The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_socket.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
    5  *      The Regents of the University of California.
    6  * Copyright (c) 2004 The FreeBSD Foundation
    7  * Copyright (c) 2004-2008 Robert N. M. Watson
    8  * All rights reserved.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)uipc_socket.c       8.3 (Berkeley) 4/15/94
   35  */
   36 
   37 /*
   38  * Comments on the socket life cycle:
   39  *
   40  * soalloc() sets of socket layer state for a socket, called only by
   41  * socreate() and sonewconn().  Socket layer private.
   42  *
   43  * sodealloc() tears down socket layer state for a socket, called only by
   44  * sofree() and sonewconn().  Socket layer private.
   45  *
   46  * pru_attach() associates protocol layer state with an allocated socket;
   47  * called only once, may fail, aborting socket allocation.  This is called
   48  * from socreate() and sonewconn().  Socket layer private.
   49  *
   50  * pru_detach() disassociates protocol layer state from an attached socket,
   51  * and will be called exactly once for sockets in which pru_attach() has
   52  * been successfully called.  If pru_attach() returned an error,
   53  * pru_detach() will not be called.  Socket layer private.
   54  *
   55  * pru_abort() and pru_close() notify the protocol layer that the last
   56  * consumer of a socket is starting to tear down the socket, and that the
   57  * protocol should terminate the connection.  Historically, pru_abort() also
   58  * detached protocol state from the socket state, but this is no longer the
   59  * case.
   60  *
   61  * socreate() creates a socket and attaches protocol state.  This is a public
   62  * interface that may be used by socket layer consumers to create new
   63  * sockets.
   64  *
   65  * sonewconn() creates a socket and attaches protocol state.  This is a
   66  * public interface  that may be used by protocols to create new sockets when
   67  * a new connection is received and will be available for accept() on a
   68  * listen socket.
   69  *
   70  * soclose() destroys a socket after possibly waiting for it to disconnect.
   71  * This is a public interface that socket consumers should use to close and
   72  * release a socket when done with it.
   73  *
   74  * soabort() destroys a socket without waiting for it to disconnect (used
   75  * only for incoming connections that are already partially or fully
   76  * connected).  This is used internally by the socket layer when clearing
   77  * listen socket queues (due to overflow or close on the listen socket), but
   78  * is also a public interface protocols may use to abort connections in
   79  * their incomplete listen queues should they no longer be required.  Sockets
   80  * placed in completed connection listen queues should not be aborted for
   81  * reasons described in the comment above the soclose() implementation.  This
   82  * is not a general purpose close routine, and except in the specific
   83  * circumstances described here, should not be used.
   84  *
   85  * sofree() will free a socket and its protocol state if all references on
   86  * the socket have been released, and is the public interface to attempt to
   87  * free a socket when a reference is removed.  This is a socket layer private
   88  * interface.
   89  *
   90  * NOTE: In addition to socreate() and soclose(), which provide a single
   91  * socket reference to the consumer to be managed as required, there are two
   92  * calls to explicitly manage socket references, soref(), and sorele().
   93  * Currently, these are generally required only when transitioning a socket
   94  * from a listen queue to a file descriptor, in order to prevent garbage
   95  * collection of the socket at an untimely moment.  For a number of reasons,
   96  * these interfaces are not preferred, and should be avoided.
   97  *
   98  * NOTE: With regard to VNETs the general rule is that callers do not set
   99  * curvnet. Exceptions to this rule include soabort(), sodisconnect(),
  100  * sofree() (and with that sorele(), sotryfree()), as well as sonewconn()
  101  * and sorflush(), which are usually called from a pre-set VNET context.
  102  * sopoll() currently does not need a VNET context to be set.
  103  */
  104 
  105 #include <sys/cdefs.h>
  106 __FBSDID("$FreeBSD$");
  107 
  108 #include "opt_inet.h"
  109 #include "opt_inet6.h"
  110 #include "opt_kern_tls.h"
  111 #include "opt_sctp.h"
  112 
  113 #include <sys/param.h>
  114 #include <sys/systm.h>
  115 #include <sys/fcntl.h>
  116 #include <sys/limits.h>
  117 #include <sys/lock.h>
  118 #include <sys/mac.h>
  119 #include <sys/malloc.h>
  120 #include <sys/mbuf.h>
  121 #include <sys/mutex.h>
  122 #include <sys/domain.h>
  123 #include <sys/file.h>                   /* for struct knote */
  124 #include <sys/hhook.h>
  125 #include <sys/kernel.h>
  126 #include <sys/khelp.h>
  127 #include <sys/ktls.h>
  128 #include <sys/event.h>
  129 #include <sys/eventhandler.h>
  130 #include <sys/poll.h>
  131 #include <sys/proc.h>
  132 #include <sys/protosw.h>
  133 #include <sys/sbuf.h>
  134 #include <sys/socket.h>
  135 #include <sys/socketvar.h>
  136 #include <sys/resourcevar.h>
  137 #include <net/route.h>
  138 #include <sys/signalvar.h>
  139 #include <sys/stat.h>
  140 #include <sys/sx.h>
  141 #include <sys/sysctl.h>
  142 #include <sys/taskqueue.h>
  143 #include <sys/uio.h>
  144 #include <sys/un.h>
  145 #include <sys/unpcb.h>
  146 #include <sys/jail.h>
  147 #include <sys/syslog.h>
  148 #include <netinet/in.h>
  149 #include <netinet/in_pcb.h>
  150 #include <netinet/tcp.h>
  151 
  152 #include <net/vnet.h>
  153 
  154 #include <security/mac/mac_framework.h>
  155 
  156 #include <vm/uma.h>
  157 
  158 #ifdef COMPAT_FREEBSD32
  159 #include <sys/mount.h>
  160 #include <sys/sysent.h>
  161 #include <compat/freebsd32/freebsd32.h>
  162 #endif
  163 
  164 static int      soreceive_rcvoob(struct socket *so, struct uio *uio,
  165                     int flags);
  166 static void     so_rdknl_lock(void *);
  167 static void     so_rdknl_unlock(void *);
  168 static void     so_rdknl_assert_lock(void *, int);
  169 static void     so_wrknl_lock(void *);
  170 static void     so_wrknl_unlock(void *);
  171 static void     so_wrknl_assert_lock(void *, int);
  172 
  173 static void     filt_sordetach(struct knote *kn);
  174 static int      filt_soread(struct knote *kn, long hint);
  175 static void     filt_sowdetach(struct knote *kn);
  176 static int      filt_sowrite(struct knote *kn, long hint);
  177 static int      filt_soempty(struct knote *kn, long hint);
  178 static int inline hhook_run_socket(struct socket *so, void *hctx, int32_t h_id);
  179 fo_kqfilter_t   soo_kqfilter;
  180 
  181 static struct filterops soread_filtops = {
  182         .f_isfd = 1,
  183         .f_detach = filt_sordetach,
  184         .f_event = filt_soread,
  185 };
  186 static struct filterops sowrite_filtops = {
  187         .f_isfd = 1,
  188         .f_detach = filt_sowdetach,
  189         .f_event = filt_sowrite,
  190 };
  191 static struct filterops soempty_filtops = {
  192         .f_isfd = 1,
  193         .f_detach = filt_sowdetach,
  194         .f_event = filt_soempty,
  195 };
  196 
  197 so_gen_t        so_gencnt;      /* generation count for sockets */
  198 
  199 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
  200 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
  201 
  202 #define VNET_SO_ASSERT(so)                                              \
  203         VNET_ASSERT(curvnet != NULL,                                    \
  204             ("%s:%d curvnet is NULL, so=%p", __func__, __LINE__, (so)));
  205 
  206 VNET_DEFINE(struct hhook_head *, socket_hhh[HHOOK_SOCKET_LAST + 1]);
  207 #define V_socket_hhh            VNET(socket_hhh)
  208 
  209 /*
  210  * Limit on the number of connections in the listen queue waiting
  211  * for accept(2).
  212  * NB: The original sysctl somaxconn is still available but hidden
  213  * to prevent confusion about the actual purpose of this number.
  214  */
  215 static u_int somaxconn = SOMAXCONN;
  216 
  217 static int
  218 sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
  219 {
  220         int error;
  221         int val;
  222 
  223         val = somaxconn;
  224         error = sysctl_handle_int(oidp, &val, 0, req);
  225         if (error || !req->newptr )
  226                 return (error);
  227 
  228         /*
  229          * The purpose of the UINT_MAX / 3 limit, is so that the formula
  230          *   3 * so_qlimit / 2
  231          * below, will not overflow.
  232          */
  233 
  234         if (val < 1 || val > UINT_MAX / 3)
  235                 return (EINVAL);
  236 
  237         somaxconn = val;
  238         return (0);
  239 }
  240 SYSCTL_PROC(_kern_ipc, OID_AUTO, soacceptqueue,
  241     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
  242     sysctl_somaxconn, "I",
  243     "Maximum listen socket pending connection accept queue size");
  244 SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn,
  245     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_NEEDGIANT, 0,
  246     sizeof(int), sysctl_somaxconn, "I",
  247     "Maximum listen socket pending connection accept queue size (compat)");
  248 
  249 static int numopensockets;
  250 SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
  251     &numopensockets, 0, "Number of open sockets");
  252 
  253 /*
  254  * accept_mtx locks down per-socket fields relating to accept queues.  See
  255  * socketvar.h for an annotation of the protected fields of struct socket.
  256  */
  257 struct mtx accept_mtx;
  258 MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
  259 
  260 /*
  261  * so_global_mtx protects so_gencnt, numopensockets, and the per-socket
  262  * so_gencnt field.
  263  */
  264 static struct mtx so_global_mtx;
  265 MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
  266 
  267 /*
  268  * General IPC sysctl name space, used by sockets and a variety of other IPC
  269  * types.
  270  */
  271 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  272     "IPC");
  273 
  274 /*
  275  * Initialize the socket subsystem and set up the socket
  276  * memory allocator.
  277  */
  278 static uma_zone_t socket_zone;
  279 int     maxsockets;
  280 
  281 static void
  282 socket_zone_change(void *tag)
  283 {
  284 
  285         maxsockets = uma_zone_set_max(socket_zone, maxsockets);
  286 }
  287 
  288 static void
  289 socket_hhook_register(int subtype)
  290 {
  291 
  292         if (hhook_head_register(HHOOK_TYPE_SOCKET, subtype,
  293             &V_socket_hhh[subtype],
  294             HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
  295                 printf("%s: WARNING: unable to register hook\n", __func__);
  296 }
  297 
  298 static void
  299 socket_hhook_deregister(int subtype)
  300 {
  301 
  302         if (hhook_head_deregister(V_socket_hhh[subtype]) != 0)
  303                 printf("%s: WARNING: unable to deregister hook\n", __func__);
  304 }
  305 
  306 static void
  307 socket_init(void *tag)
  308 {
  309 
  310         socket_zone = uma_zcreate("socket", sizeof(struct socket), NULL, NULL,
  311             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  312         maxsockets = uma_zone_set_max(socket_zone, maxsockets);
  313         uma_zone_set_warning(socket_zone, "kern.ipc.maxsockets limit reached");
  314         EVENTHANDLER_REGISTER(maxsockets_change, socket_zone_change, NULL,
  315             EVENTHANDLER_PRI_FIRST);
  316 }
  317 SYSINIT(socket, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, socket_init, NULL);
  318 
  319 static void
  320 socket_vnet_init(const void *unused __unused)
  321 {
  322         int i;
  323 
  324         /* We expect a contiguous range */
  325         for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
  326                 socket_hhook_register(i);
  327 }
  328 VNET_SYSINIT(socket_vnet_init, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
  329     socket_vnet_init, NULL);
  330 
  331 static void
  332 socket_vnet_uninit(const void *unused __unused)
  333 {
  334         int i;
  335 
  336         for (i = 0; i <= HHOOK_SOCKET_LAST; i++)
  337                 socket_hhook_deregister(i);
  338 }
  339 VNET_SYSUNINIT(socket_vnet_uninit, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY,
  340     socket_vnet_uninit, NULL);
  341 
  342 /*
  343  * Initialise maxsockets.  This SYSINIT must be run after
  344  * tunable_mbinit().
  345  */
  346 static void
  347 init_maxsockets(void *ignored)
  348 {
  349 
  350         TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
  351         maxsockets = imax(maxsockets, maxfiles);
  352 }
  353 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
  354 
  355 /*
  356  * Sysctl to get and set the maximum global sockets limit.  Notify protocols
  357  * of the change so that they can update their dependent limits as required.
  358  */
  359 static int
  360 sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
  361 {
  362         int error, newmaxsockets;
  363 
  364         newmaxsockets = maxsockets;
  365         error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
  366         if (error == 0 && req->newptr) {
  367                 if (newmaxsockets > maxsockets &&
  368                     newmaxsockets <= maxfiles) {
  369                         maxsockets = newmaxsockets;
  370                         EVENTHANDLER_INVOKE(maxsockets_change);
  371                 } else
  372                         error = EINVAL;
  373         }
  374         return (error);
  375 }
  376 SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets,
  377     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &maxsockets, 0,
  378     sysctl_maxsockets, "IU",
  379     "Maximum number of sockets available");
  380 
  381 /*
  382  * Socket operation routines.  These routines are called by the routines in
  383  * sys_socket.c or from a system process, and implement the semantics of
  384  * socket operations by switching out to the protocol specific routines.
  385  */
  386 
  387 /*
  388  * Get a socket structure from our zone, and initialize it.  Note that it
  389  * would probably be better to allocate socket and PCB at the same time, but
  390  * I'm not convinced that all the protocols can be easily modified to do
  391  * this.
  392  *
  393  * soalloc() returns a socket with a ref count of 0.
  394  */
  395 static struct socket *
  396 soalloc(struct vnet *vnet)
  397 {
  398         struct socket *so;
  399 
  400         so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
  401         if (so == NULL)
  402                 return (NULL);
  403 #ifdef MAC
  404         if (mac_socket_init(so, M_NOWAIT) != 0) {
  405                 uma_zfree(socket_zone, so);
  406                 return (NULL);
  407         }
  408 #endif
  409         if (khelp_init_osd(HELPER_CLASS_SOCKET, &so->osd)) {
  410                 uma_zfree(socket_zone, so);
  411                 return (NULL);
  412         }
  413 
  414         /*
  415          * The socket locking protocol allows to lock 2 sockets at a time,
  416          * however, the first one must be a listening socket.  WITNESS lacks
  417          * a feature to change class of an existing lock, so we use DUPOK.
  418          */
  419         mtx_init(&so->so_lock, "socket", NULL, MTX_DEF | MTX_DUPOK);
  420         SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
  421         SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
  422         so->so_rcv.sb_sel = &so->so_rdsel;
  423         so->so_snd.sb_sel = &so->so_wrsel;
  424         sx_init(&so->so_snd.sb_sx, "so_snd_sx");
  425         sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
  426         TAILQ_INIT(&so->so_snd.sb_aiojobq);
  427         TAILQ_INIT(&so->so_rcv.sb_aiojobq);
  428         TASK_INIT(&so->so_snd.sb_aiotask, 0, soaio_snd, so);
  429         TASK_INIT(&so->so_rcv.sb_aiotask, 0, soaio_rcv, so);
  430 #ifdef VIMAGE
  431         VNET_ASSERT(vnet != NULL, ("%s:%d vnet is NULL, so=%p",
  432             __func__, __LINE__, so));
  433         so->so_vnet = vnet;
  434 #endif
  435         /* We shouldn't need the so_global_mtx */
  436         if (hhook_run_socket(so, NULL, HHOOK_SOCKET_CREATE)) {
  437                 /* Do we need more comprehensive error returns? */
  438                 uma_zfree(socket_zone, so);
  439                 return (NULL);
  440         }
  441         mtx_lock(&so_global_mtx);
  442         so->so_gencnt = ++so_gencnt;
  443         ++numopensockets;
  444 #ifdef VIMAGE
  445         vnet->vnet_sockcnt++;
  446 #endif
  447         mtx_unlock(&so_global_mtx);
  448 
  449         return (so);
  450 }
  451 
  452 /*
  453  * Free the storage associated with a socket at the socket layer, tear down
  454  * locks, labels, etc.  All protocol state is assumed already to have been
  455  * torn down (and possibly never set up) by the caller.
  456  */
  457 static void
  458 sodealloc(struct socket *so)
  459 {
  460 
  461         KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
  462         KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
  463 
  464         mtx_lock(&so_global_mtx);
  465         so->so_gencnt = ++so_gencnt;
  466         --numopensockets;       /* Could be below, but faster here. */
  467 #ifdef VIMAGE
  468         VNET_ASSERT(so->so_vnet != NULL, ("%s:%d so_vnet is NULL, so=%p",
  469             __func__, __LINE__, so));
  470         so->so_vnet->vnet_sockcnt--;
  471 #endif
  472         mtx_unlock(&so_global_mtx);
  473 #ifdef MAC
  474         mac_socket_destroy(so);
  475 #endif
  476         hhook_run_socket(so, NULL, HHOOK_SOCKET_CLOSE);
  477 
  478         khelp_destroy_osd(&so->osd);
  479         if (SOLISTENING(so)) {
  480                 if (so->sol_accept_filter != NULL)
  481                         accept_filt_setopt(so, NULL);
  482         } else {
  483                 if (so->so_rcv.sb_hiwat)
  484                         (void)chgsbsize(so->so_cred->cr_uidinfo,
  485                             &so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
  486                 if (so->so_snd.sb_hiwat)
  487                         (void)chgsbsize(so->so_cred->cr_uidinfo,
  488                             &so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
  489                 sx_destroy(&so->so_snd.sb_sx);
  490                 sx_destroy(&so->so_rcv.sb_sx);
  491                 SOCKBUF_LOCK_DESTROY(&so->so_snd);
  492                 SOCKBUF_LOCK_DESTROY(&so->so_rcv);
  493         }
  494         crfree(so->so_cred);
  495         mtx_destroy(&so->so_lock);
  496         uma_zfree(socket_zone, so);
  497 }
  498 
  499 /*
  500  * socreate returns a socket with a ref count of 1.  The socket should be
  501  * closed with soclose().
  502  */
  503 int
  504 socreate(int dom, struct socket **aso, int type, int proto,
  505     struct ucred *cred, struct thread *td)
  506 {
  507         struct protosw *prp;
  508         struct socket *so;
  509         int error;
  510 
  511         if (proto)
  512                 prp = pffindproto(dom, proto, type);
  513         else
  514                 prp = pffindtype(dom, type);
  515 
  516         if (prp == NULL) {
  517                 /* No support for domain. */
  518                 if (pffinddomain(dom) == NULL)
  519                         return (EAFNOSUPPORT);
  520                 /* No support for socket type. */
  521                 if (proto == 0 && type != 0)
  522                         return (EPROTOTYPE);
  523                 return (EPROTONOSUPPORT);
  524         }
  525         if (prp->pr_usrreqs->pru_attach == NULL ||
  526             prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
  527                 return (EPROTONOSUPPORT);
  528 
  529         if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
  530                 return (EPROTONOSUPPORT);
  531 
  532         if (prp->pr_type != type)
  533                 return (EPROTOTYPE);
  534         so = soalloc(CRED_TO_VNET(cred));
  535         if (so == NULL)
  536                 return (ENOBUFS);
  537 
  538         so->so_type = type;
  539         so->so_cred = crhold(cred);
  540         if ((prp->pr_domain->dom_family == PF_INET) ||
  541             (prp->pr_domain->dom_family == PF_INET6) ||
  542             (prp->pr_domain->dom_family == PF_ROUTE))
  543                 so->so_fibnum = td->td_proc->p_fibnum;
  544         else
  545                 so->so_fibnum = 0;
  546         so->so_proto = prp;
  547 #ifdef MAC
  548         mac_socket_create(cred, so);
  549 #endif
  550         knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
  551             so_rdknl_assert_lock);
  552         knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
  553             so_wrknl_assert_lock);
  554         /*
  555          * Auto-sizing of socket buffers is managed by the protocols and
  556          * the appropriate flags must be set in the pru_attach function.
  557          */
  558         CURVNET_SET(so->so_vnet);
  559         error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
  560         CURVNET_RESTORE();
  561         if (error) {
  562                 sodealloc(so);
  563                 return (error);
  564         }
  565         soref(so);
  566         *aso = so;
  567         return (0);
  568 }
  569 
  570 #ifdef REGRESSION
  571 static int regression_sonewconn_earlytest = 1;
  572 SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
  573     &regression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
  574 #endif
  575 
  576 static struct timeval overinterval = { 60, 0 };
  577 SYSCTL_TIMEVAL_SEC(_kern_ipc, OID_AUTO, sooverinterval, CTLFLAG_RW,
  578     &overinterval,
  579     "Delay in seconds between warnings for listen socket overflows");
  580 
  581 /*
  582  * When an attempt at a new connection is noted on a socket which accepts
  583  * connections, sonewconn is called.  If the connection is possible (subject
  584  * to space constraints, etc.) then we allocate a new structure, properly
  585  * linked into the data structure of the original socket, and return this.
  586  * Connstatus may be 0, or SS_ISCONFIRMING, or SS_ISCONNECTED.
  587  *
  588  * Note: the ref count on the socket is 0 on return.
  589  */
  590 struct socket *
  591 sonewconn(struct socket *head, int connstatus)
  592 {
  593         struct sbuf descrsb;
  594         struct socket *so;
  595         int len, overcount;
  596         u_int qlen;
  597         const char localprefix[] = "local:";
  598         char descrbuf[SUNPATHLEN + sizeof(localprefix)];
  599 #if defined(INET6)
  600         char addrbuf[INET6_ADDRSTRLEN];
  601 #elif defined(INET)
  602         char addrbuf[INET_ADDRSTRLEN];
  603 #endif
  604         bool dolog, over;
  605 
  606         SOLISTEN_LOCK(head);
  607         over = (head->sol_qlen > 3 * head->sol_qlimit / 2);
  608 #ifdef REGRESSION
  609         if (regression_sonewconn_earlytest && over) {
  610 #else
  611         if (over) {
  612 #endif
  613                 head->sol_overcount++;
  614                 dolog = !!ratecheck(&head->sol_lastover, &overinterval);
  615 
  616                 /*
  617                  * If we're going to log, copy the overflow count and queue
  618                  * length from the listen socket before dropping the lock.
  619                  * Also, reset the overflow count.
  620                  */
  621                 if (dolog) {
  622                         overcount = head->sol_overcount;
  623                         head->sol_overcount = 0;
  624                         qlen = head->sol_qlen;
  625                 }
  626                 SOLISTEN_UNLOCK(head);
  627 
  628                 if (dolog) {
  629                         /*
  630                          * Try to print something descriptive about the
  631                          * socket for the error message.
  632                          */
  633                         sbuf_new(&descrsb, descrbuf, sizeof(descrbuf),
  634                             SBUF_FIXEDLEN);
  635                         switch (head->so_proto->pr_domain->dom_family) {
  636 #if defined(INET) || defined(INET6)
  637 #ifdef INET
  638                         case AF_INET:
  639 #endif
  640 #ifdef INET6
  641                         case AF_INET6:
  642                                 if (head->so_proto->pr_domain->dom_family ==
  643                                     AF_INET6 ||
  644                                     (sotoinpcb(head)->inp_inc.inc_flags &
  645                                     INC_ISIPV6)) {
  646                                         ip6_sprintf(addrbuf,
  647                                             &sotoinpcb(head)->inp_inc.inc6_laddr);
  648                                         sbuf_printf(&descrsb, "[%s]", addrbuf);
  649                                 } else
  650 #endif
  651                                 {
  652 #ifdef INET
  653                                         inet_ntoa_r(
  654                                             sotoinpcb(head)->inp_inc.inc_laddr,
  655                                             addrbuf);
  656                                         sbuf_cat(&descrsb, addrbuf);
  657 #endif
  658                                 }
  659                                 sbuf_printf(&descrsb, ":%hu (proto %u)",
  660                                     ntohs(sotoinpcb(head)->inp_inc.inc_lport),
  661                                     head->so_proto->pr_protocol);
  662                                 break;
  663 #endif /* INET || INET6 */
  664                         case AF_UNIX:
  665                                 sbuf_cat(&descrsb, localprefix);
  666                                 if (sotounpcb(head)->unp_addr != NULL)
  667                                         len =
  668                                             sotounpcb(head)->unp_addr->sun_len -
  669                                             offsetof(struct sockaddr_un,
  670                                             sun_path);
  671                                 else
  672                                         len = 0;
  673                                 if (len > 0)
  674                                         sbuf_bcat(&descrsb,
  675                                             sotounpcb(head)->unp_addr->sun_path,
  676                                             len);
  677                                 else
  678                                         sbuf_cat(&descrsb, "(unknown)");
  679                                 break;
  680                         }
  681 
  682                         /*
  683                          * If we can't print something more specific, at least
  684                          * print the domain name.
  685                          */
  686                         if (sbuf_finish(&descrsb) != 0 ||
  687                             sbuf_len(&descrsb) <= 0) {
  688                                 sbuf_clear(&descrsb);
  689                                 sbuf_cat(&descrsb,
  690                                     head->so_proto->pr_domain->dom_name ?:
  691                                     "unknown");
  692                                 sbuf_finish(&descrsb);
  693                         }
  694                         KASSERT(sbuf_len(&descrsb) > 0,
  695                             ("%s: sbuf creation failed", __func__));
  696                         log(LOG_DEBUG,
  697                             "%s: pcb %p (%s): Listen queue overflow: "
  698                             "%i already in queue awaiting acceptance "
  699                             "(%d occurrences)\n",
  700                             __func__, head->so_pcb, sbuf_data(&descrsb),
  701                             qlen, overcount);
  702                         sbuf_delete(&descrsb);
  703 
  704                         overcount = 0;
  705                 }
  706 
  707                 return (NULL);
  708         }
  709         SOLISTEN_UNLOCK(head);
  710         VNET_ASSERT(head->so_vnet != NULL, ("%s: so %p vnet is NULL",
  711             __func__, head));
  712         so = soalloc(head->so_vnet);
  713         if (so == NULL) {
  714                 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
  715                     "limit reached or out of memory\n",
  716                     __func__, head->so_pcb);
  717                 return (NULL);
  718         }
  719         so->so_listen = head;
  720         so->so_type = head->so_type;
  721         so->so_options = head->so_options & ~SO_ACCEPTCONN;
  722         so->so_linger = head->so_linger;
  723         so->so_state = head->so_state | SS_NOFDREF;
  724         so->so_fibnum = head->so_fibnum;
  725         so->so_proto = head->so_proto;
  726         so->so_cred = crhold(head->so_cred);
  727 #ifdef MAC
  728         mac_socket_newconn(head, so);
  729 #endif
  730         knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
  731             so_rdknl_assert_lock);
  732         knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
  733             so_wrknl_assert_lock);
  734         VNET_SO_ASSERT(head);
  735         if (soreserve(so, head->sol_sbsnd_hiwat, head->sol_sbrcv_hiwat)) {
  736                 sodealloc(so);
  737                 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
  738                     __func__, head->so_pcb);
  739                 return (NULL);
  740         }
  741         if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
  742                 sodealloc(so);
  743                 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
  744                     __func__, head->so_pcb);
  745                 return (NULL);
  746         }
  747         so->so_rcv.sb_lowat = head->sol_sbrcv_lowat;
  748         so->so_snd.sb_lowat = head->sol_sbsnd_lowat;
  749         so->so_rcv.sb_timeo = head->sol_sbrcv_timeo;
  750         so->so_snd.sb_timeo = head->sol_sbsnd_timeo;
  751         so->so_rcv.sb_flags |= head->sol_sbrcv_flags & SB_AUTOSIZE;
  752         so->so_snd.sb_flags |= head->sol_sbsnd_flags & SB_AUTOSIZE;
  753 
  754         SOLISTEN_LOCK(head);
  755         if (head->sol_accept_filter != NULL)
  756                 connstatus = 0;
  757         so->so_state |= connstatus;
  758         soref(head); /* A socket on (in)complete queue refs head. */
  759         if (connstatus) {
  760                 TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
  761                 so->so_qstate = SQ_COMP;
  762                 head->sol_qlen++;
  763                 solisten_wakeup(head);  /* unlocks */
  764         } else {
  765                 /*
  766                  * Keep removing sockets from the head until there's room for
  767                  * us to insert on the tail.  In pre-locking revisions, this
  768                  * was a simple if(), but as we could be racing with other
  769                  * threads and soabort() requires dropping locks, we must
  770                  * loop waiting for the condition to be true.
  771                  */
  772                 while (head->sol_incqlen > head->sol_qlimit) {
  773                         struct socket *sp;
  774 
  775                         sp = TAILQ_FIRST(&head->sol_incomp);
  776                         TAILQ_REMOVE(&head->sol_incomp, sp, so_list);
  777                         head->sol_incqlen--;
  778                         SOCK_LOCK(sp);
  779                         sp->so_qstate = SQ_NONE;
  780                         sp->so_listen = NULL;
  781                         SOCK_UNLOCK(sp);
  782                         sorele(head);   /* does SOLISTEN_UNLOCK, head stays */
  783                         soabort(sp);
  784                         SOLISTEN_LOCK(head);
  785                 }
  786                 TAILQ_INSERT_TAIL(&head->sol_incomp, so, so_list);
  787                 so->so_qstate = SQ_INCOMP;
  788                 head->sol_incqlen++;
  789                 SOLISTEN_UNLOCK(head);
  790         }
  791         return (so);
  792 }
  793 
  794 #if defined(SCTP) || defined(SCTP_SUPPORT)
  795 /*
  796  * Socket part of sctp_peeloff().  Detach a new socket from an
  797  * association.  The new socket is returned with a reference.
  798  */
  799 struct socket *
  800 sopeeloff(struct socket *head)
  801 {
  802         struct socket *so;
  803 
  804         VNET_ASSERT(head->so_vnet != NULL, ("%s:%d so_vnet is NULL, head=%p",
  805             __func__, __LINE__, head));
  806         so = soalloc(head->so_vnet);
  807         if (so == NULL) {
  808                 log(LOG_DEBUG, "%s: pcb %p: New socket allocation failure: "
  809                     "limit reached or out of memory\n",
  810                     __func__, head->so_pcb);
  811                 return (NULL);
  812         }
  813         so->so_type = head->so_type;
  814         so->so_options = head->so_options;
  815         so->so_linger = head->so_linger;
  816         so->so_state = (head->so_state & SS_NBIO) | SS_ISCONNECTED;
  817         so->so_fibnum = head->so_fibnum;
  818         so->so_proto = head->so_proto;
  819         so->so_cred = crhold(head->so_cred);
  820 #ifdef MAC
  821         mac_socket_newconn(head, so);
  822 #endif
  823         knlist_init(&so->so_rdsel.si_note, so, so_rdknl_lock, so_rdknl_unlock,
  824             so_rdknl_assert_lock);
  825         knlist_init(&so->so_wrsel.si_note, so, so_wrknl_lock, so_wrknl_unlock,
  826             so_wrknl_assert_lock);
  827         VNET_SO_ASSERT(head);
  828         if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
  829                 sodealloc(so);
  830                 log(LOG_DEBUG, "%s: pcb %p: soreserve() failed\n",
  831                     __func__, head->so_pcb);
  832                 return (NULL);
  833         }
  834         if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
  835                 sodealloc(so);
  836                 log(LOG_DEBUG, "%s: pcb %p: pru_attach() failed\n",
  837                     __func__, head->so_pcb);
  838                 return (NULL);
  839         }
  840         so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
  841         so->so_snd.sb_lowat = head->so_snd.sb_lowat;
  842         so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
  843         so->so_snd.sb_timeo = head->so_snd.sb_timeo;
  844         so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
  845         so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
  846 
  847         soref(so);
  848 
  849         return (so);
  850 }
  851 #endif  /* SCTP */
  852 
  853 int
  854 sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
  855 {
  856         int error;
  857 
  858         CURVNET_SET(so->so_vnet);
  859         error = (*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td);
  860         CURVNET_RESTORE();
  861         return (error);
  862 }
  863 
  864 int
  865 sobindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
  866 {
  867         int error;
  868 
  869         CURVNET_SET(so->so_vnet);
  870         error = (*so->so_proto->pr_usrreqs->pru_bindat)(fd, so, nam, td);
  871         CURVNET_RESTORE();
  872         return (error);
  873 }
  874 
  875 /*
  876  * solisten() transitions a socket from a non-listening state to a listening
  877  * state, but can also be used to update the listen queue depth on an
  878  * existing listen socket.  The protocol will call back into the sockets
  879  * layer using solisten_proto_check() and solisten_proto() to check and set
  880  * socket-layer listen state.  Call backs are used so that the protocol can
  881  * acquire both protocol and socket layer locks in whatever order is required
  882  * by the protocol.
  883  *
  884  * Protocol implementors are advised to hold the socket lock across the
  885  * socket-layer test and set to avoid races at the socket layer.
  886  */
  887 int
  888 solisten(struct socket *so, int backlog, struct thread *td)
  889 {
  890         int error;
  891 
  892         CURVNET_SET(so->so_vnet);
  893         error = (*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td);
  894         CURVNET_RESTORE();
  895         return (error);
  896 }
  897 
  898 int
  899 solisten_proto_check(struct socket *so)
  900 {
  901 
  902         SOCK_LOCK_ASSERT(so);
  903 
  904         if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
  905             SS_ISDISCONNECTING))
  906                 return (EINVAL);
  907         return (0);
  908 }
  909 
  910 void
  911 solisten_proto(struct socket *so, int backlog)
  912 {
  913         int sbrcv_lowat, sbsnd_lowat;
  914         u_int sbrcv_hiwat, sbsnd_hiwat;
  915         short sbrcv_flags, sbsnd_flags;
  916         sbintime_t sbrcv_timeo, sbsnd_timeo;
  917 
  918         SOCK_LOCK_ASSERT(so);
  919 
  920         if (SOLISTENING(so))
  921                 goto listening;
  922 
  923         /*
  924          * Change this socket to listening state.
  925          */
  926         sbrcv_lowat = so->so_rcv.sb_lowat;
  927         sbsnd_lowat = so->so_snd.sb_lowat;
  928         sbrcv_hiwat = so->so_rcv.sb_hiwat;
  929         sbsnd_hiwat = so->so_snd.sb_hiwat;
  930         sbrcv_flags = so->so_rcv.sb_flags;
  931         sbsnd_flags = so->so_snd.sb_flags;
  932         sbrcv_timeo = so->so_rcv.sb_timeo;
  933         sbsnd_timeo = so->so_snd.sb_timeo;
  934 
  935         sbdestroy(&so->so_snd, so);
  936         sbdestroy(&so->so_rcv, so);
  937         sx_destroy(&so->so_snd.sb_sx);
  938         sx_destroy(&so->so_rcv.sb_sx);
  939         SOCKBUF_LOCK_DESTROY(&so->so_snd);
  940         SOCKBUF_LOCK_DESTROY(&so->so_rcv);
  941 
  942 #ifdef INVARIANTS
  943         bzero(&so->so_rcv,
  944             sizeof(struct socket) - offsetof(struct socket, so_rcv));
  945 #endif
  946 
  947         so->sol_sbrcv_lowat = sbrcv_lowat;
  948         so->sol_sbsnd_lowat = sbsnd_lowat;
  949         so->sol_sbrcv_hiwat = sbrcv_hiwat;
  950         so->sol_sbsnd_hiwat = sbsnd_hiwat;
  951         so->sol_sbrcv_flags = sbrcv_flags;
  952         so->sol_sbsnd_flags = sbsnd_flags;
  953         so->sol_sbrcv_timeo = sbrcv_timeo;
  954         so->sol_sbsnd_timeo = sbsnd_timeo;
  955 
  956         so->sol_qlen = so->sol_incqlen = 0;
  957         TAILQ_INIT(&so->sol_incomp);
  958         TAILQ_INIT(&so->sol_comp);
  959 
  960         so->sol_accept_filter = NULL;
  961         so->sol_accept_filter_arg = NULL;
  962         so->sol_accept_filter_str = NULL;
  963 
  964         so->sol_upcall = NULL;
  965         so->sol_upcallarg = NULL;
  966 
  967         so->so_options |= SO_ACCEPTCONN;
  968 
  969 listening:
  970         if (backlog < 0 || backlog > somaxconn)
  971                 backlog = somaxconn;
  972         so->sol_qlimit = backlog;
  973 }
  974 
  975 /*
  976  * Wakeup listeners/subsystems once we have a complete connection.
  977  * Enters with lock, returns unlocked.
  978  */
  979 void
  980 solisten_wakeup(struct socket *sol)
  981 {
  982 
  983         if (sol->sol_upcall != NULL)
  984                 (void )sol->sol_upcall(sol, sol->sol_upcallarg, M_NOWAIT);
  985         else {
  986                 selwakeuppri(&sol->so_rdsel, PSOCK);
  987                 KNOTE_LOCKED(&sol->so_rdsel.si_note, 0);
  988         }
  989         SOLISTEN_UNLOCK(sol);
  990         wakeup_one(&sol->sol_comp);
  991         if ((sol->so_state & SS_ASYNC) && sol->so_sigio != NULL)
  992                 pgsigio(&sol->so_sigio, SIGIO, 0);
  993 }
  994 
  995 /*
  996  * Return single connection off a listening socket queue.  Main consumer of
  997  * the function is kern_accept4().  Some modules, that do their own accept
  998  * management also use the function.
  999  *
 1000  * Listening socket must be locked on entry and is returned unlocked on
 1001  * return.
 1002  * The flags argument is set of accept4(2) flags and ACCEPT4_INHERIT.
 1003  */
 1004 int
 1005 solisten_dequeue(struct socket *head, struct socket **ret, int flags)
 1006 {
 1007         struct socket *so;
 1008         int error;
 1009 
 1010         SOLISTEN_LOCK_ASSERT(head);
 1011 
 1012         while (!(head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp) &&
 1013             head->so_error == 0) {
 1014                 error = msleep(&head->sol_comp, SOCK_MTX(head), PSOCK | PCATCH,
 1015                     "accept", 0);
 1016                 if (error != 0) {
 1017                         SOLISTEN_UNLOCK(head);
 1018                         return (error);
 1019                 }
 1020         }
 1021         if (head->so_error) {
 1022                 error = head->so_error;
 1023                 head->so_error = 0;
 1024         } else if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->sol_comp))
 1025                 error = EWOULDBLOCK;
 1026         else
 1027                 error = 0;
 1028         if (error) {
 1029                 SOLISTEN_UNLOCK(head);
 1030                 return (error);
 1031         }
 1032         so = TAILQ_FIRST(&head->sol_comp);
 1033         SOCK_LOCK(so);
 1034         KASSERT(so->so_qstate == SQ_COMP,
 1035             ("%s: so %p not SQ_COMP", __func__, so));
 1036         soref(so);
 1037         head->sol_qlen--;
 1038         so->so_qstate = SQ_NONE;
 1039         so->so_listen = NULL;
 1040         TAILQ_REMOVE(&head->sol_comp, so, so_list);
 1041         if (flags & ACCEPT4_INHERIT)
 1042                 so->so_state |= (head->so_state & SS_NBIO);
 1043         else
 1044                 so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0;
 1045         SOCK_UNLOCK(so);
 1046         sorele(head);
 1047 
 1048         *ret = so;
 1049         return (0);
 1050 }
 1051 
 1052 /*
 1053  * Evaluate the reference count and named references on a socket; if no
 1054  * references remain, free it.  This should be called whenever a reference is
 1055  * released, such as in sorele(), but also when named reference flags are
 1056  * cleared in socket or protocol code.
 1057  *
 1058  * sofree() will free the socket if:
 1059  *
 1060  * - There are no outstanding file descriptor references or related consumers
 1061  *   (so_count == 0).
 1062  *
 1063  * - The socket has been closed by user space, if ever open (SS_NOFDREF).
 1064  *
 1065  * - The protocol does not have an outstanding strong reference on the socket
 1066  *   (SS_PROTOREF).
 1067  *
 1068  * - The socket is not in a completed connection queue, so a process has been
 1069  *   notified that it is present.  If it is removed, the user process may
 1070  *   block in accept() despite select() saying the socket was ready.
 1071  */
 1072 void
 1073 sofree(struct socket *so)
 1074 {
 1075         struct protosw *pr = so->so_proto;
 1076         bool last __diagused;
 1077 
 1078         SOCK_LOCK_ASSERT(so);
 1079 
 1080         if ((so->so_state & (SS_NOFDREF | SS_PROTOREF)) != SS_NOFDREF ||
 1081             refcount_load(&so->so_count) != 0 || so->so_qstate == SQ_COMP) {
 1082                 SOCK_UNLOCK(so);
 1083                 return;
 1084         }
 1085 
 1086         if (!SOLISTENING(so) && so->so_qstate == SQ_INCOMP) {
 1087                 struct socket *sol;
 1088 
 1089                 sol = so->so_listen;
 1090                 KASSERT(sol, ("%s: so %p on incomp of NULL", __func__, so));
 1091 
 1092                 /*
 1093                  * To solve race between close of a listening socket and
 1094                  * a socket on its incomplete queue, we need to lock both.
 1095                  * The order is first listening socket, then regular.
 1096                  * Since we don't have SS_NOFDREF neither SS_PROTOREF, this
 1097                  * function and the listening socket are the only pointers
 1098                  * to so.  To preserve so and sol, we reference both and then
 1099                  * relock.
 1100                  * After relock the socket may not move to so_comp since it
 1101                  * doesn't have PCB already, but it may be removed from
 1102                  * so_incomp. If that happens, we share responsiblity on
 1103                  * freeing the socket, but soclose() has already removed
 1104                  * it from queue.
 1105                  */
 1106                 soref(sol);
 1107                 soref(so);
 1108                 SOCK_UNLOCK(so);
 1109                 SOLISTEN_LOCK(sol);
 1110                 SOCK_LOCK(so);
 1111                 if (so->so_qstate == SQ_INCOMP) {
 1112                         KASSERT(so->so_listen == sol,
 1113                             ("%s: so %p migrated out of sol %p",
 1114                             __func__, so, sol));
 1115                         TAILQ_REMOVE(&sol->sol_incomp, so, so_list);
 1116                         sol->sol_incqlen--;
 1117                         last = refcount_release(&sol->so_count);
 1118                         KASSERT(!last, ("%s: released last reference for %p",
 1119                             __func__, sol));
 1120                         so->so_qstate = SQ_NONE;
 1121                         so->so_listen = NULL;
 1122                 } else
 1123                         KASSERT(so->so_listen == NULL,
 1124                             ("%s: so %p not on (in)comp with so_listen",
 1125                             __func__, so));
 1126                 sorele(sol);
 1127                 KASSERT(refcount_load(&so->so_count) == 1,
 1128                     ("%s: so %p count %u", __func__, so, so->so_count));
 1129                 so->so_count = 0;
 1130         }
 1131         if (SOLISTENING(so))
 1132                 so->so_error = ECONNABORTED;
 1133         SOCK_UNLOCK(so);
 1134 
 1135         if (so->so_dtor != NULL)
 1136                 so->so_dtor(so);
 1137 
 1138         VNET_SO_ASSERT(so);
 1139         if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
 1140                 (*pr->pr_domain->dom_dispose)(so);
 1141         if (pr->pr_usrreqs->pru_detach != NULL)
 1142                 (*pr->pr_usrreqs->pru_detach)(so);
 1143 
 1144         /*
 1145          * From this point on, we assume that no other references to this
 1146          * socket exist anywhere else in the stack.  Therefore, no locks need
 1147          * to be acquired or held.
 1148          *
 1149          * We used to do a lot of socket buffer and socket locking here, as
 1150          * well as invoke sorflush() and perform wakeups.  The direct call to
 1151          * dom_dispose() and sbdestroy() are an inlining of what was
 1152          * necessary from sorflush().
 1153          *
 1154          * Notice that the socket buffer and kqueue state are torn down
 1155          * before calling pru_detach.  This means that protocols shold not
 1156          * assume they can perform socket wakeups, etc, in their detach code.
 1157          */
 1158         if (!SOLISTENING(so)) {
 1159                 sbdestroy(&so->so_snd, so);
 1160                 sbdestroy(&so->so_rcv, so);
 1161         }
 1162         seldrain(&so->so_rdsel);
 1163         seldrain(&so->so_wrsel);
 1164         knlist_destroy(&so->so_rdsel.si_note);
 1165         knlist_destroy(&so->so_wrsel.si_note);
 1166         sodealloc(so);
 1167 }
 1168 
 1169 /*
 1170  * Close a socket on last file table reference removal.  Initiate disconnect
 1171  * if connected.  Free socket when disconnect complete.
 1172  *
 1173  * This function will sorele() the socket.  Note that soclose() may be called
 1174  * prior to the ref count reaching zero.  The actual socket structure will
 1175  * not be freed until the ref count reaches zero.
 1176  */
 1177 int
 1178 soclose(struct socket *so)
 1179 {
 1180         struct accept_queue lqueue;
 1181         struct socket *sp, *tsp;
 1182         int error = 0;
 1183         bool last __diagused;
 1184 
 1185         KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
 1186 
 1187         CURVNET_SET(so->so_vnet);
 1188         funsetown(&so->so_sigio);
 1189         if (so->so_state & SS_ISCONNECTED) {
 1190                 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
 1191                         error = sodisconnect(so);
 1192                         if (error) {
 1193                                 if (error == ENOTCONN)
 1194                                         error = 0;
 1195                                 goto drop;
 1196                         }
 1197                 }
 1198 
 1199                 if ((so->so_options & SO_LINGER) != 0 && so->so_linger != 0) {
 1200                         if ((so->so_state & SS_ISDISCONNECTING) &&
 1201                             (so->so_state & SS_NBIO))
 1202                                 goto drop;
 1203                         while (so->so_state & SS_ISCONNECTED) {
 1204                                 error = tsleep(&so->so_timeo,
 1205                                     PSOCK | PCATCH, "soclos",
 1206                                     so->so_linger * hz);
 1207                                 if (error)
 1208                                         break;
 1209                         }
 1210                 }
 1211         }
 1212 
 1213 drop:
 1214         if (so->so_proto->pr_usrreqs->pru_close != NULL)
 1215                 (*so->so_proto->pr_usrreqs->pru_close)(so);
 1216 
 1217         TAILQ_INIT(&lqueue);
 1218         SOCK_LOCK(so);
 1219         if (SOLISTENING(so)) {
 1220                 TAILQ_SWAP(&lqueue, &so->sol_incomp, socket, so_list);
 1221                 TAILQ_CONCAT(&lqueue, &so->sol_comp, so_list);
 1222 
 1223                 so->sol_qlen = so->sol_incqlen = 0;
 1224 
 1225                 TAILQ_FOREACH(sp, &lqueue, so_list) {
 1226                         SOCK_LOCK(sp);
 1227                         sp->so_qstate = SQ_NONE;
 1228                         sp->so_listen = NULL;
 1229                         SOCK_UNLOCK(sp);
 1230                         last = refcount_release(&so->so_count);
 1231                         KASSERT(!last, ("%s: released last reference for %p",
 1232                             __func__, so));
 1233                 }
 1234         }
 1235         KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
 1236         so->so_state |= SS_NOFDREF;
 1237         sorele(so);
 1238         TAILQ_FOREACH_SAFE(sp, &lqueue, so_list, tsp) {
 1239                 SOCK_LOCK(sp);
 1240                 if (refcount_load(&sp->so_count) == 0) {
 1241                         SOCK_UNLOCK(sp);
 1242                         soabort(sp);
 1243                 } else {
 1244                         /* See the handling of queued sockets in sofree(). */
 1245                         SOCK_UNLOCK(sp);
 1246                 }
 1247         }
 1248         CURVNET_RESTORE();
 1249         return (error);
 1250 }
 1251 
 1252 /*
 1253  * soabort() is used to abruptly tear down a connection, such as when a
 1254  * resource limit is reached (listen queue depth exceeded), or if a listen
 1255  * socket is closed while there are sockets waiting to be accepted.
 1256  *
 1257  * This interface is tricky, because it is called on an unreferenced socket,
 1258  * and must be called only by a thread that has actually removed the socket
 1259  * from the listen queue it was on, or races with other threads are risked.
 1260  *
 1261  * This interface will call into the protocol code, so must not be called
 1262  * with any socket locks held.  Protocols do call it while holding their own
 1263  * recursible protocol mutexes, but this is something that should be subject
 1264  * to review in the future.
 1265  */
 1266 void
 1267 soabort(struct socket *so)
 1268 {
 1269 
 1270         /*
 1271          * In as much as is possible, assert that no references to this
 1272          * socket are held.  This is not quite the same as asserting that the
 1273          * current thread is responsible for arranging for no references, but
 1274          * is as close as we can get for now.
 1275          */
 1276         KASSERT(so->so_count == 0, ("soabort: so_count"));
 1277         KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
 1278         KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
 1279         VNET_SO_ASSERT(so);
 1280 
 1281         if (so->so_proto->pr_usrreqs->pru_abort != NULL)
 1282                 (*so->so_proto->pr_usrreqs->pru_abort)(so);
 1283         SOCK_LOCK(so);
 1284         sofree(so);
 1285 }
 1286 
 1287 int
 1288 soaccept(struct socket *so, struct sockaddr **nam)
 1289 {
 1290         int error;
 1291 
 1292         SOCK_LOCK(so);
 1293         KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
 1294         so->so_state &= ~SS_NOFDREF;
 1295         SOCK_UNLOCK(so);
 1296 
 1297         CURVNET_SET(so->so_vnet);
 1298         error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
 1299         CURVNET_RESTORE();
 1300         return (error);
 1301 }
 1302 
 1303 int
 1304 soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
 1305 {
 1306 
 1307         return (soconnectat(AT_FDCWD, so, nam, td));
 1308 }
 1309 
 1310 int
 1311 soconnectat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
 1312 {
 1313         int error;
 1314 
 1315         /* XXXMJ racy */
 1316         if (SOLISTENING(so))
 1317                 return (EOPNOTSUPP);
 1318 
 1319         CURVNET_SET(so->so_vnet);
 1320         /*
 1321          * If protocol is connection-based, can only connect once.
 1322          * Otherwise, if connected, try to disconnect first.  This allows
 1323          * user to disconnect by connecting to, e.g., a null address.
 1324          */
 1325         if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
 1326             ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
 1327             (error = sodisconnect(so)))) {
 1328                 error = EISCONN;
 1329         } else {
 1330                 /*
 1331                  * Prevent accumulated error from previous connection from
 1332                  * biting us.
 1333                  */
 1334                 so->so_error = 0;
 1335                 if (fd == AT_FDCWD) {
 1336                         error = (*so->so_proto->pr_usrreqs->pru_connect)(so,
 1337                             nam, td);
 1338                 } else {
 1339                         error = (*so->so_proto->pr_usrreqs->pru_connectat)(fd,
 1340                             so, nam, td);
 1341                 }
 1342         }
 1343         CURVNET_RESTORE();
 1344 
 1345         return (error);
 1346 }
 1347 
 1348 int
 1349 soconnect2(struct socket *so1, struct socket *so2)
 1350 {
 1351         int error;
 1352 
 1353         CURVNET_SET(so1->so_vnet);
 1354         error = (*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2);
 1355         CURVNET_RESTORE();
 1356         return (error);
 1357 }
 1358 
 1359 int
 1360 sodisconnect(struct socket *so)
 1361 {
 1362         int error;
 1363 
 1364         if ((so->so_state & SS_ISCONNECTED) == 0)
 1365                 return (ENOTCONN);
 1366         if (so->so_state & SS_ISDISCONNECTING)
 1367                 return (EALREADY);
 1368         VNET_SO_ASSERT(so);
 1369         error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
 1370         return (error);
 1371 }
 1372 
 1373 int
 1374 sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1375     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1376 {
 1377         long space;
 1378         ssize_t resid;
 1379         int clen = 0, error, dontroute;
 1380 
 1381         KASSERT(so->so_type == SOCK_DGRAM, ("sosend_dgram: !SOCK_DGRAM"));
 1382         KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
 1383             ("sosend_dgram: !PR_ATOMIC"));
 1384 
 1385         if (uio != NULL)
 1386                 resid = uio->uio_resid;
 1387         else
 1388                 resid = top->m_pkthdr.len;
 1389         /*
 1390          * In theory resid should be unsigned.  However, space must be
 1391          * signed, as it might be less than 0 if we over-committed, and we
 1392          * must use a signed comparison of space and resid.  On the other
 1393          * hand, a negative resid causes us to loop sending 0-length
 1394          * segments to the protocol.
 1395          */
 1396         if (resid < 0) {
 1397                 error = EINVAL;
 1398                 goto out;
 1399         }
 1400 
 1401         dontroute =
 1402             (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
 1403         if (td != NULL)
 1404                 td->td_ru.ru_msgsnd++;
 1405         if (control != NULL)
 1406                 clen = control->m_len;
 1407 
 1408         SOCKBUF_LOCK(&so->so_snd);
 1409         if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 1410                 SOCKBUF_UNLOCK(&so->so_snd);
 1411                 error = EPIPE;
 1412                 goto out;
 1413         }
 1414         if (so->so_error) {
 1415                 error = so->so_error;
 1416                 so->so_error = 0;
 1417                 SOCKBUF_UNLOCK(&so->so_snd);
 1418                 goto out;
 1419         }
 1420         if ((so->so_state & SS_ISCONNECTED) == 0) {
 1421                 /*
 1422                  * `sendto' and `sendmsg' is allowed on a connection-based
 1423                  * socket if it supports implied connect.  Return ENOTCONN if
 1424                  * not connected and no address is supplied.
 1425                  */
 1426                 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
 1427                     (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
 1428                         if ((so->so_state & SS_ISCONFIRMING) == 0 &&
 1429                             !(resid == 0 && clen != 0)) {
 1430                                 SOCKBUF_UNLOCK(&so->so_snd);
 1431                                 error = ENOTCONN;
 1432                                 goto out;
 1433                         }
 1434                 } else if (addr == NULL) {
 1435                         if (so->so_proto->pr_flags & PR_CONNREQUIRED)
 1436                                 error = ENOTCONN;
 1437                         else
 1438                                 error = EDESTADDRREQ;
 1439                         SOCKBUF_UNLOCK(&so->so_snd);
 1440                         goto out;
 1441                 }
 1442         }
 1443 
 1444         /*
 1445          * Do we need MSG_OOB support in SOCK_DGRAM?  Signs here may be a
 1446          * problem and need fixing.
 1447          */
 1448         space = sbspace(&so->so_snd);
 1449         if (flags & MSG_OOB)
 1450                 space += 1024;
 1451         space -= clen;
 1452         SOCKBUF_UNLOCK(&so->so_snd);
 1453         if (resid > space) {
 1454                 error = EMSGSIZE;
 1455                 goto out;
 1456         }
 1457         if (uio == NULL) {
 1458                 resid = 0;
 1459                 if (flags & MSG_EOR)
 1460                         top->m_flags |= M_EOR;
 1461         } else {
 1462                 /*
 1463                  * Copy the data from userland into a mbuf chain.
 1464                  * If no data is to be copied in, a single empty mbuf
 1465                  * is returned.
 1466                  */
 1467                 top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
 1468                     (M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
 1469                 if (top == NULL) {
 1470                         error = EFAULT; /* only possible error */
 1471                         goto out;
 1472                 }
 1473                 space -= resid - uio->uio_resid;
 1474                 resid = uio->uio_resid;
 1475         }
 1476         KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
 1477         /*
 1478          * XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
 1479          * than with.
 1480          */
 1481         if (dontroute) {
 1482                 SOCK_LOCK(so);
 1483                 so->so_options |= SO_DONTROUTE;
 1484                 SOCK_UNLOCK(so);
 1485         }
 1486         /*
 1487          * XXX all the SBS_CANTSENDMORE checks previously done could be out
 1488          * of date.  We could have received a reset packet in an interrupt or
 1489          * maybe we slept while doing page faults in uiomove() etc.  We could
 1490          * probably recheck again inside the locking protection here, but
 1491          * there are probably other places that this also happens.  We must
 1492          * rethink this.
 1493          */
 1494         VNET_SO_ASSERT(so);
 1495         error = (*so->so_proto->pr_usrreqs->pru_send)(so,
 1496             (flags & MSG_OOB) ? PRUS_OOB :
 1497         /*
 1498          * If the user set MSG_EOF, the protocol understands this flag and
 1499          * nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
 1500          */
 1501             ((flags & MSG_EOF) &&
 1502              (so->so_proto->pr_flags & PR_IMPLOPCL) &&
 1503              (resid <= 0)) ?
 1504                 PRUS_EOF :
 1505                 /* If there is more to send set PRUS_MORETOCOME */
 1506                 (flags & MSG_MORETOCOME) ||
 1507                 (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
 1508                 top, addr, control, td);
 1509         if (dontroute) {
 1510                 SOCK_LOCK(so);
 1511                 so->so_options &= ~SO_DONTROUTE;
 1512                 SOCK_UNLOCK(so);
 1513         }
 1514         clen = 0;
 1515         control = NULL;
 1516         top = NULL;
 1517 out:
 1518         if (top != NULL)
 1519                 m_freem(top);
 1520         if (control != NULL)
 1521                 m_freem(control);
 1522         return (error);
 1523 }
 1524 
 1525 /*
 1526  * Send on a socket.  If send must go all at once and message is larger than
 1527  * send buffering, then hard error.  Lock against other senders.  If must go
 1528  * all at once and not enough room now, then inform user that this would
 1529  * block and do nothing.  Otherwise, if nonblocking, send as much as
 1530  * possible.  The data to be sent is described by "uio" if nonzero, otherwise
 1531  * by the mbuf chain "top" (which must be null if uio is not).  Data provided
 1532  * in mbuf chain must be small enough to send all at once.
 1533  *
 1534  * Returns nonzero on error, timeout or signal; callers must check for short
 1535  * counts if EINTR/ERESTART are returned.  Data and control buffers are freed
 1536  * on return.
 1537  */
 1538 int
 1539 sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1540     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1541 {
 1542         long space;
 1543         ssize_t resid;
 1544         int clen = 0, error, dontroute;
 1545         int atomic = sosendallatonce(so) || top;
 1546         int pru_flag;
 1547 #ifdef KERN_TLS
 1548         struct ktls_session *tls;
 1549         int tls_enq_cnt, tls_pruflag;
 1550         uint8_t tls_rtype;
 1551 
 1552         tls = NULL;
 1553         tls_rtype = TLS_RLTYPE_APP;
 1554 #endif
 1555         if (uio != NULL)
 1556                 resid = uio->uio_resid;
 1557         else if ((top->m_flags & M_PKTHDR) != 0)
 1558                 resid = top->m_pkthdr.len;
 1559         else
 1560                 resid = m_length(top, NULL);
 1561         /*
 1562          * In theory resid should be unsigned.  However, space must be
 1563          * signed, as it might be less than 0 if we over-committed, and we
 1564          * must use a signed comparison of space and resid.  On the other
 1565          * hand, a negative resid causes us to loop sending 0-length
 1566          * segments to the protocol.
 1567          *
 1568          * Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
 1569          * type sockets since that's an error.
 1570          */
 1571         if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
 1572                 error = EINVAL;
 1573                 goto out;
 1574         }
 1575 
 1576         dontroute =
 1577             (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
 1578             (so->so_proto->pr_flags & PR_ATOMIC);
 1579         if (td != NULL)
 1580                 td->td_ru.ru_msgsnd++;
 1581         if (control != NULL)
 1582                 clen = control->m_len;
 1583 
 1584         error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
 1585         if (error)
 1586                 goto out;
 1587 
 1588 #ifdef KERN_TLS
 1589         tls_pruflag = 0;
 1590         tls = ktls_hold(so->so_snd.sb_tls_info);
 1591         if (tls != NULL) {
 1592                 if (tls->mode == TCP_TLS_MODE_SW)
 1593                         tls_pruflag = PRUS_NOTREADY;
 1594 
 1595                 if (control != NULL) {
 1596                         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
 1597 
 1598                         if (clen >= sizeof(*cm) &&
 1599                             cm->cmsg_type == TLS_SET_RECORD_TYPE) {
 1600                                 tls_rtype = *((uint8_t *)CMSG_DATA(cm));
 1601                                 clen = 0;
 1602                                 m_freem(control);
 1603                                 control = NULL;
 1604                                 atomic = 1;
 1605                         }
 1606                 }
 1607         }
 1608 #endif
 1609 
 1610 restart:
 1611         do {
 1612                 SOCKBUF_LOCK(&so->so_snd);
 1613                 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 1614                         SOCKBUF_UNLOCK(&so->so_snd);
 1615                         error = EPIPE;
 1616                         goto release;
 1617                 }
 1618                 if (so->so_error) {
 1619                         error = so->so_error;
 1620                         so->so_error = 0;
 1621                         SOCKBUF_UNLOCK(&so->so_snd);
 1622                         goto release;
 1623                 }
 1624                 if ((so->so_state & SS_ISCONNECTED) == 0) {
 1625                         /*
 1626                          * `sendto' and `sendmsg' is allowed on a connection-
 1627                          * based socket if it supports implied connect.
 1628                          * Return ENOTCONN if not connected and no address is
 1629                          * supplied.
 1630                          */
 1631                         if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
 1632                             (so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
 1633                                 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
 1634                                     !(resid == 0 && clen != 0)) {
 1635                                         SOCKBUF_UNLOCK(&so->so_snd);
 1636                                         error = ENOTCONN;
 1637                                         goto release;
 1638                                 }
 1639                         } else if (addr == NULL) {
 1640                                 SOCKBUF_UNLOCK(&so->so_snd);
 1641                                 if (so->so_proto->pr_flags & PR_CONNREQUIRED)
 1642                                         error = ENOTCONN;
 1643                                 else
 1644                                         error = EDESTADDRREQ;
 1645                                 goto release;
 1646                         }
 1647                 }
 1648                 space = sbspace(&so->so_snd);
 1649                 if (flags & MSG_OOB)
 1650                         space += 1024;
 1651                 if ((atomic && resid > so->so_snd.sb_hiwat) ||
 1652                     clen > so->so_snd.sb_hiwat) {
 1653                         SOCKBUF_UNLOCK(&so->so_snd);
 1654                         error = EMSGSIZE;
 1655                         goto release;
 1656                 }
 1657                 if (space < resid + clen &&
 1658                     (atomic || space < so->so_snd.sb_lowat || space < clen)) {
 1659                         if ((so->so_state & SS_NBIO) ||
 1660                             (flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
 1661                                 SOCKBUF_UNLOCK(&so->so_snd);
 1662                                 error = EWOULDBLOCK;
 1663                                 goto release;
 1664                         }
 1665                         error = sbwait(&so->so_snd);
 1666                         SOCKBUF_UNLOCK(&so->so_snd);
 1667                         if (error)
 1668                                 goto release;
 1669                         goto restart;
 1670                 }
 1671                 SOCKBUF_UNLOCK(&so->so_snd);
 1672                 space -= clen;
 1673                 do {
 1674                         if (uio == NULL) {
 1675                                 resid = 0;
 1676                                 if (flags & MSG_EOR)
 1677                                         top->m_flags |= M_EOR;
 1678 #ifdef KERN_TLS
 1679                                 if (tls != NULL) {
 1680                                         ktls_frame(top, tls, &tls_enq_cnt,
 1681                                             tls_rtype);
 1682                                         tls_rtype = TLS_RLTYPE_APP;
 1683                                 }
 1684 #endif
 1685                         } else {
 1686                                 /*
 1687                                  * Copy the data from userland into a mbuf
 1688                                  * chain.  If resid is 0, which can happen
 1689                                  * only if we have control to send, then
 1690                                  * a single empty mbuf is returned.  This
 1691                                  * is a workaround to prevent protocol send
 1692                                  * methods to panic.
 1693                                  */
 1694 #ifdef KERN_TLS
 1695                                 if (tls != NULL) {
 1696                                         top = m_uiotombuf(uio, M_WAITOK, space,
 1697                                             tls->params.max_frame_len,
 1698                                             M_EXTPG |
 1699                                             ((flags & MSG_EOR) ? M_EOR : 0));
 1700                                         if (top != NULL) {
 1701                                                 ktls_frame(top, tls,
 1702                                                     &tls_enq_cnt, tls_rtype);
 1703                                         }
 1704                                         tls_rtype = TLS_RLTYPE_APP;
 1705                                 } else
 1706 #endif
 1707                                         top = m_uiotombuf(uio, M_WAITOK, space,
 1708                                             (atomic ? max_hdr : 0),
 1709                                             (atomic ? M_PKTHDR : 0) |
 1710                                             ((flags & MSG_EOR) ? M_EOR : 0));
 1711                                 if (top == NULL) {
 1712                                         error = EFAULT; /* only possible error */
 1713                                         goto release;
 1714                                 }
 1715                                 space -= resid - uio->uio_resid;
 1716                                 resid = uio->uio_resid;
 1717                         }
 1718                         if (dontroute) {
 1719                                 SOCK_LOCK(so);
 1720                                 so->so_options |= SO_DONTROUTE;
 1721                                 SOCK_UNLOCK(so);
 1722                         }
 1723                         /*
 1724                          * XXX all the SBS_CANTSENDMORE checks previously
 1725                          * done could be out of date.  We could have received
 1726                          * a reset packet in an interrupt or maybe we slept
 1727                          * while doing page faults in uiomove() etc.  We
 1728                          * could probably recheck again inside the locking
 1729                          * protection here, but there are probably other
 1730                          * places that this also happens.  We must rethink
 1731                          * this.
 1732                          */
 1733                         VNET_SO_ASSERT(so);
 1734 
 1735                         pru_flag = (flags & MSG_OOB) ? PRUS_OOB :
 1736                         /*
 1737                          * If the user set MSG_EOF, the protocol understands
 1738                          * this flag and nothing left to send then use
 1739                          * PRU_SEND_EOF instead of PRU_SEND.
 1740                          */
 1741                             ((flags & MSG_EOF) &&
 1742                              (so->so_proto->pr_flags & PR_IMPLOPCL) &&
 1743                              (resid <= 0)) ?
 1744                                 PRUS_EOF :
 1745                         /* If there is more to send set PRUS_MORETOCOME. */
 1746                             (flags & MSG_MORETOCOME) ||
 1747                             (resid > 0 && space > 0) ? PRUS_MORETOCOME : 0;
 1748 
 1749 #ifdef KERN_TLS
 1750                         pru_flag |= tls_pruflag;
 1751 #endif
 1752 
 1753                         error = (*so->so_proto->pr_usrreqs->pru_send)(so,
 1754                             pru_flag, top, addr, control, td);
 1755 
 1756                         if (dontroute) {
 1757                                 SOCK_LOCK(so);
 1758                                 so->so_options &= ~SO_DONTROUTE;
 1759                                 SOCK_UNLOCK(so);
 1760                         }
 1761 
 1762 #ifdef KERN_TLS
 1763                         if (tls != NULL && tls->mode == TCP_TLS_MODE_SW) {
 1764                                 if (error != 0) {
 1765                                         m_freem(top);
 1766                                         top = NULL;
 1767                                 } else {
 1768                                         soref(so);
 1769                                         ktls_enqueue(top, so, tls_enq_cnt);
 1770                                 }
 1771                         }
 1772 #endif
 1773                         clen = 0;
 1774                         control = NULL;
 1775                         top = NULL;
 1776                         if (error)
 1777                                 goto release;
 1778                 } while (resid && space > 0);
 1779         } while (resid);
 1780 
 1781 release:
 1782         SOCK_IO_SEND_UNLOCK(so);
 1783 out:
 1784 #ifdef KERN_TLS
 1785         if (tls != NULL)
 1786                 ktls_free(tls);
 1787 #endif
 1788         if (top != NULL)
 1789                 m_freem(top);
 1790         if (control != NULL)
 1791                 m_freem(control);
 1792         return (error);
 1793 }
 1794 
 1795 int
 1796 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
 1797     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 1798 {
 1799         int error;
 1800 
 1801         CURVNET_SET(so->so_vnet);
 1802         if (!SOLISTENING(so))
 1803                 error = so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio,
 1804                     top, control, flags, td);
 1805         else {
 1806                 m_freem(top);
 1807                 m_freem(control);
 1808                 error = ENOTCONN;
 1809         }
 1810         CURVNET_RESTORE();
 1811         return (error);
 1812 }
 1813 
 1814 /*
 1815  * The part of soreceive() that implements reading non-inline out-of-band
 1816  * data from a socket.  For more complete comments, see soreceive(), from
 1817  * which this code originated.
 1818  *
 1819  * Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
 1820  * unable to return an mbuf chain to the caller.
 1821  */
 1822 static int
 1823 soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
 1824 {
 1825         struct protosw *pr = so->so_proto;
 1826         struct mbuf *m;
 1827         int error;
 1828 
 1829         KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
 1830         VNET_SO_ASSERT(so);
 1831 
 1832         m = m_get(M_WAITOK, MT_DATA);
 1833         error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
 1834         if (error)
 1835                 goto bad;
 1836         do {
 1837                 error = uiomove(mtod(m, void *),
 1838                     (int) min(uio->uio_resid, m->m_len), uio);
 1839                 m = m_free(m);
 1840         } while (uio->uio_resid && error == 0 && m);
 1841 bad:
 1842         if (m != NULL)
 1843                 m_freem(m);
 1844         return (error);
 1845 }
 1846 
 1847 /*
 1848  * Following replacement or removal of the first mbuf on the first mbuf chain
 1849  * of a socket buffer, push necessary state changes back into the socket
 1850  * buffer so that other consumers see the values consistently.  'nextrecord'
 1851  * is the callers locally stored value of the original value of
 1852  * sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
 1853  * NOTE: 'nextrecord' may be NULL.
 1854  */
 1855 static __inline void
 1856 sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
 1857 {
 1858 
 1859         SOCKBUF_LOCK_ASSERT(sb);
 1860         /*
 1861          * First, update for the new value of nextrecord.  If necessary, make
 1862          * it the first record.
 1863          */
 1864         if (sb->sb_mb != NULL)
 1865                 sb->sb_mb->m_nextpkt = nextrecord;
 1866         else
 1867                 sb->sb_mb = nextrecord;
 1868 
 1869         /*
 1870          * Now update any dependent socket buffer fields to reflect the new
 1871          * state.  This is an expanded inline of SB_EMPTY_FIXUP(), with the
 1872          * addition of a second clause that takes care of the case where
 1873          * sb_mb has been updated, but remains the last record.
 1874          */
 1875         if (sb->sb_mb == NULL) {
 1876                 sb->sb_mbtail = NULL;
 1877                 sb->sb_lastrecord = NULL;
 1878         } else if (sb->sb_mb->m_nextpkt == NULL)
 1879                 sb->sb_lastrecord = sb->sb_mb;
 1880 }
 1881 
 1882 /*
 1883  * Implement receive operations on a socket.  We depend on the way that
 1884  * records are added to the sockbuf by sbappend.  In particular, each record
 1885  * (mbufs linked through m_next) must begin with an address if the protocol
 1886  * so specifies, followed by an optional mbuf or mbufs containing ancillary
 1887  * data, and then zero or more mbufs of data.  In order to allow parallelism
 1888  * between network receive and copying to user space, as well as avoid
 1889  * sleeping with a mutex held, we release the socket buffer mutex during the
 1890  * user space copy.  Although the sockbuf is locked, new data may still be
 1891  * appended, and thus we must maintain consistency of the sockbuf during that
 1892  * time.
 1893  *
 1894  * The caller may receive the data as a single mbuf chain by supplying an
 1895  * mbuf **mp0 for use in returning the chain.  The uio is then used only for
 1896  * the count in uio_resid.
 1897  */
 1898 int
 1899 soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
 1900     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 1901 {
 1902         struct mbuf *m, **mp;
 1903         int flags, error, offset;
 1904         ssize_t len;
 1905         struct protosw *pr = so->so_proto;
 1906         struct mbuf *nextrecord;
 1907         int moff, type = 0;
 1908         ssize_t orig_resid = uio->uio_resid;
 1909 
 1910         mp = mp0;
 1911         if (psa != NULL)
 1912                 *psa = NULL;
 1913         if (controlp != NULL)
 1914                 *controlp = NULL;
 1915         if (flagsp != NULL)
 1916                 flags = *flagsp &~ MSG_EOR;
 1917         else
 1918                 flags = 0;
 1919         if (flags & MSG_OOB)
 1920                 return (soreceive_rcvoob(so, uio, flags));
 1921         if (mp != NULL)
 1922                 *mp = NULL;
 1923         if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
 1924             && uio->uio_resid) {
 1925                 VNET_SO_ASSERT(so);
 1926                 (*pr->pr_usrreqs->pru_rcvd)(so, 0);
 1927         }
 1928 
 1929         error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
 1930         if (error)
 1931                 return (error);
 1932 
 1933 restart:
 1934         SOCKBUF_LOCK(&so->so_rcv);
 1935         m = so->so_rcv.sb_mb;
 1936         /*
 1937          * If we have less data than requested, block awaiting more (subject
 1938          * to any timeout) if:
 1939          *   1. the current count is less than the low water mark, or
 1940          *   2. MSG_DONTWAIT is not set
 1941          */
 1942         if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
 1943             sbavail(&so->so_rcv) < uio->uio_resid) &&
 1944             sbavail(&so->so_rcv) < so->so_rcv.sb_lowat &&
 1945             m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
 1946                 KASSERT(m != NULL || !sbavail(&so->so_rcv),
 1947                     ("receive: m == %p sbavail == %u",
 1948                     m, sbavail(&so->so_rcv)));
 1949                 if (so->so_error || so->so_rerror) {
 1950                         if (m != NULL)
 1951                                 goto dontblock;
 1952                         if (so->so_error)
 1953                                 error = so->so_error;
 1954                         else
 1955                                 error = so->so_rerror;
 1956                         if ((flags & MSG_PEEK) == 0) {
 1957                                 if (so->so_error)
 1958                                         so->so_error = 0;
 1959                                 else
 1960                                         so->so_rerror = 0;
 1961                         }
 1962                         SOCKBUF_UNLOCK(&so->so_rcv);
 1963                         goto release;
 1964                 }
 1965                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 1966                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 1967                         if (m != NULL)
 1968                                 goto dontblock;
 1969 #ifdef KERN_TLS
 1970                         else if (so->so_rcv.sb_tlsdcc == 0 &&
 1971                             so->so_rcv.sb_tlscc == 0) {
 1972 #else
 1973                         else {
 1974 #endif
 1975                                 SOCKBUF_UNLOCK(&so->so_rcv);
 1976                                 goto release;
 1977                         }
 1978                 }
 1979                 for (; m != NULL; m = m->m_next)
 1980                         if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
 1981                                 m = so->so_rcv.sb_mb;
 1982                                 goto dontblock;
 1983                         }
 1984                 if ((so->so_state & (SS_ISCONNECTING | SS_ISCONNECTED |
 1985                     SS_ISDISCONNECTING | SS_ISDISCONNECTED)) == 0 &&
 1986                     (so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
 1987                         SOCKBUF_UNLOCK(&so->so_rcv);
 1988                         error = ENOTCONN;
 1989                         goto release;
 1990                 }
 1991                 if (uio->uio_resid == 0) {
 1992                         SOCKBUF_UNLOCK(&so->so_rcv);
 1993                         goto release;
 1994                 }
 1995                 if ((so->so_state & SS_NBIO) ||
 1996                     (flags & (MSG_DONTWAIT|MSG_NBIO))) {
 1997                         SOCKBUF_UNLOCK(&so->so_rcv);
 1998                         error = EWOULDBLOCK;
 1999                         goto release;
 2000                 }
 2001                 SBLASTRECORDCHK(&so->so_rcv);
 2002                 SBLASTMBUFCHK(&so->so_rcv);
 2003                 error = sbwait(&so->so_rcv);
 2004                 SOCKBUF_UNLOCK(&so->so_rcv);
 2005                 if (error)
 2006                         goto release;
 2007                 goto restart;
 2008         }
 2009 dontblock:
 2010         /*
 2011          * From this point onward, we maintain 'nextrecord' as a cache of the
 2012          * pointer to the next record in the socket buffer.  We must keep the
 2013          * various socket buffer pointers and local stack versions of the
 2014          * pointers in sync, pushing out modifications before dropping the
 2015          * socket buffer mutex, and re-reading them when picking it up.
 2016          *
 2017          * Otherwise, we will race with the network stack appending new data
 2018          * or records onto the socket buffer by using inconsistent/stale
 2019          * versions of the field, possibly resulting in socket buffer
 2020          * corruption.
 2021          *
 2022          * By holding the high-level sblock(), we prevent simultaneous
 2023          * readers from pulling off the front of the socket buffer.
 2024          */
 2025         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2026         if (uio->uio_td)
 2027                 uio->uio_td->td_ru.ru_msgrcv++;
 2028         KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
 2029         SBLASTRECORDCHK(&so->so_rcv);
 2030         SBLASTMBUFCHK(&so->so_rcv);
 2031         nextrecord = m->m_nextpkt;
 2032         if (pr->pr_flags & PR_ADDR) {
 2033                 KASSERT(m->m_type == MT_SONAME,
 2034                     ("m->m_type == %d", m->m_type));
 2035                 orig_resid = 0;
 2036                 if (psa != NULL)
 2037                         *psa = sodupsockaddr(mtod(m, struct sockaddr *),
 2038                             M_NOWAIT);
 2039                 if (flags & MSG_PEEK) {
 2040                         m = m->m_next;
 2041                 } else {
 2042                         sbfree(&so->so_rcv, m);
 2043                         so->so_rcv.sb_mb = m_free(m);
 2044                         m = so->so_rcv.sb_mb;
 2045                         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2046                 }
 2047         }
 2048 
 2049         /*
 2050          * Process one or more MT_CONTROL mbufs present before any data mbufs
 2051          * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
 2052          * just copy the data; if !MSG_PEEK, we call into the protocol to
 2053          * perform externalization (or freeing if controlp == NULL).
 2054          */
 2055         if (m != NULL && m->m_type == MT_CONTROL) {
 2056                 struct mbuf *cm = NULL, *cmn;
 2057                 struct mbuf **cme = &cm;
 2058 #ifdef KERN_TLS
 2059                 struct cmsghdr *cmsg;
 2060                 struct tls_get_record tgr;
 2061 
 2062                 /*
 2063                  * For MSG_TLSAPPDATA, check for a non-application data
 2064                  * record.  If found, return ENXIO without removing
 2065                  * it from the receive queue.  This allows a subsequent
 2066                  * call without MSG_TLSAPPDATA to receive it.
 2067                  * Note that, for TLS, there should only be a single
 2068                  * control mbuf with the TLS_GET_RECORD message in it.
 2069                  */
 2070                 if (flags & MSG_TLSAPPDATA) {
 2071                         cmsg = mtod(m, struct cmsghdr *);
 2072                         if (cmsg->cmsg_type == TLS_GET_RECORD &&
 2073                             cmsg->cmsg_len == CMSG_LEN(sizeof(tgr))) {
 2074                                 memcpy(&tgr, CMSG_DATA(cmsg), sizeof(tgr));
 2075                                 /* This will need to change for TLS 1.3. */
 2076                                 if (tgr.tls_type != TLS_RLTYPE_APP) {
 2077                                         SOCKBUF_UNLOCK(&so->so_rcv);
 2078                                         error = ENXIO;
 2079                                         goto release;
 2080                                 }
 2081                         }
 2082                 }
 2083 #endif
 2084 
 2085                 do {
 2086                         if (flags & MSG_PEEK) {
 2087                                 if (controlp != NULL) {
 2088                                         *controlp = m_copym(m, 0, m->m_len,
 2089                                             M_NOWAIT);
 2090                                         controlp = &(*controlp)->m_next;
 2091                                 }
 2092                                 m = m->m_next;
 2093                         } else {
 2094                                 sbfree(&so->so_rcv, m);
 2095                                 so->so_rcv.sb_mb = m->m_next;
 2096                                 m->m_next = NULL;
 2097                                 *cme = m;
 2098                                 cme = &(*cme)->m_next;
 2099                                 m = so->so_rcv.sb_mb;
 2100                         }
 2101                 } while (m != NULL && m->m_type == MT_CONTROL);
 2102                 if ((flags & MSG_PEEK) == 0)
 2103                         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2104                 while (cm != NULL) {
 2105                         cmn = cm->m_next;
 2106                         cm->m_next = NULL;
 2107                         if (pr->pr_domain->dom_externalize != NULL) {
 2108                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2109                                 VNET_SO_ASSERT(so);
 2110                                 error = (*pr->pr_domain->dom_externalize)
 2111                                     (cm, controlp, flags);
 2112                                 SOCKBUF_LOCK(&so->so_rcv);
 2113                         } else if (controlp != NULL)
 2114                                 *controlp = cm;
 2115                         else
 2116                                 m_freem(cm);
 2117                         if (controlp != NULL) {
 2118                                 orig_resid = 0;
 2119                                 while (*controlp != NULL)
 2120                                         controlp = &(*controlp)->m_next;
 2121                         }
 2122                         cm = cmn;
 2123                 }
 2124                 if (m != NULL)
 2125                         nextrecord = so->so_rcv.sb_mb->m_nextpkt;
 2126                 else
 2127                         nextrecord = so->so_rcv.sb_mb;
 2128                 orig_resid = 0;
 2129         }
 2130         if (m != NULL) {
 2131                 if ((flags & MSG_PEEK) == 0) {
 2132                         KASSERT(m->m_nextpkt == nextrecord,
 2133                             ("soreceive: post-control, nextrecord !sync"));
 2134                         if (nextrecord == NULL) {
 2135                                 KASSERT(so->so_rcv.sb_mb == m,
 2136                                     ("soreceive: post-control, sb_mb!=m"));
 2137                                 KASSERT(so->so_rcv.sb_lastrecord == m,
 2138                                     ("soreceive: post-control, lastrecord!=m"));
 2139                         }
 2140                 }
 2141                 type = m->m_type;
 2142                 if (type == MT_OOBDATA)
 2143                         flags |= MSG_OOB;
 2144         } else {
 2145                 if ((flags & MSG_PEEK) == 0) {
 2146                         KASSERT(so->so_rcv.sb_mb == nextrecord,
 2147                             ("soreceive: sb_mb != nextrecord"));
 2148                         if (so->so_rcv.sb_mb == NULL) {
 2149                                 KASSERT(so->so_rcv.sb_lastrecord == NULL,
 2150                                     ("soreceive: sb_lastercord != NULL"));
 2151                         }
 2152                 }
 2153         }
 2154         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2155         SBLASTRECORDCHK(&so->so_rcv);
 2156         SBLASTMBUFCHK(&so->so_rcv);
 2157 
 2158         /*
 2159          * Now continue to read any data mbufs off of the head of the socket
 2160          * buffer until the read request is satisfied.  Note that 'type' is
 2161          * used to store the type of any mbuf reads that have happened so far
 2162          * such that soreceive() can stop reading if the type changes, which
 2163          * causes soreceive() to return only one of regular data and inline
 2164          * out-of-band data in a single socket receive operation.
 2165          */
 2166         moff = 0;
 2167         offset = 0;
 2168         while (m != NULL && !(m->m_flags & M_NOTAVAIL) && uio->uio_resid > 0
 2169             && error == 0) {
 2170                 /*
 2171                  * If the type of mbuf has changed since the last mbuf
 2172                  * examined ('type'), end the receive operation.
 2173                  */
 2174                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2175                 if (m->m_type == MT_OOBDATA || m->m_type == MT_CONTROL) {
 2176                         if (type != m->m_type)
 2177                                 break;
 2178                 } else if (type == MT_OOBDATA)
 2179                         break;
 2180                 else
 2181                     KASSERT(m->m_type == MT_DATA,
 2182                         ("m->m_type == %d", m->m_type));
 2183                 so->so_rcv.sb_state &= ~SBS_RCVATMARK;
 2184                 len = uio->uio_resid;
 2185                 if (so->so_oobmark && len > so->so_oobmark - offset)
 2186                         len = so->so_oobmark - offset;
 2187                 if (len > m->m_len - moff)
 2188                         len = m->m_len - moff;
 2189                 /*
 2190                  * If mp is set, just pass back the mbufs.  Otherwise copy
 2191                  * them out via the uio, then free.  Sockbuf must be
 2192                  * consistent here (points to current mbuf, it points to next
 2193                  * record) when we drop priority; we must note any additions
 2194                  * to the sockbuf when we block interrupts again.
 2195                  */
 2196                 if (mp == NULL) {
 2197                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2198                         SBLASTRECORDCHK(&so->so_rcv);
 2199                         SBLASTMBUFCHK(&so->so_rcv);
 2200                         SOCKBUF_UNLOCK(&so->so_rcv);
 2201                         if ((m->m_flags & M_EXTPG) != 0)
 2202                                 error = m_unmapped_uiomove(m, moff, uio,
 2203                                     (int)len);
 2204                         else
 2205                                 error = uiomove(mtod(m, char *) + moff,
 2206                                     (int)len, uio);
 2207                         SOCKBUF_LOCK(&so->so_rcv);
 2208                         if (error) {
 2209                                 /*
 2210                                  * The MT_SONAME mbuf has already been removed
 2211                                  * from the record, so it is necessary to
 2212                                  * remove the data mbufs, if any, to preserve
 2213                                  * the invariant in the case of PR_ADDR that
 2214                                  * requires MT_SONAME mbufs at the head of
 2215                                  * each record.
 2216                                  */
 2217                                 if (pr->pr_flags & PR_ATOMIC &&
 2218                                     ((flags & MSG_PEEK) == 0))
 2219                                         (void)sbdroprecord_locked(&so->so_rcv);
 2220                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2221                                 goto release;
 2222                         }
 2223                 } else
 2224                         uio->uio_resid -= len;
 2225                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2226                 if (len == m->m_len - moff) {
 2227                         if (m->m_flags & M_EOR)
 2228                                 flags |= MSG_EOR;
 2229                         if (flags & MSG_PEEK) {
 2230                                 m = m->m_next;
 2231                                 moff = 0;
 2232                         } else {
 2233                                 nextrecord = m->m_nextpkt;
 2234                                 sbfree(&so->so_rcv, m);
 2235                                 if (mp != NULL) {
 2236                                         m->m_nextpkt = NULL;
 2237                                         *mp = m;
 2238                                         mp = &m->m_next;
 2239                                         so->so_rcv.sb_mb = m = m->m_next;
 2240                                         *mp = NULL;
 2241                                 } else {
 2242                                         so->so_rcv.sb_mb = m_free(m);
 2243                                         m = so->so_rcv.sb_mb;
 2244                                 }
 2245                                 sockbuf_pushsync(&so->so_rcv, nextrecord);
 2246                                 SBLASTRECORDCHK(&so->so_rcv);
 2247                                 SBLASTMBUFCHK(&so->so_rcv);
 2248                         }
 2249                 } else {
 2250                         if (flags & MSG_PEEK)
 2251                                 moff += len;
 2252                         else {
 2253                                 if (mp != NULL) {
 2254                                         if (flags & MSG_DONTWAIT) {
 2255                                                 *mp = m_copym(m, 0, len,
 2256                                                     M_NOWAIT);
 2257                                                 if (*mp == NULL) {
 2258                                                         /*
 2259                                                          * m_copym() couldn't
 2260                                                          * allocate an mbuf.
 2261                                                          * Adjust uio_resid back
 2262                                                          * (it was adjusted
 2263                                                          * down by len bytes,
 2264                                                          * which we didn't end
 2265                                                          * up "copying" over).
 2266                                                          */
 2267                                                         uio->uio_resid += len;
 2268                                                         break;
 2269                                                 }
 2270                                         } else {
 2271                                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2272                                                 *mp = m_copym(m, 0, len,
 2273                                                     M_WAITOK);
 2274                                                 SOCKBUF_LOCK(&so->so_rcv);
 2275                                         }
 2276                                 }
 2277                                 sbcut_locked(&so->so_rcv, len);
 2278                         }
 2279                 }
 2280                 SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2281                 if (so->so_oobmark) {
 2282                         if ((flags & MSG_PEEK) == 0) {
 2283                                 so->so_oobmark -= len;
 2284                                 if (so->so_oobmark == 0) {
 2285                                         so->so_rcv.sb_state |= SBS_RCVATMARK;
 2286                                         break;
 2287                                 }
 2288                         } else {
 2289                                 offset += len;
 2290                                 if (offset == so->so_oobmark)
 2291                                         break;
 2292                         }
 2293                 }
 2294                 if (flags & MSG_EOR)
 2295                         break;
 2296                 /*
 2297                  * If the MSG_WAITALL flag is set (for non-atomic socket), we
 2298                  * must not quit until "uio->uio_resid == 0" or an error
 2299                  * termination.  If a signal/timeout occurs, return with a
 2300                  * short count but without error.  Keep sockbuf locked
 2301                  * against other readers.
 2302                  */
 2303                 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
 2304                     !sosendallatonce(so) && nextrecord == NULL) {
 2305                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2306                         if (so->so_error || so->so_rerror ||
 2307                             so->so_rcv.sb_state & SBS_CANTRCVMORE)
 2308                                 break;
 2309                         /*
 2310                          * Notify the protocol that some data has been
 2311                          * drained before blocking.
 2312                          */
 2313                         if (pr->pr_flags & PR_WANTRCVD) {
 2314                                 SOCKBUF_UNLOCK(&so->so_rcv);
 2315                                 VNET_SO_ASSERT(so);
 2316                                 (*pr->pr_usrreqs->pru_rcvd)(so, flags);
 2317                                 SOCKBUF_LOCK(&so->so_rcv);
 2318                         }
 2319                         SBLASTRECORDCHK(&so->so_rcv);
 2320                         SBLASTMBUFCHK(&so->so_rcv);
 2321                         /*
 2322                          * We could receive some data while was notifying
 2323                          * the protocol. Skip blocking in this case.
 2324                          */
 2325                         if (so->so_rcv.sb_mb == NULL) {
 2326                                 error = sbwait(&so->so_rcv);
 2327                                 if (error) {
 2328                                         SOCKBUF_UNLOCK(&so->so_rcv);
 2329                                         goto release;
 2330                                 }
 2331                         }
 2332                         m = so->so_rcv.sb_mb;
 2333                         if (m != NULL)
 2334                                 nextrecord = m->m_nextpkt;
 2335                 }
 2336         }
 2337 
 2338         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2339         if (m != NULL && pr->pr_flags & PR_ATOMIC) {
 2340                 flags |= MSG_TRUNC;
 2341                 if ((flags & MSG_PEEK) == 0)
 2342                         (void) sbdroprecord_locked(&so->so_rcv);
 2343         }
 2344         if ((flags & MSG_PEEK) == 0) {
 2345                 if (m == NULL) {
 2346                         /*
 2347                          * First part is an inline SB_EMPTY_FIXUP().  Second
 2348                          * part makes sure sb_lastrecord is up-to-date if
 2349                          * there is still data in the socket buffer.
 2350                          */
 2351                         so->so_rcv.sb_mb = nextrecord;
 2352                         if (so->so_rcv.sb_mb == NULL) {
 2353                                 so->so_rcv.sb_mbtail = NULL;
 2354                                 so->so_rcv.sb_lastrecord = NULL;
 2355                         } else if (nextrecord->m_nextpkt == NULL)
 2356                                 so->so_rcv.sb_lastrecord = nextrecord;
 2357                 }
 2358                 SBLASTRECORDCHK(&so->so_rcv);
 2359                 SBLASTMBUFCHK(&so->so_rcv);
 2360                 /*
 2361                  * If soreceive() is being done from the socket callback,
 2362                  * then don't need to generate ACK to peer to update window,
 2363                  * since ACK will be generated on return to TCP.
 2364                  */
 2365                 if (!(flags & MSG_SOCALLBCK) &&
 2366                     (pr->pr_flags & PR_WANTRCVD)) {
 2367                         SOCKBUF_UNLOCK(&so->so_rcv);
 2368                         VNET_SO_ASSERT(so);
 2369                         (*pr->pr_usrreqs->pru_rcvd)(so, flags);
 2370                         SOCKBUF_LOCK(&so->so_rcv);
 2371                 }
 2372         }
 2373         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2374         if (orig_resid == uio->uio_resid && orig_resid &&
 2375             (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
 2376                 SOCKBUF_UNLOCK(&so->so_rcv);
 2377                 goto restart;
 2378         }
 2379         SOCKBUF_UNLOCK(&so->so_rcv);
 2380 
 2381         if (flagsp != NULL)
 2382                 *flagsp |= flags;
 2383 release:
 2384         SOCK_IO_RECV_UNLOCK(so);
 2385         return (error);
 2386 }
 2387 
 2388 /*
 2389  * Optimized version of soreceive() for stream (TCP) sockets.
 2390  */
 2391 int
 2392 soreceive_stream(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2393     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2394 {
 2395         int len = 0, error = 0, flags, oresid;
 2396         struct sockbuf *sb;
 2397         struct mbuf *m, *n = NULL;
 2398 
 2399         /* We only do stream sockets. */
 2400         if (so->so_type != SOCK_STREAM)
 2401                 return (EINVAL);
 2402         if (psa != NULL)
 2403                 *psa = NULL;
 2404         if (flagsp != NULL)
 2405                 flags = *flagsp &~ MSG_EOR;
 2406         else
 2407                 flags = 0;
 2408         if (controlp != NULL)
 2409                 *controlp = NULL;
 2410         if (flags & MSG_OOB)
 2411                 return (soreceive_rcvoob(so, uio, flags));
 2412         if (mp0 != NULL)
 2413                 *mp0 = NULL;
 2414 
 2415         sb = &so->so_rcv;
 2416 
 2417 #ifdef KERN_TLS
 2418         /*
 2419          * KTLS store TLS records as records with a control message to
 2420          * describe the framing.
 2421          *
 2422          * We check once here before acquiring locks to optimize the
 2423          * common case.
 2424          */
 2425         if (sb->sb_tls_info != NULL)
 2426                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2427                     flagsp));
 2428 #endif
 2429 
 2430         /* Prevent other readers from entering the socket. */
 2431         error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
 2432         if (error)
 2433                 return (error);
 2434         SOCKBUF_LOCK(sb);
 2435 
 2436 #ifdef KERN_TLS
 2437         if (sb->sb_tls_info != NULL) {
 2438                 SOCKBUF_UNLOCK(sb);
 2439                 SOCK_IO_RECV_UNLOCK(so);
 2440                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2441                     flagsp));
 2442         }
 2443 #endif
 2444 
 2445         /* Easy one, no space to copyout anything. */
 2446         if (uio->uio_resid == 0) {
 2447                 error = EINVAL;
 2448                 goto out;
 2449         }
 2450         oresid = uio->uio_resid;
 2451 
 2452         /* We will never ever get anything unless we are or were connected. */
 2453         if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) {
 2454                 error = ENOTCONN;
 2455                 goto out;
 2456         }
 2457 
 2458 restart:
 2459         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2460 
 2461         /* Abort if socket has reported problems. */
 2462         if (so->so_error) {
 2463                 if (sbavail(sb) > 0)
 2464                         goto deliver;
 2465                 if (oresid > uio->uio_resid)
 2466                         goto out;
 2467                 error = so->so_error;
 2468                 if (!(flags & MSG_PEEK))
 2469                         so->so_error = 0;
 2470                 goto out;
 2471         }
 2472 
 2473         /* Door is closed.  Deliver what is left, if any. */
 2474         if (sb->sb_state & SBS_CANTRCVMORE) {
 2475                 if (sbavail(sb) > 0)
 2476                         goto deliver;
 2477                 else
 2478                         goto out;
 2479         }
 2480 
 2481         /* Socket buffer is empty and we shall not block. */
 2482         if (sbavail(sb) == 0 &&
 2483             ((so->so_state & SS_NBIO) || (flags & (MSG_DONTWAIT|MSG_NBIO)))) {
 2484                 error = EAGAIN;
 2485                 goto out;
 2486         }
 2487 
 2488         /* Socket buffer got some data that we shall deliver now. */
 2489         if (sbavail(sb) > 0 && !(flags & MSG_WAITALL) &&
 2490             ((so->so_state & SS_NBIO) ||
 2491              (flags & (MSG_DONTWAIT|MSG_NBIO)) ||
 2492              sbavail(sb) >= sb->sb_lowat ||
 2493              sbavail(sb) >= uio->uio_resid ||
 2494              sbavail(sb) >= sb->sb_hiwat) ) {
 2495                 goto deliver;
 2496         }
 2497 
 2498         /* On MSG_WAITALL we must wait until all data or error arrives. */
 2499         if ((flags & MSG_WAITALL) &&
 2500             (sbavail(sb) >= uio->uio_resid || sbavail(sb) >= sb->sb_hiwat))
 2501                 goto deliver;
 2502 
 2503         /*
 2504          * Wait and block until (more) data comes in.
 2505          * NB: Drops the sockbuf lock during wait.
 2506          */
 2507         error = sbwait(sb);
 2508         if (error)
 2509                 goto out;
 2510         goto restart;
 2511 
 2512 deliver:
 2513         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2514         KASSERT(sbavail(sb) > 0, ("%s: sockbuf empty", __func__));
 2515         KASSERT(sb->sb_mb != NULL, ("%s: sb_mb == NULL", __func__));
 2516 
 2517         /* Statistics. */
 2518         if (uio->uio_td)
 2519                 uio->uio_td->td_ru.ru_msgrcv++;
 2520 
 2521         /* Fill uio until full or current end of socket buffer is reached. */
 2522         len = min(uio->uio_resid, sbavail(sb));
 2523         if (mp0 != NULL) {
 2524                 /* Dequeue as many mbufs as possible. */
 2525                 if (!(flags & MSG_PEEK) && len >= sb->sb_mb->m_len) {
 2526                         if (*mp0 == NULL)
 2527                                 *mp0 = sb->sb_mb;
 2528                         else
 2529                                 m_cat(*mp0, sb->sb_mb);
 2530                         for (m = sb->sb_mb;
 2531                              m != NULL && m->m_len <= len;
 2532                              m = m->m_next) {
 2533                                 KASSERT(!(m->m_flags & M_NOTAVAIL),
 2534                                     ("%s: m %p not available", __func__, m));
 2535                                 len -= m->m_len;
 2536                                 uio->uio_resid -= m->m_len;
 2537                                 sbfree(sb, m);
 2538                                 n = m;
 2539                         }
 2540                         n->m_next = NULL;
 2541                         sb->sb_mb = m;
 2542                         sb->sb_lastrecord = sb->sb_mb;
 2543                         if (sb->sb_mb == NULL)
 2544                                 SB_EMPTY_FIXUP(sb);
 2545                 }
 2546                 /* Copy the remainder. */
 2547                 if (len > 0) {
 2548                         KASSERT(sb->sb_mb != NULL,
 2549                             ("%s: len > 0 && sb->sb_mb empty", __func__));
 2550 
 2551                         m = m_copym(sb->sb_mb, 0, len, M_NOWAIT);
 2552                         if (m == NULL)
 2553                                 len = 0;        /* Don't flush data from sockbuf. */
 2554                         else
 2555                                 uio->uio_resid -= len;
 2556                         if (*mp0 != NULL)
 2557                                 m_cat(*mp0, m);
 2558                         else
 2559                                 *mp0 = m;
 2560                         if (*mp0 == NULL) {
 2561                                 error = ENOBUFS;
 2562                                 goto out;
 2563                         }
 2564                 }
 2565         } else {
 2566                 /* NB: Must unlock socket buffer as uiomove may sleep. */
 2567                 SOCKBUF_UNLOCK(sb);
 2568                 error = m_mbuftouio(uio, sb->sb_mb, len);
 2569                 SOCKBUF_LOCK(sb);
 2570                 if (error)
 2571                         goto out;
 2572         }
 2573         SBLASTRECORDCHK(sb);
 2574         SBLASTMBUFCHK(sb);
 2575 
 2576         /*
 2577          * Remove the delivered data from the socket buffer unless we
 2578          * were only peeking.
 2579          */
 2580         if (!(flags & MSG_PEEK)) {
 2581                 if (len > 0)
 2582                         sbdrop_locked(sb, len);
 2583 
 2584                 /* Notify protocol that we drained some data. */
 2585                 if ((so->so_proto->pr_flags & PR_WANTRCVD) &&
 2586                     (((flags & MSG_WAITALL) && uio->uio_resid > 0) ||
 2587                      !(flags & MSG_SOCALLBCK))) {
 2588                         SOCKBUF_UNLOCK(sb);
 2589                         VNET_SO_ASSERT(so);
 2590                         (*so->so_proto->pr_usrreqs->pru_rcvd)(so, flags);
 2591                         SOCKBUF_LOCK(sb);
 2592                 }
 2593         }
 2594 
 2595         /*
 2596          * For MSG_WAITALL we may have to loop again and wait for
 2597          * more data to come in.
 2598          */
 2599         if ((flags & MSG_WAITALL) && uio->uio_resid > 0)
 2600                 goto restart;
 2601 out:
 2602         SBLASTRECORDCHK(sb);
 2603         SBLASTMBUFCHK(sb);
 2604         SOCKBUF_UNLOCK(sb);
 2605         SOCK_IO_RECV_UNLOCK(so);
 2606         return (error);
 2607 }
 2608 
 2609 /*
 2610  * Optimized version of soreceive() for simple datagram cases from userspace.
 2611  * Unlike in the stream case, we're able to drop a datagram if copyout()
 2612  * fails, and because we handle datagrams atomically, we don't need to use a
 2613  * sleep lock to prevent I/O interlacing.
 2614  */
 2615 int
 2616 soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2617     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2618 {
 2619         struct mbuf *m, *m2;
 2620         int flags, error;
 2621         ssize_t len;
 2622         struct protosw *pr = so->so_proto;
 2623         struct mbuf *nextrecord;
 2624 
 2625         if (psa != NULL)
 2626                 *psa = NULL;
 2627         if (controlp != NULL)
 2628                 *controlp = NULL;
 2629         if (flagsp != NULL)
 2630                 flags = *flagsp &~ MSG_EOR;
 2631         else
 2632                 flags = 0;
 2633 
 2634         /*
 2635          * For any complicated cases, fall back to the full
 2636          * soreceive_generic().
 2637          */
 2638         if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
 2639                 return (soreceive_generic(so, psa, uio, mp0, controlp,
 2640                     flagsp));
 2641 
 2642         /*
 2643          * Enforce restrictions on use.
 2644          */
 2645         KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
 2646             ("soreceive_dgram: wantrcvd"));
 2647         KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
 2648         KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
 2649             ("soreceive_dgram: SBS_RCVATMARK"));
 2650         KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
 2651             ("soreceive_dgram: P_CONNREQUIRED"));
 2652 
 2653         /*
 2654          * Loop blocking while waiting for a datagram.
 2655          */
 2656         SOCKBUF_LOCK(&so->so_rcv);
 2657         while ((m = so->so_rcv.sb_mb) == NULL) {
 2658                 KASSERT(sbavail(&so->so_rcv) == 0,
 2659                     ("soreceive_dgram: sb_mb NULL but sbavail %u",
 2660                     sbavail(&so->so_rcv)));
 2661                 if (so->so_error) {
 2662                         error = so->so_error;
 2663                         so->so_error = 0;
 2664                         SOCKBUF_UNLOCK(&so->so_rcv);
 2665                         return (error);
 2666                 }
 2667                 if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
 2668                     uio->uio_resid == 0) {
 2669                         SOCKBUF_UNLOCK(&so->so_rcv);
 2670                         return (0);
 2671                 }
 2672                 if ((so->so_state & SS_NBIO) ||
 2673                     (flags & (MSG_DONTWAIT|MSG_NBIO))) {
 2674                         SOCKBUF_UNLOCK(&so->so_rcv);
 2675                         return (EWOULDBLOCK);
 2676                 }
 2677                 SBLASTRECORDCHK(&so->so_rcv);
 2678                 SBLASTMBUFCHK(&so->so_rcv);
 2679                 error = sbwait(&so->so_rcv);
 2680                 if (error) {
 2681                         SOCKBUF_UNLOCK(&so->so_rcv);
 2682                         return (error);
 2683                 }
 2684         }
 2685         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 2686 
 2687         if (uio->uio_td)
 2688                 uio->uio_td->td_ru.ru_msgrcv++;
 2689         SBLASTRECORDCHK(&so->so_rcv);
 2690         SBLASTMBUFCHK(&so->so_rcv);
 2691         nextrecord = m->m_nextpkt;
 2692         if (nextrecord == NULL) {
 2693                 KASSERT(so->so_rcv.sb_lastrecord == m,
 2694                     ("soreceive_dgram: lastrecord != m"));
 2695         }
 2696 
 2697         KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
 2698             ("soreceive_dgram: m_nextpkt != nextrecord"));
 2699 
 2700         /*
 2701          * Pull 'm' and its chain off the front of the packet queue.
 2702          */
 2703         so->so_rcv.sb_mb = NULL;
 2704         sockbuf_pushsync(&so->so_rcv, nextrecord);
 2705 
 2706         /*
 2707          * Walk 'm's chain and free that many bytes from the socket buffer.
 2708          */
 2709         for (m2 = m; m2 != NULL; m2 = m2->m_next)
 2710                 sbfree(&so->so_rcv, m2);
 2711 
 2712         /*
 2713          * Do a few last checks before we let go of the lock.
 2714          */
 2715         SBLASTRECORDCHK(&so->so_rcv);
 2716         SBLASTMBUFCHK(&so->so_rcv);
 2717         SOCKBUF_UNLOCK(&so->so_rcv);
 2718 
 2719         if (pr->pr_flags & PR_ADDR) {
 2720                 KASSERT(m->m_type == MT_SONAME,
 2721                     ("m->m_type == %d", m->m_type));
 2722                 if (psa != NULL)
 2723                         *psa = sodupsockaddr(mtod(m, struct sockaddr *),
 2724                             M_NOWAIT);
 2725                 m = m_free(m);
 2726         }
 2727         if (m == NULL) {
 2728                 /* XXXRW: Can this happen? */
 2729                 return (0);
 2730         }
 2731 
 2732         /*
 2733          * Packet to copyout() is now in 'm' and it is disconnected from the
 2734          * queue.
 2735          *
 2736          * Process one or more MT_CONTROL mbufs present before any data mbufs
 2737          * in the first mbuf chain on the socket buffer.  We call into the
 2738          * protocol to perform externalization (or freeing if controlp ==
 2739          * NULL). In some cases there can be only MT_CONTROL mbufs without
 2740          * MT_DATA mbufs.
 2741          */
 2742         if (m->m_type == MT_CONTROL) {
 2743                 struct mbuf *cm = NULL, *cmn;
 2744                 struct mbuf **cme = &cm;
 2745 
 2746                 do {
 2747                         m2 = m->m_next;
 2748                         m->m_next = NULL;
 2749                         *cme = m;
 2750                         cme = &(*cme)->m_next;
 2751                         m = m2;
 2752                 } while (m != NULL && m->m_type == MT_CONTROL);
 2753                 while (cm != NULL) {
 2754                         cmn = cm->m_next;
 2755                         cm->m_next = NULL;
 2756                         if (pr->pr_domain->dom_externalize != NULL) {
 2757                                 error = (*pr->pr_domain->dom_externalize)
 2758                                     (cm, controlp, flags);
 2759                         } else if (controlp != NULL)
 2760                                 *controlp = cm;
 2761                         else
 2762                                 m_freem(cm);
 2763                         if (controlp != NULL) {
 2764                                 while (*controlp != NULL)
 2765                                         controlp = &(*controlp)->m_next;
 2766                         }
 2767                         cm = cmn;
 2768                 }
 2769         }
 2770         KASSERT(m == NULL || m->m_type == MT_DATA,
 2771             ("soreceive_dgram: !data"));
 2772         while (m != NULL && uio->uio_resid > 0) {
 2773                 len = uio->uio_resid;
 2774                 if (len > m->m_len)
 2775                         len = m->m_len;
 2776                 error = uiomove(mtod(m, char *), (int)len, uio);
 2777                 if (error) {
 2778                         m_freem(m);
 2779                         return (error);
 2780                 }
 2781                 if (len == m->m_len)
 2782                         m = m_free(m);
 2783                 else {
 2784                         m->m_data += len;
 2785                         m->m_len -= len;
 2786                 }
 2787         }
 2788         if (m != NULL) {
 2789                 flags |= MSG_TRUNC;
 2790                 m_freem(m);
 2791         }
 2792         if (flagsp != NULL)
 2793                 *flagsp |= flags;
 2794         return (0);
 2795 }
 2796 
 2797 int
 2798 soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
 2799     struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 2800 {
 2801         int error;
 2802 
 2803         CURVNET_SET(so->so_vnet);
 2804         if (!SOLISTENING(so))
 2805                 error = (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio,
 2806                     mp0, controlp, flagsp));
 2807         else
 2808                 error = ENOTCONN;
 2809         CURVNET_RESTORE();
 2810         return (error);
 2811 }
 2812 
 2813 int
 2814 soshutdown(struct socket *so, int how)
 2815 {
 2816         struct protosw *pr = so->so_proto;
 2817         int error, soerror_enotconn;
 2818 
 2819         if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
 2820                 return (EINVAL);
 2821 
 2822         soerror_enotconn = 0;
 2823         if ((so->so_state &
 2824             (SS_ISCONNECTED | SS_ISCONNECTING | SS_ISDISCONNECTING)) == 0) {
 2825                 /*
 2826                  * POSIX mandates us to return ENOTCONN when shutdown(2) is
 2827                  * invoked on a datagram sockets, however historically we would
 2828                  * actually tear socket down. This is known to be leveraged by
 2829                  * some applications to unblock process waiting in recvXXX(2)
 2830                  * by other process that it shares that socket with. Try to meet
 2831                  * both backward-compatibility and POSIX requirements by forcing
 2832                  * ENOTCONN but still asking protocol to perform pru_shutdown().
 2833                  */
 2834                 if (so->so_type != SOCK_DGRAM && !SOLISTENING(so))
 2835                         return (ENOTCONN);
 2836                 soerror_enotconn = 1;
 2837         }
 2838 
 2839         if (SOLISTENING(so)) {
 2840                 if (how != SHUT_WR) {
 2841                         SOLISTEN_LOCK(so);
 2842                         so->so_error = ECONNABORTED;
 2843                         solisten_wakeup(so);    /* unlocks so */
 2844                 }
 2845                 goto done;
 2846         }
 2847 
 2848         CURVNET_SET(so->so_vnet);
 2849         if (pr->pr_usrreqs->pru_flush != NULL)
 2850                 (*pr->pr_usrreqs->pru_flush)(so, how);
 2851         if (how != SHUT_WR)
 2852                 sorflush(so);
 2853         if (how != SHUT_RD) {
 2854                 error = (*pr->pr_usrreqs->pru_shutdown)(so);
 2855                 wakeup(&so->so_timeo);
 2856                 CURVNET_RESTORE();
 2857                 return ((error == 0 && soerror_enotconn) ? ENOTCONN : error);
 2858         }
 2859         wakeup(&so->so_timeo);
 2860         CURVNET_RESTORE();
 2861 
 2862 done:
 2863         return (soerror_enotconn ? ENOTCONN : 0);
 2864 }
 2865 
 2866 void
 2867 sorflush(struct socket *so)
 2868 {
 2869         struct sockbuf *sb = &so->so_rcv;
 2870         struct protosw *pr = so->so_proto;
 2871         struct socket aso;
 2872         int error;
 2873 
 2874         VNET_SO_ASSERT(so);
 2875 
 2876         /*
 2877          * In order to avoid calling dom_dispose with the socket buffer mutex
 2878          * held, and in order to generally avoid holding the lock for a long
 2879          * time, we make a copy of the socket buffer and clear the original
 2880          * (except locks, state).  The new socket buffer copy won't have
 2881          * initialized locks so we can only call routines that won't use or
 2882          * assert those locks.
 2883          *
 2884          * Dislodge threads currently blocked in receive and wait to acquire
 2885          * a lock against other simultaneous readers before clearing the
 2886          * socket buffer.  Don't let our acquire be interrupted by a signal
 2887          * despite any existing socket disposition on interruptable waiting.
 2888          */
 2889         socantrcvmore(so);
 2890         error = SOCK_IO_RECV_LOCK(so, SBL_WAIT | SBL_NOINTR);
 2891         KASSERT(error == 0, ("%s: cannot lock sock %p recv buffer",
 2892             __func__, so));
 2893 
 2894         /*
 2895          * Invalidate/clear most of the sockbuf structure, but leave selinfo
 2896          * and mutex data unchanged.
 2897          */
 2898         SOCKBUF_LOCK(sb);
 2899         bzero(&aso, sizeof(aso));
 2900         aso.so_pcb = so->so_pcb;
 2901         bcopy(&sb->sb_startzero, &aso.so_rcv.sb_startzero,
 2902             sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
 2903         bzero(&sb->sb_startzero,
 2904             sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
 2905         SOCKBUF_UNLOCK(sb);
 2906         SOCK_IO_RECV_UNLOCK(so);
 2907 
 2908         /*
 2909          * Dispose of special rights and flush the copied socket.  Don't call
 2910          * any unsafe routines (that rely on locks being initialized) on aso.
 2911          */
 2912         if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
 2913                 (*pr->pr_domain->dom_dispose)(&aso);
 2914         sbrelease_internal(&aso.so_rcv, so);
 2915 }
 2916 
 2917 /*
 2918  * Wrapper for Socket established helper hook.
 2919  * Parameters: socket, context of the hook point, hook id.
 2920  */
 2921 static int inline
 2922 hhook_run_socket(struct socket *so, void *hctx, int32_t h_id)
 2923 {
 2924         struct socket_hhook_data hhook_data = {
 2925                 .so = so,
 2926                 .hctx = hctx,
 2927                 .m = NULL,
 2928                 .status = 0
 2929         };
 2930 
 2931         CURVNET_SET(so->so_vnet);
 2932         HHOOKS_RUN_IF(V_socket_hhh[h_id], &hhook_data, &so->osd);
 2933         CURVNET_RESTORE();
 2934 
 2935         /* Ugly but needed, since hhooks return void for now */
 2936         return (hhook_data.status);
 2937 }
 2938 
 2939 /*
 2940  * Perhaps this routine, and sooptcopyout(), below, ought to come in an
 2941  * additional variant to handle the case where the option value needs to be
 2942  * some kind of integer, but not a specific size.  In addition to their use
 2943  * here, these functions are also called by the protocol-level pr_ctloutput()
 2944  * routines.
 2945  */
 2946 int
 2947 sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
 2948 {
 2949         size_t  valsize;
 2950 
 2951         /*
 2952          * If the user gives us more than we wanted, we ignore it, but if we
 2953          * don't get the minimum length the caller wants, we return EINVAL.
 2954          * On success, sopt->sopt_valsize is set to however much we actually
 2955          * retrieved.
 2956          */
 2957         if ((valsize = sopt->sopt_valsize) < minlen)
 2958                 return EINVAL;
 2959         if (valsize > len)
 2960                 sopt->sopt_valsize = valsize = len;
 2961 
 2962         if (sopt->sopt_td != NULL)
 2963                 return (copyin(sopt->sopt_val, buf, valsize));
 2964 
 2965         bcopy(sopt->sopt_val, buf, valsize);
 2966         return (0);
 2967 }
 2968 
 2969 /*
 2970  * Kernel version of setsockopt(2).
 2971  *
 2972  * XXX: optlen is size_t, not socklen_t
 2973  */
 2974 int
 2975 so_setsockopt(struct socket *so, int level, int optname, void *optval,
 2976     size_t optlen)
 2977 {
 2978         struct sockopt sopt;
 2979 
 2980         sopt.sopt_level = level;
 2981         sopt.sopt_name = optname;
 2982         sopt.sopt_dir = SOPT_SET;
 2983         sopt.sopt_val = optval;
 2984         sopt.sopt_valsize = optlen;
 2985         sopt.sopt_td = NULL;
 2986         return (sosetopt(so, &sopt));
 2987 }
 2988 
 2989 int
 2990 sosetopt(struct socket *so, struct sockopt *sopt)
 2991 {
 2992         int     error, optval;
 2993         struct  linger l;
 2994         struct  timeval tv;
 2995         sbintime_t val;
 2996         uint32_t val32;
 2997 #ifdef MAC
 2998         struct mac extmac;
 2999 #endif
 3000 
 3001         CURVNET_SET(so->so_vnet);
 3002         error = 0;
 3003         if (sopt->sopt_level != SOL_SOCKET) {
 3004                 if (so->so_proto->pr_ctloutput != NULL)
 3005                         error = (*so->so_proto->pr_ctloutput)(so, sopt);
 3006                 else
 3007                         error = ENOPROTOOPT;
 3008         } else {
 3009                 switch (sopt->sopt_name) {
 3010                 case SO_ACCEPTFILTER:
 3011                         error = accept_filt_setopt(so, sopt);
 3012                         if (error)
 3013                                 goto bad;
 3014                         break;
 3015 
 3016                 case SO_LINGER:
 3017                         error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
 3018                         if (error)
 3019                                 goto bad;
 3020                         if (l.l_linger < 0 ||
 3021                             l.l_linger > USHRT_MAX ||
 3022                             l.l_linger > (INT_MAX / hz)) {
 3023                                 error = EDOM;
 3024                                 goto bad;
 3025                         }
 3026                         SOCK_LOCK(so);
 3027                         so->so_linger = l.l_linger;
 3028                         if (l.l_onoff)
 3029                                 so->so_options |= SO_LINGER;
 3030                         else
 3031                                 so->so_options &= ~SO_LINGER;
 3032                         SOCK_UNLOCK(so);
 3033                         break;
 3034 
 3035                 case SO_DEBUG:
 3036                 case SO_KEEPALIVE:
 3037                 case SO_DONTROUTE:
 3038                 case SO_USELOOPBACK:
 3039                 case SO_BROADCAST:
 3040                 case SO_REUSEADDR:
 3041                 case SO_REUSEPORT:
 3042                 case SO_REUSEPORT_LB:
 3043                 case SO_OOBINLINE:
 3044                 case SO_TIMESTAMP:
 3045                 case SO_BINTIME:
 3046                 case SO_NOSIGPIPE:
 3047                 case SO_NO_DDP:
 3048                 case SO_NO_OFFLOAD:
 3049                 case SO_RERROR:
 3050                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3051                             sizeof optval);
 3052                         if (error)
 3053                                 goto bad;
 3054                         SOCK_LOCK(so);
 3055                         if (optval)
 3056                                 so->so_options |= sopt->sopt_name;
 3057                         else
 3058                                 so->so_options &= ~sopt->sopt_name;
 3059                         SOCK_UNLOCK(so);
 3060                         break;
 3061 
 3062                 case SO_SETFIB:
 3063                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3064                             sizeof optval);
 3065                         if (error)
 3066                                 goto bad;
 3067 
 3068                         if (optval < 0 || optval >= rt_numfibs) {
 3069                                 error = EINVAL;
 3070                                 goto bad;
 3071                         }
 3072                         if (((so->so_proto->pr_domain->dom_family == PF_INET) ||
 3073                            (so->so_proto->pr_domain->dom_family == PF_INET6) ||
 3074                            (so->so_proto->pr_domain->dom_family == PF_ROUTE)))
 3075                                 so->so_fibnum = optval;
 3076                         else
 3077                                 so->so_fibnum = 0;
 3078                         break;
 3079 
 3080                 case SO_USER_COOKIE:
 3081                         error = sooptcopyin(sopt, &val32, sizeof val32,
 3082                             sizeof val32);
 3083                         if (error)
 3084                                 goto bad;
 3085                         so->so_user_cookie = val32;
 3086                         break;
 3087 
 3088                 case SO_SNDBUF:
 3089                 case SO_RCVBUF:
 3090                 case SO_SNDLOWAT:
 3091                 case SO_RCVLOWAT:
 3092                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3093                             sizeof optval);
 3094                         if (error)
 3095                                 goto bad;
 3096 
 3097                         /*
 3098                          * Values < 1 make no sense for any of these options,
 3099                          * so disallow them.
 3100                          */
 3101                         if (optval < 1) {
 3102                                 error = EINVAL;
 3103                                 goto bad;
 3104                         }
 3105 
 3106                         error = sbsetopt(so, sopt->sopt_name, optval);
 3107                         break;
 3108 
 3109                 case SO_SNDTIMEO:
 3110                 case SO_RCVTIMEO:
 3111 #ifdef COMPAT_FREEBSD32
 3112                         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3113                                 struct timeval32 tv32;
 3114 
 3115                                 error = sooptcopyin(sopt, &tv32, sizeof tv32,
 3116                                     sizeof tv32);
 3117                                 CP(tv32, tv, tv_sec);
 3118                                 CP(tv32, tv, tv_usec);
 3119                         } else
 3120 #endif
 3121                                 error = sooptcopyin(sopt, &tv, sizeof tv,
 3122                                     sizeof tv);
 3123                         if (error)
 3124                                 goto bad;
 3125                         if (tv.tv_sec < 0 || tv.tv_usec < 0 ||
 3126                             tv.tv_usec >= 1000000) {
 3127                                 error = EDOM;
 3128                                 goto bad;
 3129                         }
 3130                         if (tv.tv_sec > INT32_MAX)
 3131                                 val = SBT_MAX;
 3132                         else
 3133                                 val = tvtosbt(tv);
 3134                         switch (sopt->sopt_name) {
 3135                         case SO_SNDTIMEO:
 3136                                 so->so_snd.sb_timeo = val;
 3137                                 break;
 3138                         case SO_RCVTIMEO:
 3139                                 so->so_rcv.sb_timeo = val;
 3140                                 break;
 3141                         }
 3142                         break;
 3143 
 3144                 case SO_LABEL:
 3145 #ifdef MAC
 3146                         error = sooptcopyin(sopt, &extmac, sizeof extmac,
 3147                             sizeof extmac);
 3148                         if (error)
 3149                                 goto bad;
 3150                         error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
 3151                             so, &extmac);
 3152 #else
 3153                         error = EOPNOTSUPP;
 3154 #endif
 3155                         break;
 3156 
 3157                 case SO_TS_CLOCK:
 3158                         error = sooptcopyin(sopt, &optval, sizeof optval,
 3159                             sizeof optval);
 3160                         if (error)
 3161                                 goto bad;
 3162                         if (optval < 0 || optval > SO_TS_CLOCK_MAX) {
 3163                                 error = EINVAL;
 3164                                 goto bad;
 3165                         }
 3166                         so->so_ts_clock = optval;
 3167                         break;
 3168 
 3169                 case SO_MAX_PACING_RATE:
 3170                         error = sooptcopyin(sopt, &val32, sizeof(val32),
 3171                             sizeof(val32));
 3172                         if (error)
 3173                                 goto bad;
 3174                         so->so_max_pacing_rate = val32;
 3175                         break;
 3176 
 3177                 default:
 3178                         if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
 3179                                 error = hhook_run_socket(so, sopt,
 3180                                     HHOOK_SOCKET_OPT);
 3181                         else
 3182                                 error = ENOPROTOOPT;
 3183                         break;
 3184                 }
 3185                 if (error == 0 && so->so_proto->pr_ctloutput != NULL)
 3186                         (void)(*so->so_proto->pr_ctloutput)(so, sopt);
 3187         }
 3188 bad:
 3189         CURVNET_RESTORE();
 3190         return (error);
 3191 }
 3192 
 3193 /*
 3194  * Helper routine for getsockopt.
 3195  */
 3196 int
 3197 sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
 3198 {
 3199         int     error;
 3200         size_t  valsize;
 3201 
 3202         error = 0;
 3203 
 3204         /*
 3205          * Documented get behavior is that we always return a value, possibly
 3206          * truncated to fit in the user's buffer.  Traditional behavior is
 3207          * that we always tell the user precisely how much we copied, rather
 3208          * than something useful like the total amount we had available for
 3209          * her.  Note that this interface is not idempotent; the entire
 3210          * answer must be generated ahead of time.
 3211          */
 3212         valsize = min(len, sopt->sopt_valsize);
 3213         sopt->sopt_valsize = valsize;
 3214         if (sopt->sopt_val != NULL) {
 3215                 if (sopt->sopt_td != NULL)
 3216                         error = copyout(buf, sopt->sopt_val, valsize);
 3217                 else
 3218                         bcopy(buf, sopt->sopt_val, valsize);
 3219         }
 3220         return (error);
 3221 }
 3222 
 3223 int
 3224 sogetopt(struct socket *so, struct sockopt *sopt)
 3225 {
 3226         int     error, optval;
 3227         struct  linger l;
 3228         struct  timeval tv;
 3229 #ifdef MAC
 3230         struct mac extmac;
 3231 #endif
 3232 
 3233         CURVNET_SET(so->so_vnet);
 3234         error = 0;
 3235         if (sopt->sopt_level != SOL_SOCKET) {
 3236                 if (so->so_proto->pr_ctloutput != NULL)
 3237                         error = (*so->so_proto->pr_ctloutput)(so, sopt);
 3238                 else
 3239                         error = ENOPROTOOPT;
 3240                 CURVNET_RESTORE();
 3241                 return (error);
 3242         } else {
 3243                 switch (sopt->sopt_name) {
 3244                 case SO_ACCEPTFILTER:
 3245                         error = accept_filt_getopt(so, sopt);
 3246                         break;
 3247 
 3248                 case SO_LINGER:
 3249                         SOCK_LOCK(so);
 3250                         l.l_onoff = so->so_options & SO_LINGER;
 3251                         l.l_linger = so->so_linger;
 3252                         SOCK_UNLOCK(so);
 3253                         error = sooptcopyout(sopt, &l, sizeof l);
 3254                         break;
 3255 
 3256                 case SO_USELOOPBACK:
 3257                 case SO_DONTROUTE:
 3258                 case SO_DEBUG:
 3259                 case SO_KEEPALIVE:
 3260                 case SO_REUSEADDR:
 3261                 case SO_REUSEPORT:
 3262                 case SO_REUSEPORT_LB:
 3263                 case SO_BROADCAST:
 3264                 case SO_OOBINLINE:
 3265                 case SO_ACCEPTCONN:
 3266                 case SO_TIMESTAMP:
 3267                 case SO_BINTIME:
 3268                 case SO_NOSIGPIPE:
 3269                 case SO_NO_DDP:
 3270                 case SO_NO_OFFLOAD:
 3271                 case SO_RERROR:
 3272                         optval = so->so_options & sopt->sopt_name;
 3273 integer:
 3274                         error = sooptcopyout(sopt, &optval, sizeof optval);
 3275                         break;
 3276 
 3277                 case SO_DOMAIN:
 3278                         optval = so->so_proto->pr_domain->dom_family;
 3279                         goto integer;
 3280 
 3281                 case SO_TYPE:
 3282                         optval = so->so_type;
 3283                         goto integer;
 3284 
 3285                 case SO_PROTOCOL:
 3286                         optval = so->so_proto->pr_protocol;
 3287                         goto integer;
 3288 
 3289                 case SO_ERROR:
 3290                         SOCK_LOCK(so);
 3291                         if (so->so_error) {
 3292                                 optval = so->so_error;
 3293                                 so->so_error = 0;
 3294                         } else {
 3295                                 optval = so->so_rerror;
 3296                                 so->so_rerror = 0;
 3297                         }
 3298                         SOCK_UNLOCK(so);
 3299                         goto integer;
 3300 
 3301                 case SO_SNDBUF:
 3302                         optval = SOLISTENING(so) ? so->sol_sbsnd_hiwat :
 3303                             so->so_snd.sb_hiwat;
 3304                         goto integer;
 3305 
 3306                 case SO_RCVBUF:
 3307                         optval = SOLISTENING(so) ? so->sol_sbrcv_hiwat :
 3308                             so->so_rcv.sb_hiwat;
 3309                         goto integer;
 3310 
 3311                 case SO_SNDLOWAT:
 3312                         optval = SOLISTENING(so) ? so->sol_sbsnd_lowat :
 3313                             so->so_snd.sb_lowat;
 3314                         goto integer;
 3315 
 3316                 case SO_RCVLOWAT:
 3317                         optval = SOLISTENING(so) ? so->sol_sbrcv_lowat :
 3318                             so->so_rcv.sb_lowat;
 3319                         goto integer;
 3320 
 3321                 case SO_SNDTIMEO:
 3322                 case SO_RCVTIMEO:
 3323                         tv = sbttotv(sopt->sopt_name == SO_SNDTIMEO ?
 3324                             so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
 3325 #ifdef COMPAT_FREEBSD32
 3326                         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3327                                 struct timeval32 tv32;
 3328 
 3329                                 CP(tv, tv32, tv_sec);
 3330                                 CP(tv, tv32, tv_usec);
 3331                                 error = sooptcopyout(sopt, &tv32, sizeof tv32);
 3332                         } else
 3333 #endif
 3334                                 error = sooptcopyout(sopt, &tv, sizeof tv);
 3335                         break;
 3336 
 3337                 case SO_LABEL:
 3338 #ifdef MAC
 3339                         error = sooptcopyin(sopt, &extmac, sizeof(extmac),
 3340                             sizeof(extmac));
 3341                         if (error)
 3342                                 goto bad;
 3343                         error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
 3344                             so, &extmac);
 3345                         if (error)
 3346                                 goto bad;
 3347                         error = sooptcopyout(sopt, &extmac, sizeof extmac);
 3348 #else
 3349                         error = EOPNOTSUPP;
 3350 #endif
 3351                         break;
 3352 
 3353                 case SO_PEERLABEL:
 3354 #ifdef MAC
 3355                         error = sooptcopyin(sopt, &extmac, sizeof(extmac),
 3356                             sizeof(extmac));
 3357                         if (error)
 3358                                 goto bad;
 3359                         error = mac_getsockopt_peerlabel(
 3360                             sopt->sopt_td->td_ucred, so, &extmac);
 3361                         if (error)
 3362                                 goto bad;
 3363                         error = sooptcopyout(sopt, &extmac, sizeof extmac);
 3364 #else
 3365                         error = EOPNOTSUPP;
 3366 #endif
 3367                         break;
 3368 
 3369                 case SO_LISTENQLIMIT:
 3370                         optval = SOLISTENING(so) ? so->sol_qlimit : 0;
 3371                         goto integer;
 3372 
 3373                 case SO_LISTENQLEN:
 3374                         optval = SOLISTENING(so) ? so->sol_qlen : 0;
 3375                         goto integer;
 3376 
 3377                 case SO_LISTENINCQLEN:
 3378                         optval = SOLISTENING(so) ? so->sol_incqlen : 0;
 3379                         goto integer;
 3380 
 3381                 case SO_TS_CLOCK:
 3382                         optval = so->so_ts_clock;
 3383                         goto integer;
 3384 
 3385                 case SO_MAX_PACING_RATE:
 3386                         optval = so->so_max_pacing_rate;
 3387                         goto integer;
 3388 
 3389                 default:
 3390                         if (V_socket_hhh[HHOOK_SOCKET_OPT]->hhh_nhooks > 0)
 3391                                 error = hhook_run_socket(so, sopt,
 3392                                     HHOOK_SOCKET_OPT);
 3393                         else
 3394                                 error = ENOPROTOOPT;
 3395                         break;
 3396                 }
 3397         }
 3398 #ifdef MAC
 3399 bad:
 3400 #endif
 3401         CURVNET_RESTORE();
 3402         return (error);
 3403 }
 3404 
 3405 int
 3406 soopt_getm(struct sockopt *sopt, struct mbuf **mp)
 3407 {
 3408         struct mbuf *m, *m_prev;
 3409         int sopt_size = sopt->sopt_valsize;
 3410 
 3411         MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
 3412         if (m == NULL)
 3413                 return ENOBUFS;
 3414         if (sopt_size > MLEN) {
 3415                 MCLGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT);
 3416                 if ((m->m_flags & M_EXT) == 0) {
 3417                         m_free(m);
 3418                         return ENOBUFS;
 3419                 }
 3420                 m->m_len = min(MCLBYTES, sopt_size);
 3421         } else {
 3422                 m->m_len = min(MLEN, sopt_size);
 3423         }
 3424         sopt_size -= m->m_len;
 3425         *mp = m;
 3426         m_prev = m;
 3427 
 3428         while (sopt_size) {
 3429                 MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
 3430                 if (m == NULL) {
 3431                         m_freem(*mp);
 3432                         return ENOBUFS;
 3433                 }
 3434                 if (sopt_size > MLEN) {
 3435                         MCLGET(m, sopt->sopt_td != NULL ? M_WAITOK :
 3436                             M_NOWAIT);
 3437                         if ((m->m_flags & M_EXT) == 0) {
 3438                                 m_freem(m);
 3439                                 m_freem(*mp);
 3440                                 return ENOBUFS;
 3441                         }
 3442                         m->m_len = min(MCLBYTES, sopt_size);
 3443                 } else {
 3444                         m->m_len = min(MLEN, sopt_size);
 3445                 }
 3446                 sopt_size -= m->m_len;
 3447                 m_prev->m_next = m;
 3448                 m_prev = m;
 3449         }
 3450         return (0);
 3451 }
 3452 
 3453 int
 3454 soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
 3455 {
 3456         struct mbuf *m0 = m;
 3457 
 3458         if (sopt->sopt_val == NULL)
 3459                 return (0);
 3460         while (m != NULL && sopt->sopt_valsize >= m->m_len) {
 3461                 if (sopt->sopt_td != NULL) {
 3462                         int error;
 3463 
 3464                         error = copyin(sopt->sopt_val, mtod(m, char *),
 3465                             m->m_len);
 3466                         if (error != 0) {
 3467                                 m_freem(m0);
 3468                                 return(error);
 3469                         }
 3470                 } else
 3471                         bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
 3472                 sopt->sopt_valsize -= m->m_len;
 3473                 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
 3474                 m = m->m_next;
 3475         }
 3476         if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
 3477                 panic("ip6_sooptmcopyin");
 3478         return (0);
 3479 }
 3480 
 3481 int
 3482 soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
 3483 {
 3484         struct mbuf *m0 = m;
 3485         size_t valsize = 0;
 3486 
 3487         if (sopt->sopt_val == NULL)
 3488                 return (0);
 3489         while (m != NULL && sopt->sopt_valsize >= m->m_len) {
 3490                 if (sopt->sopt_td != NULL) {
 3491                         int error;
 3492 
 3493                         error = copyout(mtod(m, char *), sopt->sopt_val,
 3494                             m->m_len);
 3495                         if (error != 0) {
 3496                                 m_freem(m0);
 3497                                 return(error);
 3498                         }
 3499                 } else
 3500                         bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
 3501                 sopt->sopt_valsize -= m->m_len;
 3502                 sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
 3503                 valsize += m->m_len;
 3504                 m = m->m_next;
 3505         }
 3506         if (m != NULL) {
 3507                 /* enough soopt buffer should be given from user-land */
 3508                 m_freem(m0);
 3509                 return(EINVAL);
 3510         }
 3511         sopt->sopt_valsize = valsize;
 3512         return (0);
 3513 }
 3514 
 3515 /*
 3516  * sohasoutofband(): protocol notifies socket layer of the arrival of new
 3517  * out-of-band data, which will then notify socket consumers.
 3518  */
 3519 void
 3520 sohasoutofband(struct socket *so)
 3521 {
 3522 
 3523         if (so->so_sigio != NULL)
 3524                 pgsigio(&so->so_sigio, SIGURG, 0);
 3525         selwakeuppri(&so->so_rdsel, PSOCK);
 3526 }
 3527 
 3528 int
 3529 sopoll(struct socket *so, int events, struct ucred *active_cred,
 3530     struct thread *td)
 3531 {
 3532 
 3533         /*
 3534          * We do not need to set or assert curvnet as long as everyone uses
 3535          * sopoll_generic().
 3536          */
 3537         return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
 3538             td));
 3539 }
 3540 
 3541 int
 3542 sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
 3543     struct thread *td)
 3544 {
 3545         int revents;
 3546 
 3547         SOCK_LOCK(so);
 3548         if (SOLISTENING(so)) {
 3549                 if (!(events & (POLLIN | POLLRDNORM)))
 3550                         revents = 0;
 3551                 else if (!TAILQ_EMPTY(&so->sol_comp))
 3552                         revents = events & (POLLIN | POLLRDNORM);
 3553                 else if ((events & POLLINIGNEOF) == 0 && so->so_error)
 3554                         revents = (events & (POLLIN | POLLRDNORM)) | POLLHUP;
 3555                 else {
 3556                         selrecord(td, &so->so_rdsel);
 3557                         revents = 0;
 3558                 }
 3559         } else {
 3560                 revents = 0;
 3561                 SOCKBUF_LOCK(&so->so_snd);
 3562                 SOCKBUF_LOCK(&so->so_rcv);
 3563                 if (events & (POLLIN | POLLRDNORM))
 3564                         if (soreadabledata(so))
 3565                                 revents |= events & (POLLIN | POLLRDNORM);
 3566                 if (events & (POLLOUT | POLLWRNORM))
 3567                         if (sowriteable(so))
 3568                                 revents |= events & (POLLOUT | POLLWRNORM);
 3569                 if (events & (POLLPRI | POLLRDBAND))
 3570                         if (so->so_oobmark ||
 3571                             (so->so_rcv.sb_state & SBS_RCVATMARK))
 3572                                 revents |= events & (POLLPRI | POLLRDBAND);
 3573                 if ((events & POLLINIGNEOF) == 0) {
 3574                         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 3575                                 revents |= events & (POLLIN | POLLRDNORM);
 3576                                 if (so->so_snd.sb_state & SBS_CANTSENDMORE)
 3577                                         revents |= POLLHUP;
 3578                         }
 3579                 }
 3580                 if (revents == 0) {
 3581                         if (events &
 3582                             (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
 3583                                 selrecord(td, &so->so_rdsel);
 3584                                 so->so_rcv.sb_flags |= SB_SEL;
 3585                         }
 3586                         if (events & (POLLOUT | POLLWRNORM)) {
 3587                                 selrecord(td, &so->so_wrsel);
 3588                                 so->so_snd.sb_flags |= SB_SEL;
 3589                         }
 3590                 }
 3591                 SOCKBUF_UNLOCK(&so->so_rcv);
 3592                 SOCKBUF_UNLOCK(&so->so_snd);
 3593         }
 3594         SOCK_UNLOCK(so);
 3595         return (revents);
 3596 }
 3597 
 3598 int
 3599 soo_kqfilter(struct file *fp, struct knote *kn)
 3600 {
 3601         struct socket *so = kn->kn_fp->f_data;
 3602         struct sockbuf *sb;
 3603         struct knlist *knl;
 3604 
 3605         switch (kn->kn_filter) {
 3606         case EVFILT_READ:
 3607                 kn->kn_fop = &soread_filtops;
 3608                 knl = &so->so_rdsel.si_note;
 3609                 sb = &so->so_rcv;
 3610                 break;
 3611         case EVFILT_WRITE:
 3612                 kn->kn_fop = &sowrite_filtops;
 3613                 knl = &so->so_wrsel.si_note;
 3614                 sb = &so->so_snd;
 3615                 break;
 3616         case EVFILT_EMPTY:
 3617                 kn->kn_fop = &soempty_filtops;
 3618                 knl = &so->so_wrsel.si_note;
 3619                 sb = &so->so_snd;
 3620                 break;
 3621         default:
 3622                 return (EINVAL);
 3623         }
 3624 
 3625         SOCK_LOCK(so);
 3626         if (SOLISTENING(so)) {
 3627                 knlist_add(knl, kn, 1);
 3628         } else {
 3629                 SOCKBUF_LOCK(sb);
 3630                 knlist_add(knl, kn, 1);
 3631                 sb->sb_flags |= SB_KNOTE;
 3632                 SOCKBUF_UNLOCK(sb);
 3633         }
 3634         SOCK_UNLOCK(so);
 3635         return (0);
 3636 }
 3637 
 3638 /*
 3639  * Some routines that return EOPNOTSUPP for entry points that are not
 3640  * supported by a protocol.  Fill in as needed.
 3641  */
 3642 int
 3643 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
 3644 {
 3645 
 3646         return EOPNOTSUPP;
 3647 }
 3648 
 3649 int
 3650 pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job)
 3651 {
 3652 
 3653         return EOPNOTSUPP;
 3654 }
 3655 
 3656 int
 3657 pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
 3658 {
 3659 
 3660         return EOPNOTSUPP;
 3661 }
 3662 
 3663 int
 3664 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
 3665 {
 3666 
 3667         return EOPNOTSUPP;
 3668 }
 3669 
 3670 int
 3671 pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
 3672     struct thread *td)
 3673 {
 3674 
 3675         return EOPNOTSUPP;
 3676 }
 3677 
 3678 int
 3679 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
 3680 {
 3681 
 3682         return EOPNOTSUPP;
 3683 }
 3684 
 3685 int
 3686 pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam,
 3687     struct thread *td)
 3688 {
 3689 
 3690         return EOPNOTSUPP;
 3691 }
 3692 
 3693 int
 3694 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
 3695 {
 3696 
 3697         return EOPNOTSUPP;
 3698 }
 3699 
 3700 int
 3701 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
 3702     struct ifnet *ifp, struct thread *td)
 3703 {
 3704 
 3705         return EOPNOTSUPP;
 3706 }
 3707 
 3708 int
 3709 pru_disconnect_notsupp(struct socket *so)
 3710 {
 3711 
 3712         return EOPNOTSUPP;
 3713 }
 3714 
 3715 int
 3716 pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
 3717 {
 3718 
 3719         return EOPNOTSUPP;
 3720 }
 3721 
 3722 int
 3723 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
 3724 {
 3725 
 3726         return EOPNOTSUPP;
 3727 }
 3728 
 3729 int
 3730 pru_rcvd_notsupp(struct socket *so, int flags)
 3731 {
 3732 
 3733         return EOPNOTSUPP;
 3734 }
 3735 
 3736 int
 3737 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
 3738 {
 3739 
 3740         return EOPNOTSUPP;
 3741 }
 3742 
 3743 int
 3744 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
 3745     struct sockaddr *addr, struct mbuf *control, struct thread *td)
 3746 {
 3747 
 3748         if (control != NULL)
 3749                 m_freem(control);
 3750         if ((flags & PRUS_NOTREADY) == 0)
 3751                 m_freem(m);
 3752         return (EOPNOTSUPP);
 3753 }
 3754 
 3755 int
 3756 pru_ready_notsupp(struct socket *so, struct mbuf *m, int count)
 3757 {
 3758 
 3759         return (EOPNOTSUPP);
 3760 }
 3761 
 3762 /*
 3763  * This isn't really a ``null'' operation, but it's the default one and
 3764  * doesn't do anything destructive.
 3765  */
 3766 int
 3767 pru_sense_null(struct socket *so, struct stat *sb)
 3768 {
 3769 
 3770         sb->st_blksize = so->so_snd.sb_hiwat;
 3771         return 0;
 3772 }
 3773 
 3774 int
 3775 pru_shutdown_notsupp(struct socket *so)
 3776 {
 3777 
 3778         return EOPNOTSUPP;
 3779 }
 3780 
 3781 int
 3782 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
 3783 {
 3784 
 3785         return EOPNOTSUPP;
 3786 }
 3787 
 3788 int
 3789 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
 3790     struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
 3791 {
 3792 
 3793         return EOPNOTSUPP;
 3794 }
 3795 
 3796 int
 3797 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
 3798     struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
 3799 {
 3800 
 3801         return EOPNOTSUPP;
 3802 }
 3803 
 3804 int
 3805 pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
 3806     struct thread *td)
 3807 {
 3808 
 3809         return EOPNOTSUPP;
 3810 }
 3811 
 3812 static void
 3813 filt_sordetach(struct knote *kn)
 3814 {
 3815         struct socket *so = kn->kn_fp->f_data;
 3816 
 3817         so_rdknl_lock(so);
 3818         knlist_remove(&so->so_rdsel.si_note, kn, 1);
 3819         if (!SOLISTENING(so) && knlist_empty(&so->so_rdsel.si_note))
 3820                 so->so_rcv.sb_flags &= ~SB_KNOTE;
 3821         so_rdknl_unlock(so);
 3822 }
 3823 
 3824 /*ARGSUSED*/
 3825 static int
 3826 filt_soread(struct knote *kn, long hint)
 3827 {
 3828         struct socket *so;
 3829 
 3830         so = kn->kn_fp->f_data;
 3831 
 3832         if (SOLISTENING(so)) {
 3833                 SOCK_LOCK_ASSERT(so);
 3834                 kn->kn_data = so->sol_qlen;
 3835                 if (so->so_error) {
 3836                         kn->kn_flags |= EV_EOF;
 3837                         kn->kn_fflags = so->so_error;
 3838                         return (1);
 3839                 }
 3840                 return (!TAILQ_EMPTY(&so->sol_comp));
 3841         }
 3842 
 3843         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 3844 
 3845         kn->kn_data = sbavail(&so->so_rcv) - so->so_rcv.sb_ctl;
 3846         if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
 3847                 kn->kn_flags |= EV_EOF;
 3848                 kn->kn_fflags = so->so_error;
 3849                 return (1);
 3850         } else if (so->so_error || so->so_rerror)
 3851                 return (1);
 3852 
 3853         if (kn->kn_sfflags & NOTE_LOWAT) {
 3854                 if (kn->kn_data >= kn->kn_sdata)
 3855                         return (1);
 3856         } else if (sbavail(&so->so_rcv) >= so->so_rcv.sb_lowat)
 3857                 return (1);
 3858 
 3859         /* This hook returning non-zero indicates an event, not error */
 3860         return (hhook_run_socket(so, NULL, HHOOK_FILT_SOREAD));
 3861 }
 3862 
 3863 static void
 3864 filt_sowdetach(struct knote *kn)
 3865 {
 3866         struct socket *so = kn->kn_fp->f_data;
 3867 
 3868         so_wrknl_lock(so);
 3869         knlist_remove(&so->so_wrsel.si_note, kn, 1);
 3870         if (!SOLISTENING(so) && knlist_empty(&so->so_wrsel.si_note))
 3871                 so->so_snd.sb_flags &= ~SB_KNOTE;
 3872         so_wrknl_unlock(so);
 3873 }
 3874 
 3875 /*ARGSUSED*/
 3876 static int
 3877 filt_sowrite(struct knote *kn, long hint)
 3878 {
 3879         struct socket *so;
 3880 
 3881         so = kn->kn_fp->f_data;
 3882 
 3883         if (SOLISTENING(so))
 3884                 return (0);
 3885 
 3886         SOCKBUF_LOCK_ASSERT(&so->so_snd);
 3887         kn->kn_data = sbspace(&so->so_snd);
 3888 
 3889         hhook_run_socket(so, kn, HHOOK_FILT_SOWRITE);
 3890 
 3891         if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 3892                 kn->kn_flags |= EV_EOF;
 3893                 kn->kn_fflags = so->so_error;
 3894                 return (1);
 3895         } else if (so->so_error)        /* temporary udp error */
 3896                 return (1);
 3897         else if (((so->so_state & SS_ISCONNECTED) == 0) &&
 3898             (so->so_proto->pr_flags & PR_CONNREQUIRED))
 3899                 return (0);
 3900         else if (kn->kn_sfflags & NOTE_LOWAT)
 3901                 return (kn->kn_data >= kn->kn_sdata);
 3902         else
 3903                 return (kn->kn_data >= so->so_snd.sb_lowat);
 3904 }
 3905 
 3906 static int
 3907 filt_soempty(struct knote *kn, long hint)
 3908 {
 3909         struct socket *so;
 3910 
 3911         so = kn->kn_fp->f_data;
 3912 
 3913         if (SOLISTENING(so))
 3914                 return (1);
 3915 
 3916         SOCKBUF_LOCK_ASSERT(&so->so_snd);
 3917         kn->kn_data = sbused(&so->so_snd);
 3918 
 3919         if (kn->kn_data == 0)
 3920                 return (1);
 3921         else
 3922                 return (0);
 3923 }
 3924 
 3925 int
 3926 socheckuid(struct socket *so, uid_t uid)
 3927 {
 3928 
 3929         if (so == NULL)
 3930                 return (EPERM);
 3931         if (so->so_cred->cr_uid != uid)
 3932                 return (EPERM);
 3933         return (0);
 3934 }
 3935 
 3936 /*
 3937  * These functions are used by protocols to notify the socket layer (and its
 3938  * consumers) of state changes in the sockets driven by protocol-side events.
 3939  */
 3940 
 3941 /*
 3942  * Procedures to manipulate state flags of socket and do appropriate wakeups.
 3943  *
 3944  * Normal sequence from the active (originating) side is that
 3945  * soisconnecting() is called during processing of connect() call, resulting
 3946  * in an eventual call to soisconnected() if/when the connection is
 3947  * established.  When the connection is torn down soisdisconnecting() is
 3948  * called during processing of disconnect() call, and soisdisconnected() is
 3949  * called when the connection to the peer is totally severed.  The semantics
 3950  * of these routines are such that connectionless protocols can call
 3951  * soisconnected() and soisdisconnected() only, bypassing the in-progress
 3952  * calls when setting up a ``connection'' takes no time.
 3953  *
 3954  * From the passive side, a socket is created with two queues of sockets:
 3955  * so_incomp for connections in progress and so_comp for connections already
 3956  * made and awaiting user acceptance.  As a protocol is preparing incoming
 3957  * connections, it creates a socket structure queued on so_incomp by calling
 3958  * sonewconn().  When the connection is established, soisconnected() is
 3959  * called, and transfers the socket structure to so_comp, making it available
 3960  * to accept().
 3961  *
 3962  * If a socket is closed with sockets on either so_incomp or so_comp, these
 3963  * sockets are dropped.
 3964  *
 3965  * If higher-level protocols are implemented in the kernel, the wakeups done
 3966  * here will sometimes cause software-interrupt process scheduling.
 3967  */
 3968 void
 3969 soisconnecting(struct socket *so)
 3970 {
 3971 
 3972         SOCK_LOCK(so);
 3973         so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
 3974         so->so_state |= SS_ISCONNECTING;
 3975         SOCK_UNLOCK(so);
 3976 }
 3977 
 3978 void
 3979 soisconnected(struct socket *so)
 3980 {
 3981         bool last __diagused;
 3982 
 3983         SOCK_LOCK(so);
 3984         so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
 3985         so->so_state |= SS_ISCONNECTED;
 3986 
 3987         if (so->so_qstate == SQ_INCOMP) {
 3988                 struct socket *head = so->so_listen;
 3989                 int ret;
 3990 
 3991                 KASSERT(head, ("%s: so %p on incomp of NULL", __func__, so));
 3992                 /*
 3993                  * Promoting a socket from incomplete queue to complete, we
 3994                  * need to go through reverse order of locking.  We first do
 3995                  * trylock, and if that doesn't succeed, we go the hard way
 3996                  * leaving a reference and rechecking consistency after proper
 3997                  * locking.
 3998                  */
 3999                 if (__predict_false(SOLISTEN_TRYLOCK(head) == 0)) {
 4000                         soref(head);
 4001                         SOCK_UNLOCK(so);
 4002                         SOLISTEN_LOCK(head);
 4003                         SOCK_LOCK(so);
 4004                         if (__predict_false(head != so->so_listen)) {
 4005                                 /*
 4006                                  * The socket went off the listen queue,
 4007                                  * should be lost race to close(2) of sol.
 4008                                  * The socket is about to soabort().
 4009                                  */
 4010                                 SOCK_UNLOCK(so);
 4011                                 sorele(head);
 4012                                 return;
 4013                         }
 4014                         last = refcount_release(&head->so_count);
 4015                         KASSERT(!last, ("%s: released last reference for %p",
 4016                             __func__, head));
 4017                 }
 4018 again:
 4019                 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
 4020                         TAILQ_REMOVE(&head->sol_incomp, so, so_list);
 4021                         head->sol_incqlen--;
 4022                         TAILQ_INSERT_TAIL(&head->sol_comp, so, so_list);
 4023                         head->sol_qlen++;
 4024                         so->so_qstate = SQ_COMP;
 4025                         SOCK_UNLOCK(so);
 4026                         solisten_wakeup(head);  /* unlocks */
 4027                 } else {
 4028                         SOCKBUF_LOCK(&so->so_rcv);
 4029                         soupcall_set(so, SO_RCV,
 4030                             head->sol_accept_filter->accf_callback,
 4031                             head->sol_accept_filter_arg);
 4032                         so->so_options &= ~SO_ACCEPTFILTER;
 4033                         ret = head->sol_accept_filter->accf_callback(so,
 4034                             head->sol_accept_filter_arg, M_NOWAIT);
 4035                         if (ret == SU_ISCONNECTED) {
 4036                                 soupcall_clear(so, SO_RCV);
 4037                                 SOCKBUF_UNLOCK(&so->so_rcv);
 4038                                 goto again;
 4039                         }
 4040                         SOCKBUF_UNLOCK(&so->so_rcv);
 4041                         SOCK_UNLOCK(so);
 4042                         SOLISTEN_UNLOCK(head);
 4043                 }
 4044                 return;
 4045         }
 4046         SOCK_UNLOCK(so);
 4047         wakeup(&so->so_timeo);
 4048         sorwakeup(so);
 4049         sowwakeup(so);
 4050 }
 4051 
 4052 void
 4053 soisdisconnecting(struct socket *so)
 4054 {
 4055 
 4056         SOCK_LOCK(so);
 4057         so->so_state &= ~SS_ISCONNECTING;
 4058         so->so_state |= SS_ISDISCONNECTING;
 4059 
 4060         if (!SOLISTENING(so)) {
 4061                 SOCKBUF_LOCK(&so->so_rcv);
 4062                 socantrcvmore_locked(so);
 4063                 SOCKBUF_LOCK(&so->so_snd);
 4064                 socantsendmore_locked(so);
 4065         }
 4066         SOCK_UNLOCK(so);
 4067         wakeup(&so->so_timeo);
 4068 }
 4069 
 4070 void
 4071 soisdisconnected(struct socket *so)
 4072 {
 4073 
 4074         SOCK_LOCK(so);
 4075 
 4076         /*
 4077          * There is at least one reader of so_state that does not
 4078          * acquire socket lock, namely soreceive_generic().  Ensure
 4079          * that it never sees all flags that track connection status
 4080          * cleared, by ordering the update with a barrier semantic of
 4081          * our release thread fence.
 4082          */
 4083         so->so_state |= SS_ISDISCONNECTED;
 4084         atomic_thread_fence_rel();
 4085         so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
 4086 
 4087         if (!SOLISTENING(so)) {
 4088                 SOCK_UNLOCK(so);
 4089                 SOCKBUF_LOCK(&so->so_rcv);
 4090                 socantrcvmore_locked(so);
 4091                 SOCKBUF_LOCK(&so->so_snd);
 4092                 sbdrop_locked(&so->so_snd, sbused(&so->so_snd));
 4093                 socantsendmore_locked(so);
 4094         } else
 4095                 SOCK_UNLOCK(so);
 4096         wakeup(&so->so_timeo);
 4097 }
 4098 
 4099 int
 4100 soiolock(struct socket *so, struct sx *sx, int flags)
 4101 {
 4102         int error;
 4103 
 4104         KASSERT((flags & SBL_VALID) == flags,
 4105             ("soiolock: invalid flags %#x", flags));
 4106 
 4107         if ((flags & SBL_WAIT) != 0) {
 4108                 if ((flags & SBL_NOINTR) != 0) {
 4109                         sx_xlock(sx);
 4110                 } else {
 4111                         error = sx_xlock_sig(sx);
 4112                         if (error != 0)
 4113                                 return (error);
 4114                 }
 4115         } else if (!sx_try_xlock(sx)) {
 4116                 return (EWOULDBLOCK);
 4117         }
 4118 
 4119         if (__predict_false(SOLISTENING(so))) {
 4120                 sx_xunlock(sx);
 4121                 return (ENOTCONN);
 4122         }
 4123         return (0);
 4124 }
 4125 
 4126 void
 4127 soiounlock(struct sx *sx)
 4128 {
 4129         sx_xunlock(sx);
 4130 }
 4131 
 4132 /*
 4133  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
 4134  */
 4135 struct sockaddr *
 4136 sodupsockaddr(const struct sockaddr *sa, int mflags)
 4137 {
 4138         struct sockaddr *sa2;
 4139 
 4140         sa2 = malloc(sa->sa_len, M_SONAME, mflags);
 4141         if (sa2)
 4142                 bcopy(sa, sa2, sa->sa_len);
 4143         return sa2;
 4144 }
 4145 
 4146 /*
 4147  * Register per-socket destructor.
 4148  */
 4149 void
 4150 sodtor_set(struct socket *so, so_dtor_t *func)
 4151 {
 4152 
 4153         SOCK_LOCK_ASSERT(so);
 4154         so->so_dtor = func;
 4155 }
 4156 
 4157 /*
 4158  * Register per-socket buffer upcalls.
 4159  */
 4160 void
 4161 soupcall_set(struct socket *so, int which, so_upcall_t func, void *arg)
 4162 {
 4163         struct sockbuf *sb;
 4164 
 4165         KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
 4166 
 4167         switch (which) {
 4168         case SO_RCV:
 4169                 sb = &so->so_rcv;
 4170                 break;
 4171         case SO_SND:
 4172                 sb = &so->so_snd;
 4173                 break;
 4174         default:
 4175                 panic("soupcall_set: bad which");
 4176         }
 4177         SOCKBUF_LOCK_ASSERT(sb);
 4178         sb->sb_upcall = func;
 4179         sb->sb_upcallarg = arg;
 4180         sb->sb_flags |= SB_UPCALL;
 4181 }
 4182 
 4183 void
 4184 soupcall_clear(struct socket *so, int which)
 4185 {
 4186         struct sockbuf *sb;
 4187 
 4188         KASSERT(!SOLISTENING(so), ("%s: so %p listening", __func__, so));
 4189 
 4190         switch (which) {
 4191         case SO_RCV:
 4192                 sb = &so->so_rcv;
 4193                 break;
 4194         case SO_SND:
 4195                 sb = &so->so_snd;
 4196                 break;
 4197         default:
 4198                 panic("soupcall_clear: bad which");
 4199         }
 4200         SOCKBUF_LOCK_ASSERT(sb);
 4201         KASSERT(sb->sb_upcall != NULL,
 4202             ("%s: so %p no upcall to clear", __func__, so));
 4203         sb->sb_upcall = NULL;
 4204         sb->sb_upcallarg = NULL;
 4205         sb->sb_flags &= ~SB_UPCALL;
 4206 }
 4207 
 4208 void
 4209 solisten_upcall_set(struct socket *so, so_upcall_t func, void *arg)
 4210 {
 4211 
 4212         SOLISTEN_LOCK_ASSERT(so);
 4213         so->sol_upcall = func;
 4214         so->sol_upcallarg = arg;
 4215 }
 4216 
 4217 static void
 4218 so_rdknl_lock(void *arg)
 4219 {
 4220         struct socket *so = arg;
 4221 
 4222         if (SOLISTENING(so))
 4223                 SOCK_LOCK(so);
 4224         else
 4225                 SOCKBUF_LOCK(&so->so_rcv);
 4226 }
 4227 
 4228 static void
 4229 so_rdknl_unlock(void *arg)
 4230 {
 4231         struct socket *so = arg;
 4232 
 4233         if (SOLISTENING(so))
 4234                 SOCK_UNLOCK(so);
 4235         else
 4236                 SOCKBUF_UNLOCK(&so->so_rcv);
 4237 }
 4238 
 4239 static void
 4240 so_rdknl_assert_lock(void *arg, int what)
 4241 {
 4242         struct socket *so = arg;
 4243 
 4244         if (what == LA_LOCKED) {
 4245                 if (SOLISTENING(so))
 4246                         SOCK_LOCK_ASSERT(so);
 4247                 else
 4248                         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
 4249         } else {
 4250                 if (SOLISTENING(so))
 4251                         SOCK_UNLOCK_ASSERT(so);
 4252                 else
 4253                         SOCKBUF_UNLOCK_ASSERT(&so->so_rcv);
 4254         }
 4255 }
 4256 
 4257 static void
 4258 so_wrknl_lock(void *arg)
 4259 {
 4260         struct socket *so = arg;
 4261 
 4262         if (SOLISTENING(so))
 4263                 SOCK_LOCK(so);
 4264         else
 4265                 SOCKBUF_LOCK(&so->so_snd);
 4266 }
 4267 
 4268 static void
 4269 so_wrknl_unlock(void *arg)
 4270 {
 4271         struct socket *so = arg;
 4272 
 4273         if (SOLISTENING(so))
 4274                 SOCK_UNLOCK(so);
 4275         else
 4276                 SOCKBUF_UNLOCK(&so->so_snd);
 4277 }
 4278 
 4279 static void
 4280 so_wrknl_assert_lock(void *arg, int what)
 4281 {
 4282         struct socket *so = arg;
 4283 
 4284         if (what == LA_LOCKED) {
 4285                 if (SOLISTENING(so))
 4286                         SOCK_LOCK_ASSERT(so);
 4287                 else
 4288                         SOCKBUF_LOCK_ASSERT(&so->so_snd);
 4289         } else {
 4290                 if (SOLISTENING(so))
 4291                         SOCK_UNLOCK_ASSERT(so);
 4292                 else
 4293                         SOCKBUF_UNLOCK_ASSERT(&so->so_snd);
 4294         }
 4295 }
 4296 
 4297 /*
 4298  * Create an external-format (``xsocket'') structure using the information in
 4299  * the kernel-format socket structure pointed to by so.  This is done to
 4300  * reduce the spew of irrelevant information over this interface, to isolate
 4301  * user code from changes in the kernel structure, and potentially to provide
 4302  * information-hiding if we decide that some of this information should be
 4303  * hidden from users.
 4304  */
 4305 void
 4306 sotoxsocket(struct socket *so, struct xsocket *xso)
 4307 {
 4308 
 4309         bzero(xso, sizeof(*xso));
 4310         xso->xso_len = sizeof *xso;
 4311         xso->xso_so = (uintptr_t)so;
 4312         xso->so_type = so->so_type;
 4313         xso->so_options = so->so_options;
 4314         xso->so_linger = so->so_linger;
 4315         xso->so_state = so->so_state;
 4316         xso->so_pcb = (uintptr_t)so->so_pcb;
 4317         xso->xso_protocol = so->so_proto->pr_protocol;
 4318         xso->xso_family = so->so_proto->pr_domain->dom_family;
 4319         xso->so_timeo = so->so_timeo;
 4320         xso->so_error = so->so_error;
 4321         xso->so_uid = so->so_cred->cr_uid;
 4322         xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
 4323         if (SOLISTENING(so)) {
 4324                 xso->so_qlen = so->sol_qlen;
 4325                 xso->so_incqlen = so->sol_incqlen;
 4326                 xso->so_qlimit = so->sol_qlimit;
 4327                 xso->so_oobmark = 0;
 4328         } else {
 4329                 xso->so_state |= so->so_qstate;
 4330                 xso->so_qlen = xso->so_incqlen = xso->so_qlimit = 0;
 4331                 xso->so_oobmark = so->so_oobmark;
 4332                 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
 4333                 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
 4334         }
 4335 }
 4336 
 4337 struct sockbuf *
 4338 so_sockbuf_rcv(struct socket *so)
 4339 {
 4340 
 4341         return (&so->so_rcv);
 4342 }
 4343 
 4344 struct sockbuf *
 4345 so_sockbuf_snd(struct socket *so)
 4346 {
 4347 
 4348         return (&so->so_snd);
 4349 }
 4350 
 4351 int
 4352 so_state_get(const struct socket *so)
 4353 {
 4354 
 4355         return (so->so_state);
 4356 }
 4357 
 4358 void
 4359 so_state_set(struct socket *so, int val)
 4360 {
 4361 
 4362         so->so_state = val;
 4363 }
 4364 
 4365 int
 4366 so_options_get(const struct socket *so)
 4367 {
 4368 
 4369         return (so->so_options);
 4370 }
 4371 
 4372 void
 4373 so_options_set(struct socket *so, int val)
 4374 {
 4375 
 4376         so->so_options = val;
 4377 }
 4378 
 4379 int
 4380 so_error_get(const struct socket *so)
 4381 {
 4382 
 4383         return (so->so_error);
 4384 }
 4385 
 4386 void
 4387 so_error_set(struct socket *so, int val)
 4388 {
 4389 
 4390         so->so_error = val;
 4391 }
 4392 
 4393 int
 4394 so_linger_get(const struct socket *so)
 4395 {
 4396 
 4397         return (so->so_linger);
 4398 }
 4399 
 4400 void
 4401 so_linger_set(struct socket *so, int val)
 4402 {
 4403 
 4404         KASSERT(val >= 0 && val <= USHRT_MAX && val <= (INT_MAX / hz),
 4405             ("%s: val %d out of range", __func__, val));
 4406 
 4407         so->so_linger = val;
 4408 }
 4409 
 4410 struct protosw *
 4411 so_protosw_get(const struct socket *so)
 4412 {
 4413 
 4414         return (so->so_proto);
 4415 }
 4416 
 4417 void
 4418 so_protosw_set(struct socket *so, struct protosw *val)
 4419 {
 4420 
 4421         so->so_proto = val;
 4422 }
 4423 
 4424 void
 4425 so_sorwakeup(struct socket *so)
 4426 {
 4427 
 4428         sorwakeup(so);
 4429 }
 4430 
 4431 void
 4432 so_sowwakeup(struct socket *so)
 4433 {
 4434 
 4435         sowwakeup(so);
 4436 }
 4437 
 4438 void
 4439 so_sorwakeup_locked(struct socket *so)
 4440 {
 4441 
 4442         sorwakeup_locked(so);
 4443 }
 4444 
 4445 void
 4446 so_sowwakeup_locked(struct socket *so)
 4447 {
 4448 
 4449         sowwakeup_locked(so);
 4450 }
 4451 
 4452 void
 4453 so_lock(struct socket *so)
 4454 {
 4455 
 4456         SOCK_LOCK(so);
 4457 }
 4458 
 4459 void
 4460 so_unlock(struct socket *so)
 4461 {
 4462 
 4463         SOCK_UNLOCK(so);
 4464 }

Cache object: 0531686818d37fe1a94d6b7873b2eb07


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.