The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_socket.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
    5  *      The Regents of the University of California.
    6  * Copyright (c) 2004 The FreeBSD Foundation
    7  * Copyright (c) 2004-2008 Robert N. M. Watson
    8  * All rights reserved.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)uipc_socket.c       8.3 (Berkeley) 4/15/94
   35  */
   36 
   37 /*
   38  * Comments on the socket life cycle:
   39  *
   40  * soalloc() sets of socket layer state for a socket, called only by
   41  * socreate() and sonewconn().  Socket layer private.
   42  *
   43  * sodealloc() tears down socket layer state for a socket, called only by
   44  * sofree() and sonewconn().  Socket layer private.
   45  *
   46  * pru_attach() associates protocol layer state with an allocated socket;
   47  * called only once, may fail, aborting socket allocation.  This is called
   48  * from socreate() and sonewconn().  Socket layer private.
   49  *
   50  * pru_detach() disassociates protocol layer state from an attached socket,
   51  * and will be called exactly once for sockets in which pru_attach() has
   52  * been successfully called.  If pru_attach() returned an error,
   53  * pru_detach() will not be called.  Socket layer private.
   54  *
   55  * pru_abort() and pru_close() notify the protocol layer that the last
   56  * consumer of a socket is starting to tear down the socket, and that the
   57  * protocol should terminate the connection.  Historically, pru_abort() also
   58  * detached protocol state from the socket state, but this is no longer the
   59  * case.
   60  *
   61  * socreate() creates a socket and attaches protocol state.  This is a public
   62  * interface that may be used by socket layer consumers to create new
   63  * sockets.
   64  *
   65  * sonewconn() creates a socket and attaches protocol state.  This is a
   66  * public interface  that may be used by protocols to create new sockets when
   67  * a new connection is received and will be available for accept() on a
   68  * listen socket.
   69  *
   70  * soclose() destroys a socket after possibly waiting for it to disconnect.
   71  * This is a public interface that socket consumers should use to close and
   72  * release a socket when done with it.
   73  *
   74  * soabort() destroys a socket without waiting for it to disconnect (used
   75  * only for incoming connections that are already partially or fully
   76  * connected).  This is used internally by the socket layer when clearing
   77  * listen socket queues (due to overflow or close on the listen socket), but
   78  * is also a public interface protocols may use to abort connections in
   79  * their incomplete listen queues should they no longer be required.  Sockets
   80  * placed in completed connection listen queues should not be aborted for
   81  * reasons described in the comment above the soclose() implementation.  This
   82  * is not a general purpose close routine, and except in the specific
   83  * circumstances described here, should not be used.
   84  *
   85  * sofree() will free a socket and its protocol state if all references on
   86  * the socket have been released, and is the public interface to attempt to
   87  * free a socket when a reference is removed.  This is a socket layer private
   88  * interface.
   89  *
   90  * NOTE: In addition to socreate() and soclose(), which provide a single
   91  * socket reference to the consumer to be managed as required, there are two
   92  * calls to explicitly manage socket references, soref(), and sorele().
   93  * Currently, these are generally required only when transitioning a socket
   94  * from a listen queue to a file descriptor, in order to prevent garbage
   95  * collection of the socket at an untimely moment.  For a number of reasons,
   96  * these interfaces are not preferred, and should be avoided.
   97  *
   98  * NOTE: With regard to VNETs the general rule is that callers do not set
   99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
  100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
  101  * and sorflush(), which are usually called from a pre-set VNET context.
  102  * sopoll() currently does not need a VNET context to be set.
  103  */
  104 
  105 #include <sys/cdefs.h>
  106 __FBSDID("$FreeBSD$");
  107 
  108 #include "opt_inet.h"
  109 #include "opt_inet6.h"
  110 #include "opt_kern_tls.h"
  111 #include "opt_sctp.h"
  112 
  113 #include <sys/param.h>
  114 #include <sys/systm.h>
  115 #include <sys/fcntl.h>
  116 #include <sys/limits.h>
  117 #include <sys/lock.h>
  118 #include <sys/mac.h>
  119 #include <sys/malloc.h>
  120 #include <sys/mbuf.h>
  121 #include <sys/mutex.h>
  122 #include <sys/domain.h>
  123 #include <sys/file.h>                   /* for struct knote */
  124 #include <sys/hhook.h>
  125 #include <sys/kernel.h>
  126 #include <sys/khelp.h>
  127 #include <sys/ktls.h>
  128 #include <sys/event.h>
  129 #include <sys/eventhandler.h>
  130 #include <sys/poll.h>
  131 #include <sys/proc.h>
  132 #include <sys/protosw.h>
  133 #include <sys/sbuf.h>
  134 #include <sys/socket.h>
  135 #include <sys/socketvar.h>
  136 #include <sys/resourcevar.h>
  137 #include <net/route.h>
  138 #include <sys/signalvar.h>
  139 #include <sys/stat.h>
  140 #include <sys/sx.h>
  141 #include <sys/sysctl.h>
  142 #include <sys/taskqueue.h>
  143 #include <sys/uio.h>
  144 #include <sys/un.h>
  145 #include <sys/unpcb.h>
  146 #include <sys/jail.h>
  147 #include <sys/syslog.h>
  148 #include <netinet/in.h>
  149 #include <netinet/in_pcb.h>
  150 #include <netinet/tcp.h>
  151 
  152 #include <net/vnet.h>
  153 
  154 #include <security/mac/mac_framework.h>
  155 
  156 #include <vm/uma.h>
  157 
  158 #ifdef COMPAT_FREEBSD32
  159 #include <sys/mount.h>
  160 #include <sys/sysent.h>
  161 #include <compat/freebsd32/freebsd32.h>
  162 #endif
  163 
  164 static int      soreceive_rcvoob(struct socket *so, struct uio *uio,
  165                     int flags);
  166 static void     so_rdknl_lock(void *);
  167 static void     so_rdknl_unlock(void *);
  168 static void     so_rdknl_assert_lock(void *, int);
  169 static void     so_wrknl_lock(void *);
  170 static void     so_wrknl_unlock(void *);
  171 static void     so_wrknl_assert_lock(void *, int);
  172 
  173 static void     filt_sordetach(struct knote *kn);
  174 static int      filt_soread(struct knote *kn, long hint);
  175 static void     filt_sowdetach(struct knote *kn);
  176 static int      filt_sowrite(struct knote *kn, long hint);
  177 static int      filt_soempty(struct knote *kn, long hint);
  178 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
  179 fo_kqfilter_t   soo_kqfilter;
  180 
  181 static struct filterops soread_filtops = {
  182         .f_isfd = 1,
  183         .f_detach = filt_sordetach,
  184         .f_event = filt_soread,
  185 };
  186 static struct filterops sowrite_filtops = {
  187         .f_isfd = 1,
  188         .f_detach = filt_sowdetach,
  189         .f_event = filt_sowrite,
  190 };
  191 static struct filterops soempty_filtops = {
  192         .f_isfd = 1,
  193         .f_detach = filt_sowdetach,
  194         .f_event = filt_soempty,
  195 };
  196 
  197 so_gen_t        so_gencnt;      /* generation count for sockets */
  198 
  199 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
  200 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
  201 
  202 #define VNET_SO_ASSERT(so)                                              \
  203         VNET_ASSERT(curvnet != NULL,                                    \
  204             ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
  205 
  206 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
  207 #define V_socket_hhh            VNET(socket_hhh)
  208 
  209 /*
  210  * Limit on the number of connections in the listen queue waiting
  211  * for accept(2).
  212  * NB: The original sysctl somaxconn is still available but hidden
  213  * to prevent confusion about the actual purpose of this number.
  214  */
  215 static u_int somaxconn = SOMAXCONN;
  216 
  217 static int
  218 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
  219 {
  220         int error;
  221         int val;
  222 
  223         val = somaxconn;
  224         error = sysctl_handle_int(oidp, &val, 0, req);
  225         if (error || !req->newptr )
  226                 return (error);
  227 
  228         /*
  229          * The purpose of the UINT_MAX / 3 limit, is so that the formula
  230          *   3 * so_qlimit / 2
  231          * below, will not overflow.
  232          */
  233 
  234         if (val < 1 || val > UINT_MAX / 3)
  235                 return (EINVAL);
  236 
  237         somaxconn = val;
  238         return (0);
  239 }
  240 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
  241     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
  242     sysctl_somaxconn, "I",
  243     "Maximum listen socket pending connection accept queue size");
  244 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
  245     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0,
  246     sizeof(int), sysctl_somaxconn, "I",
  247     "Maximum listen socket pending connection accept queue size (compat)");
  248 
  249 static int numopensockets;
  250 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
  251     &numopensockets, 0, "Number of open sockets");
  252 
  253 /*
  254  * accept_mtx locks down per-socket fields relating to accept queues.  See
  255  * socketvar.h for an annotation of the protected fields of struct socket.
  256  */
  257 struct mtx accept_mtx;
  258 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
  259 
  260 /*
  261  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
  262  * so_gencnt field.
  263  */
  264 static struct mtx so_global_mtx;
  265 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
  266 
  267 /*
  268  * General IPC sysctl name space, used by sockets and a variety of other IPC
  269  * types.
  270  */
  271 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  272     "IPC");
  273 
  274 /*
  275  * Initialize the socket subsystem and set up the socket
  276  * memory allocator.
  277  */
  278 static uma_zone_t socket_zone;
  279 int     maxsockets;
  280 
  281 static void
  282 socket_zone_change(void *tag)
  283 {
  284 
  285         maxsockets = uma_zone_set_max(socket_zone, maxsockets);
  286 }
  287 
  288 static void
  289 socket_hhook_register(int subtype)
  290 {
  291 
  292         if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
  293             &V_socket_hhh[subtype],
  294             HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
  295                 printf("%s: WARNING: unable to register hook\n", __func__);
  296 }
  297 
  298 static void
  299 socket_hhook_deregister(int subtype)
  300 {
  301 
  302         if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
  303                 printf("%s: WARNING: unable to deregister hook\n", __func__);
  304 }
  305 
  306 static void
  307 socket_init(void *tag)
  308 {
  309 
  310         socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
  311             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  312         maxsockets = uma_zone_set_max(socket_zone, maxsockets);
  313         uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
  314         EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
  315             EVENTHANDLER_PRI_FIRST);
  316 }
  317 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
  318 
  319 static void
  320 socket_vnet_init(const void *unused __unused)
  321 {
  322         int i;
  323 
  324         /* We expect a contiguous range */
  325         for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
  326                 socket_hhook_register(i);
  327 }
  328 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
  329     socket_vnet_init, NULL);
  330 
  331 static void
  332 socket_vnet_uninit(const void *unused __unused)
  333 {
  334         int i;
  335 
  336         for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
  337                 socket_hhook_deregister(i);
  338 }
  339 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
  340     socket_vnet_uninit, NULL);
  341 
  342 /*
  343  * Initialise maxsockets.  This SYSINIT must be run after
  344  * tunable_mbinit().
  345  */
  346 static void
  347 init_maxsockets(void *ignored)
  348 {
  349 
  350         TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
  351         maxsockets = imax(maxsockets, maxfiles);
  352 }
  353 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
  354 
  355 /*
  356  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
  357  * of the change so that they can update their dependent limits as required.
  358  */
  359 static int
  360 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
  361 {
  362         int error, newmaxsockets;
  363 
  364         newmaxsockets = maxsockets;
  365         error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
  366         if (error == 0 && req->newptr) {
  367                 if (newmaxsockets > maxsockets &&
  368                     newmaxsockets <= maxfiles) {
  369                         maxsockets = newmaxsockets;
  370                         EVENTHANDLER_INVOKE(maxsockets_change);
  371                 } else
  372                         error = EINVAL;
  373         }
  374         return (error);
  375 }
  376 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
  377     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0,
  378     sysctl_maxsockets, "IU",
  379     "Maximum number of sockets available");
  380 
  381 /*
  382  * Socket operation routines.  These routines are called by the routines in
  383  * sys_socket.c or from a system process, and implement the semantics of
  384  * socket operations by switching out to the protocol specific routines.
  385  */
  386 
  387 /*
  388  * Get a socket structure from our zone, and initialize it.  Note that it
  389  * would probably be better to allocate socket and PCB at the same time, but
  390  * I'm not convinced that all the protocols can be easily modified to do
  391  * this.
  392  *
  393  * soalloc() returns a socket with a ref count of 0.
  394  */
  395 static struct socket *
  396 soalloc(struct vnet *vnet)
  397 {
  398         struct socket *so;
  399 
  400         so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
  401         if (so == NULL)
  402                 return (NULL);
  403 #ifdef MAC
  404         if (mac_socket_init(so, M_NOWAIT) != 0) {
  405                 uma_zfree(socket_zone, so);
  406                 return (NULL);
  407         }
  408 #endif
  409         if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
  410                 uma_zfree(socket_zone, so);
  411                 return (NULL);
  412         }
  413 
  414         /*
  415          * The socket locking protocol allows to lock 2 sockets at a time,
  416          * however, the first one must be a listening socket.  WITNESS lacks
  417          * a feature to change class of an existing lock, so we use DUPOK.
  418          */
  419         mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
  420         SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
  421         SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
  422         so->so_rcv.sb_sel = &so->so_rdsel;
  423         so->so_snd.sb_sel = &so->so_wrsel;
  424         sx_init(&so->so_snd.sb_sx, "so_snd_sx");
  425         sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
  426         TAILQ_INIT(&so->so_snd.sb_aiojobq);
  427         TAILQ_INIT(&so->so_rcv.sb_aiojobq);
  428         TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
  429         TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
  430 #ifdef VIMAGE
  431         VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
  432             __func__, __LINE__, so));
  433         so->so_vnet = vnet;
  434 #endif
  435         /* We shouldn't need the so_global_mtx */
  436         if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
  437                 /* Do we need more comprehensive error returns? */
  438                 uma_zfree(socket_zone, so);
  439                 return (NULL);
  440         }
  441         mtx_lock(&so_global_mtx);
  442         so->so_gencnt = ++so_gencnt;
  443         ++numopensockets;
  444 #ifdef VIMAGE
  445         vnet->vnet_sockcnt++;
  446 #endif
  447         mtx_unlock(&so_global_mtx);
  448 
  449         return (so);
  450 }
  451 
  452 /*
  453  * Free the storage associated with a socket at the socket layer, tear down
  454  * locks, labels, etc.  All protocol state is assumed already to have been
  455  * torn down (and possibly never set up) by the caller.
  456  */
  457 static void
  458 sodealloc(struct socket *so)
  459 {
  460 
  461         KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
  462         KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
  463 
  464         mtx_lock(&so_global_mtx);
  465         so->so_gencnt = ++so_gencnt;
  466         --numopensockets;       /* Could be below, but faster here. */
  467 #ifdef VIMAGE
  468         VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
  469             __func__, __LINE__, so));
  470         so->so_vnet->vnet_sockcnt--;
  471 #endif
  472         mtx_unlock(&so_global_mtx);
  473 #ifdef MAC
  474         mac_socket_destroy(so);
  475 #endif
  476         hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
  477 
  478         crfree(so->so_cred);
  479         khelp_destroy_osd(&so->osd);
  480         if (SOLISTENING(so)) {
  481                 if (so->sol_accept_filter != NULL)
  482                         accept_filt_setopt(so, NULL);
  483         } else {
  484                 if (so->so_rcv.sb_hiwat)
  485                         (void)chgsbsize(so->so_cred->cr_uidinfo,
  486                             &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
  487                 if (so->so_snd.sb_hiwat)
  488                         (void)chgsbsize(so->so_cred->cr_uidinfo,
  489                             &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
  490                 sx_destroy(&so->so_snd.sb_sx);
  491                 sx_destroy(&so->so_rcv.sb_sx);
  492                 SOCKBUF_LOCK_DESTROY(&so->so_snd);
  493                 SOCKBUF_LOCK_DESTROY(&so->so_rcv);
  494         }
  495         mtx_destroy(&so->so_lock);
  496         uma_zfree(socket_zone, so);
  497 }
  498 
  499 /*
  500  * socreate returns a socket with a ref count of 1.  The socket should be
  501  * closed with soclose().
  502  */
  503 int
  504 socreate(int dom, struct socket **aso, int type, int proto,
  505     struct ucred *cred, struct thread *td)
  506 {
  507         struct protosw *prp;
  508         struct socket *so;
  509         int error;
  510 
  511         if (proto)
  512                 prp = pffindproto(dom, proto, type);
  513         else
  514                 prp = pffindtype(dom, type);
  515 
  516         if (prp == NULL) {
  517                 /* No support for domain. */
  518                 if (pffinddomain(dom) == NULL)
  519                         return (EAFNOSUPPORT);
  520                 /* No support for socket type. */
  521                 if (proto == 0 && type != 0)
  522                         return (EPROTOTYPE);
  523                 return (EPROTONOSUPPORT);
  524         }
  525         if (prp->pr_usrreqs->pru_attach == NULL ||
  526             prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
  527                 return (EPROTONOSUPPORT);
  528 
  529         if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
  530                 return (EPROTONOSUPPORT);
  531 
  532         if (prp->pr_type != type)
  533                 return (EPROTOTYPE);
  534         so = soalloc(CRED_TO_VNET(cred));
  535         if (so == NULL)
  536                 return (ENOBUFS);
  537 
  538         so->so_type = type;
  539         so->so_cred = crhold(cred);
  540         if ((prp->pr_domain->dom_family == PF_INET) ||
  541             (prp->pr_domain->dom_family == PF_INET6) ||
  542             (prp->pr_domain->dom_family == PF_ROUTE))
  543                 so->so_fibnum = td->td_proc->p_fibnum;
  544         else
  545                 so->so_fibnum = 0;
  546         so->so_proto = prp;
  547 #ifdef MAC
  548         mac_socket_create(cred, so);
  549 #endif
  550         knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
  551             so_rdknl_assert_lock);
  552         knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
  553             so_wrknl_assert_lock);
  554         /*
  555          * Auto-sizing of socket buffers is managed by the protocols and
  556          * the appropriate flags must be set in the pru_attach function.
  557          */
  558         CURVNET_SET(so->so_vnet);
  559         error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
  560         CURVNET_RESTORE();
  561         if (error) {
  562                 sodealloc(so);
  563                 return (error);
  564         }
  565         soref(so);
  566         *aso = so;
  567         return (0);
  568 }
  569 
  570 #ifdef REGRESSION
  571 static int regression_sonewconn_earlytest = 1;
  572 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
  573     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
  574 #endif
  575 
  576 static struct timeval overinterval = { 60, 0 };
  577 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
  578     &overinterval,
  579     "Delay in seconds between warnings for listen socket overflows");
  580 
  581 /*
  582  * When an attempt at a new connection is noted on a socket which accepts
  583  * connections, sonewconn is called.  If the connection is possible (subject
  584  * to space constraints, etc.) then we allocate a new structure, properly
  585  * linked into the data structure of the original socket, and return this.
  586  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
  587  *
  588  * Note: the ref count on the socket is 0 on return.
  589  */
  590 struct socket *
  591 sonewconn(struct socket *head, int connstatus)
  592 {
  593         struct sbuf descrsb;
  594         struct socket *so;
  595         int len, overcount;
  596         u_int qlen;
  597         const char localprefix[] = "local:";
  598         char descrbuf[SUNPATHLEN + sizeof(localprefix)];
  599 #if defined(INET6)
  600         char addrbuf[INET6_ADDRSTRLEN];
  601 #elif defined(INET)
  602         char addrbuf[INET_ADDRSTRLEN];
  603 #endif
  604         bool dolog, over;
  605 
  606         SOLISTEN_LOCK(head);
  607         over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
  608 #ifdef REGRESSION
  609         if (regression_sonewconn_earlytest && over) {
  610 #else
  611         if (over) {
  612 #endif
  613                 head->sol_overcount++;
  614                 dolog = !!ratecheck(&head->sol_lastover, &overinterval);
  615 
  616                 /*
  617                  * If we're going to log, copy the overflow count and queue
  618                  * length from the listen socket before dropping the lock.
  619                  * Also, reset the overflow count.
  620                  */
  621                 if (dolog) {
  622                         overcount = head->sol_overcount;
  623                         head->sol_overcount = 0;
  624                         qlen = head->sol_qlen;
  625                 }
  626                 SOLISTEN_UNLOCK(head);
  627 
  628                 if (dolog) {
  629                         /*
  630                          * Try to print something descriptive about the
  631                          * socket for the error message.
  632                          */
  633                         sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
  634                             SBUF_FIXEDLEN);
  635                         switch (head->so_proto->pr_domain->dom_family) {
  636 #if defined(INET) || defined(INET6)
  637 #ifdef INET
  638                         case AF_INET:
  639 #endif
  640 #ifdef INET6
  641                         case AF_INET6:
  642                                 if (head->so_proto->pr_domain->dom_family ==
  643                                     AF_INET6 ||
  644                                     (sotoinpcb(head)->inp_inc.inc_flags &
  645                                     INC_ISIPV6)) {
  646                                         ip6_sprintf(addrbuf,
  647                                             &sotoinpcb(head)->inp_inc.inc6_laddr);
  648                                         sbuf_printf(&descrsb, "[%s]", addrbuf);
  649                                 } else
  650 #endif
  651                                 {
  652 #ifdef INET
  653                                         inet_ntoa_r(
  654                                             sotoinpcb(head)->inp_inc.inc_laddr,
  655                                             addrbuf);
  656                                         sbuf_cat(&descrsb, addrbuf);
  657 #endif
  658                                 }
  659                                 sbuf_printf(&descrsb, ":%hu (proto %u)",
  660                                     ntohs(sotoinpcb(head)->inp_inc.inc_lport),
  661                                     head->so_proto->pr_protocol);
  662                                 break;
  663 #endif /* INET || INET6 */
  664                         case AF_UNIX:
  665                                 sbuf_cat(&descrsb, localprefix);
  666                                 if (sotounpcb(head)->unp_addr != NULL)
  667                                         len =
  668                                             sotounpcb(head)->unp_addr->sun_len -
  669                                             offsetof(struct sockaddr_un,
  670                                             sun_path);
  671                                 else
  672                                         len = 0;
  673                                 if (len > 0)
  674                                         sbuf_bcat(&descrsb,
  675                                             sotounpcb(head)->unp_addr->sun_path,
  676                                             len);
  677                                 else
  678                                         sbuf_cat(&descrsb, "(unknown)");
  679                                 break;
  680                         }
  681 
  682                         /*
  683                          * If we can't print something more specific, at least
  684                          * print the domain name.
  685                          */
  686                         if (sbuf_finish(&descrsb) != 0 ||
  687                             sbuf_len(&descrsb) <= 0) {
  688                                 sbuf_clear(&descrsb);
  689                                 sbuf_cat(&descrsb,
  690                                     head->so_proto->pr_domain->dom_name ?:
  691                                     "unknown");
  692                                 sbuf_finish(&descrsb);
  693                         }
  694                         KASSERT(sbuf_len(&descrsb) > 0,
  695                             ("%s: sbuf creation failed", __func__));
  696                         log(LOG_DEBUG,
  697                             "%s: pcb %p (%s): Listen queue overflow: "
  698                             "%i already in queue awaiting acceptance "
  699                             "(%d occurrences)\n",
  700                             __func__, head->so_pcb, sbuf_data(&descrsb),
  701                             qlen, overcount);
  702                         sbuf_delete(&descrsb);
  703 
  704                         overcount = 0;
  705                 }
  706 
  707                 return (NULL);
  708         }
  709         SOLISTEN_UNLOCK(head);
  710         VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
  711             __func__, head));
  712         so = soalloc(head->so_vnet);
  713         if (so == NULL) {
  714                 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
  715                     "limit reached or out of memory\n",
  716                     __func__, head->so_pcb);
  717                 return (NULL);
  718         }
  719         so->so_listen = head;
  720         so->so_type = head->so_type;
  721         so->so_linger = head->so_linger;
  722         so->so_state = head->so_state | SS_NOFDREF;
  723         so->so_fibnum = head->so_fibnum;
  724         so->so_proto = head->so_proto;
  725         so->so_cred = crhold(head->so_cred);
  726 #ifdef MAC
  727         mac_socket_newconn(head, so);
  728 #endif
  729         knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
  730             so_rdknl_assert_lock);
  731         knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
  732             so_wrknl_assert_lock);
  733         VNET_SO_ASSERT(head);
  734         if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
  735                 sodealloc(so);
  736                 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
  737                     __func__, head->so_pcb);
  738                 return (NULL);
  739         }
  740         if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
  741                 sodealloc(so);
  742                 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
  743                     __func__, head->so_pcb);
  744                 return (NULL);
  745         }
  746         so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
  747         so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
  748         so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
  749         so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
  750         so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE;
  751         so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE;
  752 
  753         SOLISTEN_LOCK(head);
  754         if (head->sol_accept_filter != NULL)
  755                 connstatus = 0;
  756         so->so_state |= connstatus;
  757         so->so_options = head->so_options & ~SO_ACCEPTCONN;
  758         soref(head); /* A socket on (in)complete queue refs head. */
  759         if (connstatus) {
  760                 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
  761                 so->so_qstate = SQ_COMP;
  762                 head->sol_qlen++;
  763                 solisten_wakeup(head);  /* unlocks */
  764         } else {
  765                 /*
  766                  * Keep removing sockets from the head until there's room for
  767                  * us to insert on the tail.  In pre-locking revisions, this
  768                  * was a simple if(), but as we could be racing with other
  769                  * threads and soabort() requires dropping locks, we must
  770                  * loop waiting for the condition to be true.
  771                  */
  772                 while (head->sol_incqlen > head->sol_qlimit) {
  773                         struct socket *sp;
  774 
  775                         sp = TAILQ_FIRST(&head->sol_incomp);
  776                         TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
  777                         head->sol_incqlen--;
  778                         SOCK_LOCK(sp);
  779                         sp->so_qstate = SQ_NONE;
  780                         sp->so_listen = NULL;
  781                         SOCK_UNLOCK(sp);
  782                         sorele(head);   /* does SOLISTEN_UNLOCK, head stays */
  783                         soabort(sp);
  784                         SOLISTEN_LOCK(head);
  785                 }
  786                 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
  787                 so->so_qstate = SQ_INCOMP;
  788                 head->sol_incqlen++;
  789                 SOLISTEN_UNLOCK(head);
  790         }
  791         return (so);
  792 }
  793 
  794 #if defined(SCTP) || defined(SCTP_SUPPORT)
  795 /*
  796  * Socket part of sctp_peeloff().  Detach a new socket from an
  797  * association.  The new socket is returned with a reference.
  798  */
  799 struct socket *
  800 sopeeloff(struct socket *head)
  801 {
  802         struct socket *so;
  803 
  804         VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
  805             __func__, __LINE__, head));
  806         so = soalloc(head->so_vnet);
  807         if (so == NULL) {
  808                 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
  809                     "limit reached or out of memory\n",
  810                     __func__, head->so_pcb);
  811                 return (NULL);
  812         }
  813         so->so_type = head->so_type;
  814         so->so_options = head->so_options;
  815         so->so_linger = head->so_linger;
  816         so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
  817         so->so_fibnum = head->so_fibnum;
  818         so->so_proto = head->so_proto;
  819         so->so_cred = crhold(head->so_cred);
  820 #ifdef MAC
  821         mac_socket_newconn(head, so);
  822 #endif
  823         knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
  824             so_rdknl_assert_lock);
  825         knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
  826             so_wrknl_assert_lock);
  827         VNET_SO_ASSERT(head);
  828         if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
  829                 sodealloc(so);
  830                 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
  831                     __func__, head->so_pcb);
  832                 return (NULL);
  833         }
  834         if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
  835                 sodealloc(so);
  836                 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
  837                     __func__, head->so_pcb);
  838                 return (NULL);
  839         }
  840         so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
  841         so->so_snd.sb_lowat = head->so_snd.sb_lowat;
  842         so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
  843         so->so_snd.sb_timeo = head->so_snd.sb_timeo;
  844         so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
  845         so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
  846 
  847         soref(so);
  848 
  849         return (so);
  850 }
  851 #endif  /* SCTP */
  852 
  853 int
  854 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
  855 {
  856         int error;
  857 
  858         CURVNET_SET(so->so_vnet);
  859         error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
  860         CURVNET_RESTORE();
  861         return (error);
  862 }
  863 
  864 int
  865 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
  866 {
  867         int error;
  868 
  869         CURVNET_SET(so->so_vnet);
  870         error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
  871         CURVNET_RESTORE();
  872         return (error);
  873 }
  874 
  875 /*
  876  * solisten() transitions a socket from a non-listening state to a listening
  877  * state, but can also be used to update the listen queue depth on an
  878  * existing listen socket.  The protocol will call back into the sockets
  879  * layer using solisten_proto_check() and solisten_proto() to check and set
  880  * socket-layer listen state.  Call backs are used so that the protocol can
  881  * acquire both protocol and socket layer locks in whatever order is required
  882  * by the protocol.
  883  *
  884  * Protocol implementors are advised to hold the socket lock across the
  885  * socket-layer test and set to avoid races at the socket layer.
  886  */
  887 int
  888 solisten(struct socket *so, int backlog, struct thread *td)
  889 {
  890         int error;
  891 
  892         CURVNET_SET(so->so_vnet);
  893         error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
  894         CURVNET_RESTORE();
  895         return (error);
  896 }
  897 
  898 int
  899 solisten_proto_check(struct socket *so)
  900 {
  901 
  902         SOCK_LOCK_ASSERT(so);
  903 
  904         if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
  905             SS_ISDISCONNECTING))
  906                 return (EINVAL);
  907         return (0);
  908 }
  909 
  910 void
  911 solisten_proto(struct socket *so, int backlog)
  912 {
  913         int sbrcv_lowat, sbsnd_lowat;
  914         u_int sbrcv_hiwat, sbsnd_hiwat;
  915         short sbrcv_flags, sbsnd_flags;
  916         sbintime_t sbrcv_timeo, sbsnd_timeo;
  917 
  918         SOCK_LOCK_ASSERT(so);
  919 
  920         if (SOLISTENING(so))
  921                 goto listening;
  922 
  923         /*
  924          * Change this socket to listening state.
  925          */
  926         sbrcv_lowat = so->so_rcv.sb_lowat;
  927         sbsnd_lowat = so->so_snd.sb_lowat;
  928         sbrcv_hiwat = so->so_rcv.sb_hiwat;
  929         sbsnd_hiwat = so->so_snd.sb_hiwat;
  930         sbrcv_flags = so->so_rcv.sb_flags;
  931         sbsnd_flags = so->so_snd.sb_flags;
  932         sbrcv_timeo = so->so_rcv.sb_timeo;
  933         sbsnd_timeo = so->so_snd.sb_timeo;
  934 
  935         sbdestroy(&so->so_snd, so);
  936         sbdestroy(&so->so_rcv, so);
  937         sx_destroy(&so->so_snd.sb_sx);
  938         sx_destroy(&so->so_rcv.sb_sx);
  939         SOCKBUF_LOCK_DESTROY(&so->so_snd);
  940         SOCKBUF_LOCK_DESTROY(&so->so_rcv);
  941 
  942 #ifdef INVARIANTS
  943         bzero(&so->so_rcv,
  944             sizeof(struct socket) - offsetof(struct socket, so_rcv));
  945 #endif
  946 
  947         so->sol_sbrcv_lowat = sbrcv_lowat;
  948         so->sol_sbsnd_lowat = sbsnd_lowat;
  949         so->sol_sbrcv_hiwat = sbrcv_hiwat;
  950         so->sol_sbsnd_hiwat = sbsnd_hiwat;
  951         so->sol_sbrcv_flags = sbrcv_flags;
  952         so->sol_sbsnd_flags = sbsnd_flags;
  953         so->sol_sbrcv_timeo = sbrcv_timeo;
  954         so->sol_sbsnd_timeo = sbsnd_timeo;
  955 
  956         so->sol_qlen = so->sol_incqlen = 0;
  957         TAILQ_INIT(&so->sol_incomp);
  958         TAILQ_INIT(&so->sol_comp);
  959 
  960         so->sol_accept_filter = NULL;
  961         so->sol_accept_filter_arg = NULL;
  962         so->sol_accept_filter_str = NULL;
  963 
  964         so->sol_upcall = NULL;
  965         so->sol_upcallarg = NULL;
  966 
  967         so->so_options |= SO_ACCEPTCONN;
  968 
  969 listening:
  970         if (backlog < 0 || backlog > somaxconn)
  971                 backlog = somaxconn;
  972         so->sol_qlimit = backlog;
  973 }
  974 
  975 /*
  976  * Wakeup listeners/subsystems once we have a complete connection.
  977  * Enters with lock, returns unlocked.
  978  */
  979 void
  980 solisten_wakeup(struct socket *sol)
  981 {
  982 
  983         if (sol->sol_upcall != NULL)
  984                 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
  985         else {
  986                 selwakeuppri(&sol->so_rdsel, PSOCK);
  987                 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
  988         }
  989         SOLISTEN_UNLOCK(sol);
  990         wakeup_one(&sol->sol_comp);
  991         if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
  992                 pgsigio(&sol->so_sigio, SIGIO, 0);
  993 }
  994 
  995 /*
  996  * Return single connection off a listening socket queue.  Main consumer of
  997  * the function is kern_accept4().  Some modules, that do their own accept
  998  * management also use the function.
  999  *
 1000  * Listening socket must be locked on entry and is returned unlocked on
 1001  * return.
 1002  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
 1003  */
 1004 int
 1005 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
 1006 {
 1007         struct socket *so;
 1008         int error;
 1009 
 1010         SOLISTEN_LOCK_ASSERT(head);
 1011 
 1012         while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
 1013             head->so_error == 0) {
 1014                 error = msleep(&head->sol_comp, &head->so_lock, PSOCK | PCATCH,
 1015                     "accept", 0);
 1016                 if (error != 0) {
 1017                         SOLISTEN_UNLOCK(head);
 1018                         return (error);
 1019                 }
 1020         }
 1021         if (head->so_error) {
 1022                 error = head->so_error;
 1023                 head->so_error = 0;
 1024         } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
 1025                 error = EWOULDBLOCK;
 1026         else
 1027                 error = 0;
 1028         if (error) {
 1029                 SOLISTEN_UNLOCK(head);
 1030                 return (error);
 1031         }
 1032         so = TAILQ_FIRST(&head->sol_comp);
 1033         SOCK_LOCK(so);
 1034         KASSERT(so->so_qstate == SQ_COMP,
 1035             ("%s: so %p not SQ_COMP", __func__, so));
 1036         soref(so);
 1037         head->sol_qlen--;
 1038         so->so_qstate = SQ_NONE;
 1039         so->so_listen = NULL;
 1040         TAILQ_REMOVE(&head->sol_comp, so, so_list);
 1041         if (flags & ACCEPT4_INHERIT)
 1042                 so->so_state |= (head->so_state & SS_NBIO);
 1043         else
 1044                 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
 1045         SOCK_UNLOCK(so);
 1046         sorele(head);
 1047 
 1048         *ret = so;
 1049         return (0);
 1050 }
 1051 
 1052 /*
 1053  * Evaluate the reference count and named references on a socket; if no
 1054  * references remain, free it.  This should be called whenever a reference is
 1055  * released, such as in sorele(), but also when named reference flags are
 1056  * cleared in socket or protocol code.
 1057  *
 1058  * sofree() will free the socket if:
 1059  *
 1060  * - There are no outstanding file descriptor references or related consumers
 1061  *   (so_count == 0).
 1062  *
 1063  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
 1064  *
 1065  * - The protocol does not have an outstanding strong reference on the socket
 1066  *   (SS_PROTOREF).
 1067  *
 1068  * - The socket is not in a completed connection queue, so a process has been
 1069  *   notified that it is present.  If it is removed, the user process may
 1070  *   block in accept() despite select() saying the socket was ready.
 1071  */
 1072 void
 1073 sofree(struct socket *so)
 1074 {
 1075         struct protosw *pr = so->so_proto;
 1076 
 1077         SOCK_LOCK_ASSERT(so);
 1078 
 1079         if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
 1080             (so->so_state & SS_PROTOREF) || (so->so_qstate == SQ_COMP)) {
 1081                 SOCK_UNLOCK(so);
 1082                 return;
 1083         }
 1084 
 1085         if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) {
 1086                 struct socket *sol;
 1087 
 1088                 sol = so->so_listen;
 1089                 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so));
 1090 
 1091                 /*
 1092                  * To solve race between close of a listening socket and
 1093                  * a socket on its incomplete queue, we need to lock both.
 1094                  * The order is first listening socket, then regular.
 1095                  * Since we don't have SS_NOFDREF neither SS_PROTOREF, this
 1096                  * function and the listening socket are the only pointers
 1097                  * to so.  To preserve so and sol, we reference both and then
 1098                  * relock.
 1099                  * After relock the socket may not move to so_comp since it
 1100                  * doesn't have PCB already, but it may be removed from
 1101                  * so_incomp. If that happens, we share responsiblity on
 1102                  * freeing the socket, but soclose() has already removed
 1103                  * it from queue.
 1104                  */
 1105                 soref(sol);
 1106                 soref(so);
 1107                 SOCK_UNLOCK(so);
 1108                 SOLISTEN_LOCK(sol);
 1109                 SOCK_LOCK(so);
 1110                 if (so->so_qstate == SQ_INCOMP) {
 1111                         KASSERT(so->so_listen == sol,
 1112                             ("%s: so %p migrated out of sol %p",
 1113                             __func__, so, sol));
 1114                         TAILQ_REMOVE(&sol->sol_incomp, so, so_list);
 1115                         sol->sol_incqlen--;
 1116                         /* This is guarenteed not to be the last. */
 1117                         refcount_release(&sol->so_count);
 1118                         so->so_qstate = SQ_NONE;
 1119                         so->so_listen = NULL;
 1120                 } else
 1121                         KASSERT(so->so_listen == NULL,
 1122                             ("%s: so %p not on (in)comp with so_listen",
 1123                             __func__, so));
 1124                 sorele(sol);
 1125                 KASSERT(so->so_count == 1,
 1126                     ("%s: so %p count %u", __func__, so, so->so_count));
 1127                 so->so_count = 0;
 1128         }
 1129         if (SOLISTENING(so))
 1130                 so->so_error = ECONNABORTED;
 1131         SOCK_UNLOCK(so);
 1132 
 1133         if (so->so_dtor != NULL)
 1134                 so->so_dtor(so);
 1135 
 1136         VNET_SO_ASSERT(so);
 1137         if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
 1138                 (*pr->pr_domain->dom_dispose)(so);
 1139         if (pr->pr_usrreqs->pru_detach != NULL)
 1140                 (*pr->pr_usrreqs->pru_detach)(so);
 1141 
 1142         /*
 1143          * From this point on, we assume that no other references to this
 1144          * socket exist anywhere else in the stack.  Therefore, no locks need
 1145          * to be acquired or held.
 1146          *
 1147          * We used to do a lot of socket buffer and socket locking here, as
 1148          * well as invoke sorflush() and perform wakeups.  The direct call to
 1149          * dom_dispose() and sbdestroy() are an inlining of what was
 1150          * necessary from sorflush().
 1151          *
 1152          * Notice that the socket buffer and kqueue state are torn down
 1153          * before calling pru_detach.  This means that protocols shold not
 1154          * assume they can perform socket wakeups, etc, in their detach code.
 1155          */
 1156         if (!SOLISTENING(so)) {
 1157                 sbdestroy(&so->so_snd, so);
 1158                 sbdestroy(&so->so_rcv, so);
 1159         }
 1160         seldrain(&so->so_rdsel);
 1161         seldrain(&so->so_wrsel);
 1162         knlist_destroy(&so->so_rdsel.si_note);
 1163         knlist_destroy(&so->so_wrsel.si_note);
 1164         sodealloc(so);
 1165 }
 1166 
 1167 /*
 1168  * Close a socket on last file table reference removal.  Initiate disconnect
 1169  * if connected.  Free socket when disconnect complete.
 1170  *
 1171  * This function will sorele() the socket.  Note that soclose() may be called
 1172  * prior to the ref count reaching zero.  The actual socket structure will
 1173  * not be freed until the ref count reaches zero.
 1174  */
 1175 int
 1176 soclose(struct socket *so)
 1177 {
 1178         struct accept_queue lqueue;
 1179         bool listening;
 1180         int error = 0;
 1181 
 1182         KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
 1183 
 1184         CURVNET_SET(so->so_vnet);
 1185         funsetown(&so->so_sigio);
 1186         if (so->so_state & SS_ISCONNECTED) {
 1187                 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
 1188                         error = sodisconnect(so);
 1189                         if (error) {
 1190                                 if (error == ENOTCONN)
 1191                                         error = 0;
 1192                                 goto drop;
 1193                         }
 1194                 }
 1195 
 1196                 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
 1197                         if ((so->so_state & SS_ISDISCONNECTING) &&
 1198                             (so->so_state & SS_NBIO))
 1199                                 goto drop;
 1200                         while (so->so_state & SS_ISCONNECTED) {
 1201                                 error = tsleep(&so->so_timeo,
 1202                                     PSOCK | PCATCH, "soclos",
 1203                                     so->so_linger * hz);
 1204                                 if (error)
 1205                                         break;
 1206                         }
 1207                 }
 1208         }
 1209 
 1210 drop:
 1211         if (so->so_proto->pr_usrreqs->pru_close != NULL)
 1212                 (*so->so_proto->pr_usrreqs->pru_close)(so);
 1213 
 1214         SOCK_LOCK(so);
 1215         if ((listening = (so->so_options & SO_ACCEPTCONN))) {
 1216                 struct socket *sp;
 1217 
 1218                 TAILQ_INIT(&lqueue);
 1219                 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
 1220                 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
 1221 
 1222                 so->sol_qlen = so->sol_incqlen = 0;
 1223 
 1224                 TAILQ_FOREACH(sp, &lqueue, so_list) {
 1225                         SOCK_LOCK(sp);
 1226                         sp->so_qstate = SQ_NONE;
 1227                         sp->so_listen = NULL;
 1228                         SOCK_UNLOCK(sp);
 1229                         /* Guaranteed not to be the last. */
 1230                         refcount_release(&so->so_count);
 1231                 }
 1232         }
 1233         KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
 1234         so->so_state |= SS_NOFDREF;
 1235         sorele(so);
 1236         if (listening) {
 1237                 struct socket *sp, *tsp;
 1238 
 1239                 TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) {
 1240                         SOCK_LOCK(sp);
 1241                         if (sp->so_count == 0) {
 1242                                 SOCK_UNLOCK(sp);
 1243                                 soabort(sp);
 1244                         } else
 1245                                 /* sp is now in sofree() */
 1246                                 SOCK_UNLOCK(sp);
 1247                 }
 1248         }
 1249         CURVNET_RESTORE();
 1250         return (error);
 1251 }
 1252 
 1253 /*
 1254  * soabort() is used to abruptly tear down a connection, such as when a
 1255  * resource limit is reached (listen queue depth exceeded), or if a listen
 1256  * socket is closed while there are sockets waiting to be accepted.
 1257  *
 1258  * This interface is tricky, because it is called on an unreferenced socket,
 1259  * and must be called only by a thread that has actually removed the socket
 1260  * from the listen queue it was on, or races with other threads are risked.
 1261  *
 1262  * This interface will call into the protocol code, so must not be called
 1263  * with any socket locks held.  Protocols do call it while holding their own
 1264  * recursible protocol mutexes, but this is something that should be subject
 1265  * to review in the future.
 1266  */
 1267 void
 1268 soabort(struct socket *so)
 1269 {
 1270 
 1271         /*
 1272          * In as much as is possible, assert that no references to this
 1273          * socket are held.  This is not quite the same as asserting that the
 1274          * current thread is responsible for arranging for no references, but
 1275          * is as close as we can get for now.
 1276          */
 1277         KASSERT(so->so_count == 0, ("soabort: so_count"));
 1278         KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
 1279         KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
 1280         VNET_SO_ASSERT(so);
 1281 
 1282         if (so->so_proto->pr_usrreqs->pru_abort != NULL)
 1283                 (*so->so_proto->pr_usrreqs->pru_abort)(so);
 1284         SOCK_LOCK(so);
 1285         sofree(so);
 1286 }
 1287 
 1288 int
 1289 soaccept(struct socket *so, struct sockaddr **nam)
 1290 {
 1291         int error;
 1292 
 1293         SOCK_LOCK(so);
 1294         KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
 1295         so->so_state &= ~SS_NOFDREF;
 1296         SOCK_UNLOCK(so);
 1297 
 1298         CURVNET_SET(so->so_vnet);
 1299         error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
 1300         CURVNET_RESTORE();
 1301         return (error);
 1302 }
 1303 
 1304 int
 1305 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
 1306 {
 1307 
 1308         return (soconnectat(AT_FDCWD, so, nam, td));
 1309 }
 1310 
 1311 int
 1312 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
 1313 {
 1314         int error;
 1315 
 1316         if (so->so_options & SO_ACCEPTCONN)
 1317                 return (EOPNOTSUPP);
 1318 
 1319         CURVNET_SET(so->so_vnet);
 1320         /*
 1321          * If protocol is connection-based, can only connect once.
 1322          * Otherwise, if connected, try to disconnect first.  This allows
 1323          * user to disconnect by connecting to, e.g., a null address.
 1324          */
 1325         if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
 1326             ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
 1327             (error = sodisconnect(so)))) {
 1328                 error = EISCONN;
 1329         } else {
 1330                 /*
 1331                  * Prevent accumulated error from previous connection from
 1332                  * biting us.
 1333                  */
 1334                 so->so_error = 0;
 1335                 if (fd == AT_FDCWD) {
 1336                         error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
 1337                             nam, td);
 1338                 } else {
 1339                         error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
 1340                             so, nam, td);
 1341                 }
 1342         }
 1343         CURVNET_RESTORE();
 1344 
 1345         return (error);
 1346 }
 1347 
 1348 int
 1349 soconnect2(struct socket *so1, struct socket *so2)
 1350 {
 1351         int error;
 1352 
 1353         CURVNET_SET(so1->so_vnet);
 1354         error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
 1355         CURVNET_RESTORE();
 1356         return (error);
 1357 }
 1358 
 1359 int
 1360 sodisconnect(struct socket *so)
 1361 {
 1362         int error;
 1363 
 1364         if ((so->so_state & SS_ISCONNECTED) == 0)
 1365                 return (ENOTCONN);
 1366         if (so->so_state & SS_ISDISCONNECTING)
 1367                 return (EALREADY);
 1368         VNET_SO_ASSERT(so);
 1369         error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
 1370         return (error);
 1371 }
 1372 
 1373 #define SBLOCKWAIT(f)   (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
 1374 
 1375 int
 1376 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1377     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1378 {
 1379         long space;
 1380         ssize_t resid;
 1381         int clen = 0, error, dontroute;
 1382 
 1383         KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
 1384         KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
 1385             ("sosend_dgram: !PR_ATOMIC"));
 1386 
 1387         if (uio != NULL)
 1388                 resid = uio->uio_resid;
 1389         else
 1390                 resid = top->m_pkthdr.len;
 1391         /*
 1392          * In theory resid should be unsigned.  However, space must be
 1393          * signed, as it might be less than 0 if we over-committed, and we
 1394          * must use a signed comparison of space and resid.  On the other
 1395          * hand, a negative resid causes us to loop sending 0-length
 1396          * segments to the protocol.
 1397          */
 1398         if (resid < 0) {
 1399                 error = EINVAL;
 1400                 goto out;
 1401         }
 1402 
 1403         dontroute =
 1404             (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
 1405         if (td != NULL)
 1406                 td->td_ru.ru_msgsnd++;
 1407         if (control != NULL)
 1408                 clen = control->m_len;
 1409 
 1410         SOCKBUF_LOCK(&so->so_snd);
 1411         if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 1412                 SOCKBUF_UNLOCK(&so->so_snd);
 1413                 error = EPIPE;
 1414                 goto out;
 1415         }
 1416         if (so->so_error) {
 1417                 error = so->so_error;
 1418                 so->so_error = 0;
 1419                 SOCKBUF_UNLOCK(&so->so_snd);
 1420                 goto out;
 1421         }
 1422         if ((so->so_state & SS_ISCONNECTED) == 0) {
 1423                 /*
 1424                  * `sendto' and `sendmsg' is allowed on a connection-based
 1425                  * socket if it supports implied connect.  Return ENOTCONN if
 1426                  * not connected and no address is supplied.
 1427                  */
 1428                 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
 1429                     (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
 1430                         if ((so->so_state & SS_ISCONFIRMING) == 0 &&
 1431                             !(resid == 0 && clen != 0)) {
 1432                                 SOCKBUF_UNLOCK(&so->so_snd);
 1433                                 error = ENOTCONN;
 1434                                 goto out;
 1435                         }
 1436                 } else if (addr == NULL) {
 1437                         if (so->so_proto->pr_flags & PR_CONNREQUIRED)
 1438                                 error = ENOTCONN;
 1439                         else
 1440                                 error = EDESTADDRREQ;
 1441                         SOCKBUF_UNLOCK(&so->so_snd);
 1442                         goto out;
 1443                 }
 1444         }
 1445 
 1446         /*
 1447          * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
 1448          * problem and need fixing.
 1449          */
 1450         space = sbspace(&so->so_snd);
 1451         if (flags & MSG_OOB)
 1452                 space += 1024;
 1453         space -= clen;
 1454         SOCKBUF_UNLOCK(&so->so_snd);
 1455         if (resid > space) {
 1456                 error = EMSGSIZE;
 1457                 goto out;
 1458         }
 1459         if (uio == NULL) {
 1460                 resid = 0;
 1461                 if (flags & MSG_EOR)
 1462                         top->m_flags |= M_EOR;
 1463         } else {
 1464                 /*
 1465                  * Copy the data from userland into a mbuf chain.
 1466                  * If no data is to be copied in, a single empty mbuf
 1467                  * is returned.
 1468                  */
 1469                 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
 1470                     (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
 1471                 if (top == NULL) {
 1472                         error = EFAULT; /* only possible error */
 1473                         goto out;
 1474                 }
 1475                 space -= resid - uio->uio_resid;
 1476                 resid = uio->uio_resid;
 1477         }
 1478         KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
 1479         /*
 1480          * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
 1481          * than with.
 1482          */
 1483         if (dontroute) {
 1484                 SOCK_LOCK(so);
 1485                 so->so_options |= SO_DONTROUTE;
 1486                 SOCK_UNLOCK(so);
 1487         }
 1488         /*
 1489          * XXX all the SBS_CANTSENDMORE checks previously done could be out
 1490          * of date.  We could have received a reset packet in an interrupt or
 1491          * maybe we slept while doing page faults in uiomove() etc.  We could
 1492          * probably recheck again inside the locking protection here, but
 1493          * there are probably other places that this also happens.  We must
 1494          * rethink this.
 1495          */
 1496         VNET_SO_ASSERT(so);
 1497         error = (*so->so_proto->pr_usrreqs->pru_send)(so,
 1498             (flags & MSG_OOB) ? PRUS_OOB :
 1499         /*
 1500          * If the user set MSG_EOF, the protocol understands this flag and
 1501          * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
 1502          */
 1503             ((flags & MSG_EOF) &&
 1504              (so->so_proto->pr_flags & PR_IMPLOPCL) &&
 1505              (resid <= 0)) ?
 1506                 PRUS_EOF :
 1507                 /* If there is more to send set PRUS_MORETOCOME */
 1508                 (flags & MSG_MORETOCOME) ||
 1509                 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
 1510                 top, addr, control, td);
 1511         if (dontroute) {
 1512                 SOCK_LOCK(so);
 1513                 so->so_options &= ~SO_DONTROUTE;
 1514                 SOCK_UNLOCK(so);
 1515         }
 1516         clen = 0;
 1517         control = NULL;
 1518         top = NULL;
 1519 out:
 1520         if (top != NULL)
 1521                 m_freem(top);
 1522         if (control != NULL)
 1523                 m_freem(control);
 1524         return (error);
 1525 }
 1526 
 1527 /*
 1528  * Send on a socket.  If send must go all at once and message is larger than
 1529  * send buffering, then hard error.  Lock against other senders.  If must go
 1530  * all at once and not enough room now, then inform user that this would
 1531  * block and do nothing.  Otherwise, if nonblocking, send as much as
 1532  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
 1533  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
 1534  * in mbuf chain must be small enough to send all at once.
 1535  *
 1536  * Returns nonzero on error, timeout or signal; callers must check for short
 1537  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
 1538  * on return.
 1539  */
 1540 int
 1541 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1542     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1543 {
 1544         long space;
 1545         ssize_t resid;
 1546         int clen = 0, error, dontroute;
 1547         int atomic = sosendallatonce(so) || top;
 1548         int pru_flag;
 1549 #ifdef KERN_TLS
 1550         struct ktls_session *tls;
 1551         int tls_enq_cnt, tls_pruflag;
 1552         uint8_t tls_rtype;
 1553 
 1554         tls = NULL;
 1555         tls_rtype = TLS_RLTYPE_APP;
 1556 #endif
 1557         if (uio != NULL)
 1558                 resid = uio->uio_resid;
 1559         else if ((top->m_flags & M_PKTHDR) != 0)
 1560                 resid = top->m_pkthdr.len;
 1561         else
 1562                 resid = m_length(top, NULL);
 1563         /*
 1564          * In theory resid should be unsigned.  However, space must be
 1565          * signed, as it might be less than 0 if we over-committed, and we
 1566          * must use a signed comparison of space and resid.  On the other
 1567          * hand, a negative resid causes us to loop sending 0-length
 1568          * segments to the protocol.
 1569          *
 1570          * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
 1571          * type sockets since that's an error.
 1572          */
 1573         if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
 1574                 error = EINVAL;
 1575                 goto out;
 1576         }
 1577 
 1578         dontroute =
 1579             (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
 1580             (so->so_proto->pr_flags & PR_ATOMIC);
 1581         if (td != NULL)
 1582                 td->td_ru.ru_msgsnd++;
 1583         if (control != NULL)
 1584                 clen = control->m_len;
 1585 
 1586         error = sblock(&so->so_snd, SBLOCKWAIT(flags));
 1587         if (error)
 1588                 goto out;
 1589 
 1590 #ifdef KERN_TLS
 1591         tls_pruflag = 0;
 1592         tls = ktls_hold(so->so_snd.sb_tls_info);
 1593         if (tls != NULL) {
 1594                 if (tls->mode == TCP_TLS_MODE_SW)
 1595                         tls_pruflag = PRUS_NOTREADY;
 1596 
 1597                 if (control != NULL) {
 1598                         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
 1599 
 1600                         if (clen >= sizeof(*cm) &&
 1601                             cm->cmsg_type == TLS_SET_RECORD_TYPE) {
 1602                                 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
 1603                                 clen = 0;
 1604                                 m_freem(control);
 1605                                 control = NULL;
 1606                                 atomic = 1;
 1607                         }
 1608                 }
 1609         }
 1610 #endif
 1611 
 1612 restart:
 1613         do {
 1614                 SOCKBUF_LOCK(&so->so_snd);
 1615                 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 1616                         SOCKBUF_UNLOCK(&so->so_snd);
 1617                         error = EPIPE;
 1618                         goto release;
 1619                 }
 1620                 if (so->so_error) {
 1621                         error = so->so_error;
 1622                         so->so_error = 0;
 1623                         SOCKBUF_UNLOCK(&so->so_snd);
 1624                         goto release;
 1625                 }
 1626                 if ((so->so_state & SS_ISCONNECTED) == 0) {
 1627                         /*
 1628                          * `sendto' and `sendmsg' is allowed on a connection-
 1629                          * based socket if it supports implied connect.
 1630                          * Return ENOTCONN if not connected and no address is
 1631                          * supplied.
 1632                          */
 1633                         if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
 1634                             (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
 1635                                 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
 1636                                     !(resid == 0 && clen != 0)) {
 1637                                         SOCKBUF_UNLOCK(&so->so_snd);
 1638                                         error = ENOTCONN;
 1639                                         goto release;
 1640                                 }
 1641                         } else if (addr == NULL) {
 1642                                 SOCKBUF_UNLOCK(&so->so_snd);
 1643                                 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
 1644                                         error = ENOTCONN;
 1645                                 else
 1646                                         error = EDESTADDRREQ;
 1647                                 goto release;
 1648                         }
 1649                 }
 1650                 space = sbspace(&so->so_snd);
 1651                 if (flags & MSG_OOB)
 1652                         space += 1024;
 1653                 if ((atomic && resid > so->so_snd.sb_hiwat) ||
 1654                     clen > so->so_snd.sb_hiwat) {
 1655                         SOCKBUF_UNLOCK(&so->so_snd);
 1656                         error = EMSGSIZE;
 1657                         goto release;
 1658                 }
 1659                 if (space < resid + clen &&
 1660                     (atomic || space < so->so_snd.sb_lowat || space < clen)) {
 1661                         if ((so->so_state & SS_NBIO) ||
 1662                             (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
 1663                                 SOCKBUF_UNLOCK(&so->so_snd);
 1664                                 error = EWOULDBLOCK;
 1665                                 goto release;
 1666                         }
 1667                         error = sbwait(&so->so_snd);
 1668                         SOCKBUF_UNLOCK(&so->so_snd);
 1669                         if (error)
 1670                                 goto release;
 1671                         goto restart;
 1672                 }
 1673                 SOCKBUF_UNLOCK(&so->so_snd);
 1674                 space -= clen;
 1675                 do {
 1676                         if (uio == NULL) {
 1677                                 resid = 0;
 1678                                 if (flags & MSG_EOR)
 1679                                         top->m_flags |= M_EOR;
 1680 #ifdef KERN_TLS
 1681                                 if (tls != NULL) {
 1682                                         ktls_frame(top, tls, &tls_enq_cnt,
 1683                                             tls_rtype);
 1684                                         tls_rtype = TLS_RLTYPE_APP;
 1685                                 }
 1686 #endif
 1687                         } else {
 1688                                 /*
 1689                                  * Copy the data from userland into a mbuf
 1690                                  * chain.  If resid is 0, which can happen
 1691                                  * only if we have control to send, then
 1692                                  * a single empty mbuf is returned.  This
 1693                                  * is a workaround to prevent protocol send
 1694                                  * methods to panic.
 1695                                  */
 1696 #ifdef KERN_TLS
 1697                                 if (tls != NULL) {
 1698                                         top = m_uiotombuf(uio, M_WAITOK, space,
 1699                                             tls->params.max_frame_len,
 1700                                             M_EXTPG |
 1701                                             ((flags & MSG_EOR) ? M_EOR : 0));
 1702                                         if (top != NULL) {
 1703                                                 ktls_frame(top, tls,
 1704                                                     &tls_enq_cnt, tls_rtype);
 1705                                         }
 1706                                         tls_rtype = TLS_RLTYPE_APP;
 1707                                 } else
 1708 #endif
 1709                                         top = m_uiotombuf(uio, M_WAITOK, space,
 1710                                             (atomic ? max_hdr : 0),
 1711                                             (atomic ? M_PKTHDR : 0) |
 1712                                             ((flags & MSG_EOR) ? M_EOR : 0));
 1713                                 if (top == NULL) {
 1714                                         error = EFAULT; /* only possible error */
 1715                                         goto release;
 1716                                 }
 1717                                 space -= resid - uio->uio_resid;
 1718                                 resid = uio->uio_resid;
 1719                         }
 1720                         if (dontroute) {
 1721                                 SOCK_LOCK(so);
 1722                                 so->so_options |= SO_DONTROUTE;
 1723                                 SOCK_UNLOCK(so);
 1724                         }
 1725                         /*
 1726                          * XXX all the SBS_CANTSENDMORE checks previously
 1727                          * done could be out of date.  We could have received
 1728                          * a reset packet in an interrupt or maybe we slept
 1729                          * while doing page faults in uiomove() etc.  We
 1730                          * could probably recheck again inside the locking
 1731                          * protection here, but there are probably other
 1732                          * places that this also happens.  We must rethink
 1733                          * this.
 1734                          */
 1735                         VNET_SO_ASSERT(so);
 1736 
 1737                         pru_flag = (flags & MSG_OOB) ? PRUS_OOB :
 1738                         /*
 1739                          * If the user set MSG_EOF, the protocol understands
 1740                          * this flag and nothing left to send then use
 1741                          * PRU_SEND_EOF instead of PRU_SEND.
 1742                          */
 1743                             ((flags & MSG_EOF) &&
 1744                              (so->so_proto->pr_flags & PR_IMPLOPCL) &&
 1745                              (resid <= 0)) ?
 1746                                 PRUS_EOF :
 1747                         /* If there is more to send set PRUS_MORETOCOME. */
 1748                             (flags & MSG_MORETOCOME) ||
 1749                             (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
 1750 
 1751 #ifdef KERN_TLS
 1752                         pru_flag |= tls_pruflag;
 1753 #endif
 1754 
 1755                         error = (*so->so_proto->pr_usrreqs->pru_send)(so,
 1756                             pru_flag, top, addr, control, td);
 1757 
 1758                         if (dontroute) {
 1759                                 SOCK_LOCK(so);
 1760                                 so->so_options &= ~SO_DONTROUTE;
 1761                                 SOCK_UNLOCK(so);
 1762                         }
 1763 
 1764 #ifdef KERN_TLS
 1765                         if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
 1766                                 /*
 1767                                  * Note that error is intentionally
 1768                                  * ignored.
 1769                                  *
 1770                                  * Like sendfile(), we rely on the
 1771                                  * completion routine (pru_ready())
 1772                                  * to free the mbufs in the event that
 1773                                  * pru_send() encountered an error and
 1774                                  * did not append them to the sockbuf.
 1775                                  */
 1776                                 soref(so);
 1777                                 ktls_enqueue(top, so, tls_enq_cnt);
 1778                         }
 1779 #endif
 1780                         clen = 0;
 1781                         control = NULL;
 1782                         top = NULL;
 1783                         if (error)
 1784                                 goto release;
 1785                 } while (resid && space > 0);
 1786         } while (resid);
 1787 
 1788 release:
 1789         sbunlock(&so->so_snd);
 1790 out:
 1791 #ifdef KERN_TLS
 1792         if (tls != NULL)
 1793                 ktls_free(tls);
 1794 #endif
 1795         if (top != NULL)
 1796                 m_freem(top);
 1797         if (control != NULL)
 1798                 m_freem(control);
 1799         return (error);
 1800 }
 1801 
 1802 int
 1803 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1804     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1805 {
 1806         int error;
 1807 
 1808         CURVNET_SET(so->so_vnet);
 1809         if (!SOLISTENING(so))
 1810                 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio,
 1811                     top, control, flags, td);
 1812         else {
 1813                 m_freem(top);
 1814                 m_freem(control);
 1815                 error = ENOTCONN;
 1816         }
 1817         CURVNET_RESTORE();
 1818         return (error);
 1819 }
 1820 
 1821 /*
 1822  * The part of soreceive() that implements reading non-inline out-of-band
 1823  * data from a socket.  For more complete comments, see soreceive(), from
 1824  * which this code originated.
 1825  *
 1826  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
 1827  * unable to return an mbuf chain to the caller.
 1828  */
 1829 static int
 1830 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
 1831 {
 1832         struct protosw *pr = so->so_proto;
 1833         struct mbuf *m;
 1834         int error;
 1835 
 1836         KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
 1837         VNET_SO_ASSERT(so);
 1838 
 1839         m = m_get(M_WAITOK, MT_DATA);
 1840         error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
 1841         if (error)
 1842                 goto bad;
 1843         do {
 1844                 error = uiomove(mtod(m, void *),
 1845                     (int) min(uio->uio_resid, m->m_len), uio);
 1846                 m = m_free(m);
 1847         } while (uio->uio_resid && error == 0 && m);
 1848 bad:
 1849         if (m != NULL)
 1850                 m_freem(m);
 1851         return (error);
 1852 }
 1853 
 1854 /*
 1855  * Following replacement or removal of the first mbuf on the first mbuf chain
 1856  * of a socket buffer, push necessary state changes back into the socket
 1857  * buffer so that other consumers see the values consistently.  'nextrecord'
 1858  * is the callers locally stored value of the original value of
 1859  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
 1860  * NOTE: 'nextrecord' may be NULL.
 1861  */
 1862 static __inline void
 1863 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
 1864 {
 1865 
 1866         SOCKBUF_LOCK_ASSERT(sb);
 1867         /*
 1868          * First, update for the new value of nextrecord.  If necessary, make
 1869          * it the first record.
 1870          */
 1871         if (sb->sb_mb != NULL)
 1872                 sb->sb_mb->m_nextpkt = nextrecord;
 1873         else
 1874                 sb->sb_mb = nextrecord;
 1875 
 1876         /*
 1877          * Now update any dependent socket buffer fields to reflect the new
 1878          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
 1879          * addition of a second clause that takes care of the case where
 1880          * sb_mb has been updated, but remains the last record.
 1881          */
 1882         if (sb->sb_mb == NULL) {
 1883                 sb->sb_mbtail = NULL;
 1884                 sb->sb_lastrecord = NULL;
 1885         } else if (sb->sb_mb->m_nextpkt == NULL)
 1886                 sb->sb_lastrecord = sb->sb_mb;
 1887 }
 1888 
 1889 /*
 1890  * Implement receive operations on a socket.  We depend on the way that
 1891  * records are added to the sockbuf by sbappend.  In particular, each record
 1892  * (mbufs linked through m_next) must begin with an address if the protocol
 1893  * so specifies, followed by an optional mbuf or mbufs containing ancillary
 1894  * data, and then zero or more mbufs of data.  In order to allow parallelism
 1895  * between network receive and copying to user space, as well as avoid
 1896  * sleeping with a mutex held, we release the socket buffer mutex during the
 1897  * user space copy.  Although the sockbuf is locked, new data may still be
 1898  * appended, and thus we must maintain consistency of the sockbuf during that
 1899  * time.
 1900  *
 1901  * The caller may receive the data as a single mbuf chain by supplying an
 1902  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
 1903  * the count in uio_resid.
 1904  */
 1905 int
 1906 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
 1907     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 1908 {
 1909         struct mbuf *m, **mp;
 1910         int flags, error, offset;
 1911         ssize_t len;
 1912         struct protosw *pr = so->so_proto;
 1913         struct mbuf *nextrecord;
 1914         int moff, type = 0;
 1915         ssize_t orig_resid = uio->uio_resid;
 1916 
 1917         mp = mp0;
 1918         if (psa != NULL)
 1919                 *psa = NULL;
 1920         if (controlp != NULL)
 1921                 *controlp = NULL;
 1922         if (flagsp != NULL)
 1923                 flags = *flagsp &~ MSG_EOR;
 1924         else
 1925                 flags = 0;
 1926         if (flags & MSG_OOB)
 1927                 return (soreceive_rcvoob(so, uio, flags));
 1928         if (mp != NULL)
 1929                 *mp = NULL;
 1930         if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
 1931             && uio->uio_resid) {
 1932                 VNET_SO_ASSERT(so);
 1933                 (*pr->pr_usrreqs->pru_rcvd)(so, 0);
 1934         }
 1935 
 1936         error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
 1937         if (error)
 1938                 return (error);
 1939 
 1940 restart:
 1941         SOCKBUF_LOCK(&so->so_rcv);
 1942         m = so->so_rcv.sb_mb;
 1943         /*
 1944          * If we have less data than requested, block awaiting more (subject
 1945          * to any timeout) if:
 1946          *   1. the current count is less than the low water mark, or
 1947          *   2. MSG_DONTWAIT is not set
 1948          */
 1949         if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
 1950             sbavail(&so->so_rcv) < uio->uio_resid) &&
 1951             sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
 1952             m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
 1953                 KASSERT(m != NULL || !sbavail(&so->so_rcv),
 1954                     ("receive: m == %p sbavail == %u",
 1955                     m, sbavail(&so->so_rcv)));
 1956                 if (so->so_error) {
 1957                         if (m != NULL)
 1958                                 goto dontblock;
 1959                         error = so->so_error;
 1960                         if ((flags & MSG_PEEK) == 0)
 1961                                 so->so_error = 0;
 1962                         SOCKBUF_UNLOCK(&so->so_rcv);
 1963                         goto release;
 1964                 }
 1965                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1966                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 1967                         if (m != NULL)
 1968                                 goto dontblock;
 1969 #ifdef KERN_TLS
 1970                         else if (so->so_rcv.sb_tlsdcc == 0 &&
 1971                             so->so_rcv.sb_tlscc == 0) {
 1972 #else
 1973                         else {
 1974 #endif
 1975                                 SOCKBUF_UNLOCK(&so->so_rcv);
 1976                                 goto release;
 1977                         }
 1978                 }
 1979                 for (; m != NULL; m = m->m_next)
 1980                         if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
 1981                                 m = so->so_rcv.sb_mb;
 1982                                 goto dontblock;
 1983                         }
 1984                 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
 1985                     SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
 1986                     (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
 1987                         SOCKBUF_UNLOCK(&so->so_rcv);
 1988                         error = ENOTCONN;
 1989                         goto release;
 1990                 }
 1991                 if (uio->uio_resid == 0) {
 1992                         SOCKBUF_UNLOCK(&so->so_rcv);
 1993                         goto release;
 1994                 }
 1995                 if ((so->so_state & SS_NBIO) ||
 1996                     (flags & (MSG_DONTWAIT|MSG_NBIO))) {
 1997                         SOCKBUF_UNLOCK(&so->so_rcv);
 1998                         error = EWOULDBLOCK;
 1999                         goto release;
 2000                 }
 2001                 SBLASTRECORDCHK(&so->so_rcv);
 2002                 SBLASTMBUFCHK(&so->so_rcv);
 2003                 error = sbwait(&so->so_rcv);
 2004                 SOCKBUF_UNLOCK(&so->so_rcv);
 2005                 if (error)
 2006                         goto release;
 2007                 goto restart;
 2008         }
 2009 dontblock:
 2010         /*
 2011          * From this point onward, we maintain 'nextrecord' as a cache of the
 2012          * pointer to the next record in the socket buffer.  We must keep the
 2013          * various socket buffer pointers and local stack versions of the
 2014          * pointers in sync, pushing out modifications before dropping the
 2015          * socket buffer mutex, and re-reading them when picking it up.
 2016          *
 2017          * Otherwise, we will race with the network stack appending new data
 2018          * or records onto the socket buffer by using inconsistent/stale
 2019          * versions of the field, possibly resulting in socket buffer
 2020          * corruption.
 2021          *
 2022          * By holding the high-level sblock(), we prevent simultaneous
 2023          * readers from pulling off the front of the socket buffer.
 2024          */
 2025         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2026         if (uio->uio_td)
 2027                 uio->uio_td->td_ru.ru_msgrcv++;
 2028         KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
 2029         SBLASTRECORDCHK(&so->so_rcv);
 2030         SBLASTMBUFCHK(&so->so_rcv);
 2031         nextrecord = m->m_nextpkt;
 2032         if (pr->pr_flags & PR_ADDR) {
 2033                 KASSERT(m->m_type == MT_SONAME,
 2034                     ("m->m_type == %d", m->m_type));
 2035                 orig_resid = 0;
 2036                 if (psa != NULL)
 2037                         *psa = sodupsockaddr(mtod(m, struct sockaddr *),
 2038                             M_NOWAIT);
 2039                 if (flags & MSG_PEEK) {
 2040                         m = m->m_next;
 2041                 } else {
 2042                         sbfree(&so->so_rcv, m);
 2043                         so->so_rcv.sb_mb = m_free(m);
 2044                         m = so->so_rcv.sb_mb;
 2045                         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2046                 }
 2047         }
 2048 
 2049         /*
 2050          * Process one or more MT_CONTROL mbufs present before any data mbufs
 2051          * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
 2052          * just copy the data; if !MSG_PEEK, we call into the protocol to
 2053          * perform externalization (or freeing if controlp == NULL).
 2054          */
 2055         if (m != NULL && m->m_type == MT_CONTROL) {
 2056                 struct mbuf *cm = NULL, *cmn;
 2057                 struct mbuf **cme = &cm;
 2058 #ifdef KERN_TLS
 2059                 struct cmsghdr *cmsg;
 2060                 struct tls_get_record tgr;
 2061 
 2062                 /*
 2063                  * For MSG_TLSAPPDATA, check for a non-application data
 2064                  * record.  If found, return ENXIO without removing
 2065                  * it from the receive queue.  This allows a subsequent
 2066                  * call without MSG_TLSAPPDATA to receive it.
 2067                  * Note that, for TLS, there should only be a single
 2068                  * control mbuf with the TLS_GET_RECORD message in it.
 2069                  */
 2070                 if (flags & MSG_TLSAPPDATA) {
 2071                         cmsg = mtod(m, struct cmsghdr *);
 2072                         if (cmsg->cmsg_type == TLS_GET_RECORD &&
 2073                             cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
 2074                                 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
 2075                                 /* This will need to change for TLS 1.3. */
 2076                                 if (tgr.tls_type != TLS_RLTYPE_APP) {
 2077                                         SOCKBUF_UNLOCK(&so->so_rcv);
 2078                                         error = ENXIO;
 2079                                         goto release;
 2080                                 }
 2081                         }
 2082                 }
 2083 #endif
 2084 
 2085                 do {
 2086                         if (flags & MSG_PEEK) {
 2087                                 if (controlp != NULL) {
 2088                                         *controlp = m_copym(m, 0, m->m_len,
 2089                                             M_NOWAIT);
 2090                                         controlp = &(*controlp)->m_next;
 2091                                 }
 2092                                 m = m->m_next;
 2093                         } else {
 2094                                 sbfree(&so->so_rcv, m);
 2095                                 so->so_rcv.sb_mb = m->m_next;
 2096                                 m->m_next = NULL;
 2097                                 *cme = m;
 2098                                 cme = &(*cme)->m_next;
 2099                                 m = so->so_rcv.sb_mb;
 2100                         }
 2101                 } while (m != NULL && m->m_type == MT_CONTROL);
 2102                 if ((flags & MSG_PEEK) == 0)
 2103                         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2104                 while (cm != NULL) {
 2105                         cmn = cm->m_next;
 2106                         cm->m_next = NULL;
 2107                         if (pr->pr_domain->dom_externalize != NULL) {
 2108                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2109                                 VNET_SO_ASSERT(so);
 2110                                 error = (*pr->pr_domain->dom_externalize)
 2111                                     (cm, controlp, flags);
 2112                                 SOCKBUF_LOCK(&so->so_rcv);
 2113                         } else if (controlp != NULL)
 2114                                 *controlp = cm;
 2115                         else
 2116                                 m_freem(cm);
 2117                         if (controlp != NULL) {
 2118                                 orig_resid = 0;
 2119                                 while (*controlp != NULL)
 2120                                         controlp = &(*controlp)->m_next;
 2121                         }
 2122                         cm = cmn;
 2123                 }
 2124                 if (m != NULL)
 2125                         nextrecord = so->so_rcv.sb_mb->m_nextpkt;
 2126                 else
 2127                         nextrecord = so->so_rcv.sb_mb;
 2128                 orig_resid = 0;
 2129         }
 2130         if (m != NULL) {
 2131                 if ((flags & MSG_PEEK) == 0) {
 2132                         KASSERT(m->m_nextpkt == nextrecord,
 2133                             ("soreceive: post-control, nextrecord !sync"));
 2134                         if (nextrecord == NULL) {
 2135                                 KASSERT(so->so_rcv.sb_mb == m,
 2136                                     ("soreceive: post-control, sb_mb!=m"));
 2137                                 KASSERT(so->so_rcv.sb_lastrecord == m,
 2138                                     ("soreceive: post-control, lastrecord!=m"));
 2139                         }
 2140                 }
 2141                 type = m->m_type;
 2142                 if (type == MT_OOBDATA)
 2143                         flags |= MSG_OOB;
 2144         } else {
 2145                 if ((flags & MSG_PEEK) == 0) {
 2146                         KASSERT(so->so_rcv.sb_mb == nextrecord,
 2147                             ("soreceive: sb_mb != nextrecord"));
 2148                         if (so->so_rcv.sb_mb == NULL) {
 2149                                 KASSERT(so->so_rcv.sb_lastrecord == NULL,
 2150                                     ("soreceive: sb_lastercord != NULL"));
 2151                         }
 2152                 }
 2153         }
 2154         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2155         SBLASTRECORDCHK(&so->so_rcv);
 2156         SBLASTMBUFCHK(&so->so_rcv);
 2157 
 2158         /*
 2159          * Now continue to read any data mbufs off of the head of the socket
 2160          * buffer until the read request is satisfied.  Note that 'type' is
 2161          * used to store the type of any mbuf reads that have happened so far
 2162          * such that soreceive() can stop reading if the type changes, which
 2163          * causes soreceive() to return only one of regular data and inline
 2164          * out-of-band data in a single socket receive operation.
 2165          */
 2166         moff = 0;
 2167         offset = 0;
 2168         while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
 2169             && error == 0) {
 2170                 /*
 2171                  * If the type of mbuf has changed since the last mbuf
 2172                  * examined ('type'), end the receive operation.
 2173                  */
 2174                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2175                 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
 2176                         if (type != m->m_type)
 2177                                 break;
 2178                 } else if (type == MT_OOBDATA)
 2179                         break;
 2180                 else
 2181                     KASSERT(m->m_type == MT_DATA,
 2182                         ("m->m_type == %d", m->m_type));
 2183                 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
 2184                 len = uio->uio_resid;
 2185                 if (so->so_oobmark && len > so->so_oobmark - offset)
 2186                         len = so->so_oobmark - offset;
 2187                 if (len > m->m_len - moff)
 2188                         len = m->m_len - moff;
 2189                 /*
 2190                  * If mp is set, just pass back the mbufs.  Otherwise copy
 2191                  * them out via the uio, then free.  Sockbuf must be
 2192                  * consistent here (points to current mbuf, it points to next
 2193                  * record) when we drop priority; we must note any additions
 2194                  * to the sockbuf when we block interrupts again.
 2195                  */
 2196                 if (mp == NULL) {
 2197                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2198                         SBLASTRECORDCHK(&so->so_rcv);
 2199                         SBLASTMBUFCHK(&so->so_rcv);
 2200                         SOCKBUF_UNLOCK(&so->so_rcv);
 2201                         if ((m->m_flags & M_EXTPG) != 0)
 2202                                 error = m_unmappedtouio(m, moff, uio, (int)len);
 2203                         else
 2204                                 error = uiomove(mtod(m, char *) + moff,
 2205                                     (int)len, uio);
 2206                         SOCKBUF_LOCK(&so->so_rcv);
 2207                         if (error) {
 2208                                 /*
 2209                                  * The MT_SONAME mbuf has already been removed
 2210                                  * from the record, so it is necessary to
 2211                                  * remove the data mbufs, if any, to preserve
 2212                                  * the invariant in the case of PR_ADDR that
 2213                                  * requires MT_SONAME mbufs at the head of
 2214                                  * each record.
 2215                                  */
 2216                                 if (pr->pr_flags & PR_ATOMIC &&
 2217                                     ((flags & MSG_PEEK) == 0))
 2218                                         (void)sbdroprecord_locked(&so->so_rcv);
 2219                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2220                                 goto release;
 2221                         }
 2222                 } else
 2223                         uio->uio_resid -= len;
 2224                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2225                 if (len == m->m_len - moff) {
 2226                         if (m->m_flags & M_EOR)
 2227                                 flags |= MSG_EOR;
 2228                         if (flags & MSG_PEEK) {
 2229                                 m = m->m_next;
 2230                                 moff = 0;
 2231                         } else {
 2232                                 nextrecord = m->m_nextpkt;
 2233                                 sbfree(&so->so_rcv, m);
 2234                                 if (mp != NULL) {
 2235                                         m->m_nextpkt = NULL;
 2236                                         *mp = m;
 2237                                         mp = &m->m_next;
 2238                                         so->so_rcv.sb_mb = m = m->m_next;
 2239                                         *mp = NULL;
 2240                                 } else {
 2241                                         so->so_rcv.sb_mb = m_free(m);
 2242                                         m = so->so_rcv.sb_mb;
 2243                                 }
 2244                                 sockbuf_pushsync(&so->so_rcv, nextrecord);
 2245                                 SBLASTRECORDCHK(&so->so_rcv);
 2246                                 SBLASTMBUFCHK(&so->so_rcv);
 2247                         }
 2248                 } else {
 2249                         if (flags & MSG_PEEK)
 2250                                 moff += len;
 2251                         else {
 2252                                 if (mp != NULL) {
 2253                                         if (flags & MSG_DONTWAIT) {
 2254                                                 *mp = m_copym(m, 0, len,
 2255                                                     M_NOWAIT);
 2256                                                 if (*mp == NULL) {
 2257                                                         /*
 2258                                                          * m_copym() couldn't
 2259                                                          * allocate an mbuf.
 2260                                                          * Adjust uio_resid back
 2261                                                          * (it was adjusted
 2262                                                          * down by len bytes,
 2263                                                          * which we didn't end
 2264                                                          * up "copying" over).
 2265                                                          */
 2266                                                         uio->uio_resid += len;
 2267                                                         break;
 2268                                                 }
 2269                                         } else {
 2270                                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2271                                                 *mp = m_copym(m, 0, len,
 2272                                                     M_WAITOK);
 2273                                                 SOCKBUF_LOCK(&so->so_rcv);
 2274                                         }
 2275                                 }
 2276                                 sbcut_locked(&so->so_rcv, len);
 2277                         }
 2278                 }
 2279                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2280                 if (so->so_oobmark) {
 2281                         if ((flags & MSG_PEEK) == 0) {
 2282                                 so->so_oobmark -= len;
 2283                                 if (so->so_oobmark == 0) {
 2284                                         so->so_rcv.sb_state |= SBS_RCVATMARK;
 2285                                         break;
 2286                                 }
 2287                         } else {
 2288                                 offset += len;
 2289                                 if (offset == so->so_oobmark)
 2290                                         break;
 2291                         }
 2292                 }
 2293                 if (flags & MSG_EOR)
 2294                         break;
 2295                 /*
 2296                  * If the MSG_WAITALL flag is set (for non-atomic socket), we
 2297                  * must not quit until "uio->uio_resid == 0" or an error
 2298                  * termination.  If a signal/timeout occurs, return with a
 2299                  * short count but without error.  Keep sockbuf locked
 2300                  * against other readers.
 2301                  */
 2302                 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
 2303                     !sosendallatonce(so) && nextrecord == NULL) {
 2304                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2305                         if (so->so_error ||
 2306                             so->so_rcv.sb_state & SBS_CANTRCVMORE)
 2307                                 break;
 2308                         /*
 2309                          * Notify the protocol that some data has been
 2310                          * drained before blocking.
 2311                          */
 2312                         if (pr->pr_flags & PR_WANTRCVD) {
 2313                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2314                                 VNET_SO_ASSERT(so);
 2315                                 (*pr->pr_usrreqs->pru_rcvd)(so, flags);
 2316                                 SOCKBUF_LOCK(&so->so_rcv);
 2317                         }
 2318                         SBLASTRECORDCHK(&so->so_rcv);
 2319                         SBLASTMBUFCHK(&so->so_rcv);
 2320                         /*
 2321                          * We could receive some data while was notifying
 2322                          * the protocol. Skip blocking in this case.
 2323                          */
 2324                         if (so->so_rcv.sb_mb == NULL) {
 2325                                 error = sbwait(&so->so_rcv);
 2326                                 if (error) {
 2327                                         SOCKBUF_UNLOCK(&so->so_rcv);
 2328                                         goto release;
 2329                                 }
 2330                         }
 2331                         m = so->so_rcv.sb_mb;
 2332                         if (m != NULL)
 2333                                 nextrecord = m->m_nextpkt;
 2334                 }
 2335         }
 2336 
 2337         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2338         if (m != NULL && pr->pr_flags & PR_ATOMIC) {
 2339                 flags |= MSG_TRUNC;
 2340                 if ((flags & MSG_PEEK) == 0)
 2341                         (void) sbdroprecord_locked(&so->so_rcv);
 2342         }
 2343         if ((flags & MSG_PEEK) == 0) {
 2344                 if (m == NULL) {
 2345                         /*
 2346                          * First part is an inline SB_EMPTY_FIXUP().  Second
 2347                          * part makes sure sb_lastrecord is up-to-date if
 2348                          * there is still data in the socket buffer.
 2349                          */
 2350                         so->so_rcv.sb_mb = nextrecord;
 2351                         if (so->so_rcv.sb_mb == NULL) {
 2352                                 so->so_rcv.sb_mbtail = NULL;
 2353                                 so->so_rcv.sb_lastrecord = NULL;
 2354                         } else if (nextrecord->m_nextpkt == NULL)
 2355                                 so->so_rcv.sb_lastrecord = nextrecord;
 2356                 }
 2357                 SBLASTRECORDCHK(&so->so_rcv);
 2358                 SBLASTMBUFCHK(&so->so_rcv);
 2359                 /*
 2360                  * If soreceive() is being done from the socket callback,
 2361                  * then don't need to generate ACK to peer to update window,
 2362                  * since ACK will be generated on return to TCP.
 2363                  */
 2364                 if (!(flags & MSG_SOCALLBCK) &&
 2365                     (pr->pr_flags & PR_WANTRCVD)) {
 2366                         SOCKBUF_UNLOCK(&so->so_rcv);
 2367                         VNET_SO_ASSERT(so);
 2368                         (*pr->pr_usrreqs->pru_rcvd)(so, flags);
 2369                         SOCKBUF_LOCK(&so->so_rcv);
 2370                 }
 2371         }
 2372         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2373         if (orig_resid == uio->uio_resid && orig_resid &&
 2374             (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
 2375                 SOCKBUF_UNLOCK(&so->so_rcv);
 2376                 goto restart;
 2377         }
 2378         SOCKBUF_UNLOCK(&so->so_rcv);
 2379 
 2380         if (flagsp != NULL)
 2381                 *flagsp |= flags;
 2382 release:
 2383         sbunlock(&so->so_rcv);
 2384         return (error);
 2385 }
 2386 
 2387 /*
 2388  * Optimized version of soreceive() for stream (TCP) sockets.
 2389  */
 2390 int
 2391 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2392     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2393 {
 2394         int len = 0, error = 0, flags, oresid;
 2395         struct sockbuf *sb;
 2396         struct mbuf *m, *n = NULL;
 2397 
 2398         /* We only do stream sockets. */
 2399         if (so->so_type != SOCK_STREAM)
 2400                 return (EINVAL);
 2401         if (psa != NULL)
 2402                 *psa = NULL;
 2403         if (flagsp != NULL)
 2404                 flags = *flagsp &~ MSG_EOR;
 2405         else
 2406                 flags = 0;
 2407         if (controlp != NULL)
 2408                 *controlp = NULL;
 2409         if (flags & MSG_OOB)
 2410                 return (soreceive_rcvoob(so, uio, flags));
 2411         if (mp0 != NULL)
 2412                 *mp0 = NULL;
 2413 
 2414         sb = &so->so_rcv;
 2415 
 2416 #ifdef KERN_TLS
 2417         /*
 2418          * KTLS store TLS records as records with a control message to
 2419          * describe the framing.
 2420          *
 2421          * We check once here before acquiring locks to optimize the
 2422          * common case.
 2423          */
 2424         if (sb->sb_tls_info != NULL)
 2425                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2426                     flagsp));
 2427 #endif
 2428 
 2429         /* Prevent other readers from entering the socket. */
 2430         error = sblock(sb, SBLOCKWAIT(flags));
 2431         if (error)
 2432                 return (error);
 2433         SOCKBUF_LOCK(sb);
 2434 
 2435 #ifdef KERN_TLS
 2436         if (sb->sb_tls_info != NULL) {
 2437                 SOCKBUF_UNLOCK(sb);
 2438                 sbunlock(sb);
 2439                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2440                     flagsp));
 2441         }
 2442 #endif
 2443 
 2444         /* Easy one, no space to copyout anything. */
 2445         if (uio->uio_resid == 0) {
 2446                 error = EINVAL;
 2447                 goto out;
 2448         }
 2449         oresid = uio->uio_resid;
 2450 
 2451         /* We will never ever get anything unless we are or were connected. */
 2452         if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
 2453                 error = ENOTCONN;
 2454                 goto out;
 2455         }
 2456 
 2457 restart:
 2458         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2459 
 2460         /* Abort if socket has reported problems. */
 2461         if (so->so_error) {
 2462                 if (sbavail(sb) > 0)
 2463                         goto deliver;
 2464                 if (oresid > uio->uio_resid)
 2465                         goto out;
 2466                 error = so->so_error;
 2467                 if (!(flags & MSG_PEEK))
 2468                         so->so_error = 0;
 2469                 goto out;
 2470         }
 2471 
 2472         /* Door is closed.  Deliver what is left, if any. */
 2473         if (sb->sb_state & SBS_CANTRCVMORE) {
 2474                 if (sbavail(sb) > 0)
 2475                         goto deliver;
 2476                 else
 2477                         goto out;
 2478         }
 2479 
 2480         /* Socket buffer is empty and we shall not block. */
 2481         if (sbavail(sb) == 0 &&
 2482             ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
 2483                 error = EAGAIN;
 2484                 goto out;
 2485         }
 2486 
 2487         /* Socket buffer got some data that we shall deliver now. */
 2488         if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
 2489             ((so->so_state & SS_NBIO) ||
 2490              (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
 2491              sbavail(sb) >= sb->sb_lowat ||
 2492              sbavail(sb) >= uio->uio_resid ||
 2493              sbavail(sb) >= sb->sb_hiwat) ) {
 2494                 goto deliver;
 2495         }
 2496 
 2497         /* On MSG_WAITALL we must wait until all data or error arrives. */
 2498         if ((flags & MSG_WAITALL) &&
 2499             (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
 2500                 goto deliver;
 2501 
 2502         /*
 2503          * Wait and block until (more) data comes in.
 2504          * NB: Drops the sockbuf lock during wait.
 2505          */
 2506         error = sbwait(sb);
 2507         if (error)
 2508                 goto out;
 2509         goto restart;
 2510 
 2511 deliver:
 2512         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2513         KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
 2514         KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
 2515 
 2516         /* Statistics. */
 2517         if (uio->uio_td)
 2518                 uio->uio_td->td_ru.ru_msgrcv++;
 2519 
 2520         /* Fill uio until full or current end of socket buffer is reached. */
 2521         len = min(uio->uio_resid, sbavail(sb));
 2522         if (mp0 != NULL) {
 2523                 /* Dequeue as many mbufs as possible. */
 2524                 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
 2525                         if (*mp0 == NULL)
 2526                                 *mp0 = sb->sb_mb;
 2527                         else
 2528                                 m_cat(*mp0, sb->sb_mb);
 2529                         for (m = sb->sb_mb;
 2530                              m != NULL && m->m_len <= len;
 2531                              m = m->m_next) {
 2532                                 KASSERT(!(m->m_flags & M_NOTAVAIL),
 2533                                     ("%s: m %p not available", __func__, m));
 2534                                 len -= m->m_len;
 2535                                 uio->uio_resid -= m->m_len;
 2536                                 sbfree(sb, m);
 2537                                 n = m;
 2538                         }
 2539                         n->m_next = NULL;
 2540                         sb->sb_mb = m;
 2541                         sb->sb_lastrecord = sb->sb_mb;
 2542                         if (sb->sb_mb == NULL)
 2543                                 SB_EMPTY_FIXUP(sb);
 2544                 }
 2545                 /* Copy the remainder. */
 2546                 if (len > 0) {
 2547                         KASSERT(sb->sb_mb != NULL,
 2548                             ("%s: len > 0 && sb->sb_mb empty", __func__));
 2549 
 2550                         m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
 2551                         if (m == NULL)
 2552                                 len = 0;        /* Don't flush data from sockbuf. */
 2553                         else
 2554                                 uio->uio_resid -= len;
 2555                         if (*mp0 != NULL)
 2556                                 m_cat(*mp0, m);
 2557                         else
 2558                                 *mp0 = m;
 2559                         if (*mp0 == NULL) {
 2560                                 error = ENOBUFS;
 2561                                 goto out;
 2562                         }
 2563                 }
 2564         } else {
 2565                 /* NB: Must unlock socket buffer as uiomove may sleep. */
 2566                 SOCKBUF_UNLOCK(sb);
 2567                 error = m_mbuftouio(uio, sb->sb_mb, len);
 2568                 SOCKBUF_LOCK(sb);
 2569                 if (error)
 2570                         goto out;
 2571         }
 2572         SBLASTRECORDCHK(sb);
 2573         SBLASTMBUFCHK(sb);
 2574 
 2575         /*
 2576          * Remove the delivered data from the socket buffer unless we
 2577          * were only peeking.
 2578          */
 2579         if (!(flags & MSG_PEEK)) {
 2580                 if (len > 0)
 2581                         sbdrop_locked(sb, len);
 2582 
 2583                 /* Notify protocol that we drained some data. */
 2584                 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
 2585                     (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
 2586                      !(flags & MSG_SOCALLBCK))) {
 2587                         SOCKBUF_UNLOCK(sb);
 2588                         VNET_SO_ASSERT(so);
 2589                         (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
 2590                         SOCKBUF_LOCK(sb);
 2591                 }
 2592         }
 2593 
 2594         /*
 2595          * For MSG_WAITALL we may have to loop again and wait for
 2596          * more data to come in.
 2597          */
 2598         if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
 2599                 goto restart;
 2600 out:
 2601         SOCKBUF_LOCK_ASSERT(sb);
 2602         SBLASTRECORDCHK(sb);
 2603         SBLASTMBUFCHK(sb);
 2604         SOCKBUF_UNLOCK(sb);
 2605         sbunlock(sb);
 2606         return (error);
 2607 }
 2608 
 2609 /*
 2610  * Optimized version of soreceive() for simple datagram cases from userspace.
 2611  * Unlike in the stream case, we're able to drop a datagram if copyout()
 2612  * fails, and because we handle datagrams atomically, we don't need to use a
 2613  * sleep lock to prevent I/O interlacing.
 2614  */
 2615 int
 2616 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2617     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2618 {
 2619         struct mbuf *m, *m2;
 2620         int flags, error;
 2621         ssize_t len;
 2622         struct protosw *pr = so->so_proto;
 2623         struct mbuf *nextrecord;
 2624 
 2625         if (psa != NULL)
 2626                 *psa = NULL;
 2627         if (controlp != NULL)
 2628                 *controlp = NULL;
 2629         if (flagsp != NULL)
 2630                 flags = *flagsp &~ MSG_EOR;
 2631         else
 2632                 flags = 0;
 2633 
 2634         /*
 2635          * For any complicated cases, fall back to the full
 2636          * soreceive_generic().
 2637          */
 2638         if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
 2639                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2640                     flagsp));
 2641 
 2642         /*
 2643          * Enforce restrictions on use.
 2644          */
 2645         KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
 2646             ("soreceive_dgram: wantrcvd"));
 2647         KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
 2648         KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
 2649             ("soreceive_dgram: SBS_RCVATMARK"));
 2650         KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
 2651             ("soreceive_dgram: P_CONNREQUIRED"));
 2652 
 2653         /*
 2654          * Loop blocking while waiting for a datagram.
 2655          */
 2656         SOCKBUF_LOCK(&so->so_rcv);
 2657         while ((m = so->so_rcv.sb_mb) == NULL) {
 2658                 KASSERT(sbavail(&so->so_rcv) == 0,
 2659                     ("soreceive_dgram: sb_mb NULL but sbavail %u",
 2660                     sbavail(&so->so_rcv)));
 2661                 if (so->so_error) {
 2662                         error = so->so_error;
 2663                         so->so_error = 0;
 2664                         SOCKBUF_UNLOCK(&so->so_rcv);
 2665                         return (error);
 2666                 }
 2667                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
 2668                     uio->uio_resid == 0) {
 2669                         SOCKBUF_UNLOCK(&so->so_rcv);
 2670                         return (0);
 2671                 }
 2672                 if ((so->so_state & SS_NBIO) ||
 2673                     (flags & (MSG_DONTWAIT|MSG_NBIO))) {
 2674                         SOCKBUF_UNLOCK(&so->so_rcv);
 2675                         return (EWOULDBLOCK);
 2676                 }
 2677                 SBLASTRECORDCHK(&so->so_rcv);
 2678                 SBLASTMBUFCHK(&so->so_rcv);
 2679                 error = sbwait(&so->so_rcv);
 2680                 if (error) {
 2681                         SOCKBUF_UNLOCK(&so->so_rcv);
 2682                         return (error);
 2683                 }
 2684         }
 2685         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2686 
 2687         if (uio->uio_td)
 2688                 uio->uio_td->td_ru.ru_msgrcv++;
 2689         SBLASTRECORDCHK(&so->so_rcv);
 2690         SBLASTMBUFCHK(&so->so_rcv);
 2691         nextrecord = m->m_nextpkt;
 2692         if (nextrecord == NULL) {
 2693                 KASSERT(so->so_rcv.sb_lastrecord == m,
 2694                     ("soreceive_dgram: lastrecord != m"));
 2695         }
 2696 
 2697         KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
 2698             ("soreceive_dgram: m_nextpkt != nextrecord"));
 2699 
 2700         /*
 2701          * Pull 'm' and its chain off the front of the packet queue.
 2702          */
 2703         so->so_rcv.sb_mb = NULL;
 2704         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2705 
 2706         /*
 2707          * Walk 'm's chain and free that many bytes from the socket buffer.
 2708          */
 2709         for (m2 = m; m2 != NULL; m2 = m2->m_next)
 2710                 sbfree(&so->so_rcv, m2);
 2711 
 2712         /*
 2713          * Do a few last checks before we let go of the lock.
 2714          */
 2715         SBLASTRECORDCHK(&so->so_rcv);
 2716         SBLASTMBUFCHK(&so->so_rcv);
 2717         SOCKBUF_UNLOCK(&so->so_rcv);
 2718 
 2719         if (pr->pr_flags & PR_ADDR) {
 2720                 KASSERT(m->m_type == MT_SONAME,
 2721                     ("m->m_type == %d", m->m_type));
 2722                 if (psa != NULL)
 2723                         *psa = sodupsockaddr(mtod(m, struct sockaddr *),
 2724                             M_NOWAIT);
 2725                 m = m_free(m);
 2726         }
 2727         if (m == NULL) {
 2728                 /* XXXRW: Can this happen? */
 2729                 return (0);
 2730         }
 2731 
 2732         /*
 2733          * Packet to copyout() is now in 'm' and it is disconnected from the
 2734          * queue.
 2735          *
 2736          * Process one or more MT_CONTROL mbufs present before any data mbufs
 2737          * in the first mbuf chain on the socket buffer.  We call into the
 2738          * protocol to perform externalization (or freeing if controlp ==
 2739          * NULL). In some cases there can be only MT_CONTROL mbufs without
 2740          * MT_DATA mbufs.
 2741          */
 2742         if (m->m_type == MT_CONTROL) {
 2743                 struct mbuf *cm = NULL, *cmn;
 2744                 struct mbuf **cme = &cm;
 2745 
 2746                 do {
 2747                         m2 = m->m_next;
 2748                         m->m_next = NULL;
 2749                         *cme = m;
 2750                         cme = &(*cme)->m_next;
 2751                         m = m2;
 2752                 } while (m != NULL && m->m_type == MT_CONTROL);
 2753                 while (cm != NULL) {
 2754                         cmn = cm->m_next;
 2755                         cm->m_next = NULL;
 2756                         if (pr->pr_domain->dom_externalize != NULL) {
 2757                                 error = (*pr->pr_domain->dom_externalize)
 2758                                     (cm, controlp, flags);
 2759                         } else if (controlp != NULL)
 2760                                 *controlp = cm;
 2761                         else
 2762                                 m_freem(cm);
 2763                         if (controlp != NULL) {
 2764                                 while (*controlp != NULL)
 2765                                         controlp = &(*controlp)->m_next;
 2766                         }
 2767                         cm = cmn;
 2768                 }
 2769         }
 2770         KASSERT(m == NULL || m->m_type == MT_DATA,
 2771             ("soreceive_dgram: !data"));
 2772         while (m != NULL && uio->uio_resid > 0) {
 2773                 len = uio->uio_resid;
 2774                 if (len > m->m_len)
 2775                         len = m->m_len;
 2776                 error = uiomove(mtod(m, char *), (int)len, uio);
 2777                 if (error) {
 2778                         m_freem(m);
 2779                         return (error);
 2780                 }
 2781                 if (len == m->m_len)
 2782                         m = m_free(m);
 2783                 else {
 2784                         m->m_data += len;
 2785                         m->m_len -= len;
 2786                 }
 2787         }
 2788         if (m != NULL) {
 2789                 flags |= MSG_TRUNC;
 2790                 m_freem(m);
 2791         }
 2792         if (flagsp != NULL)
 2793                 *flagsp |= flags;
 2794         return (0);
 2795 }
 2796 
 2797 int
 2798 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2799     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2800 {
 2801         int error;
 2802 
 2803         CURVNET_SET(so->so_vnet);
 2804         if (!SOLISTENING(so))
 2805                 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio,
 2806                     mp0, controlp, flagsp));
 2807         else
 2808                 error = ENOTCONN;
 2809         CURVNET_RESTORE();
 2810         return (error);
 2811 }
 2812 
 2813 int
 2814 soshutdown(struct socket *so, int how)
 2815 {
 2816         struct protosw *pr = so->so_proto;
 2817         int error, soerror_enotconn;
 2818 
 2819         if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
 2820                 return (EINVAL);
 2821 
 2822         soerror_enotconn = 0;
 2823         if ((so->so_state &
 2824             (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
 2825                 /*
 2826                  * POSIX mandates us to return ENOTCONN when shutdown(2) is
 2827                  * invoked on a datagram sockets, however historically we would
 2828                  * actually tear socket down. This is known to be leveraged by
 2829                  * some applications to unblock process waiting in recvXXX(2)
 2830                  * by other process that it shares that socket with. Try to meet
 2831                  * both backward-compatibility and POSIX requirements by forcing
 2832                  * ENOTCONN but still asking protocol to perform pru_shutdown().
 2833                  */
 2834                 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so))
 2835                         return (ENOTCONN);
 2836                 soerror_enotconn = 1;
 2837         }
 2838 
 2839         if (SOLISTENING(so)) {
 2840                 if (how != SHUT_WR) {
 2841                         SOLISTEN_LOCK(so);
 2842                         so->so_error = ECONNABORTED;
 2843                         solisten_wakeup(so);    /* unlocks so */
 2844                 }
 2845                 goto done;
 2846         }
 2847 
 2848         CURVNET_SET(so->so_vnet);
 2849         if (pr->pr_usrreqs->pru_flush != NULL)
 2850                 (*pr->pr_usrreqs->pru_flush)(so, how);
 2851         if (how != SHUT_WR)
 2852                 sorflush(so);
 2853         if (how != SHUT_RD) {
 2854                 error = (*pr->pr_usrreqs->pru_shutdown)(so);
 2855                 wakeup(&so->so_timeo);
 2856                 CURVNET_RESTORE();
 2857                 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
 2858         }
 2859         wakeup(&so->so_timeo);
 2860         CURVNET_RESTORE();
 2861 
 2862 done:
 2863         return (soerror_enotconn ? ENOTCONN : 0);
 2864 }
 2865 
 2866 void
 2867 sorflush(struct socket *so)
 2868 {
 2869         struct sockbuf *sb = &so->so_rcv;
 2870         struct protosw *pr = so->so_proto;
 2871         struct socket aso;
 2872 
 2873         VNET_SO_ASSERT(so);
 2874 
 2875         /*
 2876          * In order to avoid calling dom_dispose with the socket buffer mutex
 2877          * held, and in order to generally avoid holding the lock for a long
 2878          * time, we make a copy of the socket buffer and clear the original
 2879          * (except locks, state).  The new socket buffer copy won't have
 2880          * initialized locks so we can only call routines that won't use or
 2881          * assert those locks.
 2882          *
 2883          * Dislodge threads currently blocked in receive and wait to acquire
 2884          * a lock against other simultaneous readers before clearing the
 2885          * socket buffer.  Don't let our acquire be interrupted by a signal
 2886          * despite any existing socket disposition on interruptable waiting.
 2887          */
 2888         socantrcvmore(so);
 2889         (void) sblock(sb, SBL_WAIT | SBL_NOINTR);
 2890 
 2891         /*
 2892          * Invalidate/clear most of the sockbuf structure, but leave selinfo
 2893          * and mutex data unchanged.
 2894          */
 2895         SOCKBUF_LOCK(sb);
 2896         bzero(&aso, sizeof(aso));
 2897         aso.so_pcb = so->so_pcb;
 2898         bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
 2899             sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
 2900         bzero(&sb->sb_startzero,
 2901             sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
 2902         SOCKBUF_UNLOCK(sb);
 2903         sbunlock(sb);
 2904 
 2905         /*
 2906          * Dispose of special rights and flush the copied socket.  Don't call
 2907          * any unsafe routines (that rely on locks being initialized) on aso.
 2908          */
 2909         if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
 2910                 (*pr->pr_domain->dom_dispose)(&aso);
 2911         sbrelease_internal(&aso.so_rcv, so);
 2912 }
 2913 
 2914 /*
 2915  * Wrapper for Socket established helper hook.
 2916  * Parameters: socket, context of the hook point, hook id.
 2917  */
 2918 static int inline
 2919 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
 2920 {
 2921         struct socket_hhook_data hhook_data = {
 2922                 .so = so,
 2923                 .hctx = hctx,
 2924                 .m = NULL,
 2925                 .status = 0
 2926         };
 2927 
 2928         CURVNET_SET(so->so_vnet);
 2929         HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
 2930         CURVNET_RESTORE();
 2931 
 2932         /* Ugly but needed, since hhooks return void for now */
 2933         return (hhook_data.status);
 2934 }
 2935 
 2936 /*
 2937  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
 2938  * additional variant to handle the case where the option value needs to be
 2939  * some kind of integer, but not a specific size.  In addition to their use
 2940  * here, these functions are also called by the protocol-level pr_ctloutput()
 2941  * routines.
 2942  */
 2943 int
 2944 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
 2945 {
 2946         size_t  valsize;
 2947 
 2948         /*
 2949          * If the user gives us more than we wanted, we ignore it, but if we
 2950          * don't get the minimum length the caller wants, we return EINVAL.
 2951          * On success, sopt->sopt_valsize is set to however much we actually
 2952          * retrieved.
 2953          */
 2954         if ((valsize = sopt->sopt_valsize) < minlen)
 2955                 return EINVAL;
 2956         if (valsize > len)
 2957                 sopt->sopt_valsize = valsize = len;
 2958 
 2959         if (sopt->sopt_td != NULL)
 2960                 return (copyin(sopt->sopt_val, buf, valsize));
 2961 
 2962         bcopy(sopt->sopt_val, buf, valsize);
 2963         return (0);
 2964 }
 2965 
 2966 /*
 2967  * Kernel version of setsockopt(2).
 2968  *
 2969  * XXX: optlen is size_t, not socklen_t
 2970  */
 2971 int
 2972 so_setsockopt(struct socket *so, int level, int optname, void *optval,
 2973     size_t optlen)
 2974 {
 2975         struct sockopt sopt;
 2976 
 2977         sopt.sopt_level = level;
 2978         sopt.sopt_name = optname;
 2979         sopt.sopt_dir = SOPT_SET;
 2980         sopt.sopt_val = optval;
 2981         sopt.sopt_valsize = optlen;
 2982         sopt.sopt_td = NULL;
 2983         return (sosetopt(so, &sopt));
 2984 }
 2985 
 2986 int
 2987 sosetopt(struct socket *so, struct sockopt *sopt)
 2988 {
 2989         int     error, optval;
 2990         struct  linger l;
 2991         struct  timeval tv;
 2992         sbintime_t val;
 2993         uint32_t val32;
 2994 #ifdef MAC
 2995         struct mac extmac;
 2996 #endif
 2997 
 2998         CURVNET_SET(so->so_vnet);
 2999         error = 0;
 3000         if (sopt->sopt_level != SOL_SOCKET) {
 3001                 if (so->so_proto->pr_ctloutput != NULL)
 3002                         error = (*so->so_proto->pr_ctloutput)(so, sopt);
 3003                 else
 3004                         error = ENOPROTOOPT;
 3005         } else {
 3006                 switch (sopt->sopt_name) {
 3007                 case SO_ACCEPTFILTER:
 3008                         error = accept_filt_setopt(so, sopt);
 3009                         if (error)
 3010                                 goto bad;
 3011                         break;
 3012 
 3013                 case SO_LINGER:
 3014                         error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
 3015                         if (error)
 3016                                 goto bad;
 3017                         if (l.l_linger < 0 ||
 3018                             l.l_linger > USHRT_MAX ||
 3019                             l.l_linger > (INT_MAX / hz)) {
 3020                                 error = EDOM;
 3021                                 goto bad;
 3022                         }
 3023                         SOCK_LOCK(so);
 3024                         so->so_linger = l.l_linger;
 3025                         if (l.l_onoff)
 3026                                 so->so_options |= SO_LINGER;
 3027                         else
 3028                                 so->so_options &= ~SO_LINGER;
 3029                         SOCK_UNLOCK(so);
 3030                         break;
 3031 
 3032                 case SO_DEBUG:
 3033                 case SO_KEEPALIVE:
 3034                 case SO_DONTROUTE:
 3035                 case SO_USELOOPBACK:
 3036                 case SO_BROADCAST:
 3037                 case SO_REUSEADDR:
 3038                 case SO_REUSEPORT:
 3039                 case SO_REUSEPORT_LB:
 3040                 case SO_OOBINLINE:
 3041                 case SO_TIMESTAMP:
 3042                 case SO_BINTIME:
 3043                 case SO_NOSIGPIPE:
 3044                 case SO_NO_DDP:
 3045                 case SO_NO_OFFLOAD:
 3046                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3047                             sizeof optval);
 3048                         if (error)
 3049                                 goto bad;
 3050                         SOCK_LOCK(so);
 3051                         if (optval)
 3052                                 so->so_options |= sopt->sopt_name;
 3053                         else
 3054                                 so->so_options &= ~sopt->sopt_name;
 3055                         SOCK_UNLOCK(so);
 3056                         break;
 3057 
 3058                 case SO_SETFIB:
 3059                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3060                             sizeof optval);
 3061                         if (error)
 3062                                 goto bad;
 3063 
 3064                         if (optval < 0 || optval >= rt_numfibs) {
 3065                                 error = EINVAL;
 3066                                 goto bad;
 3067                         }
 3068                         if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
 3069                            (so->so_proto->pr_domain->dom_family == PF_INET6) ||
 3070                            (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
 3071                                 so->so_fibnum = optval;
 3072                         else
 3073                                 so->so_fibnum = 0;
 3074                         break;
 3075 
 3076                 case SO_USER_COOKIE:
 3077                         error = sooptcopyin(sopt, &val32, sizeof val32,
 3078                             sizeof val32);
 3079                         if (error)
 3080                                 goto bad;
 3081                         so->so_user_cookie = val32;
 3082                         break;
 3083 
 3084                 case SO_SNDBUF:
 3085                 case SO_RCVBUF:
 3086                 case SO_SNDLOWAT:
 3087                 case SO_RCVLOWAT:
 3088                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3089                             sizeof optval);
 3090                         if (error)
 3091                                 goto bad;
 3092 
 3093                         /*
 3094                          * Values < 1 make no sense for any of these options,
 3095                          * so disallow them.
 3096                          */
 3097                         if (optval < 1) {
 3098                                 error = EINVAL;
 3099                                 goto bad;
 3100                         }
 3101 
 3102                         error = sbsetopt(so, sopt->sopt_name, optval);
 3103                         break;
 3104 
 3105                 case SO_SNDTIMEO:
 3106                 case SO_RCVTIMEO:
 3107 #ifdef COMPAT_FREEBSD32
 3108                         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3109                                 struct timeval32 tv32;
 3110 
 3111                                 error = sooptcopyin(sopt, &tv32, sizeof tv32,
 3112                                     sizeof tv32);
 3113                                 CP(tv32, tv, tv_sec);
 3114                                 CP(tv32, tv, tv_usec);
 3115                         } else
 3116 #endif
 3117                                 error = sooptcopyin(sopt, &tv, sizeof tv,
 3118                                     sizeof tv);
 3119                         if (error)
 3120                                 goto bad;
 3121                         if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
 3122                             tv.tv_usec >= 1000000) {
 3123                                 error = EDOM;
 3124                                 goto bad;
 3125                         }
 3126                         if (tv.tv_sec > INT32_MAX)
 3127                                 val = SBT_MAX;
 3128                         else
 3129                                 val = tvtosbt(tv);
 3130                         switch (sopt->sopt_name) {
 3131                         case SO_SNDTIMEO:
 3132                                 so->so_snd.sb_timeo = val;
 3133                                 break;
 3134                         case SO_RCVTIMEO:
 3135                                 so->so_rcv.sb_timeo = val;
 3136                                 break;
 3137                         }
 3138                         break;
 3139 
 3140                 case SO_LABEL:
 3141 #ifdef MAC
 3142                         error = sooptcopyin(sopt, &extmac, sizeof extmac,
 3143                             sizeof extmac);
 3144                         if (error)
 3145                                 goto bad;
 3146                         error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
 3147                             so, &extmac);
 3148 #else
 3149                         error = EOPNOTSUPP;
 3150 #endif
 3151                         break;
 3152 
 3153                 case SO_TS_CLOCK:
 3154                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3155                             sizeof optval);
 3156                         if (error)
 3157                                 goto bad;
 3158                         if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
 3159                                 error = EINVAL;
 3160                                 goto bad;
 3161                         }
 3162                         so->so_ts_clock = optval;
 3163                         break;
 3164 
 3165                 case SO_MAX_PACING_RATE:
 3166                         error = sooptcopyin(sopt, &val32, sizeof(val32),
 3167                             sizeof(val32));
 3168                         if (error)
 3169                                 goto bad;
 3170                         so->so_max_pacing_rate = val32;
 3171                         break;
 3172 
 3173                 default:
 3174                         if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
 3175                                 error = hhook_run_socket(so, sopt,
 3176                                     HHOOK_SOCKET_OPT);
 3177                         else
 3178                                 error = ENOPROTOOPT;
 3179                         break;
 3180                 }
 3181                 if (error == 0 && so->so_proto->pr_ctloutput != NULL)
 3182                         (void)(*so->so_proto->pr_ctloutput)(so, sopt);
 3183         }
 3184 bad:
 3185         CURVNET_RESTORE();
 3186         return (error);
 3187 }
 3188 
 3189 /*
 3190  * Helper routine for getsockopt.
 3191  */
 3192 int
 3193 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
 3194 {
 3195         int     error;
 3196         size_t  valsize;
 3197 
 3198         error = 0;
 3199 
 3200         /*
 3201          * Documented get behavior is that we always return a value, possibly
 3202          * truncated to fit in the user's buffer.  Traditional behavior is
 3203          * that we always tell the user precisely how much we copied, rather
 3204          * than something useful like the total amount we had available for
 3205          * her.  Note that this interface is not idempotent; the entire
 3206          * answer must be generated ahead of time.
 3207          */
 3208         valsize = min(len, sopt->sopt_valsize);
 3209         sopt->sopt_valsize = valsize;
 3210         if (sopt->sopt_val != NULL) {
 3211                 if (sopt->sopt_td != NULL)
 3212                         error = copyout(buf, sopt->sopt_val, valsize);
 3213                 else
 3214                         bcopy(buf, sopt->sopt_val, valsize);
 3215         }
 3216         return (error);
 3217 }
 3218 
 3219 int
 3220 sogetopt(struct socket *so, struct sockopt *sopt)
 3221 {
 3222         int     error, optval;
 3223         struct  linger l;
 3224         struct  timeval tv;
 3225 #ifdef MAC
 3226         struct mac extmac;
 3227 #endif
 3228 
 3229         CURVNET_SET(so->so_vnet);
 3230         error = 0;
 3231         if (sopt->sopt_level != SOL_SOCKET) {
 3232                 if (so->so_proto->pr_ctloutput != NULL)
 3233                         error = (*so->so_proto->pr_ctloutput)(so, sopt);
 3234                 else
 3235                         error = ENOPROTOOPT;
 3236                 CURVNET_RESTORE();
 3237                 return (error);
 3238         } else {
 3239                 switch (sopt->sopt_name) {
 3240                 case SO_ACCEPTFILTER:
 3241                         error = accept_filt_getopt(so, sopt);
 3242                         break;
 3243 
 3244                 case SO_LINGER:
 3245                         SOCK_LOCK(so);
 3246                         l.l_onoff = so->so_options & SO_LINGER;
 3247                         l.l_linger = so->so_linger;
 3248                         SOCK_UNLOCK(so);
 3249                         error = sooptcopyout(sopt, &l, sizeof l);
 3250                         break;
 3251 
 3252                 case SO_USELOOPBACK:
 3253                 case SO_DONTROUTE:
 3254                 case SO_DEBUG:
 3255                 case SO_KEEPALIVE:
 3256                 case SO_REUSEADDR:
 3257                 case SO_REUSEPORT:
 3258                 case SO_REUSEPORT_LB:
 3259                 case SO_BROADCAST:
 3260                 case SO_OOBINLINE:
 3261                 case SO_ACCEPTCONN:
 3262                 case SO_TIMESTAMP:
 3263                 case SO_BINTIME:
 3264                 case SO_NOSIGPIPE:
 3265                 case SO_NO_DDP:
 3266                 case SO_NO_OFFLOAD:
 3267                         optval = so->so_options & sopt->sopt_name;
 3268 integer:
 3269                         error = sooptcopyout(sopt, &optval, sizeof optval);
 3270                         break;
 3271 
 3272                 case SO_DOMAIN:
 3273                         optval = so->so_proto->pr_domain->dom_family;
 3274                         goto integer;
 3275 
 3276                 case SO_TYPE:
 3277                         optval = so->so_type;
 3278                         goto integer;
 3279 
 3280                 case SO_PROTOCOL:
 3281                         optval = so->so_proto->pr_protocol;
 3282                         goto integer;
 3283 
 3284                 case SO_ERROR:
 3285                         SOCK_LOCK(so);
 3286                         optval = so->so_error;
 3287                         so->so_error = 0;
 3288                         SOCK_UNLOCK(so);
 3289                         goto integer;
 3290 
 3291                 case SO_SNDBUF:
 3292                         optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
 3293                             so->so_snd.sb_hiwat;
 3294                         goto integer;
 3295 
 3296                 case SO_RCVBUF:
 3297                         optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
 3298                             so->so_rcv.sb_hiwat;
 3299                         goto integer;
 3300 
 3301                 case SO_SNDLOWAT:
 3302                         optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
 3303                             so->so_snd.sb_lowat;
 3304                         goto integer;
 3305 
 3306                 case SO_RCVLOWAT:
 3307                         optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
 3308                             so->so_rcv.sb_lowat;
 3309                         goto integer;
 3310 
 3311                 case SO_SNDTIMEO:
 3312                 case SO_RCVTIMEO:
 3313                         tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
 3314                             so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
 3315 #ifdef COMPAT_FREEBSD32
 3316                         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3317                                 struct timeval32 tv32;
 3318 
 3319                                 CP(tv, tv32, tv_sec);
 3320                                 CP(tv, tv32, tv_usec);
 3321                                 error = sooptcopyout(sopt, &tv32, sizeof tv32);
 3322                         } else
 3323 #endif
 3324                                 error = sooptcopyout(sopt, &tv, sizeof tv);
 3325                         break;
 3326 
 3327                 case SO_LABEL:
 3328 #ifdef MAC
 3329                         error = sooptcopyin(sopt, &extmac, sizeof(extmac),
 3330                             sizeof(extmac));
 3331                         if (error)
 3332                                 goto bad;
 3333                         error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
 3334                             so, &extmac);
 3335                         if (error)
 3336                                 goto bad;
 3337                         error = sooptcopyout(sopt, &extmac, sizeof extmac);
 3338 #else
 3339                         error = EOPNOTSUPP;
 3340 #endif
 3341                         break;
 3342 
 3343                 case SO_PEERLABEL:
 3344 #ifdef MAC
 3345                         error = sooptcopyin(sopt, &extmac, sizeof(extmac),
 3346                             sizeof(extmac));
 3347                         if (error)
 3348                                 goto bad;
 3349                         error = mac_getsockopt_peerlabel(
 3350                             sopt->sopt_td->td_ucred, so, &extmac);
 3351                         if (error)
 3352                                 goto bad;
 3353                         error = sooptcopyout(sopt, &extmac, sizeof extmac);
 3354 #else
 3355                         error = EOPNOTSUPP;
 3356 #endif
 3357                         break;
 3358 
 3359                 case SO_LISTENQLIMIT:
 3360                         optval = SOLISTENING(so) ? so->sol_qlimit : 0;
 3361                         goto integer;
 3362 
 3363                 case SO_LISTENQLEN:
 3364                         optval = SOLISTENING(so) ? so->sol_qlen : 0;
 3365                         goto integer;
 3366 
 3367                 case SO_LISTENINCQLEN:
 3368                         optval = SOLISTENING(so) ? so->sol_incqlen : 0;
 3369                         goto integer;
 3370 
 3371                 case SO_TS_CLOCK:
 3372                         optval = so->so_ts_clock;
 3373                         goto integer;
 3374 
 3375                 case SO_MAX_PACING_RATE:
 3376                         optval = so->so_max_pacing_rate;
 3377                         goto integer;
 3378 
 3379                 default:
 3380                         if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
 3381                                 error = hhook_run_socket(so, sopt,
 3382                                     HHOOK_SOCKET_OPT);
 3383                         else
 3384                                 error = ENOPROTOOPT;
 3385                         break;
 3386                 }
 3387         }
 3388 #ifdef MAC
 3389 bad:
 3390 #endif
 3391         CURVNET_RESTORE();
 3392         return (error);
 3393 }
 3394 
 3395 int
 3396 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
 3397 {
 3398         struct mbuf *m, *m_prev;
 3399         int sopt_size = sopt->sopt_valsize;
 3400 
 3401         MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
 3402         if (m == NULL)
 3403                 return ENOBUFS;
 3404         if (sopt_size > MLEN) {
 3405                 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
 3406                 if ((m->m_flags & M_EXT) == 0) {
 3407                         m_free(m);
 3408                         return ENOBUFS;
 3409                 }
 3410                 m->m_len = min(MCLBYTES, sopt_size);
 3411         } else {
 3412                 m->m_len = min(MLEN, sopt_size);
 3413         }
 3414         sopt_size -= m->m_len;
 3415         *mp = m;
 3416         m_prev = m;
 3417 
 3418         while (sopt_size) {
 3419                 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
 3420                 if (m == NULL) {
 3421                         m_freem(*mp);
 3422                         return ENOBUFS;
 3423                 }
 3424                 if (sopt_size > MLEN) {
 3425                         MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
 3426                             M_NOWAIT);
 3427                         if ((m->m_flags & M_EXT) == 0) {
 3428                                 m_freem(m);
 3429                                 m_freem(*mp);
 3430                                 return ENOBUFS;
 3431                         }
 3432                         m->m_len = min(MCLBYTES, sopt_size);
 3433                 } else {
 3434                         m->m_len = min(MLEN, sopt_size);
 3435                 }
 3436                 sopt_size -= m->m_len;
 3437                 m_prev->m_next = m;
 3438                 m_prev = m;
 3439         }
 3440         return (0);
 3441 }
 3442 
 3443 int
 3444 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
 3445 {
 3446         struct mbuf *m0 = m;
 3447 
 3448         if (sopt->sopt_val == NULL)
 3449                 return (0);
 3450         while (m != NULL && sopt->sopt_valsize >= m->m_len) {
 3451                 if (sopt->sopt_td != NULL) {
 3452                         int error;
 3453 
 3454                         error = copyin(sopt->sopt_val, mtod(m, char *),
 3455                             m->m_len);
 3456                         if (error != 0) {
 3457                                 m_freem(m0);
 3458                                 return(error);
 3459                         }
 3460                 } else
 3461                         bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
 3462                 sopt->sopt_valsize -= m->m_len;
 3463                 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
 3464                 m = m->m_next;
 3465         }
 3466         if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
 3467                 panic("ip6_sooptmcopyin");
 3468         return (0);
 3469 }
 3470 
 3471 int
 3472 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
 3473 {
 3474         struct mbuf *m0 = m;
 3475         size_t valsize = 0;
 3476 
 3477         if (sopt->sopt_val == NULL)
 3478                 return (0);
 3479         while (m != NULL && sopt->sopt_valsize >= m->m_len) {
 3480                 if (sopt->sopt_td != NULL) {
 3481                         int error;
 3482 
 3483                         error = copyout(mtod(m, char *), sopt->sopt_val,
 3484                             m->m_len);
 3485                         if (error != 0) {
 3486                                 m_freem(m0);
 3487                                 return(error);
 3488                         }
 3489                 } else
 3490                         bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
 3491                 sopt->sopt_valsize -= m->m_len;
 3492                 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
 3493                 valsize += m->m_len;
 3494                 m = m->m_next;
 3495         }
 3496         if (m != NULL) {
 3497                 /* enough soopt buffer should be given from user-land */
 3498                 m_freem(m0);
 3499                 return(EINVAL);
 3500         }
 3501         sopt->sopt_valsize = valsize;
 3502         return (0);
 3503 }
 3504 
 3505 /*
 3506  * sohasoutofband(): protocol notifies socket layer of the arrival of new
 3507  * out-of-band data, which will then notify socket consumers.
 3508  */
 3509 void
 3510 sohasoutofband(struct socket *so)
 3511 {
 3512 
 3513         if (so->so_sigio != NULL)
 3514                 pgsigio(&so->so_sigio, SIGURG, 0);
 3515         selwakeuppri(&so->so_rdsel, PSOCK);
 3516 }
 3517 
 3518 int
 3519 sopoll(struct socket *so, int events, struct ucred *active_cred,
 3520     struct thread *td)
 3521 {
 3522 
 3523         /*
 3524          * We do not need to set or assert curvnet as long as everyone uses
 3525          * sopoll_generic().
 3526          */
 3527         return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
 3528             td));
 3529 }
 3530 
 3531 int
 3532 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
 3533     struct thread *td)
 3534 {
 3535         int revents;
 3536 
 3537         SOCK_LOCK(so);
 3538         if (SOLISTENING(so)) {
 3539                 if (!(events & (POLLIN | POLLRDNORM)))
 3540                         revents = 0;
 3541                 else if (!TAILQ_EMPTY(&so->sol_comp))
 3542                         revents = events & (POLLIN | POLLRDNORM);
 3543                 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
 3544                         revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
 3545                 else {
 3546                         selrecord(td, &so->so_rdsel);
 3547                         revents = 0;
 3548                 }
 3549         } else {
 3550                 revents = 0;
 3551                 SOCKBUF_LOCK(&so->so_snd);
 3552                 SOCKBUF_LOCK(&so->so_rcv);
 3553                 if (events & (POLLIN | POLLRDNORM))
 3554                         if (soreadabledata(so))
 3555                                 revents |= events & (POLLIN | POLLRDNORM);
 3556                 if (events & (POLLOUT | POLLWRNORM))
 3557                         if (sowriteable(so))
 3558                                 revents |= events & (POLLOUT | POLLWRNORM);
 3559                 if (events & (POLLPRI | POLLRDBAND))
 3560                         if (so->so_oobmark ||
 3561                             (so->so_rcv.sb_state & SBS_RCVATMARK))
 3562                                 revents |= events & (POLLPRI | POLLRDBAND);
 3563                 if ((events & POLLINIGNEOF) == 0) {
 3564                         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 3565                                 revents |= events & (POLLIN | POLLRDNORM);
 3566                                 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
 3567                                         revents |= POLLHUP;
 3568                         }
 3569                 }
 3570                 if (revents == 0) {
 3571                         if (events &
 3572                             (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
 3573                                 selrecord(td, &so->so_rdsel);
 3574                                 so->so_rcv.sb_flags |= SB_SEL;
 3575                         }
 3576                         if (events & (POLLOUT | POLLWRNORM)) {
 3577                                 selrecord(td, &so->so_wrsel);
 3578                                 so->so_snd.sb_flags |= SB_SEL;
 3579                         }
 3580                 }
 3581                 SOCKBUF_UNLOCK(&so->so_rcv);
 3582                 SOCKBUF_UNLOCK(&so->so_snd);
 3583         }
 3584         SOCK_UNLOCK(so);
 3585         return (revents);
 3586 }
 3587 
 3588 int
 3589 soo_kqfilter(struct file *fp, struct knote *kn)
 3590 {
 3591         struct socket *so = kn->kn_fp->f_data;
 3592         struct sockbuf *sb;
 3593         struct knlist *knl;
 3594 
 3595         switch (kn->kn_filter) {
 3596         case EVFILT_READ:
 3597                 kn->kn_fop = &soread_filtops;
 3598                 knl = &so->so_rdsel.si_note;
 3599                 sb = &so->so_rcv;
 3600                 break;
 3601         case EVFILT_WRITE:
 3602                 kn->kn_fop = &sowrite_filtops;
 3603                 knl = &so->so_wrsel.si_note;
 3604                 sb = &so->so_snd;
 3605                 break;
 3606         case EVFILT_EMPTY:
 3607                 kn->kn_fop = &soempty_filtops;
 3608                 knl = &so->so_wrsel.si_note;
 3609                 sb = &so->so_snd;
 3610                 break;
 3611         default:
 3612                 return (EINVAL);
 3613         }
 3614 
 3615         SOCK_LOCK(so);
 3616         if (SOLISTENING(so)) {
 3617                 knlist_add(knl, kn, 1);
 3618         } else {
 3619                 SOCKBUF_LOCK(sb);
 3620                 knlist_add(knl, kn, 1);
 3621                 sb->sb_flags |= SB_KNOTE;
 3622                 SOCKBUF_UNLOCK(sb);
 3623         }
 3624         SOCK_UNLOCK(so);
 3625         return (0);
 3626 }
 3627 
 3628 /*
 3629  * Some routines that return EOPNOTSUPP for entry points that are not
 3630  * supported by a protocol.  Fill in as needed.
 3631  */
 3632 int
 3633 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
 3634 {
 3635 
 3636         return EOPNOTSUPP;
 3637 }
 3638 
 3639 int
 3640 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
 3641 {
 3642 
 3643         return EOPNOTSUPP;
 3644 }
 3645 
 3646 int
 3647 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
 3648 {
 3649 
 3650         return EOPNOTSUPP;
 3651 }
 3652 
 3653 int
 3654 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
 3655 {
 3656 
 3657         return EOPNOTSUPP;
 3658 }
 3659 
 3660 int
 3661 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
 3662     struct thread *td)
 3663 {
 3664 
 3665         return EOPNOTSUPP;
 3666 }
 3667 
 3668 int
 3669 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
 3670 {
 3671 
 3672         return EOPNOTSUPP;
 3673 }
 3674 
 3675 int
 3676 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
 3677     struct thread *td)
 3678 {
 3679 
 3680         return EOPNOTSUPP;
 3681 }
 3682 
 3683 int
 3684 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
 3685 {
 3686 
 3687         return EOPNOTSUPP;
 3688 }
 3689 
 3690 int
 3691 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
 3692     struct ifnet *ifp, struct thread *td)
 3693 {
 3694 
 3695         return EOPNOTSUPP;
 3696 }
 3697 
 3698 int
 3699 pru_disconnect_notsupp(struct socket *so)
 3700 {
 3701 
 3702         return EOPNOTSUPP;
 3703 }
 3704 
 3705 int
 3706 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
 3707 {
 3708 
 3709         return EOPNOTSUPP;
 3710 }
 3711 
 3712 int
 3713 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
 3714 {
 3715 
 3716         return EOPNOTSUPP;
 3717 }
 3718 
 3719 int
 3720 pru_rcvd_notsupp(struct socket *so, int flags)
 3721 {
 3722 
 3723         return EOPNOTSUPP;
 3724 }
 3725 
 3726 int
 3727 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
 3728 {
 3729 
 3730         return EOPNOTSUPP;
 3731 }
 3732 
 3733 int
 3734 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
 3735     struct sockaddr *addr, struct mbuf *control, struct thread *td)
 3736 {
 3737 
 3738         return EOPNOTSUPP;
 3739 }
 3740 
 3741 int
 3742 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
 3743 {
 3744 
 3745         return (EOPNOTSUPP);
 3746 }
 3747 
 3748 /*
 3749  * This isn't really a ``null'' operation, but it's the default one and
 3750  * doesn't do anything destructive.
 3751  */
 3752 int
 3753 pru_sense_null(struct socket *so, struct stat *sb)
 3754 {
 3755 
 3756         sb->st_blksize = so->so_snd.sb_hiwat;
 3757         return 0;
 3758 }
 3759 
 3760 int
 3761 pru_shutdown_notsupp(struct socket *so)
 3762 {
 3763 
 3764         return EOPNOTSUPP;
 3765 }
 3766 
 3767 int
 3768 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
 3769 {
 3770 
 3771         return EOPNOTSUPP;
 3772 }
 3773 
 3774 int
 3775 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
 3776     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 3777 {
 3778 
 3779         return EOPNOTSUPP;
 3780 }
 3781 
 3782 int
 3783 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
 3784     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 3785 {
 3786 
 3787         return EOPNOTSUPP;
 3788 }
 3789 
 3790 int
 3791 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
 3792     struct thread *td)
 3793 {
 3794 
 3795         return EOPNOTSUPP;
 3796 }
 3797 
 3798 static void
 3799 filt_sordetach(struct knote *kn)
 3800 {
 3801         struct socket *so = kn->kn_fp->f_data;
 3802 
 3803         so_rdknl_lock(so);
 3804         knlist_remove(&so->so_rdsel.si_note, kn, 1);
 3805         if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
 3806                 so->so_rcv.sb_flags &= ~SB_KNOTE;
 3807         so_rdknl_unlock(so);
 3808 }
 3809 
 3810 /*ARGSUSED*/
 3811 static int
 3812 filt_soread(struct knote *kn, long hint)
 3813 {
 3814         struct socket *so;
 3815 
 3816         so = kn->kn_fp->f_data;
 3817 
 3818         if (SOLISTENING(so)) {
 3819                 SOCK_LOCK_ASSERT(so);
 3820                 kn->kn_data = so->sol_qlen;
 3821                 if (so->so_error) {
 3822                         kn->kn_flags |= EV_EOF;
 3823                         kn->kn_fflags = so->so_error;
 3824                         return (1);
 3825                 }
 3826                 return (!TAILQ_EMPTY(&so->sol_comp));
 3827         }
 3828 
 3829         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 3830 
 3831         kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
 3832         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 3833                 kn->kn_flags |= EV_EOF;
 3834                 kn->kn_fflags = so->so_error;
 3835                 return (1);
 3836         } else if (so->so_error)        /* temporary udp error */
 3837                 return (1);
 3838 
 3839         if (kn->kn_sfflags & NOTE_LOWAT) {
 3840                 if (kn->kn_data >= kn->kn_sdata)
 3841                         return (1);
 3842         } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
 3843                 return (1);
 3844 
 3845         /* This hook returning non-zero indicates an event, not error */
 3846         return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
 3847 }
 3848 
 3849 static void
 3850 filt_sowdetach(struct knote *kn)
 3851 {
 3852         struct socket *so = kn->kn_fp->f_data;
 3853 
 3854         so_wrknl_lock(so);
 3855         knlist_remove(&so->so_wrsel.si_note, kn, 1);
 3856         if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
 3857                 so->so_snd.sb_flags &= ~SB_KNOTE;
 3858         so_wrknl_unlock(so);
 3859 }
 3860 
 3861 /*ARGSUSED*/
 3862 static int
 3863 filt_sowrite(struct knote *kn, long hint)
 3864 {
 3865         struct socket *so;
 3866 
 3867         so = kn->kn_fp->f_data;
 3868 
 3869         if (SOLISTENING(so))
 3870                 return (0);
 3871 
 3872         SOCKBUF_LOCK_ASSERT(&so->so_snd);
 3873         kn->kn_data = sbspace(&so->so_snd);
 3874 
 3875         hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
 3876 
 3877         if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 3878                 kn->kn_flags |= EV_EOF;
 3879                 kn->kn_fflags = so->so_error;
 3880                 return (1);
 3881         } else if (so->so_error)        /* temporary udp error */
 3882                 return (1);
 3883         else if (((so->so_state & SS_ISCONNECTED) == 0) &&
 3884             (so->so_proto->pr_flags & PR_CONNREQUIRED))
 3885                 return (0);
 3886         else if (kn->kn_sfflags & NOTE_LOWAT)
 3887                 return (kn->kn_data >= kn->kn_sdata);
 3888         else
 3889                 return (kn->kn_data >= so->so_snd.sb_lowat);
 3890 }
 3891 
 3892 static int
 3893 filt_soempty(struct knote *kn, long hint)
 3894 {
 3895         struct socket *so;
 3896 
 3897         so = kn->kn_fp->f_data;
 3898 
 3899         if (SOLISTENING(so))
 3900                 return (1);
 3901 
 3902         SOCKBUF_LOCK_ASSERT(&so->so_snd);
 3903         kn->kn_data = sbused(&so->so_snd);
 3904 
 3905         if (kn->kn_data == 0)
 3906                 return (1);
 3907         else
 3908                 return (0);
 3909 }
 3910 
 3911 int
 3912 socheckuid(struct socket *so, uid_t uid)
 3913 {
 3914 
 3915         if (so == NULL)
 3916                 return (EPERM);
 3917         if (so->so_cred->cr_uid != uid)
 3918                 return (EPERM);
 3919         return (0);
 3920 }
 3921 
 3922 /*
 3923  * These functions are used by protocols to notify the socket layer (and its
 3924  * consumers) of state changes in the sockets driven by protocol-side events.
 3925  */
 3926 
 3927 /*
 3928  * Procedures to manipulate state flags of socket and do appropriate wakeups.
 3929  *
 3930  * Normal sequence from the active (originating) side is that
 3931  * soisconnecting() is called during processing of connect() call, resulting
 3932  * in an eventual call to soisconnected() if/when the connection is
 3933  * established.  When the connection is torn down soisdisconnecting() is
 3934  * called during processing of disconnect() call, and soisdisconnected() is
 3935  * called when the connection to the peer is totally severed.  The semantics
 3936  * of these routines are such that connectionless protocols can call
 3937  * soisconnected() and soisdisconnected() only, bypassing the in-progress
 3938  * calls when setting up a ``connection'' takes no time.
 3939  *
 3940  * From the passive side, a socket is created with two queues of sockets:
 3941  * so_incomp for connections in progress and so_comp for connections already
 3942  * made and awaiting user acceptance.  As a protocol is preparing incoming
 3943  * connections, it creates a socket structure queued on so_incomp by calling
 3944  * sonewconn().  When the connection is established, soisconnected() is
 3945  * called, and transfers the socket structure to so_comp, making it available
 3946  * to accept().
 3947  *
 3948  * If a socket is closed with sockets on either so_incomp or so_comp, these
 3949  * sockets are dropped.
 3950  *
 3951  * If higher-level protocols are implemented in the kernel, the wakeups done
 3952  * here will sometimes cause software-interrupt process scheduling.
 3953  */
 3954 void
 3955 soisconnecting(struct socket *so)
 3956 {
 3957 
 3958         SOCK_LOCK(so);
 3959         so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
 3960         so->so_state |= SS_ISCONNECTING;
 3961         SOCK_UNLOCK(so);
 3962 }
 3963 
 3964 void
 3965 soisconnected(struct socket *so)
 3966 {
 3967 
 3968         SOCK_LOCK(so);
 3969         so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
 3970         so->so_state |= SS_ISCONNECTED;
 3971 
 3972         if (so->so_qstate == SQ_INCOMP) {
 3973                 struct socket *head = so->so_listen;
 3974                 int ret;
 3975 
 3976                 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
 3977                 /*
 3978                  * Promoting a socket from incomplete queue to complete, we
 3979                  * need to go through reverse order of locking.  We first do
 3980                  * trylock, and if that doesn't succeed, we go the hard way
 3981                  * leaving a reference and rechecking consistency after proper
 3982                  * locking.
 3983                  */
 3984                 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
 3985                         soref(head);
 3986                         SOCK_UNLOCK(so);
 3987                         SOLISTEN_LOCK(head);
 3988                         SOCK_LOCK(so);
 3989                         if (__predict_false(head != so->so_listen)) {
 3990                                 /*
 3991                                  * The socket went off the listen queue,
 3992                                  * should be lost race to close(2) of sol.
 3993                                  * The socket is about to soabort().
 3994                                  */
 3995                                 SOCK_UNLOCK(so);
 3996                                 sorele(head);
 3997                                 return;
 3998                         }
 3999                         /* Not the last one, as so holds a ref. */
 4000                         refcount_release(&head->so_count);
 4001                 }
 4002 again:
 4003                 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
 4004                         TAILQ_REMOVE(&head->sol_incomp, so, so_list);
 4005                         head->sol_incqlen--;
 4006                         TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
 4007                         head->sol_qlen++;
 4008                         so->so_qstate = SQ_COMP;
 4009                         SOCK_UNLOCK(so);
 4010                         solisten_wakeup(head);  /* unlocks */
 4011                 } else {
 4012                         SOCKBUF_LOCK(&so->so_rcv);
 4013                         soupcall_set(so, SO_RCV,
 4014                             head->sol_accept_filter->accf_callback,
 4015                             head->sol_accept_filter_arg);
 4016                         so->so_options &= ~SO_ACCEPTFILTER;
 4017                         ret = head->sol_accept_filter->accf_callback(so,
 4018                             head->sol_accept_filter_arg, M_NOWAIT);
 4019                         if (ret == SU_ISCONNECTED) {
 4020                                 soupcall_clear(so, SO_RCV);
 4021                                 SOCKBUF_UNLOCK(&so->so_rcv);
 4022                                 goto again;
 4023                         }
 4024                         SOCKBUF_UNLOCK(&so->so_rcv);
 4025                         SOCK_UNLOCK(so);
 4026                         SOLISTEN_UNLOCK(head);
 4027                 }
 4028                 return;
 4029         }
 4030         SOCK_UNLOCK(so);
 4031         wakeup(&so->so_timeo);
 4032         sorwakeup(so);
 4033         sowwakeup(so);
 4034 }
 4035 
 4036 void
 4037 soisdisconnecting(struct socket *so)
 4038 {
 4039 
 4040         SOCK_LOCK(so);
 4041         so->so_state &= ~SS_ISCONNECTING;
 4042         so->so_state |= SS_ISDISCONNECTING;
 4043 
 4044         if (!SOLISTENING(so)) {
 4045                 SOCKBUF_LOCK(&so->so_rcv);
 4046                 socantrcvmore_locked(so);
 4047                 SOCKBUF_LOCK(&so->so_snd);
 4048                 socantsendmore_locked(so);
 4049         }
 4050         SOCK_UNLOCK(so);
 4051         wakeup(&so->so_timeo);
 4052 }
 4053 
 4054 void
 4055 soisdisconnected(struct socket *so)
 4056 {
 4057 
 4058         SOCK_LOCK(so);
 4059 
 4060         /*
 4061          * There is at least one reader of so_state that does not
 4062          * acquire socket lock, namely soreceive_generic().  Ensure
 4063          * that it never sees all flags that track connection status
 4064          * cleared, by ordering the update with a barrier semantic of
 4065          * our release thread fence.
 4066          */
 4067         so->so_state |= SS_ISDISCONNECTED;
 4068         atomic_thread_fence_rel();
 4069         so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
 4070 
 4071         if (!SOLISTENING(so)) {
 4072                 SOCK_UNLOCK(so);
 4073                 SOCKBUF_LOCK(&so->so_rcv);
 4074                 socantrcvmore_locked(so);
 4075                 SOCKBUF_LOCK(&so->so_snd);
 4076                 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
 4077                 socantsendmore_locked(so);
 4078         } else
 4079                 SOCK_UNLOCK(so);
 4080         wakeup(&so->so_timeo);
 4081 }
 4082 
 4083 /*
 4084  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
 4085  */
 4086 struct sockaddr *
 4087 sodupsockaddr(const struct sockaddr *sa, int mflags)
 4088 {
 4089         struct sockaddr *sa2;
 4090 
 4091         sa2 = malloc(sa->sa_len, M_SONAME, mflags);
 4092         if (sa2)
 4093                 bcopy(sa, sa2, sa->sa_len);
 4094         return sa2;
 4095 }
 4096 
 4097 /*
 4098  * Register per-socket destructor.
 4099  */
 4100 void
 4101 sodtor_set(struct socket *so, so_dtor_t *func)
 4102 {
 4103 
 4104         SOCK_LOCK_ASSERT(so);
 4105         so->so_dtor = func;
 4106 }
 4107 
 4108 /*
 4109  * Register per-socket buffer upcalls.
 4110  */
 4111 void
 4112 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg)
 4113 {
 4114         struct sockbuf *sb;
 4115 
 4116         KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
 4117 
 4118         switch (which) {
 4119         case SO_RCV:
 4120                 sb = &so->so_rcv;
 4121                 break;
 4122         case SO_SND:
 4123                 sb = &so->so_snd;
 4124                 break;
 4125         default:
 4126                 panic("soupcall_set: bad which");
 4127         }
 4128         SOCKBUF_LOCK_ASSERT(sb);
 4129         sb->sb_upcall = func;
 4130         sb->sb_upcallarg = arg;
 4131         sb->sb_flags |= SB_UPCALL;
 4132 }
 4133 
 4134 void
 4135 soupcall_clear(struct socket *so, int which)
 4136 {
 4137         struct sockbuf *sb;
 4138 
 4139         KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
 4140 
 4141         switch (which) {
 4142         case SO_RCV:
 4143                 sb = &so->so_rcv;
 4144                 break;
 4145         case SO_SND:
 4146                 sb = &so->so_snd;
 4147                 break;
 4148         default:
 4149                 panic("soupcall_clear: bad which");
 4150         }
 4151         SOCKBUF_LOCK_ASSERT(sb);
 4152         KASSERT(sb->sb_upcall != NULL,
 4153             ("%s: so %p no upcall to clear", __func__, so));
 4154         sb->sb_upcall = NULL;
 4155         sb->sb_upcallarg = NULL;
 4156         sb->sb_flags &= ~SB_UPCALL;
 4157 }
 4158 
 4159 void
 4160 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
 4161 {
 4162 
 4163         SOLISTEN_LOCK_ASSERT(so);
 4164         so->sol_upcall = func;
 4165         so->sol_upcallarg = arg;
 4166 }
 4167 
 4168 static void
 4169 so_rdknl_lock(void *arg)
 4170 {
 4171         struct socket *so = arg;
 4172 
 4173         if (SOLISTENING(so))
 4174                 SOCK_LOCK(so);
 4175         else
 4176                 SOCKBUF_LOCK(&so->so_rcv);
 4177 }
 4178 
 4179 static void
 4180 so_rdknl_unlock(void *arg)
 4181 {
 4182         struct socket *so = arg;
 4183 
 4184         if (SOLISTENING(so))
 4185                 SOCK_UNLOCK(so);
 4186         else
 4187                 SOCKBUF_UNLOCK(&so->so_rcv);
 4188 }
 4189 
 4190 static void
 4191 so_rdknl_assert_lock(void *arg, int what)
 4192 {
 4193         struct socket *so = arg;
 4194 
 4195         if (what == LA_LOCKED) {
 4196                 if (SOLISTENING(so))
 4197                         SOCK_LOCK_ASSERT(so);
 4198                 else
 4199                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 4200         } else {
 4201                 if (SOLISTENING(so))
 4202                         SOCK_UNLOCK_ASSERT(so);
 4203                 else
 4204                         SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
 4205         }
 4206 }
 4207 
 4208 static void
 4209 so_wrknl_lock(void *arg)
 4210 {
 4211         struct socket *so = arg;
 4212 
 4213         if (SOLISTENING(so))
 4214                 SOCK_LOCK(so);
 4215         else
 4216                 SOCKBUF_LOCK(&so->so_snd);
 4217 }
 4218 
 4219 static void
 4220 so_wrknl_unlock(void *arg)
 4221 {
 4222         struct socket *so = arg;
 4223 
 4224         if (SOLISTENING(so))
 4225                 SOCK_UNLOCK(so);
 4226         else
 4227                 SOCKBUF_UNLOCK(&so->so_snd);
 4228 }
 4229 
 4230 static void
 4231 so_wrknl_assert_lock(void *arg, int what)
 4232 {
 4233         struct socket *so = arg;
 4234 
 4235         if (what == LA_LOCKED) {
 4236                 if (SOLISTENING(so))
 4237                         SOCK_LOCK_ASSERT(so);
 4238                 else
 4239                         SOCKBUF_LOCK_ASSERT(&so->so_snd);
 4240         } else {
 4241                 if (SOLISTENING(so))
 4242                         SOCK_UNLOCK_ASSERT(so);
 4243                 else
 4244                         SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
 4245         }
 4246 }
 4247 
 4248 /*
 4249  * Create an external-format (``xsocket'') structure using the information in
 4250  * the kernel-format socket structure pointed to by so.  This is done to
 4251  * reduce the spew of irrelevant information over this interface, to isolate
 4252  * user code from changes in the kernel structure, and potentially to provide
 4253  * information-hiding if we decide that some of this information should be
 4254  * hidden from users.
 4255  */
 4256 void
 4257 sotoxsocket(struct socket *so, struct xsocket *xso)
 4258 {
 4259 
 4260         bzero(xso, sizeof(*xso));
 4261         xso->xso_len = sizeof *xso;
 4262         xso->xso_so = (uintptr_t)so;
 4263         xso->so_type = so->so_type;
 4264         xso->so_options = so->so_options;
 4265         xso->so_linger = so->so_linger;
 4266         xso->so_state = so->so_state;
 4267         xso->so_pcb = (uintptr_t)so->so_pcb;
 4268         xso->xso_protocol = so->so_proto->pr_protocol;
 4269         xso->xso_family = so->so_proto->pr_domain->dom_family;
 4270         xso->so_timeo = so->so_timeo;
 4271         xso->so_error = so->so_error;
 4272         xso->so_uid = so->so_cred->cr_uid;
 4273         xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
 4274         if (SOLISTENING(so)) {
 4275                 xso->so_qlen = so->sol_qlen;
 4276                 xso->so_incqlen = so->sol_incqlen;
 4277                 xso->so_qlimit = so->sol_qlimit;
 4278                 xso->so_oobmark = 0;
 4279         } else {
 4280                 xso->so_state |= so->so_qstate;
 4281                 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
 4282                 xso->so_oobmark = so->so_oobmark;
 4283                 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
 4284                 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
 4285         }
 4286 }
 4287 
 4288 struct sockbuf *
 4289 so_sockbuf_rcv(struct socket *so)
 4290 {
 4291 
 4292         return (&so->so_rcv);
 4293 }
 4294 
 4295 struct sockbuf *
 4296 so_sockbuf_snd(struct socket *so)
 4297 {
 4298 
 4299         return (&so->so_snd);
 4300 }
 4301 
 4302 int
 4303 so_state_get(const struct socket *so)
 4304 {
 4305 
 4306         return (so->so_state);
 4307 }
 4308 
 4309 void
 4310 so_state_set(struct socket *so, int val)
 4311 {
 4312 
 4313         so->so_state = val;
 4314 }
 4315 
 4316 int
 4317 so_options_get(const struct socket *so)
 4318 {
 4319 
 4320         return (so->so_options);
 4321 }
 4322 
 4323 void
 4324 so_options_set(struct socket *so, int val)
 4325 {
 4326 
 4327         so->so_options = val;
 4328 }
 4329 
 4330 int
 4331 so_error_get(const struct socket *so)
 4332 {
 4333 
 4334         return (so->so_error);
 4335 }
 4336 
 4337 void
 4338 so_error_set(struct socket *so, int val)
 4339 {
 4340 
 4341         so->so_error = val;
 4342 }
 4343 
 4344 int
 4345 so_linger_get(const struct socket *so)
 4346 {
 4347 
 4348         return (so->so_linger);
 4349 }
 4350 
 4351 void
 4352 so_linger_set(struct socket *so, int val)
 4353 {
 4354 
 4355         KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
 4356             ("%s: val %d out of range", __func__, val));
 4357 
 4358         so->so_linger = val;
 4359 }
 4360 
 4361 struct protosw *
 4362 so_protosw_get(const struct socket *so)
 4363 {
 4364 
 4365         return (so->so_proto);
 4366 }
 4367 
 4368 void
 4369 so_protosw_set(struct socket *so, struct protosw *val)
 4370 {
 4371 
 4372         so->so_proto = val;
 4373 }
 4374 
 4375 void
 4376 so_sorwakeup(struct socket *so)
 4377 {
 4378 
 4379         sorwakeup(so);
 4380 }
 4381 
 4382 void
 4383 so_sowwakeup(struct socket *so)
 4384 {
 4385 
 4386         sowwakeup(so);
 4387 }
 4388 
 4389 void
 4390 so_sorwakeup_locked(struct socket *so)
 4391 {
 4392 
 4393         sorwakeup_locked(so);
 4394 }
 4395 
 4396 void
 4397 so_sowwakeup_locked(struct socket *so)
 4398 {
 4399 
 4400         sowwakeup_locked(so);
 4401 }
 4402 
 4403 void
 4404 so_lock(struct socket *so)
 4405 {
 4406 
 4407         SOCK_LOCK(so);
 4408 }
 4409 
 4410 void
 4411 so_unlock(struct socket *so)
 4412 {
 4413 
 4414         SOCK_UNLOCK(so);
 4415 }

Cache object: 79396dcc751247a1829a0f6b43837594


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.