The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_socket2.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)uipc_socket2.c      8.1 (Berkeley) 6/10/93
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include "opt_mac.h"
   36 #include "opt_param.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/aio.h> /* for aio_swake proto */
   40 #include <sys/domain.h>
   41 #include <sys/event.h>
   42 #include <sys/file.h>   /* for maxfiles */
   43 #include <sys/kernel.h>
   44 #include <sys/lock.h>
   45 #include <sys/mac.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mbuf.h>
   48 #include <sys/mutex.h>
   49 #include <sys/proc.h>
   50 #include <sys/protosw.h>
   51 #include <sys/resourcevar.h>
   52 #include <sys/signalvar.h>
   53 #include <sys/socket.h>
   54 #include <sys/socketvar.h>
   55 #include <sys/stat.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/systm.h>
   58 
   59 int     maxsockets;
   60 
   61 void (*aio_swake)(struct socket *, struct sockbuf *);
   62 
   63 /*
   64  * Primitive routines for operating on sockets and socket buffers
   65  */
   66 
   67 u_long  sb_max = SB_MAX;
   68 static  u_long sb_max_adj =
   69     SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
   70 
   71 static  u_long sb_efficiency = 8;       /* parameter for sbreserve() */
   72 
   73 /*
   74  * Procedures to manipulate state flags of socket
   75  * and do appropriate wakeups.  Normal sequence from the
   76  * active (originating) side is that soisconnecting() is
   77  * called during processing of connect() call,
   78  * resulting in an eventual call to soisconnected() if/when the
   79  * connection is established.  When the connection is torn down
   80  * soisdisconnecting() is called during processing of disconnect() call,
   81  * and soisdisconnected() is called when the connection to the peer
   82  * is totally severed.  The semantics of these routines are such that
   83  * connectionless protocols can call soisconnected() and soisdisconnected()
   84  * only, bypassing the in-progress calls when setting up a ``connection''
   85  * takes no time.
   86  *
   87  * From the passive side, a socket is created with
   88  * two queues of sockets: so_incomp for connections in progress
   89  * and so_comp for connections already made and awaiting user acceptance.
   90  * As a protocol is preparing incoming connections, it creates a socket
   91  * structure queued on so_incomp by calling sonewconn().  When the connection
   92  * is established, soisconnected() is called, and transfers the
   93  * socket structure to so_comp, making it available to accept().
   94  *
   95  * If a socket is closed with sockets on either
   96  * so_incomp or so_comp, these sockets are dropped.
   97  *
   98  * If higher level protocols are implemented in
   99  * the kernel, the wakeups done here will sometimes
  100  * cause software-interrupt process scheduling.
  101  */
  102 
  103 void
  104 soisconnecting(so)
  105         register struct socket *so;
  106 {
  107 
  108         SOCK_LOCK(so);
  109         so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
  110         so->so_state |= SS_ISCONNECTING;
  111         SOCK_UNLOCK(so);
  112 }
  113 
  114 void
  115 soisconnected(so)
  116         struct socket *so;
  117 {
  118         struct socket *head;
  119 
  120         SOCK_LOCK(so);
  121         so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
  122         so->so_state |= SS_ISCONNECTED;
  123         SOCK_UNLOCK(so);
  124         ACCEPT_LOCK();
  125         head = so->so_head;
  126         if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
  127                 if ((so->so_options & SO_ACCEPTFILTER) == 0) {
  128                         TAILQ_REMOVE(&head->so_incomp, so, so_list);
  129                         head->so_incqlen--;
  130                         so->so_qstate &= ~SQ_INCOMP;
  131                         TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
  132                         head->so_qlen++;
  133                         so->so_qstate |= SQ_COMP;
  134                         ACCEPT_UNLOCK();
  135                         sorwakeup(head);
  136                         wakeup_one(&head->so_timeo);
  137                 } else {
  138                         ACCEPT_UNLOCK();
  139                         SOCK_LOCK(so);
  140                         so->so_upcall =
  141                             head->so_accf->so_accept_filter->accf_callback;
  142                         so->so_upcallarg = head->so_accf->so_accept_filter_arg;
  143                         so->so_rcv.sb_flags |= SB_UPCALL;
  144                         so->so_options &= ~SO_ACCEPTFILTER;
  145                         SOCK_UNLOCK(so);
  146                         so->so_upcall(so, so->so_upcallarg, M_DONTWAIT);
  147                 }
  148                 return;
  149         }
  150         ACCEPT_UNLOCK();
  151         wakeup(&so->so_timeo);
  152         sorwakeup(so);
  153         sowwakeup(so);
  154 }
  155 
  156 void
  157 soisdisconnecting(so)
  158         register struct socket *so;
  159 {
  160 
  161         /*
  162          * XXXRW: This code assumes that SOCK_LOCK(so) and
  163          * SOCKBUF_LOCK(&so->so_rcv) are the same.
  164          */
  165         SOCKBUF_LOCK(&so->so_rcv);
  166         so->so_state &= ~SS_ISCONNECTING;
  167         so->so_state |= SS_ISDISCONNECTING;
  168         so->so_rcv.sb_state |= SBS_CANTRCVMORE;
  169         sorwakeup_locked(so);
  170         SOCKBUF_LOCK(&so->so_snd);
  171         so->so_snd.sb_state |= SBS_CANTSENDMORE;
  172         sowwakeup_locked(so);
  173         wakeup(&so->so_timeo);
  174 }
  175 
  176 void
  177 soisdisconnected(so)
  178         register struct socket *so;
  179 {
  180 
  181         /*
  182          * XXXRW: This code assumes that SOCK_LOCK(so) and
  183          * SOCKBUF_LOCK(&so->so_rcv) are the same.
  184          */
  185         SOCKBUF_LOCK(&so->so_rcv);
  186         so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
  187         so->so_state |= SS_ISDISCONNECTED;
  188         so->so_rcv.sb_state |= SBS_CANTRCVMORE;
  189         sorwakeup_locked(so);
  190         SOCKBUF_LOCK(&so->so_snd);
  191         so->so_snd.sb_state |= SBS_CANTSENDMORE;
  192         sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
  193         sowwakeup_locked(so);
  194         wakeup(&so->so_timeo);
  195 }
  196 
  197 /*
  198  * When an attempt at a new connection is noted on a socket
  199  * which accepts connections, sonewconn is called.  If the
  200  * connection is possible (subject to space constraints, etc.)
  201  * then we allocate a new structure, propoerly linked into the
  202  * data structure of the original socket, and return this.
  203  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
  204  *
  205  * note: the ref count on the socket is 0 on return
  206  */
  207 struct socket *
  208 sonewconn(head, connstatus)
  209         register struct socket *head;
  210         int connstatus;
  211 {
  212         register struct socket *so;
  213         int over;
  214 
  215         ACCEPT_LOCK();
  216         over = (head->so_qlen > 3 * head->so_qlimit / 2);
  217         ACCEPT_UNLOCK();
  218         if (over)
  219                 return (NULL);
  220         so = soalloc(M_NOWAIT);
  221         if (so == NULL)
  222                 return (NULL);
  223         if ((head->so_options & SO_ACCEPTFILTER) != 0)
  224                 connstatus = 0;
  225         so->so_head = head;
  226         so->so_type = head->so_type;
  227         so->so_options = head->so_options &~ SO_ACCEPTCONN;
  228         so->so_linger = head->so_linger;
  229         so->so_state = head->so_state | SS_NOFDREF;
  230         so->so_proto = head->so_proto;
  231         so->so_timeo = head->so_timeo;
  232         so->so_cred = crhold(head->so_cred);
  233 #ifdef MAC
  234         SOCK_LOCK(head);
  235         mac_create_socket_from_socket(head, so);
  236         SOCK_UNLOCK(head);
  237 #endif
  238         knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv));
  239         knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd));
  240         if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
  241             (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
  242                 sodealloc(so);
  243                 return (NULL);
  244         }
  245         so->so_state |= connstatus;
  246         ACCEPT_LOCK();
  247         if (connstatus) {
  248                 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
  249                 so->so_qstate |= SQ_COMP;
  250                 head->so_qlen++;
  251         } else {
  252                 /*
  253                  * Keep removing sockets from the head until there's room for
  254                  * us to insert on the tail.  In pre-locking revisions, this
  255                  * was a simple if(), but as we could be racing with other
  256                  * threads and soabort() requires dropping locks, we must
  257                  * loop waiting for the condition to be true.
  258                  */
  259                 while (head->so_incqlen > head->so_qlimit) {
  260                         struct socket *sp;
  261                         sp = TAILQ_FIRST(&head->so_incomp);
  262                         TAILQ_REMOVE(&head->so_incomp, sp, so_list);
  263                         head->so_incqlen--;
  264                         sp->so_qstate &= ~SQ_INCOMP;
  265                         sp->so_head = NULL;
  266                         ACCEPT_UNLOCK();
  267                         (void) soabort(sp);
  268                         ACCEPT_LOCK();
  269                 }
  270                 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
  271                 so->so_qstate |= SQ_INCOMP;
  272                 head->so_incqlen++;
  273         }
  274         ACCEPT_UNLOCK();
  275         if (connstatus) {
  276                 sorwakeup(head);
  277                 wakeup_one(&head->so_timeo);
  278         }
  279         return (so);
  280 }
  281 
  282 /*
  283  * Socantsendmore indicates that no more data will be sent on the
  284  * socket; it would normally be applied to a socket when the user
  285  * informs the system that no more data is to be sent, by the protocol
  286  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
  287  * will be received, and will normally be applied to the socket by a
  288  * protocol when it detects that the peer will send no more data.
  289  * Data queued for reading in the socket may yet be read.
  290  */
  291 void
  292 socantsendmore_locked(so)
  293         struct socket *so;
  294 {
  295 
  296         SOCKBUF_LOCK_ASSERT(&so->so_snd);
  297 
  298         so->so_snd.sb_state |= SBS_CANTSENDMORE;
  299         sowwakeup_locked(so);
  300         mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
  301 }
  302 
  303 void
  304 socantsendmore(so)
  305         struct socket *so;
  306 {
  307 
  308         SOCKBUF_LOCK(&so->so_snd);
  309         socantsendmore_locked(so);
  310         mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
  311 }
  312 
  313 void
  314 socantrcvmore_locked(so)
  315         struct socket *so;
  316 {
  317 
  318         SOCKBUF_LOCK_ASSERT(&so->so_rcv);
  319 
  320         so->so_rcv.sb_state |= SBS_CANTRCVMORE;
  321         sorwakeup_locked(so);
  322         mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
  323 }
  324 
  325 void
  326 socantrcvmore(so)
  327         struct socket *so;
  328 {
  329 
  330         SOCKBUF_LOCK(&so->so_rcv);
  331         socantrcvmore_locked(so);
  332         mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
  333 }
  334 
  335 /*
  336  * Wait for data to arrive at/drain from a socket buffer.
  337  */
  338 int
  339 sbwait(sb)
  340         struct sockbuf *sb;
  341 {
  342 
  343         SOCKBUF_LOCK_ASSERT(sb);
  344 
  345         sb->sb_flags |= SB_WAIT;
  346         return (msleep(&sb->sb_cc, &sb->sb_mtx,
  347             (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
  348             sb->sb_timeo));
  349 }
  350 
  351 /*
  352  * Lock a sockbuf already known to be locked;
  353  * return any error returned from sleep (EINTR).
  354  */
  355 int
  356 sb_lock(sb)
  357         register struct sockbuf *sb;
  358 {
  359         int error;
  360 
  361         SOCKBUF_LOCK_ASSERT(sb);
  362 
  363         while (sb->sb_flags & SB_LOCK) {
  364                 sb->sb_flags |= SB_WANT;
  365                 error = msleep(&sb->sb_flags, &sb->sb_mtx,
  366                     (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
  367                     "sblock", 0);
  368                 if (error)
  369                         return (error);
  370         }
  371         sb->sb_flags |= SB_LOCK;
  372         return (0);
  373 }
  374 
  375 /*
  376  * Wakeup processes waiting on a socket buffer.  Do asynchronous
  377  * notification via SIGIO if the socket has the SS_ASYNC flag set.
  378  *
  379  * Called with the socket buffer lock held; will release the lock by the end
  380  * of the function.  This allows the caller to acquire the socket buffer lock
  381  * while testing for the need for various sorts of wakeup and hold it through
  382  * to the point where it's no longer required.  We currently hold the lock
  383  * through calls out to other subsystems (with the exception of kqueue), and
  384  * then release it to avoid lock order issues.  It's not clear that's
  385  * correct.
  386  */
  387 void
  388 sowakeup(so, sb)
  389         register struct socket *so;
  390         register struct sockbuf *sb;
  391 {
  392 
  393         SOCKBUF_LOCK_ASSERT(sb);
  394 
  395         selwakeuppri(&sb->sb_sel, PSOCK);
  396         sb->sb_flags &= ~SB_SEL;
  397         if (sb->sb_flags & SB_WAIT) {
  398                 sb->sb_flags &= ~SB_WAIT;
  399                 wakeup(&sb->sb_cc);
  400         }
  401         KNOTE_LOCKED(&sb->sb_sel.si_note, 0);
  402         SOCKBUF_UNLOCK(sb);
  403         if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
  404                 pgsigio(&so->so_sigio, SIGIO, 0);
  405         if (sb->sb_flags & SB_UPCALL)
  406                 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
  407         if (sb->sb_flags & SB_AIO)
  408                 aio_swake(so, sb);
  409         mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
  410 }
  411 
  412 /*
  413  * Socket buffer (struct sockbuf) utility routines.
  414  *
  415  * Each socket contains two socket buffers: one for sending data and
  416  * one for receiving data.  Each buffer contains a queue of mbufs,
  417  * information about the number of mbufs and amount of data in the
  418  * queue, and other fields allowing select() statements and notification
  419  * on data availability to be implemented.
  420  *
  421  * Data stored in a socket buffer is maintained as a list of records.
  422  * Each record is a list of mbufs chained together with the m_next
  423  * field.  Records are chained together with the m_nextpkt field. The upper
  424  * level routine soreceive() expects the following conventions to be
  425  * observed when placing information in the receive buffer:
  426  *
  427  * 1. If the protocol requires each message be preceded by the sender's
  428  *    name, then a record containing that name must be present before
  429  *    any associated data (mbuf's must be of type MT_SONAME).
  430  * 2. If the protocol supports the exchange of ``access rights'' (really
  431  *    just additional data associated with the message), and there are
  432  *    ``rights'' to be received, then a record containing this data
  433  *    should be present (mbuf's must be of type MT_RIGHTS).
  434  * 3. If a name or rights record exists, then it must be followed by
  435  *    a data record, perhaps of zero length.
  436  *
  437  * Before using a new socket structure it is first necessary to reserve
  438  * buffer space to the socket, by calling sbreserve().  This should commit
  439  * some of the available buffer space in the system buffer pool for the
  440  * socket (currently, it does nothing but enforce limits).  The space
  441  * should be released by calling sbrelease() when the socket is destroyed.
  442  */
  443 
  444 int
  445 soreserve(so, sndcc, rcvcc)
  446         register struct socket *so;
  447         u_long sndcc, rcvcc;
  448 {
  449         struct thread *td = curthread;
  450 
  451         SOCKBUF_LOCK(&so->so_snd);
  452         SOCKBUF_LOCK(&so->so_rcv);
  453         if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
  454                 goto bad;
  455         if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
  456                 goto bad2;
  457         if (so->so_rcv.sb_lowat == 0)
  458                 so->so_rcv.sb_lowat = 1;
  459         if (so->so_snd.sb_lowat == 0)
  460                 so->so_snd.sb_lowat = MCLBYTES;
  461         if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
  462                 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
  463         SOCKBUF_UNLOCK(&so->so_rcv);
  464         SOCKBUF_UNLOCK(&so->so_snd);
  465         return (0);
  466 bad2:
  467         sbrelease_locked(&so->so_snd, so);
  468 bad:
  469         SOCKBUF_UNLOCK(&so->so_rcv);
  470         SOCKBUF_UNLOCK(&so->so_snd);
  471         return (ENOBUFS);
  472 }
  473 
  474 static int
  475 sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
  476 {
  477         int error = 0;
  478         u_long old_sb_max = sb_max;
  479 
  480         error = SYSCTL_OUT(req, arg1, sizeof(u_long));
  481         if (error || !req->newptr)
  482                 return (error);
  483         error = SYSCTL_IN(req, arg1, sizeof(u_long));
  484         if (error)
  485                 return (error);
  486         if (sb_max < MSIZE + MCLBYTES) {
  487                 sb_max = old_sb_max;
  488                 return (EINVAL);
  489         }
  490         sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
  491         return (0);
  492 }
  493         
  494 /*
  495  * Allot mbufs to a sockbuf.
  496  * Attempt to scale mbmax so that mbcnt doesn't become limiting
  497  * if buffering efficiency is near the normal case.
  498  */
  499 int
  500 sbreserve_locked(sb, cc, so, td)
  501         struct sockbuf *sb;
  502         u_long cc;
  503         struct socket *so;
  504         struct thread *td;
  505 {
  506         rlim_t sbsize_limit;
  507 
  508         SOCKBUF_LOCK_ASSERT(sb);
  509 
  510         /*
  511          * td will only be NULL when we're in an interrupt
  512          * (e.g. in tcp_input())
  513          */
  514         if (cc > sb_max_adj)
  515                 return (0);
  516         if (td != NULL) {
  517                 PROC_LOCK(td->td_proc);
  518                 sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE);
  519                 PROC_UNLOCK(td->td_proc);
  520         } else
  521                 sbsize_limit = RLIM_INFINITY;
  522         if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
  523             sbsize_limit))
  524                 return (0);
  525         sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
  526         if (sb->sb_lowat > sb->sb_hiwat)
  527                 sb->sb_lowat = sb->sb_hiwat;
  528         return (1);
  529 }
  530 
  531 int
  532 sbreserve(sb, cc, so, td)
  533         struct sockbuf *sb;
  534         u_long cc;
  535         struct socket *so;
  536         struct thread *td;
  537 {
  538         int error;
  539 
  540         SOCKBUF_LOCK(sb);
  541         error = sbreserve_locked(sb, cc, so, td);
  542         SOCKBUF_UNLOCK(sb);
  543         return (error);
  544 }
  545 
  546 /*
  547  * Free mbufs held by a socket, and reserved mbuf space.
  548  */
  549 void
  550 sbrelease_locked(sb, so)
  551         struct sockbuf *sb;
  552         struct socket *so;
  553 {
  554 
  555         SOCKBUF_LOCK_ASSERT(sb);
  556 
  557         sbflush_locked(sb);
  558         (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
  559             RLIM_INFINITY);
  560         sb->sb_mbmax = 0;
  561 }
  562 
  563 void
  564 sbrelease(sb, so)
  565         struct sockbuf *sb;
  566         struct socket *so;
  567 {
  568 
  569         SOCKBUF_LOCK(sb);
  570         sbrelease_locked(sb, so);
  571         SOCKBUF_UNLOCK(sb);
  572 }
  573 /*
  574  * Routines to add and remove
  575  * data from an mbuf queue.
  576  *
  577  * The routines sbappend() or sbappendrecord() are normally called to
  578  * append new mbufs to a socket buffer, after checking that adequate
  579  * space is available, comparing the function sbspace() with the amount
  580  * of data to be added.  sbappendrecord() differs from sbappend() in
  581  * that data supplied is treated as the beginning of a new record.
  582  * To place a sender's address, optional access rights, and data in a
  583  * socket receive buffer, sbappendaddr() should be used.  To place
  584  * access rights and data in a socket receive buffer, sbappendrights()
  585  * should be used.  In either case, the new data begins a new record.
  586  * Note that unlike sbappend() and sbappendrecord(), these routines check
  587  * for the caller that there will be enough space to store the data.
  588  * Each fails if there is not enough space, or if it cannot find mbufs
  589  * to store additional information in.
  590  *
  591  * Reliable protocols may use the socket send buffer to hold data
  592  * awaiting acknowledgement.  Data is normally copied from a socket
  593  * send buffer in a protocol with m_copy for output to a peer,
  594  * and then removing the data from the socket buffer with sbdrop()
  595  * or sbdroprecord() when the data is acknowledged by the peer.
  596  */
  597 
  598 #ifdef SOCKBUF_DEBUG
  599 void
  600 sblastrecordchk(struct sockbuf *sb, const char *file, int line)
  601 {
  602         struct mbuf *m = sb->sb_mb;
  603 
  604         SOCKBUF_LOCK_ASSERT(sb);
  605 
  606         while (m && m->m_nextpkt)
  607                 m = m->m_nextpkt;
  608 
  609         if (m != sb->sb_lastrecord) {
  610                 printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
  611                         __func__, sb->sb_mb, sb->sb_lastrecord, m);
  612                 printf("packet chain:\n");
  613                 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
  614                         printf("\t%p\n", m);
  615                 panic("%s from %s:%u", __func__, file, line);
  616         }
  617 }
  618 
  619 void
  620 sblastmbufchk(struct sockbuf *sb, const char *file, int line)
  621 {
  622         struct mbuf *m = sb->sb_mb;
  623         struct mbuf *n;
  624 
  625         SOCKBUF_LOCK_ASSERT(sb);
  626 
  627         while (m && m->m_nextpkt)
  628                 m = m->m_nextpkt;
  629 
  630         while (m && m->m_next)
  631                 m = m->m_next;
  632 
  633         if (m != sb->sb_mbtail) {
  634                 printf("%s: sb_mb %p sb_mbtail %p last %p\n",
  635                         __func__, sb->sb_mb, sb->sb_mbtail, m);
  636                 printf("packet tree:\n");
  637                 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
  638                         printf("\t");
  639                         for (n = m; n != NULL; n = n->m_next)
  640                                 printf("%p ", n);
  641                         printf("\n");
  642                 }
  643                 panic("%s from %s:%u", __func__, file, line);
  644         }
  645 }
  646 #endif /* SOCKBUF_DEBUG */
  647 
  648 #define SBLINKRECORD(sb, m0) do {                                       \
  649         SOCKBUF_LOCK_ASSERT(sb);                                        \
  650         if ((sb)->sb_lastrecord != NULL)                                \
  651                 (sb)->sb_lastrecord->m_nextpkt = (m0);                  \
  652         else                                                            \
  653                 (sb)->sb_mb = (m0);                                     \
  654         (sb)->sb_lastrecord = (m0);                                     \
  655 } while (/*CONSTCOND*/0)
  656 
  657 /*
  658  * Append mbuf chain m to the last record in the
  659  * socket buffer sb.  The additional space associated
  660  * the mbuf chain is recorded in sb.  Empty mbufs are
  661  * discarded and mbufs are compacted where possible.
  662  */
  663 void
  664 sbappend_locked(sb, m)
  665         struct sockbuf *sb;
  666         struct mbuf *m;
  667 {
  668         register struct mbuf *n;
  669 
  670         SOCKBUF_LOCK_ASSERT(sb);
  671 
  672         if (m == 0)
  673                 return;
  674 
  675         SBLASTRECORDCHK(sb);
  676         n = sb->sb_mb;
  677         if (n) {
  678                 while (n->m_nextpkt)
  679                         n = n->m_nextpkt;
  680                 do {
  681                         if (n->m_flags & M_EOR) {
  682                                 sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
  683                                 return;
  684                         }
  685                 } while (n->m_next && (n = n->m_next));
  686         } else {
  687                 /*
  688                  * XXX Would like to simply use sb_mbtail here, but
  689                  * XXX I need to verify that I won't miss an EOR that
  690                  * XXX way.
  691                  */
  692                 if ((n = sb->sb_lastrecord) != NULL) {
  693                         do {
  694                                 if (n->m_flags & M_EOR) {
  695                                         sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
  696                                         return;
  697                                 }
  698                         } while (n->m_next && (n = n->m_next));
  699                 } else {
  700                         /*
  701                          * If this is the first record in the socket buffer,
  702                          * it's also the last record.
  703                          */
  704                         sb->sb_lastrecord = m;
  705                 }
  706         }
  707         sbcompress(sb, m, n);
  708         SBLASTRECORDCHK(sb);
  709 }
  710 
  711 /*
  712  * Append mbuf chain m to the last record in the
  713  * socket buffer sb.  The additional space associated
  714  * the mbuf chain is recorded in sb.  Empty mbufs are
  715  * discarded and mbufs are compacted where possible.
  716  */
  717 void
  718 sbappend(sb, m)
  719         struct sockbuf *sb;
  720         struct mbuf *m;
  721 {
  722 
  723         SOCKBUF_LOCK(sb);
  724         sbappend_locked(sb, m);
  725         SOCKBUF_UNLOCK(sb);
  726 }
  727 
  728 /*
  729  * This version of sbappend() should only be used when the caller
  730  * absolutely knows that there will never be more than one record
  731  * in the socket buffer, that is, a stream protocol (such as TCP).
  732  */
  733 void
  734 sbappendstream_locked(struct sockbuf *sb, struct mbuf *m)
  735 {
  736         SOCKBUF_LOCK_ASSERT(sb);
  737 
  738         KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
  739         KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
  740 
  741         SBLASTMBUFCHK(sb);
  742 
  743         sbcompress(sb, m, sb->sb_mbtail);
  744 
  745         sb->sb_lastrecord = sb->sb_mb;
  746         SBLASTRECORDCHK(sb);
  747 }
  748 
  749 /*
  750  * This version of sbappend() should only be used when the caller
  751  * absolutely knows that there will never be more than one record
  752  * in the socket buffer, that is, a stream protocol (such as TCP).
  753  */
  754 void
  755 sbappendstream(struct sockbuf *sb, struct mbuf *m)
  756 {
  757 
  758         SOCKBUF_LOCK(sb);
  759         sbappendstream_locked(sb, m);
  760         SOCKBUF_UNLOCK(sb);
  761 }
  762 
  763 #ifdef SOCKBUF_DEBUG
  764 void
  765 sbcheck(sb)
  766         struct sockbuf *sb;
  767 {
  768         struct mbuf *m;
  769         struct mbuf *n = 0;
  770         u_long len = 0, mbcnt = 0;
  771 
  772         SOCKBUF_LOCK_ASSERT(sb);
  773 
  774         for (m = sb->sb_mb; m; m = n) {
  775             n = m->m_nextpkt;
  776             for (; m; m = m->m_next) {
  777                 len += m->m_len;
  778                 mbcnt += MSIZE;
  779                 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
  780                         mbcnt += m->m_ext.ext_size;
  781             }
  782         }
  783         if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
  784                 printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc,
  785                     mbcnt, sb->sb_mbcnt);
  786                 panic("sbcheck");
  787         }
  788 }
  789 #endif
  790 
  791 /*
  792  * As above, except the mbuf chain
  793  * begins a new record.
  794  */
  795 void
  796 sbappendrecord_locked(sb, m0)
  797         register struct sockbuf *sb;
  798         register struct mbuf *m0;
  799 {
  800         register struct mbuf *m;
  801 
  802         SOCKBUF_LOCK_ASSERT(sb);
  803 
  804         if (m0 == 0)
  805                 return;
  806         m = sb->sb_mb;
  807         if (m)
  808                 while (m->m_nextpkt)
  809                         m = m->m_nextpkt;
  810         /*
  811          * Put the first mbuf on the queue.
  812          * Note this permits zero length records.
  813          */
  814         sballoc(sb, m0);
  815         SBLASTRECORDCHK(sb);
  816         SBLINKRECORD(sb, m0);
  817         if (m)
  818                 m->m_nextpkt = m0;
  819         else
  820                 sb->sb_mb = m0;
  821         m = m0->m_next;
  822         m0->m_next = 0;
  823         if (m && (m0->m_flags & M_EOR)) {
  824                 m0->m_flags &= ~M_EOR;
  825                 m->m_flags |= M_EOR;
  826         }
  827         sbcompress(sb, m, m0);
  828 }
  829 
  830 /*
  831  * As above, except the mbuf chain
  832  * begins a new record.
  833  */
  834 void
  835 sbappendrecord(sb, m0)
  836         register struct sockbuf *sb;
  837         register struct mbuf *m0;
  838 {
  839 
  840         SOCKBUF_LOCK(sb);
  841         sbappendrecord_locked(sb, m0);
  842         SOCKBUF_UNLOCK(sb);
  843 }
  844 
  845 /*
  846  * As above except that OOB data
  847  * is inserted at the beginning of the sockbuf,
  848  * but after any other OOB data.
  849  */
  850 void
  851 sbinsertoob_locked(sb, m0)
  852         register struct sockbuf *sb;
  853         register struct mbuf *m0;
  854 {
  855         register struct mbuf *m;
  856         register struct mbuf **mp;
  857 
  858         SOCKBUF_LOCK_ASSERT(sb);
  859 
  860         if (m0 == 0)
  861                 return;
  862         for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
  863             m = *mp;
  864             again:
  865                 switch (m->m_type) {
  866 
  867                 case MT_OOBDATA:
  868                         continue;               /* WANT next train */
  869 
  870                 case MT_CONTROL:
  871                         m = m->m_next;
  872                         if (m)
  873                                 goto again;     /* inspect THIS train further */
  874                 }
  875                 break;
  876         }
  877         /*
  878          * Put the first mbuf on the queue.
  879          * Note this permits zero length records.
  880          */
  881         sballoc(sb, m0);
  882         m0->m_nextpkt = *mp;
  883         *mp = m0;
  884         m = m0->m_next;
  885         m0->m_next = 0;
  886         if (m && (m0->m_flags & M_EOR)) {
  887                 m0->m_flags &= ~M_EOR;
  888                 m->m_flags |= M_EOR;
  889         }
  890         sbcompress(sb, m, m0);
  891 }
  892 
  893 /*
  894  * As above except that OOB data
  895  * is inserted at the beginning of the sockbuf,
  896  * but after any other OOB data.
  897  */
  898 void
  899 sbinsertoob(sb, m0)
  900         register struct sockbuf *sb;
  901         register struct mbuf *m0;
  902 {
  903 
  904         SOCKBUF_LOCK(sb);
  905         sbinsertoob_locked(sb, m0);
  906         SOCKBUF_UNLOCK(sb);
  907 }
  908 
  909 /*
  910  * Append address and data, and optionally, control (ancillary) data
  911  * to the receive queue of a socket.  If present,
  912  * m0 must include a packet header with total length.
  913  * Returns 0 if no space in sockbuf or insufficient mbufs.
  914  */
  915 int
  916 sbappendaddr_locked(sb, asa, m0, control)
  917         struct sockbuf *sb;
  918         const struct sockaddr *asa;
  919         struct mbuf *m0, *control;
  920 {
  921         struct mbuf *m, *n, *nlast;
  922         int space = asa->sa_len;
  923 
  924         SOCKBUF_LOCK_ASSERT(sb);
  925 
  926         if (m0 && (m0->m_flags & M_PKTHDR) == 0)
  927                 panic("sbappendaddr_locked");
  928         if (m0)
  929                 space += m0->m_pkthdr.len;
  930         space += m_length(control, &n);
  931 
  932         if (space > sbspace(sb))
  933                 return (0);
  934 #if MSIZE <= 256
  935         if (asa->sa_len > MLEN)
  936                 return (0);
  937 #endif
  938         MGET(m, M_DONTWAIT, MT_SONAME);
  939         if (m == 0)
  940                 return (0);
  941         m->m_len = asa->sa_len;
  942         bcopy(asa, mtod(m, caddr_t), asa->sa_len);
  943         if (n)
  944                 n->m_next = m0;         /* concatenate data to control */
  945         else
  946                 control = m0;
  947         m->m_next = control;
  948         for (n = m; n->m_next != NULL; n = n->m_next)
  949                 sballoc(sb, n);
  950         sballoc(sb, n);
  951         nlast = n;
  952         SBLINKRECORD(sb, m);
  953 
  954         sb->sb_mbtail = nlast;
  955         SBLASTMBUFCHK(sb);
  956 
  957         SBLASTRECORDCHK(sb);
  958         return (1);
  959 }
  960 
  961 /*
  962  * Append address and data, and optionally, control (ancillary) data
  963  * to the receive queue of a socket.  If present,
  964  * m0 must include a packet header with total length.
  965  * Returns 0 if no space in sockbuf or insufficient mbufs.
  966  */
  967 int
  968 sbappendaddr(sb, asa, m0, control)
  969         struct sockbuf *sb;
  970         const struct sockaddr *asa;
  971         struct mbuf *m0, *control;
  972 {
  973         int retval;
  974 
  975         SOCKBUF_LOCK(sb);
  976         retval = sbappendaddr_locked(sb, asa, m0, control);
  977         SOCKBUF_UNLOCK(sb);
  978         return (retval);
  979 }
  980 
  981 int
  982 sbappendcontrol_locked(sb, m0, control)
  983         struct sockbuf *sb;
  984         struct mbuf *control, *m0;
  985 {
  986         struct mbuf *m, *n, *mlast;
  987         int space;
  988 
  989         SOCKBUF_LOCK_ASSERT(sb);
  990 
  991         if (control == 0)
  992                 panic("sbappendcontrol_locked");
  993         space = m_length(control, &n) + m_length(m0, NULL);
  994 
  995         if (space > sbspace(sb))
  996                 return (0);
  997         n->m_next = m0;                 /* concatenate data to control */
  998 
  999         SBLASTRECORDCHK(sb);
 1000 
 1001         for (m = control; m->m_next; m = m->m_next)
 1002                 sballoc(sb, m);
 1003         sballoc(sb, m);
 1004         mlast = m;
 1005         SBLINKRECORD(sb, control);
 1006 
 1007         sb->sb_mbtail = mlast;
 1008         SBLASTMBUFCHK(sb);
 1009 
 1010         SBLASTRECORDCHK(sb);
 1011         return (1);
 1012 }
 1013 
 1014 int
 1015 sbappendcontrol(sb, m0, control)
 1016         struct sockbuf *sb;
 1017         struct mbuf *control, *m0;
 1018 {
 1019         int retval;
 1020 
 1021         SOCKBUF_LOCK(sb);
 1022         retval = sbappendcontrol_locked(sb, m0, control);
 1023         SOCKBUF_UNLOCK(sb);
 1024         return (retval);
 1025 }
 1026 
 1027 /*
 1028  * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
 1029  * (n).  If (n) is NULL, the buffer is presumed empty.
 1030  *
 1031  * When the data is compressed, mbufs in the chain may be handled in one of
 1032  * three ways:
 1033  *
 1034  * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
 1035  *     record boundary, and no change in data type).
 1036  *
 1037  * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
 1038  *     an mbuf already in the socket buffer.  This can occur if an
 1039  *     appropriate mbuf exists, there is room, and no merging of data types
 1040  *     will occur.
 1041  *
 1042  * (3) The mbuf may be appended to the end of the existing mbuf chain.
 1043  *
 1044  * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
 1045  * end-of-record.
 1046  */
 1047 void
 1048 sbcompress(sb, m, n)
 1049         register struct sockbuf *sb;
 1050         register struct mbuf *m, *n;
 1051 {
 1052         register int eor = 0;
 1053         register struct mbuf *o;
 1054 
 1055         SOCKBUF_LOCK_ASSERT(sb);
 1056 
 1057         while (m) {
 1058                 eor |= m->m_flags & M_EOR;
 1059                 if (m->m_len == 0 &&
 1060                     (eor == 0 ||
 1061                      (((o = m->m_next) || (o = n)) &&
 1062                       o->m_type == m->m_type))) {
 1063                         if (sb->sb_lastrecord == m)
 1064                                 sb->sb_lastrecord = m->m_next;
 1065                         m = m_free(m);
 1066                         continue;
 1067                 }
 1068                 if (n && (n->m_flags & M_EOR) == 0 &&
 1069                     M_WRITABLE(n) &&
 1070                     m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
 1071                     m->m_len <= M_TRAILINGSPACE(n) &&
 1072                     n->m_type == m->m_type) {
 1073                         bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
 1074                             (unsigned)m->m_len);
 1075                         n->m_len += m->m_len;
 1076                         sb->sb_cc += m->m_len;
 1077                         if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
 1078                             m->m_type != MT_OOBDATA)
 1079                                 /* XXX: Probably don't need.*/
 1080                                 sb->sb_ctl += m->m_len;
 1081                         m = m_free(m);
 1082                         continue;
 1083                 }
 1084                 if (n)
 1085                         n->m_next = m;
 1086                 else
 1087                         sb->sb_mb = m;
 1088                 sb->sb_mbtail = m;
 1089                 sballoc(sb, m);
 1090                 n = m;
 1091                 m->m_flags &= ~M_EOR;
 1092                 m = m->m_next;
 1093                 n->m_next = 0;
 1094         }
 1095         if (eor) {
 1096                 KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
 1097                 n->m_flags |= eor;
 1098         }
 1099         SBLASTMBUFCHK(sb);
 1100 }
 1101 
 1102 /*
 1103  * Free all mbufs in a sockbuf.
 1104  * Check that all resources are reclaimed.
 1105  */
 1106 void
 1107 sbflush_locked(sb)
 1108         register struct sockbuf *sb;
 1109 {
 1110 
 1111         SOCKBUF_LOCK_ASSERT(sb);
 1112 
 1113         if (sb->sb_flags & SB_LOCK)
 1114                 panic("sbflush_locked: locked");
 1115         while (sb->sb_mbcnt) {
 1116                 /*
 1117                  * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
 1118                  * we would loop forever. Panic instead.
 1119                  */
 1120                 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
 1121                         break;
 1122                 sbdrop_locked(sb, (int)sb->sb_cc);
 1123         }
 1124         if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
 1125                 panic("sbflush_locked: cc %u || mb %p || mbcnt %u", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
 1126 }
 1127 
 1128 void
 1129 sbflush(sb)
 1130         register struct sockbuf *sb;
 1131 {
 1132 
 1133         SOCKBUF_LOCK(sb);
 1134         sbflush_locked(sb);
 1135         SOCKBUF_UNLOCK(sb);
 1136 }
 1137 
 1138 /*
 1139  * Drop data from (the front of) a sockbuf.
 1140  */
 1141 void
 1142 sbdrop_locked(sb, len)
 1143         register struct sockbuf *sb;
 1144         register int len;
 1145 {
 1146         register struct mbuf *m;
 1147         struct mbuf *next;
 1148 
 1149         SOCKBUF_LOCK_ASSERT(sb);
 1150 
 1151         next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
 1152         while (len > 0) {
 1153                 if (m == 0) {
 1154                         if (next == 0)
 1155                                 panic("sbdrop");
 1156                         m = next;
 1157                         next = m->m_nextpkt;
 1158                         continue;
 1159                 }
 1160                 if (m->m_len > len) {
 1161                         m->m_len -= len;
 1162                         m->m_data += len;
 1163                         sb->sb_cc -= len;
 1164                         if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
 1165                             m->m_type != MT_OOBDATA)
 1166                                 sb->sb_ctl -= len;
 1167                         break;
 1168                 }
 1169                 len -= m->m_len;
 1170                 sbfree(sb, m);
 1171                 m = m_free(m);
 1172         }
 1173         while (m && m->m_len == 0) {
 1174                 sbfree(sb, m);
 1175                 m = m_free(m);
 1176         }
 1177         if (m) {
 1178                 sb->sb_mb = m;
 1179                 m->m_nextpkt = next;
 1180         } else
 1181                 sb->sb_mb = next;
 1182         /*
 1183          * First part is an inline SB_EMPTY_FIXUP().  Second part
 1184          * makes sure sb_lastrecord is up-to-date if we dropped
 1185          * part of the last record.
 1186          */
 1187         m = sb->sb_mb;
 1188         if (m == NULL) {
 1189                 sb->sb_mbtail = NULL;
 1190                 sb->sb_lastrecord = NULL;
 1191         } else if (m->m_nextpkt == NULL) {
 1192                 sb->sb_lastrecord = m;
 1193         }
 1194 }
 1195 
 1196 /*
 1197  * Drop data from (the front of) a sockbuf.
 1198  */
 1199 void
 1200 sbdrop(sb, len)
 1201         register struct sockbuf *sb;
 1202         register int len;
 1203 {
 1204 
 1205         SOCKBUF_LOCK(sb);
 1206         sbdrop_locked(sb, len);
 1207         SOCKBUF_UNLOCK(sb);
 1208 }
 1209 
 1210 /*
 1211  * Drop a record off the front of a sockbuf
 1212  * and move the next record to the front.
 1213  */
 1214 void
 1215 sbdroprecord_locked(sb)
 1216         register struct sockbuf *sb;
 1217 {
 1218         register struct mbuf *m;
 1219 
 1220         SOCKBUF_LOCK_ASSERT(sb);
 1221 
 1222         m = sb->sb_mb;
 1223         if (m) {
 1224                 sb->sb_mb = m->m_nextpkt;
 1225                 do {
 1226                         sbfree(sb, m);
 1227                         m = m_free(m);
 1228                 } while (m);
 1229         }
 1230         SB_EMPTY_FIXUP(sb);
 1231 }
 1232 
 1233 /*
 1234  * Drop a record off the front of a sockbuf
 1235  * and move the next record to the front.
 1236  */
 1237 void
 1238 sbdroprecord(sb)
 1239         register struct sockbuf *sb;
 1240 {
 1241 
 1242         SOCKBUF_LOCK(sb);
 1243         sbdroprecord_locked(sb);
 1244         SOCKBUF_UNLOCK(sb);
 1245 }
 1246 
 1247 /*
 1248  * Create a "control" mbuf containing the specified data
 1249  * with the specified type for presentation on a socket buffer.
 1250  */
 1251 struct mbuf *
 1252 sbcreatecontrol(p, size, type, level)
 1253         caddr_t p;
 1254         register int size;
 1255         int type, level;
 1256 {
 1257         register struct cmsghdr *cp;
 1258         struct mbuf *m;
 1259 
 1260         if (CMSG_SPACE((u_int)size) > MCLBYTES)
 1261                 return ((struct mbuf *) NULL);
 1262         if (CMSG_SPACE((u_int)size) > MLEN)
 1263                 m = m_getcl(M_DONTWAIT, MT_CONTROL, 0);
 1264         else
 1265                 m = m_get(M_DONTWAIT, MT_CONTROL);
 1266         if (m == NULL)
 1267                 return ((struct mbuf *) NULL);
 1268         cp = mtod(m, struct cmsghdr *);
 1269         m->m_len = 0;
 1270         KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
 1271             ("sbcreatecontrol: short mbuf"));
 1272         if (p != NULL)
 1273                 (void)memcpy(CMSG_DATA(cp), p, size);
 1274         m->m_len = CMSG_SPACE(size);
 1275         cp->cmsg_len = CMSG_LEN(size);
 1276         cp->cmsg_level = level;
 1277         cp->cmsg_type = type;
 1278         return (m);
 1279 }
 1280 
 1281 /*
 1282  * Some routines that return EOPNOTSUPP for entry points that are not
 1283  * supported by a protocol.  Fill in as needed.
 1284  */
 1285 int
 1286 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
 1287 {
 1288         return EOPNOTSUPP;
 1289 }
 1290 
 1291 int
 1292 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
 1293 {
 1294         return EOPNOTSUPP;
 1295 }
 1296 
 1297 int
 1298 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
 1299 {
 1300         return EOPNOTSUPP;
 1301 }
 1302 
 1303 int
 1304 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
 1305                     struct ifnet *ifp, struct thread *td)
 1306 {
 1307         return EOPNOTSUPP;
 1308 }
 1309 
 1310 int
 1311 pru_listen_notsupp(struct socket *so, struct thread *td)
 1312 {
 1313         return EOPNOTSUPP;
 1314 }
 1315 
 1316 int
 1317 pru_rcvd_notsupp(struct socket *so, int flags)
 1318 {
 1319         return EOPNOTSUPP;
 1320 }
 1321 
 1322 int
 1323 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
 1324 {
 1325         return EOPNOTSUPP;
 1326 }
 1327 
 1328 /*
 1329  * This isn't really a ``null'' operation, but it's the default one
 1330  * and doesn't do anything destructive.
 1331  */
 1332 int
 1333 pru_sense_null(struct socket *so, struct stat *sb)
 1334 {
 1335         sb->st_blksize = so->so_snd.sb_hiwat;
 1336         return 0;
 1337 }
 1338 
 1339 /*
 1340  * For protocol types that don't keep cached copies of labels in their
 1341  * pcbs, provide a null sosetlabel that does a NOOP.
 1342  */
 1343 void
 1344 pru_sosetlabel_null(struct socket *so)
 1345 {
 1346 
 1347 }
 1348 
 1349 /*
 1350  * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
 1351  */
 1352 struct sockaddr *
 1353 sodupsockaddr(const struct sockaddr *sa, int mflags)
 1354 {
 1355         struct sockaddr *sa2;
 1356 
 1357         sa2 = malloc(sa->sa_len, M_SONAME, mflags);
 1358         if (sa2)
 1359                 bcopy(sa, sa2, sa->sa_len);
 1360         return sa2;
 1361 }
 1362 
 1363 /*
 1364  * Create an external-format (``xsocket'') structure using the information
 1365  * in the kernel-format socket structure pointed to by so.  This is done
 1366  * to reduce the spew of irrelevant information over this interface,
 1367  * to isolate user code from changes in the kernel structure, and
 1368  * potentially to provide information-hiding if we decide that
 1369  * some of this information should be hidden from users.
 1370  */
 1371 void
 1372 sotoxsocket(struct socket *so, struct xsocket *xso)
 1373 {
 1374         xso->xso_len = sizeof *xso;
 1375         xso->xso_so = so;
 1376         xso->so_type = so->so_type;
 1377         xso->so_options = so->so_options;
 1378         xso->so_linger = so->so_linger;
 1379         xso->so_state = so->so_state;
 1380         xso->so_pcb = so->so_pcb;
 1381         xso->xso_protocol = so->so_proto->pr_protocol;
 1382         xso->xso_family = so->so_proto->pr_domain->dom_family;
 1383         xso->so_qlen = so->so_qlen;
 1384         xso->so_incqlen = so->so_incqlen;
 1385         xso->so_qlimit = so->so_qlimit;
 1386         xso->so_timeo = so->so_timeo;
 1387         xso->so_error = so->so_error;
 1388         xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
 1389         xso->so_oobmark = so->so_oobmark;
 1390         sbtoxsockbuf(&so->so_snd, &xso->so_snd);
 1391         sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
 1392         xso->so_uid = so->so_cred->cr_uid;
 1393 }
 1394 
 1395 /*
 1396  * This does the same for sockbufs.  Note that the xsockbuf structure,
 1397  * since it is always embedded in a socket, does not include a self
 1398  * pointer nor a length.  We make this entry point public in case
 1399  * some other mechanism needs it.
 1400  */
 1401 void
 1402 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
 1403 {
 1404         xsb->sb_cc = sb->sb_cc;
 1405         xsb->sb_hiwat = sb->sb_hiwat;
 1406         xsb->sb_mbcnt = sb->sb_mbcnt;
 1407         xsb->sb_mbmax = sb->sb_mbmax;
 1408         xsb->sb_lowat = sb->sb_lowat;
 1409         xsb->sb_flags = sb->sb_flags;
 1410         xsb->sb_timeo = sb->sb_timeo;
 1411 }
 1412 
 1413 /*
 1414  * Here is the definition of some of the basic objects in the kern.ipc
 1415  * branch of the MIB.
 1416  */
 1417 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
 1418 
 1419 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
 1420 static int dummy;
 1421 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
 1422 SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW, 
 1423     &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
 1424 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RDTUN, 
 1425     &maxsockets, 0, "Maximum number of sockets avaliable");
 1426 SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
 1427     &sb_efficiency, 0, "");
 1428 
 1429 /*
 1430  * Initialise maxsockets 
 1431  */
 1432 static void init_maxsockets(void *ignored)
 1433 {
 1434         TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
 1435         maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
 1436 }
 1437 SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);

Cache object: d2bba02474d39b12fa8d95d87c7833c1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.