The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_aio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. John S. Dyson's name may not be used to endorse or promote products
   10  *    derived from this software without specific prior written permission.
   11  *
   12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
   13  * bad that happens because of using this software isn't the responsibility
   14  * of the author.  This software is distributed AS-IS.
   15  */
   16 
   17 /*
   18  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
   19  */
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD: releng/10.1/sys/kern/vfs_aio.c 255241 2013-09-05 11:59:23Z pjd $");
   23 
   24 #include "opt_compat.h"
   25 
   26 #include <sys/param.h>
   27 #include <sys/systm.h>
   28 #include <sys/malloc.h>
   29 #include <sys/bio.h>
   30 #include <sys/buf.h>
   31 #include <sys/capability.h>
   32 #include <sys/eventhandler.h>
   33 #include <sys/sysproto.h>
   34 #include <sys/filedesc.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/kthread.h>
   38 #include <sys/fcntl.h>
   39 #include <sys/file.h>
   40 #include <sys/limits.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/unistd.h>
   44 #include <sys/posix4.h>
   45 #include <sys/proc.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/protosw.h>
   49 #include <sys/rwlock.h>
   50 #include <sys/sema.h>
   51 #include <sys/socket.h>
   52 #include <sys/socketvar.h>
   53 #include <sys/syscall.h>
   54 #include <sys/sysent.h>
   55 #include <sys/sysctl.h>
   56 #include <sys/sx.h>
   57 #include <sys/taskqueue.h>
   58 #include <sys/vnode.h>
   59 #include <sys/conf.h>
   60 #include <sys/event.h>
   61 #include <sys/mount.h>
   62 
   63 #include <machine/atomic.h>
   64 
   65 #include <vm/vm.h>
   66 #include <vm/vm_extern.h>
   67 #include <vm/pmap.h>
   68 #include <vm/vm_map.h>
   69 #include <vm/vm_object.h>
   70 #include <vm/uma.h>
   71 #include <sys/aio.h>
   72 
   73 #include "opt_vfs_aio.h"
   74 
   75 /*
   76  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
   77  * overflow. (XXX will be removed soon.)
   78  */
   79 static u_long jobrefid;
   80 
   81 /*
   82  * Counter for aio_fsync.
   83  */
   84 static uint64_t jobseqno;
   85 
   86 #define JOBST_NULL              0
   87 #define JOBST_JOBQSOCK          1
   88 #define JOBST_JOBQGLOBAL        2
   89 #define JOBST_JOBRUNNING        3
   90 #define JOBST_JOBFINISHED       4
   91 #define JOBST_JOBQBUF           5
   92 #define JOBST_JOBQSYNC          6
   93 
   94 #ifndef MAX_AIO_PER_PROC
   95 #define MAX_AIO_PER_PROC        32
   96 #endif
   97 
   98 #ifndef MAX_AIO_QUEUE_PER_PROC
   99 #define MAX_AIO_QUEUE_PER_PROC  256 /* Bigger than AIO_LISTIO_MAX */
  100 #endif
  101 
  102 #ifndef MAX_AIO_PROCS
  103 #define MAX_AIO_PROCS           32
  104 #endif
  105 
  106 #ifndef MAX_AIO_QUEUE
  107 #define MAX_AIO_QUEUE           1024 /* Bigger than AIO_LISTIO_MAX */
  108 #endif
  109 
  110 #ifndef TARGET_AIO_PROCS
  111 #define TARGET_AIO_PROCS        4
  112 #endif
  113 
  114 #ifndef MAX_BUF_AIO
  115 #define MAX_BUF_AIO             16
  116 #endif
  117 
  118 #ifndef AIOD_TIMEOUT_DEFAULT
  119 #define AIOD_TIMEOUT_DEFAULT    (10 * hz)
  120 #endif
  121 
  122 #ifndef AIOD_LIFETIME_DEFAULT
  123 #define AIOD_LIFETIME_DEFAULT   (30 * hz)
  124 #endif
  125 
  126 FEATURE(aio, "Asynchronous I/O");
  127 
  128 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
  129 
  130 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
  131 
  132 static int max_aio_procs = MAX_AIO_PROCS;
  133 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
  134         CTLFLAG_RW, &max_aio_procs, 0,
  135         "Maximum number of kernel threads to use for handling async IO ");
  136 
  137 static int num_aio_procs = 0;
  138 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
  139         CTLFLAG_RD, &num_aio_procs, 0,
  140         "Number of presently active kernel threads for async IO");
  141 
  142 /*
  143  * The code will adjust the actual number of AIO processes towards this
  144  * number when it gets a chance.
  145  */
  146 static int target_aio_procs = TARGET_AIO_PROCS;
  147 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
  148         0, "Preferred number of ready kernel threads for async IO");
  149 
  150 static int max_queue_count = MAX_AIO_QUEUE;
  151 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
  152     "Maximum number of aio requests to queue, globally");
  153 
  154 static int num_queue_count = 0;
  155 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
  156     "Number of queued aio requests");
  157 
  158 static int num_buf_aio = 0;
  159 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
  160     "Number of aio requests presently handled by the buf subsystem");
  161 
  162 /* Number of async I/O thread in the process of being started */
  163 /* XXX This should be local to aio_aqueue() */
  164 static int num_aio_resv_start = 0;
  165 
  166 static int aiod_timeout;
  167 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
  168     "Timeout value for synchronous aio operations");
  169 
  170 static int aiod_lifetime;
  171 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
  172     "Maximum lifetime for idle aiod");
  173 
  174 static int unloadable = 0;
  175 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0,
  176     "Allow unload of aio (not recommended)");
  177 
  178 
  179 static int max_aio_per_proc = MAX_AIO_PER_PROC;
  180 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
  181     0, "Maximum active aio requests per process (stored in the process)");
  182 
  183 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
  184 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
  185     &max_aio_queue_per_proc, 0,
  186     "Maximum queued aio requests per process (stored in the process)");
  187 
  188 static int max_buf_aio = MAX_BUF_AIO;
  189 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
  190     "Maximum buf aio requests per process (stored in the process)");
  191 
  192 typedef struct oaiocb {
  193         int     aio_fildes;             /* File descriptor */
  194         off_t   aio_offset;             /* File offset for I/O */
  195         volatile void *aio_buf;         /* I/O buffer in process space */
  196         size_t  aio_nbytes;             /* Number of bytes for I/O */
  197         struct  osigevent aio_sigevent; /* Signal to deliver */
  198         int     aio_lio_opcode;         /* LIO opcode */
  199         int     aio_reqprio;            /* Request priority -- ignored */
  200         struct  __aiocb_private _aiocb_private;
  201 } oaiocb_t;
  202 
  203 /*
  204  * Below is a key of locks used to protect each member of struct aiocblist
  205  * aioliojob and kaioinfo and any backends.
  206  *
  207  * * - need not protected
  208  * a - locked by kaioinfo lock
  209  * b - locked by backend lock, the backend lock can be null in some cases,
  210  *     for example, BIO belongs to this type, in this case, proc lock is
  211  *     reused.
  212  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
  213  */
  214 
  215 /*
  216  * Current, there is only two backends: BIO and generic file I/O.
  217  * socket I/O is served by generic file I/O, this is not a good idea, since
  218  * disk file I/O and any other types without O_NONBLOCK flag can block daemon
  219  * threads, if there is no thread to serve socket I/O, the socket I/O will be
  220  * delayed too long or starved, we should create some threads dedicated to
  221  * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O
  222  * systems we really need non-blocking interface, fiddling O_NONBLOCK in file
  223  * structure is not safe because there is race between userland and aio
  224  * daemons.
  225  */
  226 
  227 struct aiocblist {
  228         TAILQ_ENTRY(aiocblist) list;    /* (b) internal list of for backend */
  229         TAILQ_ENTRY(aiocblist) plist;   /* (a) list of jobs for each backend */
  230         TAILQ_ENTRY(aiocblist) allist;  /* (a) list of all jobs in proc */
  231         int     jobflags;               /* (a) job flags */
  232         int     jobstate;               /* (b) job state */
  233         int     inputcharge;            /* (*) input blockes */
  234         int     outputcharge;           /* (*) output blockes */
  235         struct  buf *bp;                /* (*) private to BIO backend,
  236                                          * buffer pointer
  237                                          */
  238         struct  proc *userproc;         /* (*) user process */
  239         struct  ucred *cred;            /* (*) active credential when created */
  240         struct  file *fd_file;          /* (*) pointer to file structure */
  241         struct  aioliojob *lio;         /* (*) optional lio job */
  242         struct  aiocb *uuaiocb;         /* (*) pointer in userspace of aiocb */
  243         struct  knlist klist;           /* (a) list of knotes */
  244         struct  aiocb uaiocb;           /* (*) kernel I/O control block */
  245         ksiginfo_t ksi;                 /* (a) realtime signal info */
  246         struct  task biotask;           /* (*) private to BIO backend */
  247         uint64_t seqno;                 /* (*) job number */
  248         int     pending;                /* (a) number of pending I/O, aio_fsync only */
  249 };
  250 
  251 /* jobflags */
  252 #define AIOCBLIST_DONE          0x01
  253 #define AIOCBLIST_BUFDONE       0x02
  254 #define AIOCBLIST_RUNDOWN       0x04
  255 #define AIOCBLIST_CHECKSYNC     0x08
  256 
  257 /*
  258  * AIO process info
  259  */
  260 #define AIOP_FREE       0x1                     /* proc on free queue */
  261 
  262 struct aiothreadlist {
  263         int aiothreadflags;                     /* (c) AIO proc flags */
  264         TAILQ_ENTRY(aiothreadlist) list;        /* (c) list of processes */
  265         struct thread *aiothread;               /* (*) the AIO thread */
  266 };
  267 
  268 /*
  269  * data-structure for lio signal management
  270  */
  271 struct aioliojob {
  272         int     lioj_flags;                     /* (a) listio flags */
  273         int     lioj_count;                     /* (a) listio flags */
  274         int     lioj_finished_count;            /* (a) listio flags */
  275         struct  sigevent lioj_signal;           /* (a) signal on all I/O done */
  276         TAILQ_ENTRY(aioliojob) lioj_list;       /* (a) lio list */
  277         struct  knlist klist;                   /* (a) list of knotes */
  278         ksiginfo_t lioj_ksi;                    /* (a) Realtime signal info */
  279 };
  280 
  281 #define LIOJ_SIGNAL             0x1     /* signal on all done (lio) */
  282 #define LIOJ_SIGNAL_POSTED      0x2     /* signal has been posted */
  283 #define LIOJ_KEVENT_POSTED      0x4     /* kevent triggered */
  284 
  285 /*
  286  * per process aio data structure
  287  */
  288 struct kaioinfo {
  289         struct mtx      kaio_mtx;       /* the lock to protect this struct */
  290         int     kaio_flags;             /* (a) per process kaio flags */
  291         int     kaio_maxactive_count;   /* (*) maximum number of AIOs */
  292         int     kaio_active_count;      /* (c) number of currently used AIOs */
  293         int     kaio_qallowed_count;    /* (*) maxiumu size of AIO queue */
  294         int     kaio_count;             /* (a) size of AIO queue */
  295         int     kaio_ballowed_count;    /* (*) maximum number of buffers */
  296         int     kaio_buffer_count;      /* (a) number of physio buffers */
  297         TAILQ_HEAD(,aiocblist) kaio_all;        /* (a) all AIOs in the process */
  298         TAILQ_HEAD(,aiocblist) kaio_done;       /* (a) done queue for process */
  299         TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
  300         TAILQ_HEAD(,aiocblist) kaio_jobqueue;   /* (a) job queue for process */
  301         TAILQ_HEAD(,aiocblist) kaio_bufqueue;   /* (a) buffer job queue for process */
  302         TAILQ_HEAD(,aiocblist) kaio_sockqueue;  /* (a) queue for aios waiting on sockets,
  303                                                  *  NOT USED YET.
  304                                                  */
  305         TAILQ_HEAD(,aiocblist) kaio_syncqueue;  /* (a) queue for aio_fsync */
  306         struct  task    kaio_task;      /* (*) task to kick aio threads */
  307 };
  308 
  309 #define AIO_LOCK(ki)            mtx_lock(&(ki)->kaio_mtx)
  310 #define AIO_UNLOCK(ki)          mtx_unlock(&(ki)->kaio_mtx)
  311 #define AIO_LOCK_ASSERT(ki, f)  mtx_assert(&(ki)->kaio_mtx, (f))
  312 #define AIO_MTX(ki)             (&(ki)->kaio_mtx)
  313 
  314 #define KAIO_RUNDOWN    0x1     /* process is being run down */
  315 #define KAIO_WAKEUP     0x2     /* wakeup process when there is a significant event */
  316 
  317 /*
  318  * Operations used to interact with userland aio control blocks.
  319  * Different ABIs provide their own operations.
  320  */
  321 struct aiocb_ops {
  322         int     (*copyin)(struct aiocb *ujob, struct aiocb *kjob);
  323         long    (*fetch_status)(struct aiocb *ujob);
  324         long    (*fetch_error)(struct aiocb *ujob);
  325         int     (*store_status)(struct aiocb *ujob, long status);
  326         int     (*store_error)(struct aiocb *ujob, long error);
  327         int     (*store_kernelinfo)(struct aiocb *ujob, long jobref);
  328         int     (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
  329 };
  330 
  331 static TAILQ_HEAD(,aiothreadlist) aio_freeproc;         /* (c) Idle daemons */
  332 static struct sema aio_newproc_sem;
  333 static struct mtx aio_job_mtx;
  334 static struct mtx aio_sock_mtx;
  335 static TAILQ_HEAD(,aiocblist) aio_jobs;                 /* (c) Async job list */
  336 static struct unrhdr *aiod_unr;
  337 
  338 void            aio_init_aioinfo(struct proc *p);
  339 static int      aio_onceonly(void);
  340 static int      aio_free_entry(struct aiocblist *aiocbe);
  341 static void     aio_process_rw(struct aiocblist *aiocbe);
  342 static void     aio_process_sync(struct aiocblist *aiocbe);
  343 static void     aio_process_mlock(struct aiocblist *aiocbe);
  344 static int      aio_newproc(int *);
  345 int             aio_aqueue(struct thread *td, struct aiocb *job,
  346                         struct aioliojob *lio, int type, struct aiocb_ops *ops);
  347 static void     aio_physwakeup(struct buf *bp);
  348 static void     aio_proc_rundown(void *arg, struct proc *p);
  349 static void     aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp);
  350 static int      aio_qphysio(struct proc *p, struct aiocblist *iocb);
  351 static void     biohelper(void *, int);
  352 static void     aio_daemon(void *param);
  353 static void     aio_swake_cb(struct socket *, struct sockbuf *);
  354 static int      aio_unload(void);
  355 static void     aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type);
  356 #define DONE_BUF        1
  357 #define DONE_QUEUE      2
  358 static int      aio_kick(struct proc *userp);
  359 static void     aio_kick_nowait(struct proc *userp);
  360 static void     aio_kick_helper(void *context, int pending);
  361 static int      filt_aioattach(struct knote *kn);
  362 static void     filt_aiodetach(struct knote *kn);
  363 static int      filt_aio(struct knote *kn, long hint);
  364 static int      filt_lioattach(struct knote *kn);
  365 static void     filt_liodetach(struct knote *kn);
  366 static int      filt_lio(struct knote *kn, long hint);
  367 
  368 /*
  369  * Zones for:
  370  *      kaio    Per process async io info
  371  *      aiop    async io thread data
  372  *      aiocb   async io jobs
  373  *      aiol    list io job pointer - internal to aio_suspend XXX
  374  *      aiolio  list io jobs
  375  */
  376 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
  377 
  378 /* kqueue filters for aio */
  379 static struct filterops aio_filtops = {
  380         .f_isfd = 0,
  381         .f_attach = filt_aioattach,
  382         .f_detach = filt_aiodetach,
  383         .f_event = filt_aio,
  384 };
  385 static struct filterops lio_filtops = {
  386         .f_isfd = 0,
  387         .f_attach = filt_lioattach,
  388         .f_detach = filt_liodetach,
  389         .f_event = filt_lio
  390 };
  391 
  392 static eventhandler_tag exit_tag, exec_tag;
  393 
  394 TASKQUEUE_DEFINE_THREAD(aiod_bio);
  395 
  396 /*
  397  * Main operations function for use as a kernel module.
  398  */
  399 static int
  400 aio_modload(struct module *module, int cmd, void *arg)
  401 {
  402         int error = 0;
  403 
  404         switch (cmd) {
  405         case MOD_LOAD:
  406                 aio_onceonly();
  407                 break;
  408         case MOD_UNLOAD:
  409                 error = aio_unload();
  410                 break;
  411         case MOD_SHUTDOWN:
  412                 break;
  413         default:
  414                 error = EINVAL;
  415                 break;
  416         }
  417         return (error);
  418 }
  419 
  420 static moduledata_t aio_mod = {
  421         "aio",
  422         &aio_modload,
  423         NULL
  424 };
  425 
  426 static struct syscall_helper_data aio_syscalls[] = {
  427         SYSCALL_INIT_HELPER(aio_cancel),
  428         SYSCALL_INIT_HELPER(aio_error),
  429         SYSCALL_INIT_HELPER(aio_fsync),
  430         SYSCALL_INIT_HELPER(aio_mlock),
  431         SYSCALL_INIT_HELPER(aio_read),
  432         SYSCALL_INIT_HELPER(aio_return),
  433         SYSCALL_INIT_HELPER(aio_suspend),
  434         SYSCALL_INIT_HELPER(aio_waitcomplete),
  435         SYSCALL_INIT_HELPER(aio_write),
  436         SYSCALL_INIT_HELPER(lio_listio),
  437         SYSCALL_INIT_HELPER(oaio_read),
  438         SYSCALL_INIT_HELPER(oaio_write),
  439         SYSCALL_INIT_HELPER(olio_listio),
  440         SYSCALL_INIT_LAST
  441 };
  442 
  443 #ifdef COMPAT_FREEBSD32
  444 #include <sys/mount.h>
  445 #include <sys/socket.h>
  446 #include <compat/freebsd32/freebsd32.h>
  447 #include <compat/freebsd32/freebsd32_proto.h>
  448 #include <compat/freebsd32/freebsd32_signal.h>
  449 #include <compat/freebsd32/freebsd32_syscall.h>
  450 #include <compat/freebsd32/freebsd32_util.h>
  451 
  452 static struct syscall_helper_data aio32_syscalls[] = {
  453         SYSCALL32_INIT_HELPER(freebsd32_aio_return),
  454         SYSCALL32_INIT_HELPER(freebsd32_aio_suspend),
  455         SYSCALL32_INIT_HELPER(freebsd32_aio_cancel),
  456         SYSCALL32_INIT_HELPER(freebsd32_aio_error),
  457         SYSCALL32_INIT_HELPER(freebsd32_aio_fsync),
  458         SYSCALL32_INIT_HELPER(freebsd32_aio_mlock),
  459         SYSCALL32_INIT_HELPER(freebsd32_aio_read),
  460         SYSCALL32_INIT_HELPER(freebsd32_aio_write),
  461         SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete),
  462         SYSCALL32_INIT_HELPER(freebsd32_lio_listio),
  463         SYSCALL32_INIT_HELPER(freebsd32_oaio_read),
  464         SYSCALL32_INIT_HELPER(freebsd32_oaio_write),
  465         SYSCALL32_INIT_HELPER(freebsd32_olio_listio),
  466         SYSCALL_INIT_LAST
  467 };
  468 #endif
  469 
  470 DECLARE_MODULE(aio, aio_mod,
  471         SI_SUB_VFS, SI_ORDER_ANY);
  472 MODULE_VERSION(aio, 1);
  473 
  474 /*
  475  * Startup initialization
  476  */
  477 static int
  478 aio_onceonly(void)
  479 {
  480         int error;
  481 
  482         /* XXX: should probably just use so->callback */
  483         aio_swake = &aio_swake_cb;
  484         exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
  485             EVENTHANDLER_PRI_ANY);
  486         exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL,
  487             EVENTHANDLER_PRI_ANY);
  488         kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
  489         kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
  490         TAILQ_INIT(&aio_freeproc);
  491         sema_init(&aio_newproc_sem, 0, "aio_new_proc");
  492         mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
  493         mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF);
  494         TAILQ_INIT(&aio_jobs);
  495         aiod_unr = new_unrhdr(1, INT_MAX, NULL);
  496         kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
  497             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  498         aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL,
  499             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  500         aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL,
  501             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  502         aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
  503             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  504         aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
  505             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  506         aiod_timeout = AIOD_TIMEOUT_DEFAULT;
  507         aiod_lifetime = AIOD_LIFETIME_DEFAULT;
  508         jobrefid = 1;
  509         async_io_version = _POSIX_VERSION;
  510         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
  511         p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
  512         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
  513 
  514         error = syscall_helper_register(aio_syscalls);
  515         if (error)
  516                 return (error);
  517 #ifdef COMPAT_FREEBSD32
  518         error = syscall32_helper_register(aio32_syscalls);
  519         if (error)
  520                 return (error);
  521 #endif
  522         return (0);
  523 }
  524 
  525 /*
  526  * Callback for unload of AIO when used as a module.
  527  */
  528 static int
  529 aio_unload(void)
  530 {
  531         int error;
  532 
  533         /*
  534          * XXX: no unloads by default, it's too dangerous.
  535          * perhaps we could do it if locked out callers and then
  536          * did an aio_proc_rundown() on each process.
  537          *
  538          * jhb: aio_proc_rundown() needs to run on curproc though,
  539          * so I don't think that would fly.
  540          */
  541         if (!unloadable)
  542                 return (EOPNOTSUPP);
  543 
  544 #ifdef COMPAT_FREEBSD32
  545         syscall32_helper_unregister(aio32_syscalls);
  546 #endif
  547         syscall_helper_unregister(aio_syscalls);
  548 
  549         error = kqueue_del_filteropts(EVFILT_AIO);
  550         if (error)
  551                 return error;
  552         error = kqueue_del_filteropts(EVFILT_LIO);
  553         if (error)
  554                 return error;
  555         async_io_version = 0;
  556         aio_swake = NULL;
  557         taskqueue_free(taskqueue_aiod_bio);
  558         delete_unrhdr(aiod_unr);
  559         uma_zdestroy(kaio_zone);
  560         uma_zdestroy(aiop_zone);
  561         uma_zdestroy(aiocb_zone);
  562         uma_zdestroy(aiol_zone);
  563         uma_zdestroy(aiolio_zone);
  564         EVENTHANDLER_DEREGISTER(process_exit, exit_tag);
  565         EVENTHANDLER_DEREGISTER(process_exec, exec_tag);
  566         mtx_destroy(&aio_job_mtx);
  567         mtx_destroy(&aio_sock_mtx);
  568         sema_destroy(&aio_newproc_sem);
  569         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1);
  570         p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1);
  571         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1);
  572         return (0);
  573 }
  574 
  575 /*
  576  * Init the per-process aioinfo structure.  The aioinfo limits are set
  577  * per-process for user limit (resource) management.
  578  */
  579 void
  580 aio_init_aioinfo(struct proc *p)
  581 {
  582         struct kaioinfo *ki;
  583 
  584         ki = uma_zalloc(kaio_zone, M_WAITOK);
  585         mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF);
  586         ki->kaio_flags = 0;
  587         ki->kaio_maxactive_count = max_aio_per_proc;
  588         ki->kaio_active_count = 0;
  589         ki->kaio_qallowed_count = max_aio_queue_per_proc;
  590         ki->kaio_count = 0;
  591         ki->kaio_ballowed_count = max_buf_aio;
  592         ki->kaio_buffer_count = 0;
  593         TAILQ_INIT(&ki->kaio_all);
  594         TAILQ_INIT(&ki->kaio_done);
  595         TAILQ_INIT(&ki->kaio_jobqueue);
  596         TAILQ_INIT(&ki->kaio_bufqueue);
  597         TAILQ_INIT(&ki->kaio_liojoblist);
  598         TAILQ_INIT(&ki->kaio_sockqueue);
  599         TAILQ_INIT(&ki->kaio_syncqueue);
  600         TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
  601         PROC_LOCK(p);
  602         if (p->p_aioinfo == NULL) {
  603                 p->p_aioinfo = ki;
  604                 PROC_UNLOCK(p);
  605         } else {
  606                 PROC_UNLOCK(p);
  607                 mtx_destroy(&ki->kaio_mtx);
  608                 uma_zfree(kaio_zone, ki);
  609         }
  610 
  611         while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
  612                 aio_newproc(NULL);
  613 }
  614 
  615 static int
  616 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
  617 {
  618         struct thread *td;
  619         int error;
  620 
  621         error = sigev_findtd(p, sigev, &td);
  622         if (error)
  623                 return (error);
  624         if (!KSI_ONQ(ksi)) {
  625                 ksiginfo_set_sigev(ksi, sigev);
  626                 ksi->ksi_code = SI_ASYNCIO;
  627                 ksi->ksi_flags |= KSI_EXT | KSI_INS;
  628                 tdsendsignal(p, td, ksi->ksi_signo, ksi);
  629         }
  630         PROC_UNLOCK(p);
  631         return (error);
  632 }
  633 
  634 /*
  635  * Free a job entry.  Wait for completion if it is currently active, but don't
  636  * delay forever.  If we delay, we return a flag that says that we have to
  637  * restart the queue scan.
  638  */
  639 static int
  640 aio_free_entry(struct aiocblist *aiocbe)
  641 {
  642         struct kaioinfo *ki;
  643         struct aioliojob *lj;
  644         struct proc *p;
  645 
  646         p = aiocbe->userproc;
  647         MPASS(curproc == p);
  648         ki = p->p_aioinfo;
  649         MPASS(ki != NULL);
  650 
  651         AIO_LOCK_ASSERT(ki, MA_OWNED);
  652         MPASS(aiocbe->jobstate == JOBST_JOBFINISHED);
  653 
  654         atomic_subtract_int(&num_queue_count, 1);
  655 
  656         ki->kaio_count--;
  657         MPASS(ki->kaio_count >= 0);
  658 
  659         TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist);
  660         TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
  661 
  662         lj = aiocbe->lio;
  663         if (lj) {
  664                 lj->lioj_count--;
  665                 lj->lioj_finished_count--;
  666 
  667                 if (lj->lioj_count == 0) {
  668                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  669                         /* lio is going away, we need to destroy any knotes */
  670                         knlist_delete(&lj->klist, curthread, 1);
  671                         PROC_LOCK(p);
  672                         sigqueue_take(&lj->lioj_ksi);
  673                         PROC_UNLOCK(p);
  674                         uma_zfree(aiolio_zone, lj);
  675                 }
  676         }
  677 
  678         /* aiocbe is going away, we need to destroy any knotes */
  679         knlist_delete(&aiocbe->klist, curthread, 1);
  680         PROC_LOCK(p);
  681         sigqueue_take(&aiocbe->ksi);
  682         PROC_UNLOCK(p);
  683 
  684         MPASS(aiocbe->bp == NULL);
  685         aiocbe->jobstate = JOBST_NULL;
  686         AIO_UNLOCK(ki);
  687 
  688         /*
  689          * The thread argument here is used to find the owning process
  690          * and is also passed to fo_close() which may pass it to various
  691          * places such as devsw close() routines.  Because of that, we
  692          * need a thread pointer from the process owning the job that is
  693          * persistent and won't disappear out from under us or move to
  694          * another process.
  695          *
  696          * Currently, all the callers of this function call it to remove
  697          * an aiocblist from the current process' job list either via a
  698          * syscall or due to the current process calling exit() or
  699          * execve().  Thus, we know that p == curproc.  We also know that
  700          * curthread can't exit since we are curthread.
  701          *
  702          * Therefore, we use curthread as the thread to pass to
  703          * knlist_delete().  This does mean that it is possible for the
  704          * thread pointer at close time to differ from the thread pointer
  705          * at open time, but this is already true of file descriptors in
  706          * a multithreaded process.
  707          */
  708         if (aiocbe->fd_file)
  709                 fdrop(aiocbe->fd_file, curthread);
  710         crfree(aiocbe->cred);
  711         uma_zfree(aiocb_zone, aiocbe);
  712         AIO_LOCK(ki);
  713 
  714         return (0);
  715 }
  716 
  717 static void
  718 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
  719 {
  720         aio_proc_rundown(arg, p);
  721 }
  722 
  723 /*
  724  * Rundown the jobs for a given process.
  725  */
  726 static void
  727 aio_proc_rundown(void *arg, struct proc *p)
  728 {
  729         struct kaioinfo *ki;
  730         struct aioliojob *lj;
  731         struct aiocblist *cbe, *cbn;
  732         struct file *fp;
  733         struct socket *so;
  734         int remove;
  735 
  736         KASSERT(curthread->td_proc == p,
  737             ("%s: called on non-curproc", __func__));
  738         ki = p->p_aioinfo;
  739         if (ki == NULL)
  740                 return;
  741 
  742         AIO_LOCK(ki);
  743         ki->kaio_flags |= KAIO_RUNDOWN;
  744 
  745 restart:
  746 
  747         /*
  748          * Try to cancel all pending requests. This code simulates
  749          * aio_cancel on all pending I/O requests.
  750          */
  751         TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
  752                 remove = 0;
  753                 mtx_lock(&aio_job_mtx);
  754                 if (cbe->jobstate == JOBST_JOBQGLOBAL) {
  755                         TAILQ_REMOVE(&aio_jobs, cbe, list);
  756                         remove = 1;
  757                 } else if (cbe->jobstate == JOBST_JOBQSOCK) {
  758                         fp = cbe->fd_file;
  759                         MPASS(fp->f_type == DTYPE_SOCKET);
  760                         so = fp->f_data;
  761                         TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
  762                         remove = 1;
  763                 } else if (cbe->jobstate == JOBST_JOBQSYNC) {
  764                         TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
  765                         remove = 1;
  766                 }
  767                 mtx_unlock(&aio_job_mtx);
  768 
  769                 if (remove) {
  770                         cbe->jobstate = JOBST_JOBFINISHED;
  771                         cbe->uaiocb._aiocb_private.status = -1;
  772                         cbe->uaiocb._aiocb_private.error = ECANCELED;
  773                         TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
  774                         aio_bio_done_notify(p, cbe, DONE_QUEUE);
  775                 }
  776         }
  777 
  778         /* Wait for all running I/O to be finished */
  779         if (TAILQ_FIRST(&ki->kaio_bufqueue) ||
  780             TAILQ_FIRST(&ki->kaio_jobqueue)) {
  781                 ki->kaio_flags |= KAIO_WAKEUP;
  782                 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
  783                 goto restart;
  784         }
  785 
  786         /* Free all completed I/O requests. */
  787         while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL)
  788                 aio_free_entry(cbe);
  789 
  790         while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
  791                 if (lj->lioj_count == 0) {
  792                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  793                         knlist_delete(&lj->klist, curthread, 1);
  794                         PROC_LOCK(p);
  795                         sigqueue_take(&lj->lioj_ksi);
  796                         PROC_UNLOCK(p);
  797                         uma_zfree(aiolio_zone, lj);
  798                 } else {
  799                         panic("LIO job not cleaned up: C:%d, FC:%d\n",
  800                             lj->lioj_count, lj->lioj_finished_count);
  801                 }
  802         }
  803         AIO_UNLOCK(ki);
  804         taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task);
  805         mtx_destroy(&ki->kaio_mtx);
  806         uma_zfree(kaio_zone, ki);
  807         p->p_aioinfo = NULL;
  808 }
  809 
  810 /*
  811  * Select a job to run (called by an AIO daemon).
  812  */
  813 static struct aiocblist *
  814 aio_selectjob(struct aiothreadlist *aiop)
  815 {
  816         struct aiocblist *aiocbe;
  817         struct kaioinfo *ki;
  818         struct proc *userp;
  819 
  820         mtx_assert(&aio_job_mtx, MA_OWNED);
  821         TAILQ_FOREACH(aiocbe, &aio_jobs, list) {
  822                 userp = aiocbe->userproc;
  823                 ki = userp->p_aioinfo;
  824 
  825                 if (ki->kaio_active_count < ki->kaio_maxactive_count) {
  826                         TAILQ_REMOVE(&aio_jobs, aiocbe, list);
  827                         /* Account for currently active jobs. */
  828                         ki->kaio_active_count++;
  829                         aiocbe->jobstate = JOBST_JOBRUNNING;
  830                         break;
  831                 }
  832         }
  833         return (aiocbe);
  834 }
  835 
  836 /*
  837  *  Move all data to a permanent storage device, this code
  838  *  simulates fsync syscall.
  839  */
  840 static int
  841 aio_fsync_vnode(struct thread *td, struct vnode *vp)
  842 {
  843         struct mount *mp;
  844         int error;
  845 
  846         if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  847                 goto drop;
  848         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  849         if (vp->v_object != NULL) {
  850                 VM_OBJECT_WLOCK(vp->v_object);
  851                 vm_object_page_clean(vp->v_object, 0, 0, 0);
  852                 VM_OBJECT_WUNLOCK(vp->v_object);
  853         }
  854         error = VOP_FSYNC(vp, MNT_WAIT, td);
  855 
  856         VOP_UNLOCK(vp, 0);
  857         vn_finished_write(mp);
  858 drop:
  859         return (error);
  860 }
  861 
  862 /*
  863  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
  864  * does the I/O request for the non-physio version of the operations.  The
  865  * normal vn operations are used, and this code should work in all instances
  866  * for every type of file, including pipes, sockets, fifos, and regular files.
  867  *
  868  * XXX I don't think it works well for socket, pipe, and fifo.
  869  */
  870 static void
  871 aio_process_rw(struct aiocblist *aiocbe)
  872 {
  873         struct ucred *td_savedcred;
  874         struct thread *td;
  875         struct aiocb *cb;
  876         struct file *fp;
  877         struct socket *so;
  878         struct uio auio;
  879         struct iovec aiov;
  880         int cnt;
  881         int error;
  882         int oublock_st, oublock_end;
  883         int inblock_st, inblock_end;
  884 
  885         KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_READ ||
  886             aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE,
  887             ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode));
  888 
  889         td = curthread;
  890         td_savedcred = td->td_ucred;
  891         td->td_ucred = aiocbe->cred;
  892         cb = &aiocbe->uaiocb;
  893         fp = aiocbe->fd_file;
  894 
  895         aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
  896         aiov.iov_len = cb->aio_nbytes;
  897 
  898         auio.uio_iov = &aiov;
  899         auio.uio_iovcnt = 1;
  900         auio.uio_offset = cb->aio_offset;
  901         auio.uio_resid = cb->aio_nbytes;
  902         cnt = cb->aio_nbytes;
  903         auio.uio_segflg = UIO_USERSPACE;
  904         auio.uio_td = td;
  905 
  906         inblock_st = td->td_ru.ru_inblock;
  907         oublock_st = td->td_ru.ru_oublock;
  908         /*
  909          * aio_aqueue() acquires a reference to the file that is
  910          * released in aio_free_entry().
  911          */
  912         if (cb->aio_lio_opcode == LIO_READ) {
  913                 auio.uio_rw = UIO_READ;
  914                 if (auio.uio_resid == 0)
  915                         error = 0;
  916                 else
  917                         error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  918         } else {
  919                 if (fp->f_type == DTYPE_VNODE)
  920                         bwillwrite();
  921                 auio.uio_rw = UIO_WRITE;
  922                 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  923         }
  924         inblock_end = td->td_ru.ru_inblock;
  925         oublock_end = td->td_ru.ru_oublock;
  926 
  927         aiocbe->inputcharge = inblock_end - inblock_st;
  928         aiocbe->outputcharge = oublock_end - oublock_st;
  929 
  930         if ((error) && (auio.uio_resid != cnt)) {
  931                 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
  932                         error = 0;
  933                 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
  934                         int sigpipe = 1;
  935                         if (fp->f_type == DTYPE_SOCKET) {
  936                                 so = fp->f_data;
  937                                 if (so->so_options & SO_NOSIGPIPE)
  938                                         sigpipe = 0;
  939                         }
  940                         if (sigpipe) {
  941                                 PROC_LOCK(aiocbe->userproc);
  942                                 kern_psignal(aiocbe->userproc, SIGPIPE);
  943                                 PROC_UNLOCK(aiocbe->userproc);
  944                         }
  945                 }
  946         }
  947 
  948         cnt -= auio.uio_resid;
  949         cb->_aiocb_private.error = error;
  950         cb->_aiocb_private.status = cnt;
  951         td->td_ucred = td_savedcred;
  952 }
  953 
  954 static void
  955 aio_process_sync(struct aiocblist *aiocbe)
  956 {
  957         struct thread *td = curthread;
  958         struct ucred *td_savedcred = td->td_ucred;
  959         struct aiocb *cb = &aiocbe->uaiocb;
  960         struct file *fp = aiocbe->fd_file;
  961         int error = 0;
  962 
  963         KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_SYNC,
  964             ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode));
  965 
  966         td->td_ucred = aiocbe->cred;
  967         if (fp->f_vnode != NULL)
  968                 error = aio_fsync_vnode(td, fp->f_vnode);
  969         cb->_aiocb_private.error = error;
  970         cb->_aiocb_private.status = 0;
  971         td->td_ucred = td_savedcred;
  972 }
  973 
  974 static void
  975 aio_process_mlock(struct aiocblist *aiocbe)
  976 {
  977         struct aiocb *cb = &aiocbe->uaiocb;
  978         int error;
  979 
  980         KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_MLOCK,
  981             ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode));
  982 
  983         error = vm_mlock(aiocbe->userproc, aiocbe->cred,
  984             __DEVOLATILE(void *, cb->aio_buf), cb->aio_nbytes);
  985         cb->_aiocb_private.error = error;
  986         cb->_aiocb_private.status = 0;
  987 }
  988 
  989 static void
  990 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type)
  991 {
  992         struct aioliojob *lj;
  993         struct kaioinfo *ki;
  994         struct aiocblist *scb, *scbn;
  995         int lj_done;
  996 
  997         ki = userp->p_aioinfo;
  998         AIO_LOCK_ASSERT(ki, MA_OWNED);
  999         lj = aiocbe->lio;
 1000         lj_done = 0;
 1001         if (lj) {
 1002                 lj->lioj_finished_count++;
 1003                 if (lj->lioj_count == lj->lioj_finished_count)
 1004                         lj_done = 1;
 1005         }
 1006         if (type == DONE_QUEUE) {
 1007                 aiocbe->jobflags |= AIOCBLIST_DONE;
 1008         } else {
 1009                 aiocbe->jobflags |= AIOCBLIST_BUFDONE;
 1010         }
 1011         TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist);
 1012         aiocbe->jobstate = JOBST_JOBFINISHED;
 1013 
 1014         if (ki->kaio_flags & KAIO_RUNDOWN)
 1015                 goto notification_done;
 1016 
 1017         if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1018             aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
 1019                 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi);
 1020 
 1021         KNOTE_LOCKED(&aiocbe->klist, 1);
 1022 
 1023         if (lj_done) {
 1024                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 1025                         lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 1026                         KNOTE_LOCKED(&lj->klist, 1);
 1027                 }
 1028                 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
 1029                     == LIOJ_SIGNAL
 1030                     && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 1031                         lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 1032                         aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
 1033                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 1034                 }
 1035         }
 1036 
 1037 notification_done:
 1038         if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) {
 1039                 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) {
 1040                         if (aiocbe->fd_file == scb->fd_file &&
 1041                             aiocbe->seqno < scb->seqno) {
 1042                                 if (--scb->pending == 0) {
 1043                                         mtx_lock(&aio_job_mtx);
 1044                                         scb->jobstate = JOBST_JOBQGLOBAL;
 1045                                         TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list);
 1046                                         TAILQ_INSERT_TAIL(&aio_jobs, scb, list);
 1047                                         aio_kick_nowait(userp);
 1048                                         mtx_unlock(&aio_job_mtx);
 1049                                 }
 1050                         }
 1051                 }
 1052         }
 1053         if (ki->kaio_flags & KAIO_WAKEUP) {
 1054                 ki->kaio_flags &= ~KAIO_WAKEUP;
 1055                 wakeup(&userp->p_aioinfo);
 1056         }
 1057 }
 1058 
 1059 /*
 1060  * The AIO daemon, most of the actual work is done in aio_process_*,
 1061  * but the setup (and address space mgmt) is done in this routine.
 1062  */
 1063 static void
 1064 aio_daemon(void *_id)
 1065 {
 1066         struct aiocblist *aiocbe;
 1067         struct aiothreadlist *aiop;
 1068         struct kaioinfo *ki;
 1069         struct proc *curcp, *mycp, *userp;
 1070         struct vmspace *myvm, *tmpvm;
 1071         struct thread *td = curthread;
 1072         int id = (intptr_t)_id;
 1073 
 1074         /*
 1075          * Local copies of curproc (cp) and vmspace (myvm)
 1076          */
 1077         mycp = td->td_proc;
 1078         myvm = mycp->p_vmspace;
 1079 
 1080         KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp"));
 1081 
 1082         /*
 1083          * Allocate and ready the aio control info.  There is one aiop structure
 1084          * per daemon.
 1085          */
 1086         aiop = uma_zalloc(aiop_zone, M_WAITOK);
 1087         aiop->aiothread = td;
 1088         aiop->aiothreadflags = 0;
 1089 
 1090         /* The daemon resides in its own pgrp. */
 1091         sys_setsid(td, NULL);
 1092 
 1093         /*
 1094          * Wakeup parent process.  (Parent sleeps to keep from blasting away
 1095          * and creating too many daemons.)
 1096          */
 1097         sema_post(&aio_newproc_sem);
 1098 
 1099         mtx_lock(&aio_job_mtx);
 1100         for (;;) {
 1101                 /*
 1102                  * curcp is the current daemon process context.
 1103                  * userp is the current user process context.
 1104                  */
 1105                 curcp = mycp;
 1106 
 1107                 /*
 1108                  * Take daemon off of free queue
 1109                  */
 1110                 if (aiop->aiothreadflags & AIOP_FREE) {
 1111                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1112                         aiop->aiothreadflags &= ~AIOP_FREE;
 1113                 }
 1114 
 1115                 /*
 1116                  * Check for jobs.
 1117                  */
 1118                 while ((aiocbe = aio_selectjob(aiop)) != NULL) {
 1119                         mtx_unlock(&aio_job_mtx);
 1120                         userp = aiocbe->userproc;
 1121 
 1122                         /*
 1123                          * Connect to process address space for user program.
 1124                          */
 1125                         if (userp != curcp) {
 1126                                 /*
 1127                                  * Save the current address space that we are
 1128                                  * connected to.
 1129                                  */
 1130                                 tmpvm = mycp->p_vmspace;
 1131 
 1132                                 /*
 1133                                  * Point to the new user address space, and
 1134                                  * refer to it.
 1135                                  */
 1136                                 mycp->p_vmspace = userp->p_vmspace;
 1137                                 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1);
 1138 
 1139                                 /* Activate the new mapping. */
 1140                                 pmap_activate(FIRST_THREAD_IN_PROC(mycp));
 1141 
 1142                                 /*
 1143                                  * If the old address space wasn't the daemons
 1144                                  * own address space, then we need to remove the
 1145                                  * daemon's reference from the other process
 1146                                  * that it was acting on behalf of.
 1147                                  */
 1148                                 if (tmpvm != myvm) {
 1149                                         vmspace_free(tmpvm);
 1150                                 }
 1151                                 curcp = userp;
 1152                         }
 1153 
 1154                         ki = userp->p_aioinfo;
 1155 
 1156                         /* Do the I/O function. */
 1157                         switch(aiocbe->uaiocb.aio_lio_opcode) {
 1158                         case LIO_READ:
 1159                         case LIO_WRITE:
 1160                                 aio_process_rw(aiocbe);
 1161                                 break;
 1162                         case LIO_SYNC:
 1163                                 aio_process_sync(aiocbe);
 1164                                 break;
 1165                         case LIO_MLOCK:
 1166                                 aio_process_mlock(aiocbe);
 1167                                 break;
 1168                         }
 1169 
 1170                         mtx_lock(&aio_job_mtx);
 1171                         /* Decrement the active job count. */
 1172                         ki->kaio_active_count--;
 1173                         mtx_unlock(&aio_job_mtx);
 1174 
 1175                         AIO_LOCK(ki);
 1176                         TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
 1177                         aio_bio_done_notify(userp, aiocbe, DONE_QUEUE);
 1178                         AIO_UNLOCK(ki);
 1179 
 1180                         mtx_lock(&aio_job_mtx);
 1181                 }
 1182 
 1183                 /*
 1184                  * Disconnect from user address space.
 1185                  */
 1186                 if (curcp != mycp) {
 1187 
 1188                         mtx_unlock(&aio_job_mtx);
 1189 
 1190                         /* Get the user address space to disconnect from. */
 1191                         tmpvm = mycp->p_vmspace;
 1192 
 1193                         /* Get original address space for daemon. */
 1194                         mycp->p_vmspace = myvm;
 1195 
 1196                         /* Activate the daemon's address space. */
 1197                         pmap_activate(FIRST_THREAD_IN_PROC(mycp));
 1198 #ifdef DIAGNOSTIC
 1199                         if (tmpvm == myvm) {
 1200                                 printf("AIOD: vmspace problem -- %d\n",
 1201                                     mycp->p_pid);
 1202                         }
 1203 #endif
 1204                         /* Remove our vmspace reference. */
 1205                         vmspace_free(tmpvm);
 1206 
 1207                         curcp = mycp;
 1208 
 1209                         mtx_lock(&aio_job_mtx);
 1210                         /*
 1211                          * We have to restart to avoid race, we only sleep if
 1212                          * no job can be selected, that should be
 1213                          * curcp == mycp.
 1214                          */
 1215                         continue;
 1216                 }
 1217 
 1218                 mtx_assert(&aio_job_mtx, MA_OWNED);
 1219 
 1220                 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
 1221                 aiop->aiothreadflags |= AIOP_FREE;
 1222 
 1223                 /*
 1224                  * If daemon is inactive for a long time, allow it to exit,
 1225                  * thereby freeing resources.
 1226                  */
 1227                 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy",
 1228                     aiod_lifetime)) {
 1229                         if (TAILQ_EMPTY(&aio_jobs)) {
 1230                                 if ((aiop->aiothreadflags & AIOP_FREE) &&
 1231                                     (num_aio_procs > target_aio_procs)) {
 1232                                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1233                                         num_aio_procs--;
 1234                                         mtx_unlock(&aio_job_mtx);
 1235                                         uma_zfree(aiop_zone, aiop);
 1236                                         free_unr(aiod_unr, id);
 1237 #ifdef DIAGNOSTIC
 1238                                         if (mycp->p_vmspace->vm_refcnt <= 1) {
 1239                                                 printf("AIOD: bad vm refcnt for"
 1240                                                     " exiting daemon: %d\n",
 1241                                                     mycp->p_vmspace->vm_refcnt);
 1242                                         }
 1243 #endif
 1244                                         kproc_exit(0);
 1245                                 }
 1246                         }
 1247                 }
 1248         }
 1249         mtx_unlock(&aio_job_mtx);
 1250         panic("shouldn't be here\n");
 1251 }
 1252 
 1253 /*
 1254  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
 1255  * AIO daemon modifies its environment itself.
 1256  */
 1257 static int
 1258 aio_newproc(int *start)
 1259 {
 1260         int error;
 1261         struct proc *p;
 1262         int id;
 1263 
 1264         id = alloc_unr(aiod_unr);
 1265         error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
 1266                 RFNOWAIT, 0, "aiod%d", id);
 1267         if (error == 0) {
 1268                 /*
 1269                  * Wait until daemon is started.
 1270                  */
 1271                 sema_wait(&aio_newproc_sem);
 1272                 mtx_lock(&aio_job_mtx);
 1273                 num_aio_procs++;
 1274                 if (start != NULL)
 1275                         (*start)--;
 1276                 mtx_unlock(&aio_job_mtx);
 1277         } else {
 1278                 free_unr(aiod_unr, id);
 1279         }
 1280         return (error);
 1281 }
 1282 
 1283 /*
 1284  * Try the high-performance, low-overhead physio method for eligible
 1285  * VCHR devices.  This method doesn't use an aio helper thread, and
 1286  * thus has very low overhead.
 1287  *
 1288  * Assumes that the caller, aio_aqueue(), has incremented the file
 1289  * structure's reference count, preventing its deallocation for the
 1290  * duration of this call.
 1291  */
 1292 static int
 1293 aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
 1294 {
 1295         struct aiocb *cb;
 1296         struct file *fp;
 1297         struct buf *bp;
 1298         struct vnode *vp;
 1299         struct cdevsw *csw;
 1300         struct cdev *dev;
 1301         struct kaioinfo *ki;
 1302         struct aioliojob *lj;
 1303         int error, ref;
 1304 
 1305         cb = &aiocbe->uaiocb;
 1306         fp = aiocbe->fd_file;
 1307 
 1308         if (fp == NULL || fp->f_type != DTYPE_VNODE)
 1309                 return (-1);
 1310 
 1311         vp = fp->f_vnode;
 1312 
 1313         /*
 1314          * If its not a disk, we don't want to return a positive error.
 1315          * It causes the aio code to not fall through to try the thread
 1316          * way when you're talking to a regular file.
 1317          */
 1318         if (!vn_isdisk(vp, &error)) {
 1319                 if (error == ENOTBLK)
 1320                         return (-1);
 1321                 else
 1322                         return (error);
 1323         }
 1324 
 1325         if (vp->v_bufobj.bo_bsize == 0)
 1326                 return (-1);
 1327 
 1328         if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
 1329                 return (-1);
 1330 
 1331         if (cb->aio_nbytes >
 1332             MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK))
 1333                 return (-1);
 1334 
 1335         ki = p->p_aioinfo;
 1336         if (ki->kaio_buffer_count >= ki->kaio_ballowed_count)
 1337                 return (-1);
 1338 
 1339         ref = 0;
 1340         csw = devvn_refthread(vp, &dev, &ref);
 1341         if (csw == NULL)
 1342                 return (ENXIO);
 1343         if (cb->aio_nbytes > dev->si_iosize_max) {
 1344                 error = -1;
 1345                 goto unref;
 1346         }
 1347 
 1348         /* Create and build a buffer header for a transfer. */
 1349         bp = (struct buf *)getpbuf(NULL);
 1350         BUF_KERNPROC(bp);
 1351 
 1352         AIO_LOCK(ki);
 1353         ki->kaio_count++;
 1354         ki->kaio_buffer_count++;
 1355         lj = aiocbe->lio;
 1356         if (lj)
 1357                 lj->lioj_count++;
 1358         AIO_UNLOCK(ki);
 1359 
 1360         /*
 1361          * Get a copy of the kva from the physical buffer.
 1362          */
 1363         error = 0;
 1364 
 1365         bp->b_bcount = cb->aio_nbytes;
 1366         bp->b_bufsize = cb->aio_nbytes;
 1367         bp->b_iodone = aio_physwakeup;
 1368         bp->b_saveaddr = bp->b_data;
 1369         bp->b_data = (void *)(uintptr_t)cb->aio_buf;
 1370         bp->b_offset = cb->aio_offset;
 1371         bp->b_iooffset = cb->aio_offset;
 1372         bp->b_blkno = btodb(cb->aio_offset);
 1373         bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
 1374 
 1375         /*
 1376          * Bring buffer into kernel space.
 1377          */
 1378         if (vmapbuf(bp, (dev->si_flags & SI_UNMAPPED) == 0) < 0) {
 1379                 error = EFAULT;
 1380                 goto doerror;
 1381         }
 1382 
 1383         AIO_LOCK(ki);
 1384         aiocbe->bp = bp;
 1385         bp->b_caller1 = (void *)aiocbe;
 1386         TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
 1387         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1388         aiocbe->jobstate = JOBST_JOBQBUF;
 1389         cb->_aiocb_private.status = cb->aio_nbytes;
 1390         AIO_UNLOCK(ki);
 1391 
 1392         atomic_add_int(&num_queue_count, 1);
 1393         atomic_add_int(&num_buf_aio, 1);
 1394 
 1395         bp->b_error = 0;
 1396 
 1397         TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe);
 1398 
 1399         /* Perform transfer. */
 1400         dev_strategy_csw(dev, csw, bp);
 1401         dev_relthread(dev, ref);
 1402         return (0);
 1403 
 1404 doerror:
 1405         AIO_LOCK(ki);
 1406         ki->kaio_count--;
 1407         ki->kaio_buffer_count--;
 1408         if (lj)
 1409                 lj->lioj_count--;
 1410         aiocbe->bp = NULL;
 1411         AIO_UNLOCK(ki);
 1412         relpbuf(bp, NULL);
 1413 unref:
 1414         dev_relthread(dev, ref);
 1415         return (error);
 1416 }
 1417 
 1418 /*
 1419  * Wake up aio requests that may be serviceable now.
 1420  */
 1421 static void
 1422 aio_swake_cb(struct socket *so, struct sockbuf *sb)
 1423 {
 1424         struct aiocblist *cb, *cbn;
 1425         int opcode;
 1426 
 1427         SOCKBUF_LOCK_ASSERT(sb);
 1428         if (sb == &so->so_snd)
 1429                 opcode = LIO_WRITE;
 1430         else
 1431                 opcode = LIO_READ;
 1432 
 1433         sb->sb_flags &= ~SB_AIO;
 1434         mtx_lock(&aio_job_mtx);
 1435         TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) {
 1436                 if (opcode == cb->uaiocb.aio_lio_opcode) {
 1437                         if (cb->jobstate != JOBST_JOBQSOCK)
 1438                                 panic("invalid queue value");
 1439                         /* XXX
 1440                          * We don't have actual sockets backend yet,
 1441                          * so we simply move the requests to the generic
 1442                          * file I/O backend.
 1443                          */
 1444                         TAILQ_REMOVE(&so->so_aiojobq, cb, list);
 1445                         TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
 1446                         aio_kick_nowait(cb->userproc);
 1447                 }
 1448         }
 1449         mtx_unlock(&aio_job_mtx);
 1450 }
 1451 
 1452 static int
 1453 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
 1454 {
 1455 
 1456         /*
 1457          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 1458          * supported by AIO with the old sigevent structure.
 1459          */
 1460         nsig->sigev_notify = osig->sigev_notify;
 1461         switch (nsig->sigev_notify) {
 1462         case SIGEV_NONE:
 1463                 break;
 1464         case SIGEV_SIGNAL:
 1465                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 1466                 break;
 1467         case SIGEV_KEVENT:
 1468                 nsig->sigev_notify_kqueue =
 1469                     osig->__sigev_u.__sigev_notify_kqueue;
 1470                 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
 1471                 break;
 1472         default:
 1473                 return (EINVAL);
 1474         }
 1475         return (0);
 1476 }
 1477 
 1478 static int
 1479 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 1480 {
 1481         struct oaiocb *ojob;
 1482         int error;
 1483 
 1484         bzero(kjob, sizeof(struct aiocb));
 1485         error = copyin(ujob, kjob, sizeof(struct oaiocb));
 1486         if (error)
 1487                 return (error);
 1488         ojob = (struct oaiocb *)kjob;
 1489         return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
 1490 }
 1491 
 1492 static int
 1493 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
 1494 {
 1495 
 1496         return (copyin(ujob, kjob, sizeof(struct aiocb)));
 1497 }
 1498 
 1499 static long
 1500 aiocb_fetch_status(struct aiocb *ujob)
 1501 {
 1502 
 1503         return (fuword(&ujob->_aiocb_private.status));
 1504 }
 1505 
 1506 static long
 1507 aiocb_fetch_error(struct aiocb *ujob)
 1508 {
 1509 
 1510         return (fuword(&ujob->_aiocb_private.error));
 1511 }
 1512 
 1513 static int
 1514 aiocb_store_status(struct aiocb *ujob, long status)
 1515 {
 1516 
 1517         return (suword(&ujob->_aiocb_private.status, status));
 1518 }
 1519 
 1520 static int
 1521 aiocb_store_error(struct aiocb *ujob, long error)
 1522 {
 1523 
 1524         return (suword(&ujob->_aiocb_private.error, error));
 1525 }
 1526 
 1527 static int
 1528 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
 1529 {
 1530 
 1531         return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
 1532 }
 1533 
 1534 static int
 1535 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 1536 {
 1537 
 1538         return (suword(ujobp, (long)ujob));
 1539 }
 1540 
 1541 static struct aiocb_ops aiocb_ops = {
 1542         .copyin = aiocb_copyin,
 1543         .fetch_status = aiocb_fetch_status,
 1544         .fetch_error = aiocb_fetch_error,
 1545         .store_status = aiocb_store_status,
 1546         .store_error = aiocb_store_error,
 1547         .store_kernelinfo = aiocb_store_kernelinfo,
 1548         .store_aiocb = aiocb_store_aiocb,
 1549 };
 1550 
 1551 static struct aiocb_ops aiocb_ops_osigevent = {
 1552         .copyin = aiocb_copyin_old_sigevent,
 1553         .fetch_status = aiocb_fetch_status,
 1554         .fetch_error = aiocb_fetch_error,
 1555         .store_status = aiocb_store_status,
 1556         .store_error = aiocb_store_error,
 1557         .store_kernelinfo = aiocb_store_kernelinfo,
 1558         .store_aiocb = aiocb_store_aiocb,
 1559 };
 1560 
 1561 /*
 1562  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
 1563  * technique is done in this code.
 1564  */
 1565 int
 1566 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj,
 1567         int type, struct aiocb_ops *ops)
 1568 {
 1569         struct proc *p = td->td_proc;
 1570         cap_rights_t rights;
 1571         struct file *fp;
 1572         struct socket *so;
 1573         struct aiocblist *aiocbe, *cb;
 1574         struct kaioinfo *ki;
 1575         struct kevent kev;
 1576         struct sockbuf *sb;
 1577         int opcode;
 1578         int error;
 1579         int fd, kqfd;
 1580         int jid;
 1581         u_short evflags;
 1582 
 1583         if (p->p_aioinfo == NULL)
 1584                 aio_init_aioinfo(p);
 1585 
 1586         ki = p->p_aioinfo;
 1587 
 1588         ops->store_status(job, -1);
 1589         ops->store_error(job, 0);
 1590         ops->store_kernelinfo(job, -1);
 1591 
 1592         if (num_queue_count >= max_queue_count ||
 1593             ki->kaio_count >= ki->kaio_qallowed_count) {
 1594                 ops->store_error(job, EAGAIN);
 1595                 return (EAGAIN);
 1596         }
 1597 
 1598         aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 1599         knlist_init_mtx(&aiocbe->klist, AIO_MTX(ki));
 1600 
 1601         error = ops->copyin(job, &aiocbe->uaiocb);
 1602         if (error) {
 1603                 ops->store_error(job, error);
 1604                 uma_zfree(aiocb_zone, aiocbe);
 1605                 return (error);
 1606         }
 1607 
 1608         /* XXX: aio_nbytes is later casted to signed types. */
 1609         if (aiocbe->uaiocb.aio_nbytes > INT_MAX) {
 1610                 uma_zfree(aiocb_zone, aiocbe);
 1611                 return (EINVAL);
 1612         }
 1613 
 1614         if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
 1615             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
 1616             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
 1617             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
 1618                 ops->store_error(job, EINVAL);
 1619                 uma_zfree(aiocb_zone, aiocbe);
 1620                 return (EINVAL);
 1621         }
 1622 
 1623         if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1624              aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
 1625                 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
 1626                 uma_zfree(aiocb_zone, aiocbe);
 1627                 return (EINVAL);
 1628         }
 1629 
 1630         ksiginfo_init(&aiocbe->ksi);
 1631 
 1632         /* Save userspace address of the job info. */
 1633         aiocbe->uuaiocb = job;
 1634 
 1635         /* Get the opcode. */
 1636         if (type != LIO_NOP)
 1637                 aiocbe->uaiocb.aio_lio_opcode = type;
 1638         opcode = aiocbe->uaiocb.aio_lio_opcode;
 1639 
 1640         /*
 1641          * Validate the opcode and fetch the file object for the specified
 1642          * file descriptor.
 1643          *
 1644          * XXXRW: Moved the opcode validation up here so that we don't
 1645          * retrieve a file descriptor without knowing what the capabiltity
 1646          * should be.
 1647          */
 1648         fd = aiocbe->uaiocb.aio_fildes;
 1649         switch (opcode) {
 1650         case LIO_WRITE:
 1651                 error = fget_write(td, fd,
 1652                     cap_rights_init(&rights, CAP_PWRITE), &fp);
 1653                 break;
 1654         case LIO_READ:
 1655                 error = fget_read(td, fd,
 1656                     cap_rights_init(&rights, CAP_PREAD), &fp);
 1657                 break;
 1658         case LIO_SYNC:
 1659                 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp);
 1660                 break;
 1661         case LIO_MLOCK:
 1662                 fp = NULL;
 1663                 break;
 1664         case LIO_NOP:
 1665                 error = fget(td, fd, cap_rights_init(&rights), &fp);
 1666                 break;
 1667         default:
 1668                 error = EINVAL;
 1669         }
 1670         if (error) {
 1671                 uma_zfree(aiocb_zone, aiocbe);
 1672                 ops->store_error(job, error);
 1673                 return (error);
 1674         }
 1675 
 1676         if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
 1677                 error = EINVAL;
 1678                 goto aqueue_fail;
 1679         }
 1680 
 1681         if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) {
 1682                 error = EINVAL;
 1683                 goto aqueue_fail;
 1684         }
 1685 
 1686         aiocbe->fd_file = fp;
 1687 
 1688         mtx_lock(&aio_job_mtx);
 1689         jid = jobrefid++;
 1690         aiocbe->seqno = jobseqno++;
 1691         mtx_unlock(&aio_job_mtx);
 1692         error = ops->store_kernelinfo(job, jid);
 1693         if (error) {
 1694                 error = EINVAL;
 1695                 goto aqueue_fail;
 1696         }
 1697         aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
 1698 
 1699         if (opcode == LIO_NOP) {
 1700                 fdrop(fp, td);
 1701                 uma_zfree(aiocb_zone, aiocbe);
 1702                 return (0);
 1703         }
 1704 
 1705         if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
 1706                 goto no_kqueue;
 1707         evflags = aiocbe->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
 1708         if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
 1709                 error = EINVAL;
 1710                 goto aqueue_fail;
 1711         }
 1712         kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
 1713         kev.ident = (uintptr_t)aiocbe->uuaiocb;
 1714         kev.filter = EVFILT_AIO;
 1715         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
 1716         kev.data = (intptr_t)aiocbe;
 1717         kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr;
 1718         error = kqfd_register(kqfd, &kev, td, 1);
 1719 aqueue_fail:
 1720         if (error) {
 1721                 if (fp)
 1722                         fdrop(fp, td);
 1723                 uma_zfree(aiocb_zone, aiocbe);
 1724                 ops->store_error(job, error);
 1725                 goto done;
 1726         }
 1727 no_kqueue:
 1728 
 1729         ops->store_error(job, EINPROGRESS);
 1730         aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
 1731         aiocbe->userproc = p;
 1732         aiocbe->cred = crhold(td->td_ucred);
 1733         aiocbe->jobflags = 0;
 1734         aiocbe->lio = lj;
 1735 
 1736         if (opcode == LIO_SYNC)
 1737                 goto queueit;
 1738 
 1739         if (fp && fp->f_type == DTYPE_SOCKET) {
 1740                 /*
 1741                  * Alternate queueing for socket ops: Reach down into the
 1742                  * descriptor to get the socket data.  Then check to see if the
 1743                  * socket is ready to be read or written (based on the requested
 1744                  * operation).
 1745                  *
 1746                  * If it is not ready for io, then queue the aiocbe on the
 1747                  * socket, and set the flags so we get a call when sbnotify()
 1748                  * happens.
 1749                  *
 1750                  * Note if opcode is neither LIO_WRITE nor LIO_READ we lock
 1751                  * and unlock the snd sockbuf for no reason.
 1752                  */
 1753                 so = fp->f_data;
 1754                 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd;
 1755                 SOCKBUF_LOCK(sb);
 1756                 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
 1757                     LIO_WRITE) && (!sowriteable(so)))) {
 1758                         sb->sb_flags |= SB_AIO;
 1759 
 1760                         mtx_lock(&aio_job_mtx);
 1761                         TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
 1762                         mtx_unlock(&aio_job_mtx);
 1763 
 1764                         AIO_LOCK(ki);
 1765                         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1766                         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1767                         aiocbe->jobstate = JOBST_JOBQSOCK;
 1768                         ki->kaio_count++;
 1769                         if (lj)
 1770                                 lj->lioj_count++;
 1771                         AIO_UNLOCK(ki);
 1772                         SOCKBUF_UNLOCK(sb);
 1773                         atomic_add_int(&num_queue_count, 1);
 1774                         error = 0;
 1775                         goto done;
 1776                 }
 1777                 SOCKBUF_UNLOCK(sb);
 1778         }
 1779 
 1780         if ((error = aio_qphysio(p, aiocbe)) == 0)
 1781                 goto done;
 1782 #if 0
 1783         if (error > 0) {
 1784                 aiocbe->uaiocb._aiocb_private.error = error;
 1785                 ops->store_error(job, error);
 1786                 goto done;
 1787         }
 1788 #endif
 1789 queueit:
 1790         /* No buffer for daemon I/O. */
 1791         aiocbe->bp = NULL;
 1792         atomic_add_int(&num_queue_count, 1);
 1793 
 1794         AIO_LOCK(ki);
 1795         ki->kaio_count++;
 1796         if (lj)
 1797                 lj->lioj_count++;
 1798         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1799         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1800         if (opcode == LIO_SYNC) {
 1801                 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) {
 1802                         if (cb->fd_file == aiocbe->fd_file &&
 1803                             cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1804                             cb->seqno < aiocbe->seqno) {
 1805                                 cb->jobflags |= AIOCBLIST_CHECKSYNC;
 1806                                 aiocbe->pending++;
 1807                         }
 1808                 }
 1809                 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) {
 1810                         if (cb->fd_file == aiocbe->fd_file &&
 1811                             cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1812                             cb->seqno < aiocbe->seqno) {
 1813                                 cb->jobflags |= AIOCBLIST_CHECKSYNC;
 1814                                 aiocbe->pending++;
 1815                         }
 1816                 }
 1817                 if (aiocbe->pending != 0) {
 1818                         TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list);
 1819                         aiocbe->jobstate = JOBST_JOBQSYNC;
 1820                         AIO_UNLOCK(ki);
 1821                         goto done;
 1822                 }
 1823         }
 1824         mtx_lock(&aio_job_mtx);
 1825         TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
 1826         aiocbe->jobstate = JOBST_JOBQGLOBAL;
 1827         aio_kick_nowait(p);
 1828         mtx_unlock(&aio_job_mtx);
 1829         AIO_UNLOCK(ki);
 1830         error = 0;
 1831 done:
 1832         return (error);
 1833 }
 1834 
 1835 static void
 1836 aio_kick_nowait(struct proc *userp)
 1837 {
 1838         struct kaioinfo *ki = userp->p_aioinfo;
 1839         struct aiothreadlist *aiop;
 1840 
 1841         mtx_assert(&aio_job_mtx, MA_OWNED);
 1842         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1843                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1844                 aiop->aiothreadflags &= ~AIOP_FREE;
 1845                 wakeup(aiop->aiothread);
 1846         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1847             ((ki->kaio_active_count + num_aio_resv_start) <
 1848             ki->kaio_maxactive_count)) {
 1849                 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task);
 1850         }
 1851 }
 1852 
 1853 static int
 1854 aio_kick(struct proc *userp)
 1855 {
 1856         struct kaioinfo *ki = userp->p_aioinfo;
 1857         struct aiothreadlist *aiop;
 1858         int error, ret = 0;
 1859 
 1860         mtx_assert(&aio_job_mtx, MA_OWNED);
 1861 retryproc:
 1862         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1863                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1864                 aiop->aiothreadflags &= ~AIOP_FREE;
 1865                 wakeup(aiop->aiothread);
 1866         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1867             ((ki->kaio_active_count + num_aio_resv_start) <
 1868             ki->kaio_maxactive_count)) {
 1869                 num_aio_resv_start++;
 1870                 mtx_unlock(&aio_job_mtx);
 1871                 error = aio_newproc(&num_aio_resv_start);
 1872                 mtx_lock(&aio_job_mtx);
 1873                 if (error) {
 1874                         num_aio_resv_start--;
 1875                         goto retryproc;
 1876                 }
 1877         } else {
 1878                 ret = -1;
 1879         }
 1880         return (ret);
 1881 }
 1882 
 1883 static void
 1884 aio_kick_helper(void *context, int pending)
 1885 {
 1886         struct proc *userp = context;
 1887 
 1888         mtx_lock(&aio_job_mtx);
 1889         while (--pending >= 0) {
 1890                 if (aio_kick(userp))
 1891                         break;
 1892         }
 1893         mtx_unlock(&aio_job_mtx);
 1894 }
 1895 
 1896 /*
 1897  * Support the aio_return system call, as a side-effect, kernel resources are
 1898  * released.
 1899  */
 1900 static int
 1901 kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops)
 1902 {
 1903         struct proc *p = td->td_proc;
 1904         struct aiocblist *cb;
 1905         struct kaioinfo *ki;
 1906         int status, error;
 1907 
 1908         ki = p->p_aioinfo;
 1909         if (ki == NULL)
 1910                 return (EINVAL);
 1911         AIO_LOCK(ki);
 1912         TAILQ_FOREACH(cb, &ki->kaio_done, plist) {
 1913                 if (cb->uuaiocb == uaiocb)
 1914                         break;
 1915         }
 1916         if (cb != NULL) {
 1917                 MPASS(cb->jobstate == JOBST_JOBFINISHED);
 1918                 status = cb->uaiocb._aiocb_private.status;
 1919                 error = cb->uaiocb._aiocb_private.error;
 1920                 td->td_retval[0] = status;
 1921                 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 1922                         td->td_ru.ru_oublock += cb->outputcharge;
 1923                         cb->outputcharge = 0;
 1924                 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 1925                         td->td_ru.ru_inblock += cb->inputcharge;
 1926                         cb->inputcharge = 0;
 1927                 }
 1928                 aio_free_entry(cb);
 1929                 AIO_UNLOCK(ki);
 1930                 ops->store_error(uaiocb, error);
 1931                 ops->store_status(uaiocb, status);
 1932         } else {
 1933                 error = EINVAL;
 1934                 AIO_UNLOCK(ki);
 1935         }
 1936         return (error);
 1937 }
 1938 
 1939 int
 1940 sys_aio_return(struct thread *td, struct aio_return_args *uap)
 1941 {
 1942 
 1943         return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
 1944 }
 1945 
 1946 /*
 1947  * Allow a process to wakeup when any of the I/O requests are completed.
 1948  */
 1949 static int
 1950 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
 1951     struct timespec *ts)
 1952 {
 1953         struct proc *p = td->td_proc;
 1954         struct timeval atv;
 1955         struct kaioinfo *ki;
 1956         struct aiocblist *cb, *cbfirst;
 1957         int error, i, timo;
 1958 
 1959         timo = 0;
 1960         if (ts) {
 1961                 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1962                         return (EINVAL);
 1963 
 1964                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 1965                 if (itimerfix(&atv))
 1966                         return (EINVAL);
 1967                 timo = tvtohz(&atv);
 1968         }
 1969 
 1970         ki = p->p_aioinfo;
 1971         if (ki == NULL)
 1972                 return (EAGAIN);
 1973 
 1974         if (njoblist == 0)
 1975                 return (0);
 1976 
 1977         AIO_LOCK(ki);
 1978         for (;;) {
 1979                 cbfirst = NULL;
 1980                 error = 0;
 1981                 TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
 1982                         for (i = 0; i < njoblist; i++) {
 1983                                 if (cb->uuaiocb == ujoblist[i]) {
 1984                                         if (cbfirst == NULL)
 1985                                                 cbfirst = cb;
 1986                                         if (cb->jobstate == JOBST_JOBFINISHED)
 1987                                                 goto RETURN;
 1988                                 }
 1989                         }
 1990                 }
 1991                 /* All tasks were finished. */
 1992                 if (cbfirst == NULL)
 1993                         break;
 1994 
 1995                 ki->kaio_flags |= KAIO_WAKEUP;
 1996                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 1997                     "aiospn", timo);
 1998                 if (error == ERESTART)
 1999                         error = EINTR;
 2000                 if (error)
 2001                         break;
 2002         }
 2003 RETURN:
 2004         AIO_UNLOCK(ki);
 2005         return (error);
 2006 }
 2007 
 2008 int
 2009 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 2010 {
 2011         struct timespec ts, *tsp;
 2012         struct aiocb **ujoblist;
 2013         int error;
 2014 
 2015         if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
 2016                 return (EINVAL);
 2017 
 2018         if (uap->timeout) {
 2019                 /* Get timespec struct. */
 2020                 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 2021                         return (error);
 2022                 tsp = &ts;
 2023         } else
 2024                 tsp = NULL;
 2025 
 2026         ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 2027         error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
 2028         if (error == 0)
 2029                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2030         uma_zfree(aiol_zone, ujoblist);
 2031         return (error);
 2032 }
 2033 
 2034 /*
 2035  * aio_cancel cancels any non-physio aio operations not currently in
 2036  * progress.
 2037  */
 2038 int
 2039 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 2040 {
 2041         struct proc *p = td->td_proc;
 2042         struct kaioinfo *ki;
 2043         struct aiocblist *cbe, *cbn;
 2044         struct file *fp;
 2045         struct socket *so;
 2046         int error;
 2047         int remove;
 2048         int cancelled = 0;
 2049         int notcancelled = 0;
 2050         struct vnode *vp;
 2051 
 2052         /* Lookup file object. */
 2053         error = fget(td, uap->fd, NULL, &fp);
 2054         if (error)
 2055                 return (error);
 2056 
 2057         ki = p->p_aioinfo;
 2058         if (ki == NULL)
 2059                 goto done;
 2060 
 2061         if (fp->f_type == DTYPE_VNODE) {
 2062                 vp = fp->f_vnode;
 2063                 if (vn_isdisk(vp, &error)) {
 2064                         fdrop(fp, td);
 2065                         td->td_retval[0] = AIO_NOTCANCELED;
 2066                         return (0);
 2067                 }
 2068         }
 2069 
 2070         AIO_LOCK(ki);
 2071         TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
 2072                 if ((uap->fd == cbe->uaiocb.aio_fildes) &&
 2073                     ((uap->aiocbp == NULL) ||
 2074                      (uap->aiocbp == cbe->uuaiocb))) {
 2075                         remove = 0;
 2076 
 2077                         mtx_lock(&aio_job_mtx);
 2078                         if (cbe->jobstate == JOBST_JOBQGLOBAL) {
 2079                                 TAILQ_REMOVE(&aio_jobs, cbe, list);
 2080                                 remove = 1;
 2081                         } else if (cbe->jobstate == JOBST_JOBQSOCK) {
 2082                                 MPASS(fp->f_type == DTYPE_SOCKET);
 2083                                 so = fp->f_data;
 2084                                 TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
 2085                                 remove = 1;
 2086                         } else if (cbe->jobstate == JOBST_JOBQSYNC) {
 2087                                 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
 2088                                 remove = 1;
 2089                         }
 2090                         mtx_unlock(&aio_job_mtx);
 2091 
 2092                         if (remove) {
 2093                                 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
 2094                                 cbe->uaiocb._aiocb_private.status = -1;
 2095                                 cbe->uaiocb._aiocb_private.error = ECANCELED;
 2096                                 aio_bio_done_notify(p, cbe, DONE_QUEUE);
 2097                                 cancelled++;
 2098                         } else {
 2099                                 notcancelled++;
 2100                         }
 2101                         if (uap->aiocbp != NULL)
 2102                                 break;
 2103                 }
 2104         }
 2105         AIO_UNLOCK(ki);
 2106 
 2107 done:
 2108         fdrop(fp, td);
 2109 
 2110         if (uap->aiocbp != NULL) {
 2111                 if (cancelled) {
 2112                         td->td_retval[0] = AIO_CANCELED;
 2113                         return (0);
 2114                 }
 2115         }
 2116 
 2117         if (notcancelled) {
 2118                 td->td_retval[0] = AIO_NOTCANCELED;
 2119                 return (0);
 2120         }
 2121 
 2122         if (cancelled) {
 2123                 td->td_retval[0] = AIO_CANCELED;
 2124                 return (0);
 2125         }
 2126 
 2127         td->td_retval[0] = AIO_ALLDONE;
 2128 
 2129         return (0);
 2130 }
 2131 
 2132 /*
 2133  * aio_error is implemented in the kernel level for compatibility purposes
 2134  * only.  For a user mode async implementation, it would be best to do it in
 2135  * a userland subroutine.
 2136  */
 2137 static int
 2138 kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops)
 2139 {
 2140         struct proc *p = td->td_proc;
 2141         struct aiocblist *cb;
 2142         struct kaioinfo *ki;
 2143         int status;
 2144 
 2145         ki = p->p_aioinfo;
 2146         if (ki == NULL) {
 2147                 td->td_retval[0] = EINVAL;
 2148                 return (0);
 2149         }
 2150 
 2151         AIO_LOCK(ki);
 2152         TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
 2153                 if (cb->uuaiocb == aiocbp) {
 2154                         if (cb->jobstate == JOBST_JOBFINISHED)
 2155                                 td->td_retval[0] =
 2156                                         cb->uaiocb._aiocb_private.error;
 2157                         else
 2158                                 td->td_retval[0] = EINPROGRESS;
 2159                         AIO_UNLOCK(ki);
 2160                         return (0);
 2161                 }
 2162         }
 2163         AIO_UNLOCK(ki);
 2164 
 2165         /*
 2166          * Hack for failure of aio_aqueue.
 2167          */
 2168         status = ops->fetch_status(aiocbp);
 2169         if (status == -1) {
 2170                 td->td_retval[0] = ops->fetch_error(aiocbp);
 2171                 return (0);
 2172         }
 2173 
 2174         td->td_retval[0] = EINVAL;
 2175         return (0);
 2176 }
 2177 
 2178 int
 2179 sys_aio_error(struct thread *td, struct aio_error_args *uap)
 2180 {
 2181 
 2182         return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
 2183 }
 2184 
 2185 /* syscall - asynchronous read from a file (REALTIME) */
 2186 int
 2187 sys_oaio_read(struct thread *td, struct oaio_read_args *uap)
 2188 {
 2189 
 2190         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2191             &aiocb_ops_osigevent));
 2192 }
 2193 
 2194 int
 2195 sys_aio_read(struct thread *td, struct aio_read_args *uap)
 2196 {
 2197 
 2198         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
 2199 }
 2200 
 2201 /* syscall - asynchronous write to a file (REALTIME) */
 2202 int
 2203 sys_oaio_write(struct thread *td, struct oaio_write_args *uap)
 2204 {
 2205 
 2206         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2207             &aiocb_ops_osigevent));
 2208 }
 2209 
 2210 int
 2211 sys_aio_write(struct thread *td, struct aio_write_args *uap)
 2212 {
 2213 
 2214         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
 2215 }
 2216 
 2217 int
 2218 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
 2219 {
 2220 
 2221         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
 2222 }
 2223 
 2224 static int
 2225 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
 2226     struct aiocb **acb_list, int nent, struct sigevent *sig,
 2227     struct aiocb_ops *ops)
 2228 {
 2229         struct proc *p = td->td_proc;
 2230         struct aiocb *iocb;
 2231         struct kaioinfo *ki;
 2232         struct aioliojob *lj;
 2233         struct kevent kev;
 2234         int error;
 2235         int nerror;
 2236         int i;
 2237 
 2238         if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
 2239                 return (EINVAL);
 2240 
 2241         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2242                 return (EINVAL);
 2243 
 2244         if (p->p_aioinfo == NULL)
 2245                 aio_init_aioinfo(p);
 2246 
 2247         ki = p->p_aioinfo;
 2248 
 2249         lj = uma_zalloc(aiolio_zone, M_WAITOK);
 2250         lj->lioj_flags = 0;
 2251         lj->lioj_count = 0;
 2252         lj->lioj_finished_count = 0;
 2253         knlist_init_mtx(&lj->klist, AIO_MTX(ki));
 2254         ksiginfo_init(&lj->lioj_ksi);
 2255 
 2256         /*
 2257          * Setup signal.
 2258          */
 2259         if (sig && (mode == LIO_NOWAIT)) {
 2260                 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
 2261                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2262                         /* Assume only new style KEVENT */
 2263                         kev.filter = EVFILT_LIO;
 2264                         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 2265                         kev.ident = (uintptr_t)uacb_list; /* something unique */
 2266                         kev.data = (intptr_t)lj;
 2267                         /* pass user defined sigval data */
 2268                         kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
 2269                         error = kqfd_register(
 2270                             lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
 2271                         if (error) {
 2272                                 uma_zfree(aiolio_zone, lj);
 2273                                 return (error);
 2274                         }
 2275                 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
 2276                         ;
 2277                 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2278                            lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
 2279                                 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 2280                                         uma_zfree(aiolio_zone, lj);
 2281                                         return EINVAL;
 2282                                 }
 2283                                 lj->lioj_flags |= LIOJ_SIGNAL;
 2284                 } else {
 2285                         uma_zfree(aiolio_zone, lj);
 2286                         return EINVAL;
 2287                 }
 2288         }
 2289 
 2290         AIO_LOCK(ki);
 2291         TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 2292         /*
 2293          * Add extra aiocb count to avoid the lio to be freed
 2294          * by other threads doing aio_waitcomplete or aio_return,
 2295          * and prevent event from being sent until we have queued
 2296          * all tasks.
 2297          */
 2298         lj->lioj_count = 1;
 2299         AIO_UNLOCK(ki);
 2300 
 2301         /*
 2302          * Get pointers to the list of I/O requests.
 2303          */
 2304         nerror = 0;
 2305         for (i = 0; i < nent; i++) {
 2306                 iocb = acb_list[i];
 2307                 if (iocb != NULL) {
 2308                         error = aio_aqueue(td, iocb, lj, LIO_NOP, ops);
 2309                         if (error != 0)
 2310                                 nerror++;
 2311                 }
 2312         }
 2313 
 2314         error = 0;
 2315         AIO_LOCK(ki);
 2316         if (mode == LIO_WAIT) {
 2317                 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
 2318                         ki->kaio_flags |= KAIO_WAKEUP;
 2319                         error = msleep(&p->p_aioinfo, AIO_MTX(ki),
 2320                             PRIBIO | PCATCH, "aiospn", 0);
 2321                         if (error == ERESTART)
 2322                                 error = EINTR;
 2323                         if (error)
 2324                                 break;
 2325                 }
 2326         } else {
 2327                 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
 2328                         if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2329                                 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 2330                                 KNOTE_LOCKED(&lj->klist, 1);
 2331                         }
 2332                         if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
 2333                             == LIOJ_SIGNAL
 2334                             && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2335                             lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 2336                                 aio_sendsig(p, &lj->lioj_signal,
 2337                                             &lj->lioj_ksi);
 2338                                 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2339                         }
 2340                 }
 2341         }
 2342         lj->lioj_count--;
 2343         if (lj->lioj_count == 0) {
 2344                 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 2345                 knlist_delete(&lj->klist, curthread, 1);
 2346                 PROC_LOCK(p);
 2347                 sigqueue_take(&lj->lioj_ksi);
 2348                 PROC_UNLOCK(p);
 2349                 AIO_UNLOCK(ki);
 2350                 uma_zfree(aiolio_zone, lj);
 2351         } else
 2352                 AIO_UNLOCK(ki);
 2353 
 2354         if (nerror)
 2355                 return (EIO);
 2356         return (error);
 2357 }
 2358 
 2359 /* syscall - list directed I/O (REALTIME) */
 2360 int
 2361 sys_olio_listio(struct thread *td, struct olio_listio_args *uap)
 2362 {
 2363         struct aiocb **acb_list;
 2364         struct sigevent *sigp, sig;
 2365         struct osigevent osig;
 2366         int error, nent;
 2367 
 2368         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2369                 return (EINVAL);
 2370 
 2371         nent = uap->nent;
 2372         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2373                 return (EINVAL);
 2374 
 2375         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2376                 error = copyin(uap->sig, &osig, sizeof(osig));
 2377                 if (error)
 2378                         return (error);
 2379                 error = convert_old_sigevent(&osig, &sig);
 2380                 if (error)
 2381                         return (error);
 2382                 sigp = &sig;
 2383         } else
 2384                 sigp = NULL;
 2385 
 2386         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2387         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2388         if (error == 0)
 2389                 error = kern_lio_listio(td, uap->mode,
 2390                     (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2391                     &aiocb_ops_osigevent);
 2392         free(acb_list, M_LIO);
 2393         return (error);
 2394 }
 2395 
 2396 /* syscall - list directed I/O (REALTIME) */
 2397 int
 2398 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
 2399 {
 2400         struct aiocb **acb_list;
 2401         struct sigevent *sigp, sig;
 2402         int error, nent;
 2403 
 2404         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2405                 return (EINVAL);
 2406 
 2407         nent = uap->nent;
 2408         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2409                 return (EINVAL);
 2410 
 2411         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2412                 error = copyin(uap->sig, &sig, sizeof(sig));
 2413                 if (error)
 2414                         return (error);
 2415                 sigp = &sig;
 2416         } else
 2417                 sigp = NULL;
 2418 
 2419         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2420         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2421         if (error == 0)
 2422                 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
 2423                     nent, sigp, &aiocb_ops);
 2424         free(acb_list, M_LIO);
 2425         return (error);
 2426 }
 2427 
 2428 /*
 2429  * Called from interrupt thread for physio, we should return as fast
 2430  * as possible, so we schedule a biohelper task.
 2431  */
 2432 static void
 2433 aio_physwakeup(struct buf *bp)
 2434 {
 2435         struct aiocblist *aiocbe;
 2436 
 2437         aiocbe = (struct aiocblist *)bp->b_caller1;
 2438         taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask);
 2439 }
 2440 
 2441 /*
 2442  * Task routine to perform heavy tasks, process wakeup, and signals.
 2443  */
 2444 static void
 2445 biohelper(void *context, int pending)
 2446 {
 2447         struct aiocblist *aiocbe = context;
 2448         struct buf *bp;
 2449         struct proc *userp;
 2450         struct kaioinfo *ki;
 2451         int nblks;
 2452 
 2453         bp = aiocbe->bp;
 2454         userp = aiocbe->userproc;
 2455         ki = userp->p_aioinfo;
 2456         AIO_LOCK(ki);
 2457         aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
 2458         aiocbe->uaiocb._aiocb_private.error = 0;
 2459         if (bp->b_ioflags & BIO_ERROR)
 2460                 aiocbe->uaiocb._aiocb_private.error = bp->b_error;
 2461         nblks = btodb(aiocbe->uaiocb.aio_nbytes);
 2462         if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE)
 2463                 aiocbe->outputcharge += nblks;
 2464         else
 2465                 aiocbe->inputcharge += nblks;
 2466         aiocbe->bp = NULL;
 2467         TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist);
 2468         ki->kaio_buffer_count--;
 2469         aio_bio_done_notify(userp, aiocbe, DONE_BUF);
 2470         AIO_UNLOCK(ki);
 2471 
 2472         /* Release mapping into kernel space. */
 2473         vunmapbuf(bp);
 2474         relpbuf(bp, NULL);
 2475         atomic_subtract_int(&num_buf_aio, 1);
 2476 }
 2477 
 2478 /* syscall - wait for the next completion of an aio request */
 2479 static int
 2480 kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp,
 2481     struct timespec *ts, struct aiocb_ops *ops)
 2482 {
 2483         struct proc *p = td->td_proc;
 2484         struct timeval atv;
 2485         struct kaioinfo *ki;
 2486         struct aiocblist *cb;
 2487         struct aiocb *uuaiocb;
 2488         int error, status, timo;
 2489 
 2490         ops->store_aiocb(aiocbp, NULL);
 2491 
 2492         timo = 0;
 2493         if (ts) {
 2494                 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
 2495                         return (EINVAL);
 2496 
 2497                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 2498                 if (itimerfix(&atv))
 2499                         return (EINVAL);
 2500                 timo = tvtohz(&atv);
 2501         }
 2502 
 2503         if (p->p_aioinfo == NULL)
 2504                 aio_init_aioinfo(p);
 2505         ki = p->p_aioinfo;
 2506 
 2507         error = 0;
 2508         cb = NULL;
 2509         AIO_LOCK(ki);
 2510         while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
 2511                 ki->kaio_flags |= KAIO_WAKEUP;
 2512                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2513                     "aiowc", timo);
 2514                 if (timo && error == ERESTART)
 2515                         error = EINTR;
 2516                 if (error)
 2517                         break;
 2518         }
 2519 
 2520         if (cb != NULL) {
 2521                 MPASS(cb->jobstate == JOBST_JOBFINISHED);
 2522                 uuaiocb = cb->uuaiocb;
 2523                 status = cb->uaiocb._aiocb_private.status;
 2524                 error = cb->uaiocb._aiocb_private.error;
 2525                 td->td_retval[0] = status;
 2526                 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 2527                         td->td_ru.ru_oublock += cb->outputcharge;
 2528                         cb->outputcharge = 0;
 2529                 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 2530                         td->td_ru.ru_inblock += cb->inputcharge;
 2531                         cb->inputcharge = 0;
 2532                 }
 2533                 aio_free_entry(cb);
 2534                 AIO_UNLOCK(ki);
 2535                 ops->store_aiocb(aiocbp, uuaiocb);
 2536                 ops->store_error(uuaiocb, error);
 2537                 ops->store_status(uuaiocb, status);
 2538         } else
 2539                 AIO_UNLOCK(ki);
 2540 
 2541         return (error);
 2542 }
 2543 
 2544 int
 2545 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 2546 {
 2547         struct timespec ts, *tsp;
 2548         int error;
 2549 
 2550         if (uap->timeout) {
 2551                 /* Get timespec struct. */
 2552                 error = copyin(uap->timeout, &ts, sizeof(ts));
 2553                 if (error)
 2554                         return (error);
 2555                 tsp = &ts;
 2556         } else
 2557                 tsp = NULL;
 2558 
 2559         return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
 2560 }
 2561 
 2562 static int
 2563 kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp,
 2564     struct aiocb_ops *ops)
 2565 {
 2566         struct proc *p = td->td_proc;
 2567         struct kaioinfo *ki;
 2568 
 2569         if (op != O_SYNC) /* XXX lack of O_DSYNC */
 2570                 return (EINVAL);
 2571         ki = p->p_aioinfo;
 2572         if (ki == NULL)
 2573                 aio_init_aioinfo(p);
 2574         return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops));
 2575 }
 2576 
 2577 int
 2578 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 2579 {
 2580 
 2581         return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
 2582 }
 2583 
 2584 /* kqueue attach function */
 2585 static int
 2586 filt_aioattach(struct knote *kn)
 2587 {
 2588         struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
 2589 
 2590         /*
 2591          * The aiocbe pointer must be validated before using it, so
 2592          * registration is restricted to the kernel; the user cannot
 2593          * set EV_FLAG1.
 2594          */
 2595         if ((kn->kn_flags & EV_FLAG1) == 0)
 2596                 return (EPERM);
 2597         kn->kn_ptr.p_aio = aiocbe;
 2598         kn->kn_flags &= ~EV_FLAG1;
 2599 
 2600         knlist_add(&aiocbe->klist, kn, 0);
 2601 
 2602         return (0);
 2603 }
 2604 
 2605 /* kqueue detach function */
 2606 static void
 2607 filt_aiodetach(struct knote *kn)
 2608 {
 2609         struct knlist *knl;
 2610 
 2611         knl = &kn->kn_ptr.p_aio->klist;
 2612         knl->kl_lock(knl->kl_lockarg);
 2613         if (!knlist_empty(knl))
 2614                 knlist_remove(knl, kn, 1);
 2615         knl->kl_unlock(knl->kl_lockarg);
 2616 }
 2617 
 2618 /* kqueue filter function */
 2619 /*ARGSUSED*/
 2620 static int
 2621 filt_aio(struct knote *kn, long hint)
 2622 {
 2623         struct aiocblist *aiocbe = kn->kn_ptr.p_aio;
 2624 
 2625         kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
 2626         if (aiocbe->jobstate != JOBST_JOBFINISHED)
 2627                 return (0);
 2628         kn->kn_flags |= EV_EOF;
 2629         return (1);
 2630 }
 2631 
 2632 /* kqueue attach function */
 2633 static int
 2634 filt_lioattach(struct knote *kn)
 2635 {
 2636         struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
 2637 
 2638         /*
 2639          * The aioliojob pointer must be validated before using it, so
 2640          * registration is restricted to the kernel; the user cannot
 2641          * set EV_FLAG1.
 2642          */
 2643         if ((kn->kn_flags & EV_FLAG1) == 0)
 2644                 return (EPERM);
 2645         kn->kn_ptr.p_lio = lj;
 2646         kn->kn_flags &= ~EV_FLAG1;
 2647 
 2648         knlist_add(&lj->klist, kn, 0);
 2649 
 2650         return (0);
 2651 }
 2652 
 2653 /* kqueue detach function */
 2654 static void
 2655 filt_liodetach(struct knote *kn)
 2656 {
 2657         struct knlist *knl;
 2658 
 2659         knl = &kn->kn_ptr.p_lio->klist;
 2660         knl->kl_lock(knl->kl_lockarg);
 2661         if (!knlist_empty(knl))
 2662                 knlist_remove(knl, kn, 1);
 2663         knl->kl_unlock(knl->kl_lockarg);
 2664 }
 2665 
 2666 /* kqueue filter function */
 2667 /*ARGSUSED*/
 2668 static int
 2669 filt_lio(struct knote *kn, long hint)
 2670 {
 2671         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2672 
 2673         return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
 2674 }
 2675 
 2676 #ifdef COMPAT_FREEBSD32
 2677 
 2678 struct __aiocb_private32 {
 2679         int32_t status;
 2680         int32_t error;
 2681         uint32_t kernelinfo;
 2682 };
 2683 
 2684 typedef struct oaiocb32 {
 2685         int     aio_fildes;             /* File descriptor */
 2686         uint64_t aio_offset __packed;   /* File offset for I/O */
 2687         uint32_t aio_buf;               /* I/O buffer in process space */
 2688         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2689         struct  osigevent32 aio_sigevent; /* Signal to deliver */
 2690         int     aio_lio_opcode;         /* LIO opcode */
 2691         int     aio_reqprio;            /* Request priority -- ignored */
 2692         struct  __aiocb_private32 _aiocb_private;
 2693 } oaiocb32_t;
 2694 
 2695 typedef struct aiocb32 {
 2696         int32_t aio_fildes;             /* File descriptor */
 2697         uint64_t aio_offset __packed;   /* File offset for I/O */
 2698         uint32_t aio_buf;               /* I/O buffer in process space */
 2699         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2700         int     __spare__[2];
 2701         uint32_t __spare2__;
 2702         int     aio_lio_opcode;         /* LIO opcode */
 2703         int     aio_reqprio;            /* Request priority -- ignored */
 2704         struct __aiocb_private32 _aiocb_private;
 2705         struct sigevent32 aio_sigevent; /* Signal to deliver */
 2706 } aiocb32_t;
 2707 
 2708 static int
 2709 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
 2710 {
 2711 
 2712         /*
 2713          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 2714          * supported by AIO with the old sigevent structure.
 2715          */
 2716         CP(*osig, *nsig, sigev_notify);
 2717         switch (nsig->sigev_notify) {
 2718         case SIGEV_NONE:
 2719                 break;
 2720         case SIGEV_SIGNAL:
 2721                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 2722                 break;
 2723         case SIGEV_KEVENT:
 2724                 nsig->sigev_notify_kqueue =
 2725                     osig->__sigev_u.__sigev_notify_kqueue;
 2726                 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
 2727                 break;
 2728         default:
 2729                 return (EINVAL);
 2730         }
 2731         return (0);
 2732 }
 2733 
 2734 static int
 2735 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 2736 {
 2737         struct oaiocb32 job32;
 2738         int error;
 2739 
 2740         bzero(kjob, sizeof(struct aiocb));
 2741         error = copyin(ujob, &job32, sizeof(job32));
 2742         if (error)
 2743                 return (error);
 2744 
 2745         CP(job32, *kjob, aio_fildes);
 2746         CP(job32, *kjob, aio_offset);
 2747         PTRIN_CP(job32, *kjob, aio_buf);
 2748         CP(job32, *kjob, aio_nbytes);
 2749         CP(job32, *kjob, aio_lio_opcode);
 2750         CP(job32, *kjob, aio_reqprio);
 2751         CP(job32, *kjob, _aiocb_private.status);
 2752         CP(job32, *kjob, _aiocb_private.error);
 2753         PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 2754         return (convert_old_sigevent32(&job32.aio_sigevent,
 2755             &kjob->aio_sigevent));
 2756 }
 2757 
 2758 static int
 2759 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
 2760 {
 2761         struct aiocb32 job32;
 2762         int error;
 2763 
 2764         error = copyin(ujob, &job32, sizeof(job32));
 2765         if (error)
 2766                 return (error);
 2767         CP(job32, *kjob, aio_fildes);
 2768         CP(job32, *kjob, aio_offset);
 2769         PTRIN_CP(job32, *kjob, aio_buf);
 2770         CP(job32, *kjob, aio_nbytes);
 2771         CP(job32, *kjob, aio_lio_opcode);
 2772         CP(job32, *kjob, aio_reqprio);
 2773         CP(job32, *kjob, _aiocb_private.status);
 2774         CP(job32, *kjob, _aiocb_private.error);
 2775         PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 2776         return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
 2777 }
 2778 
 2779 static long
 2780 aiocb32_fetch_status(struct aiocb *ujob)
 2781 {
 2782         struct aiocb32 *ujob32;
 2783 
 2784         ujob32 = (struct aiocb32 *)ujob;
 2785         return (fuword32(&ujob32->_aiocb_private.status));
 2786 }
 2787 
 2788 static long
 2789 aiocb32_fetch_error(struct aiocb *ujob)
 2790 {
 2791         struct aiocb32 *ujob32;
 2792 
 2793         ujob32 = (struct aiocb32 *)ujob;
 2794         return (fuword32(&ujob32->_aiocb_private.error));
 2795 }
 2796 
 2797 static int
 2798 aiocb32_store_status(struct aiocb *ujob, long status)
 2799 {
 2800         struct aiocb32 *ujob32;
 2801 
 2802         ujob32 = (struct aiocb32 *)ujob;
 2803         return (suword32(&ujob32->_aiocb_private.status, status));
 2804 }
 2805 
 2806 static int
 2807 aiocb32_store_error(struct aiocb *ujob, long error)
 2808 {
 2809         struct aiocb32 *ujob32;
 2810 
 2811         ujob32 = (struct aiocb32 *)ujob;
 2812         return (suword32(&ujob32->_aiocb_private.error, error));
 2813 }
 2814 
 2815 static int
 2816 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
 2817 {
 2818         struct aiocb32 *ujob32;
 2819 
 2820         ujob32 = (struct aiocb32 *)ujob;
 2821         return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
 2822 }
 2823 
 2824 static int
 2825 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 2826 {
 2827 
 2828         return (suword32(ujobp, (long)ujob));
 2829 }
 2830 
 2831 static struct aiocb_ops aiocb32_ops = {
 2832         .copyin = aiocb32_copyin,
 2833         .fetch_status = aiocb32_fetch_status,
 2834         .fetch_error = aiocb32_fetch_error,
 2835         .store_status = aiocb32_store_status,
 2836         .store_error = aiocb32_store_error,
 2837         .store_kernelinfo = aiocb32_store_kernelinfo,
 2838         .store_aiocb = aiocb32_store_aiocb,
 2839 };
 2840 
 2841 static struct aiocb_ops aiocb32_ops_osigevent = {
 2842         .copyin = aiocb32_copyin_old_sigevent,
 2843         .fetch_status = aiocb32_fetch_status,
 2844         .fetch_error = aiocb32_fetch_error,
 2845         .store_status = aiocb32_store_status,
 2846         .store_error = aiocb32_store_error,
 2847         .store_kernelinfo = aiocb32_store_kernelinfo,
 2848         .store_aiocb = aiocb32_store_aiocb,
 2849 };
 2850 
 2851 int
 2852 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
 2853 {
 2854 
 2855         return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2856 }
 2857 
 2858 int
 2859 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
 2860 {
 2861         struct timespec32 ts32;
 2862         struct timespec ts, *tsp;
 2863         struct aiocb **ujoblist;
 2864         uint32_t *ujoblist32;
 2865         int error, i;
 2866 
 2867         if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
 2868                 return (EINVAL);
 2869 
 2870         if (uap->timeout) {
 2871                 /* Get timespec struct. */
 2872                 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
 2873                         return (error);
 2874                 CP(ts32, ts, tv_sec);
 2875                 CP(ts32, ts, tv_nsec);
 2876                 tsp = &ts;
 2877         } else
 2878                 tsp = NULL;
 2879 
 2880         ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 2881         ujoblist32 = (uint32_t *)ujoblist;
 2882         error = copyin(uap->aiocbp, ujoblist32, uap->nent *
 2883             sizeof(ujoblist32[0]));
 2884         if (error == 0) {
 2885                 for (i = uap->nent; i > 0; i--)
 2886                         ujoblist[i] = PTRIN(ujoblist32[i]);
 2887 
 2888                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2889         }
 2890         uma_zfree(aiol_zone, ujoblist);
 2891         return (error);
 2892 }
 2893 
 2894 int
 2895 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap)
 2896 {
 2897 
 2898         return (sys_aio_cancel(td, (struct aio_cancel_args *)uap));
 2899 }
 2900 
 2901 int
 2902 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
 2903 {
 2904 
 2905         return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2906 }
 2907 
 2908 int
 2909 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap)
 2910 {
 2911 
 2912         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2913             &aiocb32_ops_osigevent));
 2914 }
 2915 
 2916 int
 2917 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
 2918 {
 2919 
 2920         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2921             &aiocb32_ops));
 2922 }
 2923 
 2924 int
 2925 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap)
 2926 {
 2927 
 2928         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2929             &aiocb32_ops_osigevent));
 2930 }
 2931 
 2932 int
 2933 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
 2934 {
 2935 
 2936         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2937             &aiocb32_ops));
 2938 }
 2939 
 2940 int
 2941 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
 2942 {
 2943 
 2944         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
 2945             &aiocb32_ops));
 2946 }
 2947 
 2948 int
 2949 freebsd32_aio_waitcomplete(struct thread *td,
 2950     struct freebsd32_aio_waitcomplete_args *uap)
 2951 {
 2952         struct timespec32 ts32;
 2953         struct timespec ts, *tsp;
 2954         int error;
 2955 
 2956         if (uap->timeout) {
 2957                 /* Get timespec struct. */
 2958                 error = copyin(uap->timeout, &ts32, sizeof(ts32));
 2959                 if (error)
 2960                         return (error);
 2961                 CP(ts32, ts, tv_sec);
 2962                 CP(ts32, ts, tv_nsec);
 2963                 tsp = &ts;
 2964         } else
 2965                 tsp = NULL;
 2966 
 2967         return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
 2968             &aiocb32_ops));
 2969 }
 2970 
 2971 int
 2972 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
 2973 {
 2974 
 2975         return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
 2976             &aiocb32_ops));
 2977 }
 2978 
 2979 int
 2980 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap)
 2981 {
 2982         struct aiocb **acb_list;
 2983         struct sigevent *sigp, sig;
 2984         struct osigevent32 osig;
 2985         uint32_t *acb_list32;
 2986         int error, i, nent;
 2987 
 2988         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2989                 return (EINVAL);
 2990 
 2991         nent = uap->nent;
 2992         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2993                 return (EINVAL);
 2994 
 2995         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2996                 error = copyin(uap->sig, &osig, sizeof(osig));
 2997                 if (error)
 2998                         return (error);
 2999                 error = convert_old_sigevent32(&osig, &sig);
 3000                 if (error)
 3001                         return (error);
 3002                 sigp = &sig;
 3003         } else
 3004                 sigp = NULL;
 3005 
 3006         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 3007         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 3008         if (error) {
 3009                 free(acb_list32, M_LIO);
 3010                 return (error);
 3011         }
 3012         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 3013         for (i = 0; i < nent; i++)
 3014                 acb_list[i] = PTRIN(acb_list32[i]);
 3015         free(acb_list32, M_LIO);
 3016 
 3017         error = kern_lio_listio(td, uap->mode,
 3018             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 3019             &aiocb32_ops_osigevent);
 3020         free(acb_list, M_LIO);
 3021         return (error);
 3022 }
 3023 
 3024 int
 3025 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
 3026 {
 3027         struct aiocb **acb_list;
 3028         struct sigevent *sigp, sig;
 3029         struct sigevent32 sig32;
 3030         uint32_t *acb_list32;
 3031         int error, i, nent;
 3032 
 3033         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 3034                 return (EINVAL);
 3035 
 3036         nent = uap->nent;
 3037         if (nent < 0 || nent > AIO_LISTIO_MAX)
 3038                 return (EINVAL);
 3039 
 3040         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 3041                 error = copyin(uap->sig, &sig32, sizeof(sig32));
 3042                 if (error)
 3043                         return (error);
 3044                 error = convert_sigevent32(&sig32, &sig);
 3045                 if (error)
 3046                         return (error);
 3047                 sigp = &sig;
 3048         } else
 3049                 sigp = NULL;
 3050 
 3051         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 3052         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 3053         if (error) {
 3054                 free(acb_list32, M_LIO);
 3055                 return (error);
 3056         }
 3057         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 3058         for (i = 0; i < nent; i++)
 3059                 acb_list[i] = PTRIN(acb_list32[i]);
 3060         free(acb_list32, M_LIO);
 3061 
 3062         error = kern_lio_listio(td, uap->mode,
 3063             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 3064             &aiocb32_ops);
 3065         free(acb_list, M_LIO);
 3066         return (error);
 3067 }
 3068 
 3069 #endif

Cache object: 2dbfbcc821f357b65cc70b12aa9aedd5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.