The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/uipc_usrreq.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2004-2009 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94
   32  */
   33 
   34 /*
   35  * UNIX Domain (Local) Sockets
   36  *
   37  * This is an implementation of UNIX (local) domain sockets.  Each socket has
   38  * an associated struct unpcb (UNIX protocol control block).  Stream sockets
   39  * may be connected to 0 or 1 other socket.  Datagram sockets may be
   40  * connected to 0, 1, or many other sockets.  Sockets may be created and
   41  * connected in pairs (socketpair(2)), or bound/connected to using the file
   42  * system name space.  For most purposes, only the receive socket buffer is
   43  * used, as sending on one socket delivers directly to the receive socket
   44  * buffer of a second socket.
   45  *
   46  * The implementation is substantially complicated by the fact that
   47  * "ancillary data", such as file descriptors or credentials, may be passed
   48  * across UNIX domain sockets.  The potential for passing UNIX domain sockets
   49  * over other UNIX domain sockets requires the implementation of a simple
   50  * garbage collector to find and tear down cycles of disconnected sockets.
   51  *
   52  * TODO:
   53  *      RDM
   54  *      rethink name space problems
   55  *      need a proper out-of-band
   56  */
   57 
   58 #include <sys/cdefs.h>
   59 __FBSDID("$FreeBSD$");
   60 
   61 #include "opt_ddb.h"
   62 
   63 #include <sys/param.h>
   64 #include <sys/capsicum.h>
   65 #include <sys/domain.h>
   66 #include <sys/fcntl.h>
   67 #include <sys/malloc.h>         /* XXX must be before <sys/file.h> */
   68 #include <sys/eventhandler.h>
   69 #include <sys/file.h>
   70 #include <sys/filedesc.h>
   71 #include <sys/kernel.h>
   72 #include <sys/lock.h>
   73 #include <sys/mbuf.h>
   74 #include <sys/mount.h>
   75 #include <sys/mutex.h>
   76 #include <sys/namei.h>
   77 #include <sys/proc.h>
   78 #include <sys/protosw.h>
   79 #include <sys/queue.h>
   80 #include <sys/resourcevar.h>
   81 #include <sys/rwlock.h>
   82 #include <sys/socket.h>
   83 #include <sys/socketvar.h>
   84 #include <sys/signalvar.h>
   85 #include <sys/stat.h>
   86 #include <sys/sx.h>
   87 #include <sys/sysctl.h>
   88 #include <sys/systm.h>
   89 #include <sys/taskqueue.h>
   90 #include <sys/un.h>
   91 #include <sys/unpcb.h>
   92 #include <sys/vnode.h>
   93 
   94 #include <net/vnet.h>
   95 
   96 #ifdef DDB
   97 #include <ddb/ddb.h>
   98 #endif
   99 
  100 #include <security/mac/mac_framework.h>
  101 
  102 #include <vm/uma.h>
  103 
  104 MALLOC_DECLARE(M_FILECAPS);
  105 
  106 /*
  107  * Locking key:
  108  * (l)  Locked using list lock
  109  * (g)  Locked using linkage lock
  110  */
  111 
  112 static uma_zone_t       unp_zone;
  113 static unp_gen_t        unp_gencnt;     /* (l) */
  114 static u_int            unp_count;      /* (l) Count of local sockets. */
  115 static ino_t            unp_ino;        /* Prototype for fake inode numbers. */
  116 static int              unp_rights;     /* (g) File descriptors in flight. */
  117 static struct unp_head  unp_shead;      /* (l) List of stream sockets. */
  118 static struct unp_head  unp_dhead;      /* (l) List of datagram sockets. */
  119 static struct unp_head  unp_sphead;     /* (l) List of seqpacket sockets. */
  120 
  121 struct unp_defer {
  122         SLIST_ENTRY(unp_defer) ud_link;
  123         struct file *ud_fp;
  124 };
  125 static SLIST_HEAD(, unp_defer) unp_defers;
  126 static int unp_defers_count;
  127 
  128 static const struct sockaddr    sun_noname = { sizeof(sun_noname), AF_LOCAL };
  129 
  130 /*
  131  * Garbage collection of cyclic file descriptor/socket references occurs
  132  * asynchronously in a taskqueue context in order to avoid recursion and
  133  * reentrance in the UNIX domain socket, file descriptor, and socket layer
  134  * code.  See unp_gc() for a full description.
  135  */
  136 static struct timeout_task unp_gc_task;
  137 
  138 /*
  139  * The close of unix domain sockets attached as SCM_RIGHTS is
  140  * postponed to the taskqueue, to avoid arbitrary recursion depth.
  141  * The attached sockets might have another sockets attached.
  142  */
  143 static struct task      unp_defer_task;
  144 
  145 /*
  146  * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
  147  * stream sockets, although the total for sender and receiver is actually
  148  * only PIPSIZ.
  149  *
  150  * Datagram sockets really use the sendspace as the maximum datagram size,
  151  * and don't really want to reserve the sendspace.  Their recvspace should be
  152  * large enough for at least one max-size datagram plus address.
  153  */
  154 #ifndef PIPSIZ
  155 #define PIPSIZ  8192
  156 #endif
  157 static u_long   unpst_sendspace = PIPSIZ;
  158 static u_long   unpst_recvspace = PIPSIZ;
  159 static u_long   unpdg_sendspace = 2*1024;       /* really max datagram size */
  160 static u_long   unpdg_recvspace = 4*1024;
  161 static u_long   unpsp_sendspace = PIPSIZ;       /* really max datagram size */
  162 static u_long   unpsp_recvspace = PIPSIZ;
  163 
  164 static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
  165 static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
  166     "SOCK_STREAM");
  167 static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
  168 static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
  169     "SOCK_SEQPACKET");
  170 
  171 SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
  172            &unpst_sendspace, 0, "Default stream send space.");
  173 SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
  174            &unpst_recvspace, 0, "Default stream receive space.");
  175 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
  176            &unpdg_sendspace, 0, "Default datagram send space.");
  177 SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
  178            &unpdg_recvspace, 0, "Default datagram receive space.");
  179 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
  180            &unpsp_sendspace, 0, "Default seqpacket send space.");
  181 SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
  182            &unpsp_recvspace, 0, "Default seqpacket receive space.");
  183 SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
  184     "File descriptors in flight.");
  185 SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
  186     &unp_defers_count, 0,
  187     "File descriptors deferred to taskqueue for close.");
  188 
  189 /*
  190  * Locking and synchronization:
  191  *
  192  * Three types of locks exit in the local domain socket implementation: a
  193  * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
  194  * global locks, the list lock protects the socket count, global generation
  195  * number, and stream/datagram global lists.  The linkage lock protects the
  196  * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
  197  * held exclusively over the acquisition of multiple unpcb locks to prevent
  198  * deadlock.
  199  *
  200  * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
  201  * allocated in pru_attach() and freed in pru_detach().  The validity of that
  202  * pointer is an invariant, so no lock is required to dereference the so_pcb
  203  * pointer if a valid socket reference is held by the caller.  In practice,
  204  * this is always true during operations performed on a socket.  Each unpcb
  205  * has a back-pointer to its socket, unp_socket, which will be stable under
  206  * the same circumstances.
  207  *
  208  * This pointer may only be safely dereferenced as long as a valid reference
  209  * to the unpcb is held.  Typically, this reference will be from the socket,
  210  * or from another unpcb when the referring unpcb's lock is held (in order
  211  * that the reference not be invalidated during use).  For example, to follow
  212  * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
  213  * as unp_socket remains valid as long as the reference to unp_conn is valid.
  214  *
  215  * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
  216  * atomic reads without the lock may be performed "lockless", but more
  217  * complex reads and read-modify-writes require the mutex to be held.  No
  218  * lock order is defined between unpcb locks -- multiple unpcb locks may be
  219  * acquired at the same time only when holding the linkage rwlock
  220  * exclusively, which prevents deadlocks.
  221  *
  222  * Blocking with UNIX domain sockets is a tricky issue: unlike most network
  223  * protocols, bind() is a non-atomic operation, and connect() requires
  224  * potential sleeping in the protocol, due to potentially waiting on local or
  225  * distributed file systems.  We try to separate "lookup" operations, which
  226  * may sleep, and the IPC operations themselves, which typically can occur
  227  * with relative atomicity as locks can be held over the entire operation.
  228  *
  229  * Another tricky issue is simultaneous multi-threaded or multi-process
  230  * access to a single UNIX domain socket.  These are handled by the flags
  231  * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
  232  * binding, both of which involve dropping UNIX domain socket locks in order
  233  * to perform namei() and other file system operations.
  234  */
  235 static struct rwlock    unp_link_rwlock;
  236 static struct mtx       unp_list_lock;
  237 static struct mtx       unp_defers_lock;
  238 
  239 #define UNP_LINK_LOCK_INIT()            rw_init(&unp_link_rwlock,       \
  240                                             "unp_link_rwlock")
  241 
  242 #define UNP_LINK_LOCK_ASSERT()  rw_assert(&unp_link_rwlock,     \
  243                                             RA_LOCKED)
  244 #define UNP_LINK_UNLOCK_ASSERT()        rw_assert(&unp_link_rwlock,     \
  245                                             RA_UNLOCKED)
  246 
  247 #define UNP_LINK_RLOCK()                rw_rlock(&unp_link_rwlock)
  248 #define UNP_LINK_RUNLOCK()              rw_runlock(&unp_link_rwlock)
  249 #define UNP_LINK_WLOCK()                rw_wlock(&unp_link_rwlock)
  250 #define UNP_LINK_WUNLOCK()              rw_wunlock(&unp_link_rwlock)
  251 #define UNP_LINK_WLOCK_ASSERT()         rw_assert(&unp_link_rwlock,     \
  252                                             RA_WLOCKED)
  253 
  254 #define UNP_LIST_LOCK_INIT()            mtx_init(&unp_list_lock,        \
  255                                             "unp_list_lock", NULL, MTX_DEF)
  256 #define UNP_LIST_LOCK()                 mtx_lock(&unp_list_lock)
  257 #define UNP_LIST_UNLOCK()               mtx_unlock(&unp_list_lock)
  258 
  259 #define UNP_DEFERRED_LOCK_INIT()        mtx_init(&unp_defers_lock, \
  260                                             "unp_defer", NULL, MTX_DEF)
  261 #define UNP_DEFERRED_LOCK()             mtx_lock(&unp_defers_lock)
  262 #define UNP_DEFERRED_UNLOCK()           mtx_unlock(&unp_defers_lock)
  263 
  264 #define UNP_PCB_LOCK_INIT(unp)          mtx_init(&(unp)->unp_mtx,       \
  265                                             "unp_mtx", "unp_mtx",       \
  266                                             MTX_DUPOK|MTX_DEF|MTX_RECURSE)
  267 #define UNP_PCB_LOCK_DESTROY(unp)       mtx_destroy(&(unp)->unp_mtx)
  268 #define UNP_PCB_LOCK(unp)               mtx_lock(&(unp)->unp_mtx)
  269 #define UNP_PCB_UNLOCK(unp)             mtx_unlock(&(unp)->unp_mtx)
  270 #define UNP_PCB_LOCK_ASSERT(unp)        mtx_assert(&(unp)->unp_mtx, MA_OWNED)
  271 
  272 static int      uipc_connect2(struct socket *, struct socket *);
  273 static int      uipc_ctloutput(struct socket *, struct sockopt *);
  274 static int      unp_connect(struct socket *, struct sockaddr *,
  275                     struct thread *);
  276 static int      unp_connectat(int, struct socket *, struct sockaddr *,
  277                     struct thread *);
  278 static int      unp_connect2(struct socket *so, struct socket *so2, int);
  279 static void     unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
  280 static void     unp_dispose(struct mbuf *);
  281 static void     unp_dispose_so(struct socket *so);
  282 static void     unp_shutdown(struct unpcb *);
  283 static void     unp_drop(struct unpcb *);
  284 static void     unp_gc(__unused void *, int);
  285 static void     unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
  286 static void     unp_discard(struct file *);
  287 static void     unp_freerights(struct filedescent **, int);
  288 static void     unp_init(void);
  289 static int      unp_internalize(struct mbuf **, struct thread *);
  290 static void     unp_internalize_fp(struct file *);
  291 static int      unp_externalize(struct mbuf *, struct mbuf **, int);
  292 static int      unp_externalize_fp(struct file *);
  293 static struct mbuf      *unp_addsockcred(struct thread *, struct mbuf *);
  294 static void     unp_process_defers(void * __unused, int);
  295 
  296 /*
  297  * Definitions of protocols supported in the LOCAL domain.
  298  */
  299 static struct domain localdomain;
  300 static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
  301 static struct pr_usrreqs uipc_usrreqs_seqpacket;
  302 static struct protosw localsw[] = {
  303 {
  304         .pr_type =              SOCK_STREAM,
  305         .pr_domain =            &localdomain,
  306         .pr_flags =             PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
  307         .pr_ctloutput =         &uipc_ctloutput,
  308         .pr_usrreqs =           &uipc_usrreqs_stream
  309 },
  310 {
  311         .pr_type =              SOCK_DGRAM,
  312         .pr_domain =            &localdomain,
  313         .pr_flags =             PR_ATOMIC|PR_ADDR|PR_RIGHTS,
  314         .pr_ctloutput =         &uipc_ctloutput,
  315         .pr_usrreqs =           &uipc_usrreqs_dgram
  316 },
  317 {
  318         .pr_type =              SOCK_SEQPACKET,
  319         .pr_domain =            &localdomain,
  320 
  321         /*
  322          * XXXRW: For now, PR_ADDR because soreceive will bump into them
  323          * due to our use of sbappendaddr.  A new sbappend variants is needed
  324          * that supports both atomic record writes and control data.
  325          */
  326         .pr_flags =             PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
  327                                     PR_RIGHTS,
  328         .pr_ctloutput =         &uipc_ctloutput,
  329         .pr_usrreqs =           &uipc_usrreqs_seqpacket,
  330 },
  331 };
  332 
  333 static struct domain localdomain = {
  334         .dom_family =           AF_LOCAL,
  335         .dom_name =             "local",
  336         .dom_init =             unp_init,
  337         .dom_externalize =      unp_externalize,
  338         .dom_dispose =          unp_dispose_so,
  339         .dom_protosw =          localsw,
  340         .dom_protoswNPROTOSW =  &localsw[nitems(localsw)]
  341 };
  342 DOMAIN_SET(local);
  343 
  344 static void
  345 uipc_abort(struct socket *so)
  346 {
  347         struct unpcb *unp, *unp2;
  348 
  349         unp = sotounpcb(so);
  350         KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
  351 
  352         UNP_LINK_WLOCK();
  353         UNP_PCB_LOCK(unp);
  354         unp2 = unp->unp_conn;
  355         if (unp2 != NULL) {
  356                 UNP_PCB_LOCK(unp2);
  357                 unp_drop(unp2);
  358                 UNP_PCB_UNLOCK(unp2);
  359         }
  360         UNP_PCB_UNLOCK(unp);
  361         UNP_LINK_WUNLOCK();
  362 }
  363 
  364 static int
  365 uipc_accept(struct socket *so, struct sockaddr **nam)
  366 {
  367         struct unpcb *unp, *unp2;
  368         const struct sockaddr *sa;
  369 
  370         /*
  371          * Pass back name of connected socket, if it was bound and we are
  372          * still connected (our peer may have closed already!).
  373          */
  374         unp = sotounpcb(so);
  375         KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
  376 
  377         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
  378         UNP_LINK_RLOCK();
  379         unp2 = unp->unp_conn;
  380         if (unp2 != NULL && unp2->unp_addr != NULL) {
  381                 UNP_PCB_LOCK(unp2);
  382                 sa = (struct sockaddr *) unp2->unp_addr;
  383                 bcopy(sa, *nam, sa->sa_len);
  384                 UNP_PCB_UNLOCK(unp2);
  385         } else {
  386                 sa = &sun_noname;
  387                 bcopy(sa, *nam, sa->sa_len);
  388         }
  389         UNP_LINK_RUNLOCK();
  390         return (0);
  391 }
  392 
  393 static int
  394 uipc_attach(struct socket *so, int proto, struct thread *td)
  395 {
  396         u_long sendspace, recvspace;
  397         struct unpcb *unp;
  398         int error;
  399 
  400         KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
  401         if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
  402                 switch (so->so_type) {
  403                 case SOCK_STREAM:
  404                         sendspace = unpst_sendspace;
  405                         recvspace = unpst_recvspace;
  406                         break;
  407 
  408                 case SOCK_DGRAM:
  409                         sendspace = unpdg_sendspace;
  410                         recvspace = unpdg_recvspace;
  411                         break;
  412 
  413                 case SOCK_SEQPACKET:
  414                         sendspace = unpsp_sendspace;
  415                         recvspace = unpsp_recvspace;
  416                         break;
  417 
  418                 default:
  419                         panic("uipc_attach");
  420                 }
  421                 error = soreserve(so, sendspace, recvspace);
  422                 if (error)
  423                         return (error);
  424         }
  425         unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
  426         if (unp == NULL)
  427                 return (ENOBUFS);
  428         LIST_INIT(&unp->unp_refs);
  429         UNP_PCB_LOCK_INIT(unp);
  430         unp->unp_socket = so;
  431         so->so_pcb = unp;
  432         unp->unp_refcount = 1;
  433         if (so->so_head != NULL)
  434                 unp->unp_flags |= UNP_NASCENT;
  435 
  436         UNP_LIST_LOCK();
  437         unp->unp_gencnt = ++unp_gencnt;
  438         unp_count++;
  439         switch (so->so_type) {
  440         case SOCK_STREAM:
  441                 LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
  442                 break;
  443 
  444         case SOCK_DGRAM:
  445                 LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
  446                 break;
  447 
  448         case SOCK_SEQPACKET:
  449                 LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
  450                 break;
  451 
  452         default:
  453                 panic("uipc_attach");
  454         }
  455         UNP_LIST_UNLOCK();
  456 
  457         return (0);
  458 }
  459 
  460 static int
  461 uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
  462 {
  463         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
  464         struct vattr vattr;
  465         int error, namelen;
  466         struct nameidata nd;
  467         struct unpcb *unp;
  468         struct vnode *vp;
  469         struct mount *mp;
  470         cap_rights_t rights;
  471         char *buf;
  472 
  473         if (nam->sa_family != AF_UNIX)
  474                 return (EAFNOSUPPORT);
  475 
  476         unp = sotounpcb(so);
  477         KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
  478 
  479         if (soun->sun_len > sizeof(struct sockaddr_un))
  480                 return (EINVAL);
  481         namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
  482         if (namelen <= 0)
  483                 return (EINVAL);
  484 
  485         /*
  486          * We don't allow simultaneous bind() calls on a single UNIX domain
  487          * socket, so flag in-progress operations, and return an error if an
  488          * operation is already in progress.
  489          *
  490          * Historically, we have not allowed a socket to be rebound, so this
  491          * also returns an error.  Not allowing re-binding simplifies the
  492          * implementation and avoids a great many possible failure modes.
  493          */
  494         UNP_PCB_LOCK(unp);
  495         if (unp->unp_vnode != NULL) {
  496                 UNP_PCB_UNLOCK(unp);
  497                 return (EINVAL);
  498         }
  499         if (unp->unp_flags & UNP_BINDING) {
  500                 UNP_PCB_UNLOCK(unp);
  501                 return (EALREADY);
  502         }
  503         unp->unp_flags |= UNP_BINDING;
  504         UNP_PCB_UNLOCK(unp);
  505 
  506         buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
  507         bcopy(soun->sun_path, buf, namelen);
  508         buf[namelen] = 0;
  509 
  510 restart:
  511         NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
  512             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
  513 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
  514         error = namei(&nd);
  515         if (error)
  516                 goto error;
  517         vp = nd.ni_vp;
  518         if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
  519                 NDFREE(&nd, NDF_ONLY_PNBUF);
  520                 if (nd.ni_dvp == vp)
  521                         vrele(nd.ni_dvp);
  522                 else
  523                         vput(nd.ni_dvp);
  524                 if (vp != NULL) {
  525                         vrele(vp);
  526                         error = EADDRINUSE;
  527                         goto error;
  528                 }
  529                 error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
  530                 if (error)
  531                         goto error;
  532                 goto restart;
  533         }
  534         VATTR_NULL(&vattr);
  535         vattr.va_type = VSOCK;
  536         vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
  537 #ifdef MAC
  538         error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
  539             &vattr);
  540 #endif
  541         if (error == 0)
  542                 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
  543         NDFREE(&nd, NDF_ONLY_PNBUF);
  544         vput(nd.ni_dvp);
  545         if (error) {
  546                 vn_finished_write(mp);
  547                 goto error;
  548         }
  549         vp = nd.ni_vp;
  550         ASSERT_VOP_ELOCKED(vp, "uipc_bind");
  551         soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
  552 
  553         UNP_LINK_WLOCK();
  554         UNP_PCB_LOCK(unp);
  555         VOP_UNP_BIND(vp, unp->unp_socket);
  556         unp->unp_vnode = vp;
  557         unp->unp_addr = soun;
  558         unp->unp_flags &= ~UNP_BINDING;
  559         UNP_PCB_UNLOCK(unp);
  560         UNP_LINK_WUNLOCK();
  561         VOP_UNLOCK(vp, 0);
  562         vn_finished_write(mp);
  563         free(buf, M_TEMP);
  564         return (0);
  565 
  566 error:
  567         UNP_PCB_LOCK(unp);
  568         unp->unp_flags &= ~UNP_BINDING;
  569         UNP_PCB_UNLOCK(unp);
  570         free(buf, M_TEMP);
  571         return (error);
  572 }
  573 
  574 static int
  575 uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
  576 {
  577 
  578         return (uipc_bindat(AT_FDCWD, so, nam, td));
  579 }
  580 
  581 static int
  582 uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
  583 {
  584         int error;
  585 
  586         KASSERT(td == curthread, ("uipc_connect: td != curthread"));
  587         UNP_LINK_WLOCK();
  588         error = unp_connect(so, nam, td);
  589         UNP_LINK_WUNLOCK();
  590         return (error);
  591 }
  592 
  593 static int
  594 uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
  595     struct thread *td)
  596 {
  597         int error;
  598 
  599         KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
  600         UNP_LINK_WLOCK();
  601         error = unp_connectat(fd, so, nam, td);
  602         UNP_LINK_WUNLOCK();
  603         return (error);
  604 }
  605 
  606 static void
  607 uipc_close(struct socket *so)
  608 {
  609         struct unpcb *unp, *unp2;
  610 
  611         unp = sotounpcb(so);
  612         KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
  613 
  614         UNP_LINK_WLOCK();
  615         UNP_PCB_LOCK(unp);
  616         unp2 = unp->unp_conn;
  617         if (unp2 != NULL) {
  618                 UNP_PCB_LOCK(unp2);
  619                 unp_disconnect(unp, unp2);
  620                 UNP_PCB_UNLOCK(unp2);
  621         }
  622         UNP_PCB_UNLOCK(unp);
  623         UNP_LINK_WUNLOCK();
  624 }
  625 
  626 static int
  627 uipc_connect2(struct socket *so1, struct socket *so2)
  628 {
  629         struct unpcb *unp, *unp2;
  630         int error;
  631 
  632         UNP_LINK_WLOCK();
  633         unp = so1->so_pcb;
  634         KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
  635         UNP_PCB_LOCK(unp);
  636         unp2 = so2->so_pcb;
  637         KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
  638         UNP_PCB_LOCK(unp2);
  639         error = unp_connect2(so1, so2, PRU_CONNECT2);
  640         UNP_PCB_UNLOCK(unp2);
  641         UNP_PCB_UNLOCK(unp);
  642         UNP_LINK_WUNLOCK();
  643         return (error);
  644 }
  645 
  646 static void
  647 uipc_detach(struct socket *so)
  648 {
  649         struct unpcb *unp, *unp2;
  650         struct sockaddr_un *saved_unp_addr;
  651         struct vnode *vp;
  652         int freeunp, local_unp_rights;
  653 
  654         unp = sotounpcb(so);
  655         KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
  656 
  657         vp = NULL;
  658         local_unp_rights = 0;
  659 
  660         UNP_LIST_LOCK();
  661         LIST_REMOVE(unp, unp_link);
  662         unp->unp_gencnt = ++unp_gencnt;
  663         --unp_count;
  664         UNP_LIST_UNLOCK();
  665 
  666         if ((unp->unp_flags & UNP_NASCENT) != 0) {
  667                 UNP_PCB_LOCK(unp);
  668                 goto teardown;
  669         }
  670         UNP_LINK_WLOCK();
  671         UNP_PCB_LOCK(unp);
  672 
  673         /*
  674          * XXXRW: Should assert vp->v_socket == so.
  675          */
  676         if ((vp = unp->unp_vnode) != NULL) {
  677                 VOP_UNP_DETACH(vp);
  678                 unp->unp_vnode = NULL;
  679         }
  680         unp2 = unp->unp_conn;
  681         if (unp2 != NULL) {
  682                 UNP_PCB_LOCK(unp2);
  683                 unp_disconnect(unp, unp2);
  684                 UNP_PCB_UNLOCK(unp2);
  685         }
  686 
  687         /*
  688          * We hold the linkage lock exclusively, so it's OK to acquire
  689          * multiple pcb locks at a time.
  690          */
  691         while (!LIST_EMPTY(&unp->unp_refs)) {
  692                 struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
  693 
  694                 UNP_PCB_LOCK(ref);
  695                 unp_drop(ref);
  696                 UNP_PCB_UNLOCK(ref);
  697         }
  698         local_unp_rights = unp_rights;
  699         UNP_LINK_WUNLOCK();
  700 teardown:
  701         unp->unp_socket->so_pcb = NULL;
  702         saved_unp_addr = unp->unp_addr;
  703         unp->unp_addr = NULL;
  704         unp->unp_refcount--;
  705         freeunp = (unp->unp_refcount == 0);
  706         if (saved_unp_addr != NULL)
  707                 free(saved_unp_addr, M_SONAME);
  708         if (freeunp) {
  709                 UNP_PCB_LOCK_DESTROY(unp);
  710                 uma_zfree(unp_zone, unp);
  711         } else
  712                 UNP_PCB_UNLOCK(unp);
  713         if (vp)
  714                 vrele(vp);
  715         if (local_unp_rights)
  716                 taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
  717 }
  718 
  719 static int
  720 uipc_disconnect(struct socket *so)
  721 {
  722         struct unpcb *unp, *unp2;
  723 
  724         unp = sotounpcb(so);
  725         KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
  726 
  727         UNP_LINK_WLOCK();
  728         UNP_PCB_LOCK(unp);
  729         unp2 = unp->unp_conn;
  730         if (unp2 != NULL) {
  731                 UNP_PCB_LOCK(unp2);
  732                 unp_disconnect(unp, unp2);
  733                 UNP_PCB_UNLOCK(unp2);
  734         }
  735         UNP_PCB_UNLOCK(unp);
  736         UNP_LINK_WUNLOCK();
  737         return (0);
  738 }
  739 
  740 static int
  741 uipc_listen(struct socket *so, int backlog, struct thread *td)
  742 {
  743         struct unpcb *unp;
  744         int error;
  745 
  746         unp = sotounpcb(so);
  747         KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
  748 
  749         UNP_PCB_LOCK(unp);
  750         if (unp->unp_vnode == NULL) {
  751                 /* Already connected or not bound to an address. */
  752                 error = unp->unp_conn != NULL ? EINVAL : EDESTADDRREQ;
  753                 UNP_PCB_UNLOCK(unp);
  754                 return (error);
  755         }
  756 
  757         SOCK_LOCK(so);
  758         error = solisten_proto_check(so);
  759         if (error == 0) {
  760                 cru2x(td->td_ucred, &unp->unp_peercred);
  761                 unp->unp_flags |= UNP_HAVEPCCACHED;
  762                 solisten_proto(so, backlog);
  763         }
  764         SOCK_UNLOCK(so);
  765         UNP_PCB_UNLOCK(unp);
  766         return (error);
  767 }
  768 
  769 static int
  770 uipc_peeraddr(struct socket *so, struct sockaddr **nam)
  771 {
  772         struct unpcb *unp, *unp2;
  773         const struct sockaddr *sa;
  774 
  775         unp = sotounpcb(so);
  776         KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
  777 
  778         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
  779         UNP_LINK_RLOCK();
  780         /*
  781          * XXX: It seems that this test always fails even when connection is
  782          * established.  So, this else clause is added as workaround to
  783          * return PF_LOCAL sockaddr.
  784          */
  785         unp2 = unp->unp_conn;
  786         if (unp2 != NULL) {
  787                 UNP_PCB_LOCK(unp2);
  788                 if (unp2->unp_addr != NULL)
  789                         sa = (struct sockaddr *) unp2->unp_addr;
  790                 else
  791                         sa = &sun_noname;
  792                 bcopy(sa, *nam, sa->sa_len);
  793                 UNP_PCB_UNLOCK(unp2);
  794         } else {
  795                 sa = &sun_noname;
  796                 bcopy(sa, *nam, sa->sa_len);
  797         }
  798         UNP_LINK_RUNLOCK();
  799         return (0);
  800 }
  801 
  802 static int
  803 uipc_rcvd(struct socket *so, int flags)
  804 {
  805         struct unpcb *unp, *unp2;
  806         struct socket *so2;
  807         u_int mbcnt, sbcc;
  808 
  809         unp = sotounpcb(so);
  810         KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
  811         KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET,
  812             ("%s: socktype %d", __func__, so->so_type));
  813 
  814         /*
  815          * Adjust backpressure on sender and wakeup any waiting to write.
  816          *
  817          * The unp lock is acquired to maintain the validity of the unp_conn
  818          * pointer; no lock on unp2 is required as unp2->unp_socket will be
  819          * static as long as we don't permit unp2 to disconnect from unp,
  820          * which is prevented by the lock on unp.  We cache values from
  821          * so_rcv to avoid holding the so_rcv lock over the entire
  822          * transaction on the remote so_snd.
  823          */
  824         SOCKBUF_LOCK(&so->so_rcv);
  825         mbcnt = so->so_rcv.sb_mbcnt;
  826         sbcc = sbavail(&so->so_rcv);
  827         SOCKBUF_UNLOCK(&so->so_rcv);
  828         /*
  829          * There is a benign race condition at this point.  If we're planning to
  830          * clear SB_STOP, but uipc_send is called on the connected socket at
  831          * this instant, it might add data to the sockbuf and set SB_STOP.  Then
  832          * we would erroneously clear SB_STOP below, even though the sockbuf is
  833          * full.  The race is benign because the only ill effect is to allow the
  834          * sockbuf to exceed its size limit, and the size limits are not
  835          * strictly guaranteed anyway.
  836          */
  837         UNP_PCB_LOCK(unp);
  838         unp2 = unp->unp_conn;
  839         if (unp2 == NULL) {
  840                 UNP_PCB_UNLOCK(unp);
  841                 return (0);
  842         }
  843         so2 = unp2->unp_socket;
  844         SOCKBUF_LOCK(&so2->so_snd);
  845         if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
  846                 so2->so_snd.sb_flags &= ~SB_STOP;
  847         sowwakeup_locked(so2);
  848         UNP_PCB_UNLOCK(unp);
  849         return (0);
  850 }
  851 
  852 static int
  853 uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
  854     struct mbuf *control, struct thread *td)
  855 {
  856         struct unpcb *unp, *unp2;
  857         struct socket *so2;
  858         u_int mbcnt, sbcc;
  859         int error = 0;
  860 
  861         unp = sotounpcb(so);
  862         KASSERT(unp != NULL, ("%s: unp == NULL", __func__));
  863         KASSERT(so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM ||
  864             so->so_type == SOCK_SEQPACKET,
  865             ("%s: socktype %d", __func__, so->so_type));
  866 
  867         if (flags & PRUS_OOB) {
  868                 error = EOPNOTSUPP;
  869                 goto release;
  870         }
  871         if (control != NULL && (error = unp_internalize(&control, td)))
  872                 goto release;
  873         if ((nam != NULL) || (flags & PRUS_EOF))
  874                 UNP_LINK_WLOCK();
  875         else
  876                 UNP_LINK_RLOCK();
  877         switch (so->so_type) {
  878         case SOCK_DGRAM:
  879         {
  880                 const struct sockaddr *from;
  881 
  882                 unp2 = unp->unp_conn;
  883                 if (nam != NULL) {
  884                         UNP_LINK_WLOCK_ASSERT();
  885                         if (unp2 != NULL) {
  886                                 error = EISCONN;
  887                                 break;
  888                         }
  889                         error = unp_connect(so, nam, td);
  890                         if (error)
  891                                 break;
  892                         unp2 = unp->unp_conn;
  893                 }
  894 
  895                 /*
  896                  * Because connect() and send() are non-atomic in a sendto()
  897                  * with a target address, it's possible that the socket will
  898                  * have disconnected before the send() can run.  In that case
  899                  * return the slightly counter-intuitive but otherwise
  900                  * correct error that the socket is not connected.
  901                  */
  902                 if (unp2 == NULL) {
  903                         error = ENOTCONN;
  904                         break;
  905                 }
  906                 /* Lockless read. */
  907                 if (unp2->unp_flags & UNP_WANTCRED)
  908                         control = unp_addsockcred(td, control);
  909                 UNP_PCB_LOCK(unp);
  910                 if (unp->unp_addr != NULL)
  911                         from = (struct sockaddr *)unp->unp_addr;
  912                 else
  913                         from = &sun_noname;
  914                 so2 = unp2->unp_socket;
  915                 SOCKBUF_LOCK(&so2->so_rcv);
  916                 if (sbappendaddr_locked(&so2->so_rcv, from, m,
  917                     control)) {
  918                         sorwakeup_locked(so2);
  919                         m = NULL;
  920                         control = NULL;
  921                 } else {
  922                         SOCKBUF_UNLOCK(&so2->so_rcv);
  923                         error = ENOBUFS;
  924                 }
  925                 if (nam != NULL) {
  926                         UNP_LINK_WLOCK_ASSERT();
  927                         UNP_PCB_LOCK(unp2);
  928                         unp_disconnect(unp, unp2);
  929                         UNP_PCB_UNLOCK(unp2);
  930                 }
  931                 UNP_PCB_UNLOCK(unp);
  932                 break;
  933         }
  934 
  935         case SOCK_SEQPACKET:
  936         case SOCK_STREAM:
  937                 if ((so->so_state & SS_ISCONNECTED) == 0) {
  938                         if (nam != NULL) {
  939                                 UNP_LINK_WLOCK_ASSERT();
  940                                 error = unp_connect(so, nam, td);
  941                                 if (error)
  942                                         break;  /* XXX */
  943                         } else {
  944                                 error = ENOTCONN;
  945                                 break;
  946                         }
  947                 }
  948 
  949                 /* Lockless read. */
  950                 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
  951                         error = EPIPE;
  952                         break;
  953                 }
  954 
  955                 /*
  956                  * Because connect() and send() are non-atomic in a sendto()
  957                  * with a target address, it's possible that the socket will
  958                  * have disconnected before the send() can run.  In that case
  959                  * return the slightly counter-intuitive but otherwise
  960                  * correct error that the socket is not connected.
  961                  *
  962                  * Locking here must be done carefully: the linkage lock
  963                  * prevents interconnections between unpcbs from changing, so
  964                  * we can traverse from unp to unp2 without acquiring unp's
  965                  * lock.  Socket buffer locks follow unpcb locks, so we can
  966                  * acquire both remote and lock socket buffer locks.
  967                  */
  968                 unp2 = unp->unp_conn;
  969                 if (unp2 == NULL) {
  970                         error = ENOTCONN;
  971                         break;
  972                 }
  973                 so2 = unp2->unp_socket;
  974                 UNP_PCB_LOCK(unp2);
  975                 SOCKBUF_LOCK(&so2->so_rcv);
  976                 if (unp2->unp_flags & UNP_WANTCRED) {
  977                         /*
  978                          * Credentials are passed only once on SOCK_STREAM
  979                          * and SOCK_SEQPACKET.
  980                          */
  981                         unp2->unp_flags &= ~UNP_WANTCRED;
  982                         control = unp_addsockcred(td, control);
  983                 }
  984 
  985                 /*
  986                  * Send to paired receive port and wake up readers.  Don't
  987                  * check for space available in the receive buffer if we're
  988                  * attaching ancillary data; Unix domain sockets only check
  989                  * for space in the sending sockbuf, and that check is
  990                  * performed one level up the stack.  At that level we cannot
  991                  * precisely account for the amount of buffer space used
  992                  * (e.g., because control messages are not yet internalized).
  993                  */
  994                 switch (so->so_type) {
  995                 case SOCK_STREAM:
  996                         if (control != NULL) {
  997                                 sbappendcontrol_locked(&so2->so_rcv, m,
  998                                     control);
  999                                 control = NULL;
 1000                         } else
 1001                                 sbappend_locked(&so2->so_rcv, m, flags);
 1002                         break;
 1003 
 1004                 case SOCK_SEQPACKET: {
 1005                         const struct sockaddr *from;
 1006 
 1007                         from = &sun_noname;
 1008                         if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
 1009                             from, m, control))
 1010                                 control = NULL;
 1011                         break;
 1012                         }
 1013                 }
 1014 
 1015                 mbcnt = so2->so_rcv.sb_mbcnt;
 1016                 sbcc = sbavail(&so2->so_rcv);
 1017                 if (sbcc)
 1018                         sorwakeup_locked(so2);
 1019                 else
 1020                         SOCKBUF_UNLOCK(&so2->so_rcv);
 1021 
 1022                 /*
 1023                  * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
 1024                  * it would be possible for uipc_rcvd to be called at this
 1025                  * point, drain the receiving sockbuf, clear SB_STOP, and then
 1026                  * we would set SB_STOP below.  That could lead to an empty
 1027                  * sockbuf having SB_STOP set
 1028                  */
 1029                 SOCKBUF_LOCK(&so->so_snd);
 1030                 if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
 1031                         so->so_snd.sb_flags |= SB_STOP;
 1032                 SOCKBUF_UNLOCK(&so->so_snd);
 1033                 UNP_PCB_UNLOCK(unp2);
 1034                 m = NULL;
 1035                 break;
 1036         }
 1037 
 1038         /*
 1039          * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
 1040          */
 1041         if (flags & PRUS_EOF) {
 1042                 UNP_PCB_LOCK(unp);
 1043                 socantsendmore(so);
 1044                 unp_shutdown(unp);
 1045                 UNP_PCB_UNLOCK(unp);
 1046         }
 1047 
 1048         if ((nam != NULL) || (flags & PRUS_EOF))
 1049                 UNP_LINK_WUNLOCK();
 1050         else
 1051                 UNP_LINK_RUNLOCK();
 1052 
 1053         if (control != NULL && error != 0)
 1054                 unp_dispose(control);
 1055 
 1056 release:
 1057         if (control != NULL)
 1058                 m_freem(control);
 1059         /*
 1060          * In case of PRUS_NOTREADY, uipc_ready() is responsible
 1061          * for freeing memory.
 1062          */   
 1063         if (m != NULL && (flags & PRUS_NOTREADY) == 0)
 1064                 m_freem(m);
 1065         return (error);
 1066 }
 1067 
 1068 static int
 1069 uipc_ready(struct socket *so, struct mbuf *m, int count)
 1070 {
 1071         struct unpcb *unp, *unp2;
 1072         struct socket *so2;
 1073         int error;
 1074 
 1075         unp = sotounpcb(so);
 1076 
 1077         UNP_LINK_RLOCK();
 1078         if ((unp2 = unp->unp_conn) == NULL) {
 1079                 UNP_LINK_RUNLOCK();
 1080                 for (int i = 0; i < count; i++)
 1081                         m = m_free(m);
 1082                 return (ECONNRESET);
 1083         }
 1084         UNP_PCB_LOCK(unp2);
 1085         so2 = unp2->unp_socket;
 1086 
 1087         SOCKBUF_LOCK(&so2->so_rcv);
 1088         if ((error = sbready(&so2->so_rcv, m, count)) == 0)
 1089                 sorwakeup_locked(so2);
 1090         else
 1091                 SOCKBUF_UNLOCK(&so2->so_rcv);
 1092 
 1093         UNP_PCB_UNLOCK(unp2);
 1094         UNP_LINK_RUNLOCK();
 1095 
 1096         return (error);
 1097 }
 1098 
 1099 static int
 1100 uipc_sense(struct socket *so, struct stat *sb)
 1101 {
 1102         struct unpcb *unp;
 1103 
 1104         unp = sotounpcb(so);
 1105         KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
 1106 
 1107         sb->st_blksize = so->so_snd.sb_hiwat;
 1108         UNP_PCB_LOCK(unp);
 1109         sb->st_dev = NODEV;
 1110         if (unp->unp_ino == 0)
 1111                 unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
 1112         sb->st_ino = unp->unp_ino;
 1113         UNP_PCB_UNLOCK(unp);
 1114         return (0);
 1115 }
 1116 
 1117 static int
 1118 uipc_shutdown(struct socket *so)
 1119 {
 1120         struct unpcb *unp;
 1121 
 1122         unp = sotounpcb(so);
 1123         KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
 1124 
 1125         UNP_LINK_WLOCK();
 1126         UNP_PCB_LOCK(unp);
 1127         socantsendmore(so);
 1128         unp_shutdown(unp);
 1129         UNP_PCB_UNLOCK(unp);
 1130         UNP_LINK_WUNLOCK();
 1131         return (0);
 1132 }
 1133 
 1134 static int
 1135 uipc_sockaddr(struct socket *so, struct sockaddr **nam)
 1136 {
 1137         struct unpcb *unp;
 1138         const struct sockaddr *sa;
 1139 
 1140         unp = sotounpcb(so);
 1141         KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
 1142 
 1143         *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
 1144         UNP_PCB_LOCK(unp);
 1145         if (unp->unp_addr != NULL)
 1146                 sa = (struct sockaddr *) unp->unp_addr;
 1147         else
 1148                 sa = &sun_noname;
 1149         bcopy(sa, *nam, sa->sa_len);
 1150         UNP_PCB_UNLOCK(unp);
 1151         return (0);
 1152 }
 1153 
 1154 static struct pr_usrreqs uipc_usrreqs_dgram = {
 1155         .pru_abort =            uipc_abort,
 1156         .pru_accept =           uipc_accept,
 1157         .pru_attach =           uipc_attach,
 1158         .pru_bind =             uipc_bind,
 1159         .pru_bindat =           uipc_bindat,
 1160         .pru_connect =          uipc_connect,
 1161         .pru_connectat =        uipc_connectat,
 1162         .pru_connect2 =         uipc_connect2,
 1163         .pru_detach =           uipc_detach,
 1164         .pru_disconnect =       uipc_disconnect,
 1165         .pru_listen =           uipc_listen,
 1166         .pru_peeraddr =         uipc_peeraddr,
 1167         .pru_rcvd =             uipc_rcvd,
 1168         .pru_send =             uipc_send,
 1169         .pru_sense =            uipc_sense,
 1170         .pru_shutdown =         uipc_shutdown,
 1171         .pru_sockaddr =         uipc_sockaddr,
 1172         .pru_soreceive =        soreceive_dgram,
 1173         .pru_close =            uipc_close,
 1174 };
 1175 
 1176 static struct pr_usrreqs uipc_usrreqs_seqpacket = {
 1177         .pru_abort =            uipc_abort,
 1178         .pru_accept =           uipc_accept,
 1179         .pru_attach =           uipc_attach,
 1180         .pru_bind =             uipc_bind,
 1181         .pru_bindat =           uipc_bindat,
 1182         .pru_connect =          uipc_connect,
 1183         .pru_connectat =        uipc_connectat,
 1184         .pru_connect2 =         uipc_connect2,
 1185         .pru_detach =           uipc_detach,
 1186         .pru_disconnect =       uipc_disconnect,
 1187         .pru_listen =           uipc_listen,
 1188         .pru_peeraddr =         uipc_peeraddr,
 1189         .pru_rcvd =             uipc_rcvd,
 1190         .pru_send =             uipc_send,
 1191         .pru_sense =            uipc_sense,
 1192         .pru_shutdown =         uipc_shutdown,
 1193         .pru_sockaddr =         uipc_sockaddr,
 1194         .pru_soreceive =        soreceive_generic,      /* XXX: or...? */
 1195         .pru_close =            uipc_close,
 1196 };
 1197 
 1198 static struct pr_usrreqs uipc_usrreqs_stream = {
 1199         .pru_abort =            uipc_abort,
 1200         .pru_accept =           uipc_accept,
 1201         .pru_attach =           uipc_attach,
 1202         .pru_bind =             uipc_bind,
 1203         .pru_bindat =           uipc_bindat,
 1204         .pru_connect =          uipc_connect,
 1205         .pru_connectat =        uipc_connectat,
 1206         .pru_connect2 =         uipc_connect2,
 1207         .pru_detach =           uipc_detach,
 1208         .pru_disconnect =       uipc_disconnect,
 1209         .pru_listen =           uipc_listen,
 1210         .pru_peeraddr =         uipc_peeraddr,
 1211         .pru_rcvd =             uipc_rcvd,
 1212         .pru_send =             uipc_send,
 1213         .pru_ready =            uipc_ready,
 1214         .pru_sense =            uipc_sense,
 1215         .pru_shutdown =         uipc_shutdown,
 1216         .pru_sockaddr =         uipc_sockaddr,
 1217         .pru_soreceive =        soreceive_generic,
 1218         .pru_close =            uipc_close,
 1219 };
 1220 
 1221 static int
 1222 uipc_ctloutput(struct socket *so, struct sockopt *sopt)
 1223 {
 1224         struct unpcb *unp;
 1225         struct xucred xu;
 1226         int error, optval;
 1227 
 1228         if (sopt->sopt_level != 0)
 1229                 return (EINVAL);
 1230 
 1231         unp = sotounpcb(so);
 1232         KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
 1233         error = 0;
 1234         switch (sopt->sopt_dir) {
 1235         case SOPT_GET:
 1236                 switch (sopt->sopt_name) {
 1237                 case LOCAL_PEERCRED:
 1238                         UNP_PCB_LOCK(unp);
 1239                         if (unp->unp_flags & UNP_HAVEPC)
 1240                                 xu = unp->unp_peercred;
 1241                         else {
 1242                                 if (so->so_type == SOCK_STREAM)
 1243                                         error = ENOTCONN;
 1244                                 else
 1245                                         error = EINVAL;
 1246                         }
 1247                         UNP_PCB_UNLOCK(unp);
 1248                         if (error == 0)
 1249                                 error = sooptcopyout(sopt, &xu, sizeof(xu));
 1250                         break;
 1251 
 1252                 case LOCAL_CREDS:
 1253                         /* Unlocked read. */
 1254                         optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
 1255                         error = sooptcopyout(sopt, &optval, sizeof(optval));
 1256                         break;
 1257 
 1258                 case LOCAL_CONNWAIT:
 1259                         /* Unlocked read. */
 1260                         optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
 1261                         error = sooptcopyout(sopt, &optval, sizeof(optval));
 1262                         break;
 1263 
 1264                 default:
 1265                         error = EOPNOTSUPP;
 1266                         break;
 1267                 }
 1268                 break;
 1269 
 1270         case SOPT_SET:
 1271                 switch (sopt->sopt_name) {
 1272                 case LOCAL_CREDS:
 1273                 case LOCAL_CONNWAIT:
 1274                         error = sooptcopyin(sopt, &optval, sizeof(optval),
 1275                                             sizeof(optval));
 1276                         if (error)
 1277                                 break;
 1278 
 1279 #define OPTSET(bit) do {                                                \
 1280         UNP_PCB_LOCK(unp);                                              \
 1281         if (optval)                                                     \
 1282                 unp->unp_flags |= bit;                                  \
 1283         else                                                            \
 1284                 unp->unp_flags &= ~bit;                                 \
 1285         UNP_PCB_UNLOCK(unp);                                            \
 1286 } while (0)
 1287 
 1288                         switch (sopt->sopt_name) {
 1289                         case LOCAL_CREDS:
 1290                                 OPTSET(UNP_WANTCRED);
 1291                                 break;
 1292 
 1293                         case LOCAL_CONNWAIT:
 1294                                 OPTSET(UNP_CONNWAIT);
 1295                                 break;
 1296 
 1297                         default:
 1298                                 break;
 1299                         }
 1300                         break;
 1301 #undef  OPTSET
 1302                 default:
 1303                         error = ENOPROTOOPT;
 1304                         break;
 1305                 }
 1306                 break;
 1307 
 1308         default:
 1309                 error = EOPNOTSUPP;
 1310                 break;
 1311         }
 1312         return (error);
 1313 }
 1314 
 1315 static int
 1316 unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
 1317 {
 1318 
 1319         return (unp_connectat(AT_FDCWD, so, nam, td));
 1320 }
 1321 
 1322 static int
 1323 unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
 1324     struct thread *td)
 1325 {
 1326         struct sockaddr_un *soun = (struct sockaddr_un *)nam;
 1327         struct vnode *vp;
 1328         struct socket *so2, *so3;
 1329         struct unpcb *unp, *unp2, *unp3;
 1330         struct nameidata nd;
 1331         char buf[SOCK_MAXADDRLEN];
 1332         struct sockaddr *sa;
 1333         cap_rights_t rights;
 1334         int error, len;
 1335 
 1336         if (nam->sa_family != AF_UNIX)
 1337                 return (EAFNOSUPPORT);
 1338 
 1339         UNP_LINK_WLOCK_ASSERT();
 1340 
 1341         unp = sotounpcb(so);
 1342         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
 1343 
 1344         if (nam->sa_len > sizeof(struct sockaddr_un))
 1345                 return (EINVAL);
 1346         len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
 1347         if (len <= 0)
 1348                 return (EINVAL);
 1349         bcopy(soun->sun_path, buf, len);
 1350         buf[len] = 0;
 1351 
 1352         UNP_PCB_LOCK(unp);
 1353         if (unp->unp_flags & UNP_CONNECTING) {
 1354                 UNP_PCB_UNLOCK(unp);
 1355                 return (EALREADY);
 1356         }
 1357         UNP_LINK_WUNLOCK();
 1358         unp->unp_flags |= UNP_CONNECTING;
 1359         UNP_PCB_UNLOCK(unp);
 1360 
 1361         sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
 1362         NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
 1363             UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
 1364         error = namei(&nd);
 1365         if (error)
 1366                 vp = NULL;
 1367         else
 1368                 vp = nd.ni_vp;
 1369         ASSERT_VOP_LOCKED(vp, "unp_connect");
 1370         NDFREE(&nd, NDF_ONLY_PNBUF);
 1371         if (error)
 1372                 goto bad;
 1373 
 1374         if (vp->v_type != VSOCK) {
 1375                 error = ENOTSOCK;
 1376                 goto bad;
 1377         }
 1378 #ifdef MAC
 1379         error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
 1380         if (error)
 1381                 goto bad;
 1382 #endif
 1383         error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
 1384         if (error)
 1385                 goto bad;
 1386 
 1387         unp = sotounpcb(so);
 1388         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
 1389 
 1390         /*
 1391          * Lock linkage lock for two reasons: make sure v_socket is stable,
 1392          * and to protect simultaneous locking of multiple pcbs.
 1393          */
 1394         UNP_LINK_WLOCK();
 1395         VOP_UNP_CONNECT(vp, &so2);
 1396         if (so2 == NULL) {
 1397                 error = ECONNREFUSED;
 1398                 goto bad2;
 1399         }
 1400         if (so->so_type != so2->so_type) {
 1401                 error = EPROTOTYPE;
 1402                 goto bad2;
 1403         }
 1404         if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
 1405                 if (so2->so_options & SO_ACCEPTCONN) {
 1406                         CURVNET_SET(so2->so_vnet);
 1407                         so3 = sonewconn(so2, 0);
 1408                         CURVNET_RESTORE();
 1409                 } else
 1410                         so3 = NULL;
 1411                 if (so3 == NULL) {
 1412                         error = ECONNREFUSED;
 1413                         goto bad2;
 1414                 }
 1415                 unp = sotounpcb(so);
 1416                 unp2 = sotounpcb(so2);
 1417                 unp3 = sotounpcb(so3);
 1418                 UNP_PCB_LOCK(unp);
 1419                 UNP_PCB_LOCK(unp2);
 1420                 UNP_PCB_LOCK(unp3);
 1421                 if (unp2->unp_addr != NULL) {
 1422                         bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
 1423                         unp3->unp_addr = (struct sockaddr_un *) sa;
 1424                         sa = NULL;
 1425                 }
 1426 
 1427                 KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
 1428                     ("unp_connect: listener without cached peercred"));
 1429                 unp_copy_peercred(td, unp3, unp, unp2);
 1430 
 1431                 UNP_PCB_UNLOCK(unp3);
 1432                 UNP_PCB_UNLOCK(unp2);
 1433                 UNP_PCB_UNLOCK(unp);
 1434 #ifdef MAC
 1435                 mac_socketpeer_set_from_socket(so, so3);
 1436                 mac_socketpeer_set_from_socket(so3, so);
 1437 #endif
 1438 
 1439                 so2 = so3;
 1440         }
 1441         unp = sotounpcb(so);
 1442         KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
 1443         unp2 = sotounpcb(so2);
 1444         KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
 1445         UNP_PCB_LOCK(unp);
 1446         UNP_PCB_LOCK(unp2);
 1447         error = unp_connect2(so, so2, PRU_CONNECT);
 1448         UNP_PCB_UNLOCK(unp2);
 1449         UNP_PCB_UNLOCK(unp);
 1450 bad2:
 1451         UNP_LINK_WUNLOCK();
 1452 bad:
 1453         if (vp != NULL)
 1454                 vput(vp);
 1455         free(sa, M_SONAME);
 1456         UNP_LINK_WLOCK();
 1457         UNP_PCB_LOCK(unp);
 1458         unp->unp_flags &= ~UNP_CONNECTING;
 1459         UNP_PCB_UNLOCK(unp);
 1460         return (error);
 1461 }
 1462 
 1463 /*
 1464  * Set socket peer credentials at connection time.
 1465  *
 1466  * The client's PCB credentials are copied from its process structure.  The
 1467  * server's PCB credentials are copied from the socket on which it called
 1468  * listen(2).  uipc_listen cached that process's credentials at the time.
 1469  */
 1470 void
 1471 unp_copy_peercred(struct thread *td, struct unpcb *client_unp,
 1472     struct unpcb *server_unp, struct unpcb *listen_unp)
 1473 {
 1474         cru2x(td->td_ucred, &client_unp->unp_peercred);
 1475         client_unp->unp_flags |= UNP_HAVEPC;
 1476 
 1477         memcpy(&server_unp->unp_peercred, &listen_unp->unp_peercred,
 1478             sizeof(server_unp->unp_peercred));
 1479         server_unp->unp_flags |= UNP_HAVEPC;
 1480         if (listen_unp->unp_flags & UNP_WANTCRED)
 1481                 client_unp->unp_flags |= UNP_WANTCRED;
 1482 }
 1483 
 1484 static int
 1485 unp_connect2(struct socket *so, struct socket *so2, int req)
 1486 {
 1487         struct unpcb *unp;
 1488         struct unpcb *unp2;
 1489 
 1490         unp = sotounpcb(so);
 1491         KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
 1492         unp2 = sotounpcb(so2);
 1493         KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
 1494 
 1495         UNP_LINK_WLOCK_ASSERT();
 1496         UNP_PCB_LOCK_ASSERT(unp);
 1497         UNP_PCB_LOCK_ASSERT(unp2);
 1498 
 1499         if (so2->so_type != so->so_type)
 1500                 return (EPROTOTYPE);
 1501         unp2->unp_flags &= ~UNP_NASCENT;
 1502         unp->unp_conn = unp2;
 1503 
 1504         switch (so->so_type) {
 1505         case SOCK_DGRAM:
 1506                 LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
 1507                 soisconnected(so);
 1508                 break;
 1509 
 1510         case SOCK_STREAM:
 1511         case SOCK_SEQPACKET:
 1512                 unp2->unp_conn = unp;
 1513                 if (req == PRU_CONNECT &&
 1514                     ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
 1515                         soisconnecting(so);
 1516                 else
 1517                         soisconnected(so);
 1518                 soisconnected(so2);
 1519                 break;
 1520 
 1521         default:
 1522                 panic("unp_connect2");
 1523         }
 1524         return (0);
 1525 }
 1526 
 1527 static void
 1528 unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
 1529 {
 1530         struct socket *so;
 1531 
 1532         KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
 1533 
 1534         UNP_LINK_WLOCK_ASSERT();
 1535         UNP_PCB_LOCK_ASSERT(unp);
 1536         UNP_PCB_LOCK_ASSERT(unp2);
 1537 
 1538         unp->unp_conn = NULL;
 1539         switch (unp->unp_socket->so_type) {
 1540         case SOCK_DGRAM:
 1541                 LIST_REMOVE(unp, unp_reflink);
 1542                 so = unp->unp_socket;
 1543                 SOCK_LOCK(so);
 1544                 so->so_state &= ~SS_ISCONNECTED;
 1545                 SOCK_UNLOCK(so);
 1546                 break;
 1547 
 1548         case SOCK_STREAM:
 1549         case SOCK_SEQPACKET:
 1550                 soisdisconnected(unp->unp_socket);
 1551                 unp2->unp_conn = NULL;
 1552                 soisdisconnected(unp2->unp_socket);
 1553                 break;
 1554         }
 1555 }
 1556 
 1557 /*
 1558  * unp_pcblist() walks the global list of struct unpcb's to generate a
 1559  * pointer list, bumping the refcount on each unpcb.  It then copies them out
 1560  * sequentially, validating the generation number on each to see if it has
 1561  * been detached.  All of this is necessary because copyout() may sleep on
 1562  * disk I/O.
 1563  */
 1564 static int
 1565 unp_pcblist(SYSCTL_HANDLER_ARGS)
 1566 {
 1567         int error, i, n;
 1568         int freeunp;
 1569         struct unpcb *unp, **unp_list;
 1570         unp_gen_t gencnt;
 1571         struct xunpgen *xug;
 1572         struct unp_head *head;
 1573         struct xunpcb *xu;
 1574 
 1575         switch ((intptr_t)arg1) {
 1576         case SOCK_STREAM:
 1577                 head = &unp_shead;
 1578                 break;
 1579 
 1580         case SOCK_DGRAM:
 1581                 head = &unp_dhead;
 1582                 break;
 1583 
 1584         case SOCK_SEQPACKET:
 1585                 head = &unp_sphead;
 1586                 break;
 1587 
 1588         default:
 1589                 panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
 1590         }
 1591 
 1592         /*
 1593          * The process of preparing the PCB list is too time-consuming and
 1594          * resource-intensive to repeat twice on every request.
 1595          */
 1596         if (req->oldptr == NULL) {
 1597                 n = unp_count;
 1598                 req->oldidx = 2 * (sizeof *xug)
 1599                         + (n + n/8) * sizeof(struct xunpcb);
 1600                 return (0);
 1601         }
 1602 
 1603         if (req->newptr != NULL)
 1604                 return (EPERM);
 1605 
 1606         /*
 1607          * OK, now we're committed to doing something.
 1608          */
 1609         xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK | M_ZERO);
 1610         UNP_LIST_LOCK();
 1611         gencnt = unp_gencnt;
 1612         n = unp_count;
 1613         UNP_LIST_UNLOCK();
 1614 
 1615         xug->xug_len = sizeof *xug;
 1616         xug->xug_count = n;
 1617         xug->xug_gen = gencnt;
 1618         xug->xug_sogen = so_gencnt;
 1619         error = SYSCTL_OUT(req, xug, sizeof *xug);
 1620         if (error) {
 1621                 free(xug, M_TEMP);
 1622                 return (error);
 1623         }
 1624 
 1625         unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
 1626 
 1627         UNP_LIST_LOCK();
 1628         for (unp = LIST_FIRST(head), i = 0; unp && i < n;
 1629              unp = LIST_NEXT(unp, unp_link)) {
 1630                 UNP_PCB_LOCK(unp);
 1631                 if (unp->unp_gencnt <= gencnt) {
 1632                         if (cr_cansee(req->td->td_ucred,
 1633                             unp->unp_socket->so_cred)) {
 1634                                 UNP_PCB_UNLOCK(unp);
 1635                                 continue;
 1636                         }
 1637                         unp_list[i++] = unp;
 1638                         unp->unp_refcount++;
 1639                 }
 1640                 UNP_PCB_UNLOCK(unp);
 1641         }
 1642         UNP_LIST_UNLOCK();
 1643         n = i;                  /* In case we lost some during malloc. */
 1644 
 1645         error = 0;
 1646         xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
 1647         for (i = 0; i < n; i++) {
 1648                 unp = unp_list[i];
 1649                 UNP_PCB_LOCK(unp);
 1650                 unp->unp_refcount--;
 1651                 if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
 1652                         xu->xu_len = sizeof *xu;
 1653                         xu->xu_unpp = unp;
 1654                         /*
 1655                          * XXX - need more locking here to protect against
 1656                          * connect/disconnect races for SMP.
 1657                          */
 1658                         if (unp->unp_addr != NULL)
 1659                                 bcopy(unp->unp_addr, &xu->xu_addr,
 1660                                       unp->unp_addr->sun_len);
 1661                         if (unp->unp_conn != NULL &&
 1662                             unp->unp_conn->unp_addr != NULL)
 1663                                 bcopy(unp->unp_conn->unp_addr,
 1664                                       &xu->xu_caddr,
 1665                                       unp->unp_conn->unp_addr->sun_len);
 1666                         bcopy(unp, &xu->xu_unp, sizeof *unp);
 1667                         sotoxsocket(unp->unp_socket, &xu->xu_socket);
 1668                         UNP_PCB_UNLOCK(unp);
 1669                         error = SYSCTL_OUT(req, xu, sizeof *xu);
 1670                 } else {
 1671                         freeunp = (unp->unp_refcount == 0);
 1672                         UNP_PCB_UNLOCK(unp);
 1673                         if (freeunp) {
 1674                                 UNP_PCB_LOCK_DESTROY(unp);
 1675                                 uma_zfree(unp_zone, unp);
 1676                         }
 1677                 }
 1678         }
 1679         free(xu, M_TEMP);
 1680         if (!error) {
 1681                 /*
 1682                  * Give the user an updated idea of our state.  If the
 1683                  * generation differs from what we told her before, she knows
 1684                  * that something happened while we were processing this
 1685                  * request, and it might be necessary to retry.
 1686                  */
 1687                 xug->xug_gen = unp_gencnt;
 1688                 xug->xug_sogen = so_gencnt;
 1689                 xug->xug_count = unp_count;
 1690                 error = SYSCTL_OUT(req, xug, sizeof *xug);
 1691         }
 1692         free(unp_list, M_TEMP);
 1693         free(xug, M_TEMP);
 1694         return (error);
 1695 }
 1696 
 1697 SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
 1698     (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
 1699     "List of active local datagram sockets");
 1700 SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
 1701     (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
 1702     "List of active local stream sockets");
 1703 SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
 1704     CTLTYPE_OPAQUE | CTLFLAG_RD,
 1705     (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
 1706     "List of active local seqpacket sockets");
 1707 
 1708 static void
 1709 unp_shutdown(struct unpcb *unp)
 1710 {
 1711         struct unpcb *unp2;
 1712         struct socket *so;
 1713 
 1714         UNP_LINK_WLOCK_ASSERT();
 1715         UNP_PCB_LOCK_ASSERT(unp);
 1716 
 1717         unp2 = unp->unp_conn;
 1718         if ((unp->unp_socket->so_type == SOCK_STREAM ||
 1719             (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
 1720                 so = unp2->unp_socket;
 1721                 if (so != NULL)
 1722                         socantrcvmore(so);
 1723         }
 1724 }
 1725 
 1726 static void
 1727 unp_drop(struct unpcb *unp)
 1728 {
 1729         struct socket *so = unp->unp_socket;
 1730         struct unpcb *unp2;
 1731 
 1732         UNP_LINK_WLOCK_ASSERT();
 1733         UNP_PCB_LOCK_ASSERT(unp);
 1734 
 1735         /*
 1736          * Regardless of whether the socket's peer dropped the connection
 1737          * with this socket by aborting or disconnecting, POSIX requires
 1738          * that ECONNRESET is returned.
 1739          */
 1740         so->so_error = ECONNRESET;
 1741         unp2 = unp->unp_conn;
 1742         if (unp2 == NULL)
 1743                 return;
 1744         UNP_PCB_LOCK(unp2);
 1745         unp_disconnect(unp, unp2);
 1746         UNP_PCB_UNLOCK(unp2);
 1747 }
 1748 
 1749 static void
 1750 unp_freerights(struct filedescent **fdep, int fdcount)
 1751 {
 1752         struct file *fp;
 1753         int i;
 1754 
 1755         KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
 1756 
 1757         for (i = 0; i < fdcount; i++) {
 1758                 fp = fdep[i]->fde_file;
 1759                 filecaps_free(&fdep[i]->fde_caps);
 1760                 unp_discard(fp);
 1761         }
 1762         free(fdep[0], M_FILECAPS);
 1763 }
 1764 
 1765 static int
 1766 unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
 1767 {
 1768         struct thread *td = curthread;          /* XXX */
 1769         struct cmsghdr *cm = mtod(control, struct cmsghdr *);
 1770         int i;
 1771         int *fdp;
 1772         struct filedesc *fdesc = td->td_proc->p_fd;
 1773         struct filedescent **fdep;
 1774         void *data;
 1775         socklen_t clen = control->m_len, datalen;
 1776         int error, newfds;
 1777         u_int newlen;
 1778 
 1779         UNP_LINK_UNLOCK_ASSERT();
 1780 
 1781         error = 0;
 1782         if (controlp != NULL) /* controlp == NULL => free control messages */
 1783                 *controlp = NULL;
 1784         while (cm != NULL) {
 1785                 if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
 1786                         error = EINVAL;
 1787                         break;
 1788                 }
 1789                 data = CMSG_DATA(cm);
 1790                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
 1791                 if (cm->cmsg_level == SOL_SOCKET
 1792                     && cm->cmsg_type == SCM_RIGHTS) {
 1793                         newfds = datalen / sizeof(*fdep);
 1794                         if (newfds == 0)
 1795                                 goto next;
 1796                         fdep = data;
 1797 
 1798                         /* If we're not outputting the descriptors free them. */
 1799                         if (error || controlp == NULL) {
 1800                                 unp_freerights(fdep, newfds);
 1801                                 goto next;
 1802                         }
 1803                         FILEDESC_XLOCK(fdesc);
 1804 
 1805                         /*
 1806                          * Now change each pointer to an fd in the global
 1807                          * table to an integer that is the index to the local
 1808                          * fd table entry that we set up to point to the
 1809                          * global one we are transferring.
 1810                          */
 1811                         newlen = newfds * sizeof(int);
 1812                         *controlp = sbcreatecontrol(NULL, newlen,
 1813                             SCM_RIGHTS, SOL_SOCKET);
 1814                         if (*controlp == NULL) {
 1815                                 FILEDESC_XUNLOCK(fdesc);
 1816                                 error = E2BIG;
 1817                                 unp_freerights(fdep, newfds);
 1818                                 goto next;
 1819                         }
 1820 
 1821                         fdp = (int *)
 1822                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 1823                         if (fdallocn(td, 0, fdp, newfds) != 0) {
 1824                                 FILEDESC_XUNLOCK(fdesc);
 1825                                 error = EMSGSIZE;
 1826                                 unp_freerights(fdep, newfds);
 1827                                 m_freem(*controlp);
 1828                                 *controlp = NULL;
 1829                                 goto next;
 1830                         }
 1831                         for (i = 0; i < newfds; i++, fdp++) {
 1832                                 _finstall(fdesc, fdep[i]->fde_file, *fdp,
 1833                                     (flags & MSG_CMSG_CLOEXEC) != 0 ? UF_EXCLOSE : 0,
 1834                                     &fdep[i]->fde_caps);
 1835                                 unp_externalize_fp(fdep[i]->fde_file);
 1836                         }
 1837 
 1838                         /*
 1839                          * The new type indicates that the mbuf data refers to
 1840                          * kernel resources that may need to be released before
 1841                          * the mbuf is freed.
 1842                          */
 1843                         m_chtype(*controlp, MT_EXTCONTROL);
 1844                         FILEDESC_XUNLOCK(fdesc);
 1845                         free(fdep[0], M_FILECAPS);
 1846                 } else {
 1847                         /* We can just copy anything else across. */
 1848                         if (error || controlp == NULL)
 1849                                 goto next;
 1850                         *controlp = sbcreatecontrol(NULL, datalen,
 1851                             cm->cmsg_type, cm->cmsg_level);
 1852                         if (*controlp == NULL) {
 1853                                 error = ENOBUFS;
 1854                                 goto next;
 1855                         }
 1856                         bcopy(data,
 1857                             CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
 1858                             datalen);
 1859                 }
 1860                 controlp = &(*controlp)->m_next;
 1861 
 1862 next:
 1863                 if (CMSG_SPACE(datalen) < clen) {
 1864                         clen -= CMSG_SPACE(datalen);
 1865                         cm = (struct cmsghdr *)
 1866                             ((caddr_t)cm + CMSG_SPACE(datalen));
 1867                 } else {
 1868                         clen = 0;
 1869                         cm = NULL;
 1870                 }
 1871         }
 1872 
 1873         m_freem(control);
 1874         return (error);
 1875 }
 1876 
 1877 static void
 1878 unp_zone_change(void *tag)
 1879 {
 1880 
 1881         uma_zone_set_max(unp_zone, maxsockets);
 1882 }
 1883 
 1884 static void
 1885 unp_init(void)
 1886 {
 1887 
 1888 #ifdef VIMAGE
 1889         if (!IS_DEFAULT_VNET(curvnet))
 1890                 return;
 1891 #endif
 1892         unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
 1893             NULL, NULL, UMA_ALIGN_PTR, 0);
 1894         if (unp_zone == NULL)
 1895                 panic("unp_init");
 1896         uma_zone_set_max(unp_zone, maxsockets);
 1897         uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
 1898         EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
 1899             NULL, EVENTHANDLER_PRI_ANY);
 1900         LIST_INIT(&unp_dhead);
 1901         LIST_INIT(&unp_shead);
 1902         LIST_INIT(&unp_sphead);
 1903         SLIST_INIT(&unp_defers);
 1904         TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
 1905         TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
 1906         UNP_LINK_LOCK_INIT();
 1907         UNP_LIST_LOCK_INIT();
 1908         UNP_DEFERRED_LOCK_INIT();
 1909 }
 1910 
 1911 static void
 1912 unp_internalize_cleanup_rights(struct mbuf *control)
 1913 {
 1914         struct cmsghdr *cp;
 1915         struct mbuf *m;
 1916         void *data;
 1917         socklen_t datalen;
 1918 
 1919         for (m = control; m != NULL; m = m->m_next) {
 1920                 cp = mtod(m, struct cmsghdr *);
 1921                 if (cp->cmsg_level != SOL_SOCKET ||
 1922                     cp->cmsg_type != SCM_RIGHTS)
 1923                         continue;
 1924                 data = CMSG_DATA(cp);
 1925                 datalen = (caddr_t)cp + cp->cmsg_len - (caddr_t)data;
 1926                 unp_freerights(data, datalen / sizeof(struct filedesc *));
 1927         }
 1928 }
 1929 
 1930 static int
 1931 unp_internalize(struct mbuf **controlp, struct thread *td)
 1932 {
 1933         struct mbuf *control, **initial_controlp;
 1934         struct proc *p;
 1935         struct filedesc *fdesc;
 1936         struct bintime *bt;
 1937         struct cmsghdr *cm;
 1938         struct cmsgcred *cmcred;
 1939         struct filedescent *fde, **fdep, *fdev;
 1940         struct file *fp;
 1941         struct timeval *tv;
 1942         struct timespec *ts;
 1943         void *data;
 1944         socklen_t clen, datalen;
 1945         int i, error, *fdp, oldfds;
 1946         u_int newlen;
 1947 
 1948         UNP_LINK_UNLOCK_ASSERT();
 1949 
 1950         p = td->td_proc;
 1951         fdesc = p->p_fd;
 1952         error = 0;
 1953         control = *controlp;
 1954         clen = control->m_len;
 1955         *controlp = NULL;
 1956         initial_controlp = controlp;
 1957         for (cm = mtod(control, struct cmsghdr *); cm != NULL;) {
 1958                 if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
 1959                     || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
 1960                         error = EINVAL;
 1961                         goto out;
 1962                 }
 1963                 data = CMSG_DATA(cm);
 1964                 datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
 1965 
 1966                 switch (cm->cmsg_type) {
 1967                 /*
 1968                  * Fill in credential information.
 1969                  */
 1970                 case SCM_CREDS:
 1971                         *controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
 1972                             SCM_CREDS, SOL_SOCKET);
 1973                         if (*controlp == NULL) {
 1974                                 error = ENOBUFS;
 1975                                 goto out;
 1976                         }
 1977                         cmcred = (struct cmsgcred *)
 1978                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 1979                         cmcred->cmcred_pid = p->p_pid;
 1980                         cmcred->cmcred_uid = td->td_ucred->cr_ruid;
 1981                         cmcred->cmcred_gid = td->td_ucred->cr_rgid;
 1982                         cmcred->cmcred_euid = td->td_ucred->cr_uid;
 1983                         cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
 1984                             CMGROUP_MAX);
 1985                         for (i = 0; i < cmcred->cmcred_ngroups; i++)
 1986                                 cmcred->cmcred_groups[i] =
 1987                                     td->td_ucred->cr_groups[i];
 1988                         break;
 1989 
 1990                 case SCM_RIGHTS:
 1991                         oldfds = datalen / sizeof (int);
 1992                         if (oldfds == 0)
 1993                                 break;
 1994                         /*
 1995                          * Check that all the FDs passed in refer to legal
 1996                          * files.  If not, reject the entire operation.
 1997                          */
 1998                         fdp = data;
 1999                         FILEDESC_SLOCK(fdesc);
 2000                         for (i = 0; i < oldfds; i++, fdp++) {
 2001                                 fp = fget_locked(fdesc, *fdp);
 2002                                 if (fp == NULL) {
 2003                                         FILEDESC_SUNLOCK(fdesc);
 2004                                         error = EBADF;
 2005                                         goto out;
 2006                                 }
 2007                                 if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
 2008                                         FILEDESC_SUNLOCK(fdesc);
 2009                                         error = EOPNOTSUPP;
 2010                                         goto out;
 2011                                 }
 2012 
 2013                         }
 2014 
 2015                         /*
 2016                          * Now replace the integer FDs with pointers to the
 2017                          * file structure and capability rights.
 2018                          */
 2019                         newlen = oldfds * sizeof(fdep[0]);
 2020                         *controlp = sbcreatecontrol(NULL, newlen,
 2021                             SCM_RIGHTS, SOL_SOCKET);
 2022                         if (*controlp == NULL) {
 2023                                 FILEDESC_SUNLOCK(fdesc);
 2024                                 error = E2BIG;
 2025                                 goto out;
 2026                         }
 2027                         fdp = data;
 2028                         fdep = (struct filedescent **)
 2029                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 2030                         fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
 2031                             M_WAITOK);
 2032                         for (i = 0; i < oldfds; i++, fdev++, fdp++) {
 2033                                 fde = &fdesc->fd_ofiles[*fdp];
 2034                                 fdep[i] = fdev;
 2035                                 fdep[i]->fde_file = fde->fde_file;
 2036                                 filecaps_copy(&fde->fde_caps,
 2037                                     &fdep[i]->fde_caps, true);
 2038                                 unp_internalize_fp(fdep[i]->fde_file);
 2039                         }
 2040                         FILEDESC_SUNLOCK(fdesc);
 2041                         break;
 2042 
 2043                 case SCM_TIMESTAMP:
 2044                         *controlp = sbcreatecontrol(NULL, sizeof(*tv),
 2045                             SCM_TIMESTAMP, SOL_SOCKET);
 2046                         if (*controlp == NULL) {
 2047                                 error = ENOBUFS;
 2048                                 goto out;
 2049                         }
 2050                         tv = (struct timeval *)
 2051                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 2052                         microtime(tv);
 2053                         break;
 2054 
 2055                 case SCM_BINTIME:
 2056                         *controlp = sbcreatecontrol(NULL, sizeof(*bt),
 2057                             SCM_BINTIME, SOL_SOCKET);
 2058                         if (*controlp == NULL) {
 2059                                 error = ENOBUFS;
 2060                                 goto out;
 2061                         }
 2062                         bt = (struct bintime *)
 2063                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 2064                         bintime(bt);
 2065                         break;
 2066 
 2067                 case SCM_REALTIME:
 2068                         *controlp = sbcreatecontrol(NULL, sizeof(*ts),
 2069                             SCM_REALTIME, SOL_SOCKET);
 2070                         if (*controlp == NULL) {
 2071                                 error = ENOBUFS;
 2072                                 goto out;
 2073                         }
 2074                         ts = (struct timespec *)
 2075                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 2076                         nanotime(ts);
 2077                         break;
 2078 
 2079                 case SCM_MONOTONIC:
 2080                         *controlp = sbcreatecontrol(NULL, sizeof(*ts),
 2081                             SCM_MONOTONIC, SOL_SOCKET);
 2082                         if (*controlp == NULL) {
 2083                                 error = ENOBUFS;
 2084                                 goto out;
 2085                         }
 2086                         ts = (struct timespec *)
 2087                             CMSG_DATA(mtod(*controlp, struct cmsghdr *));
 2088                         nanouptime(ts);
 2089                         break;
 2090 
 2091                 default:
 2092                         error = EINVAL;
 2093                         goto out;
 2094                 }
 2095 
 2096                 controlp = &(*controlp)->m_next;
 2097                 if (CMSG_SPACE(datalen) < clen) {
 2098                         clen -= CMSG_SPACE(datalen);
 2099                         cm = (struct cmsghdr *)
 2100                             ((caddr_t)cm + CMSG_SPACE(datalen));
 2101                 } else {
 2102                         clen = 0;
 2103                         cm = NULL;
 2104                 }
 2105         }
 2106 
 2107 out:
 2108         if (error != 0 && initial_controlp != NULL)
 2109                 unp_internalize_cleanup_rights(*initial_controlp);
 2110         m_freem(control);
 2111         return (error);
 2112 }
 2113 
 2114 static struct mbuf *
 2115 unp_addsockcred(struct thread *td, struct mbuf *control)
 2116 {
 2117         struct mbuf *m, *n, *n_prev;
 2118         struct sockcred *sc;
 2119         const struct cmsghdr *cm;
 2120         int ngroups;
 2121         int i;
 2122 
 2123         ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
 2124         m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
 2125         if (m == NULL)
 2126                 return (control);
 2127 
 2128         sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
 2129         sc->sc_uid = td->td_ucred->cr_ruid;
 2130         sc->sc_euid = td->td_ucred->cr_uid;
 2131         sc->sc_gid = td->td_ucred->cr_rgid;
 2132         sc->sc_egid = td->td_ucred->cr_gid;
 2133         sc->sc_ngroups = ngroups;
 2134         for (i = 0; i < sc->sc_ngroups; i++)
 2135                 sc->sc_groups[i] = td->td_ucred->cr_groups[i];
 2136 
 2137         /*
 2138          * Unlink SCM_CREDS control messages (struct cmsgcred), since just
 2139          * created SCM_CREDS control message (struct sockcred) has another
 2140          * format.
 2141          */
 2142         if (control != NULL)
 2143                 for (n = control, n_prev = NULL; n != NULL;) {
 2144                         cm = mtod(n, struct cmsghdr *);
 2145                         if (cm->cmsg_level == SOL_SOCKET &&
 2146                             cm->cmsg_type == SCM_CREDS) {
 2147                                 if (n_prev == NULL)
 2148                                         control = n->m_next;
 2149                                 else
 2150                                         n_prev->m_next = n->m_next;
 2151                                 n = m_free(n);
 2152                         } else {
 2153                                 n_prev = n;
 2154                                 n = n->m_next;
 2155                         }
 2156                 }
 2157 
 2158         /* Prepend it to the head. */
 2159         m->m_next = control;
 2160         return (m);
 2161 }
 2162 
 2163 static struct unpcb *
 2164 fptounp(struct file *fp)
 2165 {
 2166         struct socket *so;
 2167 
 2168         if (fp->f_type != DTYPE_SOCKET)
 2169                 return (NULL);
 2170         if ((so = fp->f_data) == NULL)
 2171                 return (NULL);
 2172         if (so->so_proto->pr_domain != &localdomain)
 2173                 return (NULL);
 2174         return sotounpcb(so);
 2175 }
 2176 
 2177 static void
 2178 unp_discard(struct file *fp)
 2179 {
 2180         struct unp_defer *dr;
 2181 
 2182         if (unp_externalize_fp(fp)) {
 2183                 dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
 2184                 dr->ud_fp = fp;
 2185                 UNP_DEFERRED_LOCK();
 2186                 SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
 2187                 UNP_DEFERRED_UNLOCK();
 2188                 atomic_add_int(&unp_defers_count, 1);
 2189                 taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
 2190         } else
 2191                 (void) closef(fp, (struct thread *)NULL);
 2192 }
 2193 
 2194 static void
 2195 unp_process_defers(void *arg __unused, int pending)
 2196 {
 2197         struct unp_defer *dr;
 2198         SLIST_HEAD(, unp_defer) drl;
 2199         int count;
 2200 
 2201         SLIST_INIT(&drl);
 2202         for (;;) {
 2203                 UNP_DEFERRED_LOCK();
 2204                 if (SLIST_FIRST(&unp_defers) == NULL) {
 2205                         UNP_DEFERRED_UNLOCK();
 2206                         break;
 2207                 }
 2208                 SLIST_SWAP(&unp_defers, &drl, unp_defer);
 2209                 UNP_DEFERRED_UNLOCK();
 2210                 count = 0;
 2211                 while ((dr = SLIST_FIRST(&drl)) != NULL) {
 2212                         SLIST_REMOVE_HEAD(&drl, ud_link);
 2213                         closef(dr->ud_fp, NULL);
 2214                         free(dr, M_TEMP);
 2215                         count++;
 2216                 }
 2217                 atomic_add_int(&unp_defers_count, -count);
 2218         }
 2219 }
 2220 
 2221 static void
 2222 unp_internalize_fp(struct file *fp)
 2223 {
 2224         struct unpcb *unp;
 2225 
 2226         UNP_LINK_WLOCK();
 2227         if ((unp = fptounp(fp)) != NULL) {
 2228                 unp->unp_file = fp;
 2229                 unp->unp_msgcount++;
 2230         }
 2231         fhold(fp);
 2232         unp_rights++;
 2233         UNP_LINK_WUNLOCK();
 2234 }
 2235 
 2236 static int
 2237 unp_externalize_fp(struct file *fp)
 2238 {
 2239         struct unpcb *unp;
 2240         int ret;
 2241 
 2242         UNP_LINK_WLOCK();
 2243         if ((unp = fptounp(fp)) != NULL) {
 2244                 unp->unp_msgcount--;
 2245                 ret = 1;
 2246         } else
 2247                 ret = 0;
 2248         unp_rights--;
 2249         UNP_LINK_WUNLOCK();
 2250         return (ret);
 2251 }
 2252 
 2253 /*
 2254  * unp_defer indicates whether additional work has been defered for a future
 2255  * pass through unp_gc().  It is thread local and does not require explicit
 2256  * synchronization.
 2257  */
 2258 static int      unp_marked;
 2259 static int      unp_unreachable;
 2260 
 2261 static void
 2262 unp_accessable(struct filedescent **fdep, int fdcount)
 2263 {
 2264         struct unpcb *unp;
 2265         struct file *fp;
 2266         int i;
 2267 
 2268         for (i = 0; i < fdcount; i++) {
 2269                 fp = fdep[i]->fde_file;
 2270                 if ((unp = fptounp(fp)) == NULL)
 2271                         continue;
 2272                 if (unp->unp_gcflag & UNPGC_REF)
 2273                         continue;
 2274                 unp->unp_gcflag &= ~UNPGC_DEAD;
 2275                 unp->unp_gcflag |= UNPGC_REF;
 2276                 unp_marked++;
 2277         }
 2278 }
 2279 
 2280 static void
 2281 unp_gc_process(struct unpcb *unp)
 2282 {
 2283         struct socket *soa;
 2284         struct socket *so;
 2285         struct file *fp;
 2286 
 2287         /* Already processed. */
 2288         if (unp->unp_gcflag & UNPGC_SCANNED)
 2289                 return;
 2290         fp = unp->unp_file;
 2291 
 2292         /*
 2293          * Check for a socket potentially in a cycle.  It must be in a
 2294          * queue as indicated by msgcount, and this must equal the file
 2295          * reference count.  Note that when msgcount is 0 the file is NULL.
 2296          */
 2297         if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
 2298             unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
 2299                 unp->unp_gcflag |= UNPGC_DEAD;
 2300                 unp_unreachable++;
 2301                 return;
 2302         }
 2303 
 2304         /*
 2305          * Mark all sockets we reference with RIGHTS.
 2306          */
 2307         so = unp->unp_socket;
 2308         if ((unp->unp_gcflag & UNPGC_IGNORE_RIGHTS) == 0) {
 2309                 SOCKBUF_LOCK(&so->so_rcv);
 2310                 unp_scan(so->so_rcv.sb_mb, unp_accessable);
 2311                 SOCKBUF_UNLOCK(&so->so_rcv);
 2312         }
 2313 
 2314         /*
 2315          * Mark all sockets in our accept queue.
 2316          */
 2317         ACCEPT_LOCK();
 2318         TAILQ_FOREACH(soa, &so->so_comp, so_list) {
 2319                 if ((sotounpcb(soa)->unp_gcflag & UNPGC_IGNORE_RIGHTS) != 0)
 2320                         continue;
 2321                 SOCKBUF_LOCK(&soa->so_rcv);
 2322                 unp_scan(soa->so_rcv.sb_mb, unp_accessable);
 2323                 SOCKBUF_UNLOCK(&soa->so_rcv);
 2324         }
 2325         ACCEPT_UNLOCK();
 2326         unp->unp_gcflag |= UNPGC_SCANNED;
 2327 }
 2328 
 2329 static int unp_recycled;
 2330 SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, 
 2331     "Number of unreachable sockets claimed by the garbage collector.");
 2332 
 2333 static int unp_taskcount;
 2334 SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, 
 2335     "Number of times the garbage collector has run.");
 2336 
 2337 static void
 2338 unp_gc(__unused void *arg, int pending)
 2339 {
 2340         struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
 2341                                     NULL };
 2342         struct unp_head **head;
 2343         struct file *f, **unref;
 2344         struct unpcb *unp;
 2345         int i, total;
 2346 
 2347         unp_taskcount++;
 2348         UNP_LIST_LOCK();
 2349         /*
 2350          * First clear all gc flags from previous runs, apart from
 2351          * UNPGC_IGNORE_RIGHTS.
 2352          */
 2353         for (head = heads; *head != NULL; head++)
 2354                 LIST_FOREACH(unp, *head, unp_link)
 2355                         unp->unp_gcflag =
 2356                             (unp->unp_gcflag & UNPGC_IGNORE_RIGHTS);
 2357 
 2358         /*
 2359          * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
 2360          * is reachable all of the sockets it references are reachable.
 2361          * Stop the scan once we do a complete loop without discovering
 2362          * a new reachable socket.
 2363          */
 2364         do {
 2365                 unp_unreachable = 0;
 2366                 unp_marked = 0;
 2367                 for (head = heads; *head != NULL; head++)
 2368                         LIST_FOREACH(unp, *head, unp_link)
 2369                                 unp_gc_process(unp);
 2370         } while (unp_marked);
 2371         UNP_LIST_UNLOCK();
 2372         if (unp_unreachable == 0)
 2373                 return;
 2374 
 2375         /*
 2376          * Allocate space for a local list of dead unpcbs.
 2377          */
 2378         unref = malloc(unp_unreachable * sizeof(struct file *),
 2379             M_TEMP, M_WAITOK);
 2380 
 2381         /*
 2382          * Iterate looking for sockets which have been specifically marked
 2383          * as as unreachable and store them locally.
 2384          */
 2385         UNP_LINK_RLOCK();
 2386         UNP_LIST_LOCK();
 2387         for (total = 0, head = heads; *head != NULL; head++)
 2388                 LIST_FOREACH(unp, *head, unp_link)
 2389                         if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
 2390                                 f = unp->unp_file;
 2391                                 if (unp->unp_msgcount == 0 || f == NULL ||
 2392                                     f->f_count != unp->unp_msgcount)
 2393                                         continue;
 2394                                 unref[total++] = f;
 2395                                 fhold(f);
 2396                                 KASSERT(total <= unp_unreachable,
 2397                                     ("unp_gc: incorrect unreachable count."));
 2398                         }
 2399         UNP_LIST_UNLOCK();
 2400         UNP_LINK_RUNLOCK();
 2401 
 2402         /*
 2403          * Now flush all sockets, free'ing rights.  This will free the
 2404          * struct files associated with these sockets but leave each socket
 2405          * with one remaining ref.
 2406          */
 2407         for (i = 0; i < total; i++) {
 2408                 struct socket *so;
 2409 
 2410                 so = unref[i]->f_data;
 2411                 CURVNET_SET(so->so_vnet);
 2412                 sorflush(so);
 2413                 CURVNET_RESTORE();
 2414         }
 2415 
 2416         /*
 2417          * And finally release the sockets so they can be reclaimed.
 2418          */
 2419         for (i = 0; i < total; i++)
 2420                 fdrop(unref[i], NULL);
 2421         unp_recycled += total;
 2422         free(unref, M_TEMP);
 2423 }
 2424 
 2425 static void
 2426 unp_dispose(struct mbuf *m)
 2427 {
 2428 
 2429         if (m)
 2430                 unp_scan(m, unp_freerights);
 2431 }
 2432 
 2433 /*
 2434  * Synchronize against unp_gc, which can trip over data as we are freeing it.
 2435  */
 2436 static void
 2437 unp_dispose_so(struct socket *so)
 2438 {
 2439         struct unpcb *unp;
 2440 
 2441         unp = sotounpcb(so);
 2442         UNP_LIST_LOCK();
 2443         unp->unp_gcflag |= UNPGC_IGNORE_RIGHTS;
 2444         UNP_LIST_UNLOCK();
 2445         unp_dispose(so->so_rcv.sb_mb);
 2446 }
 2447 
 2448 static void
 2449 unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
 2450 {
 2451         struct mbuf *m;
 2452         struct cmsghdr *cm;
 2453         void *data;
 2454         socklen_t clen, datalen;
 2455 
 2456         while (m0 != NULL) {
 2457                 for (m = m0; m; m = m->m_next) {
 2458                         if (m->m_type != MT_CONTROL)
 2459                                 continue;
 2460 
 2461                         cm = mtod(m, struct cmsghdr *);
 2462                         clen = m->m_len;
 2463 
 2464                         while (cm != NULL) {
 2465                                 if (sizeof(*cm) > clen || cm->cmsg_len > clen)
 2466                                         break;
 2467 
 2468                                 data = CMSG_DATA(cm);
 2469                                 datalen = (caddr_t)cm + cm->cmsg_len
 2470                                     - (caddr_t)data;
 2471 
 2472                                 if (cm->cmsg_level == SOL_SOCKET &&
 2473                                     cm->cmsg_type == SCM_RIGHTS) {
 2474                                         (*op)(data, datalen /
 2475                                             sizeof(struct filedescent *));
 2476                                 }
 2477 
 2478                                 if (CMSG_SPACE(datalen) < clen) {
 2479                                         clen -= CMSG_SPACE(datalen);
 2480                                         cm = (struct cmsghdr *)
 2481                                             ((caddr_t)cm + CMSG_SPACE(datalen));
 2482                                 } else {
 2483                                         clen = 0;
 2484                                         cm = NULL;
 2485                                 }
 2486                         }
 2487                 }
 2488                 m0 = m0->m_nextpkt;
 2489         }
 2490 }
 2491 
 2492 /*
 2493  * A helper function called by VFS before socket-type vnode reclamation.
 2494  * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
 2495  * use count.
 2496  */
 2497 void
 2498 vfs_unp_reclaim(struct vnode *vp)
 2499 {
 2500         struct socket *so;
 2501         struct unpcb *unp;
 2502         int active;
 2503 
 2504         ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
 2505         KASSERT(vp->v_type == VSOCK,
 2506             ("vfs_unp_reclaim: vp->v_type != VSOCK"));
 2507 
 2508         active = 0;
 2509         UNP_LINK_WLOCK();
 2510         VOP_UNP_CONNECT(vp, &so);
 2511         if (so == NULL)
 2512                 goto done;
 2513         unp = sotounpcb(so);
 2514         if (unp == NULL)
 2515                 goto done;
 2516         UNP_PCB_LOCK(unp);
 2517         if (unp->unp_vnode == vp) {
 2518                 VOP_UNP_DETACH(vp);
 2519                 unp->unp_vnode = NULL;
 2520                 active = 1;
 2521         }
 2522         UNP_PCB_UNLOCK(unp);
 2523 done:
 2524         UNP_LINK_WUNLOCK();
 2525         if (active)
 2526                 vunref(vp);
 2527 }
 2528 
 2529 #ifdef DDB
 2530 static void
 2531 db_print_indent(int indent)
 2532 {
 2533         int i;
 2534 
 2535         for (i = 0; i < indent; i++)
 2536                 db_printf(" ");
 2537 }
 2538 
 2539 static void
 2540 db_print_unpflags(int unp_flags)
 2541 {
 2542         int comma;
 2543 
 2544         comma = 0;
 2545         if (unp_flags & UNP_HAVEPC) {
 2546                 db_printf("%sUNP_HAVEPC", comma ? ", " : "");
 2547                 comma = 1;
 2548         }
 2549         if (unp_flags & UNP_HAVEPCCACHED) {
 2550                 db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
 2551                 comma = 1;
 2552         }
 2553         if (unp_flags & UNP_WANTCRED) {
 2554                 db_printf("%sUNP_WANTCRED", comma ? ", " : "");
 2555                 comma = 1;
 2556         }
 2557         if (unp_flags & UNP_CONNWAIT) {
 2558                 db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
 2559                 comma = 1;
 2560         }
 2561         if (unp_flags & UNP_CONNECTING) {
 2562                 db_printf("%sUNP_CONNECTING", comma ? ", " : "");
 2563                 comma = 1;
 2564         }
 2565         if (unp_flags & UNP_BINDING) {
 2566                 db_printf("%sUNP_BINDING", comma ? ", " : "");
 2567                 comma = 1;
 2568         }
 2569 }
 2570 
 2571 static void
 2572 db_print_xucred(int indent, struct xucred *xu)
 2573 {
 2574         int comma, i;
 2575 
 2576         db_print_indent(indent);
 2577         db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
 2578             xu->cr_version, xu->cr_uid, xu->cr_ngroups);
 2579         db_print_indent(indent);
 2580         db_printf("cr_groups: ");
 2581         comma = 0;
 2582         for (i = 0; i < xu->cr_ngroups; i++) {
 2583                 db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
 2584                 comma = 1;
 2585         }
 2586         db_printf("\n");
 2587 }
 2588 
 2589 static void
 2590 db_print_unprefs(int indent, struct unp_head *uh)
 2591 {
 2592         struct unpcb *unp;
 2593         int counter;
 2594 
 2595         counter = 0;
 2596         LIST_FOREACH(unp, uh, unp_reflink) {
 2597                 if (counter % 4 == 0)
 2598                         db_print_indent(indent);
 2599                 db_printf("%p  ", unp);
 2600                 if (counter % 4 == 3)
 2601                         db_printf("\n");
 2602                 counter++;
 2603         }
 2604         if (counter != 0 && counter % 4 != 0)
 2605                 db_printf("\n");
 2606 }
 2607 
 2608 DB_SHOW_COMMAND(unpcb, db_show_unpcb)
 2609 {
 2610         struct unpcb *unp;
 2611 
 2612         if (!have_addr) {
 2613                 db_printf("usage: show unpcb <addr>\n");
 2614                 return;
 2615         }
 2616         unp = (struct unpcb *)addr;
 2617 
 2618         db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
 2619             unp->unp_vnode);
 2620 
 2621         db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
 2622             unp->unp_conn);
 2623 
 2624         db_printf("unp_refs:\n");
 2625         db_print_unprefs(2, &unp->unp_refs);
 2626 
 2627         /* XXXRW: Would be nice to print the full address, if any. */
 2628         db_printf("unp_addr: %p\n", unp->unp_addr);
 2629 
 2630         db_printf("unp_gencnt: %llu\n",
 2631             (unsigned long long)unp->unp_gencnt);
 2632 
 2633         db_printf("unp_flags: %x (", unp->unp_flags);
 2634         db_print_unpflags(unp->unp_flags);
 2635         db_printf(")\n");
 2636 
 2637         db_printf("unp_peercred:\n");
 2638         db_print_xucred(2, &unp->unp_peercred);
 2639 
 2640         db_printf("unp_refcount: %u\n", unp->unp_refcount);
 2641 }
 2642 #endif

Cache object: dda053d06458a539ddd03ac28da577de


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.