The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_socket.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
    5  *      The Regents of the University of California.
    6  * Copyright (c) 2004 The FreeBSD Foundation
    7  * Copyright (c) 2004-2008 Robert N. M. Watson
    8  * All rights reserved.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)uipc_socket.c       8.3 (Berkeley) 4/15/94
   35  */
   36 
   37 /*
   38  * Comments on the socket life cycle:
   39  *
   40  * soalloc() sets of socket layer state for a socket, called only by
   41  * socreate() and sonewconn().  Socket layer private.
   42  *
   43  * sodealloc() tears down socket layer state for a socket, called only by
   44  * sofree() and sonewconn().  Socket layer private.
   45  *
   46  * pru_attach() associates protocol layer state with an allocated socket;
   47  * called only once, may fail, aborting socket allocation.  This is called
   48  * from socreate() and sonewconn().  Socket layer private.
   49  *
   50  * pru_detach() disassociates protocol layer state from an attached socket,
   51  * and will be called exactly once for sockets in which pru_attach() has
   52  * been successfully called.  If pru_attach() returned an error,
   53  * pru_detach() will not be called.  Socket layer private.
   54  *
   55  * pru_abort() and pru_close() notify the protocol layer that the last
   56  * consumer of a socket is starting to tear down the socket, and that the
   57  * protocol should terminate the connection.  Historically, pru_abort() also
   58  * detached protocol state from the socket state, but this is no longer the
   59  * case.
   60  *
   61  * socreate() creates a socket and attaches protocol state.  This is a public
   62  * interface that may be used by socket layer consumers to create new
   63  * sockets.
   64  *
   65  * sonewconn() creates a socket and attaches protocol state.  This is a
   66  * public interface  that may be used by protocols to create new sockets when
   67  * a new connection is received and will be available for accept() on a
   68  * listen socket.
   69  *
   70  * soclose() destroys a socket after possibly waiting for it to disconnect.
   71  * This is a public interface that socket consumers should use to close and
   72  * release a socket when done with it.
   73  *
   74  * soabort() destroys a socket without waiting for it to disconnect (used
   75  * only for incoming connections that are already partially or fully
   76  * connected).  This is used internally by the socket layer when clearing
   77  * listen socket queues (due to overflow or close on the listen socket), but
   78  * is also a public interface protocols may use to abort connections in
   79  * their incomplete listen queues should they no longer be required.  Sockets
   80  * placed in completed connection listen queues should not be aborted for
   81  * reasons described in the comment above the soclose() implementation.  This
   82  * is not a general purpose close routine, and except in the specific
   83  * circumstances described here, should not be used.
   84  *
   85  * sofree() will free a socket and its protocol state if all references on
   86  * the socket have been released, and is the public interface to attempt to
   87  * free a socket when a reference is removed.  This is a socket layer private
   88  * interface.
   89  *
   90  * NOTE: In addition to socreate() and soclose(), which provide a single
   91  * socket reference to the consumer to be managed as required, there are two
   92  * calls to explicitly manage socket references, soref(), and sorele().
   93  * Currently, these are generally required only when transitioning a socket
   94  * from a listen queue to a file descriptor, in order to prevent garbage
   95  * collection of the socket at an untimely moment.  For a number of reasons,
   96  * these interfaces are not preferred, and should be avoided.
   97  *
   98  * NOTE: With regard to VNETs the general rule is that callers do not set
   99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
  100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
  101  * and sorflush(), which are usually called from a pre-set VNET context.
  102  * sopoll() currently does not need a VNET context to be set.
  103  */
  104 
  105 #include <sys/cdefs.h>
  106 __FBSDID("$FreeBSD$");
  107 
  108 #include "opt_inet.h"
  109 #include "opt_inet6.h"
  110 #include "opt_kern_tls.h"
  111 #include "opt_sctp.h"
  112 
  113 #include <sys/param.h>
  114 #include <sys/systm.h>
  115 #include <sys/fcntl.h>
  116 #include <sys/limits.h>
  117 #include <sys/lock.h>
  118 #include <sys/mac.h>
  119 #include <sys/malloc.h>
  120 #include <sys/mbuf.h>
  121 #include <sys/mutex.h>
  122 #include <sys/domain.h>
  123 #include <sys/file.h>                   /* for struct knote */
  124 #include <sys/hhook.h>
  125 #include <sys/kernel.h>
  126 #include <sys/khelp.h>
  127 #include <sys/ktls.h>
  128 #include <sys/event.h>
  129 #include <sys/eventhandler.h>
  130 #include <sys/poll.h>
  131 #include <sys/proc.h>
  132 #include <sys/protosw.h>
  133 #include <sys/sbuf.h>
  134 #include <sys/socket.h>
  135 #include <sys/socketvar.h>
  136 #include <sys/resourcevar.h>
  137 #include <net/route.h>
  138 #include <sys/signalvar.h>
  139 #include <sys/stat.h>
  140 #include <sys/sx.h>
  141 #include <sys/sysctl.h>
  142 #include <sys/taskqueue.h>
  143 #include <sys/uio.h>
  144 #include <sys/un.h>
  145 #include <sys/unpcb.h>
  146 #include <sys/jail.h>
  147 #include <sys/syslog.h>
  148 #include <netinet/in.h>
  149 #include <netinet/in_pcb.h>
  150 #include <netinet/tcp.h>
  151 
  152 #include <net/vnet.h>
  153 
  154 #include <security/mac/mac_framework.h>
  155 
  156 #include <vm/uma.h>
  157 
  158 #ifdef COMPAT_FREEBSD32
  159 #include <sys/mount.h>
  160 #include <sys/sysent.h>
  161 #include <compat/freebsd32/freebsd32.h>
  162 #endif
  163 
  164 static int      soreceive_rcvoob(struct socket *so, struct uio *uio,
  165                     int flags);
  166 static void     so_rdknl_lock(void *);
  167 static void     so_rdknl_unlock(void *);
  168 static void     so_rdknl_assert_lock(void *, int);
  169 static void     so_wrknl_lock(void *);
  170 static void     so_wrknl_unlock(void *);
  171 static void     so_wrknl_assert_lock(void *, int);
  172 
  173 static void     filt_sordetach(struct knote *kn);
  174 static int      filt_soread(struct knote *kn, long hint);
  175 static void     filt_sowdetach(struct knote *kn);
  176 static int      filt_sowrite(struct knote *kn, long hint);
  177 static int      filt_soempty(struct knote *kn, long hint);
  178 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
  179 fo_kqfilter_t   soo_kqfilter;
  180 
  181 static struct filterops soread_filtops = {
  182         .f_isfd = 1,
  183         .f_detach = filt_sordetach,
  184         .f_event = filt_soread,
  185 };
  186 static struct filterops sowrite_filtops = {
  187         .f_isfd = 1,
  188         .f_detach = filt_sowdetach,
  189         .f_event = filt_sowrite,
  190 };
  191 static struct filterops soempty_filtops = {
  192         .f_isfd = 1,
  193         .f_detach = filt_sowdetach,
  194         .f_event = filt_soempty,
  195 };
  196 
  197 so_gen_t        so_gencnt;      /* generation count for sockets */
  198 
  199 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
  200 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
  201 
  202 #define VNET_SO_ASSERT(so)                                              \
  203         VNET_ASSERT(curvnet != NULL,                                    \
  204             ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
  205 
  206 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
  207 #define V_socket_hhh            VNET(socket_hhh)
  208 
  209 /*
  210  * Limit on the number of connections in the listen queue waiting
  211  * for accept(2).
  212  * NB: The original sysctl somaxconn is still available but hidden
  213  * to prevent confusion about the actual purpose of this number.
  214  */
  215 static u_int somaxconn = SOMAXCONN;
  216 
  217 static int
  218 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
  219 {
  220         int error;
  221         int val;
  222 
  223         val = somaxconn;
  224         error = sysctl_handle_int(oidp, &val, 0, req);
  225         if (error || !req->newptr )
  226                 return (error);
  227 
  228         /*
  229          * The purpose of the UINT_MAX / 3 limit, is so that the formula
  230          *   3 * so_qlimit / 2
  231          * below, will not overflow.
  232          */
  233 
  234         if (val < 1 || val > UINT_MAX / 3)
  235                 return (EINVAL);
  236 
  237         somaxconn = val;
  238         return (0);
  239 }
  240 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
  241     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
  242     sysctl_somaxconn, "I",
  243     "Maximum listen socket pending connection accept queue size");
  244 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
  245     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, 0,
  246     sizeof(int), sysctl_somaxconn, "I",
  247     "Maximum listen socket pending connection accept queue size (compat)");
  248 
  249 static int numopensockets;
  250 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
  251     &numopensockets, 0, "Number of open sockets");
  252 
  253 /*
  254  * accept_mtx locks down per-socket fields relating to accept queues.  See
  255  * socketvar.h for an annotation of the protected fields of struct socket.
  256  */
  257 struct mtx accept_mtx;
  258 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
  259 
  260 /*
  261  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
  262  * so_gencnt field.
  263  */
  264 static struct mtx so_global_mtx;
  265 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
  266 
  267 /*
  268  * General IPC sysctl name space, used by sockets and a variety of other IPC
  269  * types.
  270  */
  271 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  272     "IPC");
  273 
  274 /*
  275  * Initialize the socket subsystem and set up the socket
  276  * memory allocator.
  277  */
  278 static uma_zone_t socket_zone;
  279 int     maxsockets;
  280 
  281 static void
  282 socket_zone_change(void *tag)
  283 {
  284 
  285         maxsockets = uma_zone_set_max(socket_zone, maxsockets);
  286 }
  287 
  288 static void
  289 socket_hhook_register(int subtype)
  290 {
  291 
  292         if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
  293             &V_socket_hhh[subtype],
  294             HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
  295                 printf("%s: WARNING: unable to register hook\n", __func__);
  296 }
  297 
  298 static void
  299 socket_hhook_deregister(int subtype)
  300 {
  301 
  302         if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
  303                 printf("%s: WARNING: unable to deregister hook\n", __func__);
  304 }
  305 
  306 static void
  307 socket_init(void *tag)
  308 {
  309 
  310         socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
  311             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  312         maxsockets = uma_zone_set_max(socket_zone, maxsockets);
  313         uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
  314         EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
  315             EVENTHANDLER_PRI_FIRST);
  316 }
  317 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
  318 
  319 static void
  320 socket_vnet_init(const void *unused __unused)
  321 {
  322         int i;
  323 
  324         /* We expect a contiguous range */
  325         for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
  326                 socket_hhook_register(i);
  327 }
  328 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
  329     socket_vnet_init, NULL);
  330 
  331 static void
  332 socket_vnet_uninit(const void *unused __unused)
  333 {
  334         int i;
  335 
  336         for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
  337                 socket_hhook_deregister(i);
  338 }
  339 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
  340     socket_vnet_uninit, NULL);
  341 
  342 /*
  343  * Initialise maxsockets.  This SYSINIT must be run after
  344  * tunable_mbinit().
  345  */
  346 static void
  347 init_maxsockets(void *ignored)
  348 {
  349 
  350         TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
  351         maxsockets = imax(maxsockets, maxfiles);
  352 }
  353 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
  354 
  355 /*
  356  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
  357  * of the change so that they can update their dependent limits as required.
  358  */
  359 static int
  360 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
  361 {
  362         int error, newmaxsockets;
  363 
  364         newmaxsockets = maxsockets;
  365         error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
  366         if (error == 0 && req->newptr && newmaxsockets != maxsockets) {
  367                 if (newmaxsockets > maxsockets &&
  368                     newmaxsockets <= maxfiles) {
  369                         maxsockets = newmaxsockets;
  370                         EVENTHANDLER_INVOKE(maxsockets_change);
  371                 } else
  372                         error = EINVAL;
  373         }
  374         return (error);
  375 }
  376 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
  377     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &maxsockets, 0,
  378     sysctl_maxsockets, "IU",
  379     "Maximum number of sockets available");
  380 
  381 /*
  382  * Socket operation routines.  These routines are called by the routines in
  383  * sys_socket.c or from a system process, and implement the semantics of
  384  * socket operations by switching out to the protocol specific routines.
  385  */
  386 
  387 /*
  388  * Get a socket structure from our zone, and initialize it.  Note that it
  389  * would probably be better to allocate socket and PCB at the same time, but
  390  * I'm not convinced that all the protocols can be easily modified to do
  391  * this.
  392  *
  393  * soalloc() returns a socket with a ref count of 0.
  394  */
  395 static struct socket *
  396 soalloc(struct vnet *vnet)
  397 {
  398         struct socket *so;
  399 
  400         so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
  401         if (so == NULL)
  402                 return (NULL);
  403 #ifdef MAC
  404         if (mac_socket_init(so, M_NOWAIT) != 0) {
  405                 uma_zfree(socket_zone, so);
  406                 return (NULL);
  407         }
  408 #endif
  409         if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
  410                 uma_zfree(socket_zone, so);
  411                 return (NULL);
  412         }
  413 
  414         /*
  415          * The socket locking protocol allows to lock 2 sockets at a time,
  416          * however, the first one must be a listening socket.  WITNESS lacks
  417          * a feature to change class of an existing lock, so we use DUPOK.
  418          */
  419         mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
  420         SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
  421         SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
  422         so->so_rcv.sb_sel = &so->so_rdsel;
  423         so->so_snd.sb_sel = &so->so_wrsel;
  424         sx_init(&so->so_snd.sb_sx, "so_snd_sx");
  425         sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
  426         TAILQ_INIT(&so->so_snd.sb_aiojobq);
  427         TAILQ_INIT(&so->so_rcv.sb_aiojobq);
  428         TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
  429         TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
  430 #ifdef VIMAGE
  431         VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
  432             __func__, __LINE__, so));
  433         so->so_vnet = vnet;
  434 #endif
  435         /* We shouldn't need the so_global_mtx */
  436         if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
  437                 /* Do we need more comprehensive error returns? */
  438                 uma_zfree(socket_zone, so);
  439                 return (NULL);
  440         }
  441         mtx_lock(&so_global_mtx);
  442         so->so_gencnt = ++so_gencnt;
  443         ++numopensockets;
  444 #ifdef VIMAGE
  445         vnet->vnet_sockcnt++;
  446 #endif
  447         mtx_unlock(&so_global_mtx);
  448 
  449         return (so);
  450 }
  451 
  452 /*
  453  * Free the storage associated with a socket at the socket layer, tear down
  454  * locks, labels, etc.  All protocol state is assumed already to have been
  455  * torn down (and possibly never set up) by the caller.
  456  */
  457 static void
  458 sodealloc(struct socket *so)
  459 {
  460 
  461         KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
  462         KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
  463 
  464         mtx_lock(&so_global_mtx);
  465         so->so_gencnt = ++so_gencnt;
  466         --numopensockets;       /* Could be below, but faster here. */
  467 #ifdef VIMAGE
  468         VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
  469             __func__, __LINE__, so));
  470         so->so_vnet->vnet_sockcnt--;
  471 #endif
  472         mtx_unlock(&so_global_mtx);
  473 #ifdef MAC
  474         mac_socket_destroy(so);
  475 #endif
  476         hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
  477 
  478         khelp_destroy_osd(&so->osd);
  479         if (SOLISTENING(so)) {
  480                 if (so->sol_accept_filter != NULL)
  481                         accept_filt_setopt(so, NULL);
  482         } else {
  483                 if (so->so_rcv.sb_hiwat)
  484                         (void)chgsbsize(so->so_cred->cr_uidinfo,
  485                             &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
  486                 if (so->so_snd.sb_hiwat)
  487                         (void)chgsbsize(so->so_cred->cr_uidinfo,
  488                             &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
  489                 sx_destroy(&so->so_snd.sb_sx);
  490                 sx_destroy(&so->so_rcv.sb_sx);
  491                 SOCKBUF_LOCK_DESTROY(&so->so_snd);
  492                 SOCKBUF_LOCK_DESTROY(&so->so_rcv);
  493         }
  494         crfree(so->so_cred);
  495         mtx_destroy(&so->so_lock);
  496         uma_zfree(socket_zone, so);
  497 }
  498 
  499 /*
  500  * socreate returns a socket with a ref count of 1.  The socket should be
  501  * closed with soclose().
  502  */
  503 int
  504 socreate(int dom, struct socket **aso, int type, int proto,
  505     struct ucred *cred, struct thread *td)
  506 {
  507         struct protosw *prp;
  508         struct socket *so;
  509         int error;
  510 
  511         if (proto)
  512                 prp = pffindproto(dom, proto, type);
  513         else
  514                 prp = pffindtype(dom, type);
  515 
  516         if (prp == NULL) {
  517                 /* No support for domain. */
  518                 if (pffinddomain(dom) == NULL)
  519                         return (EAFNOSUPPORT);
  520                 /* No support for socket type. */
  521                 if (proto == 0 && type != 0)
  522                         return (EPROTOTYPE);
  523                 return (EPROTONOSUPPORT);
  524         }
  525         if (prp->pr_usrreqs->pru_attach == NULL ||
  526             prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
  527                 return (EPROTONOSUPPORT);
  528 
  529         if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
  530                 return (EPROTONOSUPPORT);
  531 
  532         if (prp->pr_type != type)
  533                 return (EPROTOTYPE);
  534         so = soalloc(CRED_TO_VNET(cred));
  535         if (so == NULL)
  536                 return (ENOBUFS);
  537 
  538         so->so_type = type;
  539         so->so_cred = crhold(cred);
  540         if ((prp->pr_domain->dom_family == PF_INET) ||
  541             (prp->pr_domain->dom_family == PF_INET6) ||
  542             (prp->pr_domain->dom_family == PF_ROUTE))
  543                 so->so_fibnum = td->td_proc->p_fibnum;
  544         else
  545                 so->so_fibnum = 0;
  546         so->so_proto = prp;
  547 #ifdef MAC
  548         mac_socket_create(cred, so);
  549 #endif
  550         knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
  551             so_rdknl_assert_lock);
  552         knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
  553             so_wrknl_assert_lock);
  554         /*
  555          * Auto-sizing of socket buffers is managed by the protocols and
  556          * the appropriate flags must be set in the pru_attach function.
  557          */
  558         CURVNET_SET(so->so_vnet);
  559         error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
  560         CURVNET_RESTORE();
  561         if (error) {
  562                 sodealloc(so);
  563                 return (error);
  564         }
  565         soref(so);
  566         *aso = so;
  567         return (0);
  568 }
  569 
  570 #ifdef REGRESSION
  571 static int regression_sonewconn_earlytest = 1;
  572 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
  573     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
  574 #endif
  575 
  576 static struct timeval overinterval = { 60, 0 };
  577 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
  578     &overinterval,
  579     "Delay in seconds between warnings for listen socket overflows");
  580 
  581 /*
  582  * When an attempt at a new connection is noted on a socket which accepts
  583  * connections, sonewconn is called.  If the connection is possible (subject
  584  * to space constraints, etc.) then we allocate a new structure, properly
  585  * linked into the data structure of the original socket, and return this.
  586  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
  587  *
  588  * Note: the ref count on the socket is 0 on return.
  589  */
  590 struct socket *
  591 sonewconn(struct socket *head, int connstatus)
  592 {
  593         struct sbuf descrsb;
  594         struct socket *so;
  595         int len, overcount;
  596         u_int qlen;
  597         const char localprefix[] = "local:";
  598         char descrbuf[SUNPATHLEN + sizeof(localprefix)];
  599 #if defined(INET6)
  600         char addrbuf[INET6_ADDRSTRLEN];
  601 #elif defined(INET)
  602         char addrbuf[INET_ADDRSTRLEN];
  603 #endif
  604         bool dolog, over;
  605 
  606         SOLISTEN_LOCK(head);
  607         over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
  608 #ifdef REGRESSION
  609         if (regression_sonewconn_earlytest && over) {
  610 #else
  611         if (over) {
  612 #endif
  613                 head->sol_overcount++;
  614                 dolog = !!ratecheck(&head->sol_lastover, &overinterval);
  615 
  616                 /*
  617                  * If we're going to log, copy the overflow count and queue
  618                  * length from the listen socket before dropping the lock.
  619                  * Also, reset the overflow count.
  620                  */
  621                 if (dolog) {
  622                         overcount = head->sol_overcount;
  623                         head->sol_overcount = 0;
  624                         qlen = head->sol_qlen;
  625                 }
  626                 SOLISTEN_UNLOCK(head);
  627 
  628                 if (dolog) {
  629                         /*
  630                          * Try to print something descriptive about the
  631                          * socket for the error message.
  632                          */
  633                         sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
  634                             SBUF_FIXEDLEN);
  635                         switch (head->so_proto->pr_domain->dom_family) {
  636 #if defined(INET) || defined(INET6)
  637 #ifdef INET
  638                         case AF_INET:
  639 #endif
  640 #ifdef INET6
  641                         case AF_INET6:
  642                                 if (head->so_proto->pr_domain->dom_family ==
  643                                     AF_INET6 ||
  644                                     (sotoinpcb(head)->inp_inc.inc_flags &
  645                                     INC_ISIPV6)) {
  646                                         ip6_sprintf(addrbuf,
  647                                             &sotoinpcb(head)->inp_inc.inc6_laddr);
  648                                         sbuf_printf(&descrsb, "[%s]", addrbuf);
  649                                 } else
  650 #endif
  651                                 {
  652 #ifdef INET
  653                                         inet_ntoa_r(
  654                                             sotoinpcb(head)->inp_inc.inc_laddr,
  655                                             addrbuf);
  656                                         sbuf_cat(&descrsb, addrbuf);
  657 #endif
  658                                 }
  659                                 sbuf_printf(&descrsb, ":%hu (proto %u)",
  660                                     ntohs(sotoinpcb(head)->inp_inc.inc_lport),
  661                                     head->so_proto->pr_protocol);
  662                                 break;
  663 #endif /* INET || INET6 */
  664                         case AF_UNIX:
  665                                 sbuf_cat(&descrsb, localprefix);
  666                                 if (sotounpcb(head)->unp_addr != NULL)
  667                                         len =
  668                                             sotounpcb(head)->unp_addr->sun_len -
  669                                             offsetof(struct sockaddr_un,
  670                                             sun_path);
  671                                 else
  672                                         len = 0;
  673                                 if (len > 0)
  674                                         sbuf_bcat(&descrsb,
  675                                             sotounpcb(head)->unp_addr->sun_path,
  676                                             len);
  677                                 else
  678                                         sbuf_cat(&descrsb, "(unknown)");
  679                                 break;
  680                         }
  681 
  682                         /*
  683                          * If we can't print something more specific, at least
  684                          * print the domain name.
  685                          */
  686                         if (sbuf_finish(&descrsb) != 0 ||
  687                             sbuf_len(&descrsb) <= 0) {
  688                                 sbuf_clear(&descrsb);
  689                                 sbuf_cat(&descrsb,
  690                                     head->so_proto->pr_domain->dom_name ?:
  691                                     "unknown");
  692                                 sbuf_finish(&descrsb);
  693                         }
  694                         KASSERT(sbuf_len(&descrsb) > 0,
  695                             ("%s: sbuf creation failed", __func__));
  696                         log(LOG_DEBUG,
  697                             "%s: pcb %p (%s): Listen queue overflow: "
  698                             "%i already in queue awaiting acceptance "
  699                             "(%d occurrences)\n",
  700                             __func__, head->so_pcb, sbuf_data(&descrsb),
  701                             qlen, overcount);
  702                         sbuf_delete(&descrsb);
  703 
  704                         overcount = 0;
  705                 }
  706 
  707                 return (NULL);
  708         }
  709         SOLISTEN_UNLOCK(head);
  710         VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
  711             __func__, head));
  712         so = soalloc(head->so_vnet);
  713         if (so == NULL) {
  714                 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
  715                     "limit reached or out of memory\n",
  716                     __func__, head->so_pcb);
  717                 return (NULL);
  718         }
  719         so->so_listen = head;
  720         so->so_type = head->so_type;
  721         so->so_options = head->so_options & ~SO_ACCEPTCONN;
  722         so->so_linger = head->so_linger;
  723         so->so_state = head->so_state | SS_NOFDREF;
  724         so->so_fibnum = head->so_fibnum;
  725         so->so_proto = head->so_proto;
  726         so->so_cred = crhold(head->so_cred);
  727 #ifdef MAC
  728         mac_socket_newconn(head, so);
  729 #endif
  730         knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
  731             so_rdknl_assert_lock);
  732         knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
  733             so_wrknl_assert_lock);
  734         VNET_SO_ASSERT(head);
  735         if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
  736                 sodealloc(so);
  737                 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
  738                     __func__, head->so_pcb);
  739                 return (NULL);
  740         }
  741         if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
  742                 sodealloc(so);
  743                 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
  744                     __func__, head->so_pcb);
  745                 return (NULL);
  746         }
  747         so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
  748         so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
  749         so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
  750         so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
  751         so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE;
  752         so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE;
  753 
  754         SOLISTEN_LOCK(head);
  755         if (head->sol_accept_filter != NULL)
  756                 connstatus = 0;
  757         so->so_state |= connstatus;
  758         soref(head); /* A socket on (in)complete queue refs head. */
  759         if (connstatus) {
  760                 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
  761                 so->so_qstate = SQ_COMP;
  762                 head->sol_qlen++;
  763                 solisten_wakeup(head);  /* unlocks */
  764         } else {
  765                 /*
  766                  * Keep removing sockets from the head until there's room for
  767                  * us to insert on the tail.  In pre-locking revisions, this
  768                  * was a simple if(), but as we could be racing with other
  769                  * threads and soabort() requires dropping locks, we must
  770                  * loop waiting for the condition to be true.
  771                  */
  772                 while (head->sol_incqlen > head->sol_qlimit) {
  773                         struct socket *sp;
  774 
  775                         sp = TAILQ_FIRST(&head->sol_incomp);
  776                         TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
  777                         head->sol_incqlen--;
  778                         SOCK_LOCK(sp);
  779                         sp->so_qstate = SQ_NONE;
  780                         sp->so_listen = NULL;
  781                         SOCK_UNLOCK(sp);
  782                         sorele(head);   /* does SOLISTEN_UNLOCK, head stays */
  783                         soabort(sp);
  784                         SOLISTEN_LOCK(head);
  785                 }
  786                 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
  787                 so->so_qstate = SQ_INCOMP;
  788                 head->sol_incqlen++;
  789                 SOLISTEN_UNLOCK(head);
  790         }
  791         return (so);
  792 }
  793 
  794 #if defined(SCTP) || defined(SCTP_SUPPORT)
  795 /*
  796  * Socket part of sctp_peeloff().  Detach a new socket from an
  797  * association.  The new socket is returned with a reference.
  798  */
  799 struct socket *
  800 sopeeloff(struct socket *head)
  801 {
  802         struct socket *so;
  803 
  804         VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
  805             __func__, __LINE__, head));
  806         so = soalloc(head->so_vnet);
  807         if (so == NULL) {
  808                 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
  809                     "limit reached or out of memory\n",
  810                     __func__, head->so_pcb);
  811                 return (NULL);
  812         }
  813         so->so_type = head->so_type;
  814         so->so_options = head->so_options;
  815         so->so_linger = head->so_linger;
  816         so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
  817         so->so_fibnum = head->so_fibnum;
  818         so->so_proto = head->so_proto;
  819         so->so_cred = crhold(head->so_cred);
  820 #ifdef MAC
  821         mac_socket_newconn(head, so);
  822 #endif
  823         knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
  824             so_rdknl_assert_lock);
  825         knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
  826             so_wrknl_assert_lock);
  827         VNET_SO_ASSERT(head);
  828         if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
  829                 sodealloc(so);
  830                 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
  831                     __func__, head->so_pcb);
  832                 return (NULL);
  833         }
  834         if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
  835                 sodealloc(so);
  836                 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
  837                     __func__, head->so_pcb);
  838                 return (NULL);
  839         }
  840         so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
  841         so->so_snd.sb_lowat = head->so_snd.sb_lowat;
  842         so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
  843         so->so_snd.sb_timeo = head->so_snd.sb_timeo;
  844         so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
  845         so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
  846 
  847         soref(so);
  848 
  849         return (so);
  850 }
  851 #endif  /* SCTP */
  852 
  853 int
  854 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
  855 {
  856         int error;
  857 
  858         CURVNET_SET(so->so_vnet);
  859         error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
  860         CURVNET_RESTORE();
  861         return (error);
  862 }
  863 
  864 int
  865 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
  866 {
  867         int error;
  868 
  869         CURVNET_SET(so->so_vnet);
  870         error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
  871         CURVNET_RESTORE();
  872         return (error);
  873 }
  874 
  875 /*
  876  * solisten() transitions a socket from a non-listening state to a listening
  877  * state, but can also be used to update the listen queue depth on an
  878  * existing listen socket.  The protocol will call back into the sockets
  879  * layer using solisten_proto_check() and solisten_proto() to check and set
  880  * socket-layer listen state.  Call backs are used so that the protocol can
  881  * acquire both protocol and socket layer locks in whatever order is required
  882  * by the protocol.
  883  *
  884  * Protocol implementors are advised to hold the socket lock across the
  885  * socket-layer test and set to avoid races at the socket layer.
  886  */
  887 int
  888 solisten(struct socket *so, int backlog, struct thread *td)
  889 {
  890         int error;
  891 
  892         CURVNET_SET(so->so_vnet);
  893         error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
  894         CURVNET_RESTORE();
  895         return (error);
  896 }
  897 
  898 int
  899 solisten_proto_check(struct socket *so)
  900 {
  901 
  902         SOCK_LOCK_ASSERT(so);
  903 
  904         if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
  905             SS_ISDISCONNECTING))
  906                 return (EINVAL);
  907         return (0);
  908 }
  909 
  910 void
  911 solisten_proto(struct socket *so, int backlog)
  912 {
  913         int sbrcv_lowat, sbsnd_lowat;
  914         u_int sbrcv_hiwat, sbsnd_hiwat;
  915         short sbrcv_flags, sbsnd_flags;
  916         sbintime_t sbrcv_timeo, sbsnd_timeo;
  917 
  918         SOCK_LOCK_ASSERT(so);
  919 
  920         if (SOLISTENING(so))
  921                 goto listening;
  922 
  923         /*
  924          * Change this socket to listening state.
  925          */
  926         sbrcv_lowat = so->so_rcv.sb_lowat;
  927         sbsnd_lowat = so->so_snd.sb_lowat;
  928         sbrcv_hiwat = so->so_rcv.sb_hiwat;
  929         sbsnd_hiwat = so->so_snd.sb_hiwat;
  930         sbrcv_flags = so->so_rcv.sb_flags;
  931         sbsnd_flags = so->so_snd.sb_flags;
  932         sbrcv_timeo = so->so_rcv.sb_timeo;
  933         sbsnd_timeo = so->so_snd.sb_timeo;
  934 
  935         sbdestroy(&so->so_snd, so);
  936         sbdestroy(&so->so_rcv, so);
  937         sx_destroy(&so->so_snd.sb_sx);
  938         sx_destroy(&so->so_rcv.sb_sx);
  939         SOCKBUF_LOCK_DESTROY(&so->so_snd);
  940         SOCKBUF_LOCK_DESTROY(&so->so_rcv);
  941 
  942 #ifdef INVARIANTS
  943         bzero(&so->so_rcv,
  944             sizeof(struct socket) - offsetof(struct socket, so_rcv));
  945 #endif
  946 
  947         so->sol_sbrcv_lowat = sbrcv_lowat;
  948         so->sol_sbsnd_lowat = sbsnd_lowat;
  949         so->sol_sbrcv_hiwat = sbrcv_hiwat;
  950         so->sol_sbsnd_hiwat = sbsnd_hiwat;
  951         so->sol_sbrcv_flags = sbrcv_flags;
  952         so->sol_sbsnd_flags = sbsnd_flags;
  953         so->sol_sbrcv_timeo = sbrcv_timeo;
  954         so->sol_sbsnd_timeo = sbsnd_timeo;
  955 
  956         so->sol_qlen = so->sol_incqlen = 0;
  957         TAILQ_INIT(&so->sol_incomp);
  958         TAILQ_INIT(&so->sol_comp);
  959 
  960         so->sol_accept_filter = NULL;
  961         so->sol_accept_filter_arg = NULL;
  962         so->sol_accept_filter_str = NULL;
  963 
  964         so->sol_upcall = NULL;
  965         so->sol_upcallarg = NULL;
  966 
  967         so->so_options |= SO_ACCEPTCONN;
  968 
  969 listening:
  970         if (backlog < 0 || backlog > somaxconn)
  971                 backlog = somaxconn;
  972         so->sol_qlimit = backlog;
  973 }
  974 
  975 /*
  976  * Wakeup listeners/subsystems once we have a complete connection.
  977  * Enters with lock, returns unlocked.
  978  */
  979 void
  980 solisten_wakeup(struct socket *sol)
  981 {
  982 
  983         if (sol->sol_upcall != NULL)
  984                 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
  985         else {
  986                 selwakeuppri(&sol->so_rdsel, PSOCK);
  987                 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
  988         }
  989         SOLISTEN_UNLOCK(sol);
  990         wakeup_one(&sol->sol_comp);
  991         if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
  992                 pgsigio(&sol->so_sigio, SIGIO, 0);
  993 }
  994 
  995 /*
  996  * Return single connection off a listening socket queue.  Main consumer of
  997  * the function is kern_accept4().  Some modules, that do their own accept
  998  * management also use the function.
  999  *
 1000  * Listening socket must be locked on entry and is returned unlocked on
 1001  * return.
 1002  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
 1003  */
 1004 int
 1005 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
 1006 {
 1007         struct socket *so;
 1008         int error;
 1009 
 1010         SOLISTEN_LOCK_ASSERT(head);
 1011 
 1012         while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
 1013             head->so_error == 0) {
 1014                 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
 1015                     "accept", 0);
 1016                 if (error != 0) {
 1017                         SOLISTEN_UNLOCK(head);
 1018                         return (error);
 1019                 }
 1020         }
 1021         if (head->so_error) {
 1022                 error = head->so_error;
 1023                 head->so_error = 0;
 1024         } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
 1025                 error = EWOULDBLOCK;
 1026         else
 1027                 error = 0;
 1028         if (error) {
 1029                 SOLISTEN_UNLOCK(head);
 1030                 return (error);
 1031         }
 1032         so = TAILQ_FIRST(&head->sol_comp);
 1033         SOCK_LOCK(so);
 1034         KASSERT(so->so_qstate == SQ_COMP,
 1035             ("%s: so %p not SQ_COMP", __func__, so));
 1036         soref(so);
 1037         head->sol_qlen--;
 1038         so->so_qstate = SQ_NONE;
 1039         so->so_listen = NULL;
 1040         TAILQ_REMOVE(&head->sol_comp, so, so_list);
 1041         if (flags & ACCEPT4_INHERIT)
 1042                 so->so_state |= (head->so_state & SS_NBIO);
 1043         else
 1044                 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
 1045         SOCK_UNLOCK(so);
 1046         sorele(head);
 1047 
 1048         *ret = so;
 1049         return (0);
 1050 }
 1051 
 1052 /*
 1053  * Evaluate the reference count and named references on a socket; if no
 1054  * references remain, free it.  This should be called whenever a reference is
 1055  * released, such as in sorele(), but also when named reference flags are
 1056  * cleared in socket or protocol code.
 1057  *
 1058  * sofree() will free the socket if:
 1059  *
 1060  * - There are no outstanding file descriptor references or related consumers
 1061  *   (so_count == 0).
 1062  *
 1063  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
 1064  *
 1065  * - The protocol does not have an outstanding strong reference on the socket
 1066  *   (SS_PROTOREF).
 1067  *
 1068  * - The socket is not in a completed connection queue, so a process has been
 1069  *   notified that it is present.  If it is removed, the user process may
 1070  *   block in accept() despite select() saying the socket was ready.
 1071  */
 1072 void
 1073 sofree(struct socket *so)
 1074 {
 1075         struct protosw *pr = so->so_proto;
 1076         bool last __diagused;
 1077 
 1078         SOCK_LOCK_ASSERT(so);
 1079 
 1080         if ((so->so_state & (SS_NOFDREF | SS_PROTOREF)) != SS_NOFDREF ||
 1081             refcount_load(&so->so_count) != 0 || so->so_qstate == SQ_COMP) {
 1082                 SOCK_UNLOCK(so);
 1083                 return;
 1084         }
 1085 
 1086         if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) {
 1087                 struct socket *sol;
 1088 
 1089                 sol = so->so_listen;
 1090                 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so));
 1091 
 1092                 /*
 1093                  * To solve race between close of a listening socket and
 1094                  * a socket on its incomplete queue, we need to lock both.
 1095                  * The order is first listening socket, then regular.
 1096                  * Since we don't have SS_NOFDREF neither SS_PROTOREF, this
 1097                  * function and the listening socket are the only pointers
 1098                  * to so.  To preserve so and sol, we reference both and then
 1099                  * relock.
 1100                  * After relock the socket may not move to so_comp since it
 1101                  * doesn't have PCB already, but it may be removed from
 1102                  * so_incomp. If that happens, we share responsiblity on
 1103                  * freeing the socket, but soclose() has already removed
 1104                  * it from queue.
 1105                  */
 1106                 soref(sol);
 1107                 soref(so);
 1108                 SOCK_UNLOCK(so);
 1109                 SOLISTEN_LOCK(sol);
 1110                 SOCK_LOCK(so);
 1111                 if (so->so_qstate == SQ_INCOMP) {
 1112                         KASSERT(so->so_listen == sol,
 1113                             ("%s: so %p migrated out of sol %p",
 1114                             __func__, so, sol));
 1115                         TAILQ_REMOVE(&sol->sol_incomp, so, so_list);
 1116                         sol->sol_incqlen--;
 1117                         last = refcount_release(&sol->so_count);
 1118                         KASSERT(!last, ("%s: released last reference for %p",
 1119                             __func__, sol));
 1120                         so->so_qstate = SQ_NONE;
 1121                         so->so_listen = NULL;
 1122                 } else
 1123                         KASSERT(so->so_listen == NULL,
 1124                             ("%s: so %p not on (in)comp with so_listen",
 1125                             __func__, so));
 1126                 sorele(sol);
 1127                 KASSERT(refcount_load(&so->so_count) == 1,
 1128                     ("%s: so %p count %u", __func__, so, so->so_count));
 1129                 so->so_count = 0;
 1130         }
 1131         if (SOLISTENING(so))
 1132                 so->so_error = ECONNABORTED;
 1133         SOCK_UNLOCK(so);
 1134 
 1135         if (so->so_dtor != NULL)
 1136                 so->so_dtor(so);
 1137 
 1138         VNET_SO_ASSERT(so);
 1139         if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
 1140                 (*pr->pr_domain->dom_dispose)(so);
 1141         if (pr->pr_usrreqs->pru_detach != NULL)
 1142                 (*pr->pr_usrreqs->pru_detach)(so);
 1143 
 1144         /*
 1145          * From this point on, we assume that no other references to this
 1146          * socket exist anywhere else in the stack.  Therefore, no locks need
 1147          * to be acquired or held.
 1148          *
 1149          * We used to do a lot of socket buffer and socket locking here, as
 1150          * well as invoke sorflush() and perform wakeups.  The direct call to
 1151          * dom_dispose() and sbdestroy() are an inlining of what was
 1152          * necessary from sorflush().
 1153          *
 1154          * Notice that the socket buffer and kqueue state are torn down
 1155          * before calling pru_detach.  This means that protocols shold not
 1156          * assume they can perform socket wakeups, etc, in their detach code.
 1157          */
 1158         if (!SOLISTENING(so)) {
 1159                 sbdestroy(&so->so_snd, so);
 1160                 sbdestroy(&so->so_rcv, so);
 1161         }
 1162         seldrain(&so->so_rdsel);
 1163         seldrain(&so->so_wrsel);
 1164         knlist_destroy(&so->so_rdsel.si_note);
 1165         knlist_destroy(&so->so_wrsel.si_note);
 1166         sodealloc(so);
 1167 }
 1168 
 1169 /*
 1170  * Close a socket on last file table reference removal.  Initiate disconnect
 1171  * if connected.  Free socket when disconnect complete.
 1172  *
 1173  * This function will sorele() the socket.  Note that soclose() may be called
 1174  * prior to the ref count reaching zero.  The actual socket structure will
 1175  * not be freed until the ref count reaches zero.
 1176  */
 1177 int
 1178 soclose(struct socket *so)
 1179 {
 1180         struct accept_queue lqueue;
 1181         struct socket *sp, *tsp;
 1182         int error = 0;
 1183         bool last __diagused;
 1184 
 1185         KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
 1186 
 1187         CURVNET_SET(so->so_vnet);
 1188         funsetown(&so->so_sigio);
 1189         if (so->so_state & SS_ISCONNECTED) {
 1190                 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
 1191                         error = sodisconnect(so);
 1192                         if (error) {
 1193                                 if (error == ENOTCONN)
 1194                                         error = 0;
 1195                                 goto drop;
 1196                         }
 1197                 }
 1198 
 1199                 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
 1200                         if ((so->so_state & SS_ISDISCONNECTING) &&
 1201                             (so->so_state & SS_NBIO))
 1202                                 goto drop;
 1203                         while (so->so_state & SS_ISCONNECTED) {
 1204                                 error = tsleep(&so->so_timeo,
 1205                                     PSOCK | PCATCH, "soclos",
 1206                                     so->so_linger * hz);
 1207                                 if (error)
 1208                                         break;
 1209                         }
 1210                 }
 1211         }
 1212 
 1213 drop:
 1214         if (so->so_proto->pr_usrreqs->pru_close != NULL)
 1215                 (*so->so_proto->pr_usrreqs->pru_close)(so);
 1216 
 1217         TAILQ_INIT(&lqueue);
 1218         SOCK_LOCK(so);
 1219         if (SOLISTENING(so)) {
 1220                 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
 1221                 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
 1222 
 1223                 so->sol_qlen = so->sol_incqlen = 0;
 1224 
 1225                 TAILQ_FOREACH(sp, &lqueue, so_list) {
 1226                         SOCK_LOCK(sp);
 1227                         sp->so_qstate = SQ_NONE;
 1228                         sp->so_listen = NULL;
 1229                         SOCK_UNLOCK(sp);
 1230                         last = refcount_release(&so->so_count);
 1231                         KASSERT(!last, ("%s: released last reference for %p",
 1232                             __func__, so));
 1233                 }
 1234         }
 1235         KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
 1236         so->so_state |= SS_NOFDREF;
 1237         sorele(so);
 1238         TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) {
 1239                 SOCK_LOCK(sp);
 1240                 if (refcount_load(&sp->so_count) == 0) {
 1241                         SOCK_UNLOCK(sp);
 1242                         soabort(sp);
 1243                 } else {
 1244                         /* See the handling of queued sockets in sofree(). */
 1245                         SOCK_UNLOCK(sp);
 1246                 }
 1247         }
 1248         CURVNET_RESTORE();
 1249         return (error);
 1250 }
 1251 
 1252 /*
 1253  * soabort() is used to abruptly tear down a connection, such as when a
 1254  * resource limit is reached (listen queue depth exceeded), or if a listen
 1255  * socket is closed while there are sockets waiting to be accepted.
 1256  *
 1257  * This interface is tricky, because it is called on an unreferenced socket,
 1258  * and must be called only by a thread that has actually removed the socket
 1259  * from the listen queue it was on, or races with other threads are risked.
 1260  *
 1261  * This interface will call into the protocol code, so must not be called
 1262  * with any socket locks held.  Protocols do call it while holding their own
 1263  * recursible protocol mutexes, but this is something that should be subject
 1264  * to review in the future.
 1265  */
 1266 void
 1267 soabort(struct socket *so)
 1268 {
 1269 
 1270         /*
 1271          * In as much as is possible, assert that no references to this
 1272          * socket are held.  This is not quite the same as asserting that the
 1273          * current thread is responsible for arranging for no references, but
 1274          * is as close as we can get for now.
 1275          */
 1276         KASSERT(so->so_count == 0, ("soabort: so_count"));
 1277         KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
 1278         KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
 1279         VNET_SO_ASSERT(so);
 1280 
 1281         if (so->so_proto->pr_usrreqs->pru_abort != NULL)
 1282                 (*so->so_proto->pr_usrreqs->pru_abort)(so);
 1283         SOCK_LOCK(so);
 1284         sofree(so);
 1285 }
 1286 
 1287 int
 1288 soaccept(struct socket *so, struct sockaddr **nam)
 1289 {
 1290         int error;
 1291 
 1292         SOCK_LOCK(so);
 1293         KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
 1294         so->so_state &= ~SS_NOFDREF;
 1295         SOCK_UNLOCK(so);
 1296 
 1297         CURVNET_SET(so->so_vnet);
 1298         error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
 1299         CURVNET_RESTORE();
 1300         return (error);
 1301 }
 1302 
 1303 int
 1304 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
 1305 {
 1306 
 1307         return (soconnectat(AT_FDCWD, so, nam, td));
 1308 }
 1309 
 1310 int
 1311 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
 1312 {
 1313         int error;
 1314 
 1315         /* XXXMJ racy */
 1316         if (SOLISTENING(so))
 1317                 return (EOPNOTSUPP);
 1318 
 1319         CURVNET_SET(so->so_vnet);
 1320         /*
 1321          * If protocol is connection-based, can only connect once.
 1322          * Otherwise, if connected, try to disconnect first.  This allows
 1323          * user to disconnect by connecting to, e.g., a null address.
 1324          */
 1325         if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
 1326             ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
 1327             (error = sodisconnect(so)))) {
 1328                 error = EISCONN;
 1329         } else {
 1330                 /*
 1331                  * Prevent accumulated error from previous connection from
 1332                  * biting us.
 1333                  */
 1334                 so->so_error = 0;
 1335                 if (fd == AT_FDCWD) {
 1336                         error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
 1337                             nam, td);
 1338                 } else {
 1339                         error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
 1340                             so, nam, td);
 1341                 }
 1342         }
 1343         CURVNET_RESTORE();
 1344 
 1345         return (error);
 1346 }
 1347 
 1348 int
 1349 soconnect2(struct socket *so1, struct socket *so2)
 1350 {
 1351         int error;
 1352 
 1353         CURVNET_SET(so1->so_vnet);
 1354         error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
 1355         CURVNET_RESTORE();
 1356         return (error);
 1357 }
 1358 
 1359 int
 1360 sodisconnect(struct socket *so)
 1361 {
 1362         int error;
 1363 
 1364         if ((so->so_state & SS_ISCONNECTED) == 0)
 1365                 return (ENOTCONN);
 1366         if (so->so_state & SS_ISDISCONNECTING)
 1367                 return (EALREADY);
 1368         VNET_SO_ASSERT(so);
 1369         error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
 1370         return (error);
 1371 }
 1372 
 1373 int
 1374 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1375     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1376 {
 1377         long space;
 1378         ssize_t resid;
 1379         int clen = 0, error, dontroute;
 1380 
 1381         KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
 1382         KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
 1383             ("sosend_dgram: !PR_ATOMIC"));
 1384 
 1385         if (uio != NULL)
 1386                 resid = uio->uio_resid;
 1387         else
 1388                 resid = top->m_pkthdr.len;
 1389         /*
 1390          * In theory resid should be unsigned.  However, space must be
 1391          * signed, as it might be less than 0 if we over-committed, and we
 1392          * must use a signed comparison of space and resid.  On the other
 1393          * hand, a negative resid causes us to loop sending 0-length
 1394          * segments to the protocol.
 1395          */
 1396         if (resid < 0) {
 1397                 error = EINVAL;
 1398                 goto out;
 1399         }
 1400 
 1401         dontroute =
 1402             (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
 1403         if (td != NULL)
 1404                 td->td_ru.ru_msgsnd++;
 1405         if (control != NULL)
 1406                 clen = control->m_len;
 1407 
 1408         SOCKBUF_LOCK(&so->so_snd);
 1409         if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 1410                 SOCKBUF_UNLOCK(&so->so_snd);
 1411                 error = EPIPE;
 1412                 goto out;
 1413         }
 1414         if (so->so_error) {
 1415                 error = so->so_error;
 1416                 so->so_error = 0;
 1417                 SOCKBUF_UNLOCK(&so->so_snd);
 1418                 goto out;
 1419         }
 1420         if ((so->so_state & SS_ISCONNECTED) == 0) {
 1421                 /*
 1422                  * `sendto' and `sendmsg' is allowed on a connection-based
 1423                  * socket if it supports implied connect.  Return ENOTCONN if
 1424                  * not connected and no address is supplied.
 1425                  */
 1426                 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
 1427                     (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
 1428                         if ((so->so_state & SS_ISCONFIRMING) == 0 &&
 1429                             !(resid == 0 && clen != 0)) {
 1430                                 SOCKBUF_UNLOCK(&so->so_snd);
 1431                                 error = ENOTCONN;
 1432                                 goto out;
 1433                         }
 1434                 } else if (addr == NULL) {
 1435                         if (so->so_proto->pr_flags & PR_CONNREQUIRED)
 1436                                 error = ENOTCONN;
 1437                         else
 1438                                 error = EDESTADDRREQ;
 1439                         SOCKBUF_UNLOCK(&so->so_snd);
 1440                         goto out;
 1441                 }
 1442         }
 1443 
 1444         /*
 1445          * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
 1446          * problem and need fixing.
 1447          */
 1448         space = sbspace(&so->so_snd);
 1449         if (flags & MSG_OOB)
 1450                 space += 1024;
 1451         space -= clen;
 1452         SOCKBUF_UNLOCK(&so->so_snd);
 1453         if (resid > space) {
 1454                 error = EMSGSIZE;
 1455                 goto out;
 1456         }
 1457         if (uio == NULL) {
 1458                 resid = 0;
 1459                 if (flags & MSG_EOR)
 1460                         top->m_flags |= M_EOR;
 1461         } else {
 1462                 /*
 1463                  * Copy the data from userland into a mbuf chain.
 1464                  * If no data is to be copied in, a single empty mbuf
 1465                  * is returned.
 1466                  */
 1467                 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
 1468                     (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
 1469                 if (top == NULL) {
 1470                         error = EFAULT; /* only possible error */
 1471                         goto out;
 1472                 }
 1473                 space -= resid - uio->uio_resid;
 1474                 resid = uio->uio_resid;
 1475         }
 1476         KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
 1477         /*
 1478          * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
 1479          * than with.
 1480          */
 1481         if (dontroute) {
 1482                 SOCK_LOCK(so);
 1483                 so->so_options |= SO_DONTROUTE;
 1484                 SOCK_UNLOCK(so);
 1485         }
 1486         /*
 1487          * XXX all the SBS_CANTSENDMORE checks previously done could be out
 1488          * of date.  We could have received a reset packet in an interrupt or
 1489          * maybe we slept while doing page faults in uiomove() etc.  We could
 1490          * probably recheck again inside the locking protection here, but
 1491          * there are probably other places that this also happens.  We must
 1492          * rethink this.
 1493          */
 1494         VNET_SO_ASSERT(so);
 1495         error = (*so->so_proto->pr_usrreqs->pru_send)(so,
 1496             (flags & MSG_OOB) ? PRUS_OOB :
 1497         /*
 1498          * If the user set MSG_EOF, the protocol understands this flag and
 1499          * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
 1500          */
 1501             ((flags & MSG_EOF) &&
 1502              (so->so_proto->pr_flags & PR_IMPLOPCL) &&
 1503              (resid <= 0)) ?
 1504                 PRUS_EOF :
 1505                 /* If there is more to send set PRUS_MORETOCOME */
 1506                 (flags & MSG_MORETOCOME) ||
 1507                 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
 1508                 top, addr, control, td);
 1509         if (dontroute) {
 1510                 SOCK_LOCK(so);
 1511                 so->so_options &= ~SO_DONTROUTE;
 1512                 SOCK_UNLOCK(so);
 1513         }
 1514         clen = 0;
 1515         control = NULL;
 1516         top = NULL;
 1517 out:
 1518         if (top != NULL)
 1519                 m_freem(top);
 1520         if (control != NULL)
 1521                 m_freem(control);
 1522         return (error);
 1523 }
 1524 
 1525 /*
 1526  * Send on a socket.  If send must go all at once and message is larger than
 1527  * send buffering, then hard error.  Lock against other senders.  If must go
 1528  * all at once and not enough room now, then inform user that this would
 1529  * block and do nothing.  Otherwise, if nonblocking, send as much as
 1530  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
 1531  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
 1532  * in mbuf chain must be small enough to send all at once.
 1533  *
 1534  * Returns nonzero on error, timeout or signal; callers must check for short
 1535  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
 1536  * on return.
 1537  */
 1538 int
 1539 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1540     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1541 {
 1542         long space;
 1543         ssize_t resid;
 1544         int clen = 0, error, dontroute;
 1545         int atomic = sosendallatonce(so) || top;
 1546         int pru_flag;
 1547 #ifdef KERN_TLS
 1548         struct ktls_session *tls;
 1549         int tls_enq_cnt, tls_pruflag;
 1550         uint8_t tls_rtype;
 1551 
 1552         tls = NULL;
 1553         tls_rtype = TLS_RLTYPE_APP;
 1554 #endif
 1555         if (uio != NULL)
 1556                 resid = uio->uio_resid;
 1557         else if ((top->m_flags & M_PKTHDR) != 0)
 1558                 resid = top->m_pkthdr.len;
 1559         else
 1560                 resid = m_length(top, NULL);
 1561         /*
 1562          * In theory resid should be unsigned.  However, space must be
 1563          * signed, as it might be less than 0 if we over-committed, and we
 1564          * must use a signed comparison of space and resid.  On the other
 1565          * hand, a negative resid causes us to loop sending 0-length
 1566          * segments to the protocol.
 1567          *
 1568          * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
 1569          * type sockets since that's an error.
 1570          */
 1571         if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
 1572                 error = EINVAL;
 1573                 goto out;
 1574         }
 1575 
 1576         dontroute =
 1577             (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
 1578             (so->so_proto->pr_flags & PR_ATOMIC);
 1579         if (td != NULL)
 1580                 td->td_ru.ru_msgsnd++;
 1581         if (control != NULL)
 1582                 clen = control->m_len;
 1583 
 1584         error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
 1585         if (error)
 1586                 goto out;
 1587 
 1588 #ifdef KERN_TLS
 1589         tls_pruflag = 0;
 1590         tls = ktls_hold(so->so_snd.sb_tls_info);
 1591         if (tls != NULL) {
 1592                 if (tls->mode == TCP_TLS_MODE_SW)
 1593                         tls_pruflag = PRUS_NOTREADY;
 1594 
 1595                 if (control != NULL) {
 1596                         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
 1597 
 1598                         if (clen >= sizeof(*cm) &&
 1599                             cm->cmsg_type == TLS_SET_RECORD_TYPE) {
 1600                                 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
 1601                                 clen = 0;
 1602                                 m_freem(control);
 1603                                 control = NULL;
 1604                                 atomic = 1;
 1605                         }
 1606                 }
 1607 
 1608                 if (resid == 0 && !ktls_permit_empty_frames(tls)) {
 1609                         error = EINVAL;
 1610                         goto release;
 1611                 }
 1612         }
 1613 #endif
 1614 
 1615 restart:
 1616         do {
 1617                 SOCKBUF_LOCK(&so->so_snd);
 1618                 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 1619                         SOCKBUF_UNLOCK(&so->so_snd);
 1620                         error = EPIPE;
 1621                         goto release;
 1622                 }
 1623                 if (so->so_error) {
 1624                         error = so->so_error;
 1625                         so->so_error = 0;
 1626                         SOCKBUF_UNLOCK(&so->so_snd);
 1627                         goto release;
 1628                 }
 1629                 if ((so->so_state & SS_ISCONNECTED) == 0) {
 1630                         /*
 1631                          * `sendto' and `sendmsg' is allowed on a connection-
 1632                          * based socket if it supports implied connect.
 1633                          * Return ENOTCONN if not connected and no address is
 1634                          * supplied.
 1635                          */
 1636                         if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
 1637                             (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
 1638                                 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
 1639                                     !(resid == 0 && clen != 0)) {
 1640                                         SOCKBUF_UNLOCK(&so->so_snd);
 1641                                         error = ENOTCONN;
 1642                                         goto release;
 1643                                 }
 1644                         } else if (addr == NULL) {
 1645                                 SOCKBUF_UNLOCK(&so->so_snd);
 1646                                 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
 1647                                         error = ENOTCONN;
 1648                                 else
 1649                                         error = EDESTADDRREQ;
 1650                                 goto release;
 1651                         }
 1652                 }
 1653                 space = sbspace(&so->so_snd);
 1654                 if (flags & MSG_OOB)
 1655                         space += 1024;
 1656                 if ((atomic && resid > so->so_snd.sb_hiwat) ||
 1657                     clen > so->so_snd.sb_hiwat) {
 1658                         SOCKBUF_UNLOCK(&so->so_snd);
 1659                         error = EMSGSIZE;
 1660                         goto release;
 1661                 }
 1662                 if (space < resid + clen &&
 1663                     (atomic || space < so->so_snd.sb_lowat || space < clen)) {
 1664                         if ((so->so_state & SS_NBIO) ||
 1665                             (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
 1666                                 SOCKBUF_UNLOCK(&so->so_snd);
 1667                                 error = EWOULDBLOCK;
 1668                                 goto release;
 1669                         }
 1670                         error = sbwait(&so->so_snd);
 1671                         SOCKBUF_UNLOCK(&so->so_snd);
 1672                         if (error)
 1673                                 goto release;
 1674                         goto restart;
 1675                 }
 1676                 SOCKBUF_UNLOCK(&so->so_snd);
 1677                 space -= clen;
 1678                 do {
 1679                         if (uio == NULL) {
 1680                                 resid = 0;
 1681                                 if (flags & MSG_EOR)
 1682                                         top->m_flags |= M_EOR;
 1683 #ifdef KERN_TLS
 1684                                 if (tls != NULL) {
 1685                                         ktls_frame(top, tls, &tls_enq_cnt,
 1686                                             tls_rtype);
 1687                                         tls_rtype = TLS_RLTYPE_APP;
 1688                                 }
 1689 #endif
 1690                         } else {
 1691                                 /*
 1692                                  * Copy the data from userland into a mbuf
 1693                                  * chain.  If resid is 0, which can happen
 1694                                  * only if we have control to send, then
 1695                                  * a single empty mbuf is returned.  This
 1696                                  * is a workaround to prevent protocol send
 1697                                  * methods to panic.
 1698                                  */
 1699 #ifdef KERN_TLS
 1700                                 if (tls != NULL) {
 1701                                         top = m_uiotombuf(uio, M_WAITOK, space,
 1702                                             tls->params.max_frame_len,
 1703                                             M_EXTPG |
 1704                                             ((flags & MSG_EOR) ? M_EOR : 0));
 1705                                         if (top != NULL) {
 1706                                                 ktls_frame(top, tls,
 1707                                                     &tls_enq_cnt, tls_rtype);
 1708                                         }
 1709                                         tls_rtype = TLS_RLTYPE_APP;
 1710                                 } else
 1711 #endif
 1712                                         top = m_uiotombuf(uio, M_WAITOK, space,
 1713                                             (atomic ? max_hdr : 0),
 1714                                             (atomic ? M_PKTHDR : 0) |
 1715                                             ((flags & MSG_EOR) ? M_EOR : 0));
 1716                                 if (top == NULL) {
 1717                                         error = EFAULT; /* only possible error */
 1718                                         goto release;
 1719                                 }
 1720                                 space -= resid - uio->uio_resid;
 1721                                 resid = uio->uio_resid;
 1722                         }
 1723                         if (dontroute) {
 1724                                 SOCK_LOCK(so);
 1725                                 so->so_options |= SO_DONTROUTE;
 1726                                 SOCK_UNLOCK(so);
 1727                         }
 1728                         /*
 1729                          * XXX all the SBS_CANTSENDMORE checks previously
 1730                          * done could be out of date.  We could have received
 1731                          * a reset packet in an interrupt or maybe we slept
 1732                          * while doing page faults in uiomove() etc.  We
 1733                          * could probably recheck again inside the locking
 1734                          * protection here, but there are probably other
 1735                          * places that this also happens.  We must rethink
 1736                          * this.
 1737                          */
 1738                         VNET_SO_ASSERT(so);
 1739 
 1740                         pru_flag = (flags & MSG_OOB) ? PRUS_OOB :
 1741                         /*
 1742                          * If the user set MSG_EOF, the protocol understands
 1743                          * this flag and nothing left to send then use
 1744                          * PRU_SEND_EOF instead of PRU_SEND.
 1745                          */
 1746                             ((flags & MSG_EOF) &&
 1747                              (so->so_proto->pr_flags & PR_IMPLOPCL) &&
 1748                              (resid <= 0)) ?
 1749                                 PRUS_EOF :
 1750                         /* If there is more to send set PRUS_MORETOCOME. */
 1751                             (flags & MSG_MORETOCOME) ||
 1752                             (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
 1753 
 1754 #ifdef KERN_TLS
 1755                         pru_flag |= tls_pruflag;
 1756 #endif
 1757 
 1758                         error = (*so->so_proto->pr_usrreqs->pru_send)(so,
 1759                             pru_flag, top, addr, control, td);
 1760 
 1761                         if (dontroute) {
 1762                                 SOCK_LOCK(so);
 1763                                 so->so_options &= ~SO_DONTROUTE;
 1764                                 SOCK_UNLOCK(so);
 1765                         }
 1766 
 1767 #ifdef KERN_TLS
 1768                         if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
 1769                                 if (error != 0) {
 1770                                         m_freem(top);
 1771                                         top = NULL;
 1772                                 } else {
 1773                                         soref(so);
 1774                                         ktls_enqueue(top, so, tls_enq_cnt);
 1775                                 }
 1776                         }
 1777 #endif
 1778                         clen = 0;
 1779                         control = NULL;
 1780                         top = NULL;
 1781                         if (error)
 1782                                 goto release;
 1783                 } while (resid && space > 0);
 1784         } while (resid);
 1785 
 1786 release:
 1787         SOCK_IO_SEND_UNLOCK(so);
 1788 out:
 1789 #ifdef KERN_TLS
 1790         if (tls != NULL)
 1791                 ktls_free(tls);
 1792 #endif
 1793         if (top != NULL)
 1794                 m_freem(top);
 1795         if (control != NULL)
 1796                 m_freem(control);
 1797         return (error);
 1798 }
 1799 
 1800 int
 1801 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1802     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1803 {
 1804         int error;
 1805 
 1806         CURVNET_SET(so->so_vnet);
 1807         if (!SOLISTENING(so))
 1808                 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio,
 1809                     top, control, flags, td);
 1810         else {
 1811                 m_freem(top);
 1812                 m_freem(control);
 1813                 error = ENOTCONN;
 1814         }
 1815         CURVNET_RESTORE();
 1816         return (error);
 1817 }
 1818 
 1819 /*
 1820  * The part of soreceive() that implements reading non-inline out-of-band
 1821  * data from a socket.  For more complete comments, see soreceive(), from
 1822  * which this code originated.
 1823  *
 1824  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
 1825  * unable to return an mbuf chain to the caller.
 1826  */
 1827 static int
 1828 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
 1829 {
 1830         struct protosw *pr = so->so_proto;
 1831         struct mbuf *m;
 1832         int error;
 1833 
 1834         KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
 1835         VNET_SO_ASSERT(so);
 1836 
 1837         m = m_get(M_WAITOK, MT_DATA);
 1838         error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
 1839         if (error)
 1840                 goto bad;
 1841         do {
 1842                 error = uiomove(mtod(m, void *),
 1843                     (int) min(uio->uio_resid, m->m_len), uio);
 1844                 m = m_free(m);
 1845         } while (uio->uio_resid && error == 0 && m);
 1846 bad:
 1847         if (m != NULL)
 1848                 m_freem(m);
 1849         return (error);
 1850 }
 1851 
 1852 /*
 1853  * Following replacement or removal of the first mbuf on the first mbuf chain
 1854  * of a socket buffer, push necessary state changes back into the socket
 1855  * buffer so that other consumers see the values consistently.  'nextrecord'
 1856  * is the callers locally stored value of the original value of
 1857  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
 1858  * NOTE: 'nextrecord' may be NULL.
 1859  */
 1860 static __inline void
 1861 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
 1862 {
 1863 
 1864         SOCKBUF_LOCK_ASSERT(sb);
 1865         /*
 1866          * First, update for the new value of nextrecord.  If necessary, make
 1867          * it the first record.
 1868          */
 1869         if (sb->sb_mb != NULL)
 1870                 sb->sb_mb->m_nextpkt = nextrecord;
 1871         else
 1872                 sb->sb_mb = nextrecord;
 1873 
 1874         /*
 1875          * Now update any dependent socket buffer fields to reflect the new
 1876          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
 1877          * addition of a second clause that takes care of the case where
 1878          * sb_mb has been updated, but remains the last record.
 1879          */
 1880         if (sb->sb_mb == NULL) {
 1881                 sb->sb_mbtail = NULL;
 1882                 sb->sb_lastrecord = NULL;
 1883         } else if (sb->sb_mb->m_nextpkt == NULL)
 1884                 sb->sb_lastrecord = sb->sb_mb;
 1885 }
 1886 
 1887 /*
 1888  * Implement receive operations on a socket.  We depend on the way that
 1889  * records are added to the sockbuf by sbappend.  In particular, each record
 1890  * (mbufs linked through m_next) must begin with an address if the protocol
 1891  * so specifies, followed by an optional mbuf or mbufs containing ancillary
 1892  * data, and then zero or more mbufs of data.  In order to allow parallelism
 1893  * between network receive and copying to user space, as well as avoid
 1894  * sleeping with a mutex held, we release the socket buffer mutex during the
 1895  * user space copy.  Although the sockbuf is locked, new data may still be
 1896  * appended, and thus we must maintain consistency of the sockbuf during that
 1897  * time.
 1898  *
 1899  * The caller may receive the data as a single mbuf chain by supplying an
 1900  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
 1901  * the count in uio_resid.
 1902  */
 1903 int
 1904 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
 1905     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 1906 {
 1907         struct mbuf *m, **mp;
 1908         int flags, error, offset;
 1909         ssize_t len;
 1910         struct protosw *pr = so->so_proto;
 1911         struct mbuf *nextrecord;
 1912         int moff, type = 0;
 1913         ssize_t orig_resid = uio->uio_resid;
 1914 
 1915         mp = mp0;
 1916         if (psa != NULL)
 1917                 *psa = NULL;
 1918         if (controlp != NULL)
 1919                 *controlp = NULL;
 1920         if (flagsp != NULL)
 1921                 flags = *flagsp &~ MSG_EOR;
 1922         else
 1923                 flags = 0;
 1924         if (flags & MSG_OOB)
 1925                 return (soreceive_rcvoob(so, uio, flags));
 1926         if (mp != NULL)
 1927                 *mp = NULL;
 1928         if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
 1929             && uio->uio_resid) {
 1930                 VNET_SO_ASSERT(so);
 1931                 (*pr->pr_usrreqs->pru_rcvd)(so, 0);
 1932         }
 1933 
 1934         error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
 1935         if (error)
 1936                 return (error);
 1937 
 1938 restart:
 1939         SOCKBUF_LOCK(&so->so_rcv);
 1940         m = so->so_rcv.sb_mb;
 1941         /*
 1942          * If we have less data than requested, block awaiting more (subject
 1943          * to any timeout) if:
 1944          *   1. the current count is less than the low water mark, or
 1945          *   2. MSG_DONTWAIT is not set
 1946          */
 1947         if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
 1948             sbavail(&so->so_rcv) < uio->uio_resid) &&
 1949             sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
 1950             m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
 1951                 KASSERT(m != NULL || !sbavail(&so->so_rcv),
 1952                     ("receive: m == %p sbavail == %u",
 1953                     m, sbavail(&so->so_rcv)));
 1954                 if (so->so_error || so->so_rerror) {
 1955                         if (m != NULL)
 1956                                 goto dontblock;
 1957                         if (so->so_error)
 1958                                 error = so->so_error;
 1959                         else
 1960                                 error = so->so_rerror;
 1961                         if ((flags & MSG_PEEK) == 0) {
 1962                                 if (so->so_error)
 1963                                         so->so_error = 0;
 1964                                 else
 1965                                         so->so_rerror = 0;
 1966                         }
 1967                         SOCKBUF_UNLOCK(&so->so_rcv);
 1968                         goto release;
 1969                 }
 1970                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1971                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 1972                         if (m != NULL)
 1973                                 goto dontblock;
 1974 #ifdef KERN_TLS
 1975                         else if (so->so_rcv.sb_tlsdcc == 0 &&
 1976                             so->so_rcv.sb_tlscc == 0) {
 1977 #else
 1978                         else {
 1979 #endif
 1980                                 SOCKBUF_UNLOCK(&so->so_rcv);
 1981                                 goto release;
 1982                         }
 1983                 }
 1984                 for (; m != NULL; m = m->m_next)
 1985                         if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
 1986                                 m = so->so_rcv.sb_mb;
 1987                                 goto dontblock;
 1988                         }
 1989                 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
 1990                     SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
 1991                     (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
 1992                         SOCKBUF_UNLOCK(&so->so_rcv);
 1993                         error = ENOTCONN;
 1994                         goto release;
 1995                 }
 1996                 if (uio->uio_resid == 0) {
 1997                         SOCKBUF_UNLOCK(&so->so_rcv);
 1998                         goto release;
 1999                 }
 2000                 if ((so->so_state & SS_NBIO) ||
 2001                     (flags & (MSG_DONTWAIT|MSG_NBIO))) {
 2002                         SOCKBUF_UNLOCK(&so->so_rcv);
 2003                         error = EWOULDBLOCK;
 2004                         goto release;
 2005                 }
 2006                 SBLASTRECORDCHK(&so->so_rcv);
 2007                 SBLASTMBUFCHK(&so->so_rcv);
 2008                 error = sbwait(&so->so_rcv);
 2009                 SOCKBUF_UNLOCK(&so->so_rcv);
 2010                 if (error)
 2011                         goto release;
 2012                 goto restart;
 2013         }
 2014 dontblock:
 2015         /*
 2016          * From this point onward, we maintain 'nextrecord' as a cache of the
 2017          * pointer to the next record in the socket buffer.  We must keep the
 2018          * various socket buffer pointers and local stack versions of the
 2019          * pointers in sync, pushing out modifications before dropping the
 2020          * socket buffer mutex, and re-reading them when picking it up.
 2021          *
 2022          * Otherwise, we will race with the network stack appending new data
 2023          * or records onto the socket buffer by using inconsistent/stale
 2024          * versions of the field, possibly resulting in socket buffer
 2025          * corruption.
 2026          *
 2027          * By holding the high-level sblock(), we prevent simultaneous
 2028          * readers from pulling off the front of the socket buffer.
 2029          */
 2030         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2031         if (uio->uio_td)
 2032                 uio->uio_td->td_ru.ru_msgrcv++;
 2033         KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
 2034         SBLASTRECORDCHK(&so->so_rcv);
 2035         SBLASTMBUFCHK(&so->so_rcv);
 2036         nextrecord = m->m_nextpkt;
 2037         if (pr->pr_flags & PR_ADDR) {
 2038                 KASSERT(m->m_type == MT_SONAME,
 2039                     ("m->m_type == %d", m->m_type));
 2040                 orig_resid = 0;
 2041                 if (psa != NULL)
 2042                         *psa = sodupsockaddr(mtod(m, struct sockaddr *),
 2043                             M_NOWAIT);
 2044                 if (flags & MSG_PEEK) {
 2045                         m = m->m_next;
 2046                 } else {
 2047                         sbfree(&so->so_rcv, m);
 2048                         so->so_rcv.sb_mb = m_free(m);
 2049                         m = so->so_rcv.sb_mb;
 2050                         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2051                 }
 2052         }
 2053 
 2054         /*
 2055          * Process one or more MT_CONTROL mbufs present before any data mbufs
 2056          * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
 2057          * just copy the data; if !MSG_PEEK, we call into the protocol to
 2058          * perform externalization (or freeing if controlp == NULL).
 2059          */
 2060         if (m != NULL && m->m_type == MT_CONTROL) {
 2061                 struct mbuf *cm = NULL, *cmn;
 2062                 struct mbuf **cme = &cm;
 2063 #ifdef KERN_TLS
 2064                 struct cmsghdr *cmsg;
 2065                 struct tls_get_record tgr;
 2066 
 2067                 /*
 2068                  * For MSG_TLSAPPDATA, check for an alert record.
 2069                  * If found, return ENXIO without removing
 2070                  * it from the receive queue.  This allows a subsequent
 2071                  * call without MSG_TLSAPPDATA to receive it.
 2072                  * Note that, for TLS, there should only be a single
 2073                  * control mbuf with the TLS_GET_RECORD message in it.
 2074                  */
 2075                 if (flags & MSG_TLSAPPDATA) {
 2076                         cmsg = mtod(m, struct cmsghdr *);
 2077                         if (cmsg->cmsg_type == TLS_GET_RECORD &&
 2078                             cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
 2079                                 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
 2080                                 if (__predict_false(tgr.tls_type ==
 2081                                     TLS_RLTYPE_ALERT)) {
 2082                                         SOCKBUF_UNLOCK(&so->so_rcv);
 2083                                         error = ENXIO;
 2084                                         goto release;
 2085                                 }
 2086                         }
 2087                 }
 2088 #endif
 2089 
 2090                 do {
 2091                         if (flags & MSG_PEEK) {
 2092                                 if (controlp != NULL) {
 2093                                         *controlp = m_copym(m, 0, m->m_len,
 2094                                             M_NOWAIT);
 2095                                         controlp = &(*controlp)->m_next;
 2096                                 }
 2097                                 m = m->m_next;
 2098                         } else {
 2099                                 sbfree(&so->so_rcv, m);
 2100                                 so->so_rcv.sb_mb = m->m_next;
 2101                                 m->m_next = NULL;
 2102                                 *cme = m;
 2103                                 cme = &(*cme)->m_next;
 2104                                 m = so->so_rcv.sb_mb;
 2105                         }
 2106                 } while (m != NULL && m->m_type == MT_CONTROL);
 2107                 if ((flags & MSG_PEEK) == 0)
 2108                         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2109                 while (cm != NULL) {
 2110                         cmn = cm->m_next;
 2111                         cm->m_next = NULL;
 2112                         if (pr->pr_domain->dom_externalize != NULL) {
 2113                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2114                                 VNET_SO_ASSERT(so);
 2115                                 error = (*pr->pr_domain->dom_externalize)
 2116                                     (cm, controlp, flags);
 2117                                 SOCKBUF_LOCK(&so->so_rcv);
 2118                         } else if (controlp != NULL)
 2119                                 *controlp = cm;
 2120                         else
 2121                                 m_freem(cm);
 2122                         if (controlp != NULL) {
 2123                                 while (*controlp != NULL)
 2124                                         controlp = &(*controlp)->m_next;
 2125                         }
 2126                         cm = cmn;
 2127                 }
 2128                 if (m != NULL)
 2129                         nextrecord = so->so_rcv.sb_mb->m_nextpkt;
 2130                 else
 2131                         nextrecord = so->so_rcv.sb_mb;
 2132                 orig_resid = 0;
 2133         }
 2134         if (m != NULL) {
 2135                 if ((flags & MSG_PEEK) == 0) {
 2136                         KASSERT(m->m_nextpkt == nextrecord,
 2137                             ("soreceive: post-control, nextrecord !sync"));
 2138                         if (nextrecord == NULL) {
 2139                                 KASSERT(so->so_rcv.sb_mb == m,
 2140                                     ("soreceive: post-control, sb_mb!=m"));
 2141                                 KASSERT(so->so_rcv.sb_lastrecord == m,
 2142                                     ("soreceive: post-control, lastrecord!=m"));
 2143                         }
 2144                 }
 2145                 type = m->m_type;
 2146                 if (type == MT_OOBDATA)
 2147                         flags |= MSG_OOB;
 2148         } else {
 2149                 if ((flags & MSG_PEEK) == 0) {
 2150                         KASSERT(so->so_rcv.sb_mb == nextrecord,
 2151                             ("soreceive: sb_mb != nextrecord"));
 2152                         if (so->so_rcv.sb_mb == NULL) {
 2153                                 KASSERT(so->so_rcv.sb_lastrecord == NULL,
 2154                                     ("soreceive: sb_lastercord != NULL"));
 2155                         }
 2156                 }
 2157         }
 2158         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2159         SBLASTRECORDCHK(&so->so_rcv);
 2160         SBLASTMBUFCHK(&so->so_rcv);
 2161 
 2162         /*
 2163          * Now continue to read any data mbufs off of the head of the socket
 2164          * buffer until the read request is satisfied.  Note that 'type' is
 2165          * used to store the type of any mbuf reads that have happened so far
 2166          * such that soreceive() can stop reading if the type changes, which
 2167          * causes soreceive() to return only one of regular data and inline
 2168          * out-of-band data in a single socket receive operation.
 2169          */
 2170         moff = 0;
 2171         offset = 0;
 2172         while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
 2173             && error == 0) {
 2174                 /*
 2175                  * If the type of mbuf has changed since the last mbuf
 2176                  * examined ('type'), end the receive operation.
 2177                  */
 2178                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2179                 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
 2180                         if (type != m->m_type)
 2181                                 break;
 2182                 } else if (type == MT_OOBDATA)
 2183                         break;
 2184                 else
 2185                     KASSERT(m->m_type == MT_DATA,
 2186                         ("m->m_type == %d", m->m_type));
 2187                 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
 2188                 len = uio->uio_resid;
 2189                 if (so->so_oobmark && len > so->so_oobmark - offset)
 2190                         len = so->so_oobmark - offset;
 2191                 if (len > m->m_len - moff)
 2192                         len = m->m_len - moff;
 2193                 /*
 2194                  * If mp is set, just pass back the mbufs.  Otherwise copy
 2195                  * them out via the uio, then free.  Sockbuf must be
 2196                  * consistent here (points to current mbuf, it points to next
 2197                  * record) when we drop priority; we must note any additions
 2198                  * to the sockbuf when we block interrupts again.
 2199                  */
 2200                 if (mp == NULL) {
 2201                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2202                         SBLASTRECORDCHK(&so->so_rcv);
 2203                         SBLASTMBUFCHK(&so->so_rcv);
 2204                         SOCKBUF_UNLOCK(&so->so_rcv);
 2205                         if ((m->m_flags & M_EXTPG) != 0)
 2206                                 error = m_unmapped_uiomove(m, moff, uio,
 2207                                     (int)len);
 2208                         else
 2209                                 error = uiomove(mtod(m, char *) + moff,
 2210                                     (int)len, uio);
 2211                         SOCKBUF_LOCK(&so->so_rcv);
 2212                         if (error) {
 2213                                 /*
 2214                                  * The MT_SONAME mbuf has already been removed
 2215                                  * from the record, so it is necessary to
 2216                                  * remove the data mbufs, if any, to preserve
 2217                                  * the invariant in the case of PR_ADDR that
 2218                                  * requires MT_SONAME mbufs at the head of
 2219                                  * each record.
 2220                                  */
 2221                                 if (pr->pr_flags & PR_ATOMIC &&
 2222                                     ((flags & MSG_PEEK) == 0))
 2223                                         (void)sbdroprecord_locked(&so->so_rcv);
 2224                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2225                                 goto release;
 2226                         }
 2227                 } else
 2228                         uio->uio_resid -= len;
 2229                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2230                 if (len == m->m_len - moff) {
 2231                         if (m->m_flags & M_EOR)
 2232                                 flags |= MSG_EOR;
 2233                         if (flags & MSG_PEEK) {
 2234                                 m = m->m_next;
 2235                                 moff = 0;
 2236                         } else {
 2237                                 nextrecord = m->m_nextpkt;
 2238                                 sbfree(&so->so_rcv, m);
 2239                                 if (mp != NULL) {
 2240                                         m->m_nextpkt = NULL;
 2241                                         *mp = m;
 2242                                         mp = &m->m_next;
 2243                                         so->so_rcv.sb_mb = m = m->m_next;
 2244                                         *mp = NULL;
 2245                                 } else {
 2246                                         so->so_rcv.sb_mb = m_free(m);
 2247                                         m = so->so_rcv.sb_mb;
 2248                                 }
 2249                                 sockbuf_pushsync(&so->so_rcv, nextrecord);
 2250                                 SBLASTRECORDCHK(&so->so_rcv);
 2251                                 SBLASTMBUFCHK(&so->so_rcv);
 2252                         }
 2253                 } else {
 2254                         if (flags & MSG_PEEK)
 2255                                 moff += len;
 2256                         else {
 2257                                 if (mp != NULL) {
 2258                                         if (flags & MSG_DONTWAIT) {
 2259                                                 *mp = m_copym(m, 0, len,
 2260                                                     M_NOWAIT);
 2261                                                 if (*mp == NULL) {
 2262                                                         /*
 2263                                                          * m_copym() couldn't
 2264                                                          * allocate an mbuf.
 2265                                                          * Adjust uio_resid back
 2266                                                          * (it was adjusted
 2267                                                          * down by len bytes,
 2268                                                          * which we didn't end
 2269                                                          * up "copying" over).
 2270                                                          */
 2271                                                         uio->uio_resid += len;
 2272                                                         break;
 2273                                                 }
 2274                                         } else {
 2275                                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2276                                                 *mp = m_copym(m, 0, len,
 2277                                                     M_WAITOK);
 2278                                                 SOCKBUF_LOCK(&so->so_rcv);
 2279                                         }
 2280                                 }
 2281                                 sbcut_locked(&so->so_rcv, len);
 2282                         }
 2283                 }
 2284                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2285                 if (so->so_oobmark) {
 2286                         if ((flags & MSG_PEEK) == 0) {
 2287                                 so->so_oobmark -= len;
 2288                                 if (so->so_oobmark == 0) {
 2289                                         so->so_rcv.sb_state |= SBS_RCVATMARK;
 2290                                         break;
 2291                                 }
 2292                         } else {
 2293                                 offset += len;
 2294                                 if (offset == so->so_oobmark)
 2295                                         break;
 2296                         }
 2297                 }
 2298                 if (flags & MSG_EOR)
 2299                         break;
 2300                 /*
 2301                  * If the MSG_WAITALL flag is set (for non-atomic socket), we
 2302                  * must not quit until "uio->uio_resid == 0" or an error
 2303                  * termination.  If a signal/timeout occurs, return with a
 2304                  * short count but without error.  Keep sockbuf locked
 2305                  * against other readers.
 2306                  */
 2307                 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
 2308                     !sosendallatonce(so) && nextrecord == NULL) {
 2309                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2310                         if (so->so_error || so->so_rerror ||
 2311                             so->so_rcv.sb_state & SBS_CANTRCVMORE)
 2312                                 break;
 2313                         /*
 2314                          * Notify the protocol that some data has been
 2315                          * drained before blocking.
 2316                          */
 2317                         if (pr->pr_flags & PR_WANTRCVD) {
 2318                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2319                                 VNET_SO_ASSERT(so);
 2320                                 (*pr->pr_usrreqs->pru_rcvd)(so, flags);
 2321                                 SOCKBUF_LOCK(&so->so_rcv);
 2322                         }
 2323                         SBLASTRECORDCHK(&so->so_rcv);
 2324                         SBLASTMBUFCHK(&so->so_rcv);
 2325                         /*
 2326                          * We could receive some data while was notifying
 2327                          * the protocol. Skip blocking in this case.
 2328                          */
 2329                         if (so->so_rcv.sb_mb == NULL) {
 2330                                 error = sbwait(&so->so_rcv);
 2331                                 if (error) {
 2332                                         SOCKBUF_UNLOCK(&so->so_rcv);
 2333                                         goto release;
 2334                                 }
 2335                         }
 2336                         m = so->so_rcv.sb_mb;
 2337                         if (m != NULL)
 2338                                 nextrecord = m->m_nextpkt;
 2339                 }
 2340         }
 2341 
 2342         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2343         if (m != NULL && pr->pr_flags & PR_ATOMIC) {
 2344                 flags |= MSG_TRUNC;
 2345                 if ((flags & MSG_PEEK) == 0)
 2346                         (void) sbdroprecord_locked(&so->so_rcv);
 2347         }
 2348         if ((flags & MSG_PEEK) == 0) {
 2349                 if (m == NULL) {
 2350                         /*
 2351                          * First part is an inline SB_EMPTY_FIXUP().  Second
 2352                          * part makes sure sb_lastrecord is up-to-date if
 2353                          * there is still data in the socket buffer.
 2354                          */
 2355                         so->so_rcv.sb_mb = nextrecord;
 2356                         if (so->so_rcv.sb_mb == NULL) {
 2357                                 so->so_rcv.sb_mbtail = NULL;
 2358                                 so->so_rcv.sb_lastrecord = NULL;
 2359                         } else if (nextrecord->m_nextpkt == NULL)
 2360                                 so->so_rcv.sb_lastrecord = nextrecord;
 2361                 }
 2362                 SBLASTRECORDCHK(&so->so_rcv);
 2363                 SBLASTMBUFCHK(&so->so_rcv);
 2364                 /*
 2365                  * If soreceive() is being done from the socket callback,
 2366                  * then don't need to generate ACK to peer to update window,
 2367                  * since ACK will be generated on return to TCP.
 2368                  */
 2369                 if (!(flags & MSG_SOCALLBCK) &&
 2370                     (pr->pr_flags & PR_WANTRCVD)) {
 2371                         SOCKBUF_UNLOCK(&so->so_rcv);
 2372                         VNET_SO_ASSERT(so);
 2373                         (*pr->pr_usrreqs->pru_rcvd)(so, flags);
 2374                         SOCKBUF_LOCK(&so->so_rcv);
 2375                 }
 2376         }
 2377         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2378         if (orig_resid == uio->uio_resid && orig_resid &&
 2379             (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
 2380                 SOCKBUF_UNLOCK(&so->so_rcv);
 2381                 goto restart;
 2382         }
 2383         SOCKBUF_UNLOCK(&so->so_rcv);
 2384 
 2385         if (flagsp != NULL)
 2386                 *flagsp |= flags;
 2387 release:
 2388         SOCK_IO_RECV_UNLOCK(so);
 2389         return (error);
 2390 }
 2391 
 2392 /*
 2393  * Optimized version of soreceive() for stream (TCP) sockets.
 2394  */
 2395 int
 2396 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2397     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2398 {
 2399         int len = 0, error = 0, flags, oresid;
 2400         struct sockbuf *sb;
 2401         struct mbuf *m, *n = NULL;
 2402 
 2403         /* We only do stream sockets. */
 2404         if (so->so_type != SOCK_STREAM)
 2405                 return (EINVAL);
 2406         if (psa != NULL)
 2407                 *psa = NULL;
 2408         if (flagsp != NULL)
 2409                 flags = *flagsp &~ MSG_EOR;
 2410         else
 2411                 flags = 0;
 2412         if (controlp != NULL)
 2413                 *controlp = NULL;
 2414         if (flags & MSG_OOB)
 2415                 return (soreceive_rcvoob(so, uio, flags));
 2416         if (mp0 != NULL)
 2417                 *mp0 = NULL;
 2418 
 2419         sb = &so->so_rcv;
 2420 
 2421 #ifdef KERN_TLS
 2422         /*
 2423          * KTLS store TLS records as records with a control message to
 2424          * describe the framing.
 2425          *
 2426          * We check once here before acquiring locks to optimize the
 2427          * common case.
 2428          */
 2429         if (sb->sb_tls_info != NULL)
 2430                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2431                     flagsp));
 2432 #endif
 2433 
 2434         /* Prevent other readers from entering the socket. */
 2435         error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
 2436         if (error)
 2437                 return (error);
 2438         SOCKBUF_LOCK(sb);
 2439 
 2440 #ifdef KERN_TLS
 2441         if (sb->sb_tls_info != NULL) {
 2442                 SOCKBUF_UNLOCK(sb);
 2443                 SOCK_IO_RECV_UNLOCK(so);
 2444                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2445                     flagsp));
 2446         }
 2447 #endif
 2448 
 2449         /* Easy one, no space to copyout anything. */
 2450         if (uio->uio_resid == 0) {
 2451                 error = EINVAL;
 2452                 goto out;
 2453         }
 2454         oresid = uio->uio_resid;
 2455 
 2456         /* We will never ever get anything unless we are or were connected. */
 2457         if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
 2458                 error = ENOTCONN;
 2459                 goto out;
 2460         }
 2461 
 2462 restart:
 2463         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2464 
 2465         /* Abort if socket has reported problems. */
 2466         if (so->so_error) {
 2467                 if (sbavail(sb) > 0)
 2468                         goto deliver;
 2469                 if (oresid > uio->uio_resid)
 2470                         goto out;
 2471                 error = so->so_error;
 2472                 if (!(flags & MSG_PEEK))
 2473                         so->so_error = 0;
 2474                 goto out;
 2475         }
 2476 
 2477         /* Door is closed.  Deliver what is left, if any. */
 2478         if (sb->sb_state & SBS_CANTRCVMORE) {
 2479                 if (sbavail(sb) > 0)
 2480                         goto deliver;
 2481                 else
 2482                         goto out;
 2483         }
 2484 
 2485         /* Socket buffer is empty and we shall not block. */
 2486         if (sbavail(sb) == 0 &&
 2487             ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
 2488                 error = EAGAIN;
 2489                 goto out;
 2490         }
 2491 
 2492         /* Socket buffer got some data that we shall deliver now. */
 2493         if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
 2494             ((so->so_state & SS_NBIO) ||
 2495              (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
 2496              sbavail(sb) >= sb->sb_lowat ||
 2497              sbavail(sb) >= uio->uio_resid ||
 2498              sbavail(sb) >= sb->sb_hiwat) ) {
 2499                 goto deliver;
 2500         }
 2501 
 2502         /* On MSG_WAITALL we must wait until all data or error arrives. */
 2503         if ((flags & MSG_WAITALL) &&
 2504             (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
 2505                 goto deliver;
 2506 
 2507         /*
 2508          * Wait and block until (more) data comes in.
 2509          * NB: Drops the sockbuf lock during wait.
 2510          */
 2511         error = sbwait(sb);
 2512         if (error)
 2513                 goto out;
 2514         goto restart;
 2515 
 2516 deliver:
 2517         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2518         KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
 2519         KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
 2520 
 2521         /* Statistics. */
 2522         if (uio->uio_td)
 2523                 uio->uio_td->td_ru.ru_msgrcv++;
 2524 
 2525         /* Fill uio until full or current end of socket buffer is reached. */
 2526         len = min(uio->uio_resid, sbavail(sb));
 2527         if (mp0 != NULL) {
 2528                 /* Dequeue as many mbufs as possible. */
 2529                 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
 2530                         if (*mp0 == NULL)
 2531                                 *mp0 = sb->sb_mb;
 2532                         else
 2533                                 m_cat(*mp0, sb->sb_mb);
 2534                         for (m = sb->sb_mb;
 2535                              m != NULL && m->m_len <= len;
 2536                              m = m->m_next) {
 2537                                 KASSERT(!(m->m_flags & M_NOTAVAIL),
 2538                                     ("%s: m %p not available", __func__, m));
 2539                                 len -= m->m_len;
 2540                                 uio->uio_resid -= m->m_len;
 2541                                 sbfree(sb, m);
 2542                                 n = m;
 2543                         }
 2544                         n->m_next = NULL;
 2545                         sb->sb_mb = m;
 2546                         sb->sb_lastrecord = sb->sb_mb;
 2547                         if (sb->sb_mb == NULL)
 2548                                 SB_EMPTY_FIXUP(sb);
 2549                 }
 2550                 /* Copy the remainder. */
 2551                 if (len > 0) {
 2552                         KASSERT(sb->sb_mb != NULL,
 2553                             ("%s: len > 0 && sb->sb_mb empty", __func__));
 2554 
 2555                         m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
 2556                         if (m == NULL)
 2557                                 len = 0;        /* Don't flush data from sockbuf. */
 2558                         else
 2559                                 uio->uio_resid -= len;
 2560                         if (*mp0 != NULL)
 2561                                 m_cat(*mp0, m);
 2562                         else
 2563                                 *mp0 = m;
 2564                         if (*mp0 == NULL) {
 2565                                 error = ENOBUFS;
 2566                                 goto out;
 2567                         }
 2568                 }
 2569         } else {
 2570                 /* NB: Must unlock socket buffer as uiomove may sleep. */
 2571                 SOCKBUF_UNLOCK(sb);
 2572                 error = m_mbuftouio(uio, sb->sb_mb, len);
 2573                 SOCKBUF_LOCK(sb);
 2574                 if (error)
 2575                         goto out;
 2576         }
 2577         SBLASTRECORDCHK(sb);
 2578         SBLASTMBUFCHK(sb);
 2579 
 2580         /*
 2581          * Remove the delivered data from the socket buffer unless we
 2582          * were only peeking.
 2583          */
 2584         if (!(flags & MSG_PEEK)) {
 2585                 if (len > 0)
 2586                         sbdrop_locked(sb, len);
 2587 
 2588                 /* Notify protocol that we drained some data. */
 2589                 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
 2590                     (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
 2591                      !(flags & MSG_SOCALLBCK))) {
 2592                         SOCKBUF_UNLOCK(sb);
 2593                         VNET_SO_ASSERT(so);
 2594                         (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
 2595                         SOCKBUF_LOCK(sb);
 2596                 }
 2597         }
 2598 
 2599         /*
 2600          * For MSG_WAITALL we may have to loop again and wait for
 2601          * more data to come in.
 2602          */
 2603         if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
 2604                 goto restart;
 2605 out:
 2606         SBLASTRECORDCHK(sb);
 2607         SBLASTMBUFCHK(sb);
 2608         SOCKBUF_UNLOCK(sb);
 2609         SOCK_IO_RECV_UNLOCK(so);
 2610         return (error);
 2611 }
 2612 
 2613 /*
 2614  * Optimized version of soreceive() for simple datagram cases from userspace.
 2615  * Unlike in the stream case, we're able to drop a datagram if copyout()
 2616  * fails, and because we handle datagrams atomically, we don't need to use a
 2617  * sleep lock to prevent I/O interlacing.
 2618  */
 2619 int
 2620 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2621     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2622 {
 2623         struct mbuf *m, *m2;
 2624         int flags, error;
 2625         ssize_t len;
 2626         struct protosw *pr = so->so_proto;
 2627         struct mbuf *nextrecord;
 2628 
 2629         if (psa != NULL)
 2630                 *psa = NULL;
 2631         if (controlp != NULL)
 2632                 *controlp = NULL;
 2633         if (flagsp != NULL)
 2634                 flags = *flagsp &~ MSG_EOR;
 2635         else
 2636                 flags = 0;
 2637 
 2638         /*
 2639          * For any complicated cases, fall back to the full
 2640          * soreceive_generic().
 2641          */
 2642         if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
 2643                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2644                     flagsp));
 2645 
 2646         /*
 2647          * Enforce restrictions on use.
 2648          */
 2649         KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
 2650             ("soreceive_dgram: wantrcvd"));
 2651         KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
 2652         KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
 2653             ("soreceive_dgram: SBS_RCVATMARK"));
 2654         KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
 2655             ("soreceive_dgram: P_CONNREQUIRED"));
 2656 
 2657         /*
 2658          * Loop blocking while waiting for a datagram.
 2659          */
 2660         SOCKBUF_LOCK(&so->so_rcv);
 2661         while ((m = so->so_rcv.sb_mb) == NULL) {
 2662                 KASSERT(sbavail(&so->so_rcv) == 0,
 2663                     ("soreceive_dgram: sb_mb NULL but sbavail %u",
 2664                     sbavail(&so->so_rcv)));
 2665                 if (so->so_error) {
 2666                         error = so->so_error;
 2667                         so->so_error = 0;
 2668                         SOCKBUF_UNLOCK(&so->so_rcv);
 2669                         return (error);
 2670                 }
 2671                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
 2672                     uio->uio_resid == 0) {
 2673                         SOCKBUF_UNLOCK(&so->so_rcv);
 2674                         return (0);
 2675                 }
 2676                 if ((so->so_state & SS_NBIO) ||
 2677                     (flags & (MSG_DONTWAIT|MSG_NBIO))) {
 2678                         SOCKBUF_UNLOCK(&so->so_rcv);
 2679                         return (EWOULDBLOCK);
 2680                 }
 2681                 SBLASTRECORDCHK(&so->so_rcv);
 2682                 SBLASTMBUFCHK(&so->so_rcv);
 2683                 error = sbwait(&so->so_rcv);
 2684                 if (error) {
 2685                         SOCKBUF_UNLOCK(&so->so_rcv);
 2686                         return (error);
 2687                 }
 2688         }
 2689         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2690 
 2691         if (uio->uio_td)
 2692                 uio->uio_td->td_ru.ru_msgrcv++;
 2693         SBLASTRECORDCHK(&so->so_rcv);
 2694         SBLASTMBUFCHK(&so->so_rcv);
 2695         nextrecord = m->m_nextpkt;
 2696         if (nextrecord == NULL) {
 2697                 KASSERT(so->so_rcv.sb_lastrecord == m,
 2698                     ("soreceive_dgram: lastrecord != m"));
 2699         }
 2700 
 2701         KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
 2702             ("soreceive_dgram: m_nextpkt != nextrecord"));
 2703 
 2704         /*
 2705          * Pull 'm' and its chain off the front of the packet queue.
 2706          */
 2707         so->so_rcv.sb_mb = NULL;
 2708         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2709 
 2710         /*
 2711          * Walk 'm's chain and free that many bytes from the socket buffer.
 2712          */
 2713         for (m2 = m; m2 != NULL; m2 = m2->m_next)
 2714                 sbfree(&so->so_rcv, m2);
 2715 
 2716         /*
 2717          * Do a few last checks before we let go of the lock.
 2718          */
 2719         SBLASTRECORDCHK(&so->so_rcv);
 2720         SBLASTMBUFCHK(&so->so_rcv);
 2721         SOCKBUF_UNLOCK(&so->so_rcv);
 2722 
 2723         if (pr->pr_flags & PR_ADDR) {
 2724                 KASSERT(m->m_type == MT_SONAME,
 2725                     ("m->m_type == %d", m->m_type));
 2726                 if (psa != NULL)
 2727                         *psa = sodupsockaddr(mtod(m, struct sockaddr *),
 2728                             M_NOWAIT);
 2729                 m = m_free(m);
 2730         }
 2731         if (m == NULL) {
 2732                 /* XXXRW: Can this happen? */
 2733                 return (0);
 2734         }
 2735 
 2736         /*
 2737          * Packet to copyout() is now in 'm' and it is disconnected from the
 2738          * queue.
 2739          *
 2740          * Process one or more MT_CONTROL mbufs present before any data mbufs
 2741          * in the first mbuf chain on the socket buffer.  We call into the
 2742          * protocol to perform externalization (or freeing if controlp ==
 2743          * NULL). In some cases there can be only MT_CONTROL mbufs without
 2744          * MT_DATA mbufs.
 2745          */
 2746         if (m->m_type == MT_CONTROL) {
 2747                 struct mbuf *cm = NULL, *cmn;
 2748                 struct mbuf **cme = &cm;
 2749 
 2750                 do {
 2751                         m2 = m->m_next;
 2752                         m->m_next = NULL;
 2753                         *cme = m;
 2754                         cme = &(*cme)->m_next;
 2755                         m = m2;
 2756                 } while (m != NULL && m->m_type == MT_CONTROL);
 2757                 while (cm != NULL) {
 2758                         cmn = cm->m_next;
 2759                         cm->m_next = NULL;
 2760                         if (pr->pr_domain->dom_externalize != NULL) {
 2761                                 error = (*pr->pr_domain->dom_externalize)
 2762                                     (cm, controlp, flags);
 2763                         } else if (controlp != NULL)
 2764                                 *controlp = cm;
 2765                         else
 2766                                 m_freem(cm);
 2767                         if (controlp != NULL) {
 2768                                 while (*controlp != NULL)
 2769                                         controlp = &(*controlp)->m_next;
 2770                         }
 2771                         cm = cmn;
 2772                 }
 2773         }
 2774         KASSERT(m == NULL || m->m_type == MT_DATA,
 2775             ("soreceive_dgram: !data"));
 2776         while (m != NULL && uio->uio_resid > 0) {
 2777                 len = uio->uio_resid;
 2778                 if (len > m->m_len)
 2779                         len = m->m_len;
 2780                 error = uiomove(mtod(m, char *), (int)len, uio);
 2781                 if (error) {
 2782                         m_freem(m);
 2783                         return (error);
 2784                 }
 2785                 if (len == m->m_len)
 2786                         m = m_free(m);
 2787                 else {
 2788                         m->m_data += len;
 2789                         m->m_len -= len;
 2790                 }
 2791         }
 2792         if (m != NULL) {
 2793                 flags |= MSG_TRUNC;
 2794                 m_freem(m);
 2795         }
 2796         if (flagsp != NULL)
 2797                 *flagsp |= flags;
 2798         return (0);
 2799 }
 2800 
 2801 int
 2802 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2803     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2804 {
 2805         int error;
 2806 
 2807         CURVNET_SET(so->so_vnet);
 2808         if (!SOLISTENING(so))
 2809                 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio,
 2810                     mp0, controlp, flagsp));
 2811         else
 2812                 error = ENOTCONN;
 2813         CURVNET_RESTORE();
 2814         return (error);
 2815 }
 2816 
 2817 int
 2818 soshutdown(struct socket *so, int how)
 2819 {
 2820         struct protosw *pr = so->so_proto;
 2821         int error, soerror_enotconn;
 2822 
 2823         if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
 2824                 return (EINVAL);
 2825 
 2826         soerror_enotconn = 0;
 2827         if ((so->so_state &
 2828             (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
 2829                 /*
 2830                  * POSIX mandates us to return ENOTCONN when shutdown(2) is
 2831                  * invoked on a datagram sockets, however historically we would
 2832                  * actually tear socket down. This is known to be leveraged by
 2833                  * some applications to unblock process waiting in recvXXX(2)
 2834                  * by other process that it shares that socket with. Try to meet
 2835                  * both backward-compatibility and POSIX requirements by forcing
 2836                  * ENOTCONN but still asking protocol to perform pru_shutdown().
 2837                  */
 2838                 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so))
 2839                         return (ENOTCONN);
 2840                 soerror_enotconn = 1;
 2841         }
 2842 
 2843         if (SOLISTENING(so)) {
 2844                 if (how != SHUT_WR) {
 2845                         SOLISTEN_LOCK(so);
 2846                         so->so_error = ECONNABORTED;
 2847                         solisten_wakeup(so);    /* unlocks so */
 2848                 }
 2849                 goto done;
 2850         }
 2851 
 2852         CURVNET_SET(so->so_vnet);
 2853         if (pr->pr_usrreqs->pru_flush != NULL)
 2854                 (*pr->pr_usrreqs->pru_flush)(so, how);
 2855         if (how != SHUT_WR)
 2856                 sorflush(so);
 2857         if (how != SHUT_RD) {
 2858                 error = (*pr->pr_usrreqs->pru_shutdown)(so);
 2859                 wakeup(&so->so_timeo);
 2860                 CURVNET_RESTORE();
 2861                 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
 2862         }
 2863         wakeup(&so->so_timeo);
 2864         CURVNET_RESTORE();
 2865 
 2866 done:
 2867         return (soerror_enotconn ? ENOTCONN : 0);
 2868 }
 2869 
 2870 void
 2871 sorflush(struct socket *so)
 2872 {
 2873         struct sockbuf *sb = &so->so_rcv;
 2874         struct protosw *pr = so->so_proto;
 2875         struct socket aso;
 2876         int error;
 2877 
 2878         VNET_SO_ASSERT(so);
 2879 
 2880         /*
 2881          * In order to avoid calling dom_dispose with the socket buffer mutex
 2882          * held, and in order to generally avoid holding the lock for a long
 2883          * time, we make a copy of the socket buffer and clear the original
 2884          * (except locks, state).  The new socket buffer copy won't have
 2885          * initialized locks so we can only call routines that won't use or
 2886          * assert those locks.
 2887          *
 2888          * Dislodge threads currently blocked in receive and wait to acquire
 2889          * a lock against other simultaneous readers before clearing the
 2890          * socket buffer.  Don't let our acquire be interrupted by a signal
 2891          * despite any existing socket disposition on interruptable waiting.
 2892          */
 2893         socantrcvmore(so);
 2894         error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
 2895         KASSERT(error == 0, ("%s: cannot lock sock %p recv buffer",
 2896             __func__, so));
 2897 
 2898         /*
 2899          * Invalidate/clear most of the sockbuf structure, but leave selinfo
 2900          * and mutex data unchanged.
 2901          */
 2902         SOCKBUF_LOCK(sb);
 2903         bzero(&aso, sizeof(aso));
 2904         aso.so_pcb = so->so_pcb;
 2905         bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
 2906             sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
 2907         bzero(&sb->sb_startzero,
 2908             sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
 2909         SOCKBUF_UNLOCK(sb);
 2910         SOCK_IO_RECV_UNLOCK(so);
 2911 
 2912         /*
 2913          * Dispose of special rights and flush the copied socket.  Don't call
 2914          * any unsafe routines (that rely on locks being initialized) on aso.
 2915          */
 2916         if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
 2917                 (*pr->pr_domain->dom_dispose)(&aso);
 2918         sbrelease_internal(&aso.so_rcv, so);
 2919 }
 2920 
 2921 /*
 2922  * Wrapper for Socket established helper hook.
 2923  * Parameters: socket, context of the hook point, hook id.
 2924  */
 2925 static int inline
 2926 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
 2927 {
 2928         struct socket_hhook_data hhook_data = {
 2929                 .so = so,
 2930                 .hctx = hctx,
 2931                 .m = NULL,
 2932                 .status = 0
 2933         };
 2934 
 2935         CURVNET_SET(so->so_vnet);
 2936         HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
 2937         CURVNET_RESTORE();
 2938 
 2939         /* Ugly but needed, since hhooks return void for now */
 2940         return (hhook_data.status);
 2941 }
 2942 
 2943 /*
 2944  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
 2945  * additional variant to handle the case where the option value needs to be
 2946  * some kind of integer, but not a specific size.  In addition to their use
 2947  * here, these functions are also called by the protocol-level pr_ctloutput()
 2948  * routines.
 2949  */
 2950 int
 2951 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
 2952 {
 2953         size_t  valsize;
 2954 
 2955         /*
 2956          * If the user gives us more than we wanted, we ignore it, but if we
 2957          * don't get the minimum length the caller wants, we return EINVAL.
 2958          * On success, sopt->sopt_valsize is set to however much we actually
 2959          * retrieved.
 2960          */
 2961         if ((valsize = sopt->sopt_valsize) < minlen)
 2962                 return EINVAL;
 2963         if (valsize > len)
 2964                 sopt->sopt_valsize = valsize = len;
 2965 
 2966         if (sopt->sopt_td != NULL)
 2967                 return (copyin(sopt->sopt_val, buf, valsize));
 2968 
 2969         bcopy(sopt->sopt_val, buf, valsize);
 2970         return (0);
 2971 }
 2972 
 2973 /*
 2974  * Kernel version of setsockopt(2).
 2975  *
 2976  * XXX: optlen is size_t, not socklen_t
 2977  */
 2978 int
 2979 so_setsockopt(struct socket *so, int level, int optname, void *optval,
 2980     size_t optlen)
 2981 {
 2982         struct sockopt sopt;
 2983 
 2984         sopt.sopt_level = level;
 2985         sopt.sopt_name = optname;
 2986         sopt.sopt_dir = SOPT_SET;
 2987         sopt.sopt_val = optval;
 2988         sopt.sopt_valsize = optlen;
 2989         sopt.sopt_td = NULL;
 2990         return (sosetopt(so, &sopt));
 2991 }
 2992 
 2993 int
 2994 sosetopt(struct socket *so, struct sockopt *sopt)
 2995 {
 2996         int     error, optval;
 2997         struct  linger l;
 2998         struct  timeval tv;
 2999         sbintime_t val, *valp;
 3000         uint32_t val32;
 3001 #ifdef MAC
 3002         struct mac extmac;
 3003 #endif
 3004 
 3005         CURVNET_SET(so->so_vnet);
 3006         error = 0;
 3007         if (sopt->sopt_level != SOL_SOCKET) {
 3008                 if (so->so_proto->pr_ctloutput != NULL)
 3009                         error = (*so->so_proto->pr_ctloutput)(so, sopt);
 3010                 else
 3011                         error = ENOPROTOOPT;
 3012         } else {
 3013                 switch (sopt->sopt_name) {
 3014                 case SO_ACCEPTFILTER:
 3015                         error = accept_filt_setopt(so, sopt);
 3016                         if (error)
 3017                                 goto bad;
 3018                         break;
 3019 
 3020                 case SO_LINGER:
 3021                         error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
 3022                         if (error)
 3023                                 goto bad;
 3024                         if (l.l_linger < 0 ||
 3025                             l.l_linger > USHRT_MAX ||
 3026                             l.l_linger > (INT_MAX / hz)) {
 3027                                 error = EDOM;
 3028                                 goto bad;
 3029                         }
 3030                         SOCK_LOCK(so);
 3031                         so->so_linger = l.l_linger;
 3032                         if (l.l_onoff)
 3033                                 so->so_options |= SO_LINGER;
 3034                         else
 3035                                 so->so_options &= ~SO_LINGER;
 3036                         SOCK_UNLOCK(so);
 3037                         break;
 3038 
 3039                 case SO_DEBUG:
 3040                 case SO_KEEPALIVE:
 3041                 case SO_DONTROUTE:
 3042                 case SO_USELOOPBACK:
 3043                 case SO_BROADCAST:
 3044                 case SO_REUSEADDR:
 3045                 case SO_REUSEPORT:
 3046                 case SO_REUSEPORT_LB:
 3047                 case SO_OOBINLINE:
 3048                 case SO_TIMESTAMP:
 3049                 case SO_BINTIME:
 3050                 case SO_NOSIGPIPE:
 3051                 case SO_NO_DDP:
 3052                 case SO_NO_OFFLOAD:
 3053                 case SO_RERROR:
 3054                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3055                             sizeof optval);
 3056                         if (error)
 3057                                 goto bad;
 3058                         SOCK_LOCK(so);
 3059                         if (optval)
 3060                                 so->so_options |= sopt->sopt_name;
 3061                         else
 3062                                 so->so_options &= ~sopt->sopt_name;
 3063                         SOCK_UNLOCK(so);
 3064                         break;
 3065 
 3066                 case SO_SETFIB:
 3067                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3068                             sizeof optval);
 3069                         if (error)
 3070                                 goto bad;
 3071 
 3072                         if (optval < 0 || optval >= rt_numfibs) {
 3073                                 error = EINVAL;
 3074                                 goto bad;
 3075                         }
 3076                         if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
 3077                            (so->so_proto->pr_domain->dom_family == PF_INET6) ||
 3078                            (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
 3079                                 so->so_fibnum = optval;
 3080                         else
 3081                                 so->so_fibnum = 0;
 3082                         break;
 3083 
 3084                 case SO_USER_COOKIE:
 3085                         error = sooptcopyin(sopt, &val32, sizeof val32,
 3086                             sizeof val32);
 3087                         if (error)
 3088                                 goto bad;
 3089                         so->so_user_cookie = val32;
 3090                         break;
 3091 
 3092                 case SO_SNDBUF:
 3093                 case SO_RCVBUF:
 3094                 case SO_SNDLOWAT:
 3095                 case SO_RCVLOWAT:
 3096                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3097                             sizeof optval);
 3098                         if (error)
 3099                                 goto bad;
 3100 
 3101                         /*
 3102                          * Values < 1 make no sense for any of these options,
 3103                          * so disallow them.
 3104                          */
 3105                         if (optval < 1) {
 3106                                 error = EINVAL;
 3107                                 goto bad;
 3108                         }
 3109 
 3110                         error = sbsetopt(so, sopt->sopt_name, optval);
 3111                         break;
 3112 
 3113                 case SO_SNDTIMEO:
 3114                 case SO_RCVTIMEO:
 3115 #ifdef COMPAT_FREEBSD32
 3116                         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3117                                 struct timeval32 tv32;
 3118 
 3119                                 error = sooptcopyin(sopt, &tv32, sizeof tv32,
 3120                                     sizeof tv32);
 3121                                 CP(tv32, tv, tv_sec);
 3122                                 CP(tv32, tv, tv_usec);
 3123                         } else
 3124 #endif
 3125                                 error = sooptcopyin(sopt, &tv, sizeof tv,
 3126                                     sizeof tv);
 3127                         if (error)
 3128                                 goto bad;
 3129                         if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
 3130                             tv.tv_usec >= 1000000) {
 3131                                 error = EDOM;
 3132                                 goto bad;
 3133                         }
 3134                         if (tv.tv_sec > INT32_MAX)
 3135                                 val = SBT_MAX;
 3136                         else
 3137                                 val = tvtosbt(tv);
 3138                         SOCK_LOCK(so);
 3139                         valp = sopt->sopt_name == SO_SNDTIMEO ?
 3140                             (SOLISTENING(so) ? &so->sol_sbsnd_timeo :
 3141                             &so->so_snd.sb_timeo) :
 3142                             (SOLISTENING(so) ? &so->sol_sbrcv_timeo :
 3143                             &so->so_rcv.sb_timeo);
 3144                         *valp = val;
 3145                         SOCK_UNLOCK(so);
 3146                         break;
 3147 
 3148                 case SO_LABEL:
 3149 #ifdef MAC
 3150                         error = sooptcopyin(sopt, &extmac, sizeof extmac,
 3151                             sizeof extmac);
 3152                         if (error)
 3153                                 goto bad;
 3154                         error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
 3155                             so, &extmac);
 3156 #else
 3157                         error = EOPNOTSUPP;
 3158 #endif
 3159                         break;
 3160 
 3161                 case SO_TS_CLOCK:
 3162                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3163                             sizeof optval);
 3164                         if (error)
 3165                                 goto bad;
 3166                         if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
 3167                                 error = EINVAL;
 3168                                 goto bad;
 3169                         }
 3170                         so->so_ts_clock = optval;
 3171                         break;
 3172 
 3173                 case SO_MAX_PACING_RATE:
 3174                         error = sooptcopyin(sopt, &val32, sizeof(val32),
 3175                             sizeof(val32));
 3176                         if (error)
 3177                                 goto bad;
 3178                         so->so_max_pacing_rate = val32;
 3179                         break;
 3180 
 3181                 default:
 3182                         if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
 3183                                 error = hhook_run_socket(so, sopt,
 3184                                     HHOOK_SOCKET_OPT);
 3185                         else
 3186                                 error = ENOPROTOOPT;
 3187                         break;
 3188                 }
 3189                 if (error == 0 && so->so_proto->pr_ctloutput != NULL)
 3190                         (void)(*so->so_proto->pr_ctloutput)(so, sopt);
 3191         }
 3192 bad:
 3193         CURVNET_RESTORE();
 3194         return (error);
 3195 }
 3196 
 3197 /*
 3198  * Helper routine for getsockopt.
 3199  */
 3200 int
 3201 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
 3202 {
 3203         int     error;
 3204         size_t  valsize;
 3205 
 3206         error = 0;
 3207 
 3208         /*
 3209          * Documented get behavior is that we always return a value, possibly
 3210          * truncated to fit in the user's buffer.  Traditional behavior is
 3211          * that we always tell the user precisely how much we copied, rather
 3212          * than something useful like the total amount we had available for
 3213          * her.  Note that this interface is not idempotent; the entire
 3214          * answer must be generated ahead of time.
 3215          */
 3216         valsize = min(len, sopt->sopt_valsize);
 3217         sopt->sopt_valsize = valsize;
 3218         if (sopt->sopt_val != NULL) {
 3219                 if (sopt->sopt_td != NULL)
 3220                         error = copyout(buf, sopt->sopt_val, valsize);
 3221                 else
 3222                         bcopy(buf, sopt->sopt_val, valsize);
 3223         }
 3224         return (error);
 3225 }
 3226 
 3227 int
 3228 sogetopt(struct socket *so, struct sockopt *sopt)
 3229 {
 3230         int     error, optval;
 3231         struct  linger l;
 3232         struct  timeval tv;
 3233 #ifdef MAC
 3234         struct mac extmac;
 3235 #endif
 3236 
 3237         CURVNET_SET(so->so_vnet);
 3238         error = 0;
 3239         if (sopt->sopt_level != SOL_SOCKET) {
 3240                 if (so->so_proto->pr_ctloutput != NULL)
 3241                         error = (*so->so_proto->pr_ctloutput)(so, sopt);
 3242                 else
 3243                         error = ENOPROTOOPT;
 3244                 CURVNET_RESTORE();
 3245                 return (error);
 3246         } else {
 3247                 switch (sopt->sopt_name) {
 3248                 case SO_ACCEPTFILTER:
 3249                         error = accept_filt_getopt(so, sopt);
 3250                         break;
 3251 
 3252                 case SO_LINGER:
 3253                         SOCK_LOCK(so);
 3254                         l.l_onoff = so->so_options & SO_LINGER;
 3255                         l.l_linger = so->so_linger;
 3256                         SOCK_UNLOCK(so);
 3257                         error = sooptcopyout(sopt, &l, sizeof l);
 3258                         break;
 3259 
 3260                 case SO_USELOOPBACK:
 3261                 case SO_DONTROUTE:
 3262                 case SO_DEBUG:
 3263                 case SO_KEEPALIVE:
 3264                 case SO_REUSEADDR:
 3265                 case SO_REUSEPORT:
 3266                 case SO_REUSEPORT_LB:
 3267                 case SO_BROADCAST:
 3268                 case SO_OOBINLINE:
 3269                 case SO_ACCEPTCONN:
 3270                 case SO_TIMESTAMP:
 3271                 case SO_BINTIME:
 3272                 case SO_NOSIGPIPE:
 3273                 case SO_NO_DDP:
 3274                 case SO_NO_OFFLOAD:
 3275                 case SO_RERROR:
 3276                         optval = so->so_options & sopt->sopt_name;
 3277 integer:
 3278                         error = sooptcopyout(sopt, &optval, sizeof optval);
 3279                         break;
 3280 
 3281                 case SO_DOMAIN:
 3282                         optval = so->so_proto->pr_domain->dom_family;
 3283                         goto integer;
 3284 
 3285                 case SO_TYPE:
 3286                         optval = so->so_type;
 3287                         goto integer;
 3288 
 3289                 case SO_PROTOCOL:
 3290                         optval = so->so_proto->pr_protocol;
 3291                         goto integer;
 3292 
 3293                 case SO_ERROR:
 3294                         SOCK_LOCK(so);
 3295                         if (so->so_error) {
 3296                                 optval = so->so_error;
 3297                                 so->so_error = 0;
 3298                         } else {
 3299                                 optval = so->so_rerror;
 3300                                 so->so_rerror = 0;
 3301                         }
 3302                         SOCK_UNLOCK(so);
 3303                         goto integer;
 3304 
 3305                 case SO_SNDBUF:
 3306                         optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
 3307                             so->so_snd.sb_hiwat;
 3308                         goto integer;
 3309 
 3310                 case SO_RCVBUF:
 3311                         optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
 3312                             so->so_rcv.sb_hiwat;
 3313                         goto integer;
 3314 
 3315                 case SO_SNDLOWAT:
 3316                         optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
 3317                             so->so_snd.sb_lowat;
 3318                         goto integer;
 3319 
 3320                 case SO_RCVLOWAT:
 3321                         optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
 3322                             so->so_rcv.sb_lowat;
 3323                         goto integer;
 3324 
 3325                 case SO_SNDTIMEO:
 3326                 case SO_RCVTIMEO:
 3327                         SOCK_LOCK(so);
 3328                         tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
 3329                             (SOLISTENING(so) ? so->sol_sbsnd_timeo :
 3330                             so->so_snd.sb_timeo) :
 3331                             (SOLISTENING(so) ? so->sol_sbrcv_timeo :
 3332                             so->so_rcv.sb_timeo));
 3333                         SOCK_UNLOCK(so);
 3334 #ifdef COMPAT_FREEBSD32
 3335                         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3336                                 struct timeval32 tv32;
 3337 
 3338                                 CP(tv, tv32, tv_sec);
 3339                                 CP(tv, tv32, tv_usec);
 3340                                 error = sooptcopyout(sopt, &tv32, sizeof tv32);
 3341                         } else
 3342 #endif
 3343                                 error = sooptcopyout(sopt, &tv, sizeof tv);
 3344                         break;
 3345 
 3346                 case SO_LABEL:
 3347 #ifdef MAC
 3348                         error = sooptcopyin(sopt, &extmac, sizeof(extmac),
 3349                             sizeof(extmac));
 3350                         if (error)
 3351                                 goto bad;
 3352                         error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
 3353                             so, &extmac);
 3354                         if (error)
 3355                                 goto bad;
 3356                         error = sooptcopyout(sopt, &extmac, sizeof extmac);
 3357 #else
 3358                         error = EOPNOTSUPP;
 3359 #endif
 3360                         break;
 3361 
 3362                 case SO_PEERLABEL:
 3363 #ifdef MAC
 3364                         error = sooptcopyin(sopt, &extmac, sizeof(extmac),
 3365                             sizeof(extmac));
 3366                         if (error)
 3367                                 goto bad;
 3368                         error = mac_getsockopt_peerlabel(
 3369                             sopt->sopt_td->td_ucred, so, &extmac);
 3370                         if (error)
 3371                                 goto bad;
 3372                         error = sooptcopyout(sopt, &extmac, sizeof extmac);
 3373 #else
 3374                         error = EOPNOTSUPP;
 3375 #endif
 3376                         break;
 3377 
 3378                 case SO_LISTENQLIMIT:
 3379                         optval = SOLISTENING(so) ? so->sol_qlimit : 0;
 3380                         goto integer;
 3381 
 3382                 case SO_LISTENQLEN:
 3383                         optval = SOLISTENING(so) ? so->sol_qlen : 0;
 3384                         goto integer;
 3385 
 3386                 case SO_LISTENINCQLEN:
 3387                         optval = SOLISTENING(so) ? so->sol_incqlen : 0;
 3388                         goto integer;
 3389 
 3390                 case SO_TS_CLOCK:
 3391                         optval = so->so_ts_clock;
 3392                         goto integer;
 3393 
 3394                 case SO_MAX_PACING_RATE:
 3395                         optval = so->so_max_pacing_rate;
 3396                         goto integer;
 3397 
 3398                 default:
 3399                         if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
 3400                                 error = hhook_run_socket(so, sopt,
 3401                                     HHOOK_SOCKET_OPT);
 3402                         else
 3403                                 error = ENOPROTOOPT;
 3404                         break;
 3405                 }
 3406         }
 3407 #ifdef MAC
 3408 bad:
 3409 #endif
 3410         CURVNET_RESTORE();
 3411         return (error);
 3412 }
 3413 
 3414 int
 3415 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
 3416 {
 3417         struct mbuf *m, *m_prev;
 3418         int sopt_size = sopt->sopt_valsize;
 3419 
 3420         MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
 3421         if (m == NULL)
 3422                 return ENOBUFS;
 3423         if (sopt_size > MLEN) {
 3424                 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
 3425                 if ((m->m_flags & M_EXT) == 0) {
 3426                         m_free(m);
 3427                         return ENOBUFS;
 3428                 }
 3429                 m->m_len = min(MCLBYTES, sopt_size);
 3430         } else {
 3431                 m->m_len = min(MLEN, sopt_size);
 3432         }
 3433         sopt_size -= m->m_len;
 3434         *mp = m;
 3435         m_prev = m;
 3436 
 3437         while (sopt_size) {
 3438                 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
 3439                 if (m == NULL) {
 3440                         m_freem(*mp);
 3441                         return ENOBUFS;
 3442                 }
 3443                 if (sopt_size > MLEN) {
 3444                         MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
 3445                             M_NOWAIT);
 3446                         if ((m->m_flags & M_EXT) == 0) {
 3447                                 m_freem(m);
 3448                                 m_freem(*mp);
 3449                                 return ENOBUFS;
 3450                         }
 3451                         m->m_len = min(MCLBYTES, sopt_size);
 3452                 } else {
 3453                         m->m_len = min(MLEN, sopt_size);
 3454                 }
 3455                 sopt_size -= m->m_len;
 3456                 m_prev->m_next = m;
 3457                 m_prev = m;
 3458         }
 3459         return (0);
 3460 }
 3461 
 3462 int
 3463 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
 3464 {
 3465         struct mbuf *m0 = m;
 3466 
 3467         if (sopt->sopt_val == NULL)
 3468                 return (0);
 3469         while (m != NULL && sopt->sopt_valsize >= m->m_len) {
 3470                 if (sopt->sopt_td != NULL) {
 3471                         int error;
 3472 
 3473                         error = copyin(sopt->sopt_val, mtod(m, char *),
 3474                             m->m_len);
 3475                         if (error != 0) {
 3476                                 m_freem(m0);
 3477                                 return(error);
 3478                         }
 3479                 } else
 3480                         bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
 3481                 sopt->sopt_valsize -= m->m_len;
 3482                 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
 3483                 m = m->m_next;
 3484         }
 3485         if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
 3486                 panic("ip6_sooptmcopyin");
 3487         return (0);
 3488 }
 3489 
 3490 int
 3491 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
 3492 {
 3493         struct mbuf *m0 = m;
 3494         size_t valsize = 0;
 3495 
 3496         if (sopt->sopt_val == NULL)
 3497                 return (0);
 3498         while (m != NULL && sopt->sopt_valsize >= m->m_len) {
 3499                 if (sopt->sopt_td != NULL) {
 3500                         int error;
 3501 
 3502                         error = copyout(mtod(m, char *), sopt->sopt_val,
 3503                             m->m_len);
 3504                         if (error != 0) {
 3505                                 m_freem(m0);
 3506                                 return(error);
 3507                         }
 3508                 } else
 3509                         bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
 3510                 sopt->sopt_valsize -= m->m_len;
 3511                 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
 3512                 valsize += m->m_len;
 3513                 m = m->m_next;
 3514         }
 3515         if (m != NULL) {
 3516                 /* enough soopt buffer should be given from user-land */
 3517                 m_freem(m0);
 3518                 return(EINVAL);
 3519         }
 3520         sopt->sopt_valsize = valsize;
 3521         return (0);
 3522 }
 3523 
 3524 /*
 3525  * sohasoutofband(): protocol notifies socket layer of the arrival of new
 3526  * out-of-band data, which will then notify socket consumers.
 3527  */
 3528 void
 3529 sohasoutofband(struct socket *so)
 3530 {
 3531 
 3532         if (so->so_sigio != NULL)
 3533                 pgsigio(&so->so_sigio, SIGURG, 0);
 3534         selwakeuppri(&so->so_rdsel, PSOCK);
 3535 }
 3536 
 3537 int
 3538 sopoll(struct socket *so, int events, struct ucred *active_cred,
 3539     struct thread *td)
 3540 {
 3541 
 3542         /*
 3543          * We do not need to set or assert curvnet as long as everyone uses
 3544          * sopoll_generic().
 3545          */
 3546         return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
 3547             td));
 3548 }
 3549 
 3550 int
 3551 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
 3552     struct thread *td)
 3553 {
 3554         int revents;
 3555 
 3556         SOCK_LOCK(so);
 3557         if (SOLISTENING(so)) {
 3558                 if (!(events & (POLLIN | POLLRDNORM)))
 3559                         revents = 0;
 3560                 else if (!TAILQ_EMPTY(&so->sol_comp))
 3561                         revents = events & (POLLIN | POLLRDNORM);
 3562                 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
 3563                         revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
 3564                 else {
 3565                         selrecord(td, &so->so_rdsel);
 3566                         revents = 0;
 3567                 }
 3568         } else {
 3569                 revents = 0;
 3570                 SOCKBUF_LOCK(&so->so_snd);
 3571                 SOCKBUF_LOCK(&so->so_rcv);
 3572                 if (events & (POLLIN | POLLRDNORM))
 3573                         if (soreadabledata(so))
 3574                                 revents |= events & (POLLIN | POLLRDNORM);
 3575                 if (events & (POLLOUT | POLLWRNORM))
 3576                         if (sowriteable(so))
 3577                                 revents |= events & (POLLOUT | POLLWRNORM);
 3578                 if (events & (POLLPRI | POLLRDBAND))
 3579                         if (so->so_oobmark ||
 3580                             (so->so_rcv.sb_state & SBS_RCVATMARK))
 3581                                 revents |= events & (POLLPRI | POLLRDBAND);
 3582                 if ((events & POLLINIGNEOF) == 0) {
 3583                         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 3584                                 revents |= events & (POLLIN | POLLRDNORM);
 3585                                 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
 3586                                         revents |= POLLHUP;
 3587                         }
 3588                 }
 3589                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
 3590                         revents |= events & POLLRDHUP;
 3591                 if (revents == 0) {
 3592                         if (events &
 3593                             (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND | POLLRDHUP)) {
 3594                                 selrecord(td, &so->so_rdsel);
 3595                                 so->so_rcv.sb_flags |= SB_SEL;
 3596                         }
 3597                         if (events & (POLLOUT | POLLWRNORM)) {
 3598                                 selrecord(td, &so->so_wrsel);
 3599                                 so->so_snd.sb_flags |= SB_SEL;
 3600                         }
 3601                 }
 3602                 SOCKBUF_UNLOCK(&so->so_rcv);
 3603                 SOCKBUF_UNLOCK(&so->so_snd);
 3604         }
 3605         SOCK_UNLOCK(so);
 3606         return (revents);
 3607 }
 3608 
 3609 int
 3610 soo_kqfilter(struct file *fp, struct knote *kn)
 3611 {
 3612         struct socket *so = kn->kn_fp->f_data;
 3613         struct sockbuf *sb;
 3614         struct knlist *knl;
 3615 
 3616         switch (kn->kn_filter) {
 3617         case EVFILT_READ:
 3618                 kn->kn_fop = &soread_filtops;
 3619                 knl = &so->so_rdsel.si_note;
 3620                 sb = &so->so_rcv;
 3621                 break;
 3622         case EVFILT_WRITE:
 3623                 kn->kn_fop = &sowrite_filtops;
 3624                 knl = &so->so_wrsel.si_note;
 3625                 sb = &so->so_snd;
 3626                 break;
 3627         case EVFILT_EMPTY:
 3628                 kn->kn_fop = &soempty_filtops;
 3629                 knl = &so->so_wrsel.si_note;
 3630                 sb = &so->so_snd;
 3631                 break;
 3632         default:
 3633                 return (EINVAL);
 3634         }
 3635 
 3636         SOCK_LOCK(so);
 3637         if (SOLISTENING(so)) {
 3638                 knlist_add(knl, kn, 1);
 3639         } else {
 3640                 SOCKBUF_LOCK(sb);
 3641                 knlist_add(knl, kn, 1);
 3642                 sb->sb_flags |= SB_KNOTE;
 3643                 SOCKBUF_UNLOCK(sb);
 3644         }
 3645         SOCK_UNLOCK(so);
 3646         return (0);
 3647 }
 3648 
 3649 /*
 3650  * Some routines that return EOPNOTSUPP for entry points that are not
 3651  * supported by a protocol.  Fill in as needed.
 3652  */
 3653 int
 3654 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
 3655 {
 3656 
 3657         return EOPNOTSUPP;
 3658 }
 3659 
 3660 int
 3661 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
 3662 {
 3663 
 3664         return EOPNOTSUPP;
 3665 }
 3666 
 3667 int
 3668 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
 3669 {
 3670 
 3671         return EOPNOTSUPP;
 3672 }
 3673 
 3674 int
 3675 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
 3676 {
 3677 
 3678         return EOPNOTSUPP;
 3679 }
 3680 
 3681 int
 3682 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
 3683     struct thread *td)
 3684 {
 3685 
 3686         return EOPNOTSUPP;
 3687 }
 3688 
 3689 int
 3690 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
 3691 {
 3692 
 3693         return EOPNOTSUPP;
 3694 }
 3695 
 3696 int
 3697 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
 3698     struct thread *td)
 3699 {
 3700 
 3701         return EOPNOTSUPP;
 3702 }
 3703 
 3704 int
 3705 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
 3706 {
 3707 
 3708         return EOPNOTSUPP;
 3709 }
 3710 
 3711 int
 3712 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
 3713     struct ifnet *ifp, struct thread *td)
 3714 {
 3715 
 3716         return EOPNOTSUPP;
 3717 }
 3718 
 3719 int
 3720 pru_disconnect_notsupp(struct socket *so)
 3721 {
 3722 
 3723         return EOPNOTSUPP;
 3724 }
 3725 
 3726 int
 3727 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
 3728 {
 3729 
 3730         return EOPNOTSUPP;
 3731 }
 3732 
 3733 int
 3734 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
 3735 {
 3736 
 3737         return EOPNOTSUPP;
 3738 }
 3739 
 3740 int
 3741 pru_rcvd_notsupp(struct socket *so, int flags)
 3742 {
 3743 
 3744         return EOPNOTSUPP;
 3745 }
 3746 
 3747 int
 3748 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
 3749 {
 3750 
 3751         return EOPNOTSUPP;
 3752 }
 3753 
 3754 int
 3755 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
 3756     struct sockaddr *addr, struct mbuf *control, struct thread *td)
 3757 {
 3758 
 3759         if (control != NULL)
 3760                 m_freem(control);
 3761         if ((flags & PRUS_NOTREADY) == 0)
 3762                 m_freem(m);
 3763         return (EOPNOTSUPP);
 3764 }
 3765 
 3766 int
 3767 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
 3768 {
 3769 
 3770         return (EOPNOTSUPP);
 3771 }
 3772 
 3773 /*
 3774  * This isn't really a ``null'' operation, but it's the default one and
 3775  * doesn't do anything destructive.
 3776  */
 3777 int
 3778 pru_sense_null(struct socket *so, struct stat *sb)
 3779 {
 3780 
 3781         sb->st_blksize = so->so_snd.sb_hiwat;
 3782         return 0;
 3783 }
 3784 
 3785 int
 3786 pru_shutdown_notsupp(struct socket *so)
 3787 {
 3788 
 3789         return EOPNOTSUPP;
 3790 }
 3791 
 3792 int
 3793 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
 3794 {
 3795 
 3796         return EOPNOTSUPP;
 3797 }
 3798 
 3799 int
 3800 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
 3801     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 3802 {
 3803 
 3804         return EOPNOTSUPP;
 3805 }
 3806 
 3807 int
 3808 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
 3809     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 3810 {
 3811 
 3812         return EOPNOTSUPP;
 3813 }
 3814 
 3815 int
 3816 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
 3817     struct thread *td)
 3818 {
 3819 
 3820         return EOPNOTSUPP;
 3821 }
 3822 
 3823 static void
 3824 filt_sordetach(struct knote *kn)
 3825 {
 3826         struct socket *so = kn->kn_fp->f_data;
 3827 
 3828         so_rdknl_lock(so);
 3829         knlist_remove(&so->so_rdsel.si_note, kn, 1);
 3830         if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
 3831                 so->so_rcv.sb_flags &= ~SB_KNOTE;
 3832         so_rdknl_unlock(so);
 3833 }
 3834 
 3835 /*ARGSUSED*/
 3836 static int
 3837 filt_soread(struct knote *kn, long hint)
 3838 {
 3839         struct socket *so;
 3840 
 3841         so = kn->kn_fp->f_data;
 3842 
 3843         if (SOLISTENING(so)) {
 3844                 SOCK_LOCK_ASSERT(so);
 3845                 kn->kn_data = so->sol_qlen;
 3846                 if (so->so_error) {
 3847                         kn->kn_flags |= EV_EOF;
 3848                         kn->kn_fflags = so->so_error;
 3849                         return (1);
 3850                 }
 3851                 return (!TAILQ_EMPTY(&so->sol_comp));
 3852         }
 3853 
 3854         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 3855 
 3856         kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
 3857         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 3858                 kn->kn_flags |= EV_EOF;
 3859                 kn->kn_fflags = so->so_error;
 3860                 return (1);
 3861         } else if (so->so_error || so->so_rerror)
 3862                 return (1);
 3863 
 3864         if (kn->kn_sfflags & NOTE_LOWAT) {
 3865                 if (kn->kn_data >= kn->kn_sdata)
 3866                         return (1);
 3867         } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
 3868                 return (1);
 3869 
 3870         /* This hook returning non-zero indicates an event, not error */
 3871         return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
 3872 }
 3873 
 3874 static void
 3875 filt_sowdetach(struct knote *kn)
 3876 {
 3877         struct socket *so = kn->kn_fp->f_data;
 3878 
 3879         so_wrknl_lock(so);
 3880         knlist_remove(&so->so_wrsel.si_note, kn, 1);
 3881         if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
 3882                 so->so_snd.sb_flags &= ~SB_KNOTE;
 3883         so_wrknl_unlock(so);
 3884 }
 3885 
 3886 /*ARGSUSED*/
 3887 static int
 3888 filt_sowrite(struct knote *kn, long hint)
 3889 {
 3890         struct socket *so;
 3891 
 3892         so = kn->kn_fp->f_data;
 3893 
 3894         if (SOLISTENING(so))
 3895                 return (0);
 3896 
 3897         SOCKBUF_LOCK_ASSERT(&so->so_snd);
 3898         kn->kn_data = sbspace(&so->so_snd);
 3899 
 3900         hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
 3901 
 3902         if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 3903                 kn->kn_flags |= EV_EOF;
 3904                 kn->kn_fflags = so->so_error;
 3905                 return (1);
 3906         } else if (so->so_error)        /* temporary udp error */
 3907                 return (1);
 3908         else if (((so->so_state & SS_ISCONNECTED) == 0) &&
 3909             (so->so_proto->pr_flags & PR_CONNREQUIRED))
 3910                 return (0);
 3911         else if (kn->kn_sfflags & NOTE_LOWAT)
 3912                 return (kn->kn_data >= kn->kn_sdata);
 3913         else
 3914                 return (kn->kn_data >= so->so_snd.sb_lowat);
 3915 }
 3916 
 3917 static int
 3918 filt_soempty(struct knote *kn, long hint)
 3919 {
 3920         struct socket *so;
 3921 
 3922         so = kn->kn_fp->f_data;
 3923 
 3924         if (SOLISTENING(so))
 3925                 return (1);
 3926 
 3927         SOCKBUF_LOCK_ASSERT(&so->so_snd);
 3928         kn->kn_data = sbused(&so->so_snd);
 3929 
 3930         if (kn->kn_data == 0)
 3931                 return (1);
 3932         else
 3933                 return (0);
 3934 }
 3935 
 3936 int
 3937 socheckuid(struct socket *so, uid_t uid)
 3938 {
 3939 
 3940         if (so == NULL)
 3941                 return (EPERM);
 3942         if (so->so_cred->cr_uid != uid)
 3943                 return (EPERM);
 3944         return (0);
 3945 }
 3946 
 3947 /*
 3948  * These functions are used by protocols to notify the socket layer (and its
 3949  * consumers) of state changes in the sockets driven by protocol-side events.
 3950  */
 3951 
 3952 /*
 3953  * Procedures to manipulate state flags of socket and do appropriate wakeups.
 3954  *
 3955  * Normal sequence from the active (originating) side is that
 3956  * soisconnecting() is called during processing of connect() call, resulting
 3957  * in an eventual call to soisconnected() if/when the connection is
 3958  * established.  When the connection is torn down soisdisconnecting() is
 3959  * called during processing of disconnect() call, and soisdisconnected() is
 3960  * called when the connection to the peer is totally severed.  The semantics
 3961  * of these routines are such that connectionless protocols can call
 3962  * soisconnected() and soisdisconnected() only, bypassing the in-progress
 3963  * calls when setting up a ``connection'' takes no time.
 3964  *
 3965  * From the passive side, a socket is created with two queues of sockets:
 3966  * so_incomp for connections in progress and so_comp for connections already
 3967  * made and awaiting user acceptance.  As a protocol is preparing incoming
 3968  * connections, it creates a socket structure queued on so_incomp by calling
 3969  * sonewconn().  When the connection is established, soisconnected() is
 3970  * called, and transfers the socket structure to so_comp, making it available
 3971  * to accept().
 3972  *
 3973  * If a socket is closed with sockets on either so_incomp or so_comp, these
 3974  * sockets are dropped.
 3975  *
 3976  * If higher-level protocols are implemented in the kernel, the wakeups done
 3977  * here will sometimes cause software-interrupt process scheduling.
 3978  */
 3979 void
 3980 soisconnecting(struct socket *so)
 3981 {
 3982 
 3983         SOCK_LOCK(so);
 3984         so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
 3985         so->so_state |= SS_ISCONNECTING;
 3986         SOCK_UNLOCK(so);
 3987 }
 3988 
 3989 void
 3990 soisconnected(struct socket *so)
 3991 {
 3992         bool last __diagused;
 3993 
 3994         SOCK_LOCK(so);
 3995         so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
 3996         so->so_state |= SS_ISCONNECTED;
 3997 
 3998         if (so->so_qstate == SQ_INCOMP) {
 3999                 struct socket *head = so->so_listen;
 4000                 int ret;
 4001 
 4002                 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
 4003                 /*
 4004                  * Promoting a socket from incomplete queue to complete, we
 4005                  * need to go through reverse order of locking.  We first do
 4006                  * trylock, and if that doesn't succeed, we go the hard way
 4007                  * leaving a reference and rechecking consistency after proper
 4008                  * locking.
 4009                  */
 4010                 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
 4011                         soref(head);
 4012                         SOCK_UNLOCK(so);
 4013                         SOLISTEN_LOCK(head);
 4014                         SOCK_LOCK(so);
 4015                         if (__predict_false(head != so->so_listen)) {
 4016                                 /*
 4017                                  * The socket went off the listen queue,
 4018                                  * should be lost race to close(2) of sol.
 4019                                  * The socket is about to soabort().
 4020                                  */
 4021                                 SOCK_UNLOCK(so);
 4022                                 sorele(head);
 4023                                 return;
 4024                         }
 4025                         last = refcount_release(&head->so_count);
 4026                         KASSERT(!last, ("%s: released last reference for %p",
 4027                             __func__, head));
 4028                 }
 4029 again:
 4030                 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
 4031                         TAILQ_REMOVE(&head->sol_incomp, so, so_list);
 4032                         head->sol_incqlen--;
 4033                         TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
 4034                         head->sol_qlen++;
 4035                         so->so_qstate = SQ_COMP;
 4036                         SOCK_UNLOCK(so);
 4037                         solisten_wakeup(head);  /* unlocks */
 4038                 } else {
 4039                         SOCKBUF_LOCK(&so->so_rcv);
 4040                         soupcall_set(so, SO_RCV,
 4041                             head->sol_accept_filter->accf_callback,
 4042                             head->sol_accept_filter_arg);
 4043                         so->so_options &= ~SO_ACCEPTFILTER;
 4044                         ret = head->sol_accept_filter->accf_callback(so,
 4045                             head->sol_accept_filter_arg, M_NOWAIT);
 4046                         if (ret == SU_ISCONNECTED) {
 4047                                 soupcall_clear(so, SO_RCV);
 4048                                 SOCKBUF_UNLOCK(&so->so_rcv);
 4049                                 goto again;
 4050                         }
 4051                         SOCKBUF_UNLOCK(&so->so_rcv);
 4052                         SOCK_UNLOCK(so);
 4053                         SOLISTEN_UNLOCK(head);
 4054                 }
 4055                 return;
 4056         }
 4057         SOCK_UNLOCK(so);
 4058         wakeup(&so->so_timeo);
 4059         sorwakeup(so);
 4060         sowwakeup(so);
 4061 }
 4062 
 4063 void
 4064 soisdisconnecting(struct socket *so)
 4065 {
 4066 
 4067         SOCK_LOCK(so);
 4068         so->so_state &= ~SS_ISCONNECTING;
 4069         so->so_state |= SS_ISDISCONNECTING;
 4070 
 4071         if (!SOLISTENING(so)) {
 4072                 SOCKBUF_LOCK(&so->so_rcv);
 4073                 socantrcvmore_locked(so);
 4074                 SOCKBUF_LOCK(&so->so_snd);
 4075                 socantsendmore_locked(so);
 4076         }
 4077         SOCK_UNLOCK(so);
 4078         wakeup(&so->so_timeo);
 4079 }
 4080 
 4081 void
 4082 soisdisconnected(struct socket *so)
 4083 {
 4084 
 4085         SOCK_LOCK(so);
 4086 
 4087         /*
 4088          * There is at least one reader of so_state that does not
 4089          * acquire socket lock, namely soreceive_generic().  Ensure
 4090          * that it never sees all flags that track connection status
 4091          * cleared, by ordering the update with a barrier semantic of
 4092          * our release thread fence.
 4093          */
 4094         so->so_state |= SS_ISDISCONNECTED;
 4095         atomic_thread_fence_rel();
 4096         so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
 4097 
 4098         if (!SOLISTENING(so)) {
 4099                 SOCK_UNLOCK(so);
 4100                 SOCKBUF_LOCK(&so->so_rcv);
 4101                 socantrcvmore_locked(so);
 4102                 SOCKBUF_LOCK(&so->so_snd);
 4103                 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
 4104                 socantsendmore_locked(so);
 4105         } else
 4106                 SOCK_UNLOCK(so);
 4107         wakeup(&so->so_timeo);
 4108 }
 4109 
 4110 int
 4111 soiolock(struct socket *so, struct sx *sx, int flags)
 4112 {
 4113         int error;
 4114 
 4115         KASSERT((flags & SBL_VALID) == flags,
 4116             ("soiolock: invalid flags %#x", flags));
 4117 
 4118         if ((flags & SBL_WAIT) != 0) {
 4119                 if ((flags & SBL_NOINTR) != 0) {
 4120                         sx_xlock(sx);
 4121                 } else {
 4122                         error = sx_xlock_sig(sx);
 4123                         if (error != 0)
 4124                                 return (error);
 4125                 }
 4126         } else if (!sx_try_xlock(sx)) {
 4127                 return (EWOULDBLOCK);
 4128         }
 4129 
 4130         if (__predict_false(SOLISTENING(so))) {
 4131                 sx_xunlock(sx);
 4132                 return (ENOTCONN);
 4133         }
 4134         return (0);
 4135 }
 4136 
 4137 void
 4138 soiounlock(struct sx *sx)
 4139 {
 4140         sx_xunlock(sx);
 4141 }
 4142 
 4143 /*
 4144  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
 4145  */
 4146 struct sockaddr *
 4147 sodupsockaddr(const struct sockaddr *sa, int mflags)
 4148 {
 4149         struct sockaddr *sa2;
 4150 
 4151         sa2 = malloc(sa->sa_len, M_SONAME, mflags);
 4152         if (sa2)
 4153                 bcopy(sa, sa2, sa->sa_len);
 4154         return sa2;
 4155 }
 4156 
 4157 /*
 4158  * Register per-socket destructor.
 4159  */
 4160 void
 4161 sodtor_set(struct socket *so, so_dtor_t *func)
 4162 {
 4163 
 4164         SOCK_LOCK_ASSERT(so);
 4165         so->so_dtor = func;
 4166 }
 4167 
 4168 /*
 4169  * Register per-socket buffer upcalls.
 4170  */
 4171 void
 4172 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg)
 4173 {
 4174         struct sockbuf *sb;
 4175 
 4176         KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
 4177 
 4178         switch (which) {
 4179         case SO_RCV:
 4180                 sb = &so->so_rcv;
 4181                 break;
 4182         case SO_SND:
 4183                 sb = &so->so_snd;
 4184                 break;
 4185         default:
 4186                 panic("soupcall_set: bad which");
 4187         }
 4188         SOCKBUF_LOCK_ASSERT(sb);
 4189         sb->sb_upcall = func;
 4190         sb->sb_upcallarg = arg;
 4191         sb->sb_flags |= SB_UPCALL;
 4192 }
 4193 
 4194 void
 4195 soupcall_clear(struct socket *so, int which)
 4196 {
 4197         struct sockbuf *sb;
 4198 
 4199         KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
 4200 
 4201         switch (which) {
 4202         case SO_RCV:
 4203                 sb = &so->so_rcv;
 4204                 break;
 4205         case SO_SND:
 4206                 sb = &so->so_snd;
 4207                 break;
 4208         default:
 4209                 panic("soupcall_clear: bad which");
 4210         }
 4211         SOCKBUF_LOCK_ASSERT(sb);
 4212         KASSERT(sb->sb_upcall != NULL,
 4213             ("%s: so %p no upcall to clear", __func__, so));
 4214         sb->sb_upcall = NULL;
 4215         sb->sb_upcallarg = NULL;
 4216         sb->sb_flags &= ~SB_UPCALL;
 4217 }
 4218 
 4219 void
 4220 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
 4221 {
 4222 
 4223         SOLISTEN_LOCK_ASSERT(so);
 4224         so->sol_upcall = func;
 4225         so->sol_upcallarg = arg;
 4226 }
 4227 
 4228 static void
 4229 so_rdknl_lock(void *arg)
 4230 {
 4231         struct socket *so = arg;
 4232 
 4233         if (SOLISTENING(so))
 4234                 SOCK_LOCK(so);
 4235         else
 4236                 SOCKBUF_LOCK(&so->so_rcv);
 4237 }
 4238 
 4239 static void
 4240 so_rdknl_unlock(void *arg)
 4241 {
 4242         struct socket *so = arg;
 4243 
 4244         if (SOLISTENING(so))
 4245                 SOCK_UNLOCK(so);
 4246         else
 4247                 SOCKBUF_UNLOCK(&so->so_rcv);
 4248 }
 4249 
 4250 static void
 4251 so_rdknl_assert_lock(void *arg, int what)
 4252 {
 4253         struct socket *so = arg;
 4254 
 4255         if (what == LA_LOCKED) {
 4256                 if (SOLISTENING(so))
 4257                         SOCK_LOCK_ASSERT(so);
 4258                 else
 4259                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 4260         } else {
 4261                 if (SOLISTENING(so))
 4262                         SOCK_UNLOCK_ASSERT(so);
 4263                 else
 4264                         SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
 4265         }
 4266 }
 4267 
 4268 static void
 4269 so_wrknl_lock(void *arg)
 4270 {
 4271         struct socket *so = arg;
 4272 
 4273         if (SOLISTENING(so))
 4274                 SOCK_LOCK(so);
 4275         else
 4276                 SOCKBUF_LOCK(&so->so_snd);
 4277 }
 4278 
 4279 static void
 4280 so_wrknl_unlock(void *arg)
 4281 {
 4282         struct socket *so = arg;
 4283 
 4284         if (SOLISTENING(so))
 4285                 SOCK_UNLOCK(so);
 4286         else
 4287                 SOCKBUF_UNLOCK(&so->so_snd);
 4288 }
 4289 
 4290 static void
 4291 so_wrknl_assert_lock(void *arg, int what)
 4292 {
 4293         struct socket *so = arg;
 4294 
 4295         if (what == LA_LOCKED) {
 4296                 if (SOLISTENING(so))
 4297                         SOCK_LOCK_ASSERT(so);
 4298                 else
 4299                         SOCKBUF_LOCK_ASSERT(&so->so_snd);
 4300         } else {
 4301                 if (SOLISTENING(so))
 4302                         SOCK_UNLOCK_ASSERT(so);
 4303                 else
 4304                         SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
 4305         }
 4306 }
 4307 
 4308 /*
 4309  * Create an external-format (``xsocket'') structure using the information in
 4310  * the kernel-format socket structure pointed to by so.  This is done to
 4311  * reduce the spew of irrelevant information over this interface, to isolate
 4312  * user code from changes in the kernel structure, and potentially to provide
 4313  * information-hiding if we decide that some of this information should be
 4314  * hidden from users.
 4315  */
 4316 void
 4317 sotoxsocket(struct socket *so, struct xsocket *xso)
 4318 {
 4319 
 4320         bzero(xso, sizeof(*xso));
 4321         xso->xso_len = sizeof *xso;
 4322         xso->xso_so = (uintptr_t)so;
 4323         xso->so_type = so->so_type;
 4324         xso->so_options = so->so_options;
 4325         xso->so_linger = so->so_linger;
 4326         xso->so_state = so->so_state;
 4327         xso->so_pcb = (uintptr_t)so->so_pcb;
 4328         xso->xso_protocol = so->so_proto->pr_protocol;
 4329         xso->xso_family = so->so_proto->pr_domain->dom_family;
 4330         xso->so_timeo = so->so_timeo;
 4331         xso->so_error = so->so_error;
 4332         xso->so_uid = so->so_cred->cr_uid;
 4333         xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
 4334         if (SOLISTENING(so)) {
 4335                 xso->so_qlen = so->sol_qlen;
 4336                 xso->so_incqlen = so->sol_incqlen;
 4337                 xso->so_qlimit = so->sol_qlimit;
 4338                 xso->so_oobmark = 0;
 4339         } else {
 4340                 xso->so_state |= so->so_qstate;
 4341                 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
 4342                 xso->so_oobmark = so->so_oobmark;
 4343                 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
 4344                 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
 4345         }
 4346 }
 4347 
 4348 struct sockbuf *
 4349 so_sockbuf_rcv(struct socket *so)
 4350 {
 4351 
 4352         return (&so->so_rcv);
 4353 }
 4354 
 4355 struct sockbuf *
 4356 so_sockbuf_snd(struct socket *so)
 4357 {
 4358 
 4359         return (&so->so_snd);
 4360 }
 4361 
 4362 int
 4363 so_state_get(const struct socket *so)
 4364 {
 4365 
 4366         return (so->so_state);
 4367 }
 4368 
 4369 void
 4370 so_state_set(struct socket *so, int val)
 4371 {
 4372 
 4373         so->so_state = val;
 4374 }
 4375 
 4376 int
 4377 so_options_get(const struct socket *so)
 4378 {
 4379 
 4380         return (so->so_options);
 4381 }
 4382 
 4383 void
 4384 so_options_set(struct socket *so, int val)
 4385 {
 4386 
 4387         so->so_options = val;
 4388 }
 4389 
 4390 int
 4391 so_error_get(const struct socket *so)
 4392 {
 4393 
 4394         return (so->so_error);
 4395 }
 4396 
 4397 void
 4398 so_error_set(struct socket *so, int val)
 4399 {
 4400 
 4401         so->so_error = val;
 4402 }
 4403 
 4404 int
 4405 so_linger_get(const struct socket *so)
 4406 {
 4407 
 4408         return (so->so_linger);
 4409 }
 4410 
 4411 void
 4412 so_linger_set(struct socket *so, int val)
 4413 {
 4414 
 4415         KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
 4416             ("%s: val %d out of range", __func__, val));
 4417 
 4418         so->so_linger = val;
 4419 }
 4420 
 4421 struct protosw *
 4422 so_protosw_get(const struct socket *so)
 4423 {
 4424 
 4425         return (so->so_proto);
 4426 }
 4427 
 4428 void
 4429 so_protosw_set(struct socket *so, struct protosw *val)
 4430 {
 4431 
 4432         so->so_proto = val;
 4433 }
 4434 
 4435 void
 4436 so_sorwakeup(struct socket *so)
 4437 {
 4438 
 4439         sorwakeup(so);
 4440 }
 4441 
 4442 void
 4443 so_sowwakeup(struct socket *so)
 4444 {
 4445 
 4446         sowwakeup(so);
 4447 }
 4448 
 4449 void
 4450 so_sorwakeup_locked(struct socket *so)
 4451 {
 4452 
 4453         sorwakeup_locked(so);
 4454 }
 4455 
 4456 void
 4457 so_sowwakeup_locked(struct socket *so)
 4458 {
 4459 
 4460         sowwakeup_locked(so);
 4461 }
 4462 
 4463 void
 4464 so_lock(struct socket *so)
 4465 {
 4466 
 4467         SOCK_LOCK(so);
 4468 }
 4469 
 4470 void
 4471 so_unlock(struct socket *so)
 4472 {
 4473 
 4474         SOCK_UNLOCK(so);
 4475 }

Cache object: 70da16f20e51e999ba9d71b9aa3f3e64


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.