The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_socket.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2004 The FreeBSD Foundation
    5  * Copyright (c) 2004-2008 Robert N. M. Watson
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      @(#)uipc_socket.c       8.3 (Berkeley) 4/15/94
   33  */
   34 
   35 /*
   36  * Comments on the socket life cycle:
   37  *
   38  * soalloc() sets of socket layer state for a socket, called only by
   39  * socreate() and sonewconn().  Socket layer private.
   40  *
   41  * sodealloc() tears down socket layer state for a socket, called only by
   42  * sofree() and sonewconn().  Socket layer private.
   43  *
   44  * pru_attach() associates protocol layer state with an allocated socket;
   45  * called only once, may fail, aborting socket allocation.  This is called
   46  * from socreate() and sonewconn().  Socket layer private.
   47  *
   48  * pru_detach() disassociates protocol layer state from an attached socket,
   49  * and will be called exactly once for sockets in which pru_attach() has
   50  * been successfully called.  If pru_attach() returned an error,
   51  * pru_detach() will not be called.  Socket layer private.
   52  *
   53  * pru_abort() and pru_close() notify the protocol layer that the last
   54  * consumer of a socket is starting to tear down the socket, and that the
   55  * protocol should terminate the connection.  Historically, pru_abort() also
   56  * detached protocol state from the socket state, but this is no longer the
   57  * case.
   58  *
   59  * socreate() creates a socket and attaches protocol state.  This is a public
   60  * interface that may be used by socket layer consumers to create new
   61  * sockets.
   62  *
   63  * sonewconn() creates a socket and attaches protocol state.  This is a
   64  * public interface  that may be used by protocols to create new sockets when
   65  * a new connection is received and will be available for accept() on a
   66  * listen socket.
   67  *
   68  * soclose() destroys a socket after possibly waiting for it to disconnect.
   69  * This is a public interface that socket consumers should use to close and
   70  * release a socket when done with it.
   71  *
   72  * soabort() destroys a socket without waiting for it to disconnect (used
   73  * only for incoming connections that are already partially or fully
   74  * connected).  This is used internally by the socket layer when clearing
   75  * listen socket queues (due to overflow or close on the listen socket), but
   76  * is also a public interface protocols may use to abort connections in
   77  * their incomplete listen queues should they no longer be required.  Sockets
   78  * placed in completed connection listen queues should not be aborted for
   79  * reasons described in the comment above the soclose() implementation.  This
   80  * is not a general purpose close routine, and except in the specific
   81  * circumstances described here, should not be used.
   82  *
   83  * sofree() will free a socket and its protocol state if all references on
   84  * the socket have been released, and is the public interface to attempt to
   85  * free a socket when a reference is removed.  This is a socket layer private
   86  * interface.
   87  *
   88  * NOTE: In addition to socreate() and soclose(), which provide a single
   89  * socket reference to the consumer to be managed as required, there are two
   90  * calls to explicitly manage socket references, soref(), and sorele().
   91  * Currently, these are generally required only when transitioning a socket
   92  * from a listen queue to a file descriptor, in order to prevent garbage
   93  * collection of the socket at an untimely moment.  For a number of reasons,
   94  * these interfaces are not preferred, and should be avoided.
   95  *
   96  * NOTE: With regard to VNETs the general rule is that callers do not set
   97  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
   98  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
   99  * and sorflush(), which are usually called from a pre-set VNET context.
  100  * sopoll() currently does not need a VNET context to be set.
  101  */
  102 
  103 #include <sys/cdefs.h>
  104 __FBSDID("$FreeBSD$");
  105 
  106 #include "opt_inet.h"
  107 #include "opt_inet6.h"
  108 #include "opt_compat.h"
  109 
  110 #include <sys/param.h>
  111 #include <sys/systm.h>
  112 #include <sys/fcntl.h>
  113 #include <sys/limits.h>
  114 #include <sys/lock.h>
  115 #include <sys/mac.h>
  116 #include <sys/malloc.h>
  117 #include <sys/mbuf.h>
  118 #include <sys/mutex.h>
  119 #include <sys/domain.h>
  120 #include <sys/file.h>                   /* for struct knote */
  121 #include <sys/kernel.h>
  122 #include <sys/event.h>
  123 #include <sys/eventhandler.h>
  124 #include <sys/poll.h>
  125 #include <sys/proc.h>
  126 #include <sys/protosw.h>
  127 #include <sys/socket.h>
  128 #include <sys/socketvar.h>
  129 #include <sys/resourcevar.h>
  130 #include <net/route.h>
  131 #include <sys/signalvar.h>
  132 #include <sys/stat.h>
  133 #include <sys/sx.h>
  134 #include <sys/sysctl.h>
  135 #include <sys/uio.h>
  136 #include <sys/jail.h>
  137 #include <sys/syslog.h>
  138 #include <netinet/in.h>
  139 
  140 #include <net/vnet.h>
  141 
  142 #include <security/mac/mac_framework.h>
  143 
  144 #include <vm/uma.h>
  145 
  146 #ifdef COMPAT_FREEBSD32
  147 #include <sys/mount.h>
  148 #include <sys/sysent.h>
  149 #include <compat/freebsd32/freebsd32.h>
  150 #endif
  151 
  152 static int      soreceive_rcvoob(struct socket *so, struct uio *uio,
  153                     int flags);
  154 
  155 static void     filt_sordetach(struct knote *kn);
  156 static int      filt_soread(struct knote *kn, long hint);
  157 static void     filt_sowdetach(struct knote *kn);
  158 static int      filt_sowrite(struct knote *kn, long hint);
  159 static int      filt_solisten(struct knote *kn, long hint);
  160 
  161 static struct filterops solisten_filtops = {
  162         .f_isfd = 1,
  163         .f_detach = filt_sordetach,
  164         .f_event = filt_solisten,
  165 };
  166 static struct filterops soread_filtops = {
  167         .f_isfd = 1,
  168         .f_detach = filt_sordetach,
  169         .f_event = filt_soread,
  170 };
  171 static struct filterops sowrite_filtops = {
  172         .f_isfd = 1,
  173         .f_detach = filt_sowdetach,
  174         .f_event = filt_sowrite,
  175 };
  176 
  177 so_gen_t        so_gencnt;      /* generation count for sockets */
  178 
  179 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
  180 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
  181 
  182 #define VNET_SO_ASSERT(so)                                              \
  183         VNET_ASSERT(curvnet != NULL,                                    \
  184             ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
  185 
  186 /*
  187  * Limit on the number of connections in the listen queue waiting
  188  * for accept(2).
  189  * NB: The original sysctl somaxconn is still available but hidden
  190  * to prevent confusion about the actual purpose of this number.
  191  */
  192 static int somaxconn = SOMAXCONN;
  193 
  194 static int
  195 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
  196 {
  197         int error;
  198         int val;
  199 
  200         val = somaxconn;
  201         error = sysctl_handle_int(oidp, &val, 0, req);
  202         if (error || !req->newptr )
  203                 return (error);
  204 
  205         if (val < 1 || val > USHRT_MAX)
  206                 return (EINVAL);
  207 
  208         somaxconn = val;
  209         return (0);
  210 }
  211 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue, CTLTYPE_UINT | CTLFLAG_RW,
  212     0, sizeof(int), sysctl_somaxconn, "I",
  213     "Maximum listen socket pending connection accept queue size");
  214 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
  215     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP,
  216     0, sizeof(int), sysctl_somaxconn, "I",
  217     "Maximum listen socket pending connection accept queue size (compat)");
  218 
  219 static int numopensockets;
  220 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
  221     &numopensockets, 0, "Number of open sockets");
  222 
  223 /*
  224  * accept_mtx locks down per-socket fields relating to accept queues.  See
  225  * socketvar.h for an annotation of the protected fields of struct socket.
  226  */
  227 struct mtx accept_mtx;
  228 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
  229 
  230 /*
  231  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
  232  * so_gencnt field.
  233  */
  234 static struct mtx so_global_mtx;
  235 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
  236 
  237 /*
  238  * General IPC sysctl name space, used by sockets and a variety of other IPC
  239  * types.
  240  */
  241 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
  242 
  243 /*
  244  * Initialize the socket subsystem and set up the socket
  245  * memory allocator.
  246  */
  247 static uma_zone_t socket_zone;
  248 int     maxsockets;
  249 
  250 static void
  251 socket_zone_change(void *tag)
  252 {
  253 
  254         maxsockets = uma_zone_set_max(socket_zone, maxsockets);
  255 }
  256 
  257 static void
  258 socket_init(void *tag)
  259 {
  260 
  261         socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
  262             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  263         maxsockets = uma_zone_set_max(socket_zone, maxsockets);
  264         uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
  265         EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
  266             EVENTHANDLER_PRI_FIRST);
  267 }
  268 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
  269 
  270 /*
  271  * Initialise maxsockets.  This SYSINIT must be run after
  272  * tunable_mbinit().
  273  */
  274 static void
  275 init_maxsockets(void *ignored)
  276 {
  277 
  278         TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
  279         maxsockets = imax(maxsockets, maxfiles);
  280 }
  281 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
  282 
  283 /*
  284  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
  285  * of the change so that they can update their dependent limits as required.
  286  */
  287 static int
  288 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
  289 {
  290         int error, newmaxsockets;
  291 
  292         newmaxsockets = maxsockets;
  293         error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
  294         if (error == 0 && req->newptr) {
  295                 if (newmaxsockets > maxsockets &&
  296                     newmaxsockets <= maxfiles) {
  297                         maxsockets = newmaxsockets;
  298                         EVENTHANDLER_INVOKE(maxsockets_change);
  299                 } else
  300                         error = EINVAL;
  301         }
  302         return (error);
  303 }
  304 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
  305     &maxsockets, 0, sysctl_maxsockets, "IU",
  306     "Maximum number of sockets avaliable");
  307 
  308 /*
  309  * Socket operation routines.  These routines are called by the routines in
  310  * sys_socket.c or from a system process, and implement the semantics of
  311  * socket operations by switching out to the protocol specific routines.
  312  */
  313 
  314 /*
  315  * Get a socket structure from our zone, and initialize it.  Note that it
  316  * would probably be better to allocate socket and PCB at the same time, but
  317  * I'm not convinced that all the protocols can be easily modified to do
  318  * this.
  319  *
  320  * soalloc() returns a socket with a ref count of 0.
  321  */
  322 static struct socket *
  323 soalloc(struct vnet *vnet)
  324 {
  325         struct socket *so;
  326 
  327         so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
  328         if (so == NULL)
  329                 return (NULL);
  330 #ifdef MAC
  331         if (mac_socket_init(so, M_NOWAIT) != 0) {
  332                 uma_zfree(socket_zone, so);
  333                 return (NULL);
  334         }
  335 #endif
  336         SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
  337         SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
  338         sx_init(&so->so_snd.sb_sx, "so_snd_sx");
  339         sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
  340         TAILQ_INIT(&so->so_aiojobq);
  341         mtx_lock(&so_global_mtx);
  342         so->so_gencnt = ++so_gencnt;
  343         ++numopensockets;
  344 #ifdef VIMAGE
  345         VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
  346             __func__, __LINE__, so));
  347         vnet->vnet_sockcnt++;
  348         so->so_vnet = vnet;
  349 #endif
  350         mtx_unlock(&so_global_mtx);
  351         return (so);
  352 }
  353 
  354 /*
  355  * Free the storage associated with a socket at the socket layer, tear down
  356  * locks, labels, etc.  All protocol state is assumed already to have been
  357  * torn down (and possibly never set up) by the caller.
  358  */
  359 static void
  360 sodealloc(struct socket *so)
  361 {
  362 
  363         KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
  364         KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
  365 
  366         mtx_lock(&so_global_mtx);
  367         so->so_gencnt = ++so_gencnt;
  368         --numopensockets;       /* Could be below, but faster here. */
  369 #ifdef VIMAGE
  370         VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
  371             __func__, __LINE__, so));
  372         so->so_vnet->vnet_sockcnt--;
  373 #endif
  374         mtx_unlock(&so_global_mtx);
  375         if (so->so_rcv.sb_hiwat)
  376                 (void)chgsbsize(so->so_cred->cr_uidinfo,
  377                     &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
  378         if (so->so_snd.sb_hiwat)
  379                 (void)chgsbsize(so->so_cred->cr_uidinfo,
  380                     &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
  381 #ifdef INET
  382         /* remove acccept filter if one is present. */
  383         if (so->so_accf != NULL)
  384                 do_setopt_accept_filter(so, NULL);
  385 #endif
  386 #ifdef MAC
  387         mac_socket_destroy(so);
  388 #endif
  389         crfree(so->so_cred);
  390         sx_destroy(&so->so_snd.sb_sx);
  391         sx_destroy(&so->so_rcv.sb_sx);
  392         SOCKBUF_LOCK_DESTROY(&so->so_snd);
  393         SOCKBUF_LOCK_DESTROY(&so->so_rcv);
  394         uma_zfree(socket_zone, so);
  395 }
  396 
  397 /*
  398  * socreate returns a socket with a ref count of 1.  The socket should be
  399  * closed with soclose().
  400  */
  401 int
  402 socreate(int dom, struct socket **aso, int type, int proto,
  403     struct ucred *cred, struct thread *td)
  404 {
  405         struct protosw *prp;
  406         struct socket *so;
  407         int error;
  408 
  409         if (proto)
  410                 prp = pffindproto(dom, proto, type);
  411         else
  412                 prp = pffindtype(dom, type);
  413 
  414         if (prp == NULL) {
  415                 /* No support for domain. */
  416                 if (pffinddomain(dom) == NULL)
  417                         return (EAFNOSUPPORT);
  418                 /* No support for socket type. */
  419                 if (proto == 0 && type != 0)
  420                         return (EPROTOTYPE);
  421                 return (EPROTONOSUPPORT);
  422         }
  423         if (prp->pr_usrreqs->pru_attach == NULL ||
  424             prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
  425                 return (EPROTONOSUPPORT);
  426 
  427         if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
  428                 return (EPROTONOSUPPORT);
  429 
  430         if (prp->pr_type != type)
  431                 return (EPROTOTYPE);
  432         so = soalloc(CRED_TO_VNET(cred));
  433         if (so == NULL)
  434                 return (ENOBUFS);
  435 
  436         TAILQ_INIT(&so->so_incomp);
  437         TAILQ_INIT(&so->so_comp);
  438         so->so_type = type;
  439         so->so_cred = crhold(cred);
  440         if ((prp->pr_domain->dom_family == PF_INET) ||
  441             (prp->pr_domain->dom_family == PF_INET6) ||
  442             (prp->pr_domain->dom_family == PF_ROUTE))
  443                 so->so_fibnum = td->td_proc->p_fibnum;
  444         else
  445                 so->so_fibnum = 0;
  446         so->so_proto = prp;
  447 #ifdef MAC
  448         mac_socket_create(cred, so);
  449 #endif
  450         knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
  451         knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
  452         so->so_count = 1;
  453         /*
  454          * Auto-sizing of socket buffers is managed by the protocols and
  455          * the appropriate flags must be set in the pru_attach function.
  456          */
  457         CURVNET_SET(so->so_vnet);
  458         error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
  459         CURVNET_RESTORE();
  460         if (error) {
  461                 KASSERT(so->so_count == 1, ("socreate: so_count %d",
  462                     so->so_count));
  463                 so->so_count = 0;
  464                 sodealloc(so);
  465                 return (error);
  466         }
  467         *aso = so;
  468         return (0);
  469 }
  470 
  471 #ifdef REGRESSION
  472 static int regression_sonewconn_earlytest = 1;
  473 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
  474     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
  475 #endif
  476 
  477 /*
  478  * When an attempt at a new connection is noted on a socket which accepts
  479  * connections, sonewconn is called.  If the connection is possible (subject
  480  * to space constraints, etc.) then we allocate a new structure, propoerly
  481  * linked into the data structure of the original socket, and return this.
  482  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
  483  *
  484  * Note: the ref count on the socket is 0 on return.
  485  */
  486 struct socket *
  487 sonewconn(struct socket *head, int connstatus)
  488 {
  489         static struct timeval lastover;
  490         static struct timeval overinterval = { 60, 0 };
  491         static int overcount;
  492 
  493         struct socket *so;
  494         int over;
  495 
  496         ACCEPT_LOCK();
  497         over = (head->so_qlen > 3 * head->so_qlimit / 2);
  498         ACCEPT_UNLOCK();
  499 #ifdef REGRESSION
  500         if (regression_sonewconn_earlytest && over) {
  501 #else
  502         if (over) {
  503 #endif
  504                 overcount++;
  505 
  506                 if (ratecheck(&lastover, &overinterval)) {
  507                         log(LOG_DEBUG, "%s: pcb %p: Listen queue overflow: "
  508                             "%i already in queue awaiting acceptance "
  509                             "(%d occurrences)\n",
  510                             __func__, head->so_pcb, head->so_qlen, overcount);
  511 
  512                         overcount = 0;
  513                 }
  514 
  515                 return (NULL);
  516         }
  517         VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
  518             __func__, __LINE__, head));
  519         so = soalloc(head->so_vnet);
  520         if (so == NULL) {
  521                 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
  522                     "limit reached or out of memory\n",
  523                     __func__, head->so_pcb);
  524                 return (NULL);
  525         }
  526         if ((head->so_options & SO_ACCEPTFILTER) != 0)
  527                 connstatus = 0;
  528         so->so_head = head;
  529         so->so_type = head->so_type;
  530         so->so_options = head->so_options &~ SO_ACCEPTCONN;
  531         so->so_linger = head->so_linger;
  532         so->so_state = head->so_state | SS_NOFDREF;
  533         so->so_fibnum = head->so_fibnum;
  534         so->so_proto = head->so_proto;
  535         so->so_cred = crhold(head->so_cred);
  536 #ifdef MAC
  537         mac_socket_newconn(head, so);
  538 #endif
  539         knlist_init_mtx(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
  540         knlist_init_mtx(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
  541         VNET_SO_ASSERT(head);
  542         if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
  543                 sodealloc(so);
  544                 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
  545                     __func__, head->so_pcb);
  546                 return (NULL);
  547         }
  548         if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
  549                 sodealloc(so);
  550                 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
  551                     __func__, head->so_pcb);
  552                 return (NULL);
  553         }
  554         so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
  555         so->so_snd.sb_lowat = head->so_snd.sb_lowat;
  556         so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
  557         so->so_snd.sb_timeo = head->so_snd.sb_timeo;
  558         so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
  559         so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
  560         so->so_state |= connstatus;
  561         ACCEPT_LOCK();
  562         /*
  563          * The accept socket may be tearing down but we just
  564          * won a race on the ACCEPT_LOCK.
  565          * However, if sctp_peeloff() is called on a 1-to-many
  566          * style socket, the SO_ACCEPTCONN doesn't need to be set.
  567          */
  568         if (!(head->so_options & SO_ACCEPTCONN) &&
  569             ((head->so_proto->pr_protocol != IPPROTO_SCTP) ||
  570              (head->so_type != SOCK_SEQPACKET))) {
  571                 SOCK_LOCK(so);
  572                 so->so_head = NULL;
  573                 sofree(so);             /* NB: returns ACCEPT_UNLOCK'ed. */
  574                 return (NULL);
  575         }
  576         if (connstatus) {
  577                 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
  578                 so->so_qstate |= SQ_COMP;
  579                 head->so_qlen++;
  580         } else {
  581                 /*
  582                  * Keep removing sockets from the head until there's room for
  583                  * us to insert on the tail.  In pre-locking revisions, this
  584                  * was a simple if(), but as we could be racing with other
  585                  * threads and soabort() requires dropping locks, we must
  586                  * loop waiting for the condition to be true.
  587                  */
  588                 while (head->so_incqlen > head->so_qlimit) {
  589                         struct socket *sp;
  590                         sp = TAILQ_FIRST(&head->so_incomp);
  591                         TAILQ_REMOVE(&head->so_incomp, sp, so_list);
  592                         head->so_incqlen--;
  593                         sp->so_qstate &= ~SQ_INCOMP;
  594                         sp->so_head = NULL;
  595                         ACCEPT_UNLOCK();
  596                         soabort(sp);
  597                         ACCEPT_LOCK();
  598                 }
  599                 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
  600                 so->so_qstate |= SQ_INCOMP;
  601                 head->so_incqlen++;
  602         }
  603         ACCEPT_UNLOCK();
  604         if (connstatus) {
  605                 sorwakeup(head);
  606                 wakeup_one(&head->so_timeo);
  607         }
  608         return (so);
  609 }
  610 
  611 int
  612 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
  613 {
  614         int error;
  615 
  616         CURVNET_SET(so->so_vnet);
  617         error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
  618         CURVNET_RESTORE();
  619         return (error);
  620 }
  621 
  622 int
  623 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
  624 {
  625         int error;
  626 
  627         CURVNET_SET(so->so_vnet);
  628         error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
  629         CURVNET_RESTORE();
  630         return (error);
  631 }
  632 
  633 /*
  634  * solisten() transitions a socket from a non-listening state to a listening
  635  * state, but can also be used to update the listen queue depth on an
  636  * existing listen socket.  The protocol will call back into the sockets
  637  * layer using solisten_proto_check() and solisten_proto() to check and set
  638  * socket-layer listen state.  Call backs are used so that the protocol can
  639  * acquire both protocol and socket layer locks in whatever order is required
  640  * by the protocol.
  641  *
  642  * Protocol implementors are advised to hold the socket lock across the
  643  * socket-layer test and set to avoid races at the socket layer.
  644  */
  645 int
  646 solisten(struct socket *so, int backlog, struct thread *td)
  647 {
  648         int error;
  649 
  650         CURVNET_SET(so->so_vnet);
  651         error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
  652         CURVNET_RESTORE();
  653         return (error);
  654 }
  655 
  656 int
  657 solisten_proto_check(struct socket *so)
  658 {
  659 
  660         SOCK_LOCK_ASSERT(so);
  661 
  662         if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
  663             SS_ISDISCONNECTING))
  664                 return (EINVAL);
  665         return (0);
  666 }
  667 
  668 void
  669 solisten_proto(struct socket *so, int backlog)
  670 {
  671 
  672         SOCK_LOCK_ASSERT(so);
  673 
  674         if (backlog < 0 || backlog > somaxconn)
  675                 backlog = somaxconn;
  676         so->so_qlimit = backlog;
  677         so->so_options |= SO_ACCEPTCONN;
  678 }
  679 
  680 /*
  681  * Evaluate the reference count and named references on a socket; if no
  682  * references remain, free it.  This should be called whenever a reference is
  683  * released, such as in sorele(), but also when named reference flags are
  684  * cleared in socket or protocol code.
  685  *
  686  * sofree() will free the socket if:
  687  *
  688  * - There are no outstanding file descriptor references or related consumers
  689  *   (so_count == 0).
  690  *
  691  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
  692  *
  693  * - The protocol does not have an outstanding strong reference on the socket
  694  *   (SS_PROTOREF).
  695  *
  696  * - The socket is not in a completed connection queue, so a process has been
  697  *   notified that it is present.  If it is removed, the user process may
  698  *   block in accept() despite select() saying the socket was ready.
  699  */
  700 void
  701 sofree(struct socket *so)
  702 {
  703         struct protosw *pr = so->so_proto;
  704         struct socket *head;
  705 
  706         ACCEPT_LOCK_ASSERT();
  707         SOCK_LOCK_ASSERT(so);
  708 
  709         if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
  710             (so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
  711                 SOCK_UNLOCK(so);
  712                 ACCEPT_UNLOCK();
  713                 return;
  714         }
  715 
  716         head = so->so_head;
  717         if (head != NULL) {
  718                 KASSERT((so->so_qstate & SQ_COMP) != 0 ||
  719                     (so->so_qstate & SQ_INCOMP) != 0,
  720                     ("sofree: so_head != NULL, but neither SQ_COMP nor "
  721                     "SQ_INCOMP"));
  722                 KASSERT((so->so_qstate & SQ_COMP) == 0 ||
  723                     (so->so_qstate & SQ_INCOMP) == 0,
  724                     ("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
  725                 TAILQ_REMOVE(&head->so_incomp, so, so_list);
  726                 head->so_incqlen--;
  727                 so->so_qstate &= ~SQ_INCOMP;
  728                 so->so_head = NULL;
  729         }
  730         KASSERT((so->so_qstate & SQ_COMP) == 0 &&
  731             (so->so_qstate & SQ_INCOMP) == 0,
  732             ("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
  733             so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
  734         if (so->so_options & SO_ACCEPTCONN) {
  735                 KASSERT((TAILQ_EMPTY(&so->so_comp)),
  736                     ("sofree: so_comp populated"));
  737                 KASSERT((TAILQ_EMPTY(&so->so_incomp)),
  738                     ("sofree: so_incomp populated"));
  739         }
  740         SOCK_UNLOCK(so);
  741         ACCEPT_UNLOCK();
  742 
  743         VNET_SO_ASSERT(so);
  744         if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) {
  745                 if (pr->pr_domain->dom_family == AF_LOCAL)
  746                         unp_dispose_so(so);
  747                 else
  748                         (*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
  749         }
  750         if (pr->pr_usrreqs->pru_detach != NULL)
  751                 (*pr->pr_usrreqs->pru_detach)(so);
  752 
  753         /*
  754          * From this point on, we assume that no other references to this
  755          * socket exist anywhere else in the stack.  Therefore, no locks need
  756          * to be acquired or held.
  757          *
  758          * We used to do a lot of socket buffer and socket locking here, as
  759          * well as invoke sorflush() and perform wakeups.  The direct call to
  760          * dom_dispose() and sbrelease_internal() are an inlining of what was
  761          * necessary from sorflush().
  762          *
  763          * Notice that the socket buffer and kqueue state are torn down
  764          * before calling pru_detach.  This means that protocols shold not
  765          * assume they can perform socket wakeups, etc, in their detach code.
  766          */
  767         sbdestroy(&so->so_snd, so);
  768         sbdestroy(&so->so_rcv, so);
  769         seldrain(&so->so_snd.sb_sel);
  770         seldrain(&so->so_rcv.sb_sel);
  771         knlist_destroy(&so->so_rcv.sb_sel.si_note);
  772         knlist_destroy(&so->so_snd.sb_sel.si_note);
  773         sodealloc(so);
  774 }
  775 
  776 /*
  777  * Close a socket on last file table reference removal.  Initiate disconnect
  778  * if connected.  Free socket when disconnect complete.
  779  *
  780  * This function will sorele() the socket.  Note that soclose() may be called
  781  * prior to the ref count reaching zero.  The actual socket structure will
  782  * not be freed until the ref count reaches zero.
  783  */
  784 int
  785 soclose(struct socket *so)
  786 {
  787         int error = 0;
  788 
  789         KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
  790 
  791         CURVNET_SET(so->so_vnet);
  792         funsetown(&so->so_sigio);
  793         if (so->so_state & SS_ISCONNECTED) {
  794                 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
  795                         error = sodisconnect(so);
  796                         if (error) {
  797                                 if (error == ENOTCONN)
  798                                         error = 0;
  799                                 goto drop;
  800                         }
  801                 }
  802                 if (so->so_options & SO_LINGER) {
  803                         if ((so->so_state & SS_ISDISCONNECTING) &&
  804                             (so->so_state & SS_NBIO))
  805                                 goto drop;
  806                         while (so->so_state & SS_ISCONNECTED) {
  807                                 error = tsleep(&so->so_timeo,
  808                                     PSOCK | PCATCH, "soclos",
  809                                     so->so_linger * hz);
  810                                 if (error)
  811                                         break;
  812                         }
  813                 }
  814         }
  815 
  816 drop:
  817         if (so->so_proto->pr_usrreqs->pru_close != NULL)
  818                 (*so->so_proto->pr_usrreqs->pru_close)(so);
  819         ACCEPT_LOCK();
  820         if (so->so_options & SO_ACCEPTCONN) {
  821                 struct socket *sp;
  822                 /*
  823                  * Prevent new additions to the accept queues due
  824                  * to ACCEPT_LOCK races while we are draining them.
  825                  */
  826                 so->so_options &= ~SO_ACCEPTCONN;
  827                 while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
  828                         TAILQ_REMOVE(&so->so_incomp, sp, so_list);
  829                         so->so_incqlen--;
  830                         sp->so_qstate &= ~SQ_INCOMP;
  831                         sp->so_head = NULL;
  832                         ACCEPT_UNLOCK();
  833                         soabort(sp);
  834                         ACCEPT_LOCK();
  835                 }
  836                 while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
  837                         TAILQ_REMOVE(&so->so_comp, sp, so_list);
  838                         so->so_qlen--;
  839                         sp->so_qstate &= ~SQ_COMP;
  840                         sp->so_head = NULL;
  841                         ACCEPT_UNLOCK();
  842                         soabort(sp);
  843                         ACCEPT_LOCK();
  844                 }
  845                 KASSERT((TAILQ_EMPTY(&so->so_comp)),
  846                     ("%s: so_comp populated", __func__));
  847                 KASSERT((TAILQ_EMPTY(&so->so_incomp)),
  848                     ("%s: so_incomp populated", __func__));
  849         }
  850         SOCK_LOCK(so);
  851         KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
  852         so->so_state |= SS_NOFDREF;
  853         sorele(so);                     /* NB: Returns with ACCEPT_UNLOCK(). */
  854         CURVNET_RESTORE();
  855         return (error);
  856 }
  857 
  858 /*
  859  * soabort() is used to abruptly tear down a connection, such as when a
  860  * resource limit is reached (listen queue depth exceeded), or if a listen
  861  * socket is closed while there are sockets waiting to be accepted.
  862  *
  863  * This interface is tricky, because it is called on an unreferenced socket,
  864  * and must be called only by a thread that has actually removed the socket
  865  * from the listen queue it was on, or races with other threads are risked.
  866  *
  867  * This interface will call into the protocol code, so must not be called
  868  * with any socket locks held.  Protocols do call it while holding their own
  869  * recursible protocol mutexes, but this is something that should be subject
  870  * to review in the future.
  871  */
  872 void
  873 soabort(struct socket *so)
  874 {
  875 
  876         /*
  877          * In as much as is possible, assert that no references to this
  878          * socket are held.  This is not quite the same as asserting that the
  879          * current thread is responsible for arranging for no references, but
  880          * is as close as we can get for now.
  881          */
  882         KASSERT(so->so_count == 0, ("soabort: so_count"));
  883         KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
  884         KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
  885         KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
  886         KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
  887         VNET_SO_ASSERT(so);
  888 
  889         if (so->so_proto->pr_usrreqs->pru_abort != NULL)
  890                 (*so->so_proto->pr_usrreqs->pru_abort)(so);
  891         ACCEPT_LOCK();
  892         SOCK_LOCK(so);
  893         sofree(so);
  894 }
  895 
  896 int
  897 soaccept(struct socket *so, struct sockaddr **nam)
  898 {
  899         int error;
  900 
  901         SOCK_LOCK(so);
  902         KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
  903         so->so_state &= ~SS_NOFDREF;
  904         SOCK_UNLOCK(so);
  905 
  906         CURVNET_SET(so->so_vnet);
  907         error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
  908         CURVNET_RESTORE();
  909         return (error);
  910 }
  911 
  912 int
  913 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
  914 {
  915 
  916         return (soconnectat(AT_FDCWD, so, nam, td));
  917 }
  918 
  919 int
  920 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
  921 {
  922         int error;
  923 
  924         if (so->so_options & SO_ACCEPTCONN)
  925                 return (EOPNOTSUPP);
  926 
  927         CURVNET_SET(so->so_vnet);
  928         /*
  929          * If protocol is connection-based, can only connect once.
  930          * Otherwise, if connected, try to disconnect first.  This allows
  931          * user to disconnect by connecting to, e.g., a null address.
  932          */
  933         if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
  934             ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
  935             (error = sodisconnect(so)))) {
  936                 error = EISCONN;
  937         } else {
  938                 /*
  939                  * Prevent accumulated error from previous connection from
  940                  * biting us.
  941                  */
  942                 so->so_error = 0;
  943                 if (fd == AT_FDCWD) {
  944                         error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
  945                             nam, td);
  946                 } else {
  947                         error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
  948                             so, nam, td);
  949                 }
  950         }
  951         CURVNET_RESTORE();
  952 
  953         return (error);
  954 }
  955 
  956 int
  957 soconnect2(struct socket *so1, struct socket *so2)
  958 {
  959         int error;
  960 
  961         CURVNET_SET(so1->so_vnet);
  962         error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
  963         CURVNET_RESTORE();
  964         return (error);
  965 }
  966 
  967 int
  968 sodisconnect(struct socket *so)
  969 {
  970         int error;
  971 
  972         if ((so->so_state & SS_ISCONNECTED) == 0)
  973                 return (ENOTCONN);
  974         if (so->so_state & SS_ISDISCONNECTING)
  975                 return (EALREADY);
  976         VNET_SO_ASSERT(so);
  977         error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
  978         return (error);
  979 }
  980 
  981 #define SBLOCKWAIT(f)   (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
  982 
  983 int
  984 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
  985     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
  986 {
  987         long space;
  988         ssize_t resid;
  989         int clen = 0, error, dontroute;
  990 
  991         KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
  992         KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
  993             ("sosend_dgram: !PR_ATOMIC"));
  994 
  995         if (uio != NULL)
  996                 resid = uio->uio_resid;
  997         else
  998                 resid = top->m_pkthdr.len;
  999         /*
 1000          * In theory resid should be unsigned.  However, space must be
 1001          * signed, as it might be less than 0 if we over-committed, and we
 1002          * must use a signed comparison of space and resid.  On the other
 1003          * hand, a negative resid causes us to loop sending 0-length
 1004          * segments to the protocol.
 1005          */
 1006         if (resid < 0) {
 1007                 error = EINVAL;
 1008                 goto out;
 1009         }
 1010 
 1011         dontroute =
 1012             (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
 1013         if (td != NULL)
 1014                 td->td_ru.ru_msgsnd++;
 1015         if (control != NULL)
 1016                 clen = control->m_len;
 1017 
 1018         SOCKBUF_LOCK(&so->so_snd);
 1019         if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 1020                 SOCKBUF_UNLOCK(&so->so_snd);
 1021                 error = EPIPE;
 1022                 goto out;
 1023         }
 1024         if (so->so_error) {
 1025                 error = so->so_error;
 1026                 so->so_error = 0;
 1027                 SOCKBUF_UNLOCK(&so->so_snd);
 1028                 goto out;
 1029         }
 1030         if ((so->so_state & SS_ISCONNECTED) == 0) {
 1031                 /*
 1032                  * `sendto' and `sendmsg' is allowed on a connection-based
 1033                  * socket if it supports implied connect.  Return ENOTCONN if
 1034                  * not connected and no address is supplied.
 1035                  */
 1036                 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
 1037                     (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
 1038                         if ((so->so_state & SS_ISCONFIRMING) == 0 &&
 1039                             !(resid == 0 && clen != 0)) {
 1040                                 SOCKBUF_UNLOCK(&so->so_snd);
 1041                                 error = ENOTCONN;
 1042                                 goto out;
 1043                         }
 1044                 } else if (addr == NULL) {
 1045                         if (so->so_proto->pr_flags & PR_CONNREQUIRED)
 1046                                 error = ENOTCONN;
 1047                         else
 1048                                 error = EDESTADDRREQ;
 1049                         SOCKBUF_UNLOCK(&so->so_snd);
 1050                         goto out;
 1051                 }
 1052         }
 1053 
 1054         /*
 1055          * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
 1056          * problem and need fixing.
 1057          */
 1058         space = sbspace(&so->so_snd);
 1059         if (flags & MSG_OOB)
 1060                 space += 1024;
 1061         space -= clen;
 1062         SOCKBUF_UNLOCK(&so->so_snd);
 1063         if (resid > space) {
 1064                 error = EMSGSIZE;
 1065                 goto out;
 1066         }
 1067         if (uio == NULL) {
 1068                 resid = 0;
 1069                 if (flags & MSG_EOR)
 1070                         top->m_flags |= M_EOR;
 1071         } else {
 1072                 /*
 1073                  * Copy the data from userland into a mbuf chain.
 1074                  * If no data is to be copied in, a single empty mbuf
 1075                  * is returned.
 1076                  */
 1077                 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
 1078                     (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
 1079                 if (top == NULL) {
 1080                         error = EFAULT; /* only possible error */
 1081                         goto out;
 1082                 }
 1083                 space -= resid - uio->uio_resid;
 1084                 resid = uio->uio_resid;
 1085         }
 1086         KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
 1087         /*
 1088          * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
 1089          * than with.
 1090          */
 1091         if (dontroute) {
 1092                 SOCK_LOCK(so);
 1093                 so->so_options |= SO_DONTROUTE;
 1094                 SOCK_UNLOCK(so);
 1095         }
 1096         /*
 1097          * XXX all the SBS_CANTSENDMORE checks previously done could be out
 1098          * of date.  We could have received a reset packet in an interrupt or
 1099          * maybe we slept while doing page faults in uiomove() etc.  We could
 1100          * probably recheck again inside the locking protection here, but
 1101          * there are probably other places that this also happens.  We must
 1102          * rethink this.
 1103          */
 1104         VNET_SO_ASSERT(so);
 1105         error = (*so->so_proto->pr_usrreqs->pru_send)(so,
 1106             (flags & MSG_OOB) ? PRUS_OOB :
 1107         /*
 1108          * If the user set MSG_EOF, the protocol understands this flag and
 1109          * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
 1110          */
 1111             ((flags & MSG_EOF) &&
 1112              (so->so_proto->pr_flags & PR_IMPLOPCL) &&
 1113              (resid <= 0)) ?
 1114                 PRUS_EOF :
 1115                 /* If there is more to send set PRUS_MORETOCOME */
 1116                 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
 1117                 top, addr, control, td);
 1118         if (dontroute) {
 1119                 SOCK_LOCK(so);
 1120                 so->so_options &= ~SO_DONTROUTE;
 1121                 SOCK_UNLOCK(so);
 1122         }
 1123         clen = 0;
 1124         control = NULL;
 1125         top = NULL;
 1126 out:
 1127         if (top != NULL)
 1128                 m_freem(top);
 1129         if (control != NULL)
 1130                 m_freem(control);
 1131         return (error);
 1132 }
 1133 
 1134 /*
 1135  * Send on a socket.  If send must go all at once and message is larger than
 1136  * send buffering, then hard error.  Lock against other senders.  If must go
 1137  * all at once and not enough room now, then inform user that this would
 1138  * block and do nothing.  Otherwise, if nonblocking, send as much as
 1139  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
 1140  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
 1141  * in mbuf chain must be small enough to send all at once.
 1142  *
 1143  * Returns nonzero on error, timeout or signal; callers must check for short
 1144  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
 1145  * on return.
 1146  */
 1147 int
 1148 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1149     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1150 {
 1151         long space;
 1152         ssize_t resid;
 1153         int clen = 0, error, dontroute;
 1154         int atomic = sosendallatonce(so) || top;
 1155 
 1156         if (uio != NULL)
 1157                 resid = uio->uio_resid;
 1158         else
 1159                 resid = top->m_pkthdr.len;
 1160         /*
 1161          * In theory resid should be unsigned.  However, space must be
 1162          * signed, as it might be less than 0 if we over-committed, and we
 1163          * must use a signed comparison of space and resid.  On the other
 1164          * hand, a negative resid causes us to loop sending 0-length
 1165          * segments to the protocol.
 1166          *
 1167          * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
 1168          * type sockets since that's an error.
 1169          */
 1170         if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
 1171                 error = EINVAL;
 1172                 goto out;
 1173         }
 1174 
 1175         dontroute =
 1176             (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
 1177             (so->so_proto->pr_flags & PR_ATOMIC);
 1178         if (td != NULL)
 1179                 td->td_ru.ru_msgsnd++;
 1180         if (control != NULL)
 1181                 clen = control->m_len;
 1182 
 1183         error = sblock(&so->so_snd, SBLOCKWAIT(flags));
 1184         if (error)
 1185                 goto out;
 1186 
 1187 restart:
 1188         do {
 1189                 SOCKBUF_LOCK(&so->so_snd);
 1190                 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 1191                         SOCKBUF_UNLOCK(&so->so_snd);
 1192                         error = EPIPE;
 1193                         goto release;
 1194                 }
 1195                 if (so->so_error) {
 1196                         error = so->so_error;
 1197                         so->so_error = 0;
 1198                         SOCKBUF_UNLOCK(&so->so_snd);
 1199                         goto release;
 1200                 }
 1201                 if ((so->so_state & SS_ISCONNECTED) == 0) {
 1202                         /*
 1203                          * `sendto' and `sendmsg' is allowed on a connection-
 1204                          * based socket if it supports implied connect.
 1205                          * Return ENOTCONN if not connected and no address is
 1206                          * supplied.
 1207                          */
 1208                         if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
 1209                             (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
 1210                                 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
 1211                                     !(resid == 0 && clen != 0)) {
 1212                                         SOCKBUF_UNLOCK(&so->so_snd);
 1213                                         error = ENOTCONN;
 1214                                         goto release;
 1215                                 }
 1216                         } else if (addr == NULL) {
 1217                                 SOCKBUF_UNLOCK(&so->so_snd);
 1218                                 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
 1219                                         error = ENOTCONN;
 1220                                 else
 1221                                         error = EDESTADDRREQ;
 1222                                 goto release;
 1223                         }
 1224                 }
 1225                 space = sbspace(&so->so_snd);
 1226                 if (flags & MSG_OOB)
 1227                         space += 1024;
 1228                 if ((atomic && resid > so->so_snd.sb_hiwat) ||
 1229                     clen > so->so_snd.sb_hiwat) {
 1230                         SOCKBUF_UNLOCK(&so->so_snd);
 1231                         error = EMSGSIZE;
 1232                         goto release;
 1233                 }
 1234                 if (space < resid + clen &&
 1235                     (atomic || space < so->so_snd.sb_lowat || space < clen)) {
 1236                         if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
 1237                                 SOCKBUF_UNLOCK(&so->so_snd);
 1238                                 error = EWOULDBLOCK;
 1239                                 goto release;
 1240                         }
 1241                         error = sbwait(&so->so_snd);
 1242                         SOCKBUF_UNLOCK(&so->so_snd);
 1243                         if (error)
 1244                                 goto release;
 1245                         goto restart;
 1246                 }
 1247                 SOCKBUF_UNLOCK(&so->so_snd);
 1248                 space -= clen;
 1249                 do {
 1250                         if (uio == NULL) {
 1251                                 resid = 0;
 1252                                 if (flags & MSG_EOR)
 1253                                         top->m_flags |= M_EOR;
 1254                         } else {
 1255                                 /*
 1256                                  * Copy the data from userland into a mbuf
 1257                                  * chain.  If no data is to be copied in,
 1258                                  * a single empty mbuf is returned.
 1259                                  */
 1260                                 top = m_uiotombuf(uio, M_WAITOK, space,
 1261                                     (atomic ? max_hdr : 0),
 1262                                     (atomic ? M_PKTHDR : 0) |
 1263                                     ((flags & MSG_EOR) ? M_EOR : 0));
 1264                                 if (top == NULL) {
 1265                                         error = EFAULT; /* only possible error */
 1266                                         goto release;
 1267                                 }
 1268                                 space -= resid - uio->uio_resid;
 1269                                 resid = uio->uio_resid;
 1270                         }
 1271                         if (dontroute) {
 1272                                 SOCK_LOCK(so);
 1273                                 so->so_options |= SO_DONTROUTE;
 1274                                 SOCK_UNLOCK(so);
 1275                         }
 1276                         /*
 1277                          * XXX all the SBS_CANTSENDMORE checks previously
 1278                          * done could be out of date.  We could have received
 1279                          * a reset packet in an interrupt or maybe we slept
 1280                          * while doing page faults in uiomove() etc.  We
 1281                          * could probably recheck again inside the locking
 1282                          * protection here, but there are probably other
 1283                          * places that this also happens.  We must rethink
 1284                          * this.
 1285                          */
 1286                         VNET_SO_ASSERT(so);
 1287                         error = (*so->so_proto->pr_usrreqs->pru_send)(so,
 1288                             (flags & MSG_OOB) ? PRUS_OOB :
 1289                         /*
 1290                          * If the user set MSG_EOF, the protocol understands
 1291                          * this flag and nothing left to send then use
 1292                          * PRU_SEND_EOF instead of PRU_SEND.
 1293                          */
 1294                             ((flags & MSG_EOF) &&
 1295                              (so->so_proto->pr_flags & PR_IMPLOPCL) &&
 1296                              (resid <= 0)) ?
 1297                                 PRUS_EOF :
 1298                         /* If there is more to send set PRUS_MORETOCOME. */
 1299                             (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
 1300                             top, addr, control, td);
 1301                         if (dontroute) {
 1302                                 SOCK_LOCK(so);
 1303                                 so->so_options &= ~SO_DONTROUTE;
 1304                                 SOCK_UNLOCK(so);
 1305                         }
 1306                         clen = 0;
 1307                         control = NULL;
 1308                         top = NULL;
 1309                         if (error)
 1310                                 goto release;
 1311                 } while (resid && space > 0);
 1312         } while (resid);
 1313 
 1314 release:
 1315         sbunlock(&so->so_snd);
 1316 out:
 1317         if (top != NULL)
 1318                 m_freem(top);
 1319         if (control != NULL)
 1320                 m_freem(control);
 1321         return (error);
 1322 }
 1323 
 1324 int
 1325 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1326     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1327 {
 1328         int error;
 1329 
 1330         CURVNET_SET(so->so_vnet);
 1331         error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
 1332             control, flags, td);
 1333         CURVNET_RESTORE();
 1334         return (error);
 1335 }
 1336 
 1337 /*
 1338  * The part of soreceive() that implements reading non-inline out-of-band
 1339  * data from a socket.  For more complete comments, see soreceive(), from
 1340  * which this code originated.
 1341  *
 1342  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
 1343  * unable to return an mbuf chain to the caller.
 1344  */
 1345 static int
 1346 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
 1347 {
 1348         struct protosw *pr = so->so_proto;
 1349         struct mbuf *m;
 1350         int error;
 1351 
 1352         KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
 1353         VNET_SO_ASSERT(so);
 1354 
 1355         m = m_get(M_WAITOK, MT_DATA);
 1356         error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
 1357         if (error)
 1358                 goto bad;
 1359         do {
 1360                 error = uiomove(mtod(m, void *),
 1361                     (int) min(uio->uio_resid, m->m_len), uio);
 1362                 m = m_free(m);
 1363         } while (uio->uio_resid && error == 0 && m);
 1364 bad:
 1365         if (m != NULL)
 1366                 m_freem(m);
 1367         return (error);
 1368 }
 1369 
 1370 /*
 1371  * Following replacement or removal of the first mbuf on the first mbuf chain
 1372  * of a socket buffer, push necessary state changes back into the socket
 1373  * buffer so that other consumers see the values consistently.  'nextrecord'
 1374  * is the callers locally stored value of the original value of
 1375  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
 1376  * NOTE: 'nextrecord' may be NULL.
 1377  */
 1378 static __inline void
 1379 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
 1380 {
 1381 
 1382         SOCKBUF_LOCK_ASSERT(sb);
 1383         /*
 1384          * First, update for the new value of nextrecord.  If necessary, make
 1385          * it the first record.
 1386          */
 1387         if (sb->sb_mb != NULL)
 1388                 sb->sb_mb->m_nextpkt = nextrecord;
 1389         else
 1390                 sb->sb_mb = nextrecord;
 1391 
 1392         /*
 1393          * Now update any dependent socket buffer fields to reflect the new
 1394          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
 1395          * addition of a second clause that takes care of the case where
 1396          * sb_mb has been updated, but remains the last record.
 1397          */
 1398         if (sb->sb_mb == NULL) {
 1399                 sb->sb_mbtail = NULL;
 1400                 sb->sb_lastrecord = NULL;
 1401         } else if (sb->sb_mb->m_nextpkt == NULL)
 1402                 sb->sb_lastrecord = sb->sb_mb;
 1403 }
 1404 
 1405 /*
 1406  * Implement receive operations on a socket.  We depend on the way that
 1407  * records are added to the sockbuf by sbappend.  In particular, each record
 1408  * (mbufs linked through m_next) must begin with an address if the protocol
 1409  * so specifies, followed by an optional mbuf or mbufs containing ancillary
 1410  * data, and then zero or more mbufs of data.  In order to allow parallelism
 1411  * between network receive and copying to user space, as well as avoid
 1412  * sleeping with a mutex held, we release the socket buffer mutex during the
 1413  * user space copy.  Although the sockbuf is locked, new data may still be
 1414  * appended, and thus we must maintain consistency of the sockbuf during that
 1415  * time.
 1416  *
 1417  * The caller may receive the data as a single mbuf chain by supplying an
 1418  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
 1419  * the count in uio_resid.
 1420  */
 1421 int
 1422 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
 1423     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 1424 {
 1425         struct mbuf *m, **mp;
 1426         int flags, error, offset;
 1427         ssize_t len;
 1428         struct protosw *pr = so->so_proto;
 1429         struct mbuf *nextrecord;
 1430         int moff, type = 0;
 1431         ssize_t orig_resid = uio->uio_resid;
 1432 
 1433         mp = mp0;
 1434         if (psa != NULL)
 1435                 *psa = NULL;
 1436         if (controlp != NULL)
 1437                 *controlp = NULL;
 1438         if (flagsp != NULL)
 1439                 flags = *flagsp &~ MSG_EOR;
 1440         else
 1441                 flags = 0;
 1442         if (flags & MSG_OOB)
 1443                 return (soreceive_rcvoob(so, uio, flags));
 1444         if (mp != NULL)
 1445                 *mp = NULL;
 1446         if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
 1447             && uio->uio_resid) {
 1448                 VNET_SO_ASSERT(so);
 1449                 (*pr->pr_usrreqs->pru_rcvd)(so, 0);
 1450         }
 1451 
 1452         error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
 1453         if (error)
 1454                 return (error);
 1455 
 1456 restart:
 1457         SOCKBUF_LOCK(&so->so_rcv);
 1458         m = so->so_rcv.sb_mb;
 1459         /*
 1460          * If we have less data than requested, block awaiting more (subject
 1461          * to any timeout) if:
 1462          *   1. the current count is less than the low water mark, or
 1463          *   2. MSG_DONTWAIT is not set
 1464          */
 1465         if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
 1466             so->so_rcv.sb_cc < uio->uio_resid) &&
 1467             so->so_rcv.sb_cc < so->so_rcv.sb_lowat &&
 1468             m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
 1469                 KASSERT(m != NULL || !so->so_rcv.sb_cc,
 1470                     ("receive: m == %p so->so_rcv.sb_cc == %u",
 1471                     m, so->so_rcv.sb_cc));
 1472                 if (so->so_error) {
 1473                         if (m != NULL)
 1474                                 goto dontblock;
 1475                         error = so->so_error;
 1476                         if ((flags & MSG_PEEK) == 0)
 1477                                 so->so_error = 0;
 1478                         SOCKBUF_UNLOCK(&so->so_rcv);
 1479                         goto release;
 1480                 }
 1481                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1482                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 1483                         if (m == NULL) {
 1484                                 SOCKBUF_UNLOCK(&so->so_rcv);
 1485                                 goto release;
 1486                         } else
 1487                                 goto dontblock;
 1488                 }
 1489                 for (; m != NULL; m = m->m_next)
 1490                         if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
 1491                                 m = so->so_rcv.sb_mb;
 1492                                 goto dontblock;
 1493                         }
 1494                 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
 1495                     (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
 1496                         SOCKBUF_UNLOCK(&so->so_rcv);
 1497                         error = ENOTCONN;
 1498                         goto release;
 1499                 }
 1500                 if (uio->uio_resid == 0) {
 1501                         SOCKBUF_UNLOCK(&so->so_rcv);
 1502                         goto release;
 1503                 }
 1504                 if ((so->so_state & SS_NBIO) ||
 1505                     (flags & (MSG_DONTWAIT|MSG_NBIO))) {
 1506                         SOCKBUF_UNLOCK(&so->so_rcv);
 1507                         error = EWOULDBLOCK;
 1508                         goto release;
 1509                 }
 1510                 SBLASTRECORDCHK(&so->so_rcv);
 1511                 SBLASTMBUFCHK(&so->so_rcv);
 1512                 error = sbwait(&so->so_rcv);
 1513                 SOCKBUF_UNLOCK(&so->so_rcv);
 1514                 if (error)
 1515                         goto release;
 1516                 goto restart;
 1517         }
 1518 dontblock:
 1519         /*
 1520          * From this point onward, we maintain 'nextrecord' as a cache of the
 1521          * pointer to the next record in the socket buffer.  We must keep the
 1522          * various socket buffer pointers and local stack versions of the
 1523          * pointers in sync, pushing out modifications before dropping the
 1524          * socket buffer mutex, and re-reading them when picking it up.
 1525          *
 1526          * Otherwise, we will race with the network stack appending new data
 1527          * or records onto the socket buffer by using inconsistent/stale
 1528          * versions of the field, possibly resulting in socket buffer
 1529          * corruption.
 1530          *
 1531          * By holding the high-level sblock(), we prevent simultaneous
 1532          * readers from pulling off the front of the socket buffer.
 1533          */
 1534         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1535         if (uio->uio_td)
 1536                 uio->uio_td->td_ru.ru_msgrcv++;
 1537         KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
 1538         SBLASTRECORDCHK(&so->so_rcv);
 1539         SBLASTMBUFCHK(&so->so_rcv);
 1540         nextrecord = m->m_nextpkt;
 1541         if (pr->pr_flags & PR_ADDR) {
 1542                 KASSERT(m->m_type == MT_SONAME,
 1543                     ("m->m_type == %d", m->m_type));
 1544                 orig_resid = 0;
 1545                 if (psa != NULL)
 1546                         *psa = sodupsockaddr(mtod(m, struct sockaddr *),
 1547                             M_NOWAIT);
 1548                 if (flags & MSG_PEEK) {
 1549                         m = m->m_next;
 1550                 } else {
 1551                         sbfree(&so->so_rcv, m);
 1552                         so->so_rcv.sb_mb = m_free(m);
 1553                         m = so->so_rcv.sb_mb;
 1554                         sockbuf_pushsync(&so->so_rcv, nextrecord);
 1555                 }
 1556         }
 1557 
 1558         /*
 1559          * Process one or more MT_CONTROL mbufs present before any data mbufs
 1560          * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
 1561          * just copy the data; if !MSG_PEEK, we call into the protocol to
 1562          * perform externalization (or freeing if controlp == NULL).
 1563          */
 1564         if (m != NULL && m->m_type == MT_CONTROL) {
 1565                 struct mbuf *cm = NULL, *cmn;
 1566                 struct mbuf **cme = &cm;
 1567 
 1568                 do {
 1569                         if (flags & MSG_PEEK) {
 1570                                 if (controlp != NULL) {
 1571                                         *controlp = m_copy(m, 0, m->m_len);
 1572                                         controlp = &(*controlp)->m_next;
 1573                                 }
 1574                                 m = m->m_next;
 1575                         } else {
 1576                                 sbfree(&so->so_rcv, m);
 1577                                 so->so_rcv.sb_mb = m->m_next;
 1578                                 m->m_next = NULL;
 1579                                 *cme = m;
 1580                                 cme = &(*cme)->m_next;
 1581                                 m = so->so_rcv.sb_mb;
 1582                         }
 1583                 } while (m != NULL && m->m_type == MT_CONTROL);
 1584                 if ((flags & MSG_PEEK) == 0)
 1585                         sockbuf_pushsync(&so->so_rcv, nextrecord);
 1586                 while (cm != NULL) {
 1587                         cmn = cm->m_next;
 1588                         cm->m_next = NULL;
 1589                         if (pr->pr_domain->dom_externalize != NULL) {
 1590                                 SOCKBUF_UNLOCK(&so->so_rcv);
 1591                                 VNET_SO_ASSERT(so);
 1592                                 error = (*pr->pr_domain->dom_externalize)
 1593                                     (cm, controlp, flags);
 1594                                 SOCKBUF_LOCK(&so->so_rcv);
 1595                         } else if (controlp != NULL)
 1596                                 *controlp = cm;
 1597                         else
 1598                                 m_freem(cm);
 1599                         if (controlp != NULL) {
 1600                                 orig_resid = 0;
 1601                                 while (*controlp != NULL)
 1602                                         controlp = &(*controlp)->m_next;
 1603                         }
 1604                         cm = cmn;
 1605                 }
 1606                 if (m != NULL)
 1607                         nextrecord = so->so_rcv.sb_mb->m_nextpkt;
 1608                 else
 1609                         nextrecord = so->so_rcv.sb_mb;
 1610                 orig_resid = 0;
 1611         }
 1612         if (m != NULL) {
 1613                 if ((flags & MSG_PEEK) == 0) {
 1614                         KASSERT(m->m_nextpkt == nextrecord,
 1615                             ("soreceive: post-control, nextrecord !sync"));
 1616                         if (nextrecord == NULL) {
 1617                                 KASSERT(so->so_rcv.sb_mb == m,
 1618                                     ("soreceive: post-control, sb_mb!=m"));
 1619                                 KASSERT(so->so_rcv.sb_lastrecord == m,
 1620                                     ("soreceive: post-control, lastrecord!=m"));
 1621                         }
 1622                 }
 1623                 type = m->m_type;
 1624                 if (type == MT_OOBDATA)
 1625                         flags |= MSG_OOB;
 1626         } else {
 1627                 if ((flags & MSG_PEEK) == 0) {
 1628                         KASSERT(so->so_rcv.sb_mb == nextrecord,
 1629                             ("soreceive: sb_mb != nextrecord"));
 1630                         if (so->so_rcv.sb_mb == NULL) {
 1631                                 KASSERT(so->so_rcv.sb_lastrecord == NULL,
 1632                                     ("soreceive: sb_lastercord != NULL"));
 1633                         }
 1634                 }
 1635         }
 1636         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1637         SBLASTRECORDCHK(&so->so_rcv);
 1638         SBLASTMBUFCHK(&so->so_rcv);
 1639 
 1640         /*
 1641          * Now continue to read any data mbufs off of the head of the socket
 1642          * buffer until the read request is satisfied.  Note that 'type' is
 1643          * used to store the type of any mbuf reads that have happened so far
 1644          * such that soreceive() can stop reading if the type changes, which
 1645          * causes soreceive() to return only one of regular data and inline
 1646          * out-of-band data in a single socket receive operation.
 1647          */
 1648         moff = 0;
 1649         offset = 0;
 1650         while (m != NULL && uio->uio_resid > 0 && error == 0) {
 1651                 /*
 1652                  * If the type of mbuf has changed since the last mbuf
 1653                  * examined ('type'), end the receive operation.
 1654                  */
 1655                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1656                 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
 1657                         if (type != m->m_type)
 1658                                 break;
 1659                 } else if (type == MT_OOBDATA)
 1660                         break;
 1661                 else
 1662                     KASSERT(m->m_type == MT_DATA,
 1663                         ("m->m_type == %d", m->m_type));
 1664                 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
 1665                 len = uio->uio_resid;
 1666                 if (so->so_oobmark && len > so->so_oobmark - offset)
 1667                         len = so->so_oobmark - offset;
 1668                 if (len > m->m_len - moff)
 1669                         len = m->m_len - moff;
 1670                 /*
 1671                  * If mp is set, just pass back the mbufs.  Otherwise copy
 1672                  * them out via the uio, then free.  Sockbuf must be
 1673                  * consistent here (points to current mbuf, it points to next
 1674                  * record) when we drop priority; we must note any additions
 1675                  * to the sockbuf when we block interrupts again.
 1676                  */
 1677                 if (mp == NULL) {
 1678                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1679                         SBLASTRECORDCHK(&so->so_rcv);
 1680                         SBLASTMBUFCHK(&so->so_rcv);
 1681                         SOCKBUF_UNLOCK(&so->so_rcv);
 1682                         error = uiomove(mtod(m, char *) + moff, (int)len, uio);
 1683                         SOCKBUF_LOCK(&so->so_rcv);
 1684                         if (error) {
 1685                                 /*
 1686                                  * The MT_SONAME mbuf has already been removed
 1687                                  * from the record, so it is necessary to
 1688                                  * remove the data mbufs, if any, to preserve
 1689                                  * the invariant in the case of PR_ADDR that
 1690                                  * requires MT_SONAME mbufs at the head of
 1691                                  * each record.
 1692                                  */
 1693                                 if (m && pr->pr_flags & PR_ATOMIC &&
 1694                                     ((flags & MSG_PEEK) == 0))
 1695                                         (void)sbdroprecord_locked(&so->so_rcv);
 1696                                 SOCKBUF_UNLOCK(&so->so_rcv);
 1697                                 goto release;
 1698                         }
 1699                 } else
 1700                         uio->uio_resid -= len;
 1701                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1702                 if (len == m->m_len - moff) {
 1703                         if (m->m_flags & M_EOR)
 1704                                 flags |= MSG_EOR;
 1705                         if (flags & MSG_PEEK) {
 1706                                 m = m->m_next;
 1707                                 moff = 0;
 1708                         } else {
 1709                                 nextrecord = m->m_nextpkt;
 1710                                 sbfree(&so->so_rcv, m);
 1711                                 if (mp != NULL) {
 1712                                         m->m_nextpkt = NULL;
 1713                                         *mp = m;
 1714                                         mp = &m->m_next;
 1715                                         so->so_rcv.sb_mb = m = m->m_next;
 1716                                         *mp = NULL;
 1717                                 } else {
 1718                                         so->so_rcv.sb_mb = m_free(m);
 1719                                         m = so->so_rcv.sb_mb;
 1720                                 }
 1721                                 sockbuf_pushsync(&so->so_rcv, nextrecord);
 1722                                 SBLASTRECORDCHK(&so->so_rcv);
 1723                                 SBLASTMBUFCHK(&so->so_rcv);
 1724                         }
 1725                 } else {
 1726                         if (flags & MSG_PEEK)
 1727                                 moff += len;
 1728                         else {
 1729                                 if (mp != NULL) {
 1730                                         int copy_flag;
 1731 
 1732                                         if (flags & MSG_DONTWAIT)
 1733                                                 copy_flag = M_NOWAIT;
 1734                                         else
 1735                                                 copy_flag = M_WAIT;
 1736                                         if (copy_flag == M_WAITOK)
 1737                                                 SOCKBUF_UNLOCK(&so->so_rcv);
 1738                                         *mp = m_copym(m, 0, len, copy_flag);
 1739                                         if (copy_flag == M_WAITOK)
 1740                                                 SOCKBUF_LOCK(&so->so_rcv);
 1741                                         if (*mp == NULL) {
 1742                                                 /*
 1743                                                  * m_copym() couldn't
 1744                                                  * allocate an mbuf.  Adjust
 1745                                                  * uio_resid back (it was
 1746                                                  * adjusted down by len
 1747                                                  * bytes, which we didn't end
 1748                                                  * up "copying" over).
 1749                                                  */
 1750                                                 uio->uio_resid += len;
 1751                                                 break;
 1752                                         }
 1753                                 }
 1754                                 m->m_data += len;
 1755                                 m->m_len -= len;
 1756                                 so->so_rcv.sb_cc -= len;
 1757                         }
 1758                 }
 1759                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1760                 if (so->so_oobmark) {
 1761                         if ((flags & MSG_PEEK) == 0) {
 1762                                 so->so_oobmark -= len;
 1763                                 if (so->so_oobmark == 0) {
 1764                                         so->so_rcv.sb_state |= SBS_RCVATMARK;
 1765                                         break;
 1766                                 }
 1767                         } else {
 1768                                 offset += len;
 1769                                 if (offset == so->so_oobmark)
 1770                                         break;
 1771                         }
 1772                 }
 1773                 if (flags & MSG_EOR)
 1774                         break;
 1775                 /*
 1776                  * If the MSG_WAITALL flag is set (for non-atomic socket), we
 1777                  * must not quit until "uio->uio_resid == 0" or an error
 1778                  * termination.  If a signal/timeout occurs, return with a
 1779                  * short count but without error.  Keep sockbuf locked
 1780                  * against other readers.
 1781                  */
 1782                 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
 1783                     !sosendallatonce(so) && nextrecord == NULL) {
 1784                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1785                         if (so->so_error ||
 1786                             so->so_rcv.sb_state & SBS_CANTRCVMORE)
 1787                                 break;
 1788                         /*
 1789                          * Notify the protocol that some data has been
 1790                          * drained before blocking.
 1791                          */
 1792                         if (pr->pr_flags & PR_WANTRCVD) {
 1793                                 SOCKBUF_UNLOCK(&so->so_rcv);
 1794                                 VNET_SO_ASSERT(so);
 1795                                 (*pr->pr_usrreqs->pru_rcvd)(so, flags);
 1796                                 SOCKBUF_LOCK(&so->so_rcv);
 1797                         }
 1798                         SBLASTRECORDCHK(&so->so_rcv);
 1799                         SBLASTMBUFCHK(&so->so_rcv);
 1800                         /*
 1801                          * We could receive some data while was notifying
 1802                          * the protocol. Skip blocking in this case.
 1803                          */
 1804                         if (so->so_rcv.sb_mb == NULL) {
 1805                                 error = sbwait(&so->so_rcv);
 1806                                 if (error) {
 1807                                         SOCKBUF_UNLOCK(&so->so_rcv);
 1808                                         goto release;
 1809                                 }
 1810                         }
 1811                         m = so->so_rcv.sb_mb;
 1812                         if (m != NULL)
 1813                                 nextrecord = m->m_nextpkt;
 1814                 }
 1815         }
 1816 
 1817         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1818         if (m != NULL && pr->pr_flags & PR_ATOMIC) {
 1819                 flags |= MSG_TRUNC;
 1820                 if ((flags & MSG_PEEK) == 0)
 1821                         (void) sbdroprecord_locked(&so->so_rcv);
 1822         }
 1823         if ((flags & MSG_PEEK) == 0) {
 1824                 if (m == NULL) {
 1825                         /*
 1826                          * First part is an inline SB_EMPTY_FIXUP().  Second
 1827                          * part makes sure sb_lastrecord is up-to-date if
 1828                          * there is still data in the socket buffer.
 1829                          */
 1830                         so->so_rcv.sb_mb = nextrecord;
 1831                         if (so->so_rcv.sb_mb == NULL) {
 1832                                 so->so_rcv.sb_mbtail = NULL;
 1833                                 so->so_rcv.sb_lastrecord = NULL;
 1834                         } else if (nextrecord->m_nextpkt == NULL)
 1835                                 so->so_rcv.sb_lastrecord = nextrecord;
 1836                 }
 1837                 SBLASTRECORDCHK(&so->so_rcv);
 1838                 SBLASTMBUFCHK(&so->so_rcv);
 1839                 /*
 1840                  * If soreceive() is being done from the socket callback,
 1841                  * then don't need to generate ACK to peer to update window,
 1842                  * since ACK will be generated on return to TCP.
 1843                  */
 1844                 if (!(flags & MSG_SOCALLBCK) &&
 1845                     (pr->pr_flags & PR_WANTRCVD)) {
 1846                         SOCKBUF_UNLOCK(&so->so_rcv);
 1847                         VNET_SO_ASSERT(so);
 1848                         (*pr->pr_usrreqs->pru_rcvd)(so, flags);
 1849                         SOCKBUF_LOCK(&so->so_rcv);
 1850                 }
 1851         }
 1852         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1853         if (orig_resid == uio->uio_resid && orig_resid &&
 1854             (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
 1855                 SOCKBUF_UNLOCK(&so->so_rcv);
 1856                 goto restart;
 1857         }
 1858         SOCKBUF_UNLOCK(&so->so_rcv);
 1859 
 1860         if (flagsp != NULL)
 1861                 *flagsp |= flags;
 1862 release:
 1863         sbunlock(&so->so_rcv);
 1864         return (error);
 1865 }
 1866 
 1867 /*
 1868  * Optimized version of soreceive() for stream (TCP) sockets.
 1869  * XXXAO: (MSG_WAITALL | MSG_PEEK) isn't properly handled.
 1870  */
 1871 int
 1872 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
 1873     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 1874 {
 1875         int len = 0, error = 0, flags, oresid;
 1876         struct sockbuf *sb;
 1877         struct mbuf *m, *n = NULL;
 1878 
 1879         /* We only do stream sockets. */
 1880         if (so->so_type != SOCK_STREAM)
 1881                 return (EINVAL);
 1882         if (psa != NULL)
 1883                 *psa = NULL;
 1884         if (controlp != NULL)
 1885                 return (EINVAL);
 1886         if (flagsp != NULL)
 1887                 flags = *flagsp &~ MSG_EOR;
 1888         else
 1889                 flags = 0;
 1890         if (flags & MSG_OOB)
 1891                 return (soreceive_rcvoob(so, uio, flags));
 1892         if (mp0 != NULL)
 1893                 *mp0 = NULL;
 1894 
 1895         sb = &so->so_rcv;
 1896 
 1897         /* Prevent other readers from entering the socket. */
 1898         error = sblock(sb, SBLOCKWAIT(flags));
 1899         if (error)
 1900                 goto out;
 1901         SOCKBUF_LOCK(sb);
 1902 
 1903         /* Easy one, no space to copyout anything. */
 1904         if (uio->uio_resid == 0) {
 1905                 error = EINVAL;
 1906                 goto out;
 1907         }
 1908         oresid = uio->uio_resid;
 1909 
 1910         /* We will never ever get anything unless we are or were connected. */
 1911         if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
 1912                 error = ENOTCONN;
 1913                 goto out;
 1914         }
 1915 
 1916 restart:
 1917         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1918 
 1919         /* Abort if socket has reported problems. */
 1920         if (so->so_error) {
 1921                 if (sb->sb_cc > 0)
 1922                         goto deliver;
 1923                 if (oresid > uio->uio_resid)
 1924                         goto out;
 1925                 error = so->so_error;
 1926                 if (!(flags & MSG_PEEK))
 1927                         so->so_error = 0;
 1928                 goto out;
 1929         }
 1930 
 1931         /* Door is closed.  Deliver what is left, if any. */
 1932         if (sb->sb_state & SBS_CANTRCVMORE) {
 1933                 if (sb->sb_cc > 0)
 1934                         goto deliver;
 1935                 else
 1936                         goto out;
 1937         }
 1938 
 1939         /* Socket buffer is empty and we shall not block. */
 1940         if (sb->sb_cc == 0 &&
 1941             ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
 1942                 error = EAGAIN;
 1943                 goto out;
 1944         }
 1945 
 1946         /* Socket buffer got some data that we shall deliver now. */
 1947         if (sb->sb_cc > 0 && !(flags & MSG_WAITALL) &&
 1948             ((so->so_state & SS_NBIO) ||
 1949              (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
 1950              sb->sb_cc >= sb->sb_lowat ||
 1951              sb->sb_cc >= uio->uio_resid ||
 1952              sb->sb_cc >= sb->sb_hiwat) ) {
 1953                 goto deliver;
 1954         }
 1955 
 1956         /* On MSG_WAITALL we must wait until all data or error arrives. */
 1957         if ((flags & MSG_WAITALL) &&
 1958             (sb->sb_cc >= uio->uio_resid || sb->sb_cc >= sb->sb_hiwat))
 1959                 goto deliver;
 1960 
 1961         /*
 1962          * Wait and block until (more) data comes in.
 1963          * NB: Drops the sockbuf lock during wait.
 1964          */
 1965         error = sbwait(sb);
 1966         if (error)
 1967                 goto out;
 1968         goto restart;
 1969 
 1970 deliver:
 1971         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1972         KASSERT(sb->sb_cc > 0, ("%s: sockbuf empty", __func__));
 1973         KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
 1974 
 1975         /* Statistics. */
 1976         if (uio->uio_td)
 1977                 uio->uio_td->td_ru.ru_msgrcv++;
 1978 
 1979         /* Fill uio until full or current end of socket buffer is reached. */
 1980         len = min(uio->uio_resid, sb->sb_cc);
 1981         if (mp0 != NULL) {
 1982                 /* Dequeue as many mbufs as possible. */
 1983                 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
 1984                         if (*mp0 == NULL)
 1985                                 *mp0 = sb->sb_mb;
 1986                         else
 1987                                 m_cat(*mp0, sb->sb_mb);
 1988                         for (m = sb->sb_mb;
 1989                              m != NULL && m->m_len <= len;
 1990                              m = m->m_next) {
 1991                                 len -= m->m_len;
 1992                                 uio->uio_resid -= m->m_len;
 1993                                 sbfree(sb, m);
 1994                                 n = m;
 1995                         }
 1996                         n->m_next = NULL;
 1997                         sb->sb_mb = m;
 1998                         sb->sb_lastrecord = sb->sb_mb;
 1999                         if (sb->sb_mb == NULL)
 2000                                 SB_EMPTY_FIXUP(sb);
 2001                 }
 2002                 /* Copy the remainder. */
 2003                 if (len > 0) {
 2004                         KASSERT(sb->sb_mb != NULL,
 2005                             ("%s: len > 0 && sb->sb_mb empty", __func__));
 2006 
 2007                         m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
 2008                         if (m == NULL)
 2009                                 len = 0;        /* Don't flush data from sockbuf. */
 2010                         else
 2011                                 uio->uio_resid -= len;
 2012                         if (*mp0 != NULL)
 2013                                 m_cat(*mp0, m);
 2014                         else
 2015                                 *mp0 = m;
 2016                         if (*mp0 == NULL) {
 2017                                 error = ENOBUFS;
 2018                                 goto out;
 2019                         }
 2020                 }
 2021         } else {
 2022                 /* NB: Must unlock socket buffer as uiomove may sleep. */
 2023                 SOCKBUF_UNLOCK(sb);
 2024                 error = m_mbuftouio(uio, sb->sb_mb, len);
 2025                 SOCKBUF_LOCK(sb);
 2026                 if (error)
 2027                         goto out;
 2028         }
 2029         SBLASTRECORDCHK(sb);
 2030         SBLASTMBUFCHK(sb);
 2031 
 2032         /*
 2033          * Remove the delivered data from the socket buffer unless we
 2034          * were only peeking.
 2035          */
 2036         if (!(flags & MSG_PEEK)) {
 2037                 if (len > 0)
 2038                         sbdrop_locked(sb, len);
 2039 
 2040                 /* Notify protocol that we drained some data. */
 2041                 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
 2042                     (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
 2043                      !(flags & MSG_SOCALLBCK))) {
 2044                         SOCKBUF_UNLOCK(sb);
 2045                         VNET_SO_ASSERT(so);
 2046                         (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
 2047                         SOCKBUF_LOCK(sb);
 2048                 }
 2049         }
 2050 
 2051         /*
 2052          * For MSG_WAITALL we may have to loop again and wait for
 2053          * more data to come in.
 2054          */
 2055         if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
 2056                 goto restart;
 2057 out:
 2058         SOCKBUF_LOCK_ASSERT(sb);
 2059         SBLASTRECORDCHK(sb);
 2060         SBLASTMBUFCHK(sb);
 2061         SOCKBUF_UNLOCK(sb);
 2062         sbunlock(sb);
 2063         return (error);
 2064 }
 2065 
 2066 /*
 2067  * Optimized version of soreceive() for simple datagram cases from userspace.
 2068  * Unlike in the stream case, we're able to drop a datagram if copyout()
 2069  * fails, and because we handle datagrams atomically, we don't need to use a
 2070  * sleep lock to prevent I/O interlacing.
 2071  */
 2072 int
 2073 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2074     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2075 {
 2076         struct mbuf *m, *m2;
 2077         int flags, error;
 2078         ssize_t len;
 2079         struct protosw *pr = so->so_proto;
 2080         struct mbuf *nextrecord;
 2081 
 2082         if (psa != NULL)
 2083                 *psa = NULL;
 2084         if (controlp != NULL)
 2085                 *controlp = NULL;
 2086         if (flagsp != NULL)
 2087                 flags = *flagsp &~ MSG_EOR;
 2088         else
 2089                 flags = 0;
 2090 
 2091         /*
 2092          * For any complicated cases, fall back to the full
 2093          * soreceive_generic().
 2094          */
 2095         if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
 2096                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2097                     flagsp));
 2098 
 2099         /*
 2100          * Enforce restrictions on use.
 2101          */
 2102         KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
 2103             ("soreceive_dgram: wantrcvd"));
 2104         KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
 2105         KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
 2106             ("soreceive_dgram: SBS_RCVATMARK"));
 2107         KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
 2108             ("soreceive_dgram: P_CONNREQUIRED"));
 2109 
 2110         /*
 2111          * Loop blocking while waiting for a datagram.
 2112          */
 2113         SOCKBUF_LOCK(&so->so_rcv);
 2114         while ((m = so->so_rcv.sb_mb) == NULL) {
 2115                 KASSERT(so->so_rcv.sb_cc == 0,
 2116                     ("soreceive_dgram: sb_mb NULL but sb_cc %u",
 2117                     so->so_rcv.sb_cc));
 2118                 if (so->so_error) {
 2119                         error = so->so_error;
 2120                         so->so_error = 0;
 2121                         SOCKBUF_UNLOCK(&so->so_rcv);
 2122                         return (error);
 2123                 }
 2124                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
 2125                     uio->uio_resid == 0) {
 2126                         SOCKBUF_UNLOCK(&so->so_rcv);
 2127                         return (0);
 2128                 }
 2129                 if ((so->so_state & SS_NBIO) ||
 2130                     (flags & (MSG_DONTWAIT|MSG_NBIO))) {
 2131                         SOCKBUF_UNLOCK(&so->so_rcv);
 2132                         return (EWOULDBLOCK);
 2133                 }
 2134                 SBLASTRECORDCHK(&so->so_rcv);
 2135                 SBLASTMBUFCHK(&so->so_rcv);
 2136                 error = sbwait(&so->so_rcv);
 2137                 if (error) {
 2138                         SOCKBUF_UNLOCK(&so->so_rcv);
 2139                         return (error);
 2140                 }
 2141         }
 2142         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2143 
 2144         if (uio->uio_td)
 2145                 uio->uio_td->td_ru.ru_msgrcv++;
 2146         SBLASTRECORDCHK(&so->so_rcv);
 2147         SBLASTMBUFCHK(&so->so_rcv);
 2148         nextrecord = m->m_nextpkt;
 2149         if (nextrecord == NULL) {
 2150                 KASSERT(so->so_rcv.sb_lastrecord == m,
 2151                     ("soreceive_dgram: lastrecord != m"));
 2152         }
 2153 
 2154         KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
 2155             ("soreceive_dgram: m_nextpkt != nextrecord"));
 2156 
 2157         /*
 2158          * Pull 'm' and its chain off the front of the packet queue.
 2159          */
 2160         so->so_rcv.sb_mb = NULL;
 2161         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2162 
 2163         /*
 2164          * Walk 'm's chain and free that many bytes from the socket buffer.
 2165          */
 2166         for (m2 = m; m2 != NULL; m2 = m2->m_next)
 2167                 sbfree(&so->so_rcv, m2);
 2168 
 2169         /*
 2170          * Do a few last checks before we let go of the lock.
 2171          */
 2172         SBLASTRECORDCHK(&so->so_rcv);
 2173         SBLASTMBUFCHK(&so->so_rcv);
 2174         SOCKBUF_UNLOCK(&so->so_rcv);
 2175 
 2176         if (pr->pr_flags & PR_ADDR) {
 2177                 KASSERT(m->m_type == MT_SONAME,
 2178                     ("m->m_type == %d", m->m_type));
 2179                 if (psa != NULL)
 2180                         *psa = sodupsockaddr(mtod(m, struct sockaddr *),
 2181                             M_NOWAIT);
 2182                 m = m_free(m);
 2183         }
 2184         if (m == NULL) {
 2185                 /* XXXRW: Can this happen? */
 2186                 return (0);
 2187         }
 2188 
 2189         /*
 2190          * Packet to copyout() is now in 'm' and it is disconnected from the
 2191          * queue.
 2192          *
 2193          * Process one or more MT_CONTROL mbufs present before any data mbufs
 2194          * in the first mbuf chain on the socket buffer.  We call into the
 2195          * protocol to perform externalization (or freeing if controlp ==
 2196          * NULL). In some cases there can be only MT_CONTROL mbufs without
 2197          * MT_DATA mbufs.
 2198          */
 2199         if (m->m_type == MT_CONTROL) {
 2200                 struct mbuf *cm = NULL, *cmn;
 2201                 struct mbuf **cme = &cm;
 2202 
 2203                 do {
 2204                         m2 = m->m_next;
 2205                         m->m_next = NULL;
 2206                         *cme = m;
 2207                         cme = &(*cme)->m_next;
 2208                         m = m2;
 2209                 } while (m != NULL && m->m_type == MT_CONTROL);
 2210                 while (cm != NULL) {
 2211                         cmn = cm->m_next;
 2212                         cm->m_next = NULL;
 2213                         if (pr->pr_domain->dom_externalize != NULL) {
 2214                                 error = (*pr->pr_domain->dom_externalize)
 2215                                     (cm, controlp, flags);
 2216                         } else if (controlp != NULL)
 2217                                 *controlp = cm;
 2218                         else
 2219                                 m_freem(cm);
 2220                         if (controlp != NULL) {
 2221                                 while (*controlp != NULL)
 2222                                         controlp = &(*controlp)->m_next;
 2223                         }
 2224                         cm = cmn;
 2225                 }
 2226         }
 2227         KASSERT(m == NULL || m->m_type == MT_DATA,
 2228             ("soreceive_dgram: !data"));
 2229         while (m != NULL && uio->uio_resid > 0) {
 2230                 len = uio->uio_resid;
 2231                 if (len > m->m_len)
 2232                         len = m->m_len;
 2233                 error = uiomove(mtod(m, char *), (int)len, uio);
 2234                 if (error) {
 2235                         m_freem(m);
 2236                         return (error);
 2237                 }
 2238                 if (len == m->m_len)
 2239                         m = m_free(m);
 2240                 else {
 2241                         m->m_data += len;
 2242                         m->m_len -= len;
 2243                 }
 2244         }
 2245         if (m != NULL) {
 2246                 flags |= MSG_TRUNC;
 2247                 m_freem(m);
 2248         }
 2249         if (flagsp != NULL)
 2250                 *flagsp |= flags;
 2251         return (0);
 2252 }
 2253 
 2254 int
 2255 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2256     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2257 {
 2258         int error;
 2259 
 2260         CURVNET_SET(so->so_vnet);
 2261         error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
 2262             controlp, flagsp));
 2263         CURVNET_RESTORE();
 2264         return (error);
 2265 }
 2266 
 2267 int
 2268 soshutdown(struct socket *so, int how)
 2269 {
 2270         struct protosw *pr = so->so_proto;
 2271         int error;
 2272 
 2273         if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
 2274                 return (EINVAL);
 2275 
 2276         CURVNET_SET(so->so_vnet);
 2277         if (pr->pr_usrreqs->pru_flush != NULL)
 2278                 (*pr->pr_usrreqs->pru_flush)(so, how);
 2279         if (how != SHUT_WR)
 2280                 sorflush(so);
 2281         if (how != SHUT_RD) {
 2282                 error = (*pr->pr_usrreqs->pru_shutdown)(so);
 2283                 wakeup(&so->so_timeo);
 2284                 CURVNET_RESTORE();
 2285                 return (error);
 2286         }
 2287         wakeup(&so->so_timeo);
 2288         CURVNET_RESTORE();
 2289         return (0);
 2290 }
 2291 
 2292 void
 2293 sorflush(struct socket *so)
 2294 {
 2295         struct sockbuf *sb = &so->so_rcv;
 2296         struct protosw *pr = so->so_proto;
 2297         struct socket aso;
 2298 
 2299         VNET_SO_ASSERT(so);
 2300 
 2301         /*
 2302          * In order to avoid calling dom_dispose with the socket buffer mutex
 2303          * held, and in order to generally avoid holding the lock for a long
 2304          * time, we make a copy of the socket buffer and clear the original
 2305          * (except locks, state).  The new socket buffer copy won't have
 2306          * initialized locks so we can only call routines that won't use or
 2307          * assert those locks.
 2308          *
 2309          * Dislodge threads currently blocked in receive and wait to acquire
 2310          * a lock against other simultaneous readers before clearing the
 2311          * socket buffer.  Don't let our acquire be interrupted by a signal
 2312          * despite any existing socket disposition on interruptable waiting.
 2313          */
 2314         socantrcvmore(so);
 2315         (void) sblock(sb, SBL_WAIT | SBL_NOINTR);
 2316 
 2317         /*
 2318          * Invalidate/clear most of the sockbuf structure, but leave selinfo
 2319          * and mutex data unchanged.
 2320          */
 2321         SOCKBUF_LOCK(sb);
 2322         bzero(&aso, sizeof(aso));
 2323         aso.so_pcb = so->so_pcb;
 2324         bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
 2325             sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
 2326         bzero(&sb->sb_startzero,
 2327             sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
 2328         SOCKBUF_UNLOCK(sb);
 2329         sbunlock(sb);
 2330 
 2331         /*
 2332          * Dispose of special rights and flush the copied socket.  Don't call
 2333          * any unsafe routines (that rely on locks being initialized) on aso.
 2334          */
 2335         if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL) {
 2336                 if (pr->pr_domain->dom_family == AF_LOCAL)
 2337                         unp_dispose_so(&aso);
 2338                 else
 2339                         (*pr->pr_domain->dom_dispose)(aso.so_rcv.sb_mb);
 2340         }
 2341         sbrelease_internal(&aso.so_rcv, so);
 2342 }
 2343 
 2344 /*
 2345  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
 2346  * additional variant to handle the case where the option value needs to be
 2347  * some kind of integer, but not a specific size.  In addition to their use
 2348  * here, these functions are also called by the protocol-level pr_ctloutput()
 2349  * routines.
 2350  */
 2351 int
 2352 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
 2353 {
 2354         size_t  valsize;
 2355 
 2356         /*
 2357          * If the user gives us more than we wanted, we ignore it, but if we
 2358          * don't get the minimum length the caller wants, we return EINVAL.
 2359          * On success, sopt->sopt_valsize is set to however much we actually
 2360          * retrieved.
 2361          */
 2362         if ((valsize = sopt->sopt_valsize) < minlen)
 2363                 return EINVAL;
 2364         if (valsize > len)
 2365                 sopt->sopt_valsize = valsize = len;
 2366 
 2367         if (sopt->sopt_td != NULL)
 2368                 return (copyin(sopt->sopt_val, buf, valsize));
 2369 
 2370         bcopy(sopt->sopt_val, buf, valsize);
 2371         return (0);
 2372 }
 2373 
 2374 /*
 2375  * Kernel version of setsockopt(2).
 2376  *
 2377  * XXX: optlen is size_t, not socklen_t
 2378  */
 2379 int
 2380 so_setsockopt(struct socket *so, int level, int optname, void *optval,
 2381     size_t optlen)
 2382 {
 2383         struct sockopt sopt;
 2384 
 2385         sopt.sopt_level = level;
 2386         sopt.sopt_name = optname;
 2387         sopt.sopt_dir = SOPT_SET;
 2388         sopt.sopt_val = optval;
 2389         sopt.sopt_valsize = optlen;
 2390         sopt.sopt_td = NULL;
 2391         return (sosetopt(so, &sopt));
 2392 }
 2393 
 2394 int
 2395 sosetopt(struct socket *so, struct sockopt *sopt)
 2396 {
 2397         int     error, optval;
 2398         struct  linger l;
 2399         struct  timeval tv;
 2400         sbintime_t val;
 2401         uint32_t val32;
 2402 #ifdef MAC
 2403         struct mac extmac;
 2404 #endif
 2405 
 2406         CURVNET_SET(so->so_vnet);
 2407         error = 0;
 2408         if (sopt->sopt_level != SOL_SOCKET) {
 2409                 if (so->so_proto->pr_ctloutput != NULL) {
 2410                         error = (*so->so_proto->pr_ctloutput)(so, sopt);
 2411                         CURVNET_RESTORE();
 2412                         return (error);
 2413                 }
 2414                 error = ENOPROTOOPT;
 2415         } else {
 2416                 switch (sopt->sopt_name) {
 2417 #ifdef INET
 2418                 case SO_ACCEPTFILTER:
 2419                         error = do_setopt_accept_filter(so, sopt);
 2420                         if (error)
 2421                                 goto bad;
 2422                         break;
 2423 #endif
 2424                 case SO_LINGER:
 2425                         error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
 2426                         if (error)
 2427                                 goto bad;
 2428 
 2429                         SOCK_LOCK(so);
 2430                         so->so_linger = l.l_linger;
 2431                         if (l.l_onoff)
 2432                                 so->so_options |= SO_LINGER;
 2433                         else
 2434                                 so->so_options &= ~SO_LINGER;
 2435                         SOCK_UNLOCK(so);
 2436                         break;
 2437 
 2438                 case SO_DEBUG:
 2439                 case SO_KEEPALIVE:
 2440                 case SO_DONTROUTE:
 2441                 case SO_USELOOPBACK:
 2442                 case SO_BROADCAST:
 2443                 case SO_REUSEADDR:
 2444                 case SO_REUSEPORT:
 2445                 case SO_OOBINLINE:
 2446                 case SO_TIMESTAMP:
 2447                 case SO_BINTIME:
 2448                 case SO_NOSIGPIPE:
 2449                 case SO_NO_DDP:
 2450                 case SO_NO_OFFLOAD:
 2451                         error = sooptcopyin(sopt, &optval, sizeof optval,
 2452                             sizeof optval);
 2453                         if (error)
 2454                                 goto bad;
 2455                         SOCK_LOCK(so);
 2456                         if (optval)
 2457                                 so->so_options |= sopt->sopt_name;
 2458                         else
 2459                                 so->so_options &= ~sopt->sopt_name;
 2460                         SOCK_UNLOCK(so);
 2461                         break;
 2462 
 2463                 case SO_SETFIB:
 2464                         error = sooptcopyin(sopt, &optval, sizeof optval,
 2465                             sizeof optval);
 2466                         if (error)
 2467                                 goto bad;
 2468 
 2469                         if (optval < 0 || optval >= rt_numfibs) {
 2470                                 error = EINVAL;
 2471                                 goto bad;
 2472                         }
 2473                         if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
 2474                            (so->so_proto->pr_domain->dom_family == PF_INET6) ||
 2475                            (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
 2476                                 so->so_fibnum = optval;
 2477                         else
 2478                                 so->so_fibnum = 0;
 2479                         break;
 2480 
 2481                 case SO_USER_COOKIE:
 2482                         error = sooptcopyin(sopt, &val32, sizeof val32,
 2483                             sizeof val32);
 2484                         if (error)
 2485                                 goto bad;
 2486                         so->so_user_cookie = val32;
 2487                         break;
 2488 
 2489                 case SO_SNDBUF:
 2490                 case SO_RCVBUF:
 2491                 case SO_SNDLOWAT:
 2492                 case SO_RCVLOWAT:
 2493                         error = sooptcopyin(sopt, &optval, sizeof optval,
 2494                             sizeof optval);
 2495                         if (error)
 2496                                 goto bad;
 2497 
 2498                         /*
 2499                          * Values < 1 make no sense for any of these options,
 2500                          * so disallow them.
 2501                          */
 2502                         if (optval < 1) {
 2503                                 error = EINVAL;
 2504                                 goto bad;
 2505                         }
 2506 
 2507                         switch (sopt->sopt_name) {
 2508                         case SO_SNDBUF:
 2509                         case SO_RCVBUF:
 2510                                 if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
 2511                                     &so->so_snd : &so->so_rcv, (u_long)optval,
 2512                                     so, curthread) == 0) {
 2513                                         error = ENOBUFS;
 2514                                         goto bad;
 2515                                 }
 2516                                 (sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
 2517                                     &so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
 2518                                 break;
 2519 
 2520                         /*
 2521                          * Make sure the low-water is never greater than the
 2522                          * high-water.
 2523                          */
 2524                         case SO_SNDLOWAT:
 2525                                 SOCKBUF_LOCK(&so->so_snd);
 2526                                 so->so_snd.sb_lowat =
 2527                                     (optval > so->so_snd.sb_hiwat) ?
 2528                                     so->so_snd.sb_hiwat : optval;
 2529                                 SOCKBUF_UNLOCK(&so->so_snd);
 2530                                 break;
 2531                         case SO_RCVLOWAT:
 2532                                 SOCKBUF_LOCK(&so->so_rcv);
 2533                                 so->so_rcv.sb_lowat =
 2534                                     (optval > so->so_rcv.sb_hiwat) ?
 2535                                     so->so_rcv.sb_hiwat : optval;
 2536                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2537                                 break;
 2538                         }
 2539                         break;
 2540 
 2541                 case SO_SNDTIMEO:
 2542                 case SO_RCVTIMEO:
 2543 #ifdef COMPAT_FREEBSD32
 2544                         if (SV_CURPROC_FLAG(SV_ILP32)) {
 2545                                 struct timeval32 tv32;
 2546 
 2547                                 error = sooptcopyin(sopt, &tv32, sizeof tv32,
 2548                                     sizeof tv32);
 2549                                 CP(tv32, tv, tv_sec);
 2550                                 CP(tv32, tv, tv_usec);
 2551                         } else
 2552 #endif
 2553                                 error = sooptcopyin(sopt, &tv, sizeof tv,
 2554                                     sizeof tv);
 2555                         if (error)
 2556                                 goto bad;
 2557                         if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
 2558                             tv.tv_usec >= 1000000) {
 2559                                 error = EDOM;
 2560                                 goto bad;
 2561                         }
 2562                         if (tv.tv_sec > INT32_MAX)
 2563                                 val = SBT_MAX;
 2564                         else
 2565                                 val = tvtosbt(tv);
 2566                         switch (sopt->sopt_name) {
 2567                         case SO_SNDTIMEO:
 2568                                 so->so_snd.sb_timeo = val;
 2569                                 break;
 2570                         case SO_RCVTIMEO:
 2571                                 so->so_rcv.sb_timeo = val;
 2572                                 break;
 2573                         }
 2574                         break;
 2575 
 2576                 case SO_LABEL:
 2577 #ifdef MAC
 2578                         error = sooptcopyin(sopt, &extmac, sizeof extmac,
 2579                             sizeof extmac);
 2580                         if (error)
 2581                                 goto bad;
 2582                         error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
 2583                             so, &extmac);
 2584 #else
 2585                         error = EOPNOTSUPP;
 2586 #endif
 2587                         break;
 2588 
 2589                 default:
 2590                         error = ENOPROTOOPT;
 2591                         break;
 2592                 }
 2593                 if (error == 0 && so->so_proto->pr_ctloutput != NULL)
 2594                         (void)(*so->so_proto->pr_ctloutput)(so, sopt);
 2595         }
 2596 bad:
 2597         CURVNET_RESTORE();
 2598         return (error);
 2599 }
 2600 
 2601 /*
 2602  * Helper routine for getsockopt.
 2603  */
 2604 int
 2605 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
 2606 {
 2607         int     error;
 2608         size_t  valsize;
 2609 
 2610         error = 0;
 2611 
 2612         /*
 2613          * Documented get behavior is that we always return a value, possibly
 2614          * truncated to fit in the user's buffer.  Traditional behavior is
 2615          * that we always tell the user precisely how much we copied, rather
 2616          * than something useful like the total amount we had available for
 2617          * her.  Note that this interface is not idempotent; the entire
 2618          * answer must generated ahead of time.
 2619          */
 2620         valsize = min(len, sopt->sopt_valsize);
 2621         sopt->sopt_valsize = valsize;
 2622         if (sopt->sopt_val != NULL) {
 2623                 if (sopt->sopt_td != NULL)
 2624                         error = copyout(buf, sopt->sopt_val, valsize);
 2625                 else
 2626                         bcopy(buf, sopt->sopt_val, valsize);
 2627         }
 2628         return (error);
 2629 }
 2630 
 2631 int
 2632 sogetopt(struct socket *so, struct sockopt *sopt)
 2633 {
 2634         int     error, optval;
 2635         struct  linger l;
 2636         struct  timeval tv;
 2637 #ifdef MAC
 2638         struct mac extmac;
 2639 #endif
 2640 
 2641         CURVNET_SET(so->so_vnet);
 2642         error = 0;
 2643         if (sopt->sopt_level != SOL_SOCKET) {
 2644                 if (so->so_proto->pr_ctloutput != NULL)
 2645                         error = (*so->so_proto->pr_ctloutput)(so, sopt);
 2646                 else
 2647                         error = ENOPROTOOPT;
 2648                 CURVNET_RESTORE();
 2649                 return (error);
 2650         } else {
 2651                 switch (sopt->sopt_name) {
 2652 #ifdef INET
 2653                 case SO_ACCEPTFILTER:
 2654                         error = do_getopt_accept_filter(so, sopt);
 2655                         break;
 2656 #endif
 2657                 case SO_LINGER:
 2658                         SOCK_LOCK(so);
 2659                         l.l_onoff = so->so_options & SO_LINGER;
 2660                         l.l_linger = so->so_linger;
 2661                         SOCK_UNLOCK(so);
 2662                         error = sooptcopyout(sopt, &l, sizeof l);
 2663                         break;
 2664 
 2665                 case SO_USELOOPBACK:
 2666                 case SO_DONTROUTE:
 2667                 case SO_DEBUG:
 2668                 case SO_KEEPALIVE:
 2669                 case SO_REUSEADDR:
 2670                 case SO_REUSEPORT:
 2671                 case SO_BROADCAST:
 2672                 case SO_OOBINLINE:
 2673                 case SO_ACCEPTCONN:
 2674                 case SO_TIMESTAMP:
 2675                 case SO_BINTIME:
 2676                 case SO_NOSIGPIPE:
 2677                         optval = so->so_options & sopt->sopt_name;
 2678 integer:
 2679                         error = sooptcopyout(sopt, &optval, sizeof optval);
 2680                         break;
 2681 
 2682                 case SO_TYPE:
 2683                         optval = so->so_type;
 2684                         goto integer;
 2685 
 2686                 case SO_PROTOCOL:
 2687                         optval = so->so_proto->pr_protocol;
 2688                         goto integer;
 2689 
 2690                 case SO_ERROR:
 2691                         SOCK_LOCK(so);
 2692                         optval = so->so_error;
 2693                         so->so_error = 0;
 2694                         SOCK_UNLOCK(so);
 2695                         goto integer;
 2696 
 2697                 case SO_SNDBUF:
 2698                         optval = so->so_snd.sb_hiwat;
 2699                         goto integer;
 2700 
 2701                 case SO_RCVBUF:
 2702                         optval = so->so_rcv.sb_hiwat;
 2703                         goto integer;
 2704 
 2705                 case SO_SNDLOWAT:
 2706                         optval = so->so_snd.sb_lowat;
 2707                         goto integer;
 2708 
 2709                 case SO_RCVLOWAT:
 2710                         optval = so->so_rcv.sb_lowat;
 2711                         goto integer;
 2712 
 2713                 case SO_SNDTIMEO:
 2714                 case SO_RCVTIMEO:
 2715                         tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
 2716                             so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
 2717 #ifdef COMPAT_FREEBSD32
 2718                         if (SV_CURPROC_FLAG(SV_ILP32)) {
 2719                                 struct timeval32 tv32;
 2720 
 2721                                 CP(tv, tv32, tv_sec);
 2722                                 CP(tv, tv32, tv_usec);
 2723                                 error = sooptcopyout(sopt, &tv32, sizeof tv32);
 2724                         } else
 2725 #endif
 2726                                 error = sooptcopyout(sopt, &tv, sizeof tv);
 2727                         break;
 2728 
 2729                 case SO_LABEL:
 2730 #ifdef MAC
 2731                         error = sooptcopyin(sopt, &extmac, sizeof(extmac),
 2732                             sizeof(extmac));
 2733                         if (error)
 2734                                 goto bad;
 2735                         error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
 2736                             so, &extmac);
 2737                         if (error)
 2738                                 goto bad;
 2739                         error = sooptcopyout(sopt, &extmac, sizeof extmac);
 2740 #else
 2741                         error = EOPNOTSUPP;
 2742 #endif
 2743                         break;
 2744 
 2745                 case SO_PEERLABEL:
 2746 #ifdef MAC
 2747                         error = sooptcopyin(sopt, &extmac, sizeof(extmac),
 2748                             sizeof(extmac));
 2749                         if (error)
 2750                                 goto bad;
 2751                         error = mac_getsockopt_peerlabel(
 2752                             sopt->sopt_td->td_ucred, so, &extmac);
 2753                         if (error)
 2754                                 goto bad;
 2755                         error = sooptcopyout(sopt, &extmac, sizeof extmac);
 2756 #else
 2757                         error = EOPNOTSUPP;
 2758 #endif
 2759                         break;
 2760 
 2761                 case SO_LISTENQLIMIT:
 2762                         optval = so->so_qlimit;
 2763                         goto integer;
 2764 
 2765                 case SO_LISTENQLEN:
 2766                         optval = so->so_qlen;
 2767                         goto integer;
 2768 
 2769                 case SO_LISTENINCQLEN:
 2770                         optval = so->so_incqlen;
 2771                         goto integer;
 2772 
 2773                 default:
 2774                         error = ENOPROTOOPT;
 2775                         break;
 2776                 }
 2777         }
 2778 #ifdef MAC
 2779 bad:
 2780 #endif
 2781         CURVNET_RESTORE();
 2782         return (error);
 2783 }
 2784 
 2785 int
 2786 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
 2787 {
 2788         struct mbuf *m, *m_prev;
 2789         int sopt_size = sopt->sopt_valsize;
 2790 
 2791         MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
 2792         if (m == NULL)
 2793                 return ENOBUFS;
 2794         if (sopt_size > MLEN) {
 2795                 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
 2796                 if ((m->m_flags & M_EXT) == 0) {
 2797                         m_free(m);
 2798                         return ENOBUFS;
 2799                 }
 2800                 m->m_len = min(MCLBYTES, sopt_size);
 2801         } else {
 2802                 m->m_len = min(MLEN, sopt_size);
 2803         }
 2804         sopt_size -= m->m_len;
 2805         *mp = m;
 2806         m_prev = m;
 2807 
 2808         while (sopt_size) {
 2809                 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
 2810                 if (m == NULL) {
 2811                         m_freem(*mp);
 2812                         return ENOBUFS;
 2813                 }
 2814                 if (sopt_size > MLEN) {
 2815                         MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
 2816                             M_NOWAIT);
 2817                         if ((m->m_flags & M_EXT) == 0) {
 2818                                 m_freem(m);
 2819                                 m_freem(*mp);
 2820                                 return ENOBUFS;
 2821                         }
 2822                         m->m_len = min(MCLBYTES, sopt_size);
 2823                 } else {
 2824                         m->m_len = min(MLEN, sopt_size);
 2825                 }
 2826                 sopt_size -= m->m_len;
 2827                 m_prev->m_next = m;
 2828                 m_prev = m;
 2829         }
 2830         return (0);
 2831 }
 2832 
 2833 int
 2834 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
 2835 {
 2836         struct mbuf *m0 = m;
 2837 
 2838         if (sopt->sopt_val == NULL)
 2839                 return (0);
 2840         while (m != NULL && sopt->sopt_valsize >= m->m_len) {
 2841                 if (sopt->sopt_td != NULL) {
 2842                         int error;
 2843 
 2844                         error = copyin(sopt->sopt_val, mtod(m, char *),
 2845                             m->m_len);
 2846                         if (error != 0) {
 2847                                 m_freem(m0);
 2848                                 return(error);
 2849                         }
 2850                 } else
 2851                         bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
 2852                 sopt->sopt_valsize -= m->m_len;
 2853                 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
 2854                 m = m->m_next;
 2855         }
 2856         if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
 2857                 panic("ip6_sooptmcopyin");
 2858         return (0);
 2859 }
 2860 
 2861 int
 2862 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
 2863 {
 2864         struct mbuf *m0 = m;
 2865         size_t valsize = 0;
 2866 
 2867         if (sopt->sopt_val == NULL)
 2868                 return (0);
 2869         while (m != NULL && sopt->sopt_valsize >= m->m_len) {
 2870                 if (sopt->sopt_td != NULL) {
 2871                         int error;
 2872 
 2873                         error = copyout(mtod(m, char *), sopt->sopt_val,
 2874                             m->m_len);
 2875                         if (error != 0) {
 2876                                 m_freem(m0);
 2877                                 return(error);
 2878                         }
 2879                 } else
 2880                         bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
 2881                 sopt->sopt_valsize -= m->m_len;
 2882                 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
 2883                 valsize += m->m_len;
 2884                 m = m->m_next;
 2885         }
 2886         if (m != NULL) {
 2887                 /* enough soopt buffer should be given from user-land */
 2888                 m_freem(m0);
 2889                 return(EINVAL);
 2890         }
 2891         sopt->sopt_valsize = valsize;
 2892         return (0);
 2893 }
 2894 
 2895 /*
 2896  * sohasoutofband(): protocol notifies socket layer of the arrival of new
 2897  * out-of-band data, which will then notify socket consumers.
 2898  */
 2899 void
 2900 sohasoutofband(struct socket *so)
 2901 {
 2902 
 2903         if (so->so_sigio != NULL)
 2904                 pgsigio(&so->so_sigio, SIGURG, 0);
 2905         selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
 2906 }
 2907 
 2908 int
 2909 sopoll(struct socket *so, int events, struct ucred *active_cred,
 2910     struct thread *td)
 2911 {
 2912 
 2913         /*
 2914          * We do not need to set or assert curvnet as long as everyone uses
 2915          * sopoll_generic().
 2916          */
 2917         return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
 2918             td));
 2919 }
 2920 
 2921 int
 2922 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
 2923     struct thread *td)
 2924 {
 2925         int revents = 0;
 2926 
 2927         SOCKBUF_LOCK(&so->so_snd);
 2928         SOCKBUF_LOCK(&so->so_rcv);
 2929         if (events & (POLLIN | POLLRDNORM))
 2930                 if (soreadabledata(so))
 2931                         revents |= events & (POLLIN | POLLRDNORM);
 2932 
 2933         if (events & (POLLOUT | POLLWRNORM))
 2934                 if (sowriteable(so))
 2935                         revents |= events & (POLLOUT | POLLWRNORM);
 2936 
 2937         if (events & (POLLPRI | POLLRDBAND))
 2938                 if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
 2939                         revents |= events & (POLLPRI | POLLRDBAND);
 2940 
 2941         if ((events & POLLINIGNEOF) == 0) {
 2942                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 2943                         revents |= events & (POLLIN | POLLRDNORM);
 2944                         if (so->so_snd.sb_state & SBS_CANTSENDMORE)
 2945                                 revents |= POLLHUP;
 2946                 }
 2947         }
 2948 
 2949         if (revents == 0) {
 2950                 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
 2951                         selrecord(td, &so->so_rcv.sb_sel);
 2952                         so->so_rcv.sb_flags |= SB_SEL;
 2953                 }
 2954 
 2955                 if (events & (POLLOUT | POLLWRNORM)) {
 2956                         selrecord(td, &so->so_snd.sb_sel);
 2957                         so->so_snd.sb_flags |= SB_SEL;
 2958                 }
 2959         }
 2960 
 2961         SOCKBUF_UNLOCK(&so->so_rcv);
 2962         SOCKBUF_UNLOCK(&so->so_snd);
 2963         return (revents);
 2964 }
 2965 
 2966 int
 2967 soo_kqfilter(struct file *fp, struct knote *kn)
 2968 {
 2969         struct socket *so = kn->kn_fp->f_data;
 2970         struct sockbuf *sb;
 2971 
 2972         switch (kn->kn_filter) {
 2973         case EVFILT_READ:
 2974                 if (so->so_options & SO_ACCEPTCONN)
 2975                         kn->kn_fop = &solisten_filtops;
 2976                 else
 2977                         kn->kn_fop = &soread_filtops;
 2978                 sb = &so->so_rcv;
 2979                 break;
 2980         case EVFILT_WRITE:
 2981                 kn->kn_fop = &sowrite_filtops;
 2982                 sb = &so->so_snd;
 2983                 break;
 2984         default:
 2985                 return (EINVAL);
 2986         }
 2987 
 2988         SOCKBUF_LOCK(sb);
 2989         knlist_add(&sb->sb_sel.si_note, kn, 1);
 2990         sb->sb_flags |= SB_KNOTE;
 2991         SOCKBUF_UNLOCK(sb);
 2992         return (0);
 2993 }
 2994 
 2995 /*
 2996  * Some routines that return EOPNOTSUPP for entry points that are not
 2997  * supported by a protocol.  Fill in as needed.
 2998  */
 2999 int
 3000 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
 3001 {
 3002 
 3003         return EOPNOTSUPP;
 3004 }
 3005 
 3006 int
 3007 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
 3008 {
 3009 
 3010         return EOPNOTSUPP;
 3011 }
 3012 
 3013 int
 3014 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
 3015 {
 3016 
 3017         return EOPNOTSUPP;
 3018 }
 3019 
 3020 int
 3021 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
 3022     struct thread *td)
 3023 {
 3024 
 3025         return EOPNOTSUPP;
 3026 }
 3027 
 3028 int
 3029 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
 3030 {
 3031 
 3032         return EOPNOTSUPP;
 3033 }
 3034 
 3035 int
 3036 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
 3037     struct thread *td)
 3038 {
 3039 
 3040         return EOPNOTSUPP;
 3041 }
 3042 
 3043 int
 3044 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
 3045 {
 3046 
 3047         return EOPNOTSUPP;
 3048 }
 3049 
 3050 int
 3051 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
 3052     struct ifnet *ifp, struct thread *td)
 3053 {
 3054 
 3055         return EOPNOTSUPP;
 3056 }
 3057 
 3058 int
 3059 pru_disconnect_notsupp(struct socket *so)
 3060 {
 3061 
 3062         return EOPNOTSUPP;
 3063 }
 3064 
 3065 int
 3066 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
 3067 {
 3068 
 3069         return EOPNOTSUPP;
 3070 }
 3071 
 3072 int
 3073 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
 3074 {
 3075 
 3076         return EOPNOTSUPP;
 3077 }
 3078 
 3079 int
 3080 pru_rcvd_notsupp(struct socket *so, int flags)
 3081 {
 3082 
 3083         return EOPNOTSUPP;
 3084 }
 3085 
 3086 int
 3087 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
 3088 {
 3089 
 3090         return EOPNOTSUPP;
 3091 }
 3092 
 3093 int
 3094 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
 3095     struct sockaddr *addr, struct mbuf *control, struct thread *td)
 3096 {
 3097 
 3098         return EOPNOTSUPP;
 3099 }
 3100 
 3101 /*
 3102  * This isn't really a ``null'' operation, but it's the default one and
 3103  * doesn't do anything destructive.
 3104  */
 3105 int
 3106 pru_sense_null(struct socket *so, struct stat *sb)
 3107 {
 3108 
 3109         sb->st_blksize = so->so_snd.sb_hiwat;
 3110         return 0;
 3111 }
 3112 
 3113 int
 3114 pru_shutdown_notsupp(struct socket *so)
 3115 {
 3116 
 3117         return EOPNOTSUPP;
 3118 }
 3119 
 3120 int
 3121 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
 3122 {
 3123 
 3124         return EOPNOTSUPP;
 3125 }
 3126 
 3127 int
 3128 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
 3129     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 3130 {
 3131 
 3132         return EOPNOTSUPP;
 3133 }
 3134 
 3135 int
 3136 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
 3137     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 3138 {
 3139 
 3140         return EOPNOTSUPP;
 3141 }
 3142 
 3143 int
 3144 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
 3145     struct thread *td)
 3146 {
 3147 
 3148         return EOPNOTSUPP;
 3149 }
 3150 
 3151 static void
 3152 filt_sordetach(struct knote *kn)
 3153 {
 3154         struct socket *so = kn->kn_fp->f_data;
 3155 
 3156         SOCKBUF_LOCK(&so->so_rcv);
 3157         knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
 3158         if (knlist_empty(&so->so_rcv.sb_sel.si_note))
 3159                 so->so_rcv.sb_flags &= ~SB_KNOTE;
 3160         SOCKBUF_UNLOCK(&so->so_rcv);
 3161 }
 3162 
 3163 /*ARGSUSED*/
 3164 static int
 3165 filt_soread(struct knote *kn, long hint)
 3166 {
 3167         struct socket *so;
 3168 
 3169         so = kn->kn_fp->f_data;
 3170         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 3171 
 3172         kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
 3173         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 3174                 kn->kn_flags |= EV_EOF;
 3175                 kn->kn_fflags = so->so_error;
 3176                 return (1);
 3177         } else if (so->so_error)        /* temporary udp error */
 3178                 return (1);
 3179         else if (kn->kn_sfflags & NOTE_LOWAT)
 3180                 return (kn->kn_data >= kn->kn_sdata);
 3181         else
 3182                 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
 3183 }
 3184 
 3185 static void
 3186 filt_sowdetach(struct knote *kn)
 3187 {
 3188         struct socket *so = kn->kn_fp->f_data;
 3189 
 3190         SOCKBUF_LOCK(&so->so_snd);
 3191         knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
 3192         if (knlist_empty(&so->so_snd.sb_sel.si_note))
 3193                 so->so_snd.sb_flags &= ~SB_KNOTE;
 3194         SOCKBUF_UNLOCK(&so->so_snd);
 3195 }
 3196 
 3197 /*ARGSUSED*/
 3198 static int
 3199 filt_sowrite(struct knote *kn, long hint)
 3200 {
 3201         struct socket *so;
 3202 
 3203         so = kn->kn_fp->f_data;
 3204         SOCKBUF_LOCK_ASSERT(&so->so_snd);
 3205         kn->kn_data = sbspace(&so->so_snd);
 3206         if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 3207                 kn->kn_flags |= EV_EOF;
 3208                 kn->kn_fflags = so->so_error;
 3209                 return (1);
 3210         } else if (so->so_error)        /* temporary udp error */
 3211                 return (1);
 3212         else if (((so->so_state & SS_ISCONNECTED) == 0) &&
 3213             (so->so_proto->pr_flags & PR_CONNREQUIRED))
 3214                 return (0);
 3215         else if (kn->kn_sfflags & NOTE_LOWAT)
 3216                 return (kn->kn_data >= kn->kn_sdata);
 3217         else
 3218                 return (kn->kn_data >= so->so_snd.sb_lowat);
 3219 }
 3220 
 3221 /*ARGSUSED*/
 3222 static int
 3223 filt_solisten(struct knote *kn, long hint)
 3224 {
 3225         struct socket *so = kn->kn_fp->f_data;
 3226 
 3227         kn->kn_data = so->so_qlen;
 3228         return (!TAILQ_EMPTY(&so->so_comp));
 3229 }
 3230 
 3231 int
 3232 socheckuid(struct socket *so, uid_t uid)
 3233 {
 3234 
 3235         if (so == NULL)
 3236                 return (EPERM);
 3237         if (so->so_cred->cr_uid != uid)
 3238                 return (EPERM);
 3239         return (0);
 3240 }
 3241 
 3242 /*
 3243  * These functions are used by protocols to notify the socket layer (and its
 3244  * consumers) of state changes in the sockets driven by protocol-side events.
 3245  */
 3246 
 3247 /*
 3248  * Procedures to manipulate state flags of socket and do appropriate wakeups.
 3249  *
 3250  * Normal sequence from the active (originating) side is that
 3251  * soisconnecting() is called during processing of connect() call, resulting
 3252  * in an eventual call to soisconnected() if/when the connection is
 3253  * established.  When the connection is torn down soisdisconnecting() is
 3254  * called during processing of disconnect() call, and soisdisconnected() is
 3255  * called when the connection to the peer is totally severed.  The semantics
 3256  * of these routines are such that connectionless protocols can call
 3257  * soisconnected() and soisdisconnected() only, bypassing the in-progress
 3258  * calls when setting up a ``connection'' takes no time.
 3259  *
 3260  * From the passive side, a socket is created with two queues of sockets:
 3261  * so_incomp for connections in progress and so_comp for connections already
 3262  * made and awaiting user acceptance.  As a protocol is preparing incoming
 3263  * connections, it creates a socket structure queued on so_incomp by calling
 3264  * sonewconn().  When the connection is established, soisconnected() is
 3265  * called, and transfers the socket structure to so_comp, making it available
 3266  * to accept().
 3267  *
 3268  * If a socket is closed with sockets on either so_incomp or so_comp, these
 3269  * sockets are dropped.
 3270  *
 3271  * If higher-level protocols are implemented in the kernel, the wakeups done
 3272  * here will sometimes cause software-interrupt process scheduling.
 3273  */
 3274 void
 3275 soisconnecting(struct socket *so)
 3276 {
 3277 
 3278         SOCK_LOCK(so);
 3279         so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
 3280         so->so_state |= SS_ISCONNECTING;
 3281         SOCK_UNLOCK(so);
 3282 }
 3283 
 3284 void
 3285 soisconnected(struct socket *so)
 3286 {
 3287         struct socket *head;
 3288         int ret;
 3289 
 3290 restart:
 3291         ACCEPT_LOCK();
 3292         SOCK_LOCK(so);
 3293         so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
 3294         so->so_state |= SS_ISCONNECTED;
 3295         head = so->so_head;
 3296         if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
 3297                 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
 3298                         SOCK_UNLOCK(so);
 3299                         TAILQ_REMOVE(&head->so_incomp, so, so_list);
 3300                         head->so_incqlen--;
 3301                         so->so_qstate &= ~SQ_INCOMP;
 3302                         TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
 3303                         head->so_qlen++;
 3304                         so->so_qstate |= SQ_COMP;
 3305                         ACCEPT_UNLOCK();
 3306                         sorwakeup(head);
 3307                         wakeup_one(&head->so_timeo);
 3308                 } else {
 3309                         ACCEPT_UNLOCK();
 3310                         soupcall_set(so, SO_RCV,
 3311                             head->so_accf->so_accept_filter->accf_callback,
 3312                             head->so_accf->so_accept_filter_arg);
 3313                         so->so_options &= ~SO_ACCEPTFILTER;
 3314                         ret = head->so_accf->so_accept_filter->accf_callback(so,
 3315                             head->so_accf->so_accept_filter_arg, M_NOWAIT);
 3316                         if (ret == SU_ISCONNECTED)
 3317                                 soupcall_clear(so, SO_RCV);
 3318                         SOCK_UNLOCK(so);
 3319                         if (ret == SU_ISCONNECTED)
 3320                                 goto restart;
 3321                 }
 3322                 return;
 3323         }
 3324         SOCK_UNLOCK(so);
 3325         ACCEPT_UNLOCK();
 3326         wakeup(&so->so_timeo);
 3327         sorwakeup(so);
 3328         sowwakeup(so);
 3329 }
 3330 
 3331 void
 3332 soisdisconnecting(struct socket *so)
 3333 {
 3334 
 3335         /*
 3336          * Note: This code assumes that SOCK_LOCK(so) and
 3337          * SOCKBUF_LOCK(&so->so_rcv) are the same.
 3338          */
 3339         SOCKBUF_LOCK(&so->so_rcv);
 3340         so->so_state &= ~SS_ISCONNECTING;
 3341         so->so_state |= SS_ISDISCONNECTING;
 3342         so->so_rcv.sb_state |= SBS_CANTRCVMORE;
 3343         sorwakeup_locked(so);
 3344         SOCKBUF_LOCK(&so->so_snd);
 3345         so->so_snd.sb_state |= SBS_CANTSENDMORE;
 3346         sowwakeup_locked(so);
 3347         wakeup(&so->so_timeo);
 3348 }
 3349 
 3350 void
 3351 soisdisconnected(struct socket *so)
 3352 {
 3353 
 3354         /*
 3355          * Note: This code assumes that SOCK_LOCK(so) and
 3356          * SOCKBUF_LOCK(&so->so_rcv) are the same.
 3357          */
 3358         SOCKBUF_LOCK(&so->so_rcv);
 3359         so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
 3360         so->so_state |= SS_ISDISCONNECTED;
 3361         so->so_rcv.sb_state |= SBS_CANTRCVMORE;
 3362         sorwakeup_locked(so);
 3363         SOCKBUF_LOCK(&so->so_snd);
 3364         so->so_snd.sb_state |= SBS_CANTSENDMORE;
 3365         sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
 3366         sowwakeup_locked(so);
 3367         wakeup(&so->so_timeo);
 3368 }
 3369 
 3370 /*
 3371  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
 3372  */
 3373 struct sockaddr *
 3374 sodupsockaddr(const struct sockaddr *sa, int mflags)
 3375 {
 3376         struct sockaddr *sa2;
 3377 
 3378         sa2 = malloc(sa->sa_len, M_SONAME, mflags);
 3379         if (sa2)
 3380                 bcopy(sa, sa2, sa->sa_len);
 3381         return sa2;
 3382 }
 3383 
 3384 /*
 3385  * Register per-socket buffer upcalls.
 3386  */
 3387 void
 3388 soupcall_set(struct socket *so, int which,
 3389     int (*func)(struct socket *, void *, int), void *arg)
 3390 {
 3391         struct sockbuf *sb;
 3392 
 3393         switch (which) {
 3394         case SO_RCV:
 3395                 sb = &so->so_rcv;
 3396                 break;
 3397         case SO_SND:
 3398                 sb = &so->so_snd;
 3399                 break;
 3400         default:
 3401                 panic("soupcall_set: bad which");
 3402         }
 3403         SOCKBUF_LOCK_ASSERT(sb);
 3404 #if 0
 3405         /* XXX: accf_http actually wants to do this on purpose. */
 3406         KASSERT(sb->sb_upcall == NULL, ("soupcall_set: overwriting upcall"));
 3407 #endif
 3408         sb->sb_upcall = func;
 3409         sb->sb_upcallarg = arg;
 3410         sb->sb_flags |= SB_UPCALL;
 3411 }
 3412 
 3413 void
 3414 soupcall_clear(struct socket *so, int which)
 3415 {
 3416         struct sockbuf *sb;
 3417 
 3418         switch (which) {
 3419         case SO_RCV:
 3420                 sb = &so->so_rcv;
 3421                 break;
 3422         case SO_SND:
 3423                 sb = &so->so_snd;
 3424                 break;
 3425         default:
 3426                 panic("soupcall_clear: bad which");
 3427         }
 3428         SOCKBUF_LOCK_ASSERT(sb);
 3429         KASSERT(sb->sb_upcall != NULL, ("soupcall_clear: no upcall to clear"));
 3430         sb->sb_upcall = NULL;
 3431         sb->sb_upcallarg = NULL;
 3432         sb->sb_flags &= ~SB_UPCALL;
 3433 }
 3434 
 3435 /*
 3436  * Create an external-format (``xsocket'') structure using the information in
 3437  * the kernel-format socket structure pointed to by so.  This is done to
 3438  * reduce the spew of irrelevant information over this interface, to isolate
 3439  * user code from changes in the kernel structure, and potentially to provide
 3440  * information-hiding if we decide that some of this information should be
 3441  * hidden from users.
 3442  */
 3443 void
 3444 sotoxsocket(struct socket *so, struct xsocket *xso)
 3445 {
 3446 
 3447         xso->xso_len = sizeof *xso;
 3448         xso->xso_so = so;
 3449         xso->so_type = so->so_type;
 3450         xso->so_options = so->so_options;
 3451         xso->so_linger = so->so_linger;
 3452         xso->so_state = so->so_state;
 3453         xso->so_pcb = so->so_pcb;
 3454         xso->xso_protocol = so->so_proto->pr_protocol;
 3455         xso->xso_family = so->so_proto->pr_domain->dom_family;
 3456         xso->so_qlen = so->so_qlen;
 3457         xso->so_incqlen = so->so_incqlen;
 3458         xso->so_qlimit = so->so_qlimit;
 3459         xso->so_timeo = so->so_timeo;
 3460         xso->so_error = so->so_error;
 3461         xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
 3462         xso->so_oobmark = so->so_oobmark;
 3463         sbtoxsockbuf(&so->so_snd, &xso->so_snd);
 3464         sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
 3465         xso->so_uid = so->so_cred->cr_uid;
 3466 }
 3467 
 3468 
 3469 /*
 3470  * Socket accessor functions to provide external consumers with
 3471  * a safe interface to socket state
 3472  *
 3473  */
 3474 
 3475 void
 3476 so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *),
 3477     void *arg)
 3478 {
 3479 
 3480         TAILQ_FOREACH(so, &so->so_comp, so_list)
 3481                 func(so, arg);
 3482 }
 3483 
 3484 struct sockbuf *
 3485 so_sockbuf_rcv(struct socket *so)
 3486 {
 3487 
 3488         return (&so->so_rcv);
 3489 }
 3490 
 3491 struct sockbuf *
 3492 so_sockbuf_snd(struct socket *so)
 3493 {
 3494 
 3495         return (&so->so_snd);
 3496 }
 3497 
 3498 int
 3499 so_state_get(const struct socket *so)
 3500 {
 3501 
 3502         return (so->so_state);
 3503 }
 3504 
 3505 void
 3506 so_state_set(struct socket *so, int val)
 3507 {
 3508 
 3509         so->so_state = val;
 3510 }
 3511 
 3512 int
 3513 so_options_get(const struct socket *so)
 3514 {
 3515 
 3516         return (so->so_options);
 3517 }
 3518 
 3519 void
 3520 so_options_set(struct socket *so, int val)
 3521 {
 3522 
 3523         so->so_options = val;
 3524 }
 3525 
 3526 int
 3527 so_error_get(const struct socket *so)
 3528 {
 3529 
 3530         return (so->so_error);
 3531 }
 3532 
 3533 void
 3534 so_error_set(struct socket *so, int val)
 3535 {
 3536 
 3537         so->so_error = val;
 3538 }
 3539 
 3540 int
 3541 so_linger_get(const struct socket *so)
 3542 {
 3543 
 3544         return (so->so_linger);
 3545 }
 3546 
 3547 void
 3548 so_linger_set(struct socket *so, int val)
 3549 {
 3550 
 3551         so->so_linger = val;
 3552 }
 3553 
 3554 struct protosw *
 3555 so_protosw_get(const struct socket *so)
 3556 {
 3557 
 3558         return (so->so_proto);
 3559 }
 3560 
 3561 void
 3562 so_protosw_set(struct socket *so, struct protosw *val)
 3563 {
 3564 
 3565         so->so_proto = val;
 3566 }
 3567 
 3568 void
 3569 so_sorwakeup(struct socket *so)
 3570 {
 3571 
 3572         sorwakeup(so);
 3573 }
 3574 
 3575 void
 3576 so_sowwakeup(struct socket *so)
 3577 {
 3578 
 3579         sowwakeup(so);
 3580 }
 3581 
 3582 void
 3583 so_sorwakeup_locked(struct socket *so)
 3584 {
 3585 
 3586         sorwakeup_locked(so);
 3587 }
 3588 
 3589 void
 3590 so_sowwakeup_locked(struct socket *so)
 3591 {
 3592 
 3593         sowwakeup_locked(so);
 3594 }
 3595 
 3596 void
 3597 so_lock(struct socket *so)
 3598 {
 3599 
 3600         SOCK_LOCK(so);
 3601 }
 3602 
 3603 void
 3604 so_unlock(struct socket *so)
 3605 {
 3606 
 3607         SOCK_UNLOCK(so);
 3608 }

Cache object: bb13652d938eabcd7d2b66f47e37d795


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.