: released last reference for %p",
 3902                             __func__, head));
 3903                 }
 3904 again:
 3905                 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
 3906                         TAILQ_REMOVE(&head->sol_incomp, so, so_list);
 3907                         head->sol_incqlen--;
 3908                         TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
 3909                         head->sol_qlen++;
 3910                         so->so_qstate = SQ_COMP;
 3911                         SOCK_UNLOCK(so);
 3912                         solisten_wakeup(head);  /* unlocks */
 3913                 } else {
 3914                         SOCK_RECVBUF_LOCK(so);
 3915                         soupcall_set(so, SO_RCV,
 3916                             head->sol_accept_filter->accf_callback,
 3917                             head->sol_accept_filter_arg);
 3918                         so->so_options &= ~SO_ACCEPTFILTER;
 3919                         ret = head->sol_accept_filter->accf_callback(so,
 3920                             head->sol_accept_filter_arg, M_NOWAIT);
 3921                         if (ret == SU_ISCONNECTED) {
 3922                                 soupcall_clear(so, SO_RCV);
 3923                                 SOCK_RECVBUF_UNLOCK(so);
 3924                                 goto again;
 3925                         }
 3926                         SOCK_RECVBUF_UNLOCK(so);
 3927                         SOCK_UNLOCK(so);
 3928                         SOLISTEN_UNLOCK(head);
 3929                 }
 3930                 return;
 3931         }
 3932         SOCK_UNLOCK(so);
 3933         wakeup(&so->so_timeo);
 3934         sorwakeup(so);
 3935         sowwakeup(so);
 3936 }
 3937 
 3938 void
 3939 soisdisconnecting(struct socket *so)
 3940 {
 3941 
 3942         SOCK_LOCK(so);
 3943         so->so_state &= ~SS_ISCONNECTING;
 3944         so->so_state |= SS_ISDISCONNECTING;
 3945 
 3946         if (!SOLISTENING(so)) {
 3947                 SOCK_RECVBUF_LOCK(so);
 3948                 socantrcvmore_locked(so);
 3949                 SOCK_SENDBUF_LOCK(so);
 3950                 socantsendmore_locked(so);
 3951         }
 3952         SOCK_UNLOCK(so);
 3953         wakeup(&so->so_timeo);
 3954 }
 3955 
 3956 void
 3957 soisdisconnected(struct socket *so)
 3958 {
 3959 
 3960         SOCK_LOCK(so);
 3961 
 3962         /*
 3963          * There is at least one reader of so_state that does not
 3964          * acquire socket lock, namely soreceive_generic().  Ensure
 3965          * that it never sees all flags that track connection status
 3966          * cleared, by ordering the update with a barrier semantic of
 3967          * our release thread fence.
 3968          */
 3969         so->so_state |= SS_ISDISCONNECTED;
 3970         atomic_thread_fence_rel();
 3971         so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
 3972 
 3973         if (!SOLISTENING(so)) {
 3974                 SOCK_UNLOCK(so);
 3975                 SOCK_RECVBUF_LOCK(so);
 3976                 socantrcvmore_locked(so);
 3977                 SOCK_SENDBUF_LOCK(so);
 3978                 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
 3979                 socantsendmore_locked(so);
 3980         } else
 3981                 SOCK_UNLOCK(so);
 3982         wakeup(&so->so_timeo);
 3983 }
 3984 
 3985 int
 3986 soiolock(struct socket *so, struct sx *sx, int flags)
 3987 {
 3988         int error;
 3989 
 3990         KASSERT((flags & SBL_VALID) == flags,
 3991             ("soiolock: invalid flags %#x", flags));
 3992 
 3993         if ((flags & SBL_WAIT) != 0) {
 3994                 if ((flags & SBL_NOINTR) != 0) {
 3995                         sx_xlock(sx);
 3996                 } else {
 3997                         error = sx_xlock_sig(sx);
 3998                         if (error != 0)
 3999                                 return (error);
 4000                 }
 4001         } else if (!sx_try_xlock(sx)) {
 4002                 return (EWOULDBLOCK);
 4003         }
 4004 
 4005         if (__predict_false(SOLISTENING(so))) {
 4006                 sx_xunlock(sx);
 4007                 return (ENOTCONN);
 4008         }
 4009         return (0);
 4010 }
 4011 
 4012 void
 4013 soiounlock(struct sx *sx)
 4014 {
 4015         sx_xunlock(sx);
 4016 }
 4017 
 4018 /*
 4019  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
 4020  */
 4021 struct sockaddr *
 4022 sodupsockaddr(const struct sockaddr *sa, int mflags)
 4023 {
 4024         struct sockaddr *sa2;
 4025 
 4026         sa2 = malloc(sa->sa_len, M_SONAME, mflags);
 4027         if (sa2)
 4028                 bcopy(sa, sa2, sa->sa_len);
 4029         return sa2;
 4030 }
 4031 
 4032 /*
 4033  * Register per-socket destructor.
 4034  */
 4035 void
 4036 sodtor_set(struct socket *so, so_dtor_t *func)
 4037 {
 4038 
 4039         SOCK_LOCK_ASSERT(so);
 4040         so->so_dtor = func;
 4041 }
 4042 
 4043 /*
 4044  * Register per-socket buffer upcalls.
 4045  */
 4046 void
 4047 soupcall_set(struct socket *so, sb_which which, so_upcall_t func, void *arg)
 4048 {
 4049         struct sockbuf *sb;
 4050 
 4051         KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
 4052 
 4053         switch (which) {
 4054         case SO_RCV:
 4055                 sb = &so->so_rcv;
 4056                 break;
 4057         case SO_SND:
 4058                 sb = &so->so_snd;
 4059                 break;
 4060         }
 4061         SOCK_BUF_LOCK_ASSERT(so, which);
 4062         sb->sb_upcall = func;
 4063         sb->sb_upcallarg = arg;
 4064         sb->sb_flags |= SB_UPCALL;
 4065 }
 4066 
 4067 void
 4068 soupcall_clear(struct socket *so, sb_which which)
 4069 {
 4070         struct sockbuf *sb;
 4071 
 4072         KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
 4073 
 4074         switch (which) {
 4075         case SO_RCV:
 4076                 sb = &so->so_rcv;
 4077                 break;
 4078         case SO_SND:
 4079                 sb = &so->so_snd;
 4080                 break;
 4081         }
 4082         SOCK_BUF_LOCK_ASSERT(so, which);
 4083         KASSERT(sb->sb_upcall != NULL,
 4084             ("%s: so %p no upcall to clear", __func__, so));
 4085         sb->sb_upcall = NULL;
 4086         sb->sb_upcallarg = NULL;
 4087         sb->sb_flags &= ~SB_UPCALL;
 4088 }
 4089 
 4090 void
 4091 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
 4092 {
 4093 
 4094         SOLISTEN_LOCK_ASSERT(so);
 4095         so->sol_upcall = func;
 4096         so->sol_upcallarg = arg;
 4097 }
 4098 
 4099 static void
 4100 so_rdknl_lock(void *arg)
 4101 {
 4102         struct socket *so = arg;
 4103 
 4104 retry:
 4105         if (SOLISTENING(so)) {
 4106                 SOLISTEN_LOCK(so);
 4107         } else {
 4108                 SOCK_RECVBUF_LOCK(so);
 4109                 if (__predict_false(SOLISTENING(so))) {
 4110                         SOCK_RECVBUF_UNLOCK(so);
 4111                         goto retry;
 4112                 }
 4113         }
 4114 }
 4115 
 4116 static void
 4117 so_rdknl_unlock(void *arg)
 4118 {
 4119         struct socket *so = arg;
 4120 
 4121         if (SOLISTENING(so))
 4122                 SOLISTEN_UNLOCK(so);
 4123         else
 4124                 SOCK_RECVBUF_UNLOCK(so);
 4125 }
 4126 
 4127 static void
 4128 so_rdknl_assert_lock(void *arg, int what)
 4129 {
 4130         struct socket *so = arg;
 4131 
 4132         if (what == LA_LOCKED) {
 4133                 if (SOLISTENING(so))
 4134                         SOLISTEN_LOCK_ASSERT(so);
 4135                 else
 4136                         SOCK_RECVBUF_LOCK_ASSERT(so);
 4137         } else {
 4138                 if (SOLISTENING(so))
 4139                         SOLISTEN_UNLOCK_ASSERT(so);
 4140                 else
 4141                         SOCK_RECVBUF_UNLOCK_ASSERT(so);
 4142         }
 4143 }
 4144 
 4145 static void
 4146 so_wrknl_lock(void *arg)
 4147 {
 4148         struct socket *so = arg;
 4149 
 4150 retry:
 4151         if (SOLISTENING(so)) {
 4152                 SOLISTEN_LOCK(so);
 4153         } else {
 4154                 SOCK_SENDBUF_LOCK(so);
 4155                 if (__predict_false(SOLISTENING(so))) {
 4156                         SOCK_SENDBUF_UNLOCK(so);
 4157                         goto retry;
 4158                 }
 4159         }
 4160 }
 4161 
 4162 static void
 4163 so_wrknl_unlock(void *arg)
 4164 {
 4165         struct socket *so = arg;
 4166 
 4167         if (SOLISTENING(so))
 4168                 SOLISTEN_UNLOCK(so);
 4169         else
 4170                 SOCK_SENDBUF_UNLOCK(so);
 4171 }
 4172 
 4173 static void
 4174 so_wrknl_assert_lock(void *arg, int what)
 4175 {
 4176         struct socket *so = arg;
 4177 
 4178         if (what == LA_LOCKED) {
 4179                 if (SOLISTENING(so))
 4180                         SOLISTEN_LOCK_ASSERT(so);
 4181                 else
 4182                         SOCK_SENDBUF_LOCK_ASSERT(so);
 4183         } else {
 4184                 if (SOLISTENING(so))
 4185                         SOLISTEN_UNLOCK_ASSERT(so);
 4186                 else
 4187                         SOCK_SENDBUF_UNLOCK_ASSERT(so);
 4188         }
 4189 }
 4190 
 4191 /*
 4192  * Create an external-format (``xsocket'') structure using the information in
 4193  * the kernel-format socket structure pointed to by so.  This is done to
 4194  * reduce the spew of irrelevant information over this interface, to isolate
 4195  * user code from changes in the kernel structure, and potentially to provide
 4196  * information-hiding if we decide that some of this information should be
 4197  * hidden from users.
 4198  */
 4199 void
 4200 sotoxsocket(struct socket *so, struct xsocket *xso)
 4201 {
 4202 
 4203         bzero(xso, sizeof(*xso));
 4204         xso->xso_len = sizeof *xso;
 4205         xso->xso_so = (uintptr_t)so;
 4206         xso->so_type = so->so_type;
 4207         xso->so_options = so->so_options;
 4208         xso->so_linger = so->so_linger;
 4209         xso->so_state = so->so_state;
 4210         xso->so_pcb = (uintptr_t)so->so_pcb;
 4211         xso->xso_protocol = so->so_proto->pr_protocol;
 4212         xso->xso_family = so->so_proto->pr_domain->dom_family;
 4213         xso->so_timeo = so->so_timeo;
 4214         xso->so_error = so->so_error;
 4215         xso->so_uid = so->so_cred->cr_uid;
 4216         xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
 4217         if (SOLISTENING(so)) {
 4218                 xso->so_qlen = so->sol_qlen;
 4219                 xso->so_incqlen = so->sol_incqlen;
 4220                 xso->so_qlimit = so->sol_qlimit;
 4221                 xso->so_oobmark = 0;
 4222         } else {
 4223                 xso->so_state |= so->so_qstate;
 4224                 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
 4225                 xso->so_oobmark = so->so_oobmark;
 4226                 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
 4227                 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
 4228         }
 4229 }
 4230 
 4231 struct sockbuf *
 4232 so_sockbuf_rcv(struct socket *so)
 4233 {
 4234 
 4235         return (&so->so_rcv);
 4236 }
 4237 
 4238 struct sockbuf *
 4239 so_sockbuf_snd(struct socket *so)
 4240 {
 4241 
 4242         return (&so->so_snd);
 4243 }
 4244 
 4245 int
 4246 so_state_get(const struct socket *so)
 4247 {
 4248 
 4249         return (so->so_state);
 4250 }
 4251 
 4252 void
 4253 so_state_set(struct socket *so, int val)
 4254 {
 4255 
 4256         so->so_state = val;
 4257 }
 4258 
 4259 int
 4260 so_options_get(const struct socket *so)
 4261 {
 4262 
 4263         return (so->so_options);
 4264 }
 4265 
 4266 void
 4267 so_options_set(struct socket *so, int val)
 4268 {
 4269 
 4270         so->so_options = val;
 4271 }
 4272 
 4273 int
 4274 so_error_get(const struct socket *so)
 4275 {
 4276 
 4277         return (so->so_error);
 4278 }
 4279 
 4280 void
 4281 so_error_set(struct socket *so, int val)
 4282 {
 4283 
 4284         so->so_error = val;
 4285 }
 4286 
 4287 int
 4288 so_linger_get(const struct socket *so)
 4289 {
 4290 
 4291         return (so->so_linger);
 4292 }
 4293 
 4294 void
 4295 so_linger_set(struct socket *so, int val)
 4296 {
 4297 
 4298         KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
 4299             ("%s: val %d out of range", __func__, val));
 4300 
 4301         so->so_linger = val;
 4302 }
 4303 
 4304 struct protosw *
 4305 so_protosw_get(const struct socket *so)
 4306 {
 4307 
 4308         return (so->so_proto);
 4309 }
 4310 
 4311 void
 4312 so_protosw_set(struct socket *so, struct protosw *val)
 4313 {
 4314 
 4315         so->so_proto = val;
 4316 }
 4317 
 4318 void
 4319 so_sorwakeup(struct socket *so)
 4320 {
 4321 
 4322         sorwakeup(so);
 4323 }
 4324 
 4325 void
 4326 so_sowwakeup(struct socket *so)
 4327 {
 4328 
 4329         sowwakeup(so);
 4330 }
 4331 
 4332 void
 4333 so_sorwakeup_locked(struct socket *so)
 4334 {
 4335 
 4336         sorwakeup_locked(so);
 4337 }
 4338 
 4339 void
 4340 so_sowwakeup_locked(struct socket *so)
 4341 {
 4342 
 4343         sowwakeup_locked(so);
 4344 }
 4345 
 4346 void
 4347 so_lock(struct socket *so)
 4348 {
 4349 
 4350         SOCK_LOCK(so);
 4351 }
 4352 
 4353 void
 4354 so_unlock(struct socket *so)
 4355 {
 4356 
 4357         SOCK_UNLOCK(so);
 4358 }

Cache object: 90efbbde14c328b3a25a299593303636


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.