The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_usrreq.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    5  *      The Regents of the University of California. All Rights Reserved.
    6  * Copyright (c) 2004-2009 Robert N. M. Watson All Rights Reserved.
    7  * Copyright (c) 2018 Matthew Macy
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 3. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
   34  */
   35 
   36 /*
   37  * UNIX Domain (Local) Sockets
   38  *
   39  * This is an implementation of UNIX (local) domain sockets.  Each socket has
   40  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
   41  * may be connected to 0 or 1 other socket.  Datagram sockets may be
   42  * connected to 0, 1, or many other sockets.  Sockets may be created and
   43  * connected in pairs (socketpair(2)), or bound/connected to using the file
   44  * system name space.  For most purposes, only the receive socket buffer is
   45  * used, as sending on one socket delivers directly to the receive socket
   46  * buffer of a second socket.
   47  *
   48  * The implementation is substantially complicated by the fact that
   49  * "ancillary data", such as file descriptors or credentials, may be passed
   50  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
   51  * over other UNIX domain sockets requires the implementation of a simple
   52  * garbage collector to find and tear down cycles of disconnected sockets.
   53  *
   54  * TODO:
   55  *      RDM
   56  *      rethink name space problems
   57  *      need a proper out-of-band
   58  */
   59 
   60 #include <sys/cdefs.h>
   61 __FBSDID("$FreeBSD: releng/12.0/sys/kern/uipc_usrreq.c 340980 2018-11-26 16:36:38Z markj $");
   62 
   63 #include "opt_ddb.h"
   64 
   65 #include <sys/param.h>
   66 #include <sys/capsicum.h>
   67 #include <sys/domain.h>
   68 #include <sys/fcntl.h>
   69 #include <sys/malloc.h>         /* XXX must be before <sys/file.h> */
   70 #include <sys/eventhandler.h>
   71 #include <sys/file.h>
   72 #include <sys/filedesc.h>
   73 #include <sys/kernel.h>
   74 #include <sys/lock.h>
   75 #include <sys/mbuf.h>
   76 #include <sys/mount.h>
   77 #include <sys/mutex.h>
   78 #include <sys/namei.h>
   79 #include <sys/proc.h>
   80 #include <sys/protosw.h>
   81 #include <sys/queue.h>
   82 #include <sys/resourcevar.h>
   83 #include <sys/rwlock.h>
   84 #include <sys/socket.h>
   85 #include <sys/socketvar.h>
   86 #include <sys/signalvar.h>
   87 #include <sys/stat.h>
   88 #include <sys/sx.h>
   89 #include <sys/sysctl.h>
   90 #include <sys/systm.h>
   91 #include <sys/taskqueue.h>
   92 #include <sys/un.h>
   93 #include <sys/unpcb.h>
   94 #include <sys/vnode.h>
   95 
   96 #include <net/vnet.h>
   97 
   98 #ifdef DDB
   99 #include <ddb/ddb.h>
  100 #endif
  101 
  102 #include <security/mac/mac_framework.h>
  103 
  104 #include <vm/uma.h>
  105 
  106 MALLOC_DECLARE(M_FILECAPS);
  107 
  108 /*
  109  * Locking key:
  110  * (l)  Locked using list lock
  111  * (g)  Locked using linkage lock
  112  */
  113 
  114 static uma_zone_t       unp_zone;
  115 static unp_gen_t        unp_gencnt;     /* (l) */
  116 static u_int            unp_count;      /* (l) Count of local sockets. */
  117 static ino_t            unp_ino;        /* Prototype for fake inode numbers. */
  118 static int              unp_rights;     /* (g) File descriptors in flight. */
  119 static struct unp_head  unp_shead;      /* (l) List of stream sockets. */
  120 static struct unp_head  unp_dhead;      /* (l) List of datagram sockets. */
  121 static struct unp_head  unp_sphead;     /* (l) List of seqpacket sockets. */
  122 
  123 struct unp_defer {
  124         SLIST_ENTRY(unp_defer) ud_link;
  125         struct file *ud_fp;
  126 };
  127 static SLIST_HEAD(, unp_defer) unp_defers;
  128 static int unp_defers_count;
  129 
  130 static const struct sockaddr    sun_noname = { sizeof(sun_noname), AF_LOCAL };
  131 
  132 /*
  133  * Garbage collection of cyclic file descriptor/socket references occurs
  134  * asynchronously in a taskqueue context in order to avoid recursion and
  135  * reentrance in the UNIX domain socket, file descriptor, and socket layer
  136  * code.  See unp_gc() for a full description.
  137  */
  138 static struct timeout_task unp_gc_task;
  139 
  140 /*
  141  * The close of unix domain sockets attached as SCM_RIGHTS is
  142  * postponed to the taskqueue, to avoid arbitrary recursion depth.
  143  * The attached sockets might have another sockets attached.
  144  */
  145 static struct task      unp_defer_task;
  146 
  147 /*
  148  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
  149  * stream sockets, although the total for sender and receiver is actually
  150  * only PIPSIZ.
  151  *
  152  * Datagram sockets really use the sendspace as the maximum datagram size,
  153  * and don't really want to reserve the sendspace.  Their recvspace should be
  154  * large enough for at least one max-size datagram plus address.
  155  */
  156 #ifndef PIPSIZ
  157 #define PIPSIZ  8192
  158 #endif
  159 static u_long   unpst_sendspace = PIPSIZ;
  160 static u_long   unpst_recvspace = PIPSIZ;
  161 static u_long   unpdg_sendspace = 2*1024;       /* really max datagram size */
  162 static u_long   unpdg_recvspace = 4*1024;
  163 static u_long   unpsp_sendspace = PIPSIZ;       /* really max datagram size */
  164 static u_long   unpsp_recvspace = PIPSIZ;
  165 
  166 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
  167 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
  168     "SOCK_STREAM");
  169 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
  170 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
  171     "SOCK_SEQPACKET");
  172 
  173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
  174            &unpst_sendspace, 0, "Default stream send space.");
  175 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
  176            &unpst_recvspace, 0, "Default stream receive space.");
  177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
  178            &unpdg_sendspace, 0, "Default datagram send space.");
  179 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
  180            &unpdg_recvspace, 0, "Default datagram receive space.");
  181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
  182            &unpsp_sendspace, 0, "Default seqpacket send space.");
  183 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
  184            &unpsp_recvspace, 0, "Default seqpacket receive space.");
  185 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
  186     "File descriptors in flight.");
  187 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
  188     &unp_defers_count, 0,
  189     "File descriptors deferred to taskqueue for close.");
  190 
  191 /*
  192  * Locking and synchronization:
  193  *
  194  * Three types of locks exist in the local domain socket implementation: a
  195  * a global linkage rwlock, the mtxpool lock, and per-unpcb mutexes.
  196  * The linkage lock protects the socket count, global generation number,
  197  * and stream/datagram global lists.
  198  *
  199  * The mtxpool lock protects the vnode from being modified while referenced.
  200  * Lock ordering requires that it be acquired before any unpcb locks.
  201  *
  202  * The unpcb lock (unp_mtx) protects all fields in the unpcb. Of particular
  203  * note is that this includes the unp_conn field. So long as the unpcb lock
  204  * is held the reference to the unpcb pointed to by unp_conn is valid. If we
  205  * require that the unpcb pointed to by unp_conn remain live in cases where
  206  * we need to drop the unp_mtx as when we need to acquire the lock for a
  207  * second unpcb the caller must first acquire an additional reference on the
  208  * second unpcb and then revalidate any state (typically check that unp_conn
  209  * is non-NULL) upon requiring the initial unpcb lock. The lock ordering
  210  * between unpcbs is the conventional ascending address order. Two helper
  211  * routines exist for this:
  212  *
  213  *   - unp_pcb_lock2(unp, unp2) - which just acquires the two locks in the
  214  *     safe ordering.
  215  *
  216  *   - unp_pcb_owned_lock2(unp, unp2, freed) - the lock for unp is held
  217  *     when called. If unp is unlocked and unp2 is subsequently freed
  218  *     freed will be set to 1.
  219  *
  220  * The helper routines for references are:
  221  *
  222  *   - unp_pcb_hold(unp): Can be called any time we currently hold a valid
  223  *     reference to unp.
  224  *
  225  *    - unp_pcb_rele(unp): The caller must hold the unp lock. If we are
  226  *      releasing the last reference, detach must have been called thus
  227  *      unp->unp_socket be NULL.
  228  *
  229  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
  230  * allocated in pru_attach() and freed in pru_detach().  The validity of that
  231  * pointer is an invariant, so no lock is required to dereference the so_pcb
  232  * pointer if a valid socket reference is held by the caller.  In practice,
  233  * this is always true during operations performed on a socket.  Each unpcb
  234  * has a back-pointer to its socket, unp_socket, which will be stable under
  235  * the same circumstances.
  236  *
  237  * This pointer may only be safely dereferenced as long as a valid reference
  238  * to the unpcb is held.  Typically, this reference will be from the socket,
  239  * or from another unpcb when the referring unpcb's lock is held (in order
  240  * that the reference not be invalidated during use).  For example, to follow
  241  * unp->unp_conn->unp_socket, you need to hold a lock on unp_conn to guarantee
  242  * that detach is not run clearing unp_socket.
  243  *
  244  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
  245  * protocols, bind() is a non-atomic operation, and connect() requires
  246  * potential sleeping in the protocol, due to potentially waiting on local or
  247  * distributed file systems.  We try to separate "lookup" operations, which
  248  * may sleep, and the IPC operations themselves, which typically can occur
  249  * with relative atomicity as locks can be held over the entire operation.
  250  *
  251  * Another tricky issue is simultaneous multi-threaded or multi-process
  252  * access to a single UNIX domain socket.  These are handled by the flags
  253  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
  254  * binding, both of which involve dropping UNIX domain socket locks in order
  255  * to perform namei() and other file system operations.
  256  */
  257 static struct rwlock    unp_link_rwlock;
  258 static struct mtx       unp_defers_lock;
  259 
  260 #define UNP_LINK_LOCK_INIT()            rw_init(&unp_link_rwlock,       \
  261                                             "unp_link_rwlock")
  262 
  263 #define UNP_LINK_LOCK_ASSERT()  rw_assert(&unp_link_rwlock,     \
  264                                             RA_LOCKED)
  265 #define UNP_LINK_UNLOCK_ASSERT()        rw_assert(&unp_link_rwlock,     \
  266                                             RA_UNLOCKED)
  267 
  268 #define UNP_LINK_RLOCK()                rw_rlock(&unp_link_rwlock)
  269 #define UNP_LINK_RUNLOCK()              rw_runlock(&unp_link_rwlock)
  270 #define UNP_LINK_WLOCK()                rw_wlock(&unp_link_rwlock)
  271 #define UNP_LINK_WUNLOCK()              rw_wunlock(&unp_link_rwlock)
  272 #define UNP_LINK_WLOCK_ASSERT()         rw_assert(&unp_link_rwlock,     \
  273                                             RA_WLOCKED)
  274 #define UNP_LINK_WOWNED()               rw_wowned(&unp_link_rwlock)
  275 
  276 #define UNP_DEFERRED_LOCK_INIT()        mtx_init(&unp_defers_lock, \
  277                                             "unp_defer", NULL, MTX_DEF)
  278 #define UNP_DEFERRED_LOCK()             mtx_lock(&unp_defers_lock)
  279 #define UNP_DEFERRED_UNLOCK()           mtx_unlock(&unp_defers_lock)
  280 
  281 #define UNP_REF_LIST_LOCK()             UNP_DEFERRED_LOCK();
  282 #define UNP_REF_LIST_UNLOCK()           UNP_DEFERRED_UNLOCK();
  283 
  284 #define UNP_PCB_LOCK_INIT(unp)          mtx_init(&(unp)->unp_mtx,       \
  285                                             "unp", "unp",       \
  286                                             MTX_DUPOK|MTX_DEF)
  287 #define UNP_PCB_LOCK_DESTROY(unp)       mtx_destroy(&(unp)->unp_mtx)
  288 #define UNP_PCB_LOCK(unp)               mtx_lock(&(unp)->unp_mtx)
  289 #define UNP_PCB_TRYLOCK(unp)            mtx_trylock(&(unp)->unp_mtx)
  290 #define UNP_PCB_UNLOCK(unp)             mtx_unlock(&(unp)->unp_mtx)
  291 #define UNP_PCB_OWNED(unp)              mtx_owned(&(unp)->unp_mtx)
  292 #define UNP_PCB_LOCK_ASSERT(unp)        mtx_assert(&(unp)->unp_mtx, MA_OWNED)
  293 #define UNP_PCB_UNLOCK_ASSERT(unp)      mtx_assert(&(unp)->unp_mtx, MA_NOTOWNED)
  294 
  295 static int      uipc_connect2(struct socket *, struct socket *);
  296 static int      uipc_ctloutput(struct socket *, struct sockopt *);
  297 static int      unp_connect(struct socket *, struct sockaddr *,
  298                     struct thread *);
  299 static int      unp_connectat(int, struct socket *, struct sockaddr *,
  300                     struct thread *);
  301 static int      unp_connect2(struct socket *so, struct socket *so2, int);
  302 static void     unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
  303 static void     unp_dispose(struct socket *so);
  304 static void     unp_dispose_mbuf(struct mbuf *);
  305 static void     unp_shutdown(struct unpcb *);
  306 static void     unp_drop(struct unpcb *);
  307 static void     unp_gc(__unused void *, int);
  308 static void     unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
  309 static void     unp_discard(struct file *);
  310 static void     unp_freerights(struct filedescent **, int);
  311 static void     unp_init(void);
  312 static int      unp_internalize(struct mbuf **, struct thread *);
  313 static void     unp_internalize_fp(struct file *);
  314 static int      unp_externalize(struct mbuf *, struct mbuf **, int);
  315 static int      unp_externalize_fp(struct file *);
  316 static struct mbuf      *unp_addsockcred(struct thread *, struct mbuf *);
  317 static void     unp_process_defers(void * __unused, int);
  318 
  319 
  320 static void
  321 unp_pcb_hold(struct unpcb *unp)
  322 {
  323         MPASS(unp->unp_refcount);
  324         refcount_acquire(&unp->unp_refcount);
  325 }
  326 
  327 static int
  328 unp_pcb_rele(struct unpcb *unp)
  329 {
  330         int freed;
  331 
  332         UNP_PCB_LOCK_ASSERT(unp);
  333         MPASS(unp->unp_refcount);
  334         if ((freed = refcount_release(&unp->unp_refcount))) {
  335                 /* we got here with having detached? */
  336                 MPASS(unp->unp_socket == NULL);
  337                 UNP_PCB_UNLOCK(unp);
  338                 UNP_PCB_LOCK_DESTROY(unp);
  339                 uma_zfree(unp_zone, unp);
  340         }
  341         return (freed);
  342 }
  343 
  344 static void
  345 unp_pcb_lock2(struct unpcb *unp, struct unpcb *unp2)
  346 {
  347         MPASS(unp != unp2);
  348         UNP_PCB_UNLOCK_ASSERT(unp);
  349         UNP_PCB_UNLOCK_ASSERT(unp2);
  350         if ((uintptr_t)unp2 > (uintptr_t)unp) {
  351                 UNP_PCB_LOCK(unp);
  352                 UNP_PCB_LOCK(unp2);
  353         } else {
  354                 UNP_PCB_LOCK(unp2);
  355                 UNP_PCB_LOCK(unp);
  356         }
  357 }
  358 
  359 static __noinline void
  360 unp_pcb_owned_lock2_slowpath(struct unpcb *unp, struct unpcb **unp2p,
  361     int *freed)
  362 {
  363         struct unpcb *unp2;
  364 
  365         unp2 = *unp2p;
  366         unp_pcb_hold(unp2);
  367         UNP_PCB_UNLOCK(unp);
  368         UNP_PCB_LOCK(unp2);
  369         UNP_PCB_LOCK(unp);
  370         *freed = unp_pcb_rele(unp2);
  371         if (*freed)
  372                 *unp2p = NULL;
  373 }
  374 
  375 #define unp_pcb_owned_lock2(unp, unp2, freed) do {                      \
  376         freed = 0;                                                      \
  377         UNP_PCB_LOCK_ASSERT(unp);                                       \
  378         UNP_PCB_UNLOCK_ASSERT(unp2);                                    \
  379         MPASS((unp) != (unp2));                                         \
  380         if (__predict_true(UNP_PCB_TRYLOCK(unp2)))                      \
  381                 break;                                                  \
  382         else if ((uintptr_t)(unp2) > (uintptr_t)(unp))                  \
  383                 UNP_PCB_LOCK(unp2);                                     \
  384         else                                                            \
  385                 unp_pcb_owned_lock2_slowpath((unp), &(unp2), &freed);   \
  386 } while (0)
  387 
  388 
  389 /*
  390  * Definitions of protocols supported in the LOCAL domain.
  391  */
  392 static struct domain localdomain;
  393 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
  394 static struct pr_usrreqs uipc_usrreqs_seqpacket;
  395 static struct protosw localsw[] = {
  396 {
  397         .pr_type =              SOCK_STREAM,
  398         .pr_domain =            &localdomain,
  399         .pr_flags =             PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
  400         .pr_ctloutput =         &uipc_ctloutput,
  401         .pr_usrreqs =           &uipc_usrreqs_stream
  402 },
  403 {
  404         .pr_type =              SOCK_DGRAM,
  405         .pr_domain =            &localdomain,
  406         .pr_flags =             PR_ATOMIC|PR_ADDR|PR_RIGHTS,
  407         .pr_ctloutput =         &uipc_ctloutput,
  408         .pr_usrreqs =           &uipc_usrreqs_dgram
  409 },
  410 {
  411         .pr_type =              SOCK_SEQPACKET,
  412         .pr_domain =            &localdomain,
  413 
  414         /*
  415          * XXXRW: For now, PR_ADDR because soreceive will bump into them
  416          * due to our use of sbappendaddr.  A new sbappend variants is needed
  417          * that supports both atomic record writes and control data.
  418          */
  419         .pr_flags =             PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
  420                                     PR_RIGHTS,
  421         .pr_ctloutput =         &uipc_ctloutput,
  422         .pr_usrreqs =           &uipc_usrreqs_seqpacket,
  423 },
  424 };
  425 
  426 static struct domain localdomain = {
  427         .dom_family =           AF_LOCAL,
  428         .dom_name =             "local",
  429         .dom_init =             unp_init,
  430         .dom_externalize =      unp_externalize,
  431         .dom_dispose =          unp_dispose,
  432         .dom_protosw =          localsw,
  433         .dom_protoswNPROTOSW =  &localsw[nitems(localsw)]
  434 };
  435 DOMAIN_SET(local);
  436 
  437 static void
  438 uipc_abort(struct socket *so)
  439 {
  440         struct unpcb *unp, *unp2;
  441 
  442         unp = sotounpcb(so);
  443         KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
  444         UNP_PCB_UNLOCK_ASSERT(unp);
  445 
  446         UNP_PCB_LOCK(unp);
  447         unp2 = unp->unp_conn;
  448         if (unp2 != NULL) {
  449                 unp_pcb_hold(unp2);
  450                 UNP_PCB_UNLOCK(unp);
  451                 unp_drop(unp2);
  452         } else
  453                 UNP_PCB_UNLOCK(unp);
  454 }
  455 
  456 static int
  457 uipc_accept(struct socket *so, struct sockaddr **nam)
  458 {
  459         struct unpcb *unp, *unp2;
  460         const struct sockaddr *sa;
  461 
  462         /*
  463          * Pass back name of connected socket, if it was bound and we are
  464          * still connected (our peer may have closed already!).
  465          */
  466         unp = sotounpcb(so);
  467         KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
  468 
  469         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
  470         UNP_LINK_RLOCK();
  471         unp2 = unp->unp_conn;
  472         if (unp2 != NULL && unp2->unp_addr != NULL) {
  473                 UNP_PCB_LOCK(unp2);
  474                 sa = (struct sockaddr *) unp2->unp_addr;
  475                 bcopy(sa, *nam, sa->sa_len);
  476                 UNP_PCB_UNLOCK(unp2);
  477         } else {
  478                 sa = &sun_noname;
  479                 bcopy(sa, *nam, sa->sa_len);
  480         }
  481         UNP_LINK_RUNLOCK();
  482         return (0);
  483 }
  484 
  485 static int
  486 uipc_attach(struct socket *so, int proto, struct thread *td)
  487 {
  488         u_long sendspace, recvspace;
  489         struct unpcb *unp;
  490         int error;
  491         bool locked;
  492 
  493         KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
  494         if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
  495                 switch (so->so_type) {
  496                 case SOCK_STREAM:
  497                         sendspace = unpst_sendspace;
  498                         recvspace = unpst_recvspace;
  499                         break;
  500 
  501                 case SOCK_DGRAM:
  502                         sendspace = unpdg_sendspace;
  503                         recvspace = unpdg_recvspace;
  504                         break;
  505 
  506                 case SOCK_SEQPACKET:
  507                         sendspace = unpsp_sendspace;
  508                         recvspace = unpsp_recvspace;
  509                         break;
  510 
  511                 default:
  512                         panic("uipc_attach");
  513                 }
  514                 error = soreserve(so, sendspace, recvspace);
  515                 if (error)
  516                         return (error);
  517         }
  518         unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
  519         if (unp == NULL)
  520                 return (ENOBUFS);
  521         LIST_INIT(&unp->unp_refs);
  522         UNP_PCB_LOCK_INIT(unp);
  523         unp->unp_socket = so;
  524         so->so_pcb = unp;
  525         unp->unp_refcount = 1;
  526         if (so->so_listen != NULL)
  527                 unp->unp_flags |= UNP_NASCENT;
  528 
  529         if ((locked = UNP_LINK_WOWNED()) == false)
  530                 UNP_LINK_WLOCK();
  531 
  532         unp->unp_gencnt = ++unp_gencnt;
  533         unp_count++;
  534         switch (so->so_type) {
  535         case SOCK_STREAM:
  536                 LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
  537                 break;
  538 
  539         case SOCK_DGRAM:
  540                 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
  541                 break;
  542 
  543         case SOCK_SEQPACKET:
  544                 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
  545                 break;
  546 
  547         default:
  548                 panic("uipc_attach");
  549         }
  550 
  551         if (locked == false)
  552                 UNP_LINK_WUNLOCK();
  553 
  554         return (0);
  555 }
  556 
  557 static int
  558 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
  559 {
  560         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
  561         struct vattr vattr;
  562         int error, namelen;
  563         struct nameidata nd;
  564         struct unpcb *unp;
  565         struct vnode *vp;
  566         struct mount *mp;
  567         cap_rights_t rights;
  568         char *buf;
  569 
  570         if (nam->sa_family != AF_UNIX)
  571                 return (EAFNOSUPPORT);
  572 
  573         unp = sotounpcb(so);
  574         KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
  575 
  576         if (soun->sun_len > sizeof(struct sockaddr_un))
  577                 return (EINVAL);
  578         namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
  579         if (namelen <= 0)
  580                 return (EINVAL);
  581 
  582         /*
  583          * We don't allow simultaneous bind() calls on a single UNIX domain
  584          * socket, so flag in-progress operations, and return an error if an
  585          * operation is already in progress.
  586          *
  587          * Historically, we have not allowed a socket to be rebound, so this
  588          * also returns an error.  Not allowing re-binding simplifies the
  589          * implementation and avoids a great many possible failure modes.
  590          */
  591         UNP_PCB_LOCK(unp);
  592         if (unp->unp_vnode != NULL) {
  593                 UNP_PCB_UNLOCK(unp);
  594                 return (EINVAL);
  595         }
  596         if (unp->unp_flags & UNP_BINDING) {
  597                 UNP_PCB_UNLOCK(unp);
  598                 return (EALREADY);
  599         }
  600         unp->unp_flags |= UNP_BINDING;
  601         UNP_PCB_UNLOCK(unp);
  602 
  603         buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
  604         bcopy(soun->sun_path, buf, namelen);
  605         buf[namelen] = 0;
  606 
  607 restart:
  608         NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
  609             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
  610 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
  611         error = namei(&nd);
  612         if (error)
  613                 goto error;
  614         vp = nd.ni_vp;
  615         if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
  616                 NDFREE(&nd, NDF_ONLY_PNBUF);
  617                 if (nd.ni_dvp == vp)
  618                         vrele(nd.ni_dvp);
  619                 else
  620                         vput(nd.ni_dvp);
  621                 if (vp != NULL) {
  622                         vrele(vp);
  623                         error = EADDRINUSE;
  624                         goto error;
  625                 }
  626                 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
  627                 if (error)
  628                         goto error;
  629                 goto restart;
  630         }
  631         VATTR_NULL(&vattr);
  632         vattr.va_type = VSOCK;
  633         vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
  634 #ifdef MAC
  635         error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
  636             &vattr);
  637 #endif
  638         if (error == 0)
  639                 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
  640         NDFREE(&nd, NDF_ONLY_PNBUF);
  641         vput(nd.ni_dvp);
  642         if (error) {
  643                 vn_finished_write(mp);
  644                 goto error;
  645         }
  646         vp = nd.ni_vp;
  647         ASSERT_VOP_ELOCKED(vp, "uipc_bind");
  648         soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
  649 
  650         UNP_PCB_LOCK(unp);
  651         VOP_UNP_BIND(vp, unp);
  652         unp->unp_vnode = vp;
  653         unp->unp_addr = soun;
  654         unp->unp_flags &= ~UNP_BINDING;
  655         UNP_PCB_UNLOCK(unp);
  656         VOP_UNLOCK(vp, 0);
  657         vn_finished_write(mp);
  658         free(buf, M_TEMP);
  659         return (0);
  660 
  661 error:
  662         UNP_PCB_LOCK(unp);
  663         unp->unp_flags &= ~UNP_BINDING;
  664         UNP_PCB_UNLOCK(unp);
  665         free(buf, M_TEMP);
  666         return (error);
  667 }
  668 
  669 static int
  670 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
  671 {
  672 
  673         return (uipc_bindat(AT_FDCWD, so, nam, td));
  674 }
  675 
  676 static int
  677 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
  678 {
  679         int error;
  680 
  681         KASSERT(td == curthread, ("uipc_connect: td != curthread"));
  682         error = unp_connect(so, nam, td);
  683         return (error);
  684 }
  685 
  686 static int
  687 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
  688     struct thread *td)
  689 {
  690         int error;
  691 
  692         KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
  693         error = unp_connectat(fd, so, nam, td);
  694         return (error);
  695 }
  696 
  697 static void
  698 uipc_close(struct socket *so)
  699 {
  700         struct unpcb *unp, *unp2;
  701         struct vnode *vp = NULL;
  702         struct mtx *vplock;
  703         int freed;
  704         unp = sotounpcb(so);
  705         KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
  706 
  707 
  708         vplock = NULL;
  709         if ((vp = unp->unp_vnode) != NULL) {
  710                 vplock = mtx_pool_find(mtxpool_sleep, vp);
  711                 mtx_lock(vplock);
  712         }
  713         UNP_PCB_LOCK(unp);
  714         if (vp && unp->unp_vnode == NULL) {
  715                 mtx_unlock(vplock);
  716                 vp = NULL;
  717         }
  718         if (vp != NULL) {
  719                 VOP_UNP_DETACH(vp);
  720                 unp->unp_vnode = NULL;
  721         }
  722         unp2 = unp->unp_conn;
  723         unp_pcb_hold(unp);
  724         if (__predict_false(unp == unp2)) {
  725                 unp_disconnect(unp, unp2);
  726         } else if (unp2 != NULL) {
  727                 unp_pcb_hold(unp2);
  728                 unp_pcb_owned_lock2(unp, unp2, freed);
  729                 unp_disconnect(unp, unp2);
  730                 if (unp_pcb_rele(unp2) == 0)
  731                         UNP_PCB_UNLOCK(unp2);
  732         }
  733         if (unp_pcb_rele(unp) == 0)
  734                 UNP_PCB_UNLOCK(unp);
  735         if (vp) {
  736                 mtx_unlock(vplock);
  737                 vrele(vp);
  738         }
  739 }
  740 
  741 static int
  742 uipc_connect2(struct socket *so1, struct socket *so2)
  743 {
  744         struct unpcb *unp, *unp2;
  745         int error;
  746 
  747         unp = so1->so_pcb;
  748         KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
  749         unp2 = so2->so_pcb;
  750         KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
  751         if (unp != unp2)
  752                 unp_pcb_lock2(unp, unp2);
  753         else
  754                 UNP_PCB_LOCK(unp);
  755         error = unp_connect2(so1, so2, PRU_CONNECT2);
  756         if (unp != unp2)
  757                 UNP_PCB_UNLOCK(unp2);
  758         UNP_PCB_UNLOCK(unp);
  759         return (error);
  760 }
  761 
  762 static void
  763 uipc_detach(struct socket *so)
  764 {
  765         struct unpcb *unp, *unp2;
  766         struct mtx *vplock;
  767         struct sockaddr_un *saved_unp_addr;
  768         struct vnode *vp;
  769         int freeunp, local_unp_rights;
  770 
  771         unp = sotounpcb(so);
  772         KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
  773 
  774         vp = NULL;
  775         vplock = NULL;
  776         local_unp_rights = 0;
  777 
  778         UNP_LINK_WLOCK();
  779         LIST_REMOVE(unp, unp_link);
  780         unp->unp_gencnt = ++unp_gencnt;
  781         --unp_count;
  782         UNP_LINK_WUNLOCK();
  783 
  784         UNP_PCB_UNLOCK_ASSERT(unp);
  785  restart:
  786         if ((vp = unp->unp_vnode) != NULL) {
  787                 vplock = mtx_pool_find(mtxpool_sleep, vp);
  788                 mtx_lock(vplock);
  789         }
  790         UNP_PCB_LOCK(unp);
  791         if (unp->unp_vnode != vp &&
  792                 unp->unp_vnode != NULL) {
  793                 if (vplock)
  794                         mtx_unlock(vplock);
  795                 UNP_PCB_UNLOCK(unp);
  796                 goto restart;
  797         }
  798         if ((unp->unp_flags & UNP_NASCENT) != 0) {
  799                 goto teardown;
  800         }
  801         if ((vp = unp->unp_vnode) != NULL) {
  802                 VOP_UNP_DETACH(vp);
  803                 unp->unp_vnode = NULL;
  804         }
  805         if (__predict_false(unp == unp->unp_conn)) {
  806                 unp_disconnect(unp, unp);
  807                 unp2 = NULL;
  808                 goto connect_self;
  809         }
  810         if ((unp2 = unp->unp_conn) != NULL) {
  811                 unp_pcb_owned_lock2(unp, unp2, freeunp);
  812                 if (freeunp)
  813                         unp2 = NULL;
  814         }
  815         unp_pcb_hold(unp);
  816         if (unp2 != NULL) {
  817                 unp_pcb_hold(unp2);
  818                 unp_disconnect(unp, unp2);
  819                 if (unp_pcb_rele(unp2) == 0)
  820                         UNP_PCB_UNLOCK(unp2);
  821         }
  822  connect_self:
  823         UNP_PCB_UNLOCK(unp);
  824         UNP_REF_LIST_LOCK();
  825         while (!LIST_EMPTY(&unp->unp_refs)) {
  826                 struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
  827 
  828                 unp_pcb_hold(ref);
  829                 UNP_REF_LIST_UNLOCK();
  830 
  831                 MPASS(ref != unp);
  832                 UNP_PCB_UNLOCK_ASSERT(ref);
  833                 unp_drop(ref);
  834                 UNP_REF_LIST_LOCK();
  835         }
  836 
  837         UNP_REF_LIST_UNLOCK();
  838         UNP_PCB_LOCK(unp);
  839         freeunp = unp_pcb_rele(unp);
  840         MPASS(freeunp == 0);
  841         local_unp_rights = unp_rights;
  842 teardown:
  843         unp->unp_socket->so_pcb = NULL;
  844         saved_unp_addr = unp->unp_addr;
  845         unp->unp_addr = NULL;
  846         unp->unp_socket = NULL;
  847         freeunp = unp_pcb_rele(unp);
  848         if (saved_unp_addr != NULL)
  849                 free(saved_unp_addr, M_SONAME);
  850         if (!freeunp)
  851                 UNP_PCB_UNLOCK(unp);
  852         if (vp) {
  853                 mtx_unlock(vplock);
  854                 vrele(vp);
  855         }
  856         if (local_unp_rights)
  857                 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
  858 }
  859 
  860 static int
  861 uipc_disconnect(struct socket *so)
  862 {
  863         struct unpcb *unp, *unp2;
  864         int freed;
  865 
  866         unp = sotounpcb(so);
  867         KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
  868 
  869         UNP_PCB_LOCK(unp);
  870         if ((unp2 = unp->unp_conn) == NULL) {
  871                 UNP_PCB_UNLOCK(unp);
  872                 return (0);
  873         }
  874         if (__predict_true(unp != unp2)) {
  875                 unp_pcb_owned_lock2(unp, unp2, freed);
  876                 if (__predict_false(freed)) {
  877                         UNP_PCB_UNLOCK(unp);
  878                         return (0);
  879                 }
  880                 unp_pcb_hold(unp2);
  881         }
  882         unp_pcb_hold(unp);
  883         unp_disconnect(unp, unp2);
  884         if (unp_pcb_rele(unp) == 0)
  885                 UNP_PCB_UNLOCK(unp);
  886         if ((unp != unp2) && unp_pcb_rele(unp2) == 0)
  887                 UNP_PCB_UNLOCK(unp2);
  888         return (0);
  889 }
  890 
  891 static int
  892 uipc_listen(struct socket *so, int backlog, struct thread *td)
  893 {
  894         struct unpcb *unp;
  895         int error;
  896 
  897         if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
  898                 return (EOPNOTSUPP);
  899 
  900         unp = sotounpcb(so);
  901         KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
  902 
  903         UNP_PCB_LOCK(unp);
  904         if (unp->unp_vnode == NULL) {
  905                 /* Already connected or not bound to an address. */
  906                 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
  907                 UNP_PCB_UNLOCK(unp);
  908                 return (error);
  909         }
  910 
  911         SOCK_LOCK(so);
  912         error = solisten_proto_check(so);
  913         if (error == 0) {
  914                 cru2x(td->td_ucred, &unp->unp_peercred);
  915                 solisten_proto(so, backlog);
  916         }
  917         SOCK_UNLOCK(so);
  918         UNP_PCB_UNLOCK(unp);
  919         return (error);
  920 }
  921 
  922 static int
  923 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
  924 {
  925         struct unpcb *unp, *unp2;
  926         const struct sockaddr *sa;
  927 
  928         unp = sotounpcb(so);
  929         KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
  930 
  931         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
  932         UNP_LINK_RLOCK();
  933         /*
  934          * XXX: It seems that this test always fails even when connection is
  935          * established.  So, this else clause is added as workaround to
  936          * return PF_LOCAL sockaddr.
  937          */
  938         unp2 = unp->unp_conn;
  939         if (unp2 != NULL) {
  940                 UNP_PCB_LOCK(unp2);
  941                 if (unp2->unp_addr != NULL)
  942                         sa = (struct sockaddr *) unp2->unp_addr;
  943                 else
  944                         sa = &sun_noname;
  945                 bcopy(sa, *nam, sa->sa_len);
  946                 UNP_PCB_UNLOCK(unp2);
  947         } else {
  948                 sa = &sun_noname;
  949                 bcopy(sa, *nam, sa->sa_len);
  950         }
  951         UNP_LINK_RUNLOCK();
  952         return (0);
  953 }
  954 
  955 static int
  956 uipc_rcvd(struct socket *so, int flags)
  957 {
  958         struct unpcb *unp, *unp2;
  959         struct socket *so2;
  960         u_int mbcnt, sbcc;
  961 
  962         unp = sotounpcb(so);
  963         KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
  964         KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
  965             ("%s: socktype %d", __func__, so->so_type));
  966 
  967         /*
  968          * Adjust backpressure on sender and wakeup any waiting to write.
  969          *
  970          * The unp lock is acquired to maintain the validity of the unp_conn
  971          * pointer; no lock on unp2 is required as unp2->unp_socket will be
  972          * static as long as we don't permit unp2 to disconnect from unp,
  973          * which is prevented by the lock on unp.  We cache values from
  974          * so_rcv to avoid holding the so_rcv lock over the entire
  975          * transaction on the remote so_snd.
  976          */
  977         SOCKBUF_LOCK(&so->so_rcv);
  978         mbcnt = so->so_rcv.sb_mbcnt;
  979         sbcc = sbavail(&so->so_rcv);
  980         SOCKBUF_UNLOCK(&so->so_rcv);
  981         /*
  982          * There is a benign race condition at this point.  If we're planning to
  983          * clear SB_STOP, but uipc_send is called on the connected socket at
  984          * this instant, it might add data to the sockbuf and set SB_STOP.  Then
  985          * we would erroneously clear SB_STOP below, even though the sockbuf is
  986          * full.  The race is benign because the only ill effect is to allow the
  987          * sockbuf to exceed its size limit, and the size limits are not
  988          * strictly guaranteed anyway.
  989          */
  990         UNP_PCB_LOCK(unp);
  991         unp2 = unp->unp_conn;
  992         if (unp2 == NULL) {
  993                 UNP_PCB_UNLOCK(unp);
  994                 return (0);
  995         }
  996         so2 = unp2->unp_socket;
  997         SOCKBUF_LOCK(&so2->so_snd);
  998         if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
  999                 so2->so_snd.sb_flags &= ~SB_STOP;
 1000         sowwakeup_locked(so2);
 1001         UNP_PCB_UNLOCK(unp);
 1002         return (0);
 1003 }
 1004 
 1005 static int
 1006 connect_internal(struct socket *so, struct sockaddr *nam, struct thread *td)
 1007 {
 1008         int error;
 1009         struct unpcb *unp;
 1010 
 1011         unp = so->so_pcb;
 1012         if (unp->unp_conn != NULL)
 1013                 return (EISCONN);
 1014         error = unp_connect(so, nam, td);
 1015         if (error)
 1016                 return (error);
 1017         UNP_PCB_LOCK(unp);
 1018         if (unp->unp_conn == NULL) {
 1019                 UNP_PCB_UNLOCK(unp);
 1020                 if (error == 0)
 1021                         error = ENOTCONN;
 1022         }
 1023         return (error);
 1024 }
 1025 
 1026 
 1027 static int
 1028 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
 1029     struct mbuf *control, struct thread *td)
 1030 {
 1031         struct unpcb *unp, *unp2;
 1032         struct socket *so2;
 1033         u_int mbcnt, sbcc;
 1034         int freed, error;
 1035 
 1036         unp = sotounpcb(so);
 1037         KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
 1038         KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
 1039             so->so_type == SOCK_SEQPACKET,
 1040             ("%s: socktype %d", __func__, so->so_type));
 1041 
 1042         freed = error = 0;
 1043         if (flags & PRUS_OOB) {
 1044                 error = EOPNOTSUPP;
 1045                 goto release;
 1046         }
 1047         if (control != NULL && (error = unp_internalize(&control, td)))
 1048                 goto release;
 1049 
 1050         unp2 = NULL;
 1051         switch (so->so_type) {
 1052         case SOCK_DGRAM:
 1053         {
 1054                 const struct sockaddr *from;
 1055 
 1056                 if (nam != NULL) {
 1057                         /*
 1058                          * We return with UNP_PCB_LOCK_HELD so we know that
 1059                          * the reference is live if the pointer is valid.
 1060                          */
 1061                         if ((error = connect_internal(so, nam, td)))
 1062                                 break;
 1063                         MPASS(unp->unp_conn != NULL);
 1064                         unp2 = unp->unp_conn;
 1065                 } else  {
 1066                         UNP_PCB_LOCK(unp);
 1067 
 1068                         /*
 1069                          * Because connect() and send() are non-atomic in a sendto()
 1070                          * with a target address, it's possible that the socket will
 1071                          * have disconnected before the send() can run.  In that case
 1072                          * return the slightly counter-intuitive but otherwise
 1073                          * correct error that the socket is not connected.
 1074                          */
 1075                         if ((unp2 = unp->unp_conn)  == NULL) {
 1076                                 UNP_PCB_UNLOCK(unp);
 1077                                 error = ENOTCONN;
 1078                                 break;
 1079                         }
 1080                 }
 1081                 if (__predict_false(unp == unp2)) {
 1082                         if (unp->unp_socket == NULL) {
 1083                                 error = ENOTCONN;
 1084                                 break;
 1085                         }
 1086                         goto connect_self;
 1087                 }
 1088                 unp_pcb_owned_lock2(unp, unp2, freed);
 1089                 if (__predict_false(freed)) {
 1090                         UNP_PCB_UNLOCK(unp);
 1091                         error = ENOTCONN;
 1092                         break;
 1093                 }
 1094                 /*
 1095                  * The socket referencing unp2 may have been closed
 1096                  * or unp may have been disconnected if the unp lock
 1097                  * was dropped to acquire unp2.
 1098                  */
 1099                 if (__predict_false(unp->unp_conn == NULL) ||
 1100                         unp2->unp_socket == NULL) {
 1101                         UNP_PCB_UNLOCK(unp);
 1102                         if (unp_pcb_rele(unp2) == 0)
 1103                                 UNP_PCB_UNLOCK(unp2);
 1104                         error = ENOTCONN;
 1105                         break;
 1106                 }
 1107         connect_self:
 1108                 if (unp2->unp_flags & UNP_WANTCRED)
 1109                         control = unp_addsockcred(td, control);
 1110                 if (unp->unp_addr != NULL)
 1111                         from = (struct sockaddr *)unp->unp_addr;
 1112                 else
 1113                         from = &sun_noname;
 1114                 so2 = unp2->unp_socket;
 1115                 SOCKBUF_LOCK(&so2->so_rcv);
 1116                 if (sbappendaddr_locked(&so2->so_rcv, from, m,
 1117                     control)) {
 1118                         sorwakeup_locked(so2);
 1119                         m = NULL;
 1120                         control = NULL;
 1121                 } else {
 1122                         SOCKBUF_UNLOCK(&so2->so_rcv);
 1123                         error = ENOBUFS;
 1124                 }
 1125                 if (nam != NULL)
 1126                         unp_disconnect(unp, unp2);
 1127                 if (__predict_true(unp != unp2))
 1128                         UNP_PCB_UNLOCK(unp2);
 1129                 UNP_PCB_UNLOCK(unp);
 1130                 break;
 1131         }
 1132 
 1133         case SOCK_SEQPACKET:
 1134         case SOCK_STREAM:
 1135                 if ((so->so_state & SS_ISCONNECTED) == 0) {
 1136                         if (nam != NULL) {
 1137                                 if ((error = connect_internal(so, nam, td)))
 1138                                         break;
 1139                         } else  {
 1140                                 error = ENOTCONN;
 1141                                 break;
 1142                         }
 1143                 } else if ((unp2 = unp->unp_conn) == NULL) {
 1144                         error = ENOTCONN;
 1145                         break;
 1146                 } else if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 1147                         error = EPIPE;
 1148                         break;
 1149                 } else {
 1150                         UNP_PCB_LOCK(unp);
 1151                         if ((unp2 = unp->unp_conn) == NULL) {
 1152                                 UNP_PCB_UNLOCK(unp);
 1153                                 error = ENOTCONN;
 1154                                 break;
 1155                         }
 1156                 }
 1157                 unp_pcb_owned_lock2(unp, unp2, freed);
 1158                 UNP_PCB_UNLOCK(unp);
 1159                 if (__predict_false(freed)) {
 1160                         error = ENOTCONN;
 1161                         break;
 1162                 }
 1163                 if ((so2 = unp2->unp_socket) == NULL) {
 1164                         UNP_PCB_UNLOCK(unp2);
 1165                         error = ENOTCONN;
 1166                         break;
 1167                 }
 1168                 SOCKBUF_LOCK(&so2->so_rcv);
 1169                 if (unp2->unp_flags & UNP_WANTCRED) {
 1170                         /*
 1171                          * Credentials are passed only once on SOCK_STREAM
 1172                          * and SOCK_SEQPACKET.
 1173                          */
 1174                         unp2->unp_flags &= ~UNP_WANTCRED;
 1175                         control = unp_addsockcred(td, control);
 1176                 }
 1177 
 1178                 /*
 1179                  * Send to paired receive port and wake up readers.  Don't
 1180                  * check for space available in the receive buffer if we're
 1181                  * attaching ancillary data; Unix domain sockets only check
 1182                  * for space in the sending sockbuf, and that check is
 1183                  * performed one level up the stack.  At that level we cannot
 1184                  * precisely account for the amount of buffer space used
 1185                  * (e.g., because control messages are not yet internalized).
 1186                  */
 1187                 switch (so->so_type) {
 1188                 case SOCK_STREAM:
 1189                         if (control != NULL) {
 1190                                 sbappendcontrol_locked(&so2->so_rcv, m,
 1191                                     control);
 1192                                 control = NULL;
 1193                         } else
 1194                                 sbappend_locked(&so2->so_rcv, m, flags);
 1195                         break;
 1196 
 1197                 case SOCK_SEQPACKET: {
 1198                         const struct sockaddr *from;
 1199 
 1200                         from = &sun_noname;
 1201                         if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
 1202                             from, m, control))
 1203                                 control = NULL;
 1204                         break;
 1205                         }
 1206                 }
 1207 
 1208                 mbcnt = so2->so_rcv.sb_mbcnt;
 1209                 sbcc = sbavail(&so2->so_rcv);
 1210                 if (sbcc)
 1211                         sorwakeup_locked(so2);
 1212                 else
 1213                         SOCKBUF_UNLOCK(&so2->so_rcv);
 1214 
 1215                 /*
 1216                  * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
 1217                  * it would be possible for uipc_rcvd to be called at this
 1218                  * point, drain the receiving sockbuf, clear SB_STOP, and then
 1219                  * we would set SB_STOP below.  That could lead to an empty
 1220                  * sockbuf having SB_STOP set
 1221                  */
 1222                 SOCKBUF_LOCK(&so->so_snd);
 1223                 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
 1224                         so->so_snd.sb_flags |= SB_STOP;
 1225                 SOCKBUF_UNLOCK(&so->so_snd);
 1226                 UNP_PCB_UNLOCK(unp2);
 1227                 m = NULL;
 1228                 break;
 1229         }
 1230 
 1231         /*
 1232          * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
 1233          */
 1234         if (flags & PRUS_EOF) {
 1235                 UNP_PCB_LOCK(unp);
 1236                 socantsendmore(so);
 1237                 unp_shutdown(unp);
 1238                 UNP_PCB_UNLOCK(unp);
 1239         }
 1240         if (control != NULL && error != 0)
 1241                 unp_dispose_mbuf(control);
 1242 
 1243 release:
 1244         if (control != NULL)
 1245                 m_freem(control);
 1246         /*
 1247          * In case of PRUS_NOTREADY, uipc_ready() is responsible
 1248          * for freeing memory.
 1249          */   
 1250         if (m != NULL && (flags & PRUS_NOTREADY) == 0)
 1251                 m_freem(m);
 1252         return (error);
 1253 }
 1254 
 1255 static int
 1256 uipc_ready(struct socket *so, struct mbuf *m, int count)
 1257 {
 1258         struct unpcb *unp, *unp2;
 1259         struct socket *so2;
 1260         int error;
 1261 
 1262         unp = sotounpcb(so);
 1263 
 1264         UNP_PCB_LOCK(unp);
 1265         if ((unp2 = unp->unp_conn) == NULL) {
 1266                 UNP_PCB_UNLOCK(unp);
 1267                 goto error;
 1268         }
 1269         if (unp != unp2) {
 1270                 if (UNP_PCB_TRYLOCK(unp2) == 0) {
 1271                         unp_pcb_hold(unp2);
 1272                         UNP_PCB_UNLOCK(unp);
 1273                         UNP_PCB_LOCK(unp2);
 1274                         if (unp_pcb_rele(unp2))
 1275                                 goto error;
 1276                 } else
 1277                         UNP_PCB_UNLOCK(unp);
 1278         }
 1279         so2 = unp2->unp_socket;
 1280 
 1281         SOCKBUF_LOCK(&so2->so_rcv);
 1282         if ((error = sbready(&so2->so_rcv, m, count)) == 0)
 1283                 sorwakeup_locked(so2);
 1284         else
 1285                 SOCKBUF_UNLOCK(&so2->so_rcv);
 1286 
 1287         UNP_PCB_UNLOCK(unp2);
 1288 
 1289         return (error);
 1290  error:
 1291         for (int i = 0; i < count; i++)
 1292                 m = m_free(m);
 1293         return (ECONNRESET);
 1294 }
 1295 
 1296 static int
 1297 uipc_sense(struct socket *so, struct stat *sb)
 1298 {
 1299         struct unpcb *unp;
 1300 
 1301         unp = sotounpcb(so);
 1302         KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
 1303 
 1304         sb->st_blksize = so->so_snd.sb_hiwat;
 1305         UNP_PCB_LOCK(unp);
 1306         sb->st_dev = NODEV;
 1307         if (unp->unp_ino == 0)
 1308                 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
 1309         sb->st_ino = unp->unp_ino;
 1310         UNP_PCB_UNLOCK(unp);
 1311         return (0);
 1312 }
 1313 
 1314 static int
 1315 uipc_shutdown(struct socket *so)
 1316 {
 1317         struct unpcb *unp;
 1318 
 1319         unp = sotounpcb(so);
 1320         KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
 1321 
 1322         UNP_PCB_LOCK(unp);
 1323         socantsendmore(so);
 1324         unp_shutdown(unp);
 1325         UNP_PCB_UNLOCK(unp);
 1326         return (0);
 1327 }
 1328 
 1329 static int
 1330 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
 1331 {
 1332         struct unpcb *unp;
 1333         const struct sockaddr *sa;
 1334 
 1335         unp = sotounpcb(so);
 1336         KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
 1337 
 1338         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
 1339         UNP_PCB_LOCK(unp);
 1340         if (unp->unp_addr != NULL)
 1341                 sa = (struct sockaddr *) unp->unp_addr;
 1342         else
 1343                 sa = &sun_noname;
 1344         bcopy(sa, *nam, sa->sa_len);
 1345         UNP_PCB_UNLOCK(unp);
 1346         return (0);
 1347 }
 1348 
 1349 static struct pr_usrreqs uipc_usrreqs_dgram = {
 1350         .pru_abort =            uipc_abort,
 1351         .pru_accept =           uipc_accept,
 1352         .pru_attach =           uipc_attach,
 1353         .pru_bind =             uipc_bind,
 1354         .pru_bindat =           uipc_bindat,
 1355         .pru_connect =          uipc_connect,
 1356         .pru_connectat =        uipc_connectat,
 1357         .pru_connect2 =         uipc_connect2,
 1358         .pru_detach =           uipc_detach,
 1359         .pru_disconnect =       uipc_disconnect,
 1360         .pru_listen =           uipc_listen,
 1361         .pru_peeraddr =         uipc_peeraddr,
 1362         .pru_rcvd =             uipc_rcvd,
 1363         .pru_send =             uipc_send,
 1364         .pru_sense =            uipc_sense,
 1365         .pru_shutdown =         uipc_shutdown,
 1366         .pru_sockaddr =         uipc_sockaddr,
 1367         .pru_soreceive =        soreceive_dgram,
 1368         .pru_close =            uipc_close,
 1369 };
 1370 
 1371 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
 1372         .pru_abort =            uipc_abort,
 1373         .pru_accept =           uipc_accept,
 1374         .pru_attach =           uipc_attach,
 1375         .pru_bind =             uipc_bind,
 1376         .pru_bindat =           uipc_bindat,
 1377         .pru_connect =          uipc_connect,
 1378         .pru_connectat =        uipc_connectat,
 1379         .pru_connect2 =         uipc_connect2,
 1380         .pru_detach =           uipc_detach,
 1381         .pru_disconnect =       uipc_disconnect,
 1382         .pru_listen =           uipc_listen,
 1383         .pru_peeraddr =         uipc_peeraddr,
 1384         .pru_rcvd =             uipc_rcvd,
 1385         .pru_send =             uipc_send,
 1386         .pru_sense =            uipc_sense,
 1387         .pru_shutdown =         uipc_shutdown,
 1388         .pru_sockaddr =         uipc_sockaddr,
 1389         .pru_soreceive =        soreceive_generic,      /* XXX: or...? */
 1390         .pru_close =            uipc_close,
 1391 };
 1392 
 1393 static struct pr_usrreqs uipc_usrreqs_stream = {
 1394         .pru_abort =            uipc_abort,
 1395         .pru_accept =           uipc_accept,
 1396         .pru_attach =           uipc_attach,
 1397         .pru_bind =             uipc_bind,
 1398         .pru_bindat =           uipc_bindat,
 1399         .pru_connect =          uipc_connect,
 1400         .pru_connectat =        uipc_connectat,
 1401         .pru_connect2 =         uipc_connect2,
 1402         .pru_detach =           uipc_detach,
 1403         .pru_disconnect =       uipc_disconnect,
 1404         .pru_listen =           uipc_listen,
 1405         .pru_peeraddr =         uipc_peeraddr,
 1406         .pru_rcvd =             uipc_rcvd,
 1407         .pru_send =             uipc_send,
 1408         .pru_ready =            uipc_ready,
 1409         .pru_sense =            uipc_sense,
 1410         .pru_shutdown =         uipc_shutdown,
 1411         .pru_sockaddr =         uipc_sockaddr,
 1412         .pru_soreceive =        soreceive_generic,
 1413         .pru_close =            uipc_close,
 1414 };
 1415 
 1416 static int
 1417 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
 1418 {
 1419         struct unpcb *unp;
 1420         struct xucred xu;
 1421         int error, optval;
 1422 
 1423         if (sopt->sopt_level != 0)
 1424                 return (EINVAL);
 1425 
 1426         unp = sotounpcb(so);
 1427         KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
 1428         error = 0;
 1429         switch (sopt->sopt_dir) {
 1430         case SOPT_GET:
 1431                 switch (sopt->sopt_name) {
 1432                 case LOCAL_PEERCRED:
 1433                         UNP_PCB_LOCK(unp);
 1434                         if (unp->unp_flags & UNP_HAVEPC)
 1435                                 xu = unp->unp_peercred;
 1436                         else {
 1437                                 if (so->so_type == SOCK_STREAM)
 1438                                         error = ENOTCONN;
 1439                                 else
 1440                                         error = EINVAL;
 1441                         }
 1442                         UNP_PCB_UNLOCK(unp);
 1443                         if (error == 0)
 1444                                 error = sooptcopyout(sopt, &xu, sizeof(xu));
 1445                         break;
 1446 
 1447                 case LOCAL_CREDS:
 1448                         /* Unlocked read. */
 1449                         optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
 1450                         error = sooptcopyout(sopt, &optval, sizeof(optval));
 1451                         break;
 1452 
 1453                 case LOCAL_CONNWAIT:
 1454                         /* Unlocked read. */
 1455                         optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
 1456                         error = sooptcopyout(sopt, &optval, sizeof(optval));
 1457                         break;
 1458 
 1459                 default:
 1460                         error = EOPNOTSUPP;
 1461                         break;
 1462                 }
 1463                 break;
 1464 
 1465         case SOPT_SET:
 1466                 switch (sopt->sopt_name) {
 1467                 case LOCAL_CREDS:
 1468                 case LOCAL_CONNWAIT:
 1469                         error = sooptcopyin(sopt, &optval, sizeof(optval),
 1470                                             sizeof(optval));
 1471                         if (error)
 1472                                 break;
 1473 
 1474 #define OPTSET(bit) do {                                                \
 1475         UNP_PCB_LOCK(unp);                                              \
 1476         if (optval)                                                     \
 1477                 unp->unp_flags |= bit;                                  \
 1478         else                                                            \
 1479                 unp->unp_flags &= ~bit;                                 \
 1480         UNP_PCB_UNLOCK(unp);                                            \
 1481 } while (0)
 1482 
 1483                         switch (sopt->sopt_name) {
 1484                         case LOCAL_CREDS:
 1485                                 OPTSET(UNP_WANTCRED);
 1486                                 break;
 1487 
 1488                         case LOCAL_CONNWAIT:
 1489                                 OPTSET(UNP_CONNWAIT);
 1490                                 break;
 1491 
 1492                         default:
 1493                                 break;
 1494                         }
 1495                         break;
 1496 #undef  OPTSET
 1497                 default:
 1498                         error = ENOPROTOOPT;
 1499                         break;
 1500                 }
 1501                 break;
 1502 
 1503         default:
 1504                 error = EOPNOTSUPP;
 1505                 break;
 1506         }
 1507         return (error);
 1508 }
 1509 
 1510 static int
 1511 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
 1512 {
 1513 
 1514         return (unp_connectat(AT_FDCWD, so, nam, td));
 1515 }
 1516 
 1517 static int
 1518 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
 1519     struct thread *td)
 1520 {
 1521         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
 1522         struct vnode *vp;
 1523         struct socket *so2;
 1524         struct unpcb *unp, *unp2, *unp3;
 1525         struct nameidata nd;
 1526         char buf[SOCK_MAXADDRLEN];
 1527         struct sockaddr *sa;
 1528         cap_rights_t rights;
 1529         int error, len, freed;
 1530         struct mtx *vplock;
 1531 
 1532         if (nam->sa_family != AF_UNIX)
 1533                 return (EAFNOSUPPORT);
 1534         if (nam->sa_len > sizeof(struct sockaddr_un))
 1535                 return (EINVAL);
 1536         len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
 1537         if (len <= 0)
 1538                 return (EINVAL);
 1539         bcopy(soun->sun_path, buf, len);
 1540         buf[len] = 0;
 1541 
 1542         unp = sotounpcb(so);
 1543         UNP_PCB_LOCK(unp);
 1544         if (unp->unp_flags & UNP_CONNECTING) {
 1545                 UNP_PCB_UNLOCK(unp);
 1546                 return (EALREADY);
 1547         }
 1548         unp->unp_flags |= UNP_CONNECTING;
 1549         UNP_PCB_UNLOCK(unp);
 1550 
 1551         sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
 1552         NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
 1553             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
 1554         error = namei(&nd);
 1555         if (error)
 1556                 vp = NULL;
 1557         else
 1558                 vp = nd.ni_vp;
 1559         ASSERT_VOP_LOCKED(vp, "unp_connect");
 1560         NDFREE(&nd, NDF_ONLY_PNBUF);
 1561         if (error)
 1562                 goto bad;
 1563 
 1564         if (vp->v_type != VSOCK) {
 1565                 error = ENOTSOCK;
 1566                 goto bad;
 1567         }
 1568 #ifdef MAC
 1569         error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
 1570         if (error)
 1571                 goto bad;
 1572 #endif
 1573         error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
 1574         if (error)
 1575                 goto bad;
 1576 
 1577         unp = sotounpcb(so);
 1578         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
 1579 
 1580         vplock = mtx_pool_find(mtxpool_sleep, vp);
 1581         mtx_lock(vplock);
 1582         VOP_UNP_CONNECT(vp, &unp2);
 1583         if (unp2 == NULL) {
 1584                 error = ECONNREFUSED;
 1585                 goto bad2;
 1586         }
 1587         so2 = unp2->unp_socket;
 1588         if (so->so_type != so2->so_type) {
 1589                 error = EPROTOTYPE;
 1590                 goto bad2;
 1591         }
 1592         if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
 1593                 if (so2->so_options & SO_ACCEPTCONN) {
 1594                         CURVNET_SET(so2->so_vnet);
 1595                         so2 = sonewconn(so2, 0);
 1596                         CURVNET_RESTORE();
 1597                 } else
 1598                         so2 = NULL;
 1599                 if (so2 == NULL) {
 1600                         error = ECONNREFUSED;
 1601                         goto bad2;
 1602                 }
 1603                 unp3 = sotounpcb(so2);
 1604                 unp_pcb_lock2(unp2, unp3);
 1605                 if (unp2->unp_addr != NULL) {
 1606                         bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
 1607                         unp3->unp_addr = (struct sockaddr_un *) sa;
 1608                         sa = NULL;
 1609                 }
 1610 
 1611                 unp_copy_peercred(td, unp3, unp, unp2);
 1612 
 1613                 UNP_PCB_UNLOCK(unp2);
 1614                 unp2 = unp3;
 1615                 unp_pcb_owned_lock2(unp2, unp, freed);
 1616                 if (__predict_false(freed)) {
 1617                         UNP_PCB_UNLOCK(unp2);
 1618                         error = ECONNREFUSED;
 1619                         goto bad2;
 1620                 }
 1621 #ifdef MAC
 1622                 mac_socketpeer_set_from_socket(so, so2);
 1623                 mac_socketpeer_set_from_socket(so2, so);
 1624 #endif
 1625         } else {
 1626                 if (unp == unp2)
 1627                         UNP_PCB_LOCK(unp);
 1628                 else
 1629                         unp_pcb_lock2(unp, unp2);
 1630         }
 1631         KASSERT(unp2 != NULL && so2 != NULL && unp2->unp_socket == so2 &&
 1632             sotounpcb(so2) == unp2,
 1633             ("%s: unp2 %p so2 %p", __func__, unp2, so2));
 1634         error = unp_connect2(so, so2, PRU_CONNECT);
 1635         if (unp != unp2)
 1636                 UNP_PCB_UNLOCK(unp2);
 1637         UNP_PCB_UNLOCK(unp);
 1638 bad2:
 1639         mtx_unlock(vplock);
 1640 bad:
 1641         if (vp != NULL) {
 1642                 vput(vp);
 1643         }
 1644         free(sa, M_SONAME);
 1645         UNP_PCB_LOCK(unp);
 1646         unp->unp_flags &= ~UNP_CONNECTING;
 1647         UNP_PCB_UNLOCK(unp);
 1648         return (error);
 1649 }
 1650 
 1651 /*
 1652  * Set socket peer credentials at connection time.
 1653  *
 1654  * The client's PCB credentials are copied from its process structure.  The
 1655  * server's PCB credentials are copied from the socket on which it called
 1656  * listen(2).  uipc_listen cached that process's credentials at the time.
 1657  */
 1658 void
 1659 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
 1660     struct unpcb *server_unp, struct unpcb *listen_unp)
 1661 {
 1662         cru2x(td->td_ucred, &client_unp->unp_peercred);
 1663         client_unp->unp_flags |= UNP_HAVEPC;
 1664 
 1665         memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
 1666             sizeof(server_unp->unp_peercred));
 1667         server_unp->unp_flags |= UNP_HAVEPC;
 1668         if (listen_unp->unp_flags & UNP_WANTCRED)
 1669                 client_unp->unp_flags |= UNP_WANTCRED;
 1670 }
 1671 
 1672 static int
 1673 unp_connect2(struct socket *so, struct socket *so2, int req)
 1674 {
 1675         struct unpcb *unp;
 1676         struct unpcb *unp2;
 1677 
 1678         unp = sotounpcb(so);
 1679         KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
 1680         unp2 = sotounpcb(so2);
 1681         KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
 1682 
 1683         UNP_PCB_LOCK_ASSERT(unp);
 1684         UNP_PCB_LOCK_ASSERT(unp2);
 1685 
 1686         if (so2->so_type != so->so_type)
 1687                 return (EPROTOTYPE);
 1688         unp2->unp_flags &= ~UNP_NASCENT;
 1689         unp->unp_conn = unp2;
 1690         unp_pcb_hold(unp2);
 1691         unp_pcb_hold(unp);
 1692         switch (so->so_type) {
 1693         case SOCK_DGRAM:
 1694                 UNP_REF_LIST_LOCK();
 1695                 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
 1696                 UNP_REF_LIST_UNLOCK();
 1697                 soisconnected(so);
 1698                 break;
 1699 
 1700         case SOCK_STREAM:
 1701         case SOCK_SEQPACKET:
 1702                 unp2->unp_conn = unp;
 1703                 if (req == PRU_CONNECT &&
 1704                     ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
 1705                         soisconnecting(so);
 1706                 else
 1707                         soisconnected(so);
 1708                 soisconnected(so2);
 1709                 break;
 1710 
 1711         default:
 1712                 panic("unp_connect2");
 1713         }
 1714         return (0);
 1715 }
 1716 
 1717 static void
 1718 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
 1719 {
 1720         struct socket *so, *so2;
 1721         int freed __unused;
 1722 
 1723         KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
 1724 
 1725         UNP_PCB_LOCK_ASSERT(unp);
 1726         UNP_PCB_LOCK_ASSERT(unp2);
 1727 
 1728         if (unp->unp_conn == NULL && unp2->unp_conn == NULL)
 1729                 return;
 1730 
 1731         MPASS(unp->unp_conn == unp2);
 1732         unp->unp_conn = NULL;
 1733         so = unp->unp_socket;
 1734         so2 = unp2->unp_socket;
 1735         switch (unp->unp_socket->so_type) {
 1736         case SOCK_DGRAM:
 1737                 UNP_REF_LIST_LOCK();
 1738                 LIST_REMOVE(unp, unp_reflink);
 1739                 UNP_REF_LIST_UNLOCK();
 1740                 if (so) {
 1741                         SOCK_LOCK(so);
 1742                         so->so_state &= ~SS_ISCONNECTED;
 1743                         SOCK_UNLOCK(so);
 1744                 }
 1745                 break;
 1746 
 1747         case SOCK_STREAM:
 1748         case SOCK_SEQPACKET:
 1749                 if (so)
 1750                         soisdisconnected(so);
 1751                 MPASS(unp2->unp_conn == unp);
 1752                 unp2->unp_conn = NULL;
 1753                 if (so2)
 1754                         soisdisconnected(so2);
 1755                 break;
 1756         }
 1757         freed = unp_pcb_rele(unp);
 1758         MPASS(freed == 0);
 1759         freed = unp_pcb_rele(unp2);
 1760         MPASS(freed == 0);
 1761 }
 1762 
 1763 /*
 1764  * unp_pcblist() walks the global list of struct unpcb's to generate a
 1765  * pointer list, bumping the refcount on each unpcb.  It then copies them out
 1766  * sequentially, validating the generation number on each to see if it has
 1767  * been detached.  All of this is necessary because copyout() may sleep on
 1768  * disk I/O.
 1769  */
 1770 static int
 1771 unp_pcblist(SYSCTL_HANDLER_ARGS)
 1772 {
 1773         struct unpcb *unp, **unp_list;
 1774         unp_gen_t gencnt;
 1775         struct xunpgen *xug;
 1776         struct unp_head *head;
 1777         struct xunpcb *xu;
 1778         u_int i;
 1779         int error, freeunp, n;
 1780 
 1781         switch ((intptr_t)arg1) {
 1782         case SOCK_STREAM:
 1783                 head = &unp_shead;
 1784                 break;
 1785 
 1786         case SOCK_DGRAM:
 1787                 head = &unp_dhead;
 1788                 break;
 1789 
 1790         case SOCK_SEQPACKET:
 1791                 head = &unp_sphead;
 1792                 break;
 1793 
 1794         default:
 1795                 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
 1796         }
 1797 
 1798         /*
 1799          * The process of preparing the PCB list is too time-consuming and
 1800          * resource-intensive to repeat twice on every request.
 1801          */
 1802         if (req->oldptr == NULL) {
 1803                 n = unp_count;
 1804                 req->oldidx = 2 * (sizeof *xug)
 1805                         + (n + n/8) * sizeof(struct xunpcb);
 1806                 return (0);
 1807         }
 1808 
 1809         if (req->newptr != NULL)
 1810                 return (EPERM);
 1811 
 1812         /*
 1813          * OK, now we're committed to doing something.
 1814          */
 1815         xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
 1816         UNP_LINK_RLOCK();
 1817         gencnt = unp_gencnt;
 1818         n = unp_count;
 1819         UNP_LINK_RUNLOCK();
 1820 
 1821         xug->xug_len = sizeof *xug;
 1822         xug->xug_count = n;
 1823         xug->xug_gen = gencnt;
 1824         xug->xug_sogen = so_gencnt;
 1825         error = SYSCTL_OUT(req, xug, sizeof *xug);
 1826         if (error) {
 1827                 free(xug, M_TEMP);
 1828                 return (error);
 1829         }
 1830 
 1831         unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
 1832 
 1833         UNP_LINK_RLOCK();
 1834         for (unp = LIST_FIRST(head), i = 0; unp && i < n;
 1835              unp = LIST_NEXT(unp, unp_link)) {
 1836                 UNP_PCB_LOCK(unp);
 1837                 if (unp->unp_gencnt <= gencnt) {
 1838                         if (cr_cansee(req->td->td_ucred,
 1839                             unp->unp_socket->so_cred)) {
 1840                                 UNP_PCB_UNLOCK(unp);
 1841                                 continue;
 1842                         }
 1843                         unp_list[i++] = unp;
 1844                         unp_pcb_hold(unp);
 1845                 }
 1846                 UNP_PCB_UNLOCK(unp);
 1847         }
 1848         UNP_LINK_RUNLOCK();
 1849         n = i;                  /* In case we lost some during malloc. */
 1850 
 1851         error = 0;
 1852         xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
 1853         for (i = 0; i < n; i++) {
 1854                 unp = unp_list[i];
 1855                 UNP_PCB_LOCK(unp);
 1856                 freeunp = unp_pcb_rele(unp);
 1857 
 1858                 if (freeunp == 0 && unp->unp_gencnt <= gencnt) {
 1859                         xu->xu_len = sizeof *xu;
 1860                         xu->xu_unpp = (uintptr_t)unp;
 1861                         /*
 1862                          * XXX - need more locking here to protect against
 1863                          * connect/disconnect races for SMP.
 1864                          */
 1865                         if (unp->unp_addr != NULL)
 1866                                 bcopy(unp->unp_addr, &xu->xu_addr,
 1867                                       unp->unp_addr->sun_len);
 1868                         else
 1869                                 bzero(&xu->xu_addr, sizeof(xu->xu_addr));
 1870                         if (unp->unp_conn != NULL &&
 1871                             unp->unp_conn->unp_addr != NULL)
 1872                                 bcopy(unp->unp_conn->unp_addr,
 1873                                       &xu->xu_caddr,
 1874                                       unp->unp_conn->unp_addr->sun_len);
 1875                         else
 1876                                 bzero(&xu->xu_caddr, sizeof(xu->xu_caddr));
 1877                         xu->unp_vnode = (uintptr_t)unp->unp_vnode;
 1878                         xu->unp_conn = (uintptr_t)unp->unp_conn;
 1879                         xu->xu_firstref = (uintptr_t)LIST_FIRST(&unp->unp_refs);
 1880                         xu->xu_nextref = (uintptr_t)LIST_NEXT(unp, unp_reflink);
 1881                         xu->unp_gencnt = unp->unp_gencnt;
 1882                         sotoxsocket(unp->unp_socket, &xu->xu_socket);
 1883                         UNP_PCB_UNLOCK(unp);
 1884                         error = SYSCTL_OUT(req, xu, sizeof *xu);
 1885                 } else  if (freeunp == 0)
 1886                         UNP_PCB_UNLOCK(unp);
 1887         }
 1888         free(xu, M_TEMP);
 1889         if (!error) {
 1890                 /*
 1891                  * Give the user an updated idea of our state.  If the
 1892                  * generation differs from what we told her before, she knows
 1893                  * that something happened while we were processing this
 1894                  * request, and it might be necessary to retry.
 1895                  */
 1896                 xug->xug_gen = unp_gencnt;
 1897                 xug->xug_sogen = so_gencnt;
 1898                 xug->xug_count = unp_count;
 1899                 error = SYSCTL_OUT(req, xug, sizeof *xug);
 1900         }
 1901         free(unp_list, M_TEMP);
 1902         free(xug, M_TEMP);
 1903         return (error);
 1904 }
 1905 
 1906 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
 1907     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
 1908     "List of active local datagram sockets");
 1909 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
 1910     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
 1911     "List of active local stream sockets");
 1912 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
 1913     CTLTYPE_OPAQUE | CTLFLAG_RD,
 1914     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
 1915     "List of active local seqpacket sockets");
 1916 
 1917 static void
 1918 unp_shutdown(struct unpcb *unp)
 1919 {
 1920         struct unpcb *unp2;
 1921         struct socket *so;
 1922 
 1923         UNP_PCB_LOCK_ASSERT(unp);
 1924 
 1925         unp2 = unp->unp_conn;
 1926         if ((unp->unp_socket->so_type == SOCK_STREAM ||
 1927             (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
 1928                 so = unp2->unp_socket;
 1929                 if (so != NULL)
 1930                         socantrcvmore(so);
 1931         }
 1932 }
 1933 
 1934 static void
 1935 unp_drop(struct unpcb *unp)
 1936 {
 1937         struct socket *so = unp->unp_socket;
 1938         struct unpcb *unp2;
 1939         int freed;
 1940 
 1941         /*
 1942          * Regardless of whether the socket's peer dropped the connection
 1943          * with this socket by aborting or disconnecting, POSIX requires
 1944          * that ECONNRESET is returned.
 1945          */
 1946         /* acquire a reference so that unp isn't freed from underneath us */
 1947 
 1948         UNP_PCB_LOCK(unp);
 1949         if (so)
 1950                 so->so_error = ECONNRESET;
 1951         unp2 = unp->unp_conn;
 1952         if (unp2 == unp) {
 1953                 unp_disconnect(unp, unp2);
 1954         } else if (unp2 != NULL) {
 1955                 unp_pcb_hold(unp2);
 1956                 unp_pcb_owned_lock2(unp, unp2, freed);
 1957                 unp_disconnect(unp, unp2);
 1958                 if (unp_pcb_rele(unp2) == 0)
 1959                         UNP_PCB_UNLOCK(unp2);
 1960         }
 1961         if (unp_pcb_rele(unp) == 0)
 1962                 UNP_PCB_UNLOCK(unp);
 1963 }
 1964 
 1965 static void
 1966 unp_freerights(struct filedescent **fdep, int fdcount)
 1967 {
 1968         struct file *fp;
 1969         int i;
 1970 
 1971         KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
 1972 
 1973         for (i = 0; i < fdcount; i++) {
 1974                 fp = fdep[i]->fde_file;
 1975                 filecaps_free(&fdep[i]->fde_caps);
 1976                 unp_discard(fp);
 1977         }
 1978         free(fdep[0], M_FILECAPS);
 1979 }
 1980 
 1981 static int
 1982 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
 1983 {
 1984         struct thread *td = curthread;          /* XXX */
 1985         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
 1986         int i;
 1987         int *fdp;
 1988         struct filedesc *fdesc = td->td_proc->p_fd;
 1989         struct filedescent **fdep;
 1990         void *data;
 1991         socklen_t clen = control->m_len, datalen;
 1992         int error, newfds;
 1993         u_int newlen;
 1994 
 1995         UNP_LINK_UNLOCK_ASSERT();
 1996 
 1997         error = 0;
 1998         if (controlp != NULL) /* controlp == NULL => free control messages */
 1999                 *controlp = NULL;
 2000         while (cm != NULL) {
 2001                 if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
 2002                         error = EINVAL;
 2003                         break;
 2004                 }
 2005                 data = CMSG_DATA(cm);
 2006                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
 2007                 if (cm->cmsg_level == SOL_SOCKET
 2008                     && cm->cmsg_type == SCM_RIGHTS) {
 2009                         newfds = datalen / sizeof(*fdep);
 2010                         if (newfds == 0)
 2011                                 goto next;
 2012                         fdep = data;
 2013 
 2014                         /* If we're not outputting the descriptors free them. */
 2015                         if (error || controlp == NULL) {
 2016                                 unp_freerights(fdep, newfds);
 2017                                 goto next;
 2018                         }
 2019                         FILEDESC_XLOCK(fdesc);
 2020 
 2021                         /*
 2022                          * Now change each pointer to an fd in the global
 2023                          * table to an integer that is the index to the local
 2024                          * fd table entry that we set up to point to the
 2025                          * global one we are transferring.
 2026                          */
 2027                         newlen = newfds * sizeof(int);
 2028                         *controlp = sbcreatecontrol(NULL, newlen,
 2029                             SCM_RIGHTS, SOL_SOCKET);
 2030                         if (*controlp == NULL) {
 2031                                 FILEDESC_XUNLOCK(fdesc);
 2032                                 error = E2BIG;
 2033                                 unp_freerights(fdep, newfds);
 2034                                 goto next;
 2035                         }
 2036 
 2037                         fdp = (int *)
 2038                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 2039                         if (fdallocn(td, 0, fdp, newfds) != 0) {
 2040                                 FILEDESC_XUNLOCK(fdesc);
 2041                                 error = EMSGSIZE;
 2042                                 unp_freerights(fdep, newfds);
 2043                                 m_freem(*controlp);
 2044                                 *controlp = NULL;
 2045                                 goto next;
 2046                         }
 2047                         for (i = 0; i < newfds; i++, fdp++) {
 2048                                 _finstall(fdesc, fdep[i]->fde_file, *fdp,
 2049                                     (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
 2050                                     &fdep[i]->fde_caps);
 2051                                 unp_externalize_fp(fdep[i]->fde_file);
 2052                         }
 2053 
 2054                         /*
 2055                          * The new type indicates that the mbuf data refers to
 2056                          * kernel resources that may need to be released before
 2057                          * the mbuf is freed.
 2058                          */
 2059                         m_chtype(*controlp, MT_EXTCONTROL);
 2060                         FILEDESC_XUNLOCK(fdesc);
 2061                         free(fdep[0], M_FILECAPS);
 2062                 } else {
 2063                         /* We can just copy anything else across. */
 2064                         if (error || controlp == NULL)
 2065                                 goto next;
 2066                         *controlp = sbcreatecontrol(NULL, datalen,
 2067                             cm->cmsg_type, cm->cmsg_level);
 2068                         if (*controlp == NULL) {
 2069                                 error = ENOBUFS;
 2070                                 goto next;
 2071                         }
 2072                         bcopy(data,
 2073                             CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
 2074                             datalen);
 2075                 }
 2076                 controlp = &(*controlp)->m_next;
 2077 
 2078 next:
 2079                 if (CMSG_SPACE(datalen) < clen) {
 2080                         clen -= CMSG_SPACE(datalen);
 2081                         cm = (struct cmsghdr *)
 2082                             ((caddr_t)cm + CMSG_SPACE(datalen));
 2083                 } else {
 2084                         clen = 0;
 2085                         cm = NULL;
 2086                 }
 2087         }
 2088 
 2089         m_freem(control);
 2090         return (error);
 2091 }
 2092 
 2093 static void
 2094 unp_zone_change(void *tag)
 2095 {
 2096 
 2097         uma_zone_set_max(unp_zone, maxsockets);
 2098 }
 2099 
 2100 static void
 2101 unp_init(void)
 2102 {
 2103 
 2104 #ifdef VIMAGE
 2105         if (!IS_DEFAULT_VNET(curvnet))
 2106                 return;
 2107 #endif
 2108         unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
 2109             NULL, NULL, UMA_ALIGN_CACHE, 0);
 2110         if (unp_zone == NULL)
 2111                 panic("unp_init");
 2112         uma_zone_set_max(unp_zone, maxsockets);
 2113         uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
 2114         EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
 2115             NULL, EVENTHANDLER_PRI_ANY);
 2116         LIST_INIT(&unp_dhead);
 2117         LIST_INIT(&unp_shead);
 2118         LIST_INIT(&unp_sphead);
 2119         SLIST_INIT(&unp_defers);
 2120         TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
 2121         TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
 2122         UNP_LINK_LOCK_INIT();
 2123         UNP_DEFERRED_LOCK_INIT();
 2124 }
 2125 
 2126 static int
 2127 unp_internalize(struct mbuf **controlp, struct thread *td)
 2128 {
 2129         struct mbuf *control = *controlp;
 2130         struct proc *p = td->td_proc;
 2131         struct filedesc *fdesc = p->p_fd;
 2132         struct bintime *bt;
 2133         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
 2134         struct cmsgcred *cmcred;
 2135         struct filedescent *fde, **fdep, *fdev;
 2136         struct file *fp;
 2137         struct timeval *tv;
 2138         struct timespec *ts;
 2139         int i, *fdp;
 2140         void *data;
 2141         socklen_t clen = control->m_len, datalen;
 2142         int error, oldfds;
 2143         u_int newlen;
 2144 
 2145         UNP_LINK_UNLOCK_ASSERT();
 2146 
 2147         error = 0;
 2148         *controlp = NULL;
 2149         while (cm != NULL) {
 2150                 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
 2151                     || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
 2152                         error = EINVAL;
 2153                         goto out;
 2154                 }
 2155                 data = CMSG_DATA(cm);
 2156                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
 2157 
 2158                 switch (cm->cmsg_type) {
 2159                 /*
 2160                  * Fill in credential information.
 2161                  */
 2162                 case SCM_CREDS:
 2163                         *controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
 2164                             SCM_CREDS, SOL_SOCKET);
 2165                         if (*controlp == NULL) {
 2166                                 error = ENOBUFS;
 2167                                 goto out;
 2168                         }
 2169                         cmcred = (struct cmsgcred *)
 2170                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 2171                         cmcred->cmcred_pid = p->p_pid;
 2172                         cmcred->cmcred_uid = td->td_ucred->cr_ruid;
 2173                         cmcred->cmcred_gid = td->td_ucred->cr_rgid;
 2174                         cmcred->cmcred_euid = td->td_ucred->cr_uid;
 2175                         cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
 2176                             CMGROUP_MAX);
 2177                         for (i = 0; i < cmcred->cmcred_ngroups; i++)
 2178                                 cmcred->cmcred_groups[i] =
 2179                                     td->td_ucred->cr_groups[i];
 2180                         break;
 2181 
 2182                 case SCM_RIGHTS:
 2183                         oldfds = datalen / sizeof (int);
 2184                         if (oldfds == 0)
 2185                                 break;
 2186                         /*
 2187                          * Check that all the FDs passed in refer to legal
 2188                          * files.  If not, reject the entire operation.
 2189                          */
 2190                         fdp = data;
 2191                         FILEDESC_SLOCK(fdesc);
 2192                         for (i = 0; i < oldfds; i++, fdp++) {
 2193                                 fp = fget_locked(fdesc, *fdp);
 2194                                 if (fp == NULL) {
 2195                                         FILEDESC_SUNLOCK(fdesc);
 2196                                         error = EBADF;
 2197                                         goto out;
 2198                                 }
 2199                                 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
 2200                                         FILEDESC_SUNLOCK(fdesc);
 2201                                         error = EOPNOTSUPP;
 2202                                         goto out;
 2203                                 }
 2204 
 2205                         }
 2206 
 2207                         /*
 2208                          * Now replace the integer FDs with pointers to the
 2209                          * file structure and capability rights.
 2210                          */
 2211                         newlen = oldfds * sizeof(fdep[0]);
 2212                         *controlp = sbcreatecontrol(NULL, newlen,
 2213                             SCM_RIGHTS, SOL_SOCKET);
 2214                         if (*controlp == NULL) {
 2215                                 FILEDESC_SUNLOCK(fdesc);
 2216                                 error = E2BIG;
 2217                                 goto out;
 2218                         }
 2219                         fdp = data;
 2220                         fdep = (struct filedescent **)
 2221                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 2222                         fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
 2223                             M_WAITOK);
 2224                         for (i = 0; i < oldfds; i++, fdev++, fdp++) {
 2225                                 fde = &fdesc->fd_ofiles[*fdp];
 2226                                 fdep[i] = fdev;
 2227                                 fdep[i]->fde_file = fde->fde_file;
 2228                                 filecaps_copy(&fde->fde_caps,
 2229                                     &fdep[i]->fde_caps, true);
 2230                                 unp_internalize_fp(fdep[i]->fde_file);
 2231                         }
 2232                         FILEDESC_SUNLOCK(fdesc);
 2233                         break;
 2234 
 2235                 case SCM_TIMESTAMP:
 2236                         *controlp = sbcreatecontrol(NULL, sizeof(*tv),
 2237                             SCM_TIMESTAMP, SOL_SOCKET);
 2238                         if (*controlp == NULL) {
 2239                                 error = ENOBUFS;
 2240                                 goto out;
 2241                         }
 2242                         tv = (struct timeval *)
 2243                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 2244                         microtime(tv);
 2245                         break;
 2246 
 2247                 case SCM_BINTIME:
 2248                         *controlp = sbcreatecontrol(NULL, sizeof(*bt),
 2249                             SCM_BINTIME, SOL_SOCKET);
 2250                         if (*controlp == NULL) {
 2251                                 error = ENOBUFS;
 2252                                 goto out;
 2253                         }
 2254                         bt = (struct bintime *)
 2255                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 2256                         bintime(bt);
 2257                         break;
 2258 
 2259                 case SCM_REALTIME:
 2260                         *controlp = sbcreatecontrol(NULL, sizeof(*ts),
 2261                             SCM_REALTIME, SOL_SOCKET);
 2262                         if (*controlp == NULL) {
 2263                                 error = ENOBUFS;
 2264                                 goto out;
 2265                         }
 2266                         ts = (struct timespec *)
 2267                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 2268                         nanotime(ts);
 2269                         break;
 2270 
 2271                 case SCM_MONOTONIC:
 2272                         *controlp = sbcreatecontrol(NULL, sizeof(*ts),
 2273                             SCM_MONOTONIC, SOL_SOCKET);
 2274                         if (*controlp == NULL) {
 2275                                 error = ENOBUFS;
 2276                                 goto out;
 2277                         }
 2278                         ts = (struct timespec *)
 2279                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 2280                         nanouptime(ts);
 2281                         break;
 2282 
 2283                 default:
 2284                         error = EINVAL;
 2285                         goto out;
 2286                 }
 2287 
 2288                 controlp = &(*controlp)->m_next;
 2289                 if (CMSG_SPACE(datalen) < clen) {
 2290                         clen -= CMSG_SPACE(datalen);
 2291                         cm = (struct cmsghdr *)
 2292                             ((caddr_t)cm + CMSG_SPACE(datalen));
 2293                 } else {
 2294                         clen = 0;
 2295                         cm = NULL;
 2296                 }
 2297         }
 2298 
 2299 out:
 2300         m_freem(control);
 2301         return (error);
 2302 }
 2303 
 2304 static struct mbuf *
 2305 unp_addsockcred(struct thread *td, struct mbuf *control)
 2306 {
 2307         struct mbuf *m, *n, *n_prev;
 2308         struct sockcred *sc;
 2309         const struct cmsghdr *cm;
 2310         int ngroups;
 2311         int i;
 2312 
 2313         ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
 2314         m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
 2315         if (m == NULL)
 2316                 return (control);
 2317 
 2318         sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
 2319         sc->sc_uid = td->td_ucred->cr_ruid;
 2320         sc->sc_euid = td->td_ucred->cr_uid;
 2321         sc->sc_gid = td->td_ucred->cr_rgid;
 2322         sc->sc_egid = td->td_ucred->cr_gid;
 2323         sc->sc_ngroups = ngroups;
 2324         for (i = 0; i < sc->sc_ngroups; i++)
 2325                 sc->sc_groups[i] = td->td_ucred->cr_groups[i];
 2326 
 2327         /*
 2328          * Unlink SCM_CREDS control messages (struct cmsgcred), since just
 2329          * created SCM_CREDS control message (struct sockcred) has another
 2330          * format.
 2331          */
 2332         if (control != NULL)
 2333                 for (n = control, n_prev = NULL; n != NULL;) {
 2334                         cm = mtod(n, struct cmsghdr *);
 2335                         if (cm->cmsg_level == SOL_SOCKET &&
 2336                             cm->cmsg_type == SCM_CREDS) {
 2337                                 if (n_prev == NULL)
 2338                                         control = n->m_next;
 2339                                 else
 2340                                         n_prev->m_next = n->m_next;
 2341                                 n = m_free(n);
 2342                         } else {
 2343                                 n_prev = n;
 2344                                 n = n->m_next;
 2345                         }
 2346                 }
 2347 
 2348         /* Prepend it to the head. */
 2349         m->m_next = control;
 2350         return (m);
 2351 }
 2352 
 2353 static struct unpcb *
 2354 fptounp(struct file *fp)
 2355 {
 2356         struct socket *so;
 2357 
 2358         if (fp->f_type != DTYPE_SOCKET)
 2359                 return (NULL);
 2360         if ((so = fp->f_data) == NULL)
 2361                 return (NULL);
 2362         if (so->so_proto->pr_domain != &localdomain)
 2363                 return (NULL);
 2364         return sotounpcb(so);
 2365 }
 2366 
 2367 static void
 2368 unp_discard(struct file *fp)
 2369 {
 2370         struct unp_defer *dr;
 2371 
 2372         if (unp_externalize_fp(fp)) {
 2373                 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
 2374                 dr->ud_fp = fp;
 2375                 UNP_DEFERRED_LOCK();
 2376                 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
 2377                 UNP_DEFERRED_UNLOCK();
 2378                 atomic_add_int(&unp_defers_count, 1);
 2379                 taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
 2380         } else
 2381                 (void) closef(fp, (struct thread *)NULL);
 2382 }
 2383 
 2384 static void
 2385 unp_process_defers(void *arg __unused, int pending)
 2386 {
 2387         struct unp_defer *dr;
 2388         SLIST_HEAD(, unp_defer) drl;
 2389         int count;
 2390 
 2391         SLIST_INIT(&drl);
 2392         for (;;) {
 2393                 UNP_DEFERRED_LOCK();
 2394                 if (SLIST_FIRST(&unp_defers) == NULL) {
 2395                         UNP_DEFERRED_UNLOCK();
 2396                         break;
 2397                 }
 2398                 SLIST_SWAP(&unp_defers, &drl, unp_defer);
 2399                 UNP_DEFERRED_UNLOCK();
 2400                 count = 0;
 2401                 while ((dr = SLIST_FIRST(&drl)) != NULL) {
 2402                         SLIST_REMOVE_HEAD(&drl, ud_link);
 2403                         closef(dr->ud_fp, NULL);
 2404                         free(dr, M_TEMP);
 2405                         count++;
 2406                 }
 2407                 atomic_add_int(&unp_defers_count, -count);
 2408         }
 2409 }
 2410 
 2411 static void
 2412 unp_internalize_fp(struct file *fp)
 2413 {
 2414         struct unpcb *unp;
 2415 
 2416         UNP_LINK_WLOCK();
 2417         if ((unp = fptounp(fp)) != NULL) {
 2418                 unp->unp_file = fp;
 2419                 unp->unp_msgcount++;
 2420         }
 2421         fhold(fp);
 2422         unp_rights++;
 2423         UNP_LINK_WUNLOCK();
 2424 }
 2425 
 2426 static int
 2427 unp_externalize_fp(struct file *fp)
 2428 {
 2429         struct unpcb *unp;
 2430         int ret;
 2431 
 2432         UNP_LINK_WLOCK();
 2433         if ((unp = fptounp(fp)) != NULL) {
 2434                 unp->unp_msgcount--;
 2435                 ret = 1;
 2436         } else
 2437                 ret = 0;
 2438         unp_rights--;
 2439         UNP_LINK_WUNLOCK();
 2440         return (ret);
 2441 }
 2442 
 2443 /*
 2444  * unp_defer indicates whether additional work has been defered for a future
 2445  * pass through unp_gc().  It is thread local and does not require explicit
 2446  * synchronization.
 2447  */
 2448 static int      unp_marked;
 2449 static int      unp_unreachable;
 2450 
 2451 static void
 2452 unp_accessable(struct filedescent **fdep, int fdcount)
 2453 {
 2454         struct unpcb *unp;
 2455         struct file *fp;
 2456         int i;
 2457 
 2458         for (i = 0; i < fdcount; i++) {
 2459                 fp = fdep[i]->fde_file;
 2460                 if ((unp = fptounp(fp)) == NULL)
 2461                         continue;
 2462                 if (unp->unp_gcflag & UNPGC_REF)
 2463                         continue;
 2464                 unp->unp_gcflag &= ~UNPGC_DEAD;
 2465                 unp->unp_gcflag |= UNPGC_REF;
 2466                 unp_marked++;
 2467         }
 2468 }
 2469 
 2470 static void
 2471 unp_gc_process(struct unpcb *unp)
 2472 {
 2473         struct socket *so, *soa;
 2474         struct file *fp;
 2475 
 2476         /* Already processed. */
 2477         if (unp->unp_gcflag & UNPGC_SCANNED)
 2478                 return;
 2479         fp = unp->unp_file;
 2480 
 2481         /*
 2482          * Check for a socket potentially in a cycle.  It must be in a
 2483          * queue as indicated by msgcount, and this must equal the file
 2484          * reference count.  Note that when msgcount is 0 the file is NULL.
 2485          */
 2486         if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
 2487             unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
 2488                 unp->unp_gcflag |= UNPGC_DEAD;
 2489                 unp_unreachable++;
 2490                 return;
 2491         }
 2492 
 2493         so = unp->unp_socket;
 2494         SOCK_LOCK(so);
 2495         if (SOLISTENING(so)) {
 2496                 /*
 2497                  * Mark all sockets in our accept queue.
 2498                  */
 2499                 TAILQ_FOREACH(soa, &so->sol_comp, so_list) {
 2500                         if (sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS)
 2501                                 continue;
 2502                         SOCKBUF_LOCK(&soa->so_rcv);
 2503                         unp_scan(soa->so_rcv.sb_mb, unp_accessable);
 2504                         SOCKBUF_UNLOCK(&soa->so_rcv);
 2505                 }
 2506         } else {
 2507                 /*
 2508                  * Mark all sockets we reference with RIGHTS.
 2509                  */
 2510                 if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
 2511                         SOCKBUF_LOCK(&so->so_rcv);
 2512                         unp_scan(so->so_rcv.sb_mb, unp_accessable);
 2513                         SOCKBUF_UNLOCK(&so->so_rcv);
 2514                 }
 2515         }
 2516         SOCK_UNLOCK(so);
 2517         unp->unp_gcflag |= UNPGC_SCANNED;
 2518 }
 2519 
 2520 static int unp_recycled;
 2521 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 
 2522     "Number of unreachable sockets claimed by the garbage collector.");
 2523 
 2524 static int unp_taskcount;
 2525 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 
 2526     "Number of times the garbage collector has run.");
 2527 
 2528 static void
 2529 unp_gc(__unused void *arg, int pending)
 2530 {
 2531         struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
 2532                                     NULL };
 2533         struct unp_head **head;
 2534         struct file *f, **unref;
 2535         struct unpcb *unp;
 2536         int i, total;
 2537 
 2538         unp_taskcount++;
 2539         UNP_LINK_RLOCK();
 2540         /*
 2541          * First clear all gc flags from previous runs, apart from
 2542          * UNPGC_IGNORE_RIGHTS.
 2543          */
 2544         for (head = heads; *head != NULL; head++)
 2545                 LIST_FOREACH(unp, *head, unp_link)
 2546                         unp->unp_gcflag =
 2547                             (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS);
 2548 
 2549         /*
 2550          * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
 2551          * is reachable all of the sockets it references are reachable.
 2552          * Stop the scan once we do a complete loop without discovering
 2553          * a new reachable socket.
 2554          */
 2555         do {
 2556                 unp_unreachable = 0;
 2557                 unp_marked = 0;
 2558                 for (head = heads; *head != NULL; head++)
 2559                         LIST_FOREACH(unp, *head, unp_link)
 2560                                 unp_gc_process(unp);
 2561         } while (unp_marked);
 2562         UNP_LINK_RUNLOCK();
 2563         if (unp_unreachable == 0)
 2564                 return;
 2565 
 2566         /*
 2567          * Allocate space for a local list of dead unpcbs.
 2568          */
 2569         unref = malloc(unp_unreachable * sizeof(struct file *),
 2570             M_TEMP, M_WAITOK);
 2571 
 2572         /*
 2573          * Iterate looking for sockets which have been specifically marked
 2574          * as as unreachable and store them locally.
 2575          */
 2576         UNP_LINK_RLOCK();
 2577         for (total = 0, head = heads; *head != NULL; head++)
 2578                 LIST_FOREACH(unp, *head, unp_link)
 2579                         if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
 2580                                 f = unp->unp_file;
 2581                                 if (unp->unp_msgcount == 0 || f == NULL ||
 2582                                     f->f_count != unp->unp_msgcount)
 2583                                         continue;
 2584                                 unref[total++] = f;
 2585                                 fhold(f);
 2586                                 KASSERT(total <= unp_unreachable,
 2587                                     ("unp_gc: incorrect unreachable count."));
 2588                         }
 2589         UNP_LINK_RUNLOCK();
 2590 
 2591         /*
 2592          * Now flush all sockets, free'ing rights.  This will free the
 2593          * struct files associated with these sockets but leave each socket
 2594          * with one remaining ref.
 2595          */
 2596         for (i = 0; i < total; i++) {
 2597                 struct socket *so;
 2598 
 2599                 so = unref[i]->f_data;
 2600                 CURVNET_SET(so->so_vnet);
 2601                 sorflush(so);
 2602                 CURVNET_RESTORE();
 2603         }
 2604 
 2605         /*
 2606          * And finally release the sockets so they can be reclaimed.
 2607          */
 2608         for (i = 0; i < total; i++)
 2609                 fdrop(unref[i], NULL);
 2610         unp_recycled += total;
 2611         free(unref, M_TEMP);
 2612 }
 2613 
 2614 static void
 2615 unp_dispose_mbuf(struct mbuf *m)
 2616 {
 2617 
 2618         if (m)
 2619                 unp_scan(m, unp_freerights);
 2620 }
 2621 
 2622 /*
 2623  * Synchronize against unp_gc, which can trip over data as we are freeing it.
 2624  */
 2625 static void
 2626 unp_dispose(struct socket *so)
 2627 {
 2628         struct unpcb *unp;
 2629 
 2630         unp = sotounpcb(so);
 2631         UNP_LINK_WLOCK();
 2632         unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
 2633         UNP_LINK_WUNLOCK();
 2634         if (!SOLISTENING(so))
 2635                 unp_dispose_mbuf(so->so_rcv.sb_mb);
 2636 }
 2637 
 2638 static void
 2639 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
 2640 {
 2641         struct mbuf *m;
 2642         struct cmsghdr *cm;
 2643         void *data;
 2644         socklen_t clen, datalen;
 2645 
 2646         while (m0 != NULL) {
 2647                 for (m = m0; m; m = m->m_next) {
 2648                         if (m->m_type != MT_CONTROL)
 2649                                 continue;
 2650 
 2651                         cm = mtod(m, struct cmsghdr *);
 2652                         clen = m->m_len;
 2653 
 2654                         while (cm != NULL) {
 2655                                 if (sizeof(*cm) > clen || cm->cmsg_len > clen)
 2656                                         break;
 2657 
 2658                                 data = CMSG_DATA(cm);
 2659                                 datalen = (caddr_t)cm + cm->cmsg_len
 2660                                     - (caddr_t)data;
 2661 
 2662                                 if (cm->cmsg_level == SOL_SOCKET &&
 2663                                     cm->cmsg_type == SCM_RIGHTS) {
 2664                                         (*op)(data, datalen /
 2665                                             sizeof(struct filedescent *));
 2666                                 }
 2667 
 2668                                 if (CMSG_SPACE(datalen) < clen) {
 2669                                         clen -= CMSG_SPACE(datalen);
 2670                                         cm = (struct cmsghdr *)
 2671                                             ((caddr_t)cm + CMSG_SPACE(datalen));
 2672                                 } else {
 2673                                         clen = 0;
 2674                                         cm = NULL;
 2675                                 }
 2676                         }
 2677                 }
 2678                 m0 = m0->m_nextpkt;
 2679         }
 2680 }
 2681 
 2682 /*
 2683  * A helper function called by VFS before socket-type vnode reclamation.
 2684  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
 2685  * use count.
 2686  */
 2687 void
 2688 vfs_unp_reclaim(struct vnode *vp)
 2689 {
 2690         struct unpcb *unp;
 2691         int active;
 2692         struct mtx *vplock;
 2693 
 2694         ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
 2695         KASSERT(vp->v_type == VSOCK,
 2696             ("vfs_unp_reclaim: vp->v_type != VSOCK"));
 2697 
 2698         active = 0;
 2699         vplock = mtx_pool_find(mtxpool_sleep, vp);
 2700         mtx_lock(vplock);
 2701         VOP_UNP_CONNECT(vp, &unp);
 2702         if (unp == NULL)
 2703                 goto done;
 2704         UNP_PCB_LOCK(unp);
 2705         if (unp->unp_vnode == vp) {
 2706                 VOP_UNP_DETACH(vp);
 2707                 unp->unp_vnode = NULL;
 2708                 active = 1;
 2709         }
 2710         UNP_PCB_UNLOCK(unp);
 2711  done:
 2712         mtx_unlock(vplock);
 2713         if (active)
 2714                 vunref(vp);
 2715 }
 2716 
 2717 #ifdef DDB
 2718 static void
 2719 db_print_indent(int indent)
 2720 {
 2721         int i;
 2722 
 2723         for (i = 0; i < indent; i++)
 2724                 db_printf(" ");
 2725 }
 2726 
 2727 static void
 2728 db_print_unpflags(int unp_flags)
 2729 {
 2730         int comma;
 2731 
 2732         comma = 0;
 2733         if (unp_flags & UNP_HAVEPC) {
 2734                 db_printf("%sUNP_HAVEPC", comma ? ", " : "");
 2735                 comma = 1;
 2736         }
 2737         if (unp_flags & UNP_WANTCRED) {
 2738                 db_printf("%sUNP_WANTCRED", comma ? ", " : "");
 2739                 comma = 1;
 2740         }
 2741         if (unp_flags & UNP_CONNWAIT) {
 2742                 db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
 2743                 comma = 1;
 2744         }
 2745         if (unp_flags & UNP_CONNECTING) {
 2746                 db_printf("%sUNP_CONNECTING", comma ? ", " : "");
 2747                 comma = 1;
 2748         }
 2749         if (unp_flags & UNP_BINDING) {
 2750                 db_printf("%sUNP_BINDING", comma ? ", " : "");
 2751                 comma = 1;
 2752         }
 2753 }
 2754 
 2755 static void
 2756 db_print_xucred(int indent, struct xucred *xu)
 2757 {
 2758         int comma, i;
 2759 
 2760         db_print_indent(indent);
 2761         db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
 2762             xu->cr_version, xu->cr_uid, xu->cr_ngroups);
 2763         db_print_indent(indent);
 2764         db_printf("cr_groups: ");
 2765         comma = 0;
 2766         for (i = 0; i < xu->cr_ngroups; i++) {
 2767                 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
 2768                 comma = 1;
 2769         }
 2770         db_printf("\n");
 2771 }
 2772 
 2773 static void
 2774 db_print_unprefs(int indent, struct unp_head *uh)
 2775 {
 2776         struct unpcb *unp;
 2777         int counter;
 2778 
 2779         counter = 0;
 2780         LIST_FOREACH(unp, uh, unp_reflink) {
 2781                 if (counter % 4 == 0)
 2782                         db_print_indent(indent);
 2783                 db_printf("%p  ", unp);
 2784                 if (counter % 4 == 3)
 2785                         db_printf("\n");
 2786                 counter++;
 2787         }
 2788         if (counter != 0 && counter % 4 != 0)
 2789                 db_printf("\n");
 2790 }
 2791 
 2792 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
 2793 {
 2794         struct unpcb *unp;
 2795 
 2796         if (!have_addr) {
 2797                 db_printf("usage: show unpcb <addr>\n");
 2798                 return;
 2799         }
 2800         unp = (struct unpcb *)addr;
 2801 
 2802         db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
 2803             unp->unp_vnode);
 2804 
 2805         db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
 2806             unp->unp_conn);
 2807 
 2808         db_printf("unp_refs:\n");
 2809         db_print_unprefs(2, &unp->unp_refs);
 2810 
 2811         /* XXXRW: Would be nice to print the full address, if any. */
 2812         db_printf("unp_addr: %p\n", unp->unp_addr);
 2813 
 2814         db_printf("unp_gencnt: %llu\n",
 2815             (unsigned long long)unp->unp_gencnt);
 2816 
 2817         db_printf("unp_flags: %x (", unp->unp_flags);
 2818         db_print_unpflags(unp->unp_flags);
 2819         db_printf(")\n");
 2820 
 2821         db_printf("unp_peercred:\n");
 2822         db_print_xucred(2, &unp->unp_peercred);
 2823 
 2824         db_printf("unp_refcount: %u\n", unp->unp_refcount);
 2825 }
 2826 #endif

Cache object: 4f170cffa88ec1723e6b1d208fc13d2c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.