1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All Rights Reserved.
6 * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
7 * Copyright (c) 2018 Matthew Macy
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
34 */
35
36 /*
37 * UNIX Domain (Local) Sockets
38 *
39 * This is an implementation of UNIX (local) domain sockets. Each socket has
40 * an associated struct unpcb (UNIX protocol control block). Stream sockets
41 * may be connected to 0 or 1 other socket. Datagram sockets may be
42 * connected to 0, 1, or many other sockets. Sockets may be created and
43 * connected in pairs (socketpair(2)), or bound/connected to using the file
44 * system name space. For most purposes, only the receive socket buffer is
45 * used, as sending on one socket delivers directly to the receive socket
46 * buffer of a second socket.
47 *
48 * The implementation is substantially complicated by the fact that
49 * "ancillary data", such as file descriptors or credentials, may be passed
50 * across UNIX domain sockets. The potential for passing UNIX domain sockets
51 * over other UNIX domain sockets requires the implementation of a simple
52 * garbage collector to find and tear down cycles of disconnected sockets.
53 *
54 * TODO:
55 * RDM
56 * rethink name space problems
57 * need a proper out-of-band
58 */
59
60 #include <sys/cdefs.h>
61 __FBSDID("$FreeBSD: releng/12.0/sys/kern/uipc_usrreq.c 340980 2018-11-26 16:36:38Z markj $");
62
63 #include "opt_ddb.h"
64
65 #include <sys/param.h>
66 #include <sys/capsicum.h>
67 #include <sys/domain.h>
68 #include <sys/fcntl.h>
69 #include <sys/malloc.h> /* XXX must be before <sys/file.h> */
70 #include <sys/eventhandler.h>
71 #include <sys/file.h>
72 #include <sys/filedesc.h>
73 #include <sys/kernel.h>
74 #include <sys/lock.h>
75 #include <sys/mbuf.h>
76 #include <sys/mount.h>
77 #include <sys/mutex.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/protosw.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/stat.h>
88 #include <sys/sx.h>
89 #include <sys/sysctl.h>
90 #include <sys/systm.h>
91 #include <sys/taskqueue.h>
92 #include <sys/un.h>
93 #include <sys/unpcb.h>
94 #include <sys/vnode.h>
95
96 #include <net/vnet.h>
97
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101
102 #include <security/mac/mac_framework.h>
103
104 #include <vm/uma.h>
105
106 MALLOC_DECLARE(M_FILECAPS);
107
108 /*
109 * Locking key:
110 * (l) Locked using list lock
111 * (g) Locked using linkage lock
112 */
113
114 static uma_zone_t unp_zone;
115 static unp_gen_t unp_gencnt; /* (l) */
116 static u_int unp_count; /* (l) Count of local sockets. */
117 static ino_t unp_ino; /* Prototype for fake inode numbers. */
118 static int unp_rights; /* (g) File descriptors in flight. */
119 static struct unp_head unp_shead; /* (l) List of stream sockets. */
120 static struct unp_head unp_dhead; /* (l) List of datagram sockets. */
121 static struct unp_head unp_sphead; /* (l) List of seqpacket sockets. */
122
123 struct unp_defer {
124 SLIST_ENTRY(unp_defer) ud_link;
125 struct file *ud_fp;
126 };
127 static SLIST_HEAD(, unp_defer) unp_defers;
128 static int unp_defers_count;
129
130 static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL };
131
132 /*
133 * Garbage collection of cyclic file descriptor/socket references occurs
134 * asynchronously in a taskqueue context in order to avoid recursion and
135 * reentrance in the UNIX domain socket, file descriptor, and socket layer
136 * code. See unp_gc() for a full description.
137 */
138 static struct timeout_task unp_gc_task;
139
140 /*
141 * The close of unix domain sockets attached as SCM_RIGHTS is
142 * postponed to the taskqueue, to avoid arbitrary recursion depth.
143 * The attached sockets might have another sockets attached.
144 */
145 static struct task unp_defer_task;
146
147 /*
148 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
149 * stream sockets, although the total for sender and receiver is actually
150 * only PIPSIZ.
151 *
152 * Datagram sockets really use the sendspace as the maximum datagram size,
153 * and don't really want to reserve the sendspace. Their recvspace should be
154 * large enough for at least one max-size datagram plus address.
155 */
156 #ifndef PIPSIZ
157 #define PIPSIZ 8192
158 #endif
159 static u_long unpst_sendspace = PIPSIZ;
160 static u_long unpst_recvspace = PIPSIZ;
161 static u_long unpdg_sendspace = 2*1024; /* really max datagram size */
162 static u_long unpdg_recvspace = 4*1024;
163 static u_long unpsp_sendspace = PIPSIZ; /* really max datagram size */
164 static u_long unpsp_recvspace = PIPSIZ;
165
166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
167 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
168 "SOCK_STREAM");
169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
171 "SOCK_SEQPACKET");
172
173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
174 &unpst_sendspace, 0, "Default stream send space.");
175 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
176 &unpst_recvspace, 0, "Default stream receive space.");
177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
178 &unpdg_sendspace, 0, "Default datagram send space.");
179 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
180 &unpdg_recvspace, 0, "Default datagram receive space.");
181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
182 &unpsp_sendspace, 0, "Default seqpacket send space.");
183 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
184 &unpsp_recvspace, 0, "Default seqpacket receive space.");
185 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
186 "File descriptors in flight.");
187 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
188 &unp_defers_count, 0,
189 "File descriptors deferred to taskqueue for close.");
190
191 /*
192 * Locking and synchronization:
193 *
194 * Three types of locks exist in the local domain socket implementation: a
195 * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes.
196 * The linkage lock protects the socket count, global generation number,
197 * and stream/datagram global lists.
198 *
199 * The mtxpool lock protects the vnode from being modified while referenced.
200 * Lock ordering requires that it be acquired before any unpcb locks.
201 *
202 * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular
203 * note is that this includes the unp_conn field. So long as the unpcb lock
204 * is held the reference to the unpcb pointed to by unp_conn is valid. If we
205 * require that the unpcb pointed to by unp_conn remain live in cases where
206 * we need to drop the unp_mtx as when we need to acquire the lock for a
207 * second unpcb the caller must first acquire an additional reference on the
208 * second unpcb and then revalidate any state (typically check that unp_conn
209 * is non-NULL) upon requiring the initial unpcb lock. The lock ordering
210 * between unpcbs is the conventional ascending address order. Two helper
211 * routines exist for this:
212 *
213 * - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the
214 * safe ordering.
215 *
216 * - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held
217 * when called. If unp is unlocked and unp2 is subsequently freed
218 * freed will be set to 1.
219 *
220 * The helper routines for references are:
221 *
222 * - unp_pcb_hold(unp): Can be called any time we currently hold a valid
223 * reference to unp.
224 *
225 * - unp_pcb_rele(unp): The caller must hold the unp lock. If we are
226 * releasing the last reference, detach must have been called thus
227 * unp->unp_socket be NULL.
228 *
229 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
230 * allocated in pru_attach() and freed in pru_detach(). The validity of that
231 * pointer is an invariant, so no lock is required to dereference the so_pcb
232 * pointer if a valid socket reference is held by the caller. In practice,
233 * this is always true during operations performed on a socket. Each unpcb
234 * has a back-pointer to its socket, unp_socket, which will be stable under
235 * the same circumstances.
236 *
237 * This pointer may only be safely dereferenced as long as a valid reference
238 * to the unpcb is held. Typically, this reference will be from the socket,
239 * or from another unpcb when the referring unpcb's lock is held (in order
240 * that the reference not be invalidated during use). For example, to follow
241 * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
242 * that detach is not run clearing unp_socket.
243 *
244 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
245 * protocols, bind() is a non-atomic operation, and connect() requires
246 * potential sleeping in the protocol, due to potentially waiting on local or
247 * distributed file systems. We try to separate "lookup" operations, which
248 * may sleep, and the IPC operations themselves, which typically can occur
249 * with relative atomicity as locks can be held over the entire operation.
250 *
251 * Another tricky issue is simultaneous multi-threaded or multi-process
252 * access to a single UNIX domain socket. These are handled by the flags
253 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
254 * binding, both of which involve dropping UNIX domain socket locks in order
255 * to perform namei() and other file system operations.
256 */
257 static struct rwlock unp_link_rwlock;
258 static struct mtx unp_defers_lock;
259
260 #define UNP_LINK_LOCK_INIT() rw_init(&unp_link_rwlock, \
261 "unp_link_rwlock")
262
263 #define UNP_LINK_LOCK_ASSERT() rw_assert(&unp_link_rwlock, \
264 RA_LOCKED)
265 #define UNP_LINK_UNLOCK_ASSERT() rw_assert(&unp_link_rwlock, \
266 RA_UNLOCKED)
267
268 #define UNP_LINK_RLOCK() rw_rlock(&unp_link_rwlock)
269 #define UNP_LINK_RUNLOCK() rw_runlock(&unp_link_rwlock)
270 #define UNP_LINK_WLOCK() rw_wlock(&unp_link_rwlock)
271 #define UNP_LINK_WUNLOCK() rw_wunlock(&unp_link_rwlock)
272 #define UNP_LINK_WLOCK_ASSERT() rw_assert(&unp_link_rwlock, \
273 RA_WLOCKED)
274 #define UNP_LINK_WOWNED() rw_wowned(&unp_link_rwlock)
275
276 #define UNP_DEFERRED_LOCK_INIT() mtx_init(&unp_defers_lock, \
277 "unp_defer", NULL, MTX_DEF)
278 #define UNP_DEFERRED_LOCK() mtx_lock(&unp_defers_lock)
279 #define UNP_DEFERRED_UNLOCK() mtx_unlock(&unp_defers_lock)
280
281 #define UNP_REF_LIST_LOCK() UNP_DEFERRED_LOCK();
282 #define UNP_REF_LIST_UNLOCK() UNP_DEFERRED_UNLOCK();
283
284 #define UNP_PCB_LOCK_INIT(unp) mtx_init(&(unp)->unp_mtx, \
285 "unp", "unp", \
286 MTX_DUPOK|MTX_DEF)
287 #define UNP_PCB_LOCK_DESTROY(unp) mtx_destroy(&(unp)->unp_mtx)
288 #define UNP_PCB_LOCK(unp) mtx_lock(&(unp)->unp_mtx)
289 #define UNP_PCB_TRYLOCK(unp) mtx_trylock(&(unp)->unp_mtx)
290 #define UNP_PCB_UNLOCK(unp) mtx_unlock(&(unp)->unp_mtx)
291 #define UNP_PCB_OWNED(unp) mtx_owned(&(unp)->unp_mtx)
292 #define UNP_PCB_LOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_OWNED)
293 #define UNP_PCB_UNLOCK_ASSERT(unp) mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
294
295 static int uipc_connect2(struct socket *, struct socket *);
296 static int uipc_ctloutput(struct socket *, struct sockopt *);
297 static int unp_connect(struct socket *, struct sockaddr *,
298 struct thread *);
299 static int unp_connectat(int, struct socket *, struct sockaddr *,
300 struct thread *);
301 static int unp_connect2(struct socket *so, struct socket *so2, int);
302 static void unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
303 static void unp_dispose(struct socket *so);
304 static void unp_dispose_mbuf(struct mbuf *);
305 static void unp_shutdown(struct unpcb *);
306 static void unp_drop(struct unpcb *);
307 static void unp_gc(__unused void *, int);
308 static void unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
309 static void unp_discard(struct file *);
310 static void unp_freerights(struct filedescent **, int);
311 static void unp_init(void);
312 static int unp_internalize(struct mbuf **, struct thread *);
313 static void unp_internalize_fp(struct file *);
314 static int unp_externalize(struct mbuf *, struct mbuf **, int);
315 static int unp_externalize_fp(struct file *);
316 static struct mbuf *unp_addsockcred(struct thread *, struct mbuf *);
317 static void unp_process_defers(void * __unused, int);
318
319
320 static void
321 unp_pcb_hold(struct unpcb *unp)
322 {
323 MPASS(unp->unp_refcount);
324 refcount_acquire(&unp->unp_refcount);
325 }
326
327 static int
328 unp_pcb_rele(struct unpcb *unp)
329 {
330 int freed;
331
332 UNP_PCB_LOCK_ASSERT(unp);
333 MPASS(unp->unp_refcount);
334 if ((freed = refcount_release(&unp->unp_refcount))) {
335 /* we got here with having detached? */
336 MPASS(unp->unp_socket == NULL);
337 UNP_PCB_UNLOCK(unp);
338 UNP_PCB_LOCK_DESTROY(unp);
339 uma_zfree(unp_zone, unp);
340 }
341 return (freed);
342 }
343
344 static void
345 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2)
346 {
347 MPASS(unp != unp2);
348 UNP_PCB_UNLOCK_ASSERT(unp);
349 UNP_PCB_UNLOCK_ASSERT(unp2);
350 if ((uintptr_t)unp2 > (uintptr_t)unp) {
351 UNP_PCB_LOCK(unp);
352 UNP_PCB_LOCK(unp2);
353 } else {
354 UNP_PCB_LOCK(unp2);
355 UNP_PCB_LOCK(unp);
356 }
357 }
358
359 static __noinline void
360 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p,
361 int *freed)
362 {
363 struct unpcb *unp2;
364
365 unp2 = *unp2p;
366 unp_pcb_hold(unp2);
367 UNP_PCB_UNLOCK(unp);
368 UNP_PCB_LOCK(unp2);
369 UNP_PCB_LOCK(unp);
370 *freed = unp_pcb_rele(unp2);
371 if (*freed)
372 *unp2p = NULL;
373 }
374
375 #define unp_pcb_owned_lock2(unp, unp2, freed) do { \
376 freed = 0; \
377 UNP_PCB_LOCK_ASSERT(unp); \
378 UNP_PCB_UNLOCK_ASSERT(unp2); \
379 MPASS((unp) != (unp2)); \
380 if (__predict_true(UNP_PCB_TRYLOCK(unp2))) \
381 break; \
382 else if ((uintptr_t)(unp2) > (uintptr_t)(unp)) \
383 UNP_PCB_LOCK(unp2); \
384 else \
385 unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed); \
386 } while (0)
387
388
389 /*
390 * Definitions of protocols supported in the LOCAL domain.
391 */
392 static struct domain localdomain;
393 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
394 static struct pr_usrreqs uipc_usrreqs_seqpacket;
395 static struct protosw localsw[] = {
396 {
397 .pr_type = SOCK_STREAM,
398 .pr_domain = &localdomain,
399 .pr_flags = PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
400 .pr_ctloutput = &uipc_ctloutput,
401 .pr_usrreqs = &uipc_usrreqs_stream
402 },
403 {
404 .pr_type = SOCK_DGRAM,
405 .pr_domain = &localdomain,
406 .pr_flags = PR_ATOMIC|PR_ADDR|PR_RIGHTS,
407 .pr_ctloutput = &uipc_ctloutput,
408 .pr_usrreqs = &uipc_usrreqs_dgram
409 },
410 {
411 .pr_type = SOCK_SEQPACKET,
412 .pr_domain = &localdomain,
413
414 /*
415 * XXXRW: For now, PR_ADDR because soreceive will bump into them
416 * due to our use of sbappendaddr. A new sbappend variants is needed
417 * that supports both atomic record writes and control data.
418 */
419 .pr_flags = PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
420 PR_RIGHTS,
421 .pr_ctloutput = &uipc_ctloutput,
422 .pr_usrreqs = &uipc_usrreqs_seqpacket,
423 },
424 };
425
426 static struct domain localdomain = {
427 .dom_family = AF_LOCAL,
428 .dom_name = "local",
429 .dom_init = unp_init,
430 .dom_externalize = unp_externalize,
431 .dom_dispose = unp_dispose,
432 .dom_protosw = localsw,
433 .dom_protoswNPROTOSW = &localsw[nitems(localsw)]
434 };
435 DOMAIN_SET(local);
436
437 static void
438 uipc_abort(struct socket *so)
439 {
440 struct unpcb *unp, *unp2;
441
442 unp = sotounpcb(so);
443 KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
444 UNP_PCB_UNLOCK_ASSERT(unp);
445
446 UNP_PCB_LOCK(unp);
447 unp2 = unp->unp_conn;
448 if (unp2 != NULL) {
449 unp_pcb_hold(unp2);
450 UNP_PCB_UNLOCK(unp);
451 unp_drop(unp2);
452 } else
453 UNP_PCB_UNLOCK(unp);
454 }
455
456 static int
457 uipc_accept(struct socket *so, struct sockaddr **nam)
458 {
459 struct unpcb *unp, *unp2;
460 const struct sockaddr *sa;
461
462 /*
463 * Pass back name of connected socket, if it was bound and we are
464 * still connected (our peer may have closed already!).
465 */
466 unp = sotounpcb(so);
467 KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
468
469 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
470 UNP_LINK_RLOCK();
471 unp2 = unp->unp_conn;
472 if (unp2 != NULL && unp2->unp_addr != NULL) {
473 UNP_PCB_LOCK(unp2);
474 sa = (struct sockaddr *) unp2->unp_addr;
475 bcopy(sa, *nam, sa->sa_len);
476 UNP_PCB_UNLOCK(unp2);
477 } else {
478 sa = &sun_noname;
479 bcopy(sa, *nam, sa->sa_len);
480 }
481 UNP_LINK_RUNLOCK();
482 return (0);
483 }
484
485 static int
486 uipc_attach(struct socket *so, int proto, struct thread *td)
487 {
488 u_long sendspace, recvspace;
489 struct unpcb *unp;
490 int error;
491 bool locked;
492
493 KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
494 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
495 switch (so->so_type) {
496 case SOCK_STREAM:
497 sendspace = unpst_sendspace;
498 recvspace = unpst_recvspace;
499 break;
500
501 case SOCK_DGRAM:
502 sendspace = unpdg_sendspace;
503 recvspace = unpdg_recvspace;
504 break;
505
506 case SOCK_SEQPACKET:
507 sendspace = unpsp_sendspace;
508 recvspace = unpsp_recvspace;
509 break;
510
511 default:
512 panic("uipc_attach");
513 }
514 error = soreserve(so, sendspace, recvspace);
515 if (error)
516 return (error);
517 }
518 unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
519 if (unp == NULL)
520 return (ENOBUFS);
521 LIST_INIT(&unp->unp_refs);
522 UNP_PCB_LOCK_INIT(unp);
523 unp->unp_socket = so;
524 so->so_pcb = unp;
525 unp->unp_refcount = 1;
526 if (so->so_listen != NULL)
527 unp->unp_flags |= UNP_NASCENT;
528
529 if ((locked = UNP_LINK_WOWNED()) == false)
530 UNP_LINK_WLOCK();
531
532 unp->unp_gencnt = ++unp_gencnt;
533 unp_count++;
534 switch (so->so_type) {
535 case SOCK_STREAM:
536 LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
537 break;
538
539 case SOCK_DGRAM:
540 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
541 break;
542
543 case SOCK_SEQPACKET:
544 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
545 break;
546
547 default:
548 panic("uipc_attach");
549 }
550
551 if (locked == false)
552 UNP_LINK_WUNLOCK();
553
554 return (0);
555 }
556
557 static int
558 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
559 {
560 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
561 struct vattr vattr;
562 int error, namelen;
563 struct nameidata nd;
564 struct unpcb *unp;
565 struct vnode *vp;
566 struct mount *mp;
567 cap_rights_t rights;
568 char *buf;
569
570 if (nam->sa_family != AF_UNIX)
571 return (EAFNOSUPPORT);
572
573 unp = sotounpcb(so);
574 KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
575
576 if (soun->sun_len > sizeof(struct sockaddr_un))
577 return (EINVAL);
578 namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
579 if (namelen <= 0)
580 return (EINVAL);
581
582 /*
583 * We don't allow simultaneous bind() calls on a single UNIX domain
584 * socket, so flag in-progress operations, and return an error if an
585 * operation is already in progress.
586 *
587 * Historically, we have not allowed a socket to be rebound, so this
588 * also returns an error. Not allowing re-binding simplifies the
589 * implementation and avoids a great many possible failure modes.
590 */
591 UNP_PCB_LOCK(unp);
592 if (unp->unp_vnode != NULL) {
593 UNP_PCB_UNLOCK(unp);
594 return (EINVAL);
595 }
596 if (unp->unp_flags & UNP_BINDING) {
597 UNP_PCB_UNLOCK(unp);
598 return (EALREADY);
599 }
600 unp->unp_flags |= UNP_BINDING;
601 UNP_PCB_UNLOCK(unp);
602
603 buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
604 bcopy(soun->sun_path, buf, namelen);
605 buf[namelen] = 0;
606
607 restart:
608 NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
609 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
610 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
611 error = namei(&nd);
612 if (error)
613 goto error;
614 vp = nd.ni_vp;
615 if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
616 NDFREE(&nd, NDF_ONLY_PNBUF);
617 if (nd.ni_dvp == vp)
618 vrele(nd.ni_dvp);
619 else
620 vput(nd.ni_dvp);
621 if (vp != NULL) {
622 vrele(vp);
623 error = EADDRINUSE;
624 goto error;
625 }
626 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
627 if (error)
628 goto error;
629 goto restart;
630 }
631 VATTR_NULL(&vattr);
632 vattr.va_type = VSOCK;
633 vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
634 #ifdef MAC
635 error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
636 &vattr);
637 #endif
638 if (error == 0)
639 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
640 NDFREE(&nd, NDF_ONLY_PNBUF);
641 vput(nd.ni_dvp);
642 if (error) {
643 vn_finished_write(mp);
644 goto error;
645 }
646 vp = nd.ni_vp;
647 ASSERT_VOP_ELOCKED(vp, "uipc_bind");
648 soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
649
650 UNP_PCB_LOCK(unp);
651 VOP_UNP_BIND(vp, unp);
652 unp->unp_vnode = vp;
653 unp->unp_addr = soun;
654 unp->unp_flags &= ~UNP_BINDING;
655 UNP_PCB_UNLOCK(unp);
656 VOP_UNLOCK(vp, 0);
657 vn_finished_write(mp);
658 free(buf, M_TEMP);
659 return (0);
660
661 error:
662 UNP_PCB_LOCK(unp);
663 unp->unp_flags &= ~UNP_BINDING;
664 UNP_PCB_UNLOCK(unp);
665 free(buf, M_TEMP);
666 return (error);
667 }
668
669 static int
670 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
671 {
672
673 return (uipc_bindat(AT_FDCWD, so, nam, td));
674 }
675
676 static int
677 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
678 {
679 int error;
680
681 KASSERT(td == curthread, ("uipc_connect: td != curthread"));
682 error = unp_connect(so, nam, td);
683 return (error);
684 }
685
686 static int
687 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
688 struct thread *td)
689 {
690 int error;
691
692 KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
693 error = unp_connectat(fd, so, nam, td);
694 return (error);
695 }
696
697 static void
698 uipc_close(struct socket *so)
699 {
700 struct unpcb *unp, *unp2;
701 struct vnode *vp = NULL;
702 struct mtx *vplock;
703 int freed;
704 unp = sotounpcb(so);
705 KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
706
707
708 vplock = NULL;
709 if ((vp = unp->unp_vnode) != NULL) {
710 vplock = mtx_pool_find(mtxpool_sleep, vp);
711 mtx_lock(vplock);
712 }
713 UNP_PCB_LOCK(unp);
714 if (vp && unp->unp_vnode == NULL) {
715 mtx_unlock(vplock);
716 vp = NULL;
717 }
718 if (vp != NULL) {
719 VOP_UNP_DETACH(vp);
720 unp->unp_vnode = NULL;
721 }
722 unp2 = unp->unp_conn;
723 unp_pcb_hold(unp);
724 if (__predict_false(unp == unp2)) {
725 unp_disconnect(unp, unp2);
726 } else if (unp2 != NULL) {
727 unp_pcb_hold(unp2);
728 unp_pcb_owned_lock2(unp, unp2, freed);
729 unp_disconnect(unp, unp2);
730 if (unp_pcb_rele(unp2) == 0)
731 UNP_PCB_UNLOCK(unp2);
732 }
733 if (unp_pcb_rele(unp) == 0)
734 UNP_PCB_UNLOCK(unp);
735 if (vp) {
736 mtx_unlock(vplock);
737 vrele(vp);
738 }
739 }
740
741 static int
742 uipc_connect2(struct socket *so1, struct socket *so2)
743 {
744 struct unpcb *unp, *unp2;
745 int error;
746
747 unp = so1->so_pcb;
748 KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
749 unp2 = so2->so_pcb;
750 KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
751 if (unp != unp2)
752 unp_pcb_lock2(unp, unp2);
753 else
754 UNP_PCB_LOCK(unp);
755 error = unp_connect2(so1, so2, PRU_CONNECT2);
756 if (unp != unp2)
757 UNP_PCB_UNLOCK(unp2);
758 UNP_PCB_UNLOCK(unp);
759 return (error);
760 }
761
762 static void
763 uipc_detach(struct socket *so)
764 {
765 struct unpcb *unp, *unp2;
766 struct mtx *vplock;
767 struct sockaddr_un *saved_unp_addr;
768 struct vnode *vp;
769 int freeunp, local_unp_rights;
770
771 unp = sotounpcb(so);
772 KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
773
774 vp = NULL;
775 vplock = NULL;
776 local_unp_rights = 0;
777
778 UNP_LINK_WLOCK();
779 LIST_REMOVE(unp, unp_link);
780 unp->unp_gencnt = ++unp_gencnt;
781 --unp_count;
782 UNP_LINK_WUNLOCK();
783
784 UNP_PCB_UNLOCK_ASSERT(unp);
785 restart:
786 if ((vp = unp->unp_vnode) != NULL) {
787 vplock = mtx_pool_find(mtxpool_sleep, vp);
788 mtx_lock(vplock);
789 }
790 UNP_PCB_LOCK(unp);
791 if (unp->unp_vnode != vp &&
792 unp->unp_vnode != NULL) {
793 if (vplock)
794 mtx_unlock(vplock);
795 UNP_PCB_UNLOCK(unp);
796 goto restart;
797 }
798 if ((unp->unp_flags & UNP_NASCENT) != 0) {
799 goto teardown;
800 }
801 if ((vp = unp->unp_vnode) != NULL) {
802 VOP_UNP_DETACH(vp);
803 unp->unp_vnode = NULL;
804 }
805 if (__predict_false(unp == unp->unp_conn)) {
806 unp_disconnect(unp, unp);
807 unp2 = NULL;
808 goto connect_self;
809 }
810 if ((unp2 = unp->unp_conn) != NULL) {
811 unp_pcb_owned_lock2(unp, unp2, freeunp);
812 if (freeunp)
813 unp2 = NULL;
814 }
815 unp_pcb_hold(unp);
816 if (unp2 != NULL) {
817 unp_pcb_hold(unp2);
818 unp_disconnect(unp, unp2);
819 if (unp_pcb_rele(unp2) == 0)
820 UNP_PCB_UNLOCK(unp2);
821 }
822 connect_self:
823 UNP_PCB_UNLOCK(unp);
824 UNP_REF_LIST_LOCK();
825 while (!LIST_EMPTY(&unp->unp_refs)) {
826 struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
827
828 unp_pcb_hold(ref);
829 UNP_REF_LIST_UNLOCK();
830
831 MPASS(ref != unp);
832 UNP_PCB_UNLOCK_ASSERT(ref);
833 unp_drop(ref);
834 UNP_REF_LIST_LOCK();
835 }
836
837 UNP_REF_LIST_UNLOCK();
838 UNP_PCB_LOCK(unp);
839 freeunp = unp_pcb_rele(unp);
840 MPASS(freeunp == 0);
841 local_unp_rights = unp_rights;
842 teardown:
843 unp->unp_socket->so_pcb = NULL;
844 saved_unp_addr = unp->unp_addr;
845 unp->unp_addr = NULL;
846 unp->unp_socket = NULL;
847 freeunp = unp_pcb_rele(unp);
848 if (saved_unp_addr != NULL)
849 free(saved_unp_addr, M_SONAME);
850 if (!freeunp)
851 UNP_PCB_UNLOCK(unp);
852 if (vp) {
853 mtx_unlock(vplock);
854 vrele(vp);
855 }
856 if (local_unp_rights)
857 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
858 }
859
860 static int
861 uipc_disconnect(struct socket *so)
862 {
863 struct unpcb *unp, *unp2;
864 int freed;
865
866 unp = sotounpcb(so);
867 KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
868
869 UNP_PCB_LOCK(unp);
870 if ((unp2 = unp->unp_conn) == NULL) {
871 UNP_PCB_UNLOCK(unp);
872 return (0);
873 }
874 if (__predict_true(unp != unp2)) {
875 unp_pcb_owned_lock2(unp, unp2, freed);
876 if (__predict_false(freed)) {
877 UNP_PCB_UNLOCK(unp);
878 return (0);
879 }
880 unp_pcb_hold(unp2);
881 }
882 unp_pcb_hold(unp);
883 unp_disconnect(unp, unp2);
884 if (unp_pcb_rele(unp) == 0)
885 UNP_PCB_UNLOCK(unp);
886 if ((unp != unp2) && unp_pcb_rele(unp2) == 0)
887 UNP_PCB_UNLOCK(unp2);
888 return (0);
889 }
890
891 static int
892 uipc_listen(struct socket *so, int backlog, struct thread *td)
893 {
894 struct unpcb *unp;
895 int error;
896
897 if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
898 return (EOPNOTSUPP);
899
900 unp = sotounpcb(so);
901 KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
902
903 UNP_PCB_LOCK(unp);
904 if (unp->unp_vnode == NULL) {
905 /* Already connected or not bound to an address. */
906 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
907 UNP_PCB_UNLOCK(unp);
908 return (error);
909 }
910
911 SOCK_LOCK(so);
912 error = solisten_proto_check(so);
913 if (error == 0) {
914 cru2x(td->td_ucred, &unp->unp_peercred);
915 solisten_proto(so, backlog);
916 }
917 SOCK_UNLOCK(so);
918 UNP_PCB_UNLOCK(unp);
919 return (error);
920 }
921
922 static int
923 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
924 {
925 struct unpcb *unp, *unp2;
926 const struct sockaddr *sa;
927
928 unp = sotounpcb(so);
929 KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
930
931 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
932 UNP_LINK_RLOCK();
933 /*
934 * XXX: It seems that this test always fails even when connection is
935 * established. So, this else clause is added as workaround to
936 * return PF_LOCAL sockaddr.
937 */
938 unp2 = unp->unp_conn;
939 if (unp2 != NULL) {
940 UNP_PCB_LOCK(unp2);
941 if (unp2->unp_addr != NULL)
942 sa = (struct sockaddr *) unp2->unp_addr;
943 else
944 sa = &sun_noname;
945 bcopy(sa, *nam, sa->sa_len);
946 UNP_PCB_UNLOCK(unp2);
947 } else {
948 sa = &sun_noname;
949 bcopy(sa, *nam, sa->sa_len);
950 }
951 UNP_LINK_RUNLOCK();
952 return (0);
953 }
954
955 static int
956 uipc_rcvd(struct socket *so, int flags)
957 {
958 struct unpcb *unp, *unp2;
959 struct socket *so2;
960 u_int mbcnt, sbcc;
961
962 unp = sotounpcb(so);
963 KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
964 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
965 ("%s: socktype %d", __func__, so->so_type));
966
967 /*
968 * Adjust backpressure on sender and wakeup any waiting to write.
969 *
970 * The unp lock is acquired to maintain the validity of the unp_conn
971 * pointer; no lock on unp2 is required as unp2->unp_socket will be
972 * static as long as we don't permit unp2 to disconnect from unp,
973 * which is prevented by the lock on unp. We cache values from
974 * so_rcv to avoid holding the so_rcv lock over the entire
975 * transaction on the remote so_snd.
976 */
977 SOCKBUF_LOCK(&so->so_rcv);
978 mbcnt = so->so_rcv.sb_mbcnt;
979 sbcc = sbavail(&so->so_rcv);
980 SOCKBUF_UNLOCK(&so->so_rcv);
981 /*
982 * There is a benign race condition at this point. If we're planning to
983 * clear SB_STOP, but uipc_send is called on the connected socket at
984 * this instant, it might add data to the sockbuf and set SB_STOP. Then
985 * we would erroneously clear SB_STOP below, even though the sockbuf is
986 * full. The race is benign because the only ill effect is to allow the
987 * sockbuf to exceed its size limit, and the size limits are not
988 * strictly guaranteed anyway.
989 */
990 UNP_PCB_LOCK(unp);
991 unp2 = unp->unp_conn;
992 if (unp2 == NULL) {
993 UNP_PCB_UNLOCK(unp);
994 return (0);
995 }
996 so2 = unp2->unp_socket;
997 SOCKBUF_LOCK(&so2->so_snd);
998 if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
999 so2->so_snd.sb_flags &= ~SB_STOP;
1000 sowwakeup_locked(so2);
1001 UNP_PCB_UNLOCK(unp);
1002 return (0);
1003 }
1004
1005 static int
1006 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td)
1007 {
1008 int error;
1009 struct unpcb *unp;
1010
1011 unp = so->so_pcb;
1012 if (unp->unp_conn != NULL)
1013 return (EISCONN);
1014 error = unp_connect(so, nam, td);
1015 if (error)
1016 return (error);
1017 UNP_PCB_LOCK(unp);
1018 if (unp->unp_conn == NULL) {
1019 UNP_PCB_UNLOCK(unp);
1020 if (error == 0)
1021 error = ENOTCONN;
1022 }
1023 return (error);
1024 }
1025
1026
1027 static int
1028 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
1029 struct mbuf *control, struct thread *td)
1030 {
1031 struct unpcb *unp, *unp2;
1032 struct socket *so2;
1033 u_int mbcnt, sbcc;
1034 int freed, error;
1035
1036 unp = sotounpcb(so);
1037 KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
1038 KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
1039 so->so_type == SOCK_SEQPACKET,
1040 ("%s: socktype %d", __func__, so->so_type));
1041
1042 freed = error = 0;
1043 if (flags & PRUS_OOB) {
1044 error = EOPNOTSUPP;
1045 goto release;
1046 }
1047 if (control != NULL && (error = unp_internalize(&control, td)))
1048 goto release;
1049
1050 unp2 = NULL;
1051 switch (so->so_type) {
1052 case SOCK_DGRAM:
1053 {
1054 const struct sockaddr *from;
1055
1056 if (nam != NULL) {
1057 /*
1058 * We return with UNP_PCB_LOCK_HELD so we know that
1059 * the reference is live if the pointer is valid.
1060 */
1061 if ((error = connect_internal(so, nam, td)))
1062 break;
1063 MPASS(unp->unp_conn != NULL);
1064 unp2 = unp->unp_conn;
1065 } else {
1066 UNP_PCB_LOCK(unp);
1067
1068 /*
1069 * Because connect() and send() are non-atomic in a sendto()
1070 * with a target address, it's possible that the socket will
1071 * have disconnected before the send() can run. In that case
1072 * return the slightly counter-intuitive but otherwise
1073 * correct error that the socket is not connected.
1074 */
1075 if ((unp2 = unp->unp_conn) == NULL) {
1076 UNP_PCB_UNLOCK(unp);
1077 error = ENOTCONN;
1078 break;
1079 }
1080 }
1081 if (__predict_false(unp == unp2)) {
1082 if (unp->unp_socket == NULL) {
1083 error = ENOTCONN;
1084 break;
1085 }
1086 goto connect_self;
1087 }
1088 unp_pcb_owned_lock2(unp, unp2, freed);
1089 if (__predict_false(freed)) {
1090 UNP_PCB_UNLOCK(unp);
1091 error = ENOTCONN;
1092 break;
1093 }
1094 /*
1095 * The socket referencing unp2 may have been closed
1096 * or unp may have been disconnected if the unp lock
1097 * was dropped to acquire unp2.
1098 */
1099 if (__predict_false(unp->unp_conn == NULL) ||
1100 unp2->unp_socket == NULL) {
1101 UNP_PCB_UNLOCK(unp);
1102 if (unp_pcb_rele(unp2) == 0)
1103 UNP_PCB_UNLOCK(unp2);
1104 error = ENOTCONN;
1105 break;
1106 }
1107 connect_self:
1108 if (unp2->unp_flags & UNP_WANTCRED)
1109 control = unp_addsockcred(td, control);
1110 if (unp->unp_addr != NULL)
1111 from = (struct sockaddr *)unp->unp_addr;
1112 else
1113 from = &sun_noname;
1114 so2 = unp2->unp_socket;
1115 SOCKBUF_LOCK(&so2->so_rcv);
1116 if (sbappendaddr_locked(&so2->so_rcv, from, m,
1117 control)) {
1118 sorwakeup_locked(so2);
1119 m = NULL;
1120 control = NULL;
1121 } else {
1122 SOCKBUF_UNLOCK(&so2->so_rcv);
1123 error = ENOBUFS;
1124 }
1125 if (nam != NULL)
1126 unp_disconnect(unp, unp2);
1127 if (__predict_true(unp != unp2))
1128 UNP_PCB_UNLOCK(unp2);
1129 UNP_PCB_UNLOCK(unp);
1130 break;
1131 }
1132
1133 case SOCK_SEQPACKET:
1134 case SOCK_STREAM:
1135 if ((so->so_state & SS_ISCONNECTED) == 0) {
1136 if (nam != NULL) {
1137 if ((error = connect_internal(so, nam, td)))
1138 break;
1139 } else {
1140 error = ENOTCONN;
1141 break;
1142 }
1143 } else if ((unp2 = unp->unp_conn) == NULL) {
1144 error = ENOTCONN;
1145 break;
1146 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
1147 error = EPIPE;
1148 break;
1149 } else {
1150 UNP_PCB_LOCK(unp);
1151 if ((unp2 = unp->unp_conn) == NULL) {
1152 UNP_PCB_UNLOCK(unp);
1153 error = ENOTCONN;
1154 break;
1155 }
1156 }
1157 unp_pcb_owned_lock2(unp, unp2, freed);
1158 UNP_PCB_UNLOCK(unp);
1159 if (__predict_false(freed)) {
1160 error = ENOTCONN;
1161 break;
1162 }
1163 if ((so2 = unp2->unp_socket) == NULL) {
1164 UNP_PCB_UNLOCK(unp2);
1165 error = ENOTCONN;
1166 break;
1167 }
1168 SOCKBUF_LOCK(&so2->so_rcv);
1169 if (unp2->unp_flags & UNP_WANTCRED) {
1170 /*
1171 * Credentials are passed only once on SOCK_STREAM
1172 * and SOCK_SEQPACKET.
1173 */
1174 unp2->unp_flags &= ~UNP_WANTCRED;
1175 control = unp_addsockcred(td, control);
1176 }
1177
1178 /*
1179 * Send to paired receive port and wake up readers. Don't
1180 * check for space available in the receive buffer if we're
1181 * attaching ancillary data; Unix domain sockets only check
1182 * for space in the sending sockbuf, and that check is
1183 * performed one level up the stack. At that level we cannot
1184 * precisely account for the amount of buffer space used
1185 * (e.g., because control messages are not yet internalized).
1186 */
1187 switch (so->so_type) {
1188 case SOCK_STREAM:
1189 if (control != NULL) {
1190 sbappendcontrol_locked(&so2->so_rcv, m,
1191 control);
1192 control = NULL;
1193 } else
1194 sbappend_locked(&so2->so_rcv, m, flags);
1195 break;
1196
1197 case SOCK_SEQPACKET: {
1198 const struct sockaddr *from;
1199
1200 from = &sun_noname;
1201 if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
1202 from, m, control))
1203 control = NULL;
1204 break;
1205 }
1206 }
1207
1208 mbcnt = so2->so_rcv.sb_mbcnt;
1209 sbcc = sbavail(&so2->so_rcv);
1210 if (sbcc)
1211 sorwakeup_locked(so2);
1212 else
1213 SOCKBUF_UNLOCK(&so2->so_rcv);
1214
1215 /*
1216 * The PCB lock on unp2 protects the SB_STOP flag. Without it,
1217 * it would be possible for uipc_rcvd to be called at this
1218 * point, drain the receiving sockbuf, clear SB_STOP, and then
1219 * we would set SB_STOP below. That could lead to an empty
1220 * sockbuf having SB_STOP set
1221 */
1222 SOCKBUF_LOCK(&so->so_snd);
1223 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1224 so->so_snd.sb_flags |= SB_STOP;
1225 SOCKBUF_UNLOCK(&so->so_snd);
1226 UNP_PCB_UNLOCK(unp2);
1227 m = NULL;
1228 break;
1229 }
1230
1231 /*
1232 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1233 */
1234 if (flags & PRUS_EOF) {
1235 UNP_PCB_LOCK(unp);
1236 socantsendmore(so);
1237 unp_shutdown(unp);
1238 UNP_PCB_UNLOCK(unp);
1239 }
1240 if (control != NULL && error != 0)
1241 unp_dispose_mbuf(control);
1242
1243 release:
1244 if (control != NULL)
1245 m_freem(control);
1246 /*
1247 * In case of PRUS_NOTREADY, uipc_ready() is responsible
1248 * for freeing memory.
1249 */
1250 if (m != NULL && (flags & PRUS_NOTREADY) == 0)
1251 m_freem(m);
1252 return (error);
1253 }
1254
1255 static int
1256 uipc_ready(struct socket *so, struct mbuf *m, int count)
1257 {
1258 struct unpcb *unp, *unp2;
1259 struct socket *so2;
1260 int error;
1261
1262 unp = sotounpcb(so);
1263
1264 UNP_PCB_LOCK(unp);
1265 if ((unp2 = unp->unp_conn) == NULL) {
1266 UNP_PCB_UNLOCK(unp);
1267 goto error;
1268 }
1269 if (unp != unp2) {
1270 if (UNP_PCB_TRYLOCK(unp2) == 0) {
1271 unp_pcb_hold(unp2);
1272 UNP_PCB_UNLOCK(unp);
1273 UNP_PCB_LOCK(unp2);
1274 if (unp_pcb_rele(unp2))
1275 goto error;
1276 } else
1277 UNP_PCB_UNLOCK(unp);
1278 }
1279 so2 = unp2->unp_socket;
1280
1281 SOCKBUF_LOCK(&so2->so_rcv);
1282 if ((error = sbready(&so2->so_rcv, m, count)) == 0)
1283 sorwakeup_locked(so2);
1284 else
1285 SOCKBUF_UNLOCK(&so2->so_rcv);
1286
1287 UNP_PCB_UNLOCK(unp2);
1288
1289 return (error);
1290 error:
1291 for (int i = 0; i < count; i++)
1292 m = m_free(m);
1293 return (ECONNRESET);
1294 }
1295
1296 static int
1297 uipc_sense(struct socket *so, struct stat *sb)
1298 {
1299 struct unpcb *unp;
1300
1301 unp = sotounpcb(so);
1302 KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1303
1304 sb->st_blksize = so->so_snd.sb_hiwat;
1305 UNP_PCB_LOCK(unp);
1306 sb->st_dev = NODEV;
1307 if (unp->unp_ino == 0)
1308 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1309 sb->st_ino = unp->unp_ino;
1310 UNP_PCB_UNLOCK(unp);
1311 return (0);
1312 }
1313
1314 static int
1315 uipc_shutdown(struct socket *so)
1316 {
1317 struct unpcb *unp;
1318
1319 unp = sotounpcb(so);
1320 KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1321
1322 UNP_PCB_LOCK(unp);
1323 socantsendmore(so);
1324 unp_shutdown(unp);
1325 UNP_PCB_UNLOCK(unp);
1326 return (0);
1327 }
1328
1329 static int
1330 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1331 {
1332 struct unpcb *unp;
1333 const struct sockaddr *sa;
1334
1335 unp = sotounpcb(so);
1336 KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1337
1338 *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1339 UNP_PCB_LOCK(unp);
1340 if (unp->unp_addr != NULL)
1341 sa = (struct sockaddr *) unp->unp_addr;
1342 else
1343 sa = &sun_noname;
1344 bcopy(sa, *nam, sa->sa_len);
1345 UNP_PCB_UNLOCK(unp);
1346 return (0);
1347 }
1348
1349 static struct pr_usrreqs uipc_usrreqs_dgram = {
1350 .pru_abort = uipc_abort,
1351 .pru_accept = uipc_accept,
1352 .pru_attach = uipc_attach,
1353 .pru_bind = uipc_bind,
1354 .pru_bindat = uipc_bindat,
1355 .pru_connect = uipc_connect,
1356 .pru_connectat = uipc_connectat,
1357 .pru_connect2 = uipc_connect2,
1358 .pru_detach = uipc_detach,
1359 .pru_disconnect = uipc_disconnect,
1360 .pru_listen = uipc_listen,
1361 .pru_peeraddr = uipc_peeraddr,
1362 .pru_rcvd = uipc_rcvd,
1363 .pru_send = uipc_send,
1364 .pru_sense = uipc_sense,
1365 .pru_shutdown = uipc_shutdown,
1366 .pru_sockaddr = uipc_sockaddr,
1367 .pru_soreceive = soreceive_dgram,
1368 .pru_close = uipc_close,
1369 };
1370
1371 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1372 .pru_abort = uipc_abort,
1373 .pru_accept = uipc_accept,
1374 .pru_attach = uipc_attach,
1375 .pru_bind = uipc_bind,
1376 .pru_bindat = uipc_bindat,
1377 .pru_connect = uipc_connect,
1378 .pru_connectat = uipc_connectat,
1379 .pru_connect2 = uipc_connect2,
1380 .pru_detach = uipc_detach,
1381 .pru_disconnect = uipc_disconnect,
1382 .pru_listen = uipc_listen,
1383 .pru_peeraddr = uipc_peeraddr,
1384 .pru_rcvd = uipc_rcvd,
1385 .pru_send = uipc_send,
1386 .pru_sense = uipc_sense,
1387 .pru_shutdown = uipc_shutdown,
1388 .pru_sockaddr = uipc_sockaddr,
1389 .pru_soreceive = soreceive_generic, /* XXX: or...? */
1390 .pru_close = uipc_close,
1391 };
1392
1393 static struct pr_usrreqs uipc_usrreqs_stream = {
1394 .pru_abort = uipc_abort,
1395 .pru_accept = uipc_accept,
1396 .pru_attach = uipc_attach,
1397 .pru_bind = uipc_bind,
1398 .pru_bindat = uipc_bindat,
1399 .pru_connect = uipc_connect,
1400 .pru_connectat = uipc_connectat,
1401 .pru_connect2 = uipc_connect2,
1402 .pru_detach = uipc_detach,
1403 .pru_disconnect = uipc_disconnect,
1404 .pru_listen = uipc_listen,
1405 .pru_peeraddr = uipc_peeraddr,
1406 .pru_rcvd = uipc_rcvd,
1407 .pru_send = uipc_send,
1408 .pru_ready = uipc_ready,
1409 .pru_sense = uipc_sense,
1410 .pru_shutdown = uipc_shutdown,
1411 .pru_sockaddr = uipc_sockaddr,
1412 .pru_soreceive = soreceive_generic,
1413 .pru_close = uipc_close,
1414 };
1415
1416 static int
1417 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1418 {
1419 struct unpcb *unp;
1420 struct xucred xu;
1421 int error, optval;
1422
1423 if (sopt->sopt_level != 0)
1424 return (EINVAL);
1425
1426 unp = sotounpcb(so);
1427 KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1428 error = 0;
1429 switch (sopt->sopt_dir) {
1430 case SOPT_GET:
1431 switch (sopt->sopt_name) {
1432 case LOCAL_PEERCRED:
1433 UNP_PCB_LOCK(unp);
1434 if (unp->unp_flags & UNP_HAVEPC)
1435 xu = unp->unp_peercred;
1436 else {
1437 if (so->so_type == SOCK_STREAM)
1438 error = ENOTCONN;
1439 else
1440 error = EINVAL;
1441 }
1442 UNP_PCB_UNLOCK(unp);
1443 if (error == 0)
1444 error = sooptcopyout(sopt, &xu, sizeof(xu));
1445 break;
1446
1447 case LOCAL_CREDS:
1448 /* Unlocked read. */
1449 optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1450 error = sooptcopyout(sopt, &optval, sizeof(optval));
1451 break;
1452
1453 case LOCAL_CONNWAIT:
1454 /* Unlocked read. */
1455 optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1456 error = sooptcopyout(sopt, &optval, sizeof(optval));
1457 break;
1458
1459 default:
1460 error = EOPNOTSUPP;
1461 break;
1462 }
1463 break;
1464
1465 case SOPT_SET:
1466 switch (sopt->sopt_name) {
1467 case LOCAL_CREDS:
1468 case LOCAL_CONNWAIT:
1469 error = sooptcopyin(sopt, &optval, sizeof(optval),
1470 sizeof(optval));
1471 if (error)
1472 break;
1473
1474 #define OPTSET(bit) do { \
1475 UNP_PCB_LOCK(unp); \
1476 if (optval) \
1477 unp->unp_flags |= bit; \
1478 else \
1479 unp->unp_flags &= ~bit; \
1480 UNP_PCB_UNLOCK(unp); \
1481 } while (0)
1482
1483 switch (sopt->sopt_name) {
1484 case LOCAL_CREDS:
1485 OPTSET(UNP_WANTCRED);
1486 break;
1487
1488 case LOCAL_CONNWAIT:
1489 OPTSET(UNP_CONNWAIT);
1490 break;
1491
1492 default:
1493 break;
1494 }
1495 break;
1496 #undef OPTSET
1497 default:
1498 error = ENOPROTOOPT;
1499 break;
1500 }
1501 break;
1502
1503 default:
1504 error = EOPNOTSUPP;
1505 break;
1506 }
1507 return (error);
1508 }
1509
1510 static int
1511 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1512 {
1513
1514 return (unp_connectat(AT_FDCWD, so, nam, td));
1515 }
1516
1517 static int
1518 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1519 struct thread *td)
1520 {
1521 struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1522 struct vnode *vp;
1523 struct socket *so2;
1524 struct unpcb *unp, *unp2, *unp3;
1525 struct nameidata nd;
1526 char buf[SOCK_MAXADDRLEN];
1527 struct sockaddr *sa;
1528 cap_rights_t rights;
1529 int error, len, freed;
1530 struct mtx *vplock;
1531
1532 if (nam->sa_family != AF_UNIX)
1533 return (EAFNOSUPPORT);
1534 if (nam->sa_len > sizeof(struct sockaddr_un))
1535 return (EINVAL);
1536 len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1537 if (len <= 0)
1538 return (EINVAL);
1539 bcopy(soun->sun_path, buf, len);
1540 buf[len] = 0;
1541
1542 unp = sotounpcb(so);
1543 UNP_PCB_LOCK(unp);
1544 if (unp->unp_flags & UNP_CONNECTING) {
1545 UNP_PCB_UNLOCK(unp);
1546 return (EALREADY);
1547 }
1548 unp->unp_flags |= UNP_CONNECTING;
1549 UNP_PCB_UNLOCK(unp);
1550
1551 sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1552 NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1553 UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1554 error = namei(&nd);
1555 if (error)
1556 vp = NULL;
1557 else
1558 vp = nd.ni_vp;
1559 ASSERT_VOP_LOCKED(vp, "unp_connect");
1560 NDFREE(&nd, NDF_ONLY_PNBUF);
1561 if (error)
1562 goto bad;
1563
1564 if (vp->v_type != VSOCK) {
1565 error = ENOTSOCK;
1566 goto bad;
1567 }
1568 #ifdef MAC
1569 error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1570 if (error)
1571 goto bad;
1572 #endif
1573 error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1574 if (error)
1575 goto bad;
1576
1577 unp = sotounpcb(so);
1578 KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1579
1580 vplock = mtx_pool_find(mtxpool_sleep, vp);
1581 mtx_lock(vplock);
1582 VOP_UNP_CONNECT(vp, &unp2);
1583 if (unp2 == NULL) {
1584 error = ECONNREFUSED;
1585 goto bad2;
1586 }
1587 so2 = unp2->unp_socket;
1588 if (so->so_type != so2->so_type) {
1589 error = EPROTOTYPE;
1590 goto bad2;
1591 }
1592 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1593 if (so2->so_options & SO_ACCEPTCONN) {
1594 CURVNET_SET(so2->so_vnet);
1595 so2 = sonewconn(so2, 0);
1596 CURVNET_RESTORE();
1597 } else
1598 so2 = NULL;
1599 if (so2 == NULL) {
1600 error = ECONNREFUSED;
1601 goto bad2;
1602 }
1603 unp3 = sotounpcb(so2);
1604 unp_pcb_lock2(unp2, unp3);
1605 if (unp2->unp_addr != NULL) {
1606 bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1607 unp3->unp_addr = (struct sockaddr_un *) sa;
1608 sa = NULL;
1609 }
1610
1611 unp_copy_peercred(td, unp3, unp, unp2);
1612
1613 UNP_PCB_UNLOCK(unp2);
1614 unp2 = unp3;
1615 unp_pcb_owned_lock2(unp2, unp, freed);
1616 if (__predict_false(freed)) {
1617 UNP_PCB_UNLOCK(unp2);
1618 error = ECONNREFUSED;
1619 goto bad2;
1620 }
1621 #ifdef MAC
1622 mac_socketpeer_set_from_socket(so, so2);
1623 mac_socketpeer_set_from_socket(so2, so);
1624 #endif
1625 } else {
1626 if (unp == unp2)
1627 UNP_PCB_LOCK(unp);
1628 else
1629 unp_pcb_lock2(unp, unp2);
1630 }
1631 KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
1632 sotounpcb(so2) == unp2,
1633 ("%s: unp2 %p so2 %p", __func__, unp2, so2));
1634 error = unp_connect2(so, so2, PRU_CONNECT);
1635 if (unp != unp2)
1636 UNP_PCB_UNLOCK(unp2);
1637 UNP_PCB_UNLOCK(unp);
1638 bad2:
1639 mtx_unlock(vplock);
1640 bad:
1641 if (vp != NULL) {
1642 vput(vp);
1643 }
1644 free(sa, M_SONAME);
1645 UNP_PCB_LOCK(unp);
1646 unp->unp_flags &= ~UNP_CONNECTING;
1647 UNP_PCB_UNLOCK(unp);
1648 return (error);
1649 }
1650
1651 /*
1652 * Set socket peer credentials at connection time.
1653 *
1654 * The client's PCB credentials are copied from its process structure. The
1655 * server's PCB credentials are copied from the socket on which it called
1656 * listen(2). uipc_listen cached that process's credentials at the time.
1657 */
1658 void
1659 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
1660 struct unpcb *server_unp, struct unpcb *listen_unp)
1661 {
1662 cru2x(td->td_ucred, &client_unp->unp_peercred);
1663 client_unp->unp_flags |= UNP_HAVEPC;
1664
1665 memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
1666 sizeof(server_unp->unp_peercred));
1667 server_unp->unp_flags |= UNP_HAVEPC;
1668 if (listen_unp->unp_flags & UNP_WANTCRED)
1669 client_unp->unp_flags |= UNP_WANTCRED;
1670 }
1671
1672 static int
1673 unp_connect2(struct socket *so, struct socket *so2, int req)
1674 {
1675 struct unpcb *unp;
1676 struct unpcb *unp2;
1677
1678 unp = sotounpcb(so);
1679 KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1680 unp2 = sotounpcb(so2);
1681 KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1682
1683 UNP_PCB_LOCK_ASSERT(unp);
1684 UNP_PCB_LOCK_ASSERT(unp2);
1685
1686 if (so2->so_type != so->so_type)
1687 return (EPROTOTYPE);
1688 unp2->unp_flags &= ~UNP_NASCENT;
1689 unp->unp_conn = unp2;
1690 unp_pcb_hold(unp2);
1691 unp_pcb_hold(unp);
1692 switch (so->so_type) {
1693 case SOCK_DGRAM:
1694 UNP_REF_LIST_LOCK();
1695 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1696 UNP_REF_LIST_UNLOCK();
1697 soisconnected(so);
1698 break;
1699
1700 case SOCK_STREAM:
1701 case SOCK_SEQPACKET:
1702 unp2->unp_conn = unp;
1703 if (req == PRU_CONNECT &&
1704 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1705 soisconnecting(so);
1706 else
1707 soisconnected(so);
1708 soisconnected(so2);
1709 break;
1710
1711 default:
1712 panic("unp_connect2");
1713 }
1714 return (0);
1715 }
1716
1717 static void
1718 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1719 {
1720 struct socket *so, *so2;
1721 int freed __unused;
1722
1723 KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1724
1725 UNP_PCB_LOCK_ASSERT(unp);
1726 UNP_PCB_LOCK_ASSERT(unp2);
1727
1728 if (unp->unp_conn == NULL && unp2->unp_conn == NULL)
1729 return;
1730
1731 MPASS(unp->unp_conn == unp2);
1732 unp->unp_conn = NULL;
1733 so = unp->unp_socket;
1734 so2 = unp2->unp_socket;
1735 switch (unp->unp_socket->so_type) {
1736 case SOCK_DGRAM:
1737 UNP_REF_LIST_LOCK();
1738 LIST_REMOVE(unp, unp_reflink);
1739 UNP_REF_LIST_UNLOCK();
1740 if (so) {
1741 SOCK_LOCK(so);
1742 so->so_state &= ~SS_ISCONNECTED;
1743 SOCK_UNLOCK(so);
1744 }
1745 break;
1746
1747 case SOCK_STREAM:
1748 case SOCK_SEQPACKET:
1749 if (so)
1750 soisdisconnected(so);
1751 MPASS(unp2->unp_conn == unp);
1752 unp2->unp_conn = NULL;
1753 if (so2)
1754 soisdisconnected(so2);
1755 break;
1756 }
1757 freed = unp_pcb_rele(unp);
1758 MPASS(freed == 0);
1759 freed = unp_pcb_rele(unp2);
1760 MPASS(freed == 0);
1761 }
1762
1763 /*
1764 * unp_pcblist() walks the global list of struct unpcb's to generate a
1765 * pointer list, bumping the refcount on each unpcb. It then copies them out
1766 * sequentially, validating the generation number on each to see if it has
1767 * been detached. All of this is necessary because copyout() may sleep on
1768 * disk I/O.
1769 */
1770 static int
1771 unp_pcblist(SYSCTL_HANDLER_ARGS)
1772 {
1773 struct unpcb *unp, **unp_list;
1774 unp_gen_t gencnt;
1775 struct xunpgen *xug;
1776 struct unp_head *head;
1777 struct xunpcb *xu;
1778 u_int i;
1779 int error, freeunp, n;
1780
1781 switch ((intptr_t)arg1) {
1782 case SOCK_STREAM:
1783 head = &unp_shead;
1784 break;
1785
1786 case SOCK_DGRAM:
1787 head = &unp_dhead;
1788 break;
1789
1790 case SOCK_SEQPACKET:
1791 head = &unp_sphead;
1792 break;
1793
1794 default:
1795 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1796 }
1797
1798 /*
1799 * The process of preparing the PCB list is too time-consuming and
1800 * resource-intensive to repeat twice on every request.
1801 */
1802 if (req->oldptr == NULL) {
1803 n = unp_count;
1804 req->oldidx = 2 * (sizeof *xug)
1805 + (n + n/8) * sizeof(struct xunpcb);
1806 return (0);
1807 }
1808
1809 if (req->newptr != NULL)
1810 return (EPERM);
1811
1812 /*
1813 * OK, now we're committed to doing something.
1814 */
1815 xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
1816 UNP_LINK_RLOCK();
1817 gencnt = unp_gencnt;
1818 n = unp_count;
1819 UNP_LINK_RUNLOCK();
1820
1821 xug->xug_len = sizeof *xug;
1822 xug->xug_count = n;
1823 xug->xug_gen = gencnt;
1824 xug->xug_sogen = so_gencnt;
1825 error = SYSCTL_OUT(req, xug, sizeof *xug);
1826 if (error) {
1827 free(xug, M_TEMP);
1828 return (error);
1829 }
1830
1831 unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1832
1833 UNP_LINK_RLOCK();
1834 for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1835 unp = LIST_NEXT(unp, unp_link)) {
1836 UNP_PCB_LOCK(unp);
1837 if (unp->unp_gencnt <= gencnt) {
1838 if (cr_cansee(req->td->td_ucred,
1839 unp->unp_socket->so_cred)) {
1840 UNP_PCB_UNLOCK(unp);
1841 continue;
1842 }
1843 unp_list[i++] = unp;
1844 unp_pcb_hold(unp);
1845 }
1846 UNP_PCB_UNLOCK(unp);
1847 }
1848 UNP_LINK_RUNLOCK();
1849 n = i; /* In case we lost some during malloc. */
1850
1851 error = 0;
1852 xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1853 for (i = 0; i < n; i++) {
1854 unp = unp_list[i];
1855 UNP_PCB_LOCK(unp);
1856 freeunp = unp_pcb_rele(unp);
1857
1858 if (freeunp == 0 && unp->unp_gencnt <= gencnt) {
1859 xu->xu_len = sizeof *xu;
1860 xu->xu_unpp = (uintptr_t)unp;
1861 /*
1862 * XXX - need more locking here to protect against
1863 * connect/disconnect races for SMP.
1864 */
1865 if (unp->unp_addr != NULL)
1866 bcopy(unp->unp_addr, &xu->xu_addr,
1867 unp->unp_addr->sun_len);
1868 else
1869 bzero(&xu->xu_addr, sizeof(xu->xu_addr));
1870 if (unp->unp_conn != NULL &&
1871 unp->unp_conn->unp_addr != NULL)
1872 bcopy(unp->unp_conn->unp_addr,
1873 &xu->xu_caddr,
1874 unp->unp_conn->unp_addr->sun_len);
1875 else
1876 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
1877 xu->unp_vnode = (uintptr_t)unp->unp_vnode;
1878 xu->unp_conn = (uintptr_t)unp->unp_conn;
1879 xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
1880 xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
1881 xu->unp_gencnt = unp->unp_gencnt;
1882 sotoxsocket(unp->unp_socket, &xu->xu_socket);
1883 UNP_PCB_UNLOCK(unp);
1884 error = SYSCTL_OUT(req, xu, sizeof *xu);
1885 } else if (freeunp == 0)
1886 UNP_PCB_UNLOCK(unp);
1887 }
1888 free(xu, M_TEMP);
1889 if (!error) {
1890 /*
1891 * Give the user an updated idea of our state. If the
1892 * generation differs from what we told her before, she knows
1893 * that something happened while we were processing this
1894 * request, and it might be necessary to retry.
1895 */
1896 xug->xug_gen = unp_gencnt;
1897 xug->xug_sogen = so_gencnt;
1898 xug->xug_count = unp_count;
1899 error = SYSCTL_OUT(req, xug, sizeof *xug);
1900 }
1901 free(unp_list, M_TEMP);
1902 free(xug, M_TEMP);
1903 return (error);
1904 }
1905
1906 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1907 (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1908 "List of active local datagram sockets");
1909 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1910 (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1911 "List of active local stream sockets");
1912 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1913 CTLTYPE_OPAQUE | CTLFLAG_RD,
1914 (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1915 "List of active local seqpacket sockets");
1916
1917 static void
1918 unp_shutdown(struct unpcb *unp)
1919 {
1920 struct unpcb *unp2;
1921 struct socket *so;
1922
1923 UNP_PCB_LOCK_ASSERT(unp);
1924
1925 unp2 = unp->unp_conn;
1926 if ((unp->unp_socket->so_type == SOCK_STREAM ||
1927 (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1928 so = unp2->unp_socket;
1929 if (so != NULL)
1930 socantrcvmore(so);
1931 }
1932 }
1933
1934 static void
1935 unp_drop(struct unpcb *unp)
1936 {
1937 struct socket *so = unp->unp_socket;
1938 struct unpcb *unp2;
1939 int freed;
1940
1941 /*
1942 * Regardless of whether the socket's peer dropped the connection
1943 * with this socket by aborting or disconnecting, POSIX requires
1944 * that ECONNRESET is returned.
1945 */
1946 /* acquire a reference so that unp isn't freed from underneath us */
1947
1948 UNP_PCB_LOCK(unp);
1949 if (so)
1950 so->so_error = ECONNRESET;
1951 unp2 = unp->unp_conn;
1952 if (unp2 == unp) {
1953 unp_disconnect(unp, unp2);
1954 } else if (unp2 != NULL) {
1955 unp_pcb_hold(unp2);
1956 unp_pcb_owned_lock2(unp, unp2, freed);
1957 unp_disconnect(unp, unp2);
1958 if (unp_pcb_rele(unp2) == 0)
1959 UNP_PCB_UNLOCK(unp2);
1960 }
1961 if (unp_pcb_rele(unp) == 0)
1962 UNP_PCB_UNLOCK(unp);
1963 }
1964
1965 static void
1966 unp_freerights(struct filedescent **fdep, int fdcount)
1967 {
1968 struct file *fp;
1969 int i;
1970
1971 KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1972
1973 for (i = 0; i < fdcount; i++) {
1974 fp = fdep[i]->fde_file;
1975 filecaps_free(&fdep[i]->fde_caps);
1976 unp_discard(fp);
1977 }
1978 free(fdep[0], M_FILECAPS);
1979 }
1980
1981 static int
1982 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1983 {
1984 struct thread *td = curthread; /* XXX */
1985 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1986 int i;
1987 int *fdp;
1988 struct filedesc *fdesc = td->td_proc->p_fd;
1989 struct filedescent **fdep;
1990 void *data;
1991 socklen_t clen = control->m_len, datalen;
1992 int error, newfds;
1993 u_int newlen;
1994
1995 UNP_LINK_UNLOCK_ASSERT();
1996
1997 error = 0;
1998 if (controlp != NULL) /* controlp == NULL => free control messages */
1999 *controlp = NULL;
2000 while (cm != NULL) {
2001 if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
2002 error = EINVAL;
2003 break;
2004 }
2005 data = CMSG_DATA(cm);
2006 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2007 if (cm->cmsg_level == SOL_SOCKET
2008 && cm->cmsg_type == SCM_RIGHTS) {
2009 newfds = datalen / sizeof(*fdep);
2010 if (newfds == 0)
2011 goto next;
2012 fdep = data;
2013
2014 /* If we're not outputting the descriptors free them. */
2015 if (error || controlp == NULL) {
2016 unp_freerights(fdep, newfds);
2017 goto next;
2018 }
2019 FILEDESC_XLOCK(fdesc);
2020
2021 /*
2022 * Now change each pointer to an fd in the global
2023 * table to an integer that is the index to the local
2024 * fd table entry that we set up to point to the
2025 * global one we are transferring.
2026 */
2027 newlen = newfds * sizeof(int);
2028 *controlp = sbcreatecontrol(NULL, newlen,
2029 SCM_RIGHTS, SOL_SOCKET);
2030 if (*controlp == NULL) {
2031 FILEDESC_XUNLOCK(fdesc);
2032 error = E2BIG;
2033 unp_freerights(fdep, newfds);
2034 goto next;
2035 }
2036
2037 fdp = (int *)
2038 CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2039 if (fdallocn(td, 0, fdp, newfds) != 0) {
2040 FILEDESC_XUNLOCK(fdesc);
2041 error = EMSGSIZE;
2042 unp_freerights(fdep, newfds);
2043 m_freem(*controlp);
2044 *controlp = NULL;
2045 goto next;
2046 }
2047 for (i = 0; i < newfds; i++, fdp++) {
2048 _finstall(fdesc, fdep[i]->fde_file, *fdp,
2049 (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
2050 &fdep[i]->fde_caps);
2051 unp_externalize_fp(fdep[i]->fde_file);
2052 }
2053
2054 /*
2055 * The new type indicates that the mbuf data refers to
2056 * kernel resources that may need to be released before
2057 * the mbuf is freed.
2058 */
2059 m_chtype(*controlp, MT_EXTCONTROL);
2060 FILEDESC_XUNLOCK(fdesc);
2061 free(fdep[0], M_FILECAPS);
2062 } else {
2063 /* We can just copy anything else across. */
2064 if (error || controlp == NULL)
2065 goto next;
2066 *controlp = sbcreatecontrol(NULL, datalen,
2067 cm->cmsg_type, cm->cmsg_level);
2068 if (*controlp == NULL) {
2069 error = ENOBUFS;
2070 goto next;
2071 }
2072 bcopy(data,
2073 CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
2074 datalen);
2075 }
2076 controlp = &(*controlp)->m_next;
2077
2078 next:
2079 if (CMSG_SPACE(datalen) < clen) {
2080 clen -= CMSG_SPACE(datalen);
2081 cm = (struct cmsghdr *)
2082 ((caddr_t)cm + CMSG_SPACE(datalen));
2083 } else {
2084 clen = 0;
2085 cm = NULL;
2086 }
2087 }
2088
2089 m_freem(control);
2090 return (error);
2091 }
2092
2093 static void
2094 unp_zone_change(void *tag)
2095 {
2096
2097 uma_zone_set_max(unp_zone, maxsockets);
2098 }
2099
2100 static void
2101 unp_init(void)
2102 {
2103
2104 #ifdef VIMAGE
2105 if (!IS_DEFAULT_VNET(curvnet))
2106 return;
2107 #endif
2108 unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
2109 NULL, NULL, UMA_ALIGN_CACHE, 0);
2110 if (unp_zone == NULL)
2111 panic("unp_init");
2112 uma_zone_set_max(unp_zone, maxsockets);
2113 uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
2114 EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
2115 NULL, EVENTHANDLER_PRI_ANY);
2116 LIST_INIT(&unp_dhead);
2117 LIST_INIT(&unp_shead);
2118 LIST_INIT(&unp_sphead);
2119 SLIST_INIT(&unp_defers);
2120 TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
2121 TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
2122 UNP_LINK_LOCK_INIT();
2123 UNP_DEFERRED_LOCK_INIT();
2124 }
2125
2126 static int
2127 unp_internalize(struct mbuf **controlp, struct thread *td)
2128 {
2129 struct mbuf *control = *controlp;
2130 struct proc *p = td->td_proc;
2131 struct filedesc *fdesc = p->p_fd;
2132 struct bintime *bt;
2133 struct cmsghdr *cm = mtod(control, struct cmsghdr *);
2134 struct cmsgcred *cmcred;
2135 struct filedescent *fde, **fdep, *fdev;
2136 struct file *fp;
2137 struct timeval *tv;
2138 struct timespec *ts;
2139 int i, *fdp;
2140 void *data;
2141 socklen_t clen = control->m_len, datalen;
2142 int error, oldfds;
2143 u_int newlen;
2144
2145 UNP_LINK_UNLOCK_ASSERT();
2146
2147 error = 0;
2148 *controlp = NULL;
2149 while (cm != NULL) {
2150 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
2151 || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
2152 error = EINVAL;
2153 goto out;
2154 }
2155 data = CMSG_DATA(cm);
2156 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
2157
2158 switch (cm->cmsg_type) {
2159 /*
2160 * Fill in credential information.
2161 */
2162 case SCM_CREDS:
2163 *controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
2164 SCM_CREDS, SOL_SOCKET);
2165 if (*controlp == NULL) {
2166 error = ENOBUFS;
2167 goto out;
2168 }
2169 cmcred = (struct cmsgcred *)
2170 CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2171 cmcred->cmcred_pid = p->p_pid;
2172 cmcred->cmcred_uid = td->td_ucred->cr_ruid;
2173 cmcred->cmcred_gid = td->td_ucred->cr_rgid;
2174 cmcred->cmcred_euid = td->td_ucred->cr_uid;
2175 cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
2176 CMGROUP_MAX);
2177 for (i = 0; i < cmcred->cmcred_ngroups; i++)
2178 cmcred->cmcred_groups[i] =
2179 td->td_ucred->cr_groups[i];
2180 break;
2181
2182 case SCM_RIGHTS:
2183 oldfds = datalen / sizeof (int);
2184 if (oldfds == 0)
2185 break;
2186 /*
2187 * Check that all the FDs passed in refer to legal
2188 * files. If not, reject the entire operation.
2189 */
2190 fdp = data;
2191 FILEDESC_SLOCK(fdesc);
2192 for (i = 0; i < oldfds; i++, fdp++) {
2193 fp = fget_locked(fdesc, *fdp);
2194 if (fp == NULL) {
2195 FILEDESC_SUNLOCK(fdesc);
2196 error = EBADF;
2197 goto out;
2198 }
2199 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
2200 FILEDESC_SUNLOCK(fdesc);
2201 error = EOPNOTSUPP;
2202 goto out;
2203 }
2204
2205 }
2206
2207 /*
2208 * Now replace the integer FDs with pointers to the
2209 * file structure and capability rights.
2210 */
2211 newlen = oldfds * sizeof(fdep[0]);
2212 *controlp = sbcreatecontrol(NULL, newlen,
2213 SCM_RIGHTS, SOL_SOCKET);
2214 if (*controlp == NULL) {
2215 FILEDESC_SUNLOCK(fdesc);
2216 error = E2BIG;
2217 goto out;
2218 }
2219 fdp = data;
2220 fdep = (struct filedescent **)
2221 CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2222 fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
2223 M_WAITOK);
2224 for (i = 0; i < oldfds; i++, fdev++, fdp++) {
2225 fde = &fdesc->fd_ofiles[*fdp];
2226 fdep[i] = fdev;
2227 fdep[i]->fde_file = fde->fde_file;
2228 filecaps_copy(&fde->fde_caps,
2229 &fdep[i]->fde_caps, true);
2230 unp_internalize_fp(fdep[i]->fde_file);
2231 }
2232 FILEDESC_SUNLOCK(fdesc);
2233 break;
2234
2235 case SCM_TIMESTAMP:
2236 *controlp = sbcreatecontrol(NULL, sizeof(*tv),
2237 SCM_TIMESTAMP, SOL_SOCKET);
2238 if (*controlp == NULL) {
2239 error = ENOBUFS;
2240 goto out;
2241 }
2242 tv = (struct timeval *)
2243 CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2244 microtime(tv);
2245 break;
2246
2247 case SCM_BINTIME:
2248 *controlp = sbcreatecontrol(NULL, sizeof(*bt),
2249 SCM_BINTIME, SOL_SOCKET);
2250 if (*controlp == NULL) {
2251 error = ENOBUFS;
2252 goto out;
2253 }
2254 bt = (struct bintime *)
2255 CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2256 bintime(bt);
2257 break;
2258
2259 case SCM_REALTIME:
2260 *controlp = sbcreatecontrol(NULL, sizeof(*ts),
2261 SCM_REALTIME, SOL_SOCKET);
2262 if (*controlp == NULL) {
2263 error = ENOBUFS;
2264 goto out;
2265 }
2266 ts = (struct timespec *)
2267 CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2268 nanotime(ts);
2269 break;
2270
2271 case SCM_MONOTONIC:
2272 *controlp = sbcreatecontrol(NULL, sizeof(*ts),
2273 SCM_MONOTONIC, SOL_SOCKET);
2274 if (*controlp == NULL) {
2275 error = ENOBUFS;
2276 goto out;
2277 }
2278 ts = (struct timespec *)
2279 CMSG_DATA(mtod(*controlp, struct cmsghdr *));
2280 nanouptime(ts);
2281 break;
2282
2283 default:
2284 error = EINVAL;
2285 goto out;
2286 }
2287
2288 controlp = &(*controlp)->m_next;
2289 if (CMSG_SPACE(datalen) < clen) {
2290 clen -= CMSG_SPACE(datalen);
2291 cm = (struct cmsghdr *)
2292 ((caddr_t)cm + CMSG_SPACE(datalen));
2293 } else {
2294 clen = 0;
2295 cm = NULL;
2296 }
2297 }
2298
2299 out:
2300 m_freem(control);
2301 return (error);
2302 }
2303
2304 static struct mbuf *
2305 unp_addsockcred(struct thread *td, struct mbuf *control)
2306 {
2307 struct mbuf *m, *n, *n_prev;
2308 struct sockcred *sc;
2309 const struct cmsghdr *cm;
2310 int ngroups;
2311 int i;
2312
2313 ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2314 m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2315 if (m == NULL)
2316 return (control);
2317
2318 sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2319 sc->sc_uid = td->td_ucred->cr_ruid;
2320 sc->sc_euid = td->td_ucred->cr_uid;
2321 sc->sc_gid = td->td_ucred->cr_rgid;
2322 sc->sc_egid = td->td_ucred->cr_gid;
2323 sc->sc_ngroups = ngroups;
2324 for (i = 0; i < sc->sc_ngroups; i++)
2325 sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2326
2327 /*
2328 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2329 * created SCM_CREDS control message (struct sockcred) has another
2330 * format.
2331 */
2332 if (control != NULL)
2333 for (n = control, n_prev = NULL; n != NULL;) {
2334 cm = mtod(n, struct cmsghdr *);
2335 if (cm->cmsg_level == SOL_SOCKET &&
2336 cm->cmsg_type == SCM_CREDS) {
2337 if (n_prev == NULL)
2338 control = n->m_next;
2339 else
2340 n_prev->m_next = n->m_next;
2341 n = m_free(n);
2342 } else {
2343 n_prev = n;
2344 n = n->m_next;
2345 }
2346 }
2347
2348 /* Prepend it to the head. */
2349 m->m_next = control;
2350 return (m);
2351 }
2352
2353 static struct unpcb *
2354 fptounp(struct file *fp)
2355 {
2356 struct socket *so;
2357
2358 if (fp->f_type != DTYPE_SOCKET)
2359 return (NULL);
2360 if ((so = fp->f_data) == NULL)
2361 return (NULL);
2362 if (so->so_proto->pr_domain != &localdomain)
2363 return (NULL);
2364 return sotounpcb(so);
2365 }
2366
2367 static void
2368 unp_discard(struct file *fp)
2369 {
2370 struct unp_defer *dr;
2371
2372 if (unp_externalize_fp(fp)) {
2373 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2374 dr->ud_fp = fp;
2375 UNP_DEFERRED_LOCK();
2376 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2377 UNP_DEFERRED_UNLOCK();
2378 atomic_add_int(&unp_defers_count, 1);
2379 taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2380 } else
2381 (void) closef(fp, (struct thread *)NULL);
2382 }
2383
2384 static void
2385 unp_process_defers(void *arg __unused, int pending)
2386 {
2387 struct unp_defer *dr;
2388 SLIST_HEAD(, unp_defer) drl;
2389 int count;
2390
2391 SLIST_INIT(&drl);
2392 for (;;) {
2393 UNP_DEFERRED_LOCK();
2394 if (SLIST_FIRST(&unp_defers) == NULL) {
2395 UNP_DEFERRED_UNLOCK();
2396 break;
2397 }
2398 SLIST_SWAP(&unp_defers, &drl, unp_defer);
2399 UNP_DEFERRED_UNLOCK();
2400 count = 0;
2401 while ((dr = SLIST_FIRST(&drl)) != NULL) {
2402 SLIST_REMOVE_HEAD(&drl, ud_link);
2403 closef(dr->ud_fp, NULL);
2404 free(dr, M_TEMP);
2405 count++;
2406 }
2407 atomic_add_int(&unp_defers_count, -count);
2408 }
2409 }
2410
2411 static void
2412 unp_internalize_fp(struct file *fp)
2413 {
2414 struct unpcb *unp;
2415
2416 UNP_LINK_WLOCK();
2417 if ((unp = fptounp(fp)) != NULL) {
2418 unp->unp_file = fp;
2419 unp->unp_msgcount++;
2420 }
2421 fhold(fp);
2422 unp_rights++;
2423 UNP_LINK_WUNLOCK();
2424 }
2425
2426 static int
2427 unp_externalize_fp(struct file *fp)
2428 {
2429 struct unpcb *unp;
2430 int ret;
2431
2432 UNP_LINK_WLOCK();
2433 if ((unp = fptounp(fp)) != NULL) {
2434 unp->unp_msgcount--;
2435 ret = 1;
2436 } else
2437 ret = 0;
2438 unp_rights--;
2439 UNP_LINK_WUNLOCK();
2440 return (ret);
2441 }
2442
2443 /*
2444 * unp_defer indicates whether additional work has been defered for a future
2445 * pass through unp_gc(). It is thread local and does not require explicit
2446 * synchronization.
2447 */
2448 static int unp_marked;
2449 static int unp_unreachable;
2450
2451 static void
2452 unp_accessable(struct filedescent **fdep, int fdcount)
2453 {
2454 struct unpcb *unp;
2455 struct file *fp;
2456 int i;
2457
2458 for (i = 0; i < fdcount; i++) {
2459 fp = fdep[i]->fde_file;
2460 if ((unp = fptounp(fp)) == NULL)
2461 continue;
2462 if (unp->unp_gcflag & UNPGC_REF)
2463 continue;
2464 unp->unp_gcflag &= ~UNPGC_DEAD;
2465 unp->unp_gcflag |= UNPGC_REF;
2466 unp_marked++;
2467 }
2468 }
2469
2470 static void
2471 unp_gc_process(struct unpcb *unp)
2472 {
2473 struct socket *so, *soa;
2474 struct file *fp;
2475
2476 /* Already processed. */
2477 if (unp->unp_gcflag & UNPGC_SCANNED)
2478 return;
2479 fp = unp->unp_file;
2480
2481 /*
2482 * Check for a socket potentially in a cycle. It must be in a
2483 * queue as indicated by msgcount, and this must equal the file
2484 * reference count. Note that when msgcount is 0 the file is NULL.
2485 */
2486 if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2487 unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2488 unp->unp_gcflag |= UNPGC_DEAD;
2489 unp_unreachable++;
2490 return;
2491 }
2492
2493 so = unp->unp_socket;
2494 SOCK_LOCK(so);
2495 if (SOLISTENING(so)) {
2496 /*
2497 * Mark all sockets in our accept queue.
2498 */
2499 TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
2500 if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
2501 continue;
2502 SOCKBUF_LOCK(&soa->so_rcv);
2503 unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2504 SOCKBUF_UNLOCK(&soa->so_rcv);
2505 }
2506 } else {
2507 /*
2508 * Mark all sockets we reference with RIGHTS.
2509 */
2510 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
2511 SOCKBUF_LOCK(&so->so_rcv);
2512 unp_scan(so->so_rcv.sb_mb, unp_accessable);
2513 SOCKBUF_UNLOCK(&so->so_rcv);
2514 }
2515 }
2516 SOCK_UNLOCK(so);
2517 unp->unp_gcflag |= UNPGC_SCANNED;
2518 }
2519
2520 static int unp_recycled;
2521 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2522 "Number of unreachable sockets claimed by the garbage collector.");
2523
2524 static int unp_taskcount;
2525 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2526 "Number of times the garbage collector has run.");
2527
2528 static void
2529 unp_gc(__unused void *arg, int pending)
2530 {
2531 struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2532 NULL };
2533 struct unp_head **head;
2534 struct file *f, **unref;
2535 struct unpcb *unp;
2536 int i, total;
2537
2538 unp_taskcount++;
2539 UNP_LINK_RLOCK();
2540 /*
2541 * First clear all gc flags from previous runs, apart from
2542 * UNPGC_IGNORE_RIGHTS.
2543 */
2544 for (head = heads; *head != NULL; head++)
2545 LIST_FOREACH(unp, *head, unp_link)
2546 unp->unp_gcflag =
2547 (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS);
2548
2549 /*
2550 * Scan marking all reachable sockets with UNPGC_REF. Once a socket
2551 * is reachable all of the sockets it references are reachable.
2552 * Stop the scan once we do a complete loop without discovering
2553 * a new reachable socket.
2554 */
2555 do {
2556 unp_unreachable = 0;
2557 unp_marked = 0;
2558 for (head = heads; *head != NULL; head++)
2559 LIST_FOREACH(unp, *head, unp_link)
2560 unp_gc_process(unp);
2561 } while (unp_marked);
2562 UNP_LINK_RUNLOCK();
2563 if (unp_unreachable == 0)
2564 return;
2565
2566 /*
2567 * Allocate space for a local list of dead unpcbs.
2568 */
2569 unref = malloc(unp_unreachable * sizeof(struct file *),
2570 M_TEMP, M_WAITOK);
2571
2572 /*
2573 * Iterate looking for sockets which have been specifically marked
2574 * as as unreachable and store them locally.
2575 */
2576 UNP_LINK_RLOCK();
2577 for (total = 0, head = heads; *head != NULL; head++)
2578 LIST_FOREACH(unp, *head, unp_link)
2579 if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2580 f = unp->unp_file;
2581 if (unp->unp_msgcount == 0 || f == NULL ||
2582 f->f_count != unp->unp_msgcount)
2583 continue;
2584 unref[total++] = f;
2585 fhold(f);
2586 KASSERT(total <= unp_unreachable,
2587 ("unp_gc: incorrect unreachable count."));
2588 }
2589 UNP_LINK_RUNLOCK();
2590
2591 /*
2592 * Now flush all sockets, free'ing rights. This will free the
2593 * struct files associated with these sockets but leave each socket
2594 * with one remaining ref.
2595 */
2596 for (i = 0; i < total; i++) {
2597 struct socket *so;
2598
2599 so = unref[i]->f_data;
2600 CURVNET_SET(so->so_vnet);
2601 sorflush(so);
2602 CURVNET_RESTORE();
2603 }
2604
2605 /*
2606 * And finally release the sockets so they can be reclaimed.
2607 */
2608 for (i = 0; i < total; i++)
2609 fdrop(unref[i], NULL);
2610 unp_recycled += total;
2611 free(unref, M_TEMP);
2612 }
2613
2614 static void
2615 unp_dispose_mbuf(struct mbuf *m)
2616 {
2617
2618 if (m)
2619 unp_scan(m, unp_freerights);
2620 }
2621
2622 /*
2623 * Synchronize against unp_gc, which can trip over data as we are freeing it.
2624 */
2625 static void
2626 unp_dispose(struct socket *so)
2627 {
2628 struct unpcb *unp;
2629
2630 unp = sotounpcb(so);
2631 UNP_LINK_WLOCK();
2632 unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
2633 UNP_LINK_WUNLOCK();
2634 if (!SOLISTENING(so))
2635 unp_dispose_mbuf(so->so_rcv.sb_mb);
2636 }
2637
2638 static void
2639 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2640 {
2641 struct mbuf *m;
2642 struct cmsghdr *cm;
2643 void *data;
2644 socklen_t clen, datalen;
2645
2646 while (m0 != NULL) {
2647 for (m = m0; m; m = m->m_next) {
2648 if (m->m_type != MT_CONTROL)
2649 continue;
2650
2651 cm = mtod(m, struct cmsghdr *);
2652 clen = m->m_len;
2653
2654 while (cm != NULL) {
2655 if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2656 break;
2657
2658 data = CMSG_DATA(cm);
2659 datalen = (caddr_t)cm + cm->cmsg_len
2660 - (caddr_t)data;
2661
2662 if (cm->cmsg_level == SOL_SOCKET &&
2663 cm->cmsg_type == SCM_RIGHTS) {
2664 (*op)(data, datalen /
2665 sizeof(struct filedescent *));
2666 }
2667
2668 if (CMSG_SPACE(datalen) < clen) {
2669 clen -= CMSG_SPACE(datalen);
2670 cm = (struct cmsghdr *)
2671 ((caddr_t)cm + CMSG_SPACE(datalen));
2672 } else {
2673 clen = 0;
2674 cm = NULL;
2675 }
2676 }
2677 }
2678 m0 = m0->m_nextpkt;
2679 }
2680 }
2681
2682 /*
2683 * A helper function called by VFS before socket-type vnode reclamation.
2684 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2685 * use count.
2686 */
2687 void
2688 vfs_unp_reclaim(struct vnode *vp)
2689 {
2690 struct unpcb *unp;
2691 int active;
2692 struct mtx *vplock;
2693
2694 ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2695 KASSERT(vp->v_type == VSOCK,
2696 ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2697
2698 active = 0;
2699 vplock = mtx_pool_find(mtxpool_sleep, vp);
2700 mtx_lock(vplock);
2701 VOP_UNP_CONNECT(vp, &unp);
2702 if (unp == NULL)
2703 goto done;
2704 UNP_PCB_LOCK(unp);
2705 if (unp->unp_vnode == vp) {
2706 VOP_UNP_DETACH(vp);
2707 unp->unp_vnode = NULL;
2708 active = 1;
2709 }
2710 UNP_PCB_UNLOCK(unp);
2711 done:
2712 mtx_unlock(vplock);
2713 if (active)
2714 vunref(vp);
2715 }
2716
2717 #ifdef DDB
2718 static void
2719 db_print_indent(int indent)
2720 {
2721 int i;
2722
2723 for (i = 0; i < indent; i++)
2724 db_printf(" ");
2725 }
2726
2727 static void
2728 db_print_unpflags(int unp_flags)
2729 {
2730 int comma;
2731
2732 comma = 0;
2733 if (unp_flags & UNP_HAVEPC) {
2734 db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2735 comma = 1;
2736 }
2737 if (unp_flags & UNP_WANTCRED) {
2738 db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2739 comma = 1;
2740 }
2741 if (unp_flags & UNP_CONNWAIT) {
2742 db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2743 comma = 1;
2744 }
2745 if (unp_flags & UNP_CONNECTING) {
2746 db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2747 comma = 1;
2748 }
2749 if (unp_flags & UNP_BINDING) {
2750 db_printf("%sUNP_BINDING", comma ? ", " : "");
2751 comma = 1;
2752 }
2753 }
2754
2755 static void
2756 db_print_xucred(int indent, struct xucred *xu)
2757 {
2758 int comma, i;
2759
2760 db_print_indent(indent);
2761 db_printf("cr_version: %u cr_uid: %u cr_ngroups: %d\n",
2762 xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2763 db_print_indent(indent);
2764 db_printf("cr_groups: ");
2765 comma = 0;
2766 for (i = 0; i < xu->cr_ngroups; i++) {
2767 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2768 comma = 1;
2769 }
2770 db_printf("\n");
2771 }
2772
2773 static void
2774 db_print_unprefs(int indent, struct unp_head *uh)
2775 {
2776 struct unpcb *unp;
2777 int counter;
2778
2779 counter = 0;
2780 LIST_FOREACH(unp, uh, unp_reflink) {
2781 if (counter % 4 == 0)
2782 db_print_indent(indent);
2783 db_printf("%p ", unp);
2784 if (counter % 4 == 3)
2785 db_printf("\n");
2786 counter++;
2787 }
2788 if (counter != 0 && counter % 4 != 0)
2789 db_printf("\n");
2790 }
2791
2792 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2793 {
2794 struct unpcb *unp;
2795
2796 if (!have_addr) {
2797 db_printf("usage: show unpcb <addr>\n");
2798 return;
2799 }
2800 unp = (struct unpcb *)addr;
2801
2802 db_printf("unp_socket: %p unp_vnode: %p\n", unp->unp_socket,
2803 unp->unp_vnode);
2804
2805 db_printf("unp_ino: %ju unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2806 unp->unp_conn);
2807
2808 db_printf("unp_refs:\n");
2809 db_print_unprefs(2, &unp->unp_refs);
2810
2811 /* XXXRW: Would be nice to print the full address, if any. */
2812 db_printf("unp_addr: %p\n", unp->unp_addr);
2813
2814 db_printf("unp_gencnt: %llu\n",
2815 (unsigned long long)unp->unp_gencnt);
2816
2817 db_printf("unp_flags: %x (", unp->unp_flags);
2818 db_print_unpflags(unp->unp_flags);
2819 db_printf(")\n");
2820
2821 db_printf("unp_peercred:\n");
2822 db_print_xucred(2, &unp->unp_peercred);
2823
2824 db_printf("unp_refcount: %u\n", unp->unp_refcount);
2825 }
2826 #endif
Cache object: 4f170cffa88ec1723e6b1d208fc13d2c
|