The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_socket2.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by the University of
   16  *      California, Berkeley and its contributors.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)uipc_socket2.c      8.1 (Berkeley) 6/10/93
   34  * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.16.2.5 1999/09/05 08:15:34 peter Exp $
   35  */
   36 
   37 #include <sys/param.h>
   38 #include <sys/systm.h>
   39 #include <sys/kernel.h>
   40 #include <sys/proc.h>
   41 #include <sys/file.h>
   42 #include <sys/buf.h>
   43 #include <sys/malloc.h>
   44 #include <sys/mbuf.h>
   45 #include <sys/protosw.h>
   46 #include <sys/stat.h>
   47 #include <sys/socket.h>
   48 #include <sys/socketvar.h>
   49 #include <sys/signalvar.h>
   50 #include <sys/sysctl.h>
   51 
   52 /*
   53  * Primitive routines for operating on sockets and socket buffers
   54  */
   55 
   56 u_long  sb_max = SB_MAX;                /* XXX should be static */
   57 SYSCTL_INT(_kern, KERN_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, &sb_max, 0, "")
   58 
   59 static  u_long sb_efficiency = 8;       /* parameter for sbreserve() */
   60 SYSCTL_INT(_kern, OID_AUTO, sockbuf_waste_factor, CTLFLAG_RW, &sb_efficiency,
   61            0, "");
   62 
   63 /*
   64  * Procedures to manipulate state flags of socket
   65  * and do appropriate wakeups.  Normal sequence from the
   66  * active (originating) side is that soisconnecting() is
   67  * called during processing of connect() call,
   68  * resulting in an eventual call to soisconnected() if/when the
   69  * connection is established.  When the connection is torn down
   70  * soisdisconnecting() is called during processing of disconnect() call,
   71  * and soisdisconnected() is called when the connection to the peer
   72  * is totally severed.  The semantics of these routines are such that
   73  * connectionless protocols can call soisconnected() and soisdisconnected()
   74  * only, bypassing the in-progress calls when setting up a ``connection''
   75  * takes no time.
   76  *
   77  * From the passive side, a socket is created with
   78  * two queues of sockets: so_q0 for connections in progress
   79  * and so_q for connections already made and awaiting user acceptance.
   80  * As a protocol is preparing incoming connections, it creates a socket
   81  * structure queued on so_q0 by calling sonewconn().  When the connection
   82  * is established, soisconnected() is called, and transfers the
   83  * socket structure to so_q, making it available to accept().
   84  *
   85  * If a socket is closed with sockets on either
   86  * so_q0 or so_q, these sockets are dropped.
   87  *
   88  * If higher level protocols are implemented in
   89  * the kernel, the wakeups done here will sometimes
   90  * cause software-interrupt process scheduling.
   91  */
   92 
   93 void
   94 soisconnecting(so)
   95         register struct socket *so;
   96 {
   97 
   98         so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
   99         so->so_state |= SS_ISCONNECTING;
  100 }
  101 
  102 void
  103 soisconnected(so)
  104         register struct socket *so;
  105 {
  106         register struct socket *head = so->so_head;
  107 
  108         so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
  109         so->so_state |= SS_ISCONNECTED;
  110         if (head && (so->so_state & SS_INCOMP)) {
  111                 TAILQ_REMOVE(&head->so_incomp, so, so_list);
  112                 head->so_incqlen--;
  113                 so->so_state &= ~SS_INCOMP;
  114                 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
  115                 so->so_state |= SS_COMP;
  116                 sorwakeup(head);
  117                 wakeup_one(&head->so_timeo);
  118         } else {
  119                 wakeup(&so->so_timeo);
  120                 sorwakeup(so);
  121                 sowwakeup(so);
  122         }
  123 }
  124 
  125 void
  126 soisdisconnecting(so)
  127         register struct socket *so;
  128 {
  129 
  130         so->so_state &= ~SS_ISCONNECTING;
  131         so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
  132         wakeup((caddr_t)&so->so_timeo);
  133         sowwakeup(so);
  134         sorwakeup(so);
  135 }
  136 
  137 void
  138 soisdisconnected(so)
  139         register struct socket *so;
  140 {
  141 
  142         so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
  143         so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
  144         wakeup((caddr_t)&so->so_timeo);
  145         sowwakeup(so);
  146         sorwakeup(so);
  147 }
  148 
  149 /*
  150  * Return a random connection that hasn't been serviced yet and
  151  * is eligible for discard.  There is a one in qlen chance that
  152  * we will return a null, saying that there are no dropable
  153  * requests.  In this case, the protocol specific code should drop
  154  * the new request.  This insures fairness.
  155  *
  156  * This may be used in conjunction with protocol specific queue
  157  * congestion routines.
  158  */
  159 struct socket *
  160 sodropablereq(head)
  161         register struct socket *head;
  162 {
  163         register struct socket *so;
  164         unsigned int i, j, qlen;
  165 
  166         static int rnd;
  167         static long old_mono_secs;
  168         static unsigned int cur_cnt, old_cnt;
  169 
  170         if ((i = (mono_time.tv_sec - old_mono_secs)) != 0) {
  171                 old_mono_secs = mono_time.tv_sec;
  172                 old_cnt = cur_cnt / i;
  173                 cur_cnt = 0;
  174         }
  175 
  176         so = TAILQ_FIRST(&head->so_incomp);
  177         if (!so)
  178                 return (so);
  179 
  180         qlen = head->so_incqlen;
  181         if (++cur_cnt > qlen || old_cnt > qlen) {
  182                 rnd = (314159 * rnd + 66329) & 0xffff;
  183                 j = ((qlen + 1) * rnd) >> 16;
  184 
  185                 while (j-- && so)
  186                     so = TAILQ_NEXT(so, so_list);
  187         }
  188 
  189         return (so);
  190 }
  191 
  192 /*
  193  * When an attempt at a new connection is noted on a socket
  194  * which accepts connections, sonewconn is called.  If the
  195  * connection is possible (subject to space constraints, etc.)
  196  * then we allocate a new structure, propoerly linked into the
  197  * data structure of the original socket, and return this.
  198  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
  199  *
  200  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
  201  * to catch calls that are missing the (new) second parameter.
  202  */
  203 struct socket *
  204 sonewconn1(head, connstatus)
  205         register struct socket *head;
  206         int connstatus;
  207 {
  208         register struct socket *so;
  209 
  210         if (head->so_qlen > 3 * head->so_qlimit / 2)
  211                 return ((struct socket *)0);
  212         MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
  213         if (so == NULL)
  214                 return ((struct socket *)0);
  215         bzero((caddr_t)so, sizeof(*so));
  216         so->so_head = head;
  217         so->so_type = head->so_type;
  218         so->so_options = head->so_options &~ SO_ACCEPTCONN;
  219         so->so_linger = head->so_linger;
  220         so->so_state = head->so_state | SS_NOFDREF;
  221         so->so_proto = head->so_proto;
  222         so->so_timeo = head->so_timeo;
  223         so->so_pgid = head->so_pgid;
  224         so->so_uid = head->so_uid;
  225         (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
  226         if (connstatus) {
  227                 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
  228                 so->so_state |= SS_COMP;
  229         } else {
  230                 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
  231                 so->so_state |= SS_INCOMP;
  232                 head->so_incqlen++;
  233         }
  234         head->so_qlen++;
  235         if ((*so->so_proto->pr_usrreqs->pru_attach)(so, 0)) {
  236                 if (so->so_state & SS_COMP) {
  237                         TAILQ_REMOVE(&head->so_comp, so, so_list);
  238                 } else {
  239                         TAILQ_REMOVE(&head->so_incomp, so, so_list);
  240                         head->so_incqlen--;
  241                 }
  242                 head->so_qlen--;
  243                 (void) free((caddr_t)so, M_SOCKET);
  244                 return ((struct socket *)0);
  245         }
  246         if (connstatus) {
  247                 sorwakeup(head);
  248                 wakeup((caddr_t)&head->so_timeo);
  249                 so->so_state |= connstatus;
  250         }
  251         return (so);
  252 }
  253 
  254 /*
  255  * Socantsendmore indicates that no more data will be sent on the
  256  * socket; it would normally be applied to a socket when the user
  257  * informs the system that no more data is to be sent, by the protocol
  258  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
  259  * will be received, and will normally be applied to the socket by a
  260  * protocol when it detects that the peer will send no more data.
  261  * Data queued for reading in the socket may yet be read.
  262  */
  263 
  264 void
  265 socantsendmore(so)
  266         struct socket *so;
  267 {
  268 
  269         so->so_state |= SS_CANTSENDMORE;
  270         sowwakeup(so);
  271 }
  272 
  273 void
  274 socantrcvmore(so)
  275         struct socket *so;
  276 {
  277 
  278         so->so_state |= SS_CANTRCVMORE;
  279         sorwakeup(so);
  280 }
  281 
  282 /*
  283  * Wait for data to arrive at/drain from a socket buffer.
  284  */
  285 int
  286 sbwait(sb)
  287         struct sockbuf *sb;
  288 {
  289 
  290         sb->sb_flags |= SB_WAIT;
  291         return (tsleep((caddr_t)&sb->sb_cc,
  292             (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
  293             sb->sb_timeo));
  294 }
  295 
  296 /*
  297  * Lock a sockbuf already known to be locked;
  298  * return any error returned from sleep (EINTR).
  299  */
  300 int
  301 sb_lock(sb)
  302         register struct sockbuf *sb;
  303 {
  304         int error;
  305 
  306         while (sb->sb_flags & SB_LOCK) {
  307                 sb->sb_flags |= SB_WANT;
  308                 error = tsleep((caddr_t)&sb->sb_flags,
  309                     (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
  310                     "sblock", 0);
  311                 if (error)
  312                         return (error);
  313         }
  314         sb->sb_flags |= SB_LOCK;
  315         return (0);
  316 }
  317 
  318 /*
  319  * Wakeup processes waiting on a socket buffer.
  320  * Do asynchronous notification via SIGIO
  321  * if the socket has the SS_ASYNC flag set.
  322  */
  323 void
  324 sowakeup(so, sb)
  325         register struct socket *so;
  326         register struct sockbuf *sb;
  327 {
  328         struct proc *p;
  329 
  330         selwakeup(&sb->sb_sel);
  331         sb->sb_flags &= ~SB_SEL;
  332         if (sb->sb_flags & SB_WAIT) {
  333                 sb->sb_flags &= ~SB_WAIT;
  334                 wakeup((caddr_t)&sb->sb_cc);
  335         }
  336         if (so->so_state & SS_ASYNC) {
  337                 if (so->so_pgid < 0)
  338                         gsignal(-so->so_pgid, SIGIO);
  339                 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
  340                         psignal(p, SIGIO);
  341         }
  342 }
  343 
  344 /*
  345  * Socket buffer (struct sockbuf) utility routines.
  346  *
  347  * Each socket contains two socket buffers: one for sending data and
  348  * one for receiving data.  Each buffer contains a queue of mbufs,
  349  * information about the number of mbufs and amount of data in the
  350  * queue, and other fields allowing select() statements and notification
  351  * on data availability to be implemented.
  352  *
  353  * Data stored in a socket buffer is maintained as a list of records.
  354  * Each record is a list of mbufs chained together with the m_next
  355  * field.  Records are chained together with the m_nextpkt field. The upper
  356  * level routine soreceive() expects the following conventions to be
  357  * observed when placing information in the receive buffer:
  358  *
  359  * 1. If the protocol requires each message be preceded by the sender's
  360  *    name, then a record containing that name must be present before
  361  *    any associated data (mbuf's must be of type MT_SONAME).
  362  * 2. If the protocol supports the exchange of ``access rights'' (really
  363  *    just additional data associated with the message), and there are
  364  *    ``rights'' to be received, then a record containing this data
  365  *    should be present (mbuf's must be of type MT_RIGHTS).
  366  * 3. If a name or rights record exists, then it must be followed by
  367  *    a data record, perhaps of zero length.
  368  *
  369  * Before using a new socket structure it is first necessary to reserve
  370  * buffer space to the socket, by calling sbreserve().  This should commit
  371  * some of the available buffer space in the system buffer pool for the
  372  * socket (currently, it does nothing but enforce limits).  The space
  373  * should be released by calling sbrelease() when the socket is destroyed.
  374  */
  375 
  376 int
  377 soreserve(so, sndcc, rcvcc)
  378         register struct socket *so;
  379         u_long sndcc, rcvcc;
  380 {
  381 
  382         if (sbreserve(&so->so_snd, sndcc) == 0)
  383                 goto bad;
  384         if (sbreserve(&so->so_rcv, rcvcc) == 0)
  385                 goto bad2;
  386         if (so->so_rcv.sb_lowat == 0)
  387                 so->so_rcv.sb_lowat = 1;
  388         if (so->so_snd.sb_lowat == 0)
  389                 so->so_snd.sb_lowat = MCLBYTES;
  390         if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
  391                 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
  392         return (0);
  393 bad2:
  394         sbrelease(&so->so_snd);
  395 bad:
  396         return (ENOBUFS);
  397 }
  398 
  399 /*
  400  * Allot mbufs to a sockbuf.
  401  * Attempt to scale mbmax so that mbcnt doesn't become limiting
  402  * if buffering efficiency is near the normal case.
  403  */
  404 int
  405 sbreserve(sb, cc)
  406         struct sockbuf *sb;
  407         u_long cc;
  408 {
  409 
  410         if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
  411                 return (0);
  412         sb->sb_hiwat = cc;
  413         sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
  414         if (sb->sb_lowat > sb->sb_hiwat)
  415                 sb->sb_lowat = sb->sb_hiwat;
  416         return (1);
  417 }
  418 
  419 /*
  420  * Free mbufs held by a socket, and reserved mbuf space.
  421  */
  422 void
  423 sbrelease(sb)
  424         struct sockbuf *sb;
  425 {
  426 
  427         sbflush(sb);
  428         sb->sb_hiwat = sb->sb_mbmax = 0;
  429 }
  430 
  431 /*
  432  * Routines to add and remove
  433  * data from an mbuf queue.
  434  *
  435  * The routines sbappend() or sbappendrecord() are normally called to
  436  * append new mbufs to a socket buffer, after checking that adequate
  437  * space is available, comparing the function sbspace() with the amount
  438  * of data to be added.  sbappendrecord() differs from sbappend() in
  439  * that data supplied is treated as the beginning of a new record.
  440  * To place a sender's address, optional access rights, and data in a
  441  * socket receive buffer, sbappendaddr() should be used.  To place
  442  * access rights and data in a socket receive buffer, sbappendrights()
  443  * should be used.  In either case, the new data begins a new record.
  444  * Note that unlike sbappend() and sbappendrecord(), these routines check
  445  * for the caller that there will be enough space to store the data.
  446  * Each fails if there is not enough space, or if it cannot find mbufs
  447  * to store additional information in.
  448  *
  449  * Reliable protocols may use the socket send buffer to hold data
  450  * awaiting acknowledgement.  Data is normally copied from a socket
  451  * send buffer in a protocol with m_copy for output to a peer,
  452  * and then removing the data from the socket buffer with sbdrop()
  453  * or sbdroprecord() when the data is acknowledged by the peer.
  454  */
  455 
  456 /*
  457  * Append mbuf chain m to the last record in the
  458  * socket buffer sb.  The additional space associated
  459  * the mbuf chain is recorded in sb.  Empty mbufs are
  460  * discarded and mbufs are compacted where possible.
  461  */
  462 void
  463 sbappend(sb, m)
  464         struct sockbuf *sb;
  465         struct mbuf *m;
  466 {
  467         register struct mbuf *n;
  468 
  469         if (m == 0)
  470                 return;
  471         n = sb->sb_mb;
  472         if (n) {
  473                 while (n->m_nextpkt)
  474                         n = n->m_nextpkt;
  475                 do {
  476                         if (n->m_flags & M_EOR) {
  477                                 sbappendrecord(sb, m); /* XXXXXX!!!! */
  478                                 return;
  479                         }
  480                 } while (n->m_next && (n = n->m_next));
  481         }
  482         sbcompress(sb, m, n);
  483 }
  484 
  485 #ifdef SOCKBUF_DEBUG
  486 void
  487 sbcheck(sb)
  488         register struct sockbuf *sb;
  489 {
  490         register struct mbuf *m;
  491         register int len = 0, mbcnt = 0;
  492 
  493         for (m = sb->sb_mb; m; m = m->m_next) {
  494                 len += m->m_len;
  495                 mbcnt += MSIZE;
  496                 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
  497                         mbcnt += m->m_ext.ext_size;
  498                 if (m->m_nextpkt)
  499                         panic("sbcheck nextpkt");
  500         }
  501         if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
  502                 printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
  503                     mbcnt, sb->sb_mbcnt);
  504                 panic("sbcheck");
  505         }
  506 }
  507 #endif
  508 
  509 /*
  510  * As above, except the mbuf chain
  511  * begins a new record.
  512  */
  513 void
  514 sbappendrecord(sb, m0)
  515         register struct sockbuf *sb;
  516         register struct mbuf *m0;
  517 {
  518         register struct mbuf *m;
  519 
  520         if (m0 == 0)
  521                 return;
  522         m = sb->sb_mb;
  523         if (m)
  524                 while (m->m_nextpkt)
  525                         m = m->m_nextpkt;
  526         /*
  527          * Put the first mbuf on the queue.
  528          * Note this permits zero length records.
  529          */
  530         sballoc(sb, m0);
  531         if (m)
  532                 m->m_nextpkt = m0;
  533         else
  534                 sb->sb_mb = m0;
  535         m = m0->m_next;
  536         m0->m_next = 0;
  537         if (m && (m0->m_flags & M_EOR)) {
  538                 m0->m_flags &= ~M_EOR;
  539                 m->m_flags |= M_EOR;
  540         }
  541         sbcompress(sb, m, m0);
  542 }
  543 
  544 /*
  545  * As above except that OOB data
  546  * is inserted at the beginning of the sockbuf,
  547  * but after any other OOB data.
  548  */
  549 void
  550 sbinsertoob(sb, m0)
  551         register struct sockbuf *sb;
  552         register struct mbuf *m0;
  553 {
  554         register struct mbuf *m;
  555         register struct mbuf **mp;
  556 
  557         if (m0 == 0)
  558                 return;
  559         for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
  560             m = *mp;
  561             again:
  562                 switch (m->m_type) {
  563 
  564                 case MT_OOBDATA:
  565                         continue;               /* WANT next train */
  566 
  567                 case MT_CONTROL:
  568                         m = m->m_next;
  569                         if (m)
  570                                 goto again;     /* inspect THIS train further */
  571                 }
  572                 break;
  573         }
  574         /*
  575          * Put the first mbuf on the queue.
  576          * Note this permits zero length records.
  577          */
  578         sballoc(sb, m0);
  579         m0->m_nextpkt = *mp;
  580         *mp = m0;
  581         m = m0->m_next;
  582         m0->m_next = 0;
  583         if (m && (m0->m_flags & M_EOR)) {
  584                 m0->m_flags &= ~M_EOR;
  585                 m->m_flags |= M_EOR;
  586         }
  587         sbcompress(sb, m, m0);
  588 }
  589 
  590 /*
  591  * Append address and data, and optionally, control (ancillary) data
  592  * to the receive queue of a socket.  If present,
  593  * m0 must include a packet header with total length.
  594  * Returns 0 if no space in sockbuf or insufficient mbufs.
  595  */
  596 int
  597 sbappendaddr(sb, asa, m0, control)
  598         register struct sockbuf *sb;
  599         struct sockaddr *asa;
  600         struct mbuf *m0, *control;
  601 {
  602         register struct mbuf *m, *n;
  603         int space = asa->sa_len;
  604 
  605 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
  606 panic("sbappendaddr");
  607         if (m0)
  608                 space += m0->m_pkthdr.len;
  609         for (n = control; n; n = n->m_next) {
  610                 space += n->m_len;
  611                 if (n->m_next == 0)     /* keep pointer to last control buf */
  612                         break;
  613         }
  614         if (space > sbspace(sb))
  615                 return (0);
  616         if (asa->sa_len > MLEN)
  617                 return (0);
  618         MGET(m, M_DONTWAIT, MT_SONAME);
  619         if (m == 0)
  620                 return (0);
  621         m->m_len = asa->sa_len;
  622         bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
  623         if (n)
  624                 n->m_next = m0;         /* concatenate data to control */
  625         else
  626                 control = m0;
  627         m->m_next = control;
  628         for (n = m; n; n = n->m_next)
  629                 sballoc(sb, n);
  630         n = sb->sb_mb;
  631         if (n) {
  632                 while (n->m_nextpkt)
  633                         n = n->m_nextpkt;
  634                 n->m_nextpkt = m;
  635         } else
  636                 sb->sb_mb = m;
  637         return (1);
  638 }
  639 
  640 int
  641 sbappendcontrol(sb, m0, control)
  642         struct sockbuf *sb;
  643         struct mbuf *control, *m0;
  644 {
  645         register struct mbuf *m, *n;
  646         int space = 0;
  647 
  648         if (control == 0)
  649                 panic("sbappendcontrol");
  650         for (m = control; ; m = m->m_next) {
  651                 space += m->m_len;
  652                 if (m->m_next == 0)
  653                         break;
  654         }
  655         n = m;                  /* save pointer to last control buffer */
  656         for (m = m0; m; m = m->m_next)
  657                 space += m->m_len;
  658         if (space > sbspace(sb))
  659                 return (0);
  660         n->m_next = m0;                 /* concatenate data to control */
  661         for (m = control; m; m = m->m_next)
  662                 sballoc(sb, m);
  663         n = sb->sb_mb;
  664         if (n) {
  665                 while (n->m_nextpkt)
  666                         n = n->m_nextpkt;
  667                 n->m_nextpkt = control;
  668         } else
  669                 sb->sb_mb = control;
  670         return (1);
  671 }
  672 
  673 /*
  674  * Compress mbuf chain m into the socket
  675  * buffer sb following mbuf n.  If n
  676  * is null, the buffer is presumed empty.
  677  */
  678 void
  679 sbcompress(sb, m, n)
  680         register struct sockbuf *sb;
  681         register struct mbuf *m, *n;
  682 {
  683         register int eor = 0;
  684         register struct mbuf *o;
  685 
  686         while (m) {
  687                 eor |= m->m_flags & M_EOR;
  688                 if (m->m_len == 0 &&
  689                     (eor == 0 ||
  690                      (((o = m->m_next) || (o = n)) &&
  691                       o->m_type == m->m_type))) {
  692                         m = m_free(m);
  693                         continue;
  694                 }
  695                 if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
  696                     (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
  697                     n->m_type == m->m_type) {
  698                         bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
  699                             (unsigned)m->m_len);
  700                         n->m_len += m->m_len;
  701                         sb->sb_cc += m->m_len;
  702                         m = m_free(m);
  703                         continue;
  704                 }
  705                 if (n)
  706                         n->m_next = m;
  707                 else
  708                         sb->sb_mb = m;
  709                 sballoc(sb, m);
  710                 n = m;
  711                 m->m_flags &= ~M_EOR;
  712                 m = m->m_next;
  713                 n->m_next = 0;
  714         }
  715         if (eor) {
  716                 if (n)
  717                         n->m_flags |= eor;
  718                 else
  719                         printf("semi-panic: sbcompress\n");
  720         }
  721 }
  722 
  723 /*
  724  * Free all mbufs in a sockbuf.
  725  * Check that all resources are reclaimed.
  726  */
  727 void
  728 sbflush(sb)
  729         register struct sockbuf *sb;
  730 {
  731 
  732         if (sb->sb_flags & SB_LOCK)
  733                 panic("sbflush");
  734         while (sb->sb_mbcnt)
  735                 sbdrop(sb, (int)sb->sb_cc);
  736         if (sb->sb_cc || sb->sb_mb)
  737                 panic("sbflush 2");
  738 }
  739 
  740 /*
  741  * Drop data from (the front of) a sockbuf.
  742  */
  743 void
  744 sbdrop(sb, len)
  745         register struct sockbuf *sb;
  746         register int len;
  747 {
  748         register struct mbuf *m, *mn;
  749         struct mbuf *next;
  750 
  751         next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
  752         while (len > 0) {
  753                 if (m == 0) {
  754                         if (next == 0)
  755                                 panic("sbdrop");
  756                         m = next;
  757                         next = m->m_nextpkt;
  758                         continue;
  759                 }
  760                 if (m->m_len > len) {
  761                         m->m_len -= len;
  762                         m->m_data += len;
  763                         sb->sb_cc -= len;
  764                         break;
  765                 }
  766                 len -= m->m_len;
  767                 sbfree(sb, m);
  768                 MFREE(m, mn);
  769                 m = mn;
  770         }
  771         while (m && m->m_len == 0) {
  772                 sbfree(sb, m);
  773                 MFREE(m, mn);
  774                 m = mn;
  775         }
  776         if (m) {
  777                 sb->sb_mb = m;
  778                 m->m_nextpkt = next;
  779         } else
  780                 sb->sb_mb = next;
  781 }
  782 
  783 /*
  784  * Drop a record off the front of a sockbuf
  785  * and move the next record to the front.
  786  */
  787 void
  788 sbdroprecord(sb)
  789         register struct sockbuf *sb;
  790 {
  791         register struct mbuf *m, *mn;
  792 
  793         m = sb->sb_mb;
  794         if (m) {
  795                 sb->sb_mb = m->m_nextpkt;
  796                 do {
  797                         sbfree(sb, m);
  798                         MFREE(m, mn);
  799                         m = mn;
  800                 } while (m);
  801         }
  802 }
  803 
  804 /*
  805  * Create a "control" mbuf containing the specified data
  806  * with the specified type for presentation on a socket buffer.
  807  */
  808 struct mbuf *
  809 sbcreatecontrol(p, size, type, level)
  810         caddr_t p;
  811         register int size;
  812         int type, level;
  813 {
  814         register struct cmsghdr *cp;
  815         struct mbuf *m;
  816 
  817         if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
  818                 return ((struct mbuf *) NULL);
  819         cp = mtod(m, struct cmsghdr *);
  820         /* XXX check size? */
  821         (void)memcpy(CMSG_DATA(cp), p, size);
  822         size += sizeof(*cp);
  823         m->m_len = size;
  824         cp->cmsg_len = size;
  825         cp->cmsg_level = level;
  826         cp->cmsg_type = type;
  827         return (m);
  828 }
  829 
  830 #ifdef PRU_OLDSTYLE
  831 /*
  832  * The following routines mediate between the old-style `pr_usrreq'
  833  * protocol implementations and the new-style `struct pr_usrreqs'
  834  * calling convention.
  835  */
  836 
  837 /* syntactic sugar */
  838 #define nomb    (struct mbuf *)0
  839 
  840 static int
  841 old_abort(struct socket *so)
  842 {
  843         return so->so_proto->pr_ousrreq(so, PRU_ABORT, nomb, nomb, nomb);
  844 }
  845 
  846 static int
  847 old_accept(struct socket *so, struct mbuf *nam)
  848 {
  849         return so->so_proto->pr_ousrreq(so, PRU_ACCEPT, nomb,  nam, nomb);
  850 }
  851 
  852 static int
  853 old_attach(struct socket *so, int proto)
  854 {
  855         return so->so_proto->pr_ousrreq(so, PRU_ATTACH, nomb,
  856                                        (struct mbuf *)proto, /* XXX */
  857                                        nomb);
  858 }
  859 
  860 static int
  861 old_bind(struct socket *so, struct mbuf *nam)
  862 {
  863         return so->so_proto->pr_ousrreq(so, PRU_BIND, nomb, nam, nomb);
  864 }
  865 
  866 static int
  867 old_connect(struct socket *so, struct mbuf *nam)
  868 {
  869         return so->so_proto->pr_ousrreq(so, PRU_CONNECT, nomb, nam, nomb);
  870 }
  871 
  872 static int
  873 old_connect2(struct socket *so1, struct socket *so2)
  874 {
  875         return so1->so_proto->pr_ousrreq(so1, PRU_CONNECT2, nomb, 
  876                                        (struct mbuf *)so2, nomb);
  877 }
  878 
  879 static int
  880 old_control(struct socket *so, int cmd, caddr_t data, struct ifnet *ifp)
  881 {
  882         return so->so_proto->pr_ousrreq(so, PRU_CONTROL, (struct mbuf *)cmd, 
  883                                        (struct mbuf *)data, 
  884                                        (struct mbuf *)ifp);
  885 }
  886 
  887 static int
  888 old_detach(struct socket *so)
  889 {
  890         return so->so_proto->pr_ousrreq(so, PRU_DETACH, nomb, nomb, nomb);
  891 }
  892 
  893 static int
  894 old_disconnect(struct socket *so)
  895 {
  896         return so->so_proto->pr_ousrreq(so, PRU_DISCONNECT, nomb, nomb, nomb);
  897 }
  898 
  899 static int
  900 old_listen(struct socket *so)
  901 {
  902         return so->so_proto->pr_ousrreq(so, PRU_LISTEN, nomb, nomb, nomb);
  903 }
  904 
  905 static int
  906 old_peeraddr(struct socket *so, struct mbuf *nam)
  907 {
  908         return so->so_proto->pr_ousrreq(so, PRU_PEERADDR, nomb, nam, nomb);
  909 }
  910 
  911 static int
  912 old_rcvd(struct socket *so, int flags)
  913 {
  914         return so->so_proto->pr_ousrreq(so, PRU_RCVD, nomb,
  915                                        (struct mbuf *)flags, /* XXX */
  916                                        nomb);
  917 }
  918 
  919 static int
  920 old_rcvoob(struct socket *so, struct mbuf *m, int flags)
  921 {
  922         return so->so_proto->pr_ousrreq(so, PRU_RCVOOB, m,
  923                                        (struct mbuf *)flags, /* XXX */
  924                                        nomb);
  925 }
  926 
  927 static int
  928 old_send(struct socket *so, int flags, struct mbuf *m, struct mbuf *addr,
  929          struct mbuf *control)
  930 {
  931         int req;
  932 
  933         if (flags & PRUS_OOB) {
  934                 req = PRU_SENDOOB;
  935         } else if(flags & PRUS_EOF) {
  936                 req = PRU_SEND_EOF;
  937         } else {
  938                 req = PRU_SEND;
  939         }
  940         return so->so_proto->pr_ousrreq(so, req, m, addr, control);
  941 }
  942 
  943 static int
  944 old_sense(struct socket *so, struct stat *sb)
  945 {
  946         return so->so_proto->pr_ousrreq(so, PRU_SENSE, (struct mbuf *)sb,
  947                                        nomb, nomb);
  948 }
  949 
  950 static int
  951 old_shutdown(struct socket *so)
  952 {
  953         return so->so_proto->pr_ousrreq(so, PRU_SHUTDOWN, nomb, nomb, nomb);
  954 }
  955 
  956 static int
  957 old_sockaddr(struct socket *so, struct mbuf *nam)
  958 {
  959         return so->so_proto->pr_ousrreq(so, PRU_SOCKADDR, nomb, nam, nomb);
  960 }
  961 
  962 struct pr_usrreqs pru_oldstyle = {
  963         old_abort, old_accept, old_attach, old_bind, old_connect,
  964         old_connect2, old_control, old_detach, old_disconnect,
  965         old_listen, old_peeraddr, old_rcvd, old_rcvoob, old_send,
  966         old_sense, old_shutdown, old_sockaddr
  967 };
  968 
  969 #endif /* PRU_OLDSTYLE */
  970 
  971 /*
  972  * Some routines that return EOPNOTSUPP for entry points that are not
  973  * supported by a protocol.  Fill in as needed.
  974  */
  975 int
  976 pru_accept_notsupp(struct socket *so, struct mbuf *nam)
  977 {
  978         return EOPNOTSUPP;
  979 }
  980 
  981 int
  982 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
  983 {
  984         return EOPNOTSUPP;
  985 }
  986 
  987 int
  988 pru_control_notsupp(struct socket *so, int cmd, caddr_t data,
  989                     struct ifnet *ifp)
  990 {
  991         return EOPNOTSUPP;
  992 }
  993 
  994 int
  995 pru_listen_notsupp(struct socket *so)
  996 {
  997         return EOPNOTSUPP;
  998 }
  999 
 1000 int
 1001 pru_rcvd_notsupp(struct socket *so, int flags)
 1002 {
 1003         return EOPNOTSUPP;
 1004 }
 1005 
 1006 int
 1007 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
 1008 {
 1009         return EOPNOTSUPP;
 1010 }
 1011 
 1012 /*
 1013  * This isn't really a ``null'' operation, but it's the default one
 1014  * and doesn't do anything destructive.
 1015  */
 1016 int
 1017 pru_sense_null(struct socket *so, struct stat *sb)
 1018 {
 1019         sb->st_blksize = so->so_snd.sb_hiwat;
 1020         return 0;
 1021 }
 1022 

Cache object: eed02acac2bce390c2d6c46848994290


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.