The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_aio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. John S. Dyson's name may not be used to endorse or promote products
   12  *    derived from this software without specific prior written permission.
   13  *
   14  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
   15  * bad that happens because of using this software isn't the responsibility
   16  * of the author.  This software is distributed AS-IS.
   17  */
   18 
   19 /*
   20  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
   21  */
   22 
   23 #include <sys/cdefs.h>
   24 __FBSDID("$FreeBSD$");
   25 
   26 #include <sys/param.h>
   27 #include <sys/systm.h>
   28 #include <sys/malloc.h>
   29 #include <sys/bio.h>
   30 #include <sys/buf.h>
   31 #include <sys/capsicum.h>
   32 #include <sys/eventhandler.h>
   33 #include <sys/sysproto.h>
   34 #include <sys/filedesc.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/kthread.h>
   38 #include <sys/fcntl.h>
   39 #include <sys/file.h>
   40 #include <sys/limits.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/unistd.h>
   44 #include <sys/posix4.h>
   45 #include <sys/proc.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/syscallsubr.h>
   49 #include <sys/protosw.h>
   50 #include <sys/rwlock.h>
   51 #include <sys/sema.h>
   52 #include <sys/socket.h>
   53 #include <sys/socketvar.h>
   54 #include <sys/syscall.h>
   55 #include <sys/sysctl.h>
   56 #include <sys/syslog.h>
   57 #include <sys/sx.h>
   58 #include <sys/taskqueue.h>
   59 #include <sys/vnode.h>
   60 #include <sys/conf.h>
   61 #include <sys/event.h>
   62 #include <sys/mount.h>
   63 #include <geom/geom.h>
   64 
   65 #include <machine/atomic.h>
   66 
   67 #include <vm/vm.h>
   68 #include <vm/vm_page.h>
   69 #include <vm/vm_extern.h>
   70 #include <vm/pmap.h>
   71 #include <vm/vm_map.h>
   72 #include <vm/vm_object.h>
   73 #include <vm/uma.h>
   74 #include <sys/aio.h>
   75 
   76 /*
   77  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
   78  * overflow. (XXX will be removed soon.)
   79  */
   80 static u_long jobrefid;
   81 
   82 /*
   83  * Counter for aio_fsync.
   84  */
   85 static uint64_t jobseqno;
   86 
   87 #ifndef MAX_AIO_PER_PROC
   88 #define MAX_AIO_PER_PROC        32
   89 #endif
   90 
   91 #ifndef MAX_AIO_QUEUE_PER_PROC
   92 #define MAX_AIO_QUEUE_PER_PROC  256
   93 #endif
   94 
   95 #ifndef MAX_AIO_QUEUE
   96 #define MAX_AIO_QUEUE           1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
   97 #endif
   98 
   99 #ifndef MAX_BUF_AIO
  100 #define MAX_BUF_AIO             16
  101 #endif
  102 
  103 FEATURE(aio, "Asynchronous I/O");
  104 SYSCTL_DECL(_p1003_1b);
  105 
  106 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
  107 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O");
  108 
  109 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  110     "Async IO management");
  111 
  112 static int enable_aio_unsafe = 0;
  113 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
  114     "Permit asynchronous IO on all file types, not just known-safe types");
  115 
  116 static unsigned int unsafe_warningcnt = 1;
  117 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
  118     &unsafe_warningcnt, 0,
  119     "Warnings that will be triggered upon failed IO requests on unsafe files");
  120 
  121 static int max_aio_procs = MAX_AIO_PROCS;
  122 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
  123     "Maximum number of kernel processes to use for handling async IO ");
  124 
  125 static int num_aio_procs = 0;
  126 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
  127     "Number of presently active kernel processes for async IO");
  128 
  129 /*
  130  * The code will adjust the actual number of AIO processes towards this
  131  * number when it gets a chance.
  132  */
  133 static int target_aio_procs = TARGET_AIO_PROCS;
  134 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
  135     0,
  136     "Preferred number of ready kernel processes for async IO");
  137 
  138 static int max_queue_count = MAX_AIO_QUEUE;
  139 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
  140     "Maximum number of aio requests to queue, globally");
  141 
  142 static int num_queue_count = 0;
  143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
  144     "Number of queued aio requests");
  145 
  146 static int num_buf_aio = 0;
  147 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
  148     "Number of aio requests presently handled by the buf subsystem");
  149 
  150 static int num_unmapped_aio = 0;
  151 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
  152     0,
  153     "Number of aio requests presently handled by unmapped I/O buffers");
  154 
  155 /* Number of async I/O processes in the process of being started */
  156 /* XXX This should be local to aio_aqueue() */
  157 static int num_aio_resv_start = 0;
  158 
  159 static int aiod_lifetime;
  160 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
  161     "Maximum lifetime for idle aiod");
  162 
  163 static int max_aio_per_proc = MAX_AIO_PER_PROC;
  164 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
  165     0,
  166     "Maximum active aio requests per process");
  167 
  168 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
  169 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
  170     &max_aio_queue_per_proc, 0,
  171     "Maximum queued aio requests per process");
  172 
  173 static int max_buf_aio = MAX_BUF_AIO;
  174 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
  175     "Maximum buf aio requests per process");
  176 
  177 /* 
  178  * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
  179  * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
  180  * vfs.aio.aio_listio_max.
  181  */
  182 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
  183     CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
  184     0, "Maximum aio requests for a single lio_listio call");
  185 
  186 #ifdef COMPAT_FREEBSD6
  187 typedef struct oaiocb {
  188         int     aio_fildes;             /* File descriptor */
  189         off_t   aio_offset;             /* File offset for I/O */
  190         volatile void *aio_buf;         /* I/O buffer in process space */
  191         size_t  aio_nbytes;             /* Number of bytes for I/O */
  192         struct  osigevent aio_sigevent; /* Signal to deliver */
  193         int     aio_lio_opcode;         /* LIO opcode */
  194         int     aio_reqprio;            /* Request priority -- ignored */
  195         struct  __aiocb_private _aiocb_private;
  196 } oaiocb_t;
  197 #endif
  198 
  199 /*
  200  * Below is a key of locks used to protect each member of struct kaiocb
  201  * aioliojob and kaioinfo and any backends.
  202  *
  203  * * - need not protected
  204  * a - locked by kaioinfo lock
  205  * b - locked by backend lock, the backend lock can be null in some cases,
  206  *     for example, BIO belongs to this type, in this case, proc lock is
  207  *     reused.
  208  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
  209  */
  210 
  211 /*
  212  * If the routine that services an AIO request blocks while running in an
  213  * AIO kernel process it can starve other I/O requests.  BIO requests
  214  * queued via aio_qbio() complete asynchronously and do not use AIO kernel
  215  * processes at all.  Socket I/O requests use a separate pool of
  216  * kprocs and also force non-blocking I/O.  Other file I/O requests
  217  * use the generic fo_read/fo_write operations which can block.  The
  218  * fsync and mlock operations can also block while executing.  Ideally
  219  * none of these requests would block while executing.
  220  *
  221  * Note that the service routines cannot toggle O_NONBLOCK in the file
  222  * structure directly while handling a request due to races with
  223  * userland threads.
  224  */
  225 
  226 /* jobflags */
  227 #define KAIOCB_QUEUEING         0x01
  228 #define KAIOCB_CANCELLED        0x02
  229 #define KAIOCB_CANCELLING       0x04
  230 #define KAIOCB_CHECKSYNC        0x08
  231 #define KAIOCB_CLEARED          0x10
  232 #define KAIOCB_FINISHED         0x20
  233 
  234 /*
  235  * AIO process info
  236  */
  237 #define AIOP_FREE       0x1                     /* proc on free queue */
  238 
  239 struct aioproc {
  240         int     aioprocflags;                   /* (c) AIO proc flags */
  241         TAILQ_ENTRY(aioproc) list;              /* (c) list of processes */
  242         struct  proc *aioproc;                  /* (*) the AIO proc */
  243 };
  244 
  245 /*
  246  * data-structure for lio signal management
  247  */
  248 struct aioliojob {
  249         int     lioj_flags;                     /* (a) listio flags */
  250         int     lioj_count;                     /* (a) count of jobs */
  251         int     lioj_finished_count;            /* (a) count of finished jobs */
  252         struct  sigevent lioj_signal;           /* (a) signal on all I/O done */
  253         TAILQ_ENTRY(aioliojob) lioj_list;       /* (a) lio list */
  254         struct  knlist klist;                   /* (a) list of knotes */
  255         ksiginfo_t lioj_ksi;                    /* (a) Realtime signal info */
  256 };
  257 
  258 #define LIOJ_SIGNAL             0x1     /* signal on all done (lio) */
  259 #define LIOJ_SIGNAL_POSTED      0x2     /* signal has been posted */
  260 #define LIOJ_KEVENT_POSTED      0x4     /* kevent triggered */
  261 
  262 /*
  263  * per process aio data structure
  264  */
  265 struct kaioinfo {
  266         struct  mtx kaio_mtx;           /* the lock to protect this struct */
  267         int     kaio_flags;             /* (a) per process kaio flags */
  268         int     kaio_active_count;      /* (c) number of currently used AIOs */
  269         int     kaio_count;             /* (a) size of AIO queue */
  270         int     kaio_buffer_count;      /* (a) number of bio buffers */
  271         TAILQ_HEAD(,kaiocb) kaio_all;   /* (a) all AIOs in a process */
  272         TAILQ_HEAD(,kaiocb) kaio_done;  /* (a) done queue for process */
  273         TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
  274         TAILQ_HEAD(,kaiocb) kaio_jobqueue;      /* (a) job queue for process */
  275         TAILQ_HEAD(,kaiocb) kaio_syncqueue;     /* (a) queue for aio_fsync */
  276         TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
  277         struct  task kaio_task;         /* (*) task to kick aio processes */
  278         struct  task kaio_sync_task;    /* (*) task to schedule fsync jobs */
  279 };
  280 
  281 #define AIO_LOCK(ki)            mtx_lock(&(ki)->kaio_mtx)
  282 #define AIO_UNLOCK(ki)          mtx_unlock(&(ki)->kaio_mtx)
  283 #define AIO_LOCK_ASSERT(ki, f)  mtx_assert(&(ki)->kaio_mtx, (f))
  284 #define AIO_MTX(ki)             (&(ki)->kaio_mtx)
  285 
  286 #define KAIO_RUNDOWN    0x1     /* process is being run down */
  287 #define KAIO_WAKEUP     0x2     /* wakeup process when AIO completes */
  288 
  289 /*
  290  * Operations used to interact with userland aio control blocks.
  291  * Different ABIs provide their own operations.
  292  */
  293 struct aiocb_ops {
  294         int     (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
  295         long    (*fetch_status)(struct aiocb *ujob);
  296         long    (*fetch_error)(struct aiocb *ujob);
  297         int     (*store_status)(struct aiocb *ujob, long status);
  298         int     (*store_error)(struct aiocb *ujob, long error);
  299         int     (*store_kernelinfo)(struct aiocb *ujob, long jobref);
  300         int     (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
  301 };
  302 
  303 static TAILQ_HEAD(,aioproc) aio_freeproc;               /* (c) Idle daemons */
  304 static struct sema aio_newproc_sem;
  305 static struct mtx aio_job_mtx;
  306 static TAILQ_HEAD(,kaiocb) aio_jobs;                    /* (c) Async job list */
  307 static struct unrhdr *aiod_unr;
  308 
  309 static void     aio_biocleanup(struct bio *bp);
  310 void            aio_init_aioinfo(struct proc *p);
  311 static int      aio_onceonly(void);
  312 static int      aio_free_entry(struct kaiocb *job);
  313 static void     aio_process_rw(struct kaiocb *job);
  314 static void     aio_process_sync(struct kaiocb *job);
  315 static void     aio_process_mlock(struct kaiocb *job);
  316 static void     aio_schedule_fsync(void *context, int pending);
  317 static int      aio_newproc(int *);
  318 int             aio_aqueue(struct thread *td, struct aiocb *ujob,
  319                     struct aioliojob *lio, int type, struct aiocb_ops *ops);
  320 static int      aio_queue_file(struct file *fp, struct kaiocb *job);
  321 static void     aio_biowakeup(struct bio *bp);
  322 static void     aio_proc_rundown(void *arg, struct proc *p);
  323 static void     aio_proc_rundown_exec(void *arg, struct proc *p,
  324                     struct image_params *imgp);
  325 static int      aio_qbio(struct proc *p, struct kaiocb *job);
  326 static void     aio_daemon(void *param);
  327 static void     aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
  328 static bool     aio_clear_cancel_function_locked(struct kaiocb *job);
  329 static int      aio_kick(struct proc *userp);
  330 static void     aio_kick_nowait(struct proc *userp);
  331 static void     aio_kick_helper(void *context, int pending);
  332 static int      filt_aioattach(struct knote *kn);
  333 static void     filt_aiodetach(struct knote *kn);
  334 static int      filt_aio(struct knote *kn, long hint);
  335 static int      filt_lioattach(struct knote *kn);
  336 static void     filt_liodetach(struct knote *kn);
  337 static int      filt_lio(struct knote *kn, long hint);
  338 
  339 /*
  340  * Zones for:
  341  *      kaio    Per process async io info
  342  *      aiocb   async io jobs
  343  *      aiolio  list io jobs
  344  */
  345 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone;
  346 
  347 /* kqueue filters for aio */
  348 static struct filterops aio_filtops = {
  349         .f_isfd = 0,
  350         .f_attach = filt_aioattach,
  351         .f_detach = filt_aiodetach,
  352         .f_event = filt_aio,
  353 };
  354 static struct filterops lio_filtops = {
  355         .f_isfd = 0,
  356         .f_attach = filt_lioattach,
  357         .f_detach = filt_liodetach,
  358         .f_event = filt_lio
  359 };
  360 
  361 static eventhandler_tag exit_tag, exec_tag;
  362 
  363 TASKQUEUE_DEFINE_THREAD(aiod_kick);
  364 
  365 /*
  366  * Main operations function for use as a kernel module.
  367  */
  368 static int
  369 aio_modload(struct module *module, int cmd, void *arg)
  370 {
  371         int error = 0;
  372 
  373         switch (cmd) {
  374         case MOD_LOAD:
  375                 aio_onceonly();
  376                 break;
  377         case MOD_SHUTDOWN:
  378                 break;
  379         default:
  380                 error = EOPNOTSUPP;
  381                 break;
  382         }
  383         return (error);
  384 }
  385 
  386 static moduledata_t aio_mod = {
  387         "aio",
  388         &aio_modload,
  389         NULL
  390 };
  391 
  392 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
  393 MODULE_VERSION(aio, 1);
  394 
  395 /*
  396  * Startup initialization
  397  */
  398 static int
  399 aio_onceonly(void)
  400 {
  401 
  402         exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
  403             EVENTHANDLER_PRI_ANY);
  404         exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
  405             NULL, EVENTHANDLER_PRI_ANY);
  406         kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
  407         kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
  408         TAILQ_INIT(&aio_freeproc);
  409         sema_init(&aio_newproc_sem, 0, "aio_new_proc");
  410         mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
  411         TAILQ_INIT(&aio_jobs);
  412         aiod_unr = new_unrhdr(1, INT_MAX, NULL);
  413         kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
  414             NULL, NULL, UMA_ALIGN_PTR, 0);
  415         aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
  416             NULL, NULL, UMA_ALIGN_PTR, 0);
  417         aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
  418             NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  419         aiod_lifetime = AIOD_LIFETIME_DEFAULT;
  420         jobrefid = 1;
  421         p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
  422         p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
  423         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
  424 
  425         return (0);
  426 }
  427 
  428 /*
  429  * Init the per-process aioinfo structure.  The aioinfo limits are set
  430  * per-process for user limit (resource) management.
  431  */
  432 void
  433 aio_init_aioinfo(struct proc *p)
  434 {
  435         struct kaioinfo *ki;
  436 
  437         ki = uma_zalloc(kaio_zone, M_WAITOK);
  438         mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
  439         ki->kaio_flags = 0;
  440         ki->kaio_active_count = 0;
  441         ki->kaio_count = 0;
  442         ki->kaio_buffer_count = 0;
  443         TAILQ_INIT(&ki->kaio_all);
  444         TAILQ_INIT(&ki->kaio_done);
  445         TAILQ_INIT(&ki->kaio_jobqueue);
  446         TAILQ_INIT(&ki->kaio_liojoblist);
  447         TAILQ_INIT(&ki->kaio_syncqueue);
  448         TAILQ_INIT(&ki->kaio_syncready);
  449         TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
  450         TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
  451         PROC_LOCK(p);
  452         if (p->p_aioinfo == NULL) {
  453                 p->p_aioinfo = ki;
  454                 PROC_UNLOCK(p);
  455         } else {
  456                 PROC_UNLOCK(p);
  457                 mtx_destroy(&ki->kaio_mtx);
  458                 uma_zfree(kaio_zone, ki);
  459         }
  460 
  461         while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
  462                 aio_newproc(NULL);
  463 }
  464 
  465 static int
  466 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
  467 {
  468         struct thread *td;
  469         int error;
  470 
  471         error = sigev_findtd(p, sigev, &td);
  472         if (error)
  473                 return (error);
  474         if (!KSI_ONQ(ksi)) {
  475                 ksiginfo_set_sigev(ksi, sigev);
  476                 ksi->ksi_code = SI_ASYNCIO;
  477                 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
  478                 tdsendsignal(p, td, ksi->ksi_signo, ksi);
  479         }
  480         PROC_UNLOCK(p);
  481         return (error);
  482 }
  483 
  484 /*
  485  * Free a job entry.  Wait for completion if it is currently active, but don't
  486  * delay forever.  If we delay, we return a flag that says that we have to
  487  * restart the queue scan.
  488  */
  489 static int
  490 aio_free_entry(struct kaiocb *job)
  491 {
  492         struct kaioinfo *ki;
  493         struct aioliojob *lj;
  494         struct proc *p;
  495 
  496         p = job->userproc;
  497         MPASS(curproc == p);
  498         ki = p->p_aioinfo;
  499         MPASS(ki != NULL);
  500 
  501         AIO_LOCK_ASSERT(ki, MA_OWNED);
  502         MPASS(job->jobflags & KAIOCB_FINISHED);
  503 
  504         atomic_subtract_int(&num_queue_count, 1);
  505 
  506         ki->kaio_count--;
  507         MPASS(ki->kaio_count >= 0);
  508 
  509         TAILQ_REMOVE(&ki->kaio_done, job, plist);
  510         TAILQ_REMOVE(&ki->kaio_all, job, allist);
  511 
  512         lj = job->lio;
  513         if (lj) {
  514                 lj->lioj_count--;
  515                 lj->lioj_finished_count--;
  516 
  517                 if (lj->lioj_count == 0) {
  518                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  519                         /* lio is going away, we need to destroy any knotes */
  520                         knlist_delete(&lj->klist, curthread, 1);
  521                         PROC_LOCK(p);
  522                         sigqueue_take(&lj->lioj_ksi);
  523                         PROC_UNLOCK(p);
  524                         uma_zfree(aiolio_zone, lj);
  525                 }
  526         }
  527 
  528         /* job is going away, we need to destroy any knotes */
  529         knlist_delete(&job->klist, curthread, 1);
  530         PROC_LOCK(p);
  531         sigqueue_take(&job->ksi);
  532         PROC_UNLOCK(p);
  533 
  534         AIO_UNLOCK(ki);
  535 
  536         /*
  537          * The thread argument here is used to find the owning process
  538          * and is also passed to fo_close() which may pass it to various
  539          * places such as devsw close() routines.  Because of that, we
  540          * need a thread pointer from the process owning the job that is
  541          * persistent and won't disappear out from under us or move to
  542          * another process.
  543          *
  544          * Currently, all the callers of this function call it to remove
  545          * a kaiocb from the current process' job list either via a
  546          * syscall or due to the current process calling exit() or
  547          * execve().  Thus, we know that p == curproc.  We also know that
  548          * curthread can't exit since we are curthread.
  549          *
  550          * Therefore, we use curthread as the thread to pass to
  551          * knlist_delete().  This does mean that it is possible for the
  552          * thread pointer at close time to differ from the thread pointer
  553          * at open time, but this is already true of file descriptors in
  554          * a multithreaded process.
  555          */
  556         if (job->fd_file)
  557                 fdrop(job->fd_file, curthread);
  558         crfree(job->cred);
  559         if (job->uiop != &job->uio)
  560                 free(job->uiop, M_IOV);
  561         uma_zfree(aiocb_zone, job);
  562         AIO_LOCK(ki);
  563 
  564         return (0);
  565 }
  566 
  567 static void
  568 aio_proc_rundown_exec(void *arg, struct proc *p,
  569     struct image_params *imgp __unused)
  570 {
  571         aio_proc_rundown(arg, p);
  572 }
  573 
  574 static int
  575 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
  576 {
  577         aio_cancel_fn_t *func;
  578         int cancelled;
  579 
  580         AIO_LOCK_ASSERT(ki, MA_OWNED);
  581         if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
  582                 return (0);
  583         MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
  584         job->jobflags |= KAIOCB_CANCELLED;
  585 
  586         func = job->cancel_fn;
  587 
  588         /*
  589          * If there is no cancel routine, just leave the job marked as
  590          * cancelled.  The job should be in active use by a caller who
  591          * should complete it normally or when it fails to install a
  592          * cancel routine.
  593          */
  594         if (func == NULL)
  595                 return (0);
  596 
  597         /*
  598          * Set the CANCELLING flag so that aio_complete() will defer
  599          * completions of this job.  This prevents the job from being
  600          * freed out from under the cancel callback.  After the
  601          * callback any deferred completion (whether from the callback
  602          * or any other source) will be completed.
  603          */
  604         job->jobflags |= KAIOCB_CANCELLING;
  605         AIO_UNLOCK(ki);
  606         func(job);
  607         AIO_LOCK(ki);
  608         job->jobflags &= ~KAIOCB_CANCELLING;
  609         if (job->jobflags & KAIOCB_FINISHED) {
  610                 cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
  611                 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
  612                 aio_bio_done_notify(p, job);
  613         } else {
  614                 /*
  615                  * The cancel callback might have scheduled an
  616                  * operation to cancel this request, but it is
  617                  * only counted as cancelled if the request is
  618                  * cancelled when the callback returns.
  619                  */
  620                 cancelled = 0;
  621         }
  622         return (cancelled);
  623 }
  624 
  625 /*
  626  * Rundown the jobs for a given process.
  627  */
  628 static void
  629 aio_proc_rundown(void *arg, struct proc *p)
  630 {
  631         struct kaioinfo *ki;
  632         struct aioliojob *lj;
  633         struct kaiocb *job, *jobn;
  634 
  635         KASSERT(curthread->td_proc == p,
  636             ("%s: called on non-curproc", __func__));
  637         ki = p->p_aioinfo;
  638         if (ki == NULL)
  639                 return;
  640 
  641         AIO_LOCK(ki);
  642         ki->kaio_flags |= KAIO_RUNDOWN;
  643 
  644 restart:
  645 
  646         /*
  647          * Try to cancel all pending requests. This code simulates
  648          * aio_cancel on all pending I/O requests.
  649          */
  650         TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
  651                 aio_cancel_job(p, ki, job);
  652         }
  653 
  654         /* Wait for all running I/O to be finished */
  655         if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
  656                 ki->kaio_flags |= KAIO_WAKEUP;
  657                 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
  658                 goto restart;
  659         }
  660 
  661         /* Free all completed I/O requests. */
  662         while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
  663                 aio_free_entry(job);
  664 
  665         while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
  666                 if (lj->lioj_count == 0) {
  667                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  668                         knlist_delete(&lj->klist, curthread, 1);
  669                         PROC_LOCK(p);
  670                         sigqueue_take(&lj->lioj_ksi);
  671                         PROC_UNLOCK(p);
  672                         uma_zfree(aiolio_zone, lj);
  673                 } else {
  674                         panic("LIO job not cleaned up: C:%d, FC:%d\n",
  675                             lj->lioj_count, lj->lioj_finished_count);
  676                 }
  677         }
  678         AIO_UNLOCK(ki);
  679         taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
  680         taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
  681         mtx_destroy(&ki->kaio_mtx);
  682         uma_zfree(kaio_zone, ki);
  683         p->p_aioinfo = NULL;
  684 }
  685 
  686 /*
  687  * Select a job to run (called by an AIO daemon).
  688  */
  689 static struct kaiocb *
  690 aio_selectjob(struct aioproc *aiop)
  691 {
  692         struct kaiocb *job;
  693         struct kaioinfo *ki;
  694         struct proc *userp;
  695 
  696         mtx_assert(&aio_job_mtx, MA_OWNED);
  697 restart:
  698         TAILQ_FOREACH(job, &aio_jobs, list) {
  699                 userp = job->userproc;
  700                 ki = userp->p_aioinfo;
  701 
  702                 if (ki->kaio_active_count < max_aio_per_proc) {
  703                         TAILQ_REMOVE(&aio_jobs, job, list);
  704                         if (!aio_clear_cancel_function(job))
  705                                 goto restart;
  706 
  707                         /* Account for currently active jobs. */
  708                         ki->kaio_active_count++;
  709                         break;
  710                 }
  711         }
  712         return (job);
  713 }
  714 
  715 /*
  716  * Move all data to a permanent storage device.  This code
  717  * simulates the fsync and fdatasync syscalls.
  718  */
  719 static int
  720 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
  721 {
  722         struct mount *mp;
  723         vm_object_t obj;
  724         int error;
  725 
  726         for (;;) {
  727                 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
  728                 if (error != 0)
  729                         break;
  730                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  731                 obj = vp->v_object;
  732                 if (obj != NULL) {
  733                         VM_OBJECT_WLOCK(obj);
  734                         vm_object_page_clean(obj, 0, 0, 0);
  735                         VM_OBJECT_WUNLOCK(obj);
  736                 }
  737                 if (op == LIO_DSYNC)
  738                         error = VOP_FDATASYNC(vp, td);
  739                 else
  740                         error = VOP_FSYNC(vp, MNT_WAIT, td);
  741 
  742                 VOP_UNLOCK(vp);
  743                 vn_finished_write(mp);
  744                 if (error != ERELOOKUP)
  745                         break;
  746         }
  747         return (error);
  748 }
  749 
  750 /*
  751  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
  752  * does the I/O request for the non-bio version of the operations.  The normal
  753  * vn operations are used, and this code should work in all instances for every
  754  * type of file, including pipes, sockets, fifos, and regular files.
  755  *
  756  * XXX I don't think it works well for socket, pipe, and fifo.
  757  */
  758 static void
  759 aio_process_rw(struct kaiocb *job)
  760 {
  761         struct ucred *td_savedcred;
  762         struct thread *td;
  763         struct file *fp;
  764         ssize_t cnt;
  765         long msgsnd_st, msgsnd_end;
  766         long msgrcv_st, msgrcv_end;
  767         long oublock_st, oublock_end;
  768         long inblock_st, inblock_end;
  769         int error, opcode;
  770 
  771         KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
  772             job->uaiocb.aio_lio_opcode == LIO_READV ||
  773             job->uaiocb.aio_lio_opcode == LIO_WRITE ||
  774             job->uaiocb.aio_lio_opcode == LIO_WRITEV,
  775             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  776 
  777         aio_switch_vmspace(job);
  778         td = curthread;
  779         td_savedcred = td->td_ucred;
  780         td->td_ucred = job->cred;
  781         job->uiop->uio_td = td;
  782         fp = job->fd_file;
  783 
  784         opcode = job->uaiocb.aio_lio_opcode;
  785         cnt = job->uiop->uio_resid;
  786 
  787         msgrcv_st = td->td_ru.ru_msgrcv;
  788         msgsnd_st = td->td_ru.ru_msgsnd;
  789         inblock_st = td->td_ru.ru_inblock;
  790         oublock_st = td->td_ru.ru_oublock;
  791 
  792         /*
  793          * aio_aqueue() acquires a reference to the file that is
  794          * released in aio_free_entry().
  795          */
  796         if (opcode == LIO_READ || opcode == LIO_READV) {
  797                 if (job->uiop->uio_resid == 0)
  798                         error = 0;
  799                 else
  800                         error = fo_read(fp, job->uiop, fp->f_cred, FOF_OFFSET,
  801                             td);
  802         } else {
  803                 if (fp->f_type == DTYPE_VNODE)
  804                         bwillwrite();
  805                 error = fo_write(fp, job->uiop, fp->f_cred, FOF_OFFSET, td);
  806         }
  807         msgrcv_end = td->td_ru.ru_msgrcv;
  808         msgsnd_end = td->td_ru.ru_msgsnd;
  809         inblock_end = td->td_ru.ru_inblock;
  810         oublock_end = td->td_ru.ru_oublock;
  811 
  812         job->msgrcv = msgrcv_end - msgrcv_st;
  813         job->msgsnd = msgsnd_end - msgsnd_st;
  814         job->inblock = inblock_end - inblock_st;
  815         job->outblock = oublock_end - oublock_st;
  816 
  817         if (error != 0 && job->uiop->uio_resid != cnt) {
  818                 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
  819                         error = 0;
  820                 if (error == EPIPE && (opcode & LIO_WRITE)) {
  821                         PROC_LOCK(job->userproc);
  822                         kern_psignal(job->userproc, SIGPIPE);
  823                         PROC_UNLOCK(job->userproc);
  824                 }
  825         }
  826 
  827         cnt -= job->uiop->uio_resid;
  828         td->td_ucred = td_savedcred;
  829         if (error)
  830                 aio_complete(job, -1, error);
  831         else
  832                 aio_complete(job, cnt, 0);
  833 }
  834 
  835 static void
  836 aio_process_sync(struct kaiocb *job)
  837 {
  838         struct thread *td = curthread;
  839         struct ucred *td_savedcred = td->td_ucred;
  840         struct file *fp = job->fd_file;
  841         int error = 0;
  842 
  843         KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
  844             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  845 
  846         td->td_ucred = job->cred;
  847         if (fp->f_vnode != NULL) {
  848                 error = aio_fsync_vnode(td, fp->f_vnode,
  849                     job->uaiocb.aio_lio_opcode);
  850         }
  851         td->td_ucred = td_savedcred;
  852         if (error)
  853                 aio_complete(job, -1, error);
  854         else
  855                 aio_complete(job, 0, 0);
  856 }
  857 
  858 static void
  859 aio_process_mlock(struct kaiocb *job)
  860 {
  861         struct aiocb *cb = &job->uaiocb;
  862         int error;
  863 
  864         KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
  865             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  866 
  867         aio_switch_vmspace(job);
  868         error = kern_mlock(job->userproc, job->cred,
  869             __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
  870         aio_complete(job, error != 0 ? -1 : 0, error);
  871 }
  872 
  873 static void
  874 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
  875 {
  876         struct aioliojob *lj;
  877         struct kaioinfo *ki;
  878         struct kaiocb *sjob, *sjobn;
  879         int lj_done;
  880         bool schedule_fsync;
  881 
  882         ki = userp->p_aioinfo;
  883         AIO_LOCK_ASSERT(ki, MA_OWNED);
  884         lj = job->lio;
  885         lj_done = 0;
  886         if (lj) {
  887                 lj->lioj_finished_count++;
  888                 if (lj->lioj_count == lj->lioj_finished_count)
  889                         lj_done = 1;
  890         }
  891         TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
  892         MPASS(job->jobflags & KAIOCB_FINISHED);
  893 
  894         if (ki->kaio_flags & KAIO_RUNDOWN)
  895                 goto notification_done;
  896 
  897         if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
  898             job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
  899                 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
  900 
  901         KNOTE_LOCKED(&job->klist, 1);
  902 
  903         if (lj_done) {
  904                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
  905                         lj->lioj_flags |= LIOJ_KEVENT_POSTED;
  906                         KNOTE_LOCKED(&lj->klist, 1);
  907                 }
  908                 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
  909                     == LIOJ_SIGNAL &&
  910                     (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
  911                     lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
  912                         aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
  913                             true);
  914                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
  915                 }
  916         }
  917 
  918 notification_done:
  919         if (job->jobflags & KAIOCB_CHECKSYNC) {
  920                 schedule_fsync = false;
  921                 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
  922                         if (job->fd_file != sjob->fd_file ||
  923                             job->seqno >= sjob->seqno)
  924                                 continue;
  925                         if (--sjob->pending > 0)
  926                                 continue;
  927                         TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
  928                         if (!aio_clear_cancel_function_locked(sjob))
  929                                 continue;
  930                         TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
  931                         schedule_fsync = true;
  932                 }
  933                 if (schedule_fsync)
  934                         taskqueue_enqueue(taskqueue_aiod_kick,
  935                             &ki->kaio_sync_task);
  936         }
  937         if (ki->kaio_flags & KAIO_WAKEUP) {
  938                 ki->kaio_flags &= ~KAIO_WAKEUP;
  939                 wakeup(&userp->p_aioinfo);
  940         }
  941 }
  942 
  943 static void
  944 aio_schedule_fsync(void *context, int pending)
  945 {
  946         struct kaioinfo *ki;
  947         struct kaiocb *job;
  948 
  949         ki = context;
  950         AIO_LOCK(ki);
  951         while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
  952                 job = TAILQ_FIRST(&ki->kaio_syncready);
  953                 TAILQ_REMOVE(&ki->kaio_syncready, job, list);
  954                 AIO_UNLOCK(ki);
  955                 aio_schedule(job, aio_process_sync);
  956                 AIO_LOCK(ki);
  957         }
  958         AIO_UNLOCK(ki);
  959 }
  960 
  961 bool
  962 aio_cancel_cleared(struct kaiocb *job)
  963 {
  964 
  965         /*
  966          * The caller should hold the same queue lock held when
  967          * aio_clear_cancel_function() was called and set this flag
  968          * ensuring this check sees an up-to-date value.  However,
  969          * there is no way to assert that.
  970          */
  971         return ((job->jobflags & KAIOCB_CLEARED) != 0);
  972 }
  973 
  974 static bool
  975 aio_clear_cancel_function_locked(struct kaiocb *job)
  976 {
  977 
  978         AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
  979         MPASS(job->cancel_fn != NULL);
  980         if (job->jobflags & KAIOCB_CANCELLING) {
  981                 job->jobflags |= KAIOCB_CLEARED;
  982                 return (false);
  983         }
  984         job->cancel_fn = NULL;
  985         return (true);
  986 }
  987 
  988 bool
  989 aio_clear_cancel_function(struct kaiocb *job)
  990 {
  991         struct kaioinfo *ki;
  992         bool ret;
  993 
  994         ki = job->userproc->p_aioinfo;
  995         AIO_LOCK(ki);
  996         ret = aio_clear_cancel_function_locked(job);
  997         AIO_UNLOCK(ki);
  998         return (ret);
  999 }
 1000 
 1001 static bool
 1002 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
 1003 {
 1004 
 1005         AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
 1006         if (job->jobflags & KAIOCB_CANCELLED)
 1007                 return (false);
 1008         job->cancel_fn = func;
 1009         return (true);
 1010 }
 1011 
 1012 bool
 1013 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
 1014 {
 1015         struct kaioinfo *ki;
 1016         bool ret;
 1017 
 1018         ki = job->userproc->p_aioinfo;
 1019         AIO_LOCK(ki);
 1020         ret = aio_set_cancel_function_locked(job, func);
 1021         AIO_UNLOCK(ki);
 1022         return (ret);
 1023 }
 1024 
 1025 void
 1026 aio_complete(struct kaiocb *job, long status, int error)
 1027 {
 1028         struct kaioinfo *ki;
 1029         struct proc *userp;
 1030 
 1031         job->uaiocb._aiocb_private.error = error;
 1032         job->uaiocb._aiocb_private.status = status;
 1033 
 1034         userp = job->userproc;
 1035         ki = userp->p_aioinfo;
 1036 
 1037         AIO_LOCK(ki);
 1038         KASSERT(!(job->jobflags & KAIOCB_FINISHED),
 1039             ("duplicate aio_complete"));
 1040         job->jobflags |= KAIOCB_FINISHED;
 1041         if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
 1042                 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
 1043                 aio_bio_done_notify(userp, job);
 1044         }
 1045         AIO_UNLOCK(ki);
 1046 }
 1047 
 1048 void
 1049 aio_cancel(struct kaiocb *job)
 1050 {
 1051 
 1052         aio_complete(job, -1, ECANCELED);
 1053 }
 1054 
 1055 void
 1056 aio_switch_vmspace(struct kaiocb *job)
 1057 {
 1058 
 1059         vmspace_switch_aio(job->userproc->p_vmspace);
 1060 }
 1061 
 1062 /*
 1063  * The AIO daemon, most of the actual work is done in aio_process_*,
 1064  * but the setup (and address space mgmt) is done in this routine.
 1065  */
 1066 static void
 1067 aio_daemon(void *_id)
 1068 {
 1069         struct kaiocb *job;
 1070         struct aioproc *aiop;
 1071         struct kaioinfo *ki;
 1072         struct proc *p;
 1073         struct vmspace *myvm;
 1074         struct thread *td = curthread;
 1075         int id = (intptr_t)_id;
 1076 
 1077         /*
 1078          * Grab an extra reference on the daemon's vmspace so that it
 1079          * doesn't get freed by jobs that switch to a different
 1080          * vmspace.
 1081          */
 1082         p = td->td_proc;
 1083         myvm = vmspace_acquire_ref(p);
 1084 
 1085         KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
 1086 
 1087         /*
 1088          * Allocate and ready the aio control info.  There is one aiop structure
 1089          * per daemon.
 1090          */
 1091         aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK);
 1092         aiop->aioproc = p;
 1093         aiop->aioprocflags = 0;
 1094 
 1095         /*
 1096          * Wakeup parent process.  (Parent sleeps to keep from blasting away
 1097          * and creating too many daemons.)
 1098          */
 1099         sema_post(&aio_newproc_sem);
 1100 
 1101         mtx_lock(&aio_job_mtx);
 1102         for (;;) {
 1103                 /*
 1104                  * Take daemon off of free queue
 1105                  */
 1106                 if (aiop->aioprocflags & AIOP_FREE) {
 1107                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1108                         aiop->aioprocflags &= ~AIOP_FREE;
 1109                 }
 1110 
 1111                 /*
 1112                  * Check for jobs.
 1113                  */
 1114                 while ((job = aio_selectjob(aiop)) != NULL) {
 1115                         mtx_unlock(&aio_job_mtx);
 1116 
 1117                         ki = job->userproc->p_aioinfo;
 1118                         job->handle_fn(job);
 1119 
 1120                         mtx_lock(&aio_job_mtx);
 1121                         /* Decrement the active job count. */
 1122                         ki->kaio_active_count--;
 1123                 }
 1124 
 1125                 /*
 1126                  * Disconnect from user address space.
 1127                  */
 1128                 if (p->p_vmspace != myvm) {
 1129                         mtx_unlock(&aio_job_mtx);
 1130                         vmspace_switch_aio(myvm);
 1131                         mtx_lock(&aio_job_mtx);
 1132                         /*
 1133                          * We have to restart to avoid race, we only sleep if
 1134                          * no job can be selected.
 1135                          */
 1136                         continue;
 1137                 }
 1138 
 1139                 mtx_assert(&aio_job_mtx, MA_OWNED);
 1140 
 1141                 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
 1142                 aiop->aioprocflags |= AIOP_FREE;
 1143 
 1144                 /*
 1145                  * If daemon is inactive for a long time, allow it to exit,
 1146                  * thereby freeing resources.
 1147                  */
 1148                 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
 1149                     aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
 1150                     (aiop->aioprocflags & AIOP_FREE) &&
 1151                     num_aio_procs > target_aio_procs)
 1152                         break;
 1153         }
 1154         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1155         num_aio_procs--;
 1156         mtx_unlock(&aio_job_mtx);
 1157         free(aiop, M_AIO);
 1158         free_unr(aiod_unr, id);
 1159         vmspace_free(myvm);
 1160 
 1161         KASSERT(p->p_vmspace == myvm,
 1162             ("AIOD: bad vmspace for exiting daemon"));
 1163         KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
 1164             ("AIOD: bad vm refcnt for exiting daemon: %d",
 1165             refcount_load(&myvm->vm_refcnt)));
 1166         kproc_exit(0);
 1167 }
 1168 
 1169 /*
 1170  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
 1171  * AIO daemon modifies its environment itself.
 1172  */
 1173 static int
 1174 aio_newproc(int *start)
 1175 {
 1176         int error;
 1177         struct proc *p;
 1178         int id;
 1179 
 1180         id = alloc_unr(aiod_unr);
 1181         error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
 1182                 RFNOWAIT, 0, "aiod%d", id);
 1183         if (error == 0) {
 1184                 /*
 1185                  * Wait until daemon is started.
 1186                  */
 1187                 sema_wait(&aio_newproc_sem);
 1188                 mtx_lock(&aio_job_mtx);
 1189                 num_aio_procs++;
 1190                 if (start != NULL)
 1191                         (*start)--;
 1192                 mtx_unlock(&aio_job_mtx);
 1193         } else {
 1194                 free_unr(aiod_unr, id);
 1195         }
 1196         return (error);
 1197 }
 1198 
 1199 /*
 1200  * Try the high-performance, low-overhead bio method for eligible
 1201  * VCHR devices.  This method doesn't use an aio helper thread, and
 1202  * thus has very low overhead.
 1203  *
 1204  * Assumes that the caller, aio_aqueue(), has incremented the file
 1205  * structure's reference count, preventing its deallocation for the
 1206  * duration of this call.
 1207  */
 1208 static int
 1209 aio_qbio(struct proc *p, struct kaiocb *job)
 1210 {
 1211         struct aiocb *cb;
 1212         struct file *fp;
 1213         struct buf *pbuf;
 1214         struct vnode *vp;
 1215         struct cdevsw *csw;
 1216         struct cdev *dev;
 1217         struct kaioinfo *ki;
 1218         struct bio **bios = NULL;
 1219         off_t offset;
 1220         int bio_cmd, error, i, iovcnt, opcode, poff, ref;
 1221         vm_prot_t prot;
 1222         bool use_unmapped;
 1223 
 1224         cb = &job->uaiocb;
 1225         fp = job->fd_file;
 1226         opcode = cb->aio_lio_opcode;
 1227 
 1228         if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
 1229             opcode == LIO_READ || opcode == LIO_READV))
 1230                 return (-1);
 1231         if (fp == NULL || fp->f_type != DTYPE_VNODE)
 1232                 return (-1);
 1233 
 1234         vp = fp->f_vnode;
 1235         if (vp->v_type != VCHR)
 1236                 return (-1);
 1237         if (vp->v_bufobj.bo_bsize == 0)
 1238                 return (-1);
 1239 
 1240         bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
 1241         iovcnt = job->uiop->uio_iovcnt;
 1242         if (iovcnt > max_buf_aio)
 1243                 return (-1);
 1244         for (i = 0; i < iovcnt; i++) {
 1245                 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
 1246                         return (-1);
 1247                 if (job->uiop->uio_iov[i].iov_len > maxphys) {
 1248                         error = -1;
 1249                         return (-1);
 1250                 }
 1251         }
 1252         offset = cb->aio_offset;
 1253 
 1254         ref = 0;
 1255         csw = devvn_refthread(vp, &dev, &ref);
 1256         if (csw == NULL)
 1257                 return (ENXIO);
 1258 
 1259         if ((csw->d_flags & D_DISK) == 0) {
 1260                 error = -1;
 1261                 goto unref;
 1262         }
 1263         if (job->uiop->uio_resid > dev->si_iosize_max) {
 1264                 error = -1;
 1265                 goto unref;
 1266         }
 1267 
 1268         ki = p->p_aioinfo;
 1269         job->error = 0;
 1270 
 1271         use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
 1272         if (!use_unmapped) {
 1273                 AIO_LOCK(ki);
 1274                 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
 1275                         AIO_UNLOCK(ki);
 1276                         error = EAGAIN;
 1277                         goto unref;
 1278                 }
 1279                 ki->kaio_buffer_count += iovcnt;
 1280                 AIO_UNLOCK(ki);
 1281         }
 1282 
 1283         bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
 1284         atomic_store_int(&job->nbio, iovcnt);
 1285         for (i = 0; i < iovcnt; i++) {
 1286                 struct vm_page** pages;
 1287                 struct bio *bp;
 1288                 void *buf;
 1289                 size_t nbytes;
 1290                 int npages;
 1291 
 1292                 buf = job->uiop->uio_iov[i].iov_base;
 1293                 nbytes = job->uiop->uio_iov[i].iov_len;
 1294 
 1295                 bios[i] = g_alloc_bio();
 1296                 bp = bios[i];
 1297 
 1298                 poff = (vm_offset_t)buf & PAGE_MASK;
 1299                 if (use_unmapped) {
 1300                         pbuf = NULL;
 1301                         pages = malloc(sizeof(vm_page_t) * (atop(round_page(
 1302                             nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
 1303                 } else {
 1304                         pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
 1305                         BUF_KERNPROC(pbuf);
 1306                         pages = pbuf->b_pages;
 1307                 }
 1308 
 1309                 bp->bio_length = nbytes;
 1310                 bp->bio_bcount = nbytes;
 1311                 bp->bio_done = aio_biowakeup;
 1312                 bp->bio_offset = offset;
 1313                 bp->bio_cmd = bio_cmd;
 1314                 bp->bio_dev = dev;
 1315                 bp->bio_caller1 = job;
 1316                 bp->bio_caller2 = pbuf;
 1317 
 1318                 prot = VM_PROT_READ;
 1319                 if (opcode == LIO_READ || opcode == LIO_READV)
 1320                         prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 1321                 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 1322                     (vm_offset_t)buf, bp->bio_length, prot, pages,
 1323                     atop(maxphys) + 1);
 1324                 if (npages < 0) {
 1325                         if (pbuf != NULL)
 1326                                 uma_zfree(pbuf_zone, pbuf);
 1327                         else
 1328                                 free(pages, M_TEMP);
 1329                         error = EFAULT;
 1330                         g_destroy_bio(bp);
 1331                         i--;
 1332                         goto destroy_bios;
 1333                 }
 1334                 if (pbuf != NULL) {
 1335                         pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
 1336                         bp->bio_data = pbuf->b_data + poff;
 1337                         pbuf->b_npages = npages;
 1338                         atomic_add_int(&num_buf_aio, 1);
 1339                 } else {
 1340                         bp->bio_ma = pages;
 1341                         bp->bio_ma_n = npages;
 1342                         bp->bio_ma_offset = poff;
 1343                         bp->bio_data = unmapped_buf;
 1344                         bp->bio_flags |= BIO_UNMAPPED;
 1345                         atomic_add_int(&num_unmapped_aio, 1);
 1346                 }
 1347 
 1348                 offset += nbytes;
 1349         }
 1350 
 1351         /* Perform transfer. */
 1352         for (i = 0; i < iovcnt; i++)
 1353                 csw->d_strategy(bios[i]);
 1354         free(bios, M_TEMP);
 1355 
 1356         dev_relthread(dev, ref);
 1357         return (0);
 1358 
 1359 destroy_bios:
 1360         for (; i >= 0; i--)
 1361                 aio_biocleanup(bios[i]);
 1362         free(bios, M_TEMP);
 1363 unref:
 1364         dev_relthread(dev, ref);
 1365         return (error);
 1366 }
 1367 
 1368 #ifdef COMPAT_FREEBSD6
 1369 static int
 1370 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
 1371 {
 1372 
 1373         /*
 1374          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 1375          * supported by AIO with the old sigevent structure.
 1376          */
 1377         nsig->sigev_notify = osig->sigev_notify;
 1378         switch (nsig->sigev_notify) {
 1379         case SIGEV_NONE:
 1380                 break;
 1381         case SIGEV_SIGNAL:
 1382                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 1383                 break;
 1384         case SIGEV_KEVENT:
 1385                 nsig->sigev_notify_kqueue =
 1386                     osig->__sigev_u.__sigev_notify_kqueue;
 1387                 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
 1388                 break;
 1389         default:
 1390                 return (EINVAL);
 1391         }
 1392         return (0);
 1393 }
 1394 
 1395 static int
 1396 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
 1397     int type __unused)
 1398 {
 1399         struct oaiocb *ojob;
 1400         struct aiocb *kcb = &kjob->uaiocb;
 1401         int error;
 1402 
 1403         bzero(kcb, sizeof(struct aiocb));
 1404         error = copyin(ujob, kcb, sizeof(struct oaiocb));
 1405         if (error)
 1406                 return (error);
 1407         /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
 1408         ojob = (struct oaiocb *)kcb;
 1409         return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
 1410 }
 1411 #endif
 1412 
 1413 static int
 1414 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
 1415 {
 1416         struct aiocb *kcb = &kjob->uaiocb;
 1417         int error;
 1418 
 1419         error = copyin(ujob, kcb, sizeof(struct aiocb));
 1420         if (error)
 1421                 return (error);
 1422         if (type == LIO_NOP)
 1423                 type = kcb->aio_lio_opcode;
 1424         if (type & LIO_VECTORED) {
 1425                 /* malloc a uio and copy in the iovec */
 1426                 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
 1427                     kcb->aio_iovcnt, &kjob->uiop);
 1428         }
 1429 
 1430         return (error);
 1431 }
 1432 
 1433 static long
 1434 aiocb_fetch_status(struct aiocb *ujob)
 1435 {
 1436 
 1437         return (fuword(&ujob->_aiocb_private.status));
 1438 }
 1439 
 1440 static long
 1441 aiocb_fetch_error(struct aiocb *ujob)
 1442 {
 1443 
 1444         return (fuword(&ujob->_aiocb_private.error));
 1445 }
 1446 
 1447 static int
 1448 aiocb_store_status(struct aiocb *ujob, long status)
 1449 {
 1450 
 1451         return (suword(&ujob->_aiocb_private.status, status));
 1452 }
 1453 
 1454 static int
 1455 aiocb_store_error(struct aiocb *ujob, long error)
 1456 {
 1457 
 1458         return (suword(&ujob->_aiocb_private.error, error));
 1459 }
 1460 
 1461 static int
 1462 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
 1463 {
 1464 
 1465         return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
 1466 }
 1467 
 1468 static int
 1469 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 1470 {
 1471 
 1472         return (suword(ujobp, (long)ujob));
 1473 }
 1474 
 1475 static struct aiocb_ops aiocb_ops = {
 1476         .aio_copyin = aiocb_copyin,
 1477         .fetch_status = aiocb_fetch_status,
 1478         .fetch_error = aiocb_fetch_error,
 1479         .store_status = aiocb_store_status,
 1480         .store_error = aiocb_store_error,
 1481         .store_kernelinfo = aiocb_store_kernelinfo,
 1482         .store_aiocb = aiocb_store_aiocb,
 1483 };
 1484 
 1485 #ifdef COMPAT_FREEBSD6
 1486 static struct aiocb_ops aiocb_ops_osigevent = {
 1487         .aio_copyin = aiocb_copyin_old_sigevent,
 1488         .fetch_status = aiocb_fetch_status,
 1489         .fetch_error = aiocb_fetch_error,
 1490         .store_status = aiocb_store_status,
 1491         .store_error = aiocb_store_error,
 1492         .store_kernelinfo = aiocb_store_kernelinfo,
 1493         .store_aiocb = aiocb_store_aiocb,
 1494 };
 1495 #endif
 1496 
 1497 /*
 1498  * Queue a new AIO request.  Choosing either the threaded or direct bio VCHR
 1499  * technique is done in this code.
 1500  */
 1501 int
 1502 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
 1503     int type, struct aiocb_ops *ops)
 1504 {
 1505         struct proc *p = td->td_proc;
 1506         struct file *fp = NULL;
 1507         struct kaiocb *job;
 1508         struct kaioinfo *ki;
 1509         struct kevent kev;
 1510         int opcode;
 1511         int error;
 1512         int fd, kqfd;
 1513         int jid;
 1514         u_short evflags;
 1515 
 1516         if (p->p_aioinfo == NULL)
 1517                 aio_init_aioinfo(p);
 1518 
 1519         ki = p->p_aioinfo;
 1520 
 1521         ops->store_status(ujob, -1);
 1522         ops->store_error(ujob, 0);
 1523         ops->store_kernelinfo(ujob, -1);
 1524 
 1525         if (num_queue_count >= max_queue_count ||
 1526             ki->kaio_count >= max_aio_queue_per_proc) {
 1527                 error = EAGAIN;
 1528                 goto err1;
 1529         }
 1530 
 1531         job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 1532         knlist_init_mtx(&job->klist, AIO_MTX(ki));
 1533 
 1534         error = ops->aio_copyin(ujob, job, type);
 1535         if (error)
 1536                 goto err2;
 1537 
 1538         if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
 1539                 error = EINVAL;
 1540                 goto err2;
 1541         }
 1542 
 1543         if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
 1544             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
 1545             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
 1546             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
 1547                 error = EINVAL;
 1548                 goto err2;
 1549         }
 1550 
 1551         if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1552              job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
 1553                 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
 1554                 error = EINVAL;
 1555                 goto err2;
 1556         }
 1557 
 1558         /* Get the opcode. */
 1559         if (type == LIO_NOP) {
 1560                 switch (job->uaiocb.aio_lio_opcode) {
 1561                 case LIO_WRITE:
 1562                 case LIO_WRITEV:
 1563                 case LIO_NOP:
 1564                 case LIO_READ:
 1565                 case LIO_READV:
 1566                         opcode = job->uaiocb.aio_lio_opcode;
 1567                         break;
 1568                 default:
 1569                         error = EINVAL;
 1570                         goto err2;
 1571                 }
 1572         } else
 1573                 opcode = job->uaiocb.aio_lio_opcode = type;
 1574 
 1575         ksiginfo_init(&job->ksi);
 1576 
 1577         /* Save userspace address of the job info. */
 1578         job->ujob = ujob;
 1579 
 1580         /*
 1581          * Validate the opcode and fetch the file object for the specified
 1582          * file descriptor.
 1583          *
 1584          * XXXRW: Moved the opcode validation up here so that we don't
 1585          * retrieve a file descriptor without knowing what the capabiltity
 1586          * should be.
 1587          */
 1588         fd = job->uaiocb.aio_fildes;
 1589         switch (opcode) {
 1590         case LIO_WRITE:
 1591         case LIO_WRITEV:
 1592                 error = fget_write(td, fd, &cap_pwrite_rights, &fp);
 1593                 break;
 1594         case LIO_READ:
 1595         case LIO_READV:
 1596                 error = fget_read(td, fd, &cap_pread_rights, &fp);
 1597                 break;
 1598         case LIO_SYNC:
 1599         case LIO_DSYNC:
 1600                 error = fget(td, fd, &cap_fsync_rights, &fp);
 1601                 break;
 1602         case LIO_MLOCK:
 1603                 break;
 1604         case LIO_NOP:
 1605                 error = fget(td, fd, &cap_no_rights, &fp);
 1606                 break;
 1607         default:
 1608                 error = EINVAL;
 1609         }
 1610         if (error)
 1611                 goto err3;
 1612 
 1613         if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
 1614                 error = EINVAL;
 1615                 goto err3;
 1616         }
 1617 
 1618         if ((opcode == LIO_READ || opcode == LIO_READV ||
 1619             opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
 1620             job->uaiocb.aio_offset < 0 &&
 1621             (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
 1622                 error = EINVAL;
 1623                 goto err3;
 1624         }
 1625 
 1626         if (fp != NULL && fp->f_ops == &path_fileops) {
 1627                 error = EBADF;
 1628                 goto err3;
 1629         }
 1630 
 1631         job->fd_file = fp;
 1632 
 1633         mtx_lock(&aio_job_mtx);
 1634         jid = jobrefid++;
 1635         job->seqno = jobseqno++;
 1636         mtx_unlock(&aio_job_mtx);
 1637         error = ops->store_kernelinfo(ujob, jid);
 1638         if (error) {
 1639                 error = EINVAL;
 1640                 goto err3;
 1641         }
 1642         job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
 1643 
 1644         if (opcode == LIO_NOP) {
 1645                 fdrop(fp, td);
 1646                 MPASS(job->uiop == &job->uio || job->uiop == NULL);
 1647                 uma_zfree(aiocb_zone, job);
 1648                 return (0);
 1649         }
 1650 
 1651         if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
 1652                 goto no_kqueue;
 1653         evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
 1654         if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
 1655                 error = EINVAL;
 1656                 goto err3;
 1657         }
 1658         kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
 1659         memset(&kev, 0, sizeof(kev));
 1660         kev.ident = (uintptr_t)job->ujob;
 1661         kev.filter = EVFILT_AIO;
 1662         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
 1663         kev.data = (intptr_t)job;
 1664         kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
 1665         error = kqfd_register(kqfd, &kev, td, M_WAITOK);
 1666         if (error)
 1667                 goto err3;
 1668 
 1669 no_kqueue:
 1670 
 1671         ops->store_error(ujob, EINPROGRESS);
 1672         job->uaiocb._aiocb_private.error = EINPROGRESS;
 1673         job->userproc = p;
 1674         job->cred = crhold(td->td_ucred);
 1675         job->jobflags = KAIOCB_QUEUEING;
 1676         job->lio = lj;
 1677 
 1678         if (opcode & LIO_VECTORED) {
 1679                 /* Use the uio copied in by aio_copyin */
 1680                 MPASS(job->uiop != &job->uio && job->uiop != NULL);
 1681         } else {
 1682                 /* Setup the inline uio */
 1683                 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
 1684                 job->iov[0].iov_len = job->uaiocb.aio_nbytes;
 1685                 job->uio.uio_iov = job->iov;
 1686                 job->uio.uio_iovcnt = 1;
 1687                 job->uio.uio_resid = job->uaiocb.aio_nbytes;
 1688                 job->uio.uio_segflg = UIO_USERSPACE;
 1689                 job->uiop = &job->uio;
 1690         }
 1691         switch (opcode & (LIO_READ | LIO_WRITE)) {
 1692         case LIO_READ:
 1693                 job->uiop->uio_rw = UIO_READ;
 1694                 break;
 1695         case LIO_WRITE:
 1696                 job->uiop->uio_rw = UIO_WRITE;
 1697                 break;
 1698         }
 1699         job->uiop->uio_offset = job->uaiocb.aio_offset;
 1700         job->uiop->uio_td = td;
 1701 
 1702         if (opcode == LIO_MLOCK) {
 1703                 aio_schedule(job, aio_process_mlock);
 1704                 error = 0;
 1705         } else if (fp->f_ops->fo_aio_queue == NULL)
 1706                 error = aio_queue_file(fp, job);
 1707         else
 1708                 error = fo_aio_queue(fp, job);
 1709         if (error)
 1710                 goto err4;
 1711 
 1712         AIO_LOCK(ki);
 1713         job->jobflags &= ~KAIOCB_QUEUEING;
 1714         TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
 1715         ki->kaio_count++;
 1716         if (lj)
 1717                 lj->lioj_count++;
 1718         atomic_add_int(&num_queue_count, 1);
 1719         if (job->jobflags & KAIOCB_FINISHED) {
 1720                 /*
 1721                  * The queue callback completed the request synchronously.
 1722                  * The bulk of the completion is deferred in that case
 1723                  * until this point.
 1724                  */
 1725                 aio_bio_done_notify(p, job);
 1726         } else
 1727                 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
 1728         AIO_UNLOCK(ki);
 1729         return (0);
 1730 
 1731 err4:
 1732         crfree(job->cred);
 1733 err3:
 1734         if (fp)
 1735                 fdrop(fp, td);
 1736         knlist_delete(&job->klist, curthread, 0);
 1737 err2:
 1738         if (job->uiop != &job->uio)
 1739                 free(job->uiop, M_IOV);
 1740         uma_zfree(aiocb_zone, job);
 1741 err1:
 1742         ops->store_error(ujob, error);
 1743         return (error);
 1744 }
 1745 
 1746 static void
 1747 aio_cancel_daemon_job(struct kaiocb *job)
 1748 {
 1749 
 1750         mtx_lock(&aio_job_mtx);
 1751         if (!aio_cancel_cleared(job))
 1752                 TAILQ_REMOVE(&aio_jobs, job, list);
 1753         mtx_unlock(&aio_job_mtx);
 1754         aio_cancel(job);
 1755 }
 1756 
 1757 void
 1758 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
 1759 {
 1760 
 1761         mtx_lock(&aio_job_mtx);
 1762         if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
 1763                 mtx_unlock(&aio_job_mtx);
 1764                 aio_cancel(job);
 1765                 return;
 1766         }
 1767         job->handle_fn = func;
 1768         TAILQ_INSERT_TAIL(&aio_jobs, job, list);
 1769         aio_kick_nowait(job->userproc);
 1770         mtx_unlock(&aio_job_mtx);
 1771 }
 1772 
 1773 static void
 1774 aio_cancel_sync(struct kaiocb *job)
 1775 {
 1776         struct kaioinfo *ki;
 1777 
 1778         ki = job->userproc->p_aioinfo;
 1779         AIO_LOCK(ki);
 1780         if (!aio_cancel_cleared(job))
 1781                 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
 1782         AIO_UNLOCK(ki);
 1783         aio_cancel(job);
 1784 }
 1785 
 1786 int
 1787 aio_queue_file(struct file *fp, struct kaiocb *job)
 1788 {
 1789         struct kaioinfo *ki;
 1790         struct kaiocb *job2;
 1791         struct vnode *vp;
 1792         struct mount *mp;
 1793         int error;
 1794         bool safe;
 1795 
 1796         ki = job->userproc->p_aioinfo;
 1797         error = aio_qbio(job->userproc, job);
 1798         if (error >= 0)
 1799                 return (error);
 1800         safe = false;
 1801         if (fp->f_type == DTYPE_VNODE) {
 1802                 vp = fp->f_vnode;
 1803                 if (vp->v_type == VREG || vp->v_type == VDIR) {
 1804                         mp = fp->f_vnode->v_mount;
 1805                         if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
 1806                                 safe = true;
 1807                 }
 1808         }
 1809         if (!(safe || enable_aio_unsafe)) {
 1810                 counted_warning(&unsafe_warningcnt,
 1811                     "is attempting to use unsafe AIO requests");
 1812                 return (EOPNOTSUPP);
 1813         }
 1814 
 1815         if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
 1816                 aio_schedule(job, aio_process_rw);
 1817                 error = 0;
 1818         } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
 1819                 AIO_LOCK(ki);
 1820                 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
 1821                         if (job2->fd_file == job->fd_file &&
 1822                             ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
 1823                             job2->seqno < job->seqno) {
 1824                                 job2->jobflags |= KAIOCB_CHECKSYNC;
 1825                                 job->pending++;
 1826                         }
 1827                 }
 1828                 if (job->pending != 0) {
 1829                         if (!aio_set_cancel_function_locked(job,
 1830                                 aio_cancel_sync)) {
 1831                                 AIO_UNLOCK(ki);
 1832                                 aio_cancel(job);
 1833                                 return (0);
 1834                         }
 1835                         TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
 1836                         AIO_UNLOCK(ki);
 1837                         return (0);
 1838                 }
 1839                 AIO_UNLOCK(ki);
 1840                 aio_schedule(job, aio_process_sync);
 1841                 error = 0;
 1842         } else {
 1843                 error = EINVAL;
 1844         }
 1845         return (error);
 1846 }
 1847 
 1848 static void
 1849 aio_kick_nowait(struct proc *userp)
 1850 {
 1851         struct kaioinfo *ki = userp->p_aioinfo;
 1852         struct aioproc *aiop;
 1853 
 1854         mtx_assert(&aio_job_mtx, MA_OWNED);
 1855         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1856                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1857                 aiop->aioprocflags &= ~AIOP_FREE;
 1858                 wakeup(aiop->aioproc);
 1859         } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
 1860             ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
 1861                 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
 1862         }
 1863 }
 1864 
 1865 static int
 1866 aio_kick(struct proc *userp)
 1867 {
 1868         struct kaioinfo *ki = userp->p_aioinfo;
 1869         struct aioproc *aiop;
 1870         int error, ret = 0;
 1871 
 1872         mtx_assert(&aio_job_mtx, MA_OWNED);
 1873 retryproc:
 1874         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1875                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1876                 aiop->aioprocflags &= ~AIOP_FREE;
 1877                 wakeup(aiop->aioproc);
 1878         } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
 1879             ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
 1880                 num_aio_resv_start++;
 1881                 mtx_unlock(&aio_job_mtx);
 1882                 error = aio_newproc(&num_aio_resv_start);
 1883                 mtx_lock(&aio_job_mtx);
 1884                 if (error) {
 1885                         num_aio_resv_start--;
 1886                         goto retryproc;
 1887                 }
 1888         } else {
 1889                 ret = -1;
 1890         }
 1891         return (ret);
 1892 }
 1893 
 1894 static void
 1895 aio_kick_helper(void *context, int pending)
 1896 {
 1897         struct proc *userp = context;
 1898 
 1899         mtx_lock(&aio_job_mtx);
 1900         while (--pending >= 0) {
 1901                 if (aio_kick(userp))
 1902                         break;
 1903         }
 1904         mtx_unlock(&aio_job_mtx);
 1905 }
 1906 
 1907 /*
 1908  * Support the aio_return system call, as a side-effect, kernel resources are
 1909  * released.
 1910  */
 1911 static int
 1912 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
 1913 {
 1914         struct proc *p = td->td_proc;
 1915         struct kaiocb *job;
 1916         struct kaioinfo *ki;
 1917         long status, error;
 1918 
 1919         ki = p->p_aioinfo;
 1920         if (ki == NULL)
 1921                 return (EINVAL);
 1922         AIO_LOCK(ki);
 1923         TAILQ_FOREACH(job, &ki->kaio_done, plist) {
 1924                 if (job->ujob == ujob)
 1925                         break;
 1926         }
 1927         if (job != NULL) {
 1928                 MPASS(job->jobflags & KAIOCB_FINISHED);
 1929                 status = job->uaiocb._aiocb_private.status;
 1930                 error = job->uaiocb._aiocb_private.error;
 1931                 td->td_retval[0] = status;
 1932                 td->td_ru.ru_oublock += job->outblock;
 1933                 td->td_ru.ru_inblock += job->inblock;
 1934                 td->td_ru.ru_msgsnd += job->msgsnd;
 1935                 td->td_ru.ru_msgrcv += job->msgrcv;
 1936                 aio_free_entry(job);
 1937                 AIO_UNLOCK(ki);
 1938                 ops->store_error(ujob, error);
 1939                 ops->store_status(ujob, status);
 1940         } else {
 1941                 error = EINVAL;
 1942                 AIO_UNLOCK(ki);
 1943         }
 1944         return (error);
 1945 }
 1946 
 1947 int
 1948 sys_aio_return(struct thread *td, struct aio_return_args *uap)
 1949 {
 1950 
 1951         return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
 1952 }
 1953 
 1954 /*
 1955  * Allow a process to wakeup when any of the I/O requests are completed.
 1956  */
 1957 static int
 1958 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
 1959     struct timespec *ts)
 1960 {
 1961         struct proc *p = td->td_proc;
 1962         struct timeval atv;
 1963         struct kaioinfo *ki;
 1964         struct kaiocb *firstjob, *job;
 1965         int error, i, timo;
 1966 
 1967         timo = 0;
 1968         if (ts) {
 1969                 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1970                         return (EINVAL);
 1971 
 1972                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 1973                 if (itimerfix(&atv))
 1974                         return (EINVAL);
 1975                 timo = tvtohz(&atv);
 1976         }
 1977 
 1978         ki = p->p_aioinfo;
 1979         if (ki == NULL)
 1980                 return (EAGAIN);
 1981 
 1982         if (njoblist == 0)
 1983                 return (0);
 1984 
 1985         AIO_LOCK(ki);
 1986         for (;;) {
 1987                 firstjob = NULL;
 1988                 error = 0;
 1989                 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
 1990                         for (i = 0; i < njoblist; i++) {
 1991                                 if (job->ujob == ujoblist[i]) {
 1992                                         if (firstjob == NULL)
 1993                                                 firstjob = job;
 1994                                         if (job->jobflags & KAIOCB_FINISHED)
 1995                                                 goto RETURN;
 1996                                 }
 1997                         }
 1998                 }
 1999                 /* All tasks were finished. */
 2000                 if (firstjob == NULL)
 2001                         break;
 2002 
 2003                 ki->kaio_flags |= KAIO_WAKEUP;
 2004                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2005                     "aiospn", timo);
 2006                 if (error == ERESTART)
 2007                         error = EINTR;
 2008                 if (error)
 2009                         break;
 2010         }
 2011 RETURN:
 2012         AIO_UNLOCK(ki);
 2013         return (error);
 2014 }
 2015 
 2016 int
 2017 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 2018 {
 2019         struct timespec ts, *tsp;
 2020         struct aiocb **ujoblist;
 2021         int error;
 2022 
 2023         if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
 2024                 return (EINVAL);
 2025 
 2026         if (uap->timeout) {
 2027                 /* Get timespec struct. */
 2028                 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 2029                         return (error);
 2030                 tsp = &ts;
 2031         } else
 2032                 tsp = NULL;
 2033 
 2034         ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
 2035         error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
 2036         if (error == 0)
 2037                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2038         free(ujoblist, M_AIO);
 2039         return (error);
 2040 }
 2041 
 2042 /*
 2043  * aio_cancel cancels any non-bio aio operations not currently in progress.
 2044  */
 2045 int
 2046 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 2047 {
 2048         struct proc *p = td->td_proc;
 2049         struct kaioinfo *ki;
 2050         struct kaiocb *job, *jobn;
 2051         struct file *fp;
 2052         int error;
 2053         int cancelled = 0;
 2054         int notcancelled = 0;
 2055         struct vnode *vp;
 2056 
 2057         /* Lookup file object. */
 2058         error = fget(td, uap->fd, &cap_no_rights, &fp);
 2059         if (error)
 2060                 return (error);
 2061 
 2062         ki = p->p_aioinfo;
 2063         if (ki == NULL)
 2064                 goto done;
 2065 
 2066         if (fp->f_type == DTYPE_VNODE) {
 2067                 vp = fp->f_vnode;
 2068                 if (vn_isdisk(vp)) {
 2069                         fdrop(fp, td);
 2070                         td->td_retval[0] = AIO_NOTCANCELED;
 2071                         return (0);
 2072                 }
 2073         }
 2074 
 2075         AIO_LOCK(ki);
 2076         TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
 2077                 if ((uap->fd == job->uaiocb.aio_fildes) &&
 2078                     ((uap->aiocbp == NULL) ||
 2079                      (uap->aiocbp == job->ujob))) {
 2080                         if (aio_cancel_job(p, ki, job)) {
 2081                                 cancelled++;
 2082                         } else {
 2083                                 notcancelled++;
 2084                         }
 2085                         if (uap->aiocbp != NULL)
 2086                                 break;
 2087                 }
 2088         }
 2089         AIO_UNLOCK(ki);
 2090 
 2091 done:
 2092         fdrop(fp, td);
 2093 
 2094         if (uap->aiocbp != NULL) {
 2095                 if (cancelled) {
 2096                         td->td_retval[0] = AIO_CANCELED;
 2097                         return (0);
 2098                 }
 2099         }
 2100 
 2101         if (notcancelled) {
 2102                 td->td_retval[0] = AIO_NOTCANCELED;
 2103                 return (0);
 2104         }
 2105 
 2106         if (cancelled) {
 2107                 td->td_retval[0] = AIO_CANCELED;
 2108                 return (0);
 2109         }
 2110 
 2111         td->td_retval[0] = AIO_ALLDONE;
 2112 
 2113         return (0);
 2114 }
 2115 
 2116 /*
 2117  * aio_error is implemented in the kernel level for compatibility purposes
 2118  * only.  For a user mode async implementation, it would be best to do it in
 2119  * a userland subroutine.
 2120  */
 2121 static int
 2122 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
 2123 {
 2124         struct proc *p = td->td_proc;
 2125         struct kaiocb *job;
 2126         struct kaioinfo *ki;
 2127         int status;
 2128 
 2129         ki = p->p_aioinfo;
 2130         if (ki == NULL) {
 2131                 td->td_retval[0] = EINVAL;
 2132                 return (0);
 2133         }
 2134 
 2135         AIO_LOCK(ki);
 2136         TAILQ_FOREACH(job, &ki->kaio_all, allist) {
 2137                 if (job->ujob == ujob) {
 2138                         if (job->jobflags & KAIOCB_FINISHED)
 2139                                 td->td_retval[0] =
 2140                                         job->uaiocb._aiocb_private.error;
 2141                         else
 2142                                 td->td_retval[0] = EINPROGRESS;
 2143                         AIO_UNLOCK(ki);
 2144                         return (0);
 2145                 }
 2146         }
 2147         AIO_UNLOCK(ki);
 2148 
 2149         /*
 2150          * Hack for failure of aio_aqueue.
 2151          */
 2152         status = ops->fetch_status(ujob);
 2153         if (status == -1) {
 2154                 td->td_retval[0] = ops->fetch_error(ujob);
 2155                 return (0);
 2156         }
 2157 
 2158         td->td_retval[0] = EINVAL;
 2159         return (0);
 2160 }
 2161 
 2162 int
 2163 sys_aio_error(struct thread *td, struct aio_error_args *uap)
 2164 {
 2165 
 2166         return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
 2167 }
 2168 
 2169 /* syscall - asynchronous read from a file (REALTIME) */
 2170 #ifdef COMPAT_FREEBSD6
 2171 int
 2172 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
 2173 {
 2174 
 2175         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2176             &aiocb_ops_osigevent));
 2177 }
 2178 #endif
 2179 
 2180 int
 2181 sys_aio_read(struct thread *td, struct aio_read_args *uap)
 2182 {
 2183 
 2184         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
 2185 }
 2186 
 2187 int
 2188 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
 2189 {
 2190 
 2191         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
 2192 }
 2193 
 2194 /* syscall - asynchronous write to a file (REALTIME) */
 2195 #ifdef COMPAT_FREEBSD6
 2196 int
 2197 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
 2198 {
 2199 
 2200         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2201             &aiocb_ops_osigevent));
 2202 }
 2203 #endif
 2204 
 2205 int
 2206 sys_aio_write(struct thread *td, struct aio_write_args *uap)
 2207 {
 2208 
 2209         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
 2210 }
 2211 
 2212 int
 2213 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
 2214 {
 2215 
 2216         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
 2217 }
 2218 
 2219 int
 2220 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
 2221 {
 2222 
 2223         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
 2224 }
 2225 
 2226 static int
 2227 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
 2228     struct aiocb **acb_list, int nent, struct sigevent *sig,
 2229     struct aiocb_ops *ops)
 2230 {
 2231         struct proc *p = td->td_proc;
 2232         struct aiocb *job;
 2233         struct kaioinfo *ki;
 2234         struct aioliojob *lj;
 2235         struct kevent kev;
 2236         int error;
 2237         int nagain, nerror;
 2238         int i;
 2239 
 2240         if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
 2241                 return (EINVAL);
 2242 
 2243         if (nent < 0 || nent > max_aio_queue_per_proc)
 2244                 return (EINVAL);
 2245 
 2246         if (p->p_aioinfo == NULL)
 2247                 aio_init_aioinfo(p);
 2248 
 2249         ki = p->p_aioinfo;
 2250 
 2251         lj = uma_zalloc(aiolio_zone, M_WAITOK);
 2252         lj->lioj_flags = 0;
 2253         lj->lioj_count = 0;
 2254         lj->lioj_finished_count = 0;
 2255         lj->lioj_signal.sigev_notify = SIGEV_NONE;
 2256         knlist_init_mtx(&lj->klist, AIO_MTX(ki));
 2257         ksiginfo_init(&lj->lioj_ksi);
 2258 
 2259         /*
 2260          * Setup signal.
 2261          */
 2262         if (sig && (mode == LIO_NOWAIT)) {
 2263                 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
 2264                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2265                         /* Assume only new style KEVENT */
 2266                         memset(&kev, 0, sizeof(kev));
 2267                         kev.filter = EVFILT_LIO;
 2268                         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 2269                         kev.ident = (uintptr_t)uacb_list; /* something unique */
 2270                         kev.data = (intptr_t)lj;
 2271                         /* pass user defined sigval data */
 2272                         kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
 2273                         error = kqfd_register(
 2274                             lj->lioj_signal.sigev_notify_kqueue, &kev, td,
 2275                             M_WAITOK);
 2276                         if (error) {
 2277                                 uma_zfree(aiolio_zone, lj);
 2278                                 return (error);
 2279                         }
 2280                 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
 2281                         ;
 2282                 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2283                            lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
 2284                                 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 2285                                         uma_zfree(aiolio_zone, lj);
 2286                                         return EINVAL;
 2287                                 }
 2288                                 lj->lioj_flags |= LIOJ_SIGNAL;
 2289                 } else {
 2290                         uma_zfree(aiolio_zone, lj);
 2291                         return EINVAL;
 2292                 }
 2293         }
 2294 
 2295         AIO_LOCK(ki);
 2296         TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 2297         /*
 2298          * Add extra aiocb count to avoid the lio to be freed
 2299          * by other threads doing aio_waitcomplete or aio_return,
 2300          * and prevent event from being sent until we have queued
 2301          * all tasks.
 2302          */
 2303         lj->lioj_count = 1;
 2304         AIO_UNLOCK(ki);
 2305 
 2306         /*
 2307          * Get pointers to the list of I/O requests.
 2308          */
 2309         nagain = 0;
 2310         nerror = 0;
 2311         for (i = 0; i < nent; i++) {
 2312                 job = acb_list[i];
 2313                 if (job != NULL) {
 2314                         error = aio_aqueue(td, job, lj, LIO_NOP, ops);
 2315                         if (error == EAGAIN)
 2316                                 nagain++;
 2317                         else if (error != 0)
 2318                                 nerror++;
 2319                 }
 2320         }
 2321 
 2322         error = 0;
 2323         AIO_LOCK(ki);
 2324         if (mode == LIO_WAIT) {
 2325                 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
 2326                         ki->kaio_flags |= KAIO_WAKEUP;
 2327                         error = msleep(&p->p_aioinfo, AIO_MTX(ki),
 2328                             PRIBIO | PCATCH, "aiospn", 0);
 2329                         if (error == ERESTART)
 2330                                 error = EINTR;
 2331                         if (error)
 2332                                 break;
 2333                 }
 2334         } else {
 2335                 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
 2336                         if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2337                                 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 2338                                 KNOTE_LOCKED(&lj->klist, 1);
 2339                         }
 2340                         if ((lj->lioj_flags & (LIOJ_SIGNAL |
 2341                             LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
 2342                             (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2343                             lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 2344                                 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
 2345                                     lj->lioj_count != 1);
 2346                                 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2347                         }
 2348                 }
 2349         }
 2350         lj->lioj_count--;
 2351         if (lj->lioj_count == 0) {
 2352                 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 2353                 knlist_delete(&lj->klist, curthread, 1);
 2354                 PROC_LOCK(p);
 2355                 sigqueue_take(&lj->lioj_ksi);
 2356                 PROC_UNLOCK(p);
 2357                 AIO_UNLOCK(ki);
 2358                 uma_zfree(aiolio_zone, lj);
 2359         } else
 2360                 AIO_UNLOCK(ki);
 2361 
 2362         if (nerror)
 2363                 return (EIO);
 2364         else if (nagain)
 2365                 return (EAGAIN);
 2366         else
 2367                 return (error);
 2368 }
 2369 
 2370 /* syscall - list directed I/O (REALTIME) */
 2371 #ifdef COMPAT_FREEBSD6
 2372 int
 2373 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
 2374 {
 2375         struct aiocb **acb_list;
 2376         struct sigevent *sigp, sig;
 2377         struct osigevent osig;
 2378         int error, nent;
 2379 
 2380         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2381                 return (EINVAL);
 2382 
 2383         nent = uap->nent;
 2384         if (nent < 0 || nent > max_aio_queue_per_proc)
 2385                 return (EINVAL);
 2386 
 2387         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2388                 error = copyin(uap->sig, &osig, sizeof(osig));
 2389                 if (error)
 2390                         return (error);
 2391                 error = convert_old_sigevent(&osig, &sig);
 2392                 if (error)
 2393                         return (error);
 2394                 sigp = &sig;
 2395         } else
 2396                 sigp = NULL;
 2397 
 2398         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2399         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2400         if (error == 0)
 2401                 error = kern_lio_listio(td, uap->mode,
 2402                     (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2403                     &aiocb_ops_osigevent);
 2404         free(acb_list, M_LIO);
 2405         return (error);
 2406 }
 2407 #endif
 2408 
 2409 /* syscall - list directed I/O (REALTIME) */
 2410 int
 2411 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
 2412 {
 2413         struct aiocb **acb_list;
 2414         struct sigevent *sigp, sig;
 2415         int error, nent;
 2416 
 2417         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2418                 return (EINVAL);
 2419 
 2420         nent = uap->nent;
 2421         if (nent < 0 || nent > max_aio_queue_per_proc)
 2422                 return (EINVAL);
 2423 
 2424         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2425                 error = copyin(uap->sig, &sig, sizeof(sig));
 2426                 if (error)
 2427                         return (error);
 2428                 sigp = &sig;
 2429         } else
 2430                 sigp = NULL;
 2431 
 2432         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2433         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2434         if (error == 0)
 2435                 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
 2436                     nent, sigp, &aiocb_ops);
 2437         free(acb_list, M_LIO);
 2438         return (error);
 2439 }
 2440 
 2441 static void
 2442 aio_biocleanup(struct bio *bp)
 2443 {
 2444         struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
 2445         struct kaioinfo *ki;
 2446         struct buf *pbuf = (struct buf *)bp->bio_caller2;
 2447 
 2448         /* Release mapping into kernel space. */
 2449         if (pbuf != NULL) {
 2450                 MPASS(pbuf->b_npages <= atop(maxphys) + 1);
 2451                 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
 2452                 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
 2453                 uma_zfree(pbuf_zone, pbuf);
 2454                 atomic_subtract_int(&num_buf_aio, 1);
 2455                 ki = job->userproc->p_aioinfo;
 2456                 AIO_LOCK(ki);
 2457                 ki->kaio_buffer_count--;
 2458                 AIO_UNLOCK(ki);
 2459         } else {
 2460                 MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
 2461                 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
 2462                 free(bp->bio_ma, M_TEMP);
 2463                 atomic_subtract_int(&num_unmapped_aio, 1);
 2464         }
 2465         g_destroy_bio(bp);
 2466 }
 2467 
 2468 static void
 2469 aio_biowakeup(struct bio *bp)
 2470 {
 2471         struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
 2472         size_t nbytes;
 2473         long bcount = bp->bio_bcount;
 2474         long resid = bp->bio_resid;
 2475         int opcode, nblks;
 2476         int bio_error = bp->bio_error;
 2477         uint16_t flags = bp->bio_flags;
 2478 
 2479         opcode = job->uaiocb.aio_lio_opcode;
 2480 
 2481         aio_biocleanup(bp);
 2482 
 2483         nbytes =bcount - resid;
 2484         atomic_add_acq_long(&job->nbytes, nbytes);
 2485         nblks = btodb(nbytes);
 2486         /*
 2487          * If multiple bios experienced an error, the job will reflect the
 2488          * error of whichever failed bio completed last.
 2489          */
 2490         if (flags & BIO_ERROR)
 2491                 atomic_set_int(&job->error, bio_error);
 2492         if (opcode & LIO_WRITE)
 2493                 atomic_add_int(&job->outblock, nblks);
 2494         else
 2495                 atomic_add_int(&job->inblock, nblks);
 2496         atomic_subtract_int(&job->nbio, 1);
 2497 
 2498 
 2499         if (atomic_load_int(&job->nbio) == 0) {
 2500                 if (atomic_load_int(&job->error))
 2501                         aio_complete(job, -1, job->error);
 2502                 else
 2503                         aio_complete(job, atomic_load_long(&job->nbytes), 0);
 2504         }
 2505 }
 2506 
 2507 /* syscall - wait for the next completion of an aio request */
 2508 static int
 2509 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
 2510     struct timespec *ts, struct aiocb_ops *ops)
 2511 {
 2512         struct proc *p = td->td_proc;
 2513         struct timeval atv;
 2514         struct kaioinfo *ki;
 2515         struct kaiocb *job;
 2516         struct aiocb *ujob;
 2517         long error, status;
 2518         int timo;
 2519 
 2520         ops->store_aiocb(ujobp, NULL);
 2521 
 2522         if (ts == NULL) {
 2523                 timo = 0;
 2524         } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
 2525                 timo = -1;
 2526         } else {
 2527                 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
 2528                         return (EINVAL);
 2529 
 2530                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 2531                 if (itimerfix(&atv))
 2532                         return (EINVAL);
 2533                 timo = tvtohz(&atv);
 2534         }
 2535 
 2536         if (p->p_aioinfo == NULL)
 2537                 aio_init_aioinfo(p);
 2538         ki = p->p_aioinfo;
 2539 
 2540         error = 0;
 2541         job = NULL;
 2542         AIO_LOCK(ki);
 2543         while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
 2544                 if (timo == -1) {
 2545                         error = EWOULDBLOCK;
 2546                         break;
 2547                 }
 2548                 ki->kaio_flags |= KAIO_WAKEUP;
 2549                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2550                     "aiowc", timo);
 2551                 if (timo && error == ERESTART)
 2552                         error = EINTR;
 2553                 if (error)
 2554                         break;
 2555         }
 2556 
 2557         if (job != NULL) {
 2558                 MPASS(job->jobflags & KAIOCB_FINISHED);
 2559                 ujob = job->ujob;
 2560                 status = job->uaiocb._aiocb_private.status;
 2561                 error = job->uaiocb._aiocb_private.error;
 2562                 td->td_retval[0] = status;
 2563                 td->td_ru.ru_oublock += job->outblock;
 2564                 td->td_ru.ru_inblock += job->inblock;
 2565                 td->td_ru.ru_msgsnd += job->msgsnd;
 2566                 td->td_ru.ru_msgrcv += job->msgrcv;
 2567                 aio_free_entry(job);
 2568                 AIO_UNLOCK(ki);
 2569                 ops->store_aiocb(ujobp, ujob);
 2570                 ops->store_error(ujob, error);
 2571                 ops->store_status(ujob, status);
 2572         } else
 2573                 AIO_UNLOCK(ki);
 2574 
 2575         return (error);
 2576 }
 2577 
 2578 int
 2579 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 2580 {
 2581         struct timespec ts, *tsp;
 2582         int error;
 2583 
 2584         if (uap->timeout) {
 2585                 /* Get timespec struct. */
 2586                 error = copyin(uap->timeout, &ts, sizeof(ts));
 2587                 if (error)
 2588                         return (error);
 2589                 tsp = &ts;
 2590         } else
 2591                 tsp = NULL;
 2592 
 2593         return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
 2594 }
 2595 
 2596 static int
 2597 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
 2598     struct aiocb_ops *ops)
 2599 {
 2600         int listop;
 2601 
 2602         switch (op) {
 2603         case O_SYNC:
 2604                 listop = LIO_SYNC;
 2605                 break;
 2606         case O_DSYNC:
 2607                 listop = LIO_DSYNC;
 2608                 break;
 2609         default:
 2610                 return (EINVAL);
 2611         }
 2612 
 2613         return (aio_aqueue(td, ujob, NULL, listop, ops));
 2614 }
 2615 
 2616 int
 2617 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 2618 {
 2619 
 2620         return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
 2621 }
 2622 
 2623 /* kqueue attach function */
 2624 static int
 2625 filt_aioattach(struct knote *kn)
 2626 {
 2627         struct kaiocb *job;
 2628 
 2629         job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
 2630 
 2631         /*
 2632          * The job pointer must be validated before using it, so
 2633          * registration is restricted to the kernel; the user cannot
 2634          * set EV_FLAG1.
 2635          */
 2636         if ((kn->kn_flags & EV_FLAG1) == 0)
 2637                 return (EPERM);
 2638         kn->kn_ptr.p_aio = job;
 2639         kn->kn_flags &= ~EV_FLAG1;
 2640 
 2641         knlist_add(&job->klist, kn, 0);
 2642 
 2643         return (0);
 2644 }
 2645 
 2646 /* kqueue detach function */
 2647 static void
 2648 filt_aiodetach(struct knote *kn)
 2649 {
 2650         struct knlist *knl;
 2651 
 2652         knl = &kn->kn_ptr.p_aio->klist;
 2653         knl->kl_lock(knl->kl_lockarg);
 2654         if (!knlist_empty(knl))
 2655                 knlist_remove(knl, kn, 1);
 2656         knl->kl_unlock(knl->kl_lockarg);
 2657 }
 2658 
 2659 /* kqueue filter function */
 2660 /*ARGSUSED*/
 2661 static int
 2662 filt_aio(struct knote *kn, long hint)
 2663 {
 2664         struct kaiocb *job = kn->kn_ptr.p_aio;
 2665 
 2666         kn->kn_data = job->uaiocb._aiocb_private.error;
 2667         if (!(job->jobflags & KAIOCB_FINISHED))
 2668                 return (0);
 2669         kn->kn_flags |= EV_EOF;
 2670         return (1);
 2671 }
 2672 
 2673 /* kqueue attach function */
 2674 static int
 2675 filt_lioattach(struct knote *kn)
 2676 {
 2677         struct aioliojob *lj;
 2678 
 2679         lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
 2680 
 2681         /*
 2682          * The aioliojob pointer must be validated before using it, so
 2683          * registration is restricted to the kernel; the user cannot
 2684          * set EV_FLAG1.
 2685          */
 2686         if ((kn->kn_flags & EV_FLAG1) == 0)
 2687                 return (EPERM);
 2688         kn->kn_ptr.p_lio = lj;
 2689         kn->kn_flags &= ~EV_FLAG1;
 2690 
 2691         knlist_add(&lj->klist, kn, 0);
 2692 
 2693         return (0);
 2694 }
 2695 
 2696 /* kqueue detach function */
 2697 static void
 2698 filt_liodetach(struct knote *kn)
 2699 {
 2700         struct knlist *knl;
 2701 
 2702         knl = &kn->kn_ptr.p_lio->klist;
 2703         knl->kl_lock(knl->kl_lockarg);
 2704         if (!knlist_empty(knl))
 2705                 knlist_remove(knl, kn, 1);
 2706         knl->kl_unlock(knl->kl_lockarg);
 2707 }
 2708 
 2709 /* kqueue filter function */
 2710 /*ARGSUSED*/
 2711 static int
 2712 filt_lio(struct knote *kn, long hint)
 2713 {
 2714         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2715 
 2716         return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
 2717 }
 2718 
 2719 #ifdef COMPAT_FREEBSD32
 2720 #include <sys/mount.h>
 2721 #include <sys/socket.h>
 2722 #include <sys/sysent.h>
 2723 #include <compat/freebsd32/freebsd32.h>
 2724 #include <compat/freebsd32/freebsd32_proto.h>
 2725 #include <compat/freebsd32/freebsd32_signal.h>
 2726 #include <compat/freebsd32/freebsd32_syscall.h>
 2727 #include <compat/freebsd32/freebsd32_util.h>
 2728 
 2729 struct __aiocb_private32 {
 2730         int32_t status;
 2731         int32_t error;
 2732         uint32_t kernelinfo;
 2733 };
 2734 
 2735 #ifdef COMPAT_FREEBSD6
 2736 typedef struct oaiocb32 {
 2737         int     aio_fildes;             /* File descriptor */
 2738         uint64_t aio_offset __packed;   /* File offset for I/O */
 2739         uint32_t aio_buf;               /* I/O buffer in process space */
 2740         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2741         struct  osigevent32 aio_sigevent; /* Signal to deliver */
 2742         int     aio_lio_opcode;         /* LIO opcode */
 2743         int     aio_reqprio;            /* Request priority -- ignored */
 2744         struct  __aiocb_private32 _aiocb_private;
 2745 } oaiocb32_t;
 2746 #endif
 2747 
 2748 typedef struct aiocb32 {
 2749         int32_t aio_fildes;             /* File descriptor */
 2750         uint64_t aio_offset __packed;   /* File offset for I/O */
 2751         uint32_t aio_buf;       /* I/O buffer in process space */
 2752         uint32_t aio_nbytes;    /* Number of bytes for I/O */
 2753         int     __spare__[2];
 2754         uint32_t __spare2__;
 2755         int     aio_lio_opcode;         /* LIO opcode */
 2756         int     aio_reqprio;            /* Request priority -- ignored */
 2757         struct  __aiocb_private32 _aiocb_private;
 2758         struct  sigevent32 aio_sigevent;        /* Signal to deliver */
 2759 } aiocb32_t;
 2760 
 2761 #ifdef COMPAT_FREEBSD6
 2762 static int
 2763 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
 2764 {
 2765 
 2766         /*
 2767          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 2768          * supported by AIO with the old sigevent structure.
 2769          */
 2770         CP(*osig, *nsig, sigev_notify);
 2771         switch (nsig->sigev_notify) {
 2772         case SIGEV_NONE:
 2773                 break;
 2774         case SIGEV_SIGNAL:
 2775                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 2776                 break;
 2777         case SIGEV_KEVENT:
 2778                 nsig->sigev_notify_kqueue =
 2779                     osig->__sigev_u.__sigev_notify_kqueue;
 2780                 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
 2781                 break;
 2782         default:
 2783                 return (EINVAL);
 2784         }
 2785         return (0);
 2786 }
 2787 
 2788 static int
 2789 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
 2790     int type __unused)
 2791 {
 2792         struct oaiocb32 job32;
 2793         struct aiocb *kcb = &kjob->uaiocb;
 2794         int error;
 2795 
 2796         bzero(kcb, sizeof(struct aiocb));
 2797         error = copyin(ujob, &job32, sizeof(job32));
 2798         if (error)
 2799                 return (error);
 2800 
 2801         /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
 2802 
 2803         CP(job32, *kcb, aio_fildes);
 2804         CP(job32, *kcb, aio_offset);
 2805         PTRIN_CP(job32, *kcb, aio_buf);
 2806         CP(job32, *kcb, aio_nbytes);
 2807         CP(job32, *kcb, aio_lio_opcode);
 2808         CP(job32, *kcb, aio_reqprio);
 2809         CP(job32, *kcb, _aiocb_private.status);
 2810         CP(job32, *kcb, _aiocb_private.error);
 2811         PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
 2812         return (convert_old_sigevent32(&job32.aio_sigevent,
 2813             &kcb->aio_sigevent));
 2814 }
 2815 #endif
 2816 
 2817 static int
 2818 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
 2819 {
 2820         struct aiocb32 job32;
 2821         struct aiocb *kcb = &kjob->uaiocb;
 2822         struct iovec32 *iov32;
 2823         int error;
 2824 
 2825         error = copyin(ujob, &job32, sizeof(job32));
 2826         if (error)
 2827                 return (error);
 2828         CP(job32, *kcb, aio_fildes);
 2829         CP(job32, *kcb, aio_offset);
 2830         CP(job32, *kcb, aio_lio_opcode);
 2831         if (type == LIO_NOP)
 2832                 type = kcb->aio_lio_opcode;
 2833         if (type & LIO_VECTORED) {
 2834                 iov32 = PTRIN(job32.aio_iov);
 2835                 CP(job32, *kcb, aio_iovcnt);
 2836                 /* malloc a uio and copy in the iovec */
 2837                 error = freebsd32_copyinuio(iov32,
 2838                     kcb->aio_iovcnt, &kjob->uiop);
 2839                 if (error)
 2840                         return (error);
 2841         } else {
 2842                 PTRIN_CP(job32, *kcb, aio_buf);
 2843                 CP(job32, *kcb, aio_nbytes);
 2844         }
 2845         CP(job32, *kcb, aio_reqprio);
 2846         CP(job32, *kcb, _aiocb_private.status);
 2847         CP(job32, *kcb, _aiocb_private.error);
 2848         PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
 2849         error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
 2850 
 2851         return (error);
 2852 }
 2853 
 2854 static long
 2855 aiocb32_fetch_status(struct aiocb *ujob)
 2856 {
 2857         struct aiocb32 *ujob32;
 2858 
 2859         ujob32 = (struct aiocb32 *)ujob;
 2860         return (fuword32(&ujob32->_aiocb_private.status));
 2861 }
 2862 
 2863 static long
 2864 aiocb32_fetch_error(struct aiocb *ujob)
 2865 {
 2866         struct aiocb32 *ujob32;
 2867 
 2868         ujob32 = (struct aiocb32 *)ujob;
 2869         return (fuword32(&ujob32->_aiocb_private.error));
 2870 }
 2871 
 2872 static int
 2873 aiocb32_store_status(struct aiocb *ujob, long status)
 2874 {
 2875         struct aiocb32 *ujob32;
 2876 
 2877         ujob32 = (struct aiocb32 *)ujob;
 2878         return (suword32(&ujob32->_aiocb_private.status, status));
 2879 }
 2880 
 2881 static int
 2882 aiocb32_store_error(struct aiocb *ujob, long error)
 2883 {
 2884         struct aiocb32 *ujob32;
 2885 
 2886         ujob32 = (struct aiocb32 *)ujob;
 2887         return (suword32(&ujob32->_aiocb_private.error, error));
 2888 }
 2889 
 2890 static int
 2891 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
 2892 {
 2893         struct aiocb32 *ujob32;
 2894 
 2895         ujob32 = (struct aiocb32 *)ujob;
 2896         return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
 2897 }
 2898 
 2899 static int
 2900 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 2901 {
 2902 
 2903         return (suword32(ujobp, (long)ujob));
 2904 }
 2905 
 2906 static struct aiocb_ops aiocb32_ops = {
 2907         .aio_copyin = aiocb32_copyin,
 2908         .fetch_status = aiocb32_fetch_status,
 2909         .fetch_error = aiocb32_fetch_error,
 2910         .store_status = aiocb32_store_status,
 2911         .store_error = aiocb32_store_error,
 2912         .store_kernelinfo = aiocb32_store_kernelinfo,
 2913         .store_aiocb = aiocb32_store_aiocb,
 2914 };
 2915 
 2916 #ifdef COMPAT_FREEBSD6
 2917 static struct aiocb_ops aiocb32_ops_osigevent = {
 2918         .aio_copyin = aiocb32_copyin_old_sigevent,
 2919         .fetch_status = aiocb32_fetch_status,
 2920         .fetch_error = aiocb32_fetch_error,
 2921         .store_status = aiocb32_store_status,
 2922         .store_error = aiocb32_store_error,
 2923         .store_kernelinfo = aiocb32_store_kernelinfo,
 2924         .store_aiocb = aiocb32_store_aiocb,
 2925 };
 2926 #endif
 2927 
 2928 int
 2929 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
 2930 {
 2931 
 2932         return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2933 }
 2934 
 2935 int
 2936 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
 2937 {
 2938         struct timespec32 ts32;
 2939         struct timespec ts, *tsp;
 2940         struct aiocb **ujoblist;
 2941         uint32_t *ujoblist32;
 2942         int error, i;
 2943 
 2944         if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
 2945                 return (EINVAL);
 2946 
 2947         if (uap->timeout) {
 2948                 /* Get timespec struct. */
 2949                 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
 2950                         return (error);
 2951                 CP(ts32, ts, tv_sec);
 2952                 CP(ts32, ts, tv_nsec);
 2953                 tsp = &ts;
 2954         } else
 2955                 tsp = NULL;
 2956 
 2957         ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
 2958         ujoblist32 = (uint32_t *)ujoblist;
 2959         error = copyin(uap->aiocbp, ujoblist32, uap->nent *
 2960             sizeof(ujoblist32[0]));
 2961         if (error == 0) {
 2962                 for (i = uap->nent - 1; i >= 0; i--)
 2963                         ujoblist[i] = PTRIN(ujoblist32[i]);
 2964 
 2965                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2966         }
 2967         free(ujoblist, M_AIO);
 2968         return (error);
 2969 }
 2970 
 2971 int
 2972 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
 2973 {
 2974 
 2975         return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2976 }
 2977 
 2978 #ifdef COMPAT_FREEBSD6
 2979 int
 2980 freebsd6_freebsd32_aio_read(struct thread *td,
 2981     struct freebsd6_freebsd32_aio_read_args *uap)
 2982 {
 2983 
 2984         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2985             &aiocb32_ops_osigevent));
 2986 }
 2987 #endif
 2988 
 2989 int
 2990 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
 2991 {
 2992 
 2993         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2994             &aiocb32_ops));
 2995 }
 2996 
 2997 int
 2998 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
 2999 {
 3000 
 3001         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
 3002             &aiocb32_ops));
 3003 }
 3004 
 3005 #ifdef COMPAT_FREEBSD6
 3006 int
 3007 freebsd6_freebsd32_aio_write(struct thread *td,
 3008     struct freebsd6_freebsd32_aio_write_args *uap)
 3009 {
 3010 
 3011         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 3012             &aiocb32_ops_osigevent));
 3013 }
 3014 #endif
 3015 
 3016 int
 3017 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
 3018 {
 3019 
 3020         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 3021             &aiocb32_ops));
 3022 }
 3023 
 3024 int
 3025 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
 3026 {
 3027 
 3028         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
 3029             &aiocb32_ops));
 3030 }
 3031 
 3032 int
 3033 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
 3034 {
 3035 
 3036         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
 3037             &aiocb32_ops));
 3038 }
 3039 
 3040 int
 3041 freebsd32_aio_waitcomplete(struct thread *td,
 3042     struct freebsd32_aio_waitcomplete_args *uap)
 3043 {
 3044         struct timespec32 ts32;
 3045         struct timespec ts, *tsp;
 3046         int error;
 3047 
 3048         if (uap->timeout) {
 3049                 /* Get timespec struct. */
 3050                 error = copyin(uap->timeout, &ts32, sizeof(ts32));
 3051                 if (error)
 3052                         return (error);
 3053                 CP(ts32, ts, tv_sec);
 3054                 CP(ts32, ts, tv_nsec);
 3055                 tsp = &ts;
 3056         } else
 3057                 tsp = NULL;
 3058 
 3059         return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
 3060             &aiocb32_ops));
 3061 }
 3062 
 3063 int
 3064 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
 3065 {
 3066 
 3067         return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
 3068             &aiocb32_ops));
 3069 }
 3070 
 3071 #ifdef COMPAT_FREEBSD6
 3072 int
 3073 freebsd6_freebsd32_lio_listio(struct thread *td,
 3074     struct freebsd6_freebsd32_lio_listio_args *uap)
 3075 {
 3076         struct aiocb **acb_list;
 3077         struct sigevent *sigp, sig;
 3078         struct osigevent32 osig;
 3079         uint32_t *acb_list32;
 3080         int error, i, nent;
 3081 
 3082         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 3083                 return (EINVAL);
 3084 
 3085         nent = uap->nent;
 3086         if (nent < 0 || nent > max_aio_queue_per_proc)
 3087                 return (EINVAL);
 3088 
 3089         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 3090                 error = copyin(uap->sig, &osig, sizeof(osig));
 3091                 if (error)
 3092                         return (error);
 3093                 error = convert_old_sigevent32(&osig, &sig);
 3094                 if (error)
 3095                         return (error);
 3096                 sigp = &sig;
 3097         } else
 3098                 sigp = NULL;
 3099 
 3100         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 3101         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 3102         if (error) {
 3103                 free(acb_list32, M_LIO);
 3104                 return (error);
 3105         }
 3106         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 3107         for (i = 0; i < nent; i++)
 3108                 acb_list[i] = PTRIN(acb_list32[i]);
 3109         free(acb_list32, M_LIO);
 3110 
 3111         error = kern_lio_listio(td, uap->mode,
 3112             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 3113             &aiocb32_ops_osigevent);
 3114         free(acb_list, M_LIO);
 3115         return (error);
 3116 }
 3117 #endif
 3118 
 3119 int
 3120 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
 3121 {
 3122         struct aiocb **acb_list;
 3123         struct sigevent *sigp, sig;
 3124         struct sigevent32 sig32;
 3125         uint32_t *acb_list32;
 3126         int error, i, nent;
 3127 
 3128         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 3129                 return (EINVAL);
 3130 
 3131         nent = uap->nent;
 3132         if (nent < 0 || nent > max_aio_queue_per_proc)
 3133                 return (EINVAL);
 3134 
 3135         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 3136                 error = copyin(uap->sig, &sig32, sizeof(sig32));
 3137                 if (error)
 3138                         return (error);
 3139                 error = convert_sigevent32(&sig32, &sig);
 3140                 if (error)
 3141                         return (error);
 3142                 sigp = &sig;
 3143         } else
 3144                 sigp = NULL;
 3145 
 3146         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 3147         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 3148         if (error) {
 3149                 free(acb_list32, M_LIO);
 3150                 return (error);
 3151         }
 3152         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 3153         for (i = 0; i < nent; i++)
 3154                 acb_list[i] = PTRIN(acb_list32[i]);
 3155         free(acb_list32, M_LIO);
 3156 
 3157         error = kern_lio_listio(td, uap->mode,
 3158             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 3159             &aiocb32_ops);
 3160         free(acb_list, M_LIO);
 3161         return (error);
 3162 }
 3163 
 3164 #endif

Cache object: 5aa9bd73a163e12994c4a284e4ee4175


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.