The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_aio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. John S. Dyson's name may not be used to endorse or promote products
   10  *    derived from this software without specific prior written permission.
   11  *
   12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
   13  * bad that happens because of using this software isn't the responsibility
   14  * of the author.  This software is distributed AS-IS.
   15  */
   16 
   17 /*
   18  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
   19  */
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD: releng/10.2/sys/kern/vfs_aio.c 282569 2015-05-06 21:08:16Z mav $");
   23 
   24 #include "opt_compat.h"
   25 
   26 #include <sys/param.h>
   27 #include <sys/systm.h>
   28 #include <sys/malloc.h>
   29 #include <sys/bio.h>
   30 #include <sys/buf.h>
   31 #include <sys/capsicum.h>
   32 #include <sys/eventhandler.h>
   33 #include <sys/sysproto.h>
   34 #include <sys/filedesc.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/kthread.h>
   38 #include <sys/fcntl.h>
   39 #include <sys/file.h>
   40 #include <sys/limits.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/unistd.h>
   44 #include <sys/posix4.h>
   45 #include <sys/proc.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/protosw.h>
   49 #include <sys/rwlock.h>
   50 #include <sys/sema.h>
   51 #include <sys/socket.h>
   52 #include <sys/socketvar.h>
   53 #include <sys/syscall.h>
   54 #include <sys/sysent.h>
   55 #include <sys/sysctl.h>
   56 #include <sys/sx.h>
   57 #include <sys/taskqueue.h>
   58 #include <sys/vnode.h>
   59 #include <sys/conf.h>
   60 #include <sys/event.h>
   61 #include <sys/mount.h>
   62 #include <geom/geom.h>
   63 
   64 #include <machine/atomic.h>
   65 
   66 #include <vm/vm.h>
   67 #include <vm/vm_page.h>
   68 #include <vm/vm_extern.h>
   69 #include <vm/pmap.h>
   70 #include <vm/vm_map.h>
   71 #include <vm/vm_object.h>
   72 #include <vm/uma.h>
   73 #include <sys/aio.h>
   74 
   75 #include "opt_vfs_aio.h"
   76 
   77 /*
   78  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
   79  * overflow. (XXX will be removed soon.)
   80  */
   81 static u_long jobrefid;
   82 
   83 /*
   84  * Counter for aio_fsync.
   85  */
   86 static uint64_t jobseqno;
   87 
   88 #define JOBST_NULL              0
   89 #define JOBST_JOBQSOCK          1
   90 #define JOBST_JOBQGLOBAL        2
   91 #define JOBST_JOBRUNNING        3
   92 #define JOBST_JOBFINISHED       4
   93 #define JOBST_JOBQBUF           5
   94 #define JOBST_JOBQSYNC          6
   95 
   96 #ifndef MAX_AIO_PER_PROC
   97 #define MAX_AIO_PER_PROC        32
   98 #endif
   99 
  100 #ifndef MAX_AIO_QUEUE_PER_PROC
  101 #define MAX_AIO_QUEUE_PER_PROC  256 /* Bigger than AIO_LISTIO_MAX */
  102 #endif
  103 
  104 #ifndef MAX_AIO_PROCS
  105 #define MAX_AIO_PROCS           32
  106 #endif
  107 
  108 #ifndef MAX_AIO_QUEUE
  109 #define MAX_AIO_QUEUE           1024 /* Bigger than AIO_LISTIO_MAX */
  110 #endif
  111 
  112 #ifndef TARGET_AIO_PROCS
  113 #define TARGET_AIO_PROCS        4
  114 #endif
  115 
  116 #ifndef MAX_BUF_AIO
  117 #define MAX_BUF_AIO             16
  118 #endif
  119 
  120 #ifndef AIOD_TIMEOUT_DEFAULT
  121 #define AIOD_TIMEOUT_DEFAULT    (10 * hz)
  122 #endif
  123 
  124 #ifndef AIOD_LIFETIME_DEFAULT
  125 #define AIOD_LIFETIME_DEFAULT   (30 * hz)
  126 #endif
  127 
  128 FEATURE(aio, "Asynchronous I/O");
  129 
  130 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
  131 
  132 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
  133 
  134 static int max_aio_procs = MAX_AIO_PROCS;
  135 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
  136         CTLFLAG_RW, &max_aio_procs, 0,
  137         "Maximum number of kernel threads to use for handling async IO ");
  138 
  139 static int num_aio_procs = 0;
  140 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
  141         CTLFLAG_RD, &num_aio_procs, 0,
  142         "Number of presently active kernel threads for async IO");
  143 
  144 /*
  145  * The code will adjust the actual number of AIO processes towards this
  146  * number when it gets a chance.
  147  */
  148 static int target_aio_procs = TARGET_AIO_PROCS;
  149 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
  150         0, "Preferred number of ready kernel threads for async IO");
  151 
  152 static int max_queue_count = MAX_AIO_QUEUE;
  153 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
  154     "Maximum number of aio requests to queue, globally");
  155 
  156 static int num_queue_count = 0;
  157 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
  158     "Number of queued aio requests");
  159 
  160 static int num_buf_aio = 0;
  161 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
  162     "Number of aio requests presently handled by the buf subsystem");
  163 
  164 /* Number of async I/O thread in the process of being started */
  165 /* XXX This should be local to aio_aqueue() */
  166 static int num_aio_resv_start = 0;
  167 
  168 static int aiod_timeout;
  169 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
  170     "Timeout value for synchronous aio operations");
  171 
  172 static int aiod_lifetime;
  173 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
  174     "Maximum lifetime for idle aiod");
  175 
  176 static int unloadable = 0;
  177 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0,
  178     "Allow unload of aio (not recommended)");
  179 
  180 
  181 static int max_aio_per_proc = MAX_AIO_PER_PROC;
  182 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
  183     0, "Maximum active aio requests per process (stored in the process)");
  184 
  185 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
  186 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
  187     &max_aio_queue_per_proc, 0,
  188     "Maximum queued aio requests per process (stored in the process)");
  189 
  190 static int max_buf_aio = MAX_BUF_AIO;
  191 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
  192     "Maximum buf aio requests per process (stored in the process)");
  193 
  194 typedef struct oaiocb {
  195         int     aio_fildes;             /* File descriptor */
  196         off_t   aio_offset;             /* File offset for I/O */
  197         volatile void *aio_buf;         /* I/O buffer in process space */
  198         size_t  aio_nbytes;             /* Number of bytes for I/O */
  199         struct  osigevent aio_sigevent; /* Signal to deliver */
  200         int     aio_lio_opcode;         /* LIO opcode */
  201         int     aio_reqprio;            /* Request priority -- ignored */
  202         struct  __aiocb_private _aiocb_private;
  203 } oaiocb_t;
  204 
  205 /*
  206  * Below is a key of locks used to protect each member of struct aiocblist
  207  * aioliojob and kaioinfo and any backends.
  208  *
  209  * * - need not protected
  210  * a - locked by kaioinfo lock
  211  * b - locked by backend lock, the backend lock can be null in some cases,
  212  *     for example, BIO belongs to this type, in this case, proc lock is
  213  *     reused.
  214  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
  215  */
  216 
  217 /*
  218  * Current, there is only two backends: BIO and generic file I/O.
  219  * socket I/O is served by generic file I/O, this is not a good idea, since
  220  * disk file I/O and any other types without O_NONBLOCK flag can block daemon
  221  * threads, if there is no thread to serve socket I/O, the socket I/O will be
  222  * delayed too long or starved, we should create some threads dedicated to
  223  * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O
  224  * systems we really need non-blocking interface, fiddling O_NONBLOCK in file
  225  * structure is not safe because there is race between userland and aio
  226  * daemons.
  227  */
  228 
  229 struct aiocblist {
  230         TAILQ_ENTRY(aiocblist) list;    /* (b) internal list of for backend */
  231         TAILQ_ENTRY(aiocblist) plist;   /* (a) list of jobs for each backend */
  232         TAILQ_ENTRY(aiocblist) allist;  /* (a) list of all jobs in proc */
  233         int     jobflags;               /* (a) job flags */
  234         int     jobstate;               /* (b) job state */
  235         int     inputcharge;            /* (*) input blockes */
  236         int     outputcharge;           /* (*) output blockes */
  237         struct  bio *bp;                /* (*) BIO backend BIO pointer */
  238         struct  buf *pbuf;              /* (*) BIO backend buffer pointer */
  239         struct  vm_page *pages[btoc(MAXPHYS)+1]; /* BIO backend pages */
  240         int     npages;                 /* BIO backend number of pages */
  241         struct  proc *userproc;         /* (*) user process */
  242         struct  ucred *cred;            /* (*) active credential when created */
  243         struct  file *fd_file;          /* (*) pointer to file structure */
  244         struct  aioliojob *lio;         /* (*) optional lio job */
  245         struct  aiocb *uuaiocb;         /* (*) pointer in userspace of aiocb */
  246         struct  knlist klist;           /* (a) list of knotes */
  247         struct  aiocb uaiocb;           /* (*) kernel I/O control block */
  248         ksiginfo_t ksi;                 /* (a) realtime signal info */
  249         uint64_t seqno;                 /* (*) job number */
  250         int     pending;                /* (a) number of pending I/O, aio_fsync only */
  251 };
  252 
  253 /* jobflags */
  254 #define AIOCBLIST_DONE          0x01
  255 #define AIOCBLIST_BUFDONE       0x02
  256 #define AIOCBLIST_RUNDOWN       0x04
  257 #define AIOCBLIST_CHECKSYNC     0x08
  258 
  259 /*
  260  * AIO process info
  261  */
  262 #define AIOP_FREE       0x1                     /* proc on free queue */
  263 
  264 struct aiothreadlist {
  265         int aiothreadflags;                     /* (c) AIO proc flags */
  266         TAILQ_ENTRY(aiothreadlist) list;        /* (c) list of processes */
  267         struct thread *aiothread;               /* (*) the AIO thread */
  268 };
  269 
  270 /*
  271  * data-structure for lio signal management
  272  */
  273 struct aioliojob {
  274         int     lioj_flags;                     /* (a) listio flags */
  275         int     lioj_count;                     /* (a) listio flags */
  276         int     lioj_finished_count;            /* (a) listio flags */
  277         struct  sigevent lioj_signal;           /* (a) signal on all I/O done */
  278         TAILQ_ENTRY(aioliojob) lioj_list;       /* (a) lio list */
  279         struct  knlist klist;                   /* (a) list of knotes */
  280         ksiginfo_t lioj_ksi;                    /* (a) Realtime signal info */
  281 };
  282 
  283 #define LIOJ_SIGNAL             0x1     /* signal on all done (lio) */
  284 #define LIOJ_SIGNAL_POSTED      0x2     /* signal has been posted */
  285 #define LIOJ_KEVENT_POSTED      0x4     /* kevent triggered */
  286 
  287 /*
  288  * per process aio data structure
  289  */
  290 struct kaioinfo {
  291         struct mtx      kaio_mtx;       /* the lock to protect this struct */
  292         int     kaio_flags;             /* (a) per process kaio flags */
  293         int     kaio_maxactive_count;   /* (*) maximum number of AIOs */
  294         int     kaio_active_count;      /* (c) number of currently used AIOs */
  295         int     kaio_qallowed_count;    /* (*) maxiumu size of AIO queue */
  296         int     kaio_count;             /* (a) size of AIO queue */
  297         int     kaio_ballowed_count;    /* (*) maximum number of buffers */
  298         int     kaio_buffer_count;      /* (a) number of physio buffers */
  299         TAILQ_HEAD(,aiocblist) kaio_all;        /* (a) all AIOs in the process */
  300         TAILQ_HEAD(,aiocblist) kaio_done;       /* (a) done queue for process */
  301         TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
  302         TAILQ_HEAD(,aiocblist) kaio_jobqueue;   /* (a) job queue for process */
  303         TAILQ_HEAD(,aiocblist) kaio_bufqueue;   /* (a) buffer job queue for process */
  304         TAILQ_HEAD(,aiocblist) kaio_sockqueue;  /* (a) queue for aios waiting on sockets,
  305                                                  *  NOT USED YET.
  306                                                  */
  307         TAILQ_HEAD(,aiocblist) kaio_syncqueue;  /* (a) queue for aio_fsync */
  308         struct  task    kaio_task;      /* (*) task to kick aio threads */
  309 };
  310 
  311 #define AIO_LOCK(ki)            mtx_lock(&(ki)->kaio_mtx)
  312 #define AIO_UNLOCK(ki)          mtx_unlock(&(ki)->kaio_mtx)
  313 #define AIO_LOCK_ASSERT(ki, f)  mtx_assert(&(ki)->kaio_mtx, (f))
  314 #define AIO_MTX(ki)             (&(ki)->kaio_mtx)
  315 
  316 #define KAIO_RUNDOWN    0x1     /* process is being run down */
  317 #define KAIO_WAKEUP     0x2     /* wakeup process when there is a significant event */
  318 
  319 /*
  320  * Operations used to interact with userland aio control blocks.
  321  * Different ABIs provide their own operations.
  322  */
  323 struct aiocb_ops {
  324         int     (*copyin)(struct aiocb *ujob, struct aiocb *kjob);
  325         long    (*fetch_status)(struct aiocb *ujob);
  326         long    (*fetch_error)(struct aiocb *ujob);
  327         int     (*store_status)(struct aiocb *ujob, long status);
  328         int     (*store_error)(struct aiocb *ujob, long error);
  329         int     (*store_kernelinfo)(struct aiocb *ujob, long jobref);
  330         int     (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
  331 };
  332 
  333 static TAILQ_HEAD(,aiothreadlist) aio_freeproc;         /* (c) Idle daemons */
  334 static struct sema aio_newproc_sem;
  335 static struct mtx aio_job_mtx;
  336 static struct mtx aio_sock_mtx;
  337 static TAILQ_HEAD(,aiocblist) aio_jobs;                 /* (c) Async job list */
  338 static struct unrhdr *aiod_unr;
  339 
  340 void            aio_init_aioinfo(struct proc *p);
  341 static int      aio_onceonly(void);
  342 static int      aio_free_entry(struct aiocblist *aiocbe);
  343 static void     aio_process_rw(struct aiocblist *aiocbe);
  344 static void     aio_process_sync(struct aiocblist *aiocbe);
  345 static void     aio_process_mlock(struct aiocblist *aiocbe);
  346 static int      aio_newproc(int *);
  347 int             aio_aqueue(struct thread *td, struct aiocb *job,
  348                         struct aioliojob *lio, int type, struct aiocb_ops *ops);
  349 static void     aio_physwakeup(struct bio *bp);
  350 static void     aio_proc_rundown(void *arg, struct proc *p);
  351 static void     aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp);
  352 static int      aio_qphysio(struct proc *p, struct aiocblist *iocb);
  353 static void     aio_daemon(void *param);
  354 static void     aio_swake_cb(struct socket *, struct sockbuf *);
  355 static int      aio_unload(void);
  356 static void     aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type);
  357 #define DONE_BUF        1
  358 #define DONE_QUEUE      2
  359 static int      aio_kick(struct proc *userp);
  360 static void     aio_kick_nowait(struct proc *userp);
  361 static void     aio_kick_helper(void *context, int pending);
  362 static int      filt_aioattach(struct knote *kn);
  363 static void     filt_aiodetach(struct knote *kn);
  364 static int      filt_aio(struct knote *kn, long hint);
  365 static int      filt_lioattach(struct knote *kn);
  366 static void     filt_liodetach(struct knote *kn);
  367 static int      filt_lio(struct knote *kn, long hint);
  368 
  369 /*
  370  * Zones for:
  371  *      kaio    Per process async io info
  372  *      aiop    async io thread data
  373  *      aiocb   async io jobs
  374  *      aiol    list io job pointer - internal to aio_suspend XXX
  375  *      aiolio  list io jobs
  376  */
  377 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
  378 
  379 /* kqueue filters for aio */
  380 static struct filterops aio_filtops = {
  381         .f_isfd = 0,
  382         .f_attach = filt_aioattach,
  383         .f_detach = filt_aiodetach,
  384         .f_event = filt_aio,
  385 };
  386 static struct filterops lio_filtops = {
  387         .f_isfd = 0,
  388         .f_attach = filt_lioattach,
  389         .f_detach = filt_liodetach,
  390         .f_event = filt_lio
  391 };
  392 
  393 static eventhandler_tag exit_tag, exec_tag;
  394 
  395 TASKQUEUE_DEFINE_THREAD(aiod_bio);
  396 
  397 /*
  398  * Main operations function for use as a kernel module.
  399  */
  400 static int
  401 aio_modload(struct module *module, int cmd, void *arg)
  402 {
  403         int error = 0;
  404 
  405         switch (cmd) {
  406         case MOD_LOAD:
  407                 aio_onceonly();
  408                 break;
  409         case MOD_UNLOAD:
  410                 error = aio_unload();
  411                 break;
  412         case MOD_SHUTDOWN:
  413                 break;
  414         default:
  415                 error = EINVAL;
  416                 break;
  417         }
  418         return (error);
  419 }
  420 
  421 static moduledata_t aio_mod = {
  422         "aio",
  423         &aio_modload,
  424         NULL
  425 };
  426 
  427 static struct syscall_helper_data aio_syscalls[] = {
  428         SYSCALL_INIT_HELPER(aio_cancel),
  429         SYSCALL_INIT_HELPER(aio_error),
  430         SYSCALL_INIT_HELPER(aio_fsync),
  431         SYSCALL_INIT_HELPER(aio_mlock),
  432         SYSCALL_INIT_HELPER(aio_read),
  433         SYSCALL_INIT_HELPER(aio_return),
  434         SYSCALL_INIT_HELPER(aio_suspend),
  435         SYSCALL_INIT_HELPER(aio_waitcomplete),
  436         SYSCALL_INIT_HELPER(aio_write),
  437         SYSCALL_INIT_HELPER(lio_listio),
  438         SYSCALL_INIT_HELPER(oaio_read),
  439         SYSCALL_INIT_HELPER(oaio_write),
  440         SYSCALL_INIT_HELPER(olio_listio),
  441         SYSCALL_INIT_LAST
  442 };
  443 
  444 #ifdef COMPAT_FREEBSD32
  445 #include <sys/mount.h>
  446 #include <sys/socket.h>
  447 #include <compat/freebsd32/freebsd32.h>
  448 #include <compat/freebsd32/freebsd32_proto.h>
  449 #include <compat/freebsd32/freebsd32_signal.h>
  450 #include <compat/freebsd32/freebsd32_syscall.h>
  451 #include <compat/freebsd32/freebsd32_util.h>
  452 
  453 static struct syscall_helper_data aio32_syscalls[] = {
  454         SYSCALL32_INIT_HELPER(freebsd32_aio_return),
  455         SYSCALL32_INIT_HELPER(freebsd32_aio_suspend),
  456         SYSCALL32_INIT_HELPER(freebsd32_aio_cancel),
  457         SYSCALL32_INIT_HELPER(freebsd32_aio_error),
  458         SYSCALL32_INIT_HELPER(freebsd32_aio_fsync),
  459         SYSCALL32_INIT_HELPER(freebsd32_aio_mlock),
  460         SYSCALL32_INIT_HELPER(freebsd32_aio_read),
  461         SYSCALL32_INIT_HELPER(freebsd32_aio_write),
  462         SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete),
  463         SYSCALL32_INIT_HELPER(freebsd32_lio_listio),
  464         SYSCALL32_INIT_HELPER(freebsd32_oaio_read),
  465         SYSCALL32_INIT_HELPER(freebsd32_oaio_write),
  466         SYSCALL32_INIT_HELPER(freebsd32_olio_listio),
  467         SYSCALL_INIT_LAST
  468 };
  469 #endif
  470 
  471 DECLARE_MODULE(aio, aio_mod,
  472         SI_SUB_VFS, SI_ORDER_ANY);
  473 MODULE_VERSION(aio, 1);
  474 
  475 /*
  476  * Startup initialization
  477  */
  478 static int
  479 aio_onceonly(void)
  480 {
  481         int error;
  482 
  483         /* XXX: should probably just use so->callback */
  484         aio_swake = &aio_swake_cb;
  485         exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
  486             EVENTHANDLER_PRI_ANY);
  487         exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL,
  488             EVENTHANDLER_PRI_ANY);
  489         kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
  490         kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
  491         TAILQ_INIT(&aio_freeproc);
  492         sema_init(&aio_newproc_sem, 0, "aio_new_proc");
  493         mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
  494         mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF);
  495         TAILQ_INIT(&aio_jobs);
  496         aiod_unr = new_unrhdr(1, INT_MAX, NULL);
  497         kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
  498             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  499         aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL,
  500             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  501         aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL,
  502             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  503         aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
  504             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  505         aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
  506             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  507         aiod_timeout = AIOD_TIMEOUT_DEFAULT;
  508         aiod_lifetime = AIOD_LIFETIME_DEFAULT;
  509         jobrefid = 1;
  510         async_io_version = _POSIX_VERSION;
  511         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
  512         p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
  513         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
  514 
  515         error = syscall_helper_register(aio_syscalls);
  516         if (error)
  517                 return (error);
  518 #ifdef COMPAT_FREEBSD32
  519         error = syscall32_helper_register(aio32_syscalls);
  520         if (error)
  521                 return (error);
  522 #endif
  523         return (0);
  524 }
  525 
  526 /*
  527  * Callback for unload of AIO when used as a module.
  528  */
  529 static int
  530 aio_unload(void)
  531 {
  532         int error;
  533 
  534         /*
  535          * XXX: no unloads by default, it's too dangerous.
  536          * perhaps we could do it if locked out callers and then
  537          * did an aio_proc_rundown() on each process.
  538          *
  539          * jhb: aio_proc_rundown() needs to run on curproc though,
  540          * so I don't think that would fly.
  541          */
  542         if (!unloadable)
  543                 return (EOPNOTSUPP);
  544 
  545 #ifdef COMPAT_FREEBSD32
  546         syscall32_helper_unregister(aio32_syscalls);
  547 #endif
  548         syscall_helper_unregister(aio_syscalls);
  549 
  550         error = kqueue_del_filteropts(EVFILT_AIO);
  551         if (error)
  552                 return error;
  553         error = kqueue_del_filteropts(EVFILT_LIO);
  554         if (error)
  555                 return error;
  556         async_io_version = 0;
  557         aio_swake = NULL;
  558         taskqueue_free(taskqueue_aiod_bio);
  559         delete_unrhdr(aiod_unr);
  560         uma_zdestroy(kaio_zone);
  561         uma_zdestroy(aiop_zone);
  562         uma_zdestroy(aiocb_zone);
  563         uma_zdestroy(aiol_zone);
  564         uma_zdestroy(aiolio_zone);
  565         EVENTHANDLER_DEREGISTER(process_exit, exit_tag);
  566         EVENTHANDLER_DEREGISTER(process_exec, exec_tag);
  567         mtx_destroy(&aio_job_mtx);
  568         mtx_destroy(&aio_sock_mtx);
  569         sema_destroy(&aio_newproc_sem);
  570         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1);
  571         p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1);
  572         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1);
  573         return (0);
  574 }
  575 
  576 /*
  577  * Init the per-process aioinfo structure.  The aioinfo limits are set
  578  * per-process for user limit (resource) management.
  579  */
  580 void
  581 aio_init_aioinfo(struct proc *p)
  582 {
  583         struct kaioinfo *ki;
  584 
  585         ki = uma_zalloc(kaio_zone, M_WAITOK);
  586         mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF);
  587         ki->kaio_flags = 0;
  588         ki->kaio_maxactive_count = max_aio_per_proc;
  589         ki->kaio_active_count = 0;
  590         ki->kaio_qallowed_count = max_aio_queue_per_proc;
  591         ki->kaio_count = 0;
  592         ki->kaio_ballowed_count = max_buf_aio;
  593         ki->kaio_buffer_count = 0;
  594         TAILQ_INIT(&ki->kaio_all);
  595         TAILQ_INIT(&ki->kaio_done);
  596         TAILQ_INIT(&ki->kaio_jobqueue);
  597         TAILQ_INIT(&ki->kaio_bufqueue);
  598         TAILQ_INIT(&ki->kaio_liojoblist);
  599         TAILQ_INIT(&ki->kaio_sockqueue);
  600         TAILQ_INIT(&ki->kaio_syncqueue);
  601         TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
  602         PROC_LOCK(p);
  603         if (p->p_aioinfo == NULL) {
  604                 p->p_aioinfo = ki;
  605                 PROC_UNLOCK(p);
  606         } else {
  607                 PROC_UNLOCK(p);
  608                 mtx_destroy(&ki->kaio_mtx);
  609                 uma_zfree(kaio_zone, ki);
  610         }
  611 
  612         while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
  613                 aio_newproc(NULL);
  614 }
  615 
  616 static int
  617 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
  618 {
  619         struct thread *td;
  620         int error;
  621 
  622         error = sigev_findtd(p, sigev, &td);
  623         if (error)
  624                 return (error);
  625         if (!KSI_ONQ(ksi)) {
  626                 ksiginfo_set_sigev(ksi, sigev);
  627                 ksi->ksi_code = SI_ASYNCIO;
  628                 ksi->ksi_flags |= KSI_EXT | KSI_INS;
  629                 tdsendsignal(p, td, ksi->ksi_signo, ksi);
  630         }
  631         PROC_UNLOCK(p);
  632         return (error);
  633 }
  634 
  635 /*
  636  * Free a job entry.  Wait for completion if it is currently active, but don't
  637  * delay forever.  If we delay, we return a flag that says that we have to
  638  * restart the queue scan.
  639  */
  640 static int
  641 aio_free_entry(struct aiocblist *aiocbe)
  642 {
  643         struct kaioinfo *ki;
  644         struct aioliojob *lj;
  645         struct proc *p;
  646 
  647         p = aiocbe->userproc;
  648         MPASS(curproc == p);
  649         ki = p->p_aioinfo;
  650         MPASS(ki != NULL);
  651 
  652         AIO_LOCK_ASSERT(ki, MA_OWNED);
  653         MPASS(aiocbe->jobstate == JOBST_JOBFINISHED);
  654 
  655         atomic_subtract_int(&num_queue_count, 1);
  656 
  657         ki->kaio_count--;
  658         MPASS(ki->kaio_count >= 0);
  659 
  660         TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist);
  661         TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
  662 
  663         lj = aiocbe->lio;
  664         if (lj) {
  665                 lj->lioj_count--;
  666                 lj->lioj_finished_count--;
  667 
  668                 if (lj->lioj_count == 0) {
  669                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  670                         /* lio is going away, we need to destroy any knotes */
  671                         knlist_delete(&lj->klist, curthread, 1);
  672                         PROC_LOCK(p);
  673                         sigqueue_take(&lj->lioj_ksi);
  674                         PROC_UNLOCK(p);
  675                         uma_zfree(aiolio_zone, lj);
  676                 }
  677         }
  678 
  679         /* aiocbe is going away, we need to destroy any knotes */
  680         knlist_delete(&aiocbe->klist, curthread, 1);
  681         PROC_LOCK(p);
  682         sigqueue_take(&aiocbe->ksi);
  683         PROC_UNLOCK(p);
  684 
  685         MPASS(aiocbe->bp == NULL);
  686         aiocbe->jobstate = JOBST_NULL;
  687         AIO_UNLOCK(ki);
  688 
  689         /*
  690          * The thread argument here is used to find the owning process
  691          * and is also passed to fo_close() which may pass it to various
  692          * places such as devsw close() routines.  Because of that, we
  693          * need a thread pointer from the process owning the job that is
  694          * persistent and won't disappear out from under us or move to
  695          * another process.
  696          *
  697          * Currently, all the callers of this function call it to remove
  698          * an aiocblist from the current process' job list either via a
  699          * syscall or due to the current process calling exit() or
  700          * execve().  Thus, we know that p == curproc.  We also know that
  701          * curthread can't exit since we are curthread.
  702          *
  703          * Therefore, we use curthread as the thread to pass to
  704          * knlist_delete().  This does mean that it is possible for the
  705          * thread pointer at close time to differ from the thread pointer
  706          * at open time, but this is already true of file descriptors in
  707          * a multithreaded process.
  708          */
  709         if (aiocbe->fd_file)
  710                 fdrop(aiocbe->fd_file, curthread);
  711         crfree(aiocbe->cred);
  712         uma_zfree(aiocb_zone, aiocbe);
  713         AIO_LOCK(ki);
  714 
  715         return (0);
  716 }
  717 
  718 static void
  719 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
  720 {
  721         aio_proc_rundown(arg, p);
  722 }
  723 
  724 /*
  725  * Rundown the jobs for a given process.
  726  */
  727 static void
  728 aio_proc_rundown(void *arg, struct proc *p)
  729 {
  730         struct kaioinfo *ki;
  731         struct aioliojob *lj;
  732         struct aiocblist *cbe, *cbn;
  733         struct file *fp;
  734         struct socket *so;
  735         int remove;
  736 
  737         KASSERT(curthread->td_proc == p,
  738             ("%s: called on non-curproc", __func__));
  739         ki = p->p_aioinfo;
  740         if (ki == NULL)
  741                 return;
  742 
  743         AIO_LOCK(ki);
  744         ki->kaio_flags |= KAIO_RUNDOWN;
  745 
  746 restart:
  747 
  748         /*
  749          * Try to cancel all pending requests. This code simulates
  750          * aio_cancel on all pending I/O requests.
  751          */
  752         TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
  753                 remove = 0;
  754                 mtx_lock(&aio_job_mtx);
  755                 if (cbe->jobstate == JOBST_JOBQGLOBAL) {
  756                         TAILQ_REMOVE(&aio_jobs, cbe, list);
  757                         remove = 1;
  758                 } else if (cbe->jobstate == JOBST_JOBQSOCK) {
  759                         fp = cbe->fd_file;
  760                         MPASS(fp->f_type == DTYPE_SOCKET);
  761                         so = fp->f_data;
  762                         TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
  763                         remove = 1;
  764                 } else if (cbe->jobstate == JOBST_JOBQSYNC) {
  765                         TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
  766                         remove = 1;
  767                 }
  768                 mtx_unlock(&aio_job_mtx);
  769 
  770                 if (remove) {
  771                         cbe->jobstate = JOBST_JOBFINISHED;
  772                         cbe->uaiocb._aiocb_private.status = -1;
  773                         cbe->uaiocb._aiocb_private.error = ECANCELED;
  774                         TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
  775                         aio_bio_done_notify(p, cbe, DONE_QUEUE);
  776                 }
  777         }
  778 
  779         /* Wait for all running I/O to be finished */
  780         if (TAILQ_FIRST(&ki->kaio_bufqueue) ||
  781             TAILQ_FIRST(&ki->kaio_jobqueue)) {
  782                 ki->kaio_flags |= KAIO_WAKEUP;
  783                 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
  784                 goto restart;
  785         }
  786 
  787         /* Free all completed I/O requests. */
  788         while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL)
  789                 aio_free_entry(cbe);
  790 
  791         while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
  792                 if (lj->lioj_count == 0) {
  793                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  794                         knlist_delete(&lj->klist, curthread, 1);
  795                         PROC_LOCK(p);
  796                         sigqueue_take(&lj->lioj_ksi);
  797                         PROC_UNLOCK(p);
  798                         uma_zfree(aiolio_zone, lj);
  799                 } else {
  800                         panic("LIO job not cleaned up: C:%d, FC:%d\n",
  801                             lj->lioj_count, lj->lioj_finished_count);
  802                 }
  803         }
  804         AIO_UNLOCK(ki);
  805         taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task);
  806         mtx_destroy(&ki->kaio_mtx);
  807         uma_zfree(kaio_zone, ki);
  808         p->p_aioinfo = NULL;
  809 }
  810 
  811 /*
  812  * Select a job to run (called by an AIO daemon).
  813  */
  814 static struct aiocblist *
  815 aio_selectjob(struct aiothreadlist *aiop)
  816 {
  817         struct aiocblist *aiocbe;
  818         struct kaioinfo *ki;
  819         struct proc *userp;
  820 
  821         mtx_assert(&aio_job_mtx, MA_OWNED);
  822         TAILQ_FOREACH(aiocbe, &aio_jobs, list) {
  823                 userp = aiocbe->userproc;
  824                 ki = userp->p_aioinfo;
  825 
  826                 if (ki->kaio_active_count < ki->kaio_maxactive_count) {
  827                         TAILQ_REMOVE(&aio_jobs, aiocbe, list);
  828                         /* Account for currently active jobs. */
  829                         ki->kaio_active_count++;
  830                         aiocbe->jobstate = JOBST_JOBRUNNING;
  831                         break;
  832                 }
  833         }
  834         return (aiocbe);
  835 }
  836 
  837 /*
  838  *  Move all data to a permanent storage device, this code
  839  *  simulates fsync syscall.
  840  */
  841 static int
  842 aio_fsync_vnode(struct thread *td, struct vnode *vp)
  843 {
  844         struct mount *mp;
  845         int error;
  846 
  847         if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  848                 goto drop;
  849         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  850         if (vp->v_object != NULL) {
  851                 VM_OBJECT_WLOCK(vp->v_object);
  852                 vm_object_page_clean(vp->v_object, 0, 0, 0);
  853                 VM_OBJECT_WUNLOCK(vp->v_object);
  854         }
  855         error = VOP_FSYNC(vp, MNT_WAIT, td);
  856 
  857         VOP_UNLOCK(vp, 0);
  858         vn_finished_write(mp);
  859 drop:
  860         return (error);
  861 }
  862 
  863 /*
  864  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
  865  * does the I/O request for the non-physio version of the operations.  The
  866  * normal vn operations are used, and this code should work in all instances
  867  * for every type of file, including pipes, sockets, fifos, and regular files.
  868  *
  869  * XXX I don't think it works well for socket, pipe, and fifo.
  870  */
  871 static void
  872 aio_process_rw(struct aiocblist *aiocbe)
  873 {
  874         struct ucred *td_savedcred;
  875         struct thread *td;
  876         struct aiocb *cb;
  877         struct file *fp;
  878         struct socket *so;
  879         struct uio auio;
  880         struct iovec aiov;
  881         int cnt;
  882         int error;
  883         int oublock_st, oublock_end;
  884         int inblock_st, inblock_end;
  885 
  886         KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_READ ||
  887             aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE,
  888             ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode));
  889 
  890         td = curthread;
  891         td_savedcred = td->td_ucred;
  892         td->td_ucred = aiocbe->cred;
  893         cb = &aiocbe->uaiocb;
  894         fp = aiocbe->fd_file;
  895 
  896         aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
  897         aiov.iov_len = cb->aio_nbytes;
  898 
  899         auio.uio_iov = &aiov;
  900         auio.uio_iovcnt = 1;
  901         auio.uio_offset = cb->aio_offset;
  902         auio.uio_resid = cb->aio_nbytes;
  903         cnt = cb->aio_nbytes;
  904         auio.uio_segflg = UIO_USERSPACE;
  905         auio.uio_td = td;
  906 
  907         inblock_st = td->td_ru.ru_inblock;
  908         oublock_st = td->td_ru.ru_oublock;
  909         /*
  910          * aio_aqueue() acquires a reference to the file that is
  911          * released in aio_free_entry().
  912          */
  913         if (cb->aio_lio_opcode == LIO_READ) {
  914                 auio.uio_rw = UIO_READ;
  915                 if (auio.uio_resid == 0)
  916                         error = 0;
  917                 else
  918                         error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  919         } else {
  920                 if (fp->f_type == DTYPE_VNODE)
  921                         bwillwrite();
  922                 auio.uio_rw = UIO_WRITE;
  923                 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  924         }
  925         inblock_end = td->td_ru.ru_inblock;
  926         oublock_end = td->td_ru.ru_oublock;
  927 
  928         aiocbe->inputcharge = inblock_end - inblock_st;
  929         aiocbe->outputcharge = oublock_end - oublock_st;
  930 
  931         if ((error) && (auio.uio_resid != cnt)) {
  932                 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
  933                         error = 0;
  934                 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
  935                         int sigpipe = 1;
  936                         if (fp->f_type == DTYPE_SOCKET) {
  937                                 so = fp->f_data;
  938                                 if (so->so_options & SO_NOSIGPIPE)
  939                                         sigpipe = 0;
  940                         }
  941                         if (sigpipe) {
  942                                 PROC_LOCK(aiocbe->userproc);
  943                                 kern_psignal(aiocbe->userproc, SIGPIPE);
  944                                 PROC_UNLOCK(aiocbe->userproc);
  945                         }
  946                 }
  947         }
  948 
  949         cnt -= auio.uio_resid;
  950         cb->_aiocb_private.error = error;
  951         cb->_aiocb_private.status = cnt;
  952         td->td_ucred = td_savedcred;
  953 }
  954 
  955 static void
  956 aio_process_sync(struct aiocblist *aiocbe)
  957 {
  958         struct thread *td = curthread;
  959         struct ucred *td_savedcred = td->td_ucred;
  960         struct aiocb *cb = &aiocbe->uaiocb;
  961         struct file *fp = aiocbe->fd_file;
  962         int error = 0;
  963 
  964         KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_SYNC,
  965             ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode));
  966 
  967         td->td_ucred = aiocbe->cred;
  968         if (fp->f_vnode != NULL)
  969                 error = aio_fsync_vnode(td, fp->f_vnode);
  970         cb->_aiocb_private.error = error;
  971         cb->_aiocb_private.status = 0;
  972         td->td_ucred = td_savedcred;
  973 }
  974 
  975 static void
  976 aio_process_mlock(struct aiocblist *aiocbe)
  977 {
  978         struct aiocb *cb = &aiocbe->uaiocb;
  979         int error;
  980 
  981         KASSERT(aiocbe->uaiocb.aio_lio_opcode == LIO_MLOCK,
  982             ("%s: opcode %d", __func__, aiocbe->uaiocb.aio_lio_opcode));
  983 
  984         error = vm_mlock(aiocbe->userproc, aiocbe->cred,
  985             __DEVOLATILE(void *, cb->aio_buf), cb->aio_nbytes);
  986         cb->_aiocb_private.error = error;
  987         cb->_aiocb_private.status = 0;
  988 }
  989 
  990 static void
  991 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type)
  992 {
  993         struct aioliojob *lj;
  994         struct kaioinfo *ki;
  995         struct aiocblist *scb, *scbn;
  996         int lj_done;
  997 
  998         ki = userp->p_aioinfo;
  999         AIO_LOCK_ASSERT(ki, MA_OWNED);
 1000         lj = aiocbe->lio;
 1001         lj_done = 0;
 1002         if (lj) {
 1003                 lj->lioj_finished_count++;
 1004                 if (lj->lioj_count == lj->lioj_finished_count)
 1005                         lj_done = 1;
 1006         }
 1007         if (type == DONE_QUEUE) {
 1008                 aiocbe->jobflags |= AIOCBLIST_DONE;
 1009         } else {
 1010                 aiocbe->jobflags |= AIOCBLIST_BUFDONE;
 1011         }
 1012         TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist);
 1013         aiocbe->jobstate = JOBST_JOBFINISHED;
 1014 
 1015         if (ki->kaio_flags & KAIO_RUNDOWN)
 1016                 goto notification_done;
 1017 
 1018         if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1019             aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
 1020                 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi);
 1021 
 1022         KNOTE_LOCKED(&aiocbe->klist, 1);
 1023 
 1024         if (lj_done) {
 1025                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 1026                         lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 1027                         KNOTE_LOCKED(&lj->klist, 1);
 1028                 }
 1029                 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
 1030                     == LIOJ_SIGNAL
 1031                     && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 1032                         lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 1033                         aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
 1034                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 1035                 }
 1036         }
 1037 
 1038 notification_done:
 1039         if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) {
 1040                 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) {
 1041                         if (aiocbe->fd_file == scb->fd_file &&
 1042                             aiocbe->seqno < scb->seqno) {
 1043                                 if (--scb->pending == 0) {
 1044                                         mtx_lock(&aio_job_mtx);
 1045                                         scb->jobstate = JOBST_JOBQGLOBAL;
 1046                                         TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list);
 1047                                         TAILQ_INSERT_TAIL(&aio_jobs, scb, list);
 1048                                         aio_kick_nowait(userp);
 1049                                         mtx_unlock(&aio_job_mtx);
 1050                                 }
 1051                         }
 1052                 }
 1053         }
 1054         if (ki->kaio_flags & KAIO_WAKEUP) {
 1055                 ki->kaio_flags &= ~KAIO_WAKEUP;
 1056                 wakeup(&userp->p_aioinfo);
 1057         }
 1058 }
 1059 
 1060 /*
 1061  * The AIO daemon, most of the actual work is done in aio_process_*,
 1062  * but the setup (and address space mgmt) is done in this routine.
 1063  */
 1064 static void
 1065 aio_daemon(void *_id)
 1066 {
 1067         struct aiocblist *aiocbe;
 1068         struct aiothreadlist *aiop;
 1069         struct kaioinfo *ki;
 1070         struct proc *curcp, *mycp, *userp;
 1071         struct vmspace *myvm, *tmpvm;
 1072         struct thread *td = curthread;
 1073         int id = (intptr_t)_id;
 1074 
 1075         /*
 1076          * Local copies of curproc (cp) and vmspace (myvm)
 1077          */
 1078         mycp = td->td_proc;
 1079         myvm = mycp->p_vmspace;
 1080 
 1081         KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp"));
 1082 
 1083         /*
 1084          * Allocate and ready the aio control info.  There is one aiop structure
 1085          * per daemon.
 1086          */
 1087         aiop = uma_zalloc(aiop_zone, M_WAITOK);
 1088         aiop->aiothread = td;
 1089         aiop->aiothreadflags = 0;
 1090 
 1091         /* The daemon resides in its own pgrp. */
 1092         sys_setsid(td, NULL);
 1093 
 1094         /*
 1095          * Wakeup parent process.  (Parent sleeps to keep from blasting away
 1096          * and creating too many daemons.)
 1097          */
 1098         sema_post(&aio_newproc_sem);
 1099 
 1100         mtx_lock(&aio_job_mtx);
 1101         for (;;) {
 1102                 /*
 1103                  * curcp is the current daemon process context.
 1104                  * userp is the current user process context.
 1105                  */
 1106                 curcp = mycp;
 1107 
 1108                 /*
 1109                  * Take daemon off of free queue
 1110                  */
 1111                 if (aiop->aiothreadflags & AIOP_FREE) {
 1112                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1113                         aiop->aiothreadflags &= ~AIOP_FREE;
 1114                 }
 1115 
 1116                 /*
 1117                  * Check for jobs.
 1118                  */
 1119                 while ((aiocbe = aio_selectjob(aiop)) != NULL) {
 1120                         mtx_unlock(&aio_job_mtx);
 1121                         userp = aiocbe->userproc;
 1122 
 1123                         /*
 1124                          * Connect to process address space for user program.
 1125                          */
 1126                         if (userp != curcp) {
 1127                                 /*
 1128                                  * Save the current address space that we are
 1129                                  * connected to.
 1130                                  */
 1131                                 tmpvm = mycp->p_vmspace;
 1132 
 1133                                 /*
 1134                                  * Point to the new user address space, and
 1135                                  * refer to it.
 1136                                  */
 1137                                 mycp->p_vmspace = userp->p_vmspace;
 1138                                 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1);
 1139 
 1140                                 /* Activate the new mapping. */
 1141                                 pmap_activate(FIRST_THREAD_IN_PROC(mycp));
 1142 
 1143                                 /*
 1144                                  * If the old address space wasn't the daemons
 1145                                  * own address space, then we need to remove the
 1146                                  * daemon's reference from the other process
 1147                                  * that it was acting on behalf of.
 1148                                  */
 1149                                 if (tmpvm != myvm) {
 1150                                         vmspace_free(tmpvm);
 1151                                 }
 1152                                 curcp = userp;
 1153                         }
 1154 
 1155                         ki = userp->p_aioinfo;
 1156 
 1157                         /* Do the I/O function. */
 1158                         switch(aiocbe->uaiocb.aio_lio_opcode) {
 1159                         case LIO_READ:
 1160                         case LIO_WRITE:
 1161                                 aio_process_rw(aiocbe);
 1162                                 break;
 1163                         case LIO_SYNC:
 1164                                 aio_process_sync(aiocbe);
 1165                                 break;
 1166                         case LIO_MLOCK:
 1167                                 aio_process_mlock(aiocbe);
 1168                                 break;
 1169                         }
 1170 
 1171                         mtx_lock(&aio_job_mtx);
 1172                         /* Decrement the active job count. */
 1173                         ki->kaio_active_count--;
 1174                         mtx_unlock(&aio_job_mtx);
 1175 
 1176                         AIO_LOCK(ki);
 1177                         TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
 1178                         aio_bio_done_notify(userp, aiocbe, DONE_QUEUE);
 1179                         AIO_UNLOCK(ki);
 1180 
 1181                         mtx_lock(&aio_job_mtx);
 1182                 }
 1183 
 1184                 /*
 1185                  * Disconnect from user address space.
 1186                  */
 1187                 if (curcp != mycp) {
 1188 
 1189                         mtx_unlock(&aio_job_mtx);
 1190 
 1191                         /* Get the user address space to disconnect from. */
 1192                         tmpvm = mycp->p_vmspace;
 1193 
 1194                         /* Get original address space for daemon. */
 1195                         mycp->p_vmspace = myvm;
 1196 
 1197                         /* Activate the daemon's address space. */
 1198                         pmap_activate(FIRST_THREAD_IN_PROC(mycp));
 1199 #ifdef DIAGNOSTIC
 1200                         if (tmpvm == myvm) {
 1201                                 printf("AIOD: vmspace problem -- %d\n",
 1202                                     mycp->p_pid);
 1203                         }
 1204 #endif
 1205                         /* Remove our vmspace reference. */
 1206                         vmspace_free(tmpvm);
 1207 
 1208                         curcp = mycp;
 1209 
 1210                         mtx_lock(&aio_job_mtx);
 1211                         /*
 1212                          * We have to restart to avoid race, we only sleep if
 1213                          * no job can be selected, that should be
 1214                          * curcp == mycp.
 1215                          */
 1216                         continue;
 1217                 }
 1218 
 1219                 mtx_assert(&aio_job_mtx, MA_OWNED);
 1220 
 1221                 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
 1222                 aiop->aiothreadflags |= AIOP_FREE;
 1223 
 1224                 /*
 1225                  * If daemon is inactive for a long time, allow it to exit,
 1226                  * thereby freeing resources.
 1227                  */
 1228                 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy",
 1229                     aiod_lifetime)) {
 1230                         if (TAILQ_EMPTY(&aio_jobs)) {
 1231                                 if ((aiop->aiothreadflags & AIOP_FREE) &&
 1232                                     (num_aio_procs > target_aio_procs)) {
 1233                                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1234                                         num_aio_procs--;
 1235                                         mtx_unlock(&aio_job_mtx);
 1236                                         uma_zfree(aiop_zone, aiop);
 1237                                         free_unr(aiod_unr, id);
 1238 #ifdef DIAGNOSTIC
 1239                                         if (mycp->p_vmspace->vm_refcnt <= 1) {
 1240                                                 printf("AIOD: bad vm refcnt for"
 1241                                                     " exiting daemon: %d\n",
 1242                                                     mycp->p_vmspace->vm_refcnt);
 1243                                         }
 1244 #endif
 1245                                         kproc_exit(0);
 1246                                 }
 1247                         }
 1248                 }
 1249         }
 1250         mtx_unlock(&aio_job_mtx);
 1251         panic("shouldn't be here\n");
 1252 }
 1253 
 1254 /*
 1255  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
 1256  * AIO daemon modifies its environment itself.
 1257  */
 1258 static int
 1259 aio_newproc(int *start)
 1260 {
 1261         int error;
 1262         struct proc *p;
 1263         int id;
 1264 
 1265         id = alloc_unr(aiod_unr);
 1266         error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
 1267                 RFNOWAIT, 0, "aiod%d", id);
 1268         if (error == 0) {
 1269                 /*
 1270                  * Wait until daemon is started.
 1271                  */
 1272                 sema_wait(&aio_newproc_sem);
 1273                 mtx_lock(&aio_job_mtx);
 1274                 num_aio_procs++;
 1275                 if (start != NULL)
 1276                         (*start)--;
 1277                 mtx_unlock(&aio_job_mtx);
 1278         } else {
 1279                 free_unr(aiod_unr, id);
 1280         }
 1281         return (error);
 1282 }
 1283 
 1284 /*
 1285  * Try the high-performance, low-overhead physio method for eligible
 1286  * VCHR devices.  This method doesn't use an aio helper thread, and
 1287  * thus has very low overhead.
 1288  *
 1289  * Assumes that the caller, aio_aqueue(), has incremented the file
 1290  * structure's reference count, preventing its deallocation for the
 1291  * duration of this call.
 1292  */
 1293 static int
 1294 aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
 1295 {
 1296         struct aiocb *cb;
 1297         struct file *fp;
 1298         struct bio *bp;
 1299         struct buf *pbuf;
 1300         struct vnode *vp;
 1301         struct cdevsw *csw;
 1302         struct cdev *dev;
 1303         struct kaioinfo *ki;
 1304         struct aioliojob *lj;
 1305         int error, ref, unmap, poff;
 1306         vm_prot_t prot;
 1307 
 1308         cb = &aiocbe->uaiocb;
 1309         fp = aiocbe->fd_file;
 1310 
 1311         if (fp == NULL || fp->f_type != DTYPE_VNODE)
 1312                 return (-1);
 1313 
 1314         vp = fp->f_vnode;
 1315         if (vp->v_type != VCHR)
 1316                 return (-1);
 1317         if (vp->v_bufobj.bo_bsize == 0)
 1318                 return (-1);
 1319         if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
 1320                 return (-1);
 1321 
 1322         ref = 0;
 1323         csw = devvn_refthread(vp, &dev, &ref);
 1324         if (csw == NULL)
 1325                 return (ENXIO);
 1326 
 1327         if ((csw->d_flags & D_DISK) == 0) {
 1328                 error = -1;
 1329                 goto unref;
 1330         }
 1331         if (cb->aio_nbytes > dev->si_iosize_max) {
 1332                 error = -1;
 1333                 goto unref;
 1334         }
 1335 
 1336         ki = p->p_aioinfo;
 1337         poff = (vm_offset_t)cb->aio_buf & PAGE_MASK;
 1338         unmap = ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed);
 1339         if (unmap) {
 1340                 if (cb->aio_nbytes > MAXPHYS) {
 1341                         error = -1;
 1342                         goto unref;
 1343                 }
 1344         } else {
 1345                 if (cb->aio_nbytes > MAXPHYS - poff) {
 1346                         error = -1;
 1347                         goto unref;
 1348                 }
 1349                 if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) {
 1350                         error = -1;
 1351                         goto unref;
 1352                 }
 1353         }
 1354         aiocbe->bp = bp = g_alloc_bio();
 1355         if (!unmap) {
 1356                 aiocbe->pbuf = pbuf = (struct buf *)getpbuf(NULL);
 1357                 BUF_KERNPROC(pbuf);
 1358         }
 1359 
 1360         AIO_LOCK(ki);
 1361         ki->kaio_count++;
 1362         if (!unmap)
 1363                 ki->kaio_buffer_count++;
 1364         lj = aiocbe->lio;
 1365         if (lj)
 1366                 lj->lioj_count++;
 1367         TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
 1368         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1369         aiocbe->jobstate = JOBST_JOBQBUF;
 1370         cb->_aiocb_private.status = cb->aio_nbytes;
 1371         AIO_UNLOCK(ki);
 1372 
 1373         bp->bio_length = cb->aio_nbytes;
 1374         bp->bio_bcount = cb->aio_nbytes;
 1375         bp->bio_done = aio_physwakeup;
 1376         bp->bio_data = (void *)(uintptr_t)cb->aio_buf;
 1377         bp->bio_offset = cb->aio_offset;
 1378         bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
 1379         bp->bio_dev = dev;
 1380         bp->bio_caller1 = (void *)aiocbe;
 1381 
 1382         prot = VM_PROT_READ;
 1383         if (cb->aio_lio_opcode == LIO_READ)
 1384                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 1385         if ((aiocbe->npages = vm_fault_quick_hold_pages(
 1386             &curproc->p_vmspace->vm_map,
 1387             (vm_offset_t)bp->bio_data, bp->bio_length, prot, aiocbe->pages,
 1388             sizeof(aiocbe->pages)/sizeof(aiocbe->pages[0]))) < 0) {
 1389                 error = EFAULT;
 1390                 goto doerror;
 1391         }
 1392         if (!unmap) {
 1393                 pmap_qenter((vm_offset_t)pbuf->b_data,
 1394                     aiocbe->pages, aiocbe->npages);
 1395                 bp->bio_data = pbuf->b_data + poff;
 1396         } else {
 1397                 bp->bio_ma = aiocbe->pages;
 1398                 bp->bio_ma_n = aiocbe->npages;
 1399                 bp->bio_ma_offset = poff;
 1400                 bp->bio_data = unmapped_buf;
 1401                 bp->bio_flags |= BIO_UNMAPPED;
 1402         }
 1403 
 1404         atomic_add_int(&num_queue_count, 1);
 1405         if (!unmap)
 1406                 atomic_add_int(&num_buf_aio, 1);
 1407 
 1408         /* Perform transfer. */
 1409         csw->d_strategy(bp);
 1410         dev_relthread(dev, ref);
 1411         return (0);
 1412 
 1413 doerror:
 1414         AIO_LOCK(ki);
 1415         aiocbe->jobstate = JOBST_NULL;
 1416         TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
 1417         TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
 1418         ki->kaio_count--;
 1419         if (!unmap)
 1420                 ki->kaio_buffer_count--;
 1421         if (lj)
 1422                 lj->lioj_count--;
 1423         AIO_UNLOCK(ki);
 1424         if (pbuf) {
 1425                 relpbuf(pbuf, NULL);
 1426                 aiocbe->pbuf = NULL;
 1427         }
 1428         g_destroy_bio(bp);
 1429         aiocbe->bp = NULL;
 1430 unref:
 1431         dev_relthread(dev, ref);
 1432         return (error);
 1433 }
 1434 
 1435 /*
 1436  * Wake up aio requests that may be serviceable now.
 1437  */
 1438 static void
 1439 aio_swake_cb(struct socket *so, struct sockbuf *sb)
 1440 {
 1441         struct aiocblist *cb, *cbn;
 1442         int opcode;
 1443 
 1444         SOCKBUF_LOCK_ASSERT(sb);
 1445         if (sb == &so->so_snd)
 1446                 opcode = LIO_WRITE;
 1447         else
 1448                 opcode = LIO_READ;
 1449 
 1450         sb->sb_flags &= ~SB_AIO;
 1451         mtx_lock(&aio_job_mtx);
 1452         TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) {
 1453                 if (opcode == cb->uaiocb.aio_lio_opcode) {
 1454                         if (cb->jobstate != JOBST_JOBQSOCK)
 1455                                 panic("invalid queue value");
 1456                         /* XXX
 1457                          * We don't have actual sockets backend yet,
 1458                          * so we simply move the requests to the generic
 1459                          * file I/O backend.
 1460                          */
 1461                         TAILQ_REMOVE(&so->so_aiojobq, cb, list);
 1462                         TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
 1463                         aio_kick_nowait(cb->userproc);
 1464                 }
 1465         }
 1466         mtx_unlock(&aio_job_mtx);
 1467 }
 1468 
 1469 static int
 1470 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
 1471 {
 1472 
 1473         /*
 1474          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 1475          * supported by AIO with the old sigevent structure.
 1476          */
 1477         nsig->sigev_notify = osig->sigev_notify;
 1478         switch (nsig->sigev_notify) {
 1479         case SIGEV_NONE:
 1480                 break;
 1481         case SIGEV_SIGNAL:
 1482                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 1483                 break;
 1484         case SIGEV_KEVENT:
 1485                 nsig->sigev_notify_kqueue =
 1486                     osig->__sigev_u.__sigev_notify_kqueue;
 1487                 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
 1488                 break;
 1489         default:
 1490                 return (EINVAL);
 1491         }
 1492         return (0);
 1493 }
 1494 
 1495 static int
 1496 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 1497 {
 1498         struct oaiocb *ojob;
 1499         int error;
 1500 
 1501         bzero(kjob, sizeof(struct aiocb));
 1502         error = copyin(ujob, kjob, sizeof(struct oaiocb));
 1503         if (error)
 1504                 return (error);
 1505         ojob = (struct oaiocb *)kjob;
 1506         return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
 1507 }
 1508 
 1509 static int
 1510 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
 1511 {
 1512 
 1513         return (copyin(ujob, kjob, sizeof(struct aiocb)));
 1514 }
 1515 
 1516 static long
 1517 aiocb_fetch_status(struct aiocb *ujob)
 1518 {
 1519 
 1520         return (fuword(&ujob->_aiocb_private.status));
 1521 }
 1522 
 1523 static long
 1524 aiocb_fetch_error(struct aiocb *ujob)
 1525 {
 1526 
 1527         return (fuword(&ujob->_aiocb_private.error));
 1528 }
 1529 
 1530 static int
 1531 aiocb_store_status(struct aiocb *ujob, long status)
 1532 {
 1533 
 1534         return (suword(&ujob->_aiocb_private.status, status));
 1535 }
 1536 
 1537 static int
 1538 aiocb_store_error(struct aiocb *ujob, long error)
 1539 {
 1540 
 1541         return (suword(&ujob->_aiocb_private.error, error));
 1542 }
 1543 
 1544 static int
 1545 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
 1546 {
 1547 
 1548         return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
 1549 }
 1550 
 1551 static int
 1552 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 1553 {
 1554 
 1555         return (suword(ujobp, (long)ujob));
 1556 }
 1557 
 1558 static struct aiocb_ops aiocb_ops = {
 1559         .copyin = aiocb_copyin,
 1560         .fetch_status = aiocb_fetch_status,
 1561         .fetch_error = aiocb_fetch_error,
 1562         .store_status = aiocb_store_status,
 1563         .store_error = aiocb_store_error,
 1564         .store_kernelinfo = aiocb_store_kernelinfo,
 1565         .store_aiocb = aiocb_store_aiocb,
 1566 };
 1567 
 1568 static struct aiocb_ops aiocb_ops_osigevent = {
 1569         .copyin = aiocb_copyin_old_sigevent,
 1570         .fetch_status = aiocb_fetch_status,
 1571         .fetch_error = aiocb_fetch_error,
 1572         .store_status = aiocb_store_status,
 1573         .store_error = aiocb_store_error,
 1574         .store_kernelinfo = aiocb_store_kernelinfo,
 1575         .store_aiocb = aiocb_store_aiocb,
 1576 };
 1577 
 1578 /*
 1579  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
 1580  * technique is done in this code.
 1581  */
 1582 int
 1583 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj,
 1584         int type, struct aiocb_ops *ops)
 1585 {
 1586         struct proc *p = td->td_proc;
 1587         cap_rights_t rights;
 1588         struct file *fp;
 1589         struct socket *so;
 1590         struct aiocblist *aiocbe, *cb;
 1591         struct kaioinfo *ki;
 1592         struct kevent kev;
 1593         struct sockbuf *sb;
 1594         int opcode;
 1595         int error;
 1596         int fd, kqfd;
 1597         int jid;
 1598         u_short evflags;
 1599 
 1600         if (p->p_aioinfo == NULL)
 1601                 aio_init_aioinfo(p);
 1602 
 1603         ki = p->p_aioinfo;
 1604 
 1605         ops->store_status(job, -1);
 1606         ops->store_error(job, 0);
 1607         ops->store_kernelinfo(job, -1);
 1608 
 1609         if (num_queue_count >= max_queue_count ||
 1610             ki->kaio_count >= ki->kaio_qallowed_count) {
 1611                 ops->store_error(job, EAGAIN);
 1612                 return (EAGAIN);
 1613         }
 1614 
 1615         aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 1616         knlist_init_mtx(&aiocbe->klist, AIO_MTX(ki));
 1617 
 1618         error = ops->copyin(job, &aiocbe->uaiocb);
 1619         if (error) {
 1620                 ops->store_error(job, error);
 1621                 uma_zfree(aiocb_zone, aiocbe);
 1622                 return (error);
 1623         }
 1624 
 1625         /* XXX: aio_nbytes is later casted to signed types. */
 1626         if (aiocbe->uaiocb.aio_nbytes > INT_MAX) {
 1627                 uma_zfree(aiocb_zone, aiocbe);
 1628                 return (EINVAL);
 1629         }
 1630 
 1631         if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
 1632             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
 1633             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
 1634             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
 1635                 ops->store_error(job, EINVAL);
 1636                 uma_zfree(aiocb_zone, aiocbe);
 1637                 return (EINVAL);
 1638         }
 1639 
 1640         if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1641              aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
 1642                 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
 1643                 uma_zfree(aiocb_zone, aiocbe);
 1644                 return (EINVAL);
 1645         }
 1646 
 1647         ksiginfo_init(&aiocbe->ksi);
 1648 
 1649         /* Save userspace address of the job info. */
 1650         aiocbe->uuaiocb = job;
 1651 
 1652         /* Get the opcode. */
 1653         if (type != LIO_NOP)
 1654                 aiocbe->uaiocb.aio_lio_opcode = type;
 1655         opcode = aiocbe->uaiocb.aio_lio_opcode;
 1656 
 1657         /*
 1658          * Validate the opcode and fetch the file object for the specified
 1659          * file descriptor.
 1660          *
 1661          * XXXRW: Moved the opcode validation up here so that we don't
 1662          * retrieve a file descriptor without knowing what the capabiltity
 1663          * should be.
 1664          */
 1665         fd = aiocbe->uaiocb.aio_fildes;
 1666         switch (opcode) {
 1667         case LIO_WRITE:
 1668                 error = fget_write(td, fd,
 1669                     cap_rights_init(&rights, CAP_PWRITE), &fp);
 1670                 break;
 1671         case LIO_READ:
 1672                 error = fget_read(td, fd,
 1673                     cap_rights_init(&rights, CAP_PREAD), &fp);
 1674                 break;
 1675         case LIO_SYNC:
 1676                 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp);
 1677                 break;
 1678         case LIO_MLOCK:
 1679                 fp = NULL;
 1680                 break;
 1681         case LIO_NOP:
 1682                 error = fget(td, fd, cap_rights_init(&rights), &fp);
 1683                 break;
 1684         default:
 1685                 error = EINVAL;
 1686         }
 1687         if (error) {
 1688                 uma_zfree(aiocb_zone, aiocbe);
 1689                 ops->store_error(job, error);
 1690                 return (error);
 1691         }
 1692 
 1693         if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
 1694                 error = EINVAL;
 1695                 goto aqueue_fail;
 1696         }
 1697 
 1698         if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) {
 1699                 error = EINVAL;
 1700                 goto aqueue_fail;
 1701         }
 1702 
 1703         aiocbe->fd_file = fp;
 1704 
 1705         mtx_lock(&aio_job_mtx);
 1706         jid = jobrefid++;
 1707         aiocbe->seqno = jobseqno++;
 1708         mtx_unlock(&aio_job_mtx);
 1709         error = ops->store_kernelinfo(job, jid);
 1710         if (error) {
 1711                 error = EINVAL;
 1712                 goto aqueue_fail;
 1713         }
 1714         aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
 1715 
 1716         if (opcode == LIO_NOP) {
 1717                 fdrop(fp, td);
 1718                 uma_zfree(aiocb_zone, aiocbe);
 1719                 return (0);
 1720         }
 1721 
 1722         if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
 1723                 goto no_kqueue;
 1724         evflags = aiocbe->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
 1725         if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
 1726                 error = EINVAL;
 1727                 goto aqueue_fail;
 1728         }
 1729         kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
 1730         kev.ident = (uintptr_t)aiocbe->uuaiocb;
 1731         kev.filter = EVFILT_AIO;
 1732         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
 1733         kev.data = (intptr_t)aiocbe;
 1734         kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr;
 1735         error = kqfd_register(kqfd, &kev, td, 1);
 1736 aqueue_fail:
 1737         if (error) {
 1738                 if (fp)
 1739                         fdrop(fp, td);
 1740                 uma_zfree(aiocb_zone, aiocbe);
 1741                 ops->store_error(job, error);
 1742                 goto done;
 1743         }
 1744 no_kqueue:
 1745 
 1746         ops->store_error(job, EINPROGRESS);
 1747         aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
 1748         aiocbe->userproc = p;
 1749         aiocbe->cred = crhold(td->td_ucred);
 1750         aiocbe->jobflags = 0;
 1751         aiocbe->lio = lj;
 1752 
 1753         if (opcode == LIO_SYNC)
 1754                 goto queueit;
 1755 
 1756         if (fp && fp->f_type == DTYPE_SOCKET) {
 1757                 /*
 1758                  * Alternate queueing for socket ops: Reach down into the
 1759                  * descriptor to get the socket data.  Then check to see if the
 1760                  * socket is ready to be read or written (based on the requested
 1761                  * operation).
 1762                  *
 1763                  * If it is not ready for io, then queue the aiocbe on the
 1764                  * socket, and set the flags so we get a call when sbnotify()
 1765                  * happens.
 1766                  *
 1767                  * Note if opcode is neither LIO_WRITE nor LIO_READ we lock
 1768                  * and unlock the snd sockbuf for no reason.
 1769                  */
 1770                 so = fp->f_data;
 1771                 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd;
 1772                 SOCKBUF_LOCK(sb);
 1773                 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
 1774                     LIO_WRITE) && (!sowriteable(so)))) {
 1775                         sb->sb_flags |= SB_AIO;
 1776 
 1777                         mtx_lock(&aio_job_mtx);
 1778                         TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
 1779                         mtx_unlock(&aio_job_mtx);
 1780 
 1781                         AIO_LOCK(ki);
 1782                         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1783                         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1784                         aiocbe->jobstate = JOBST_JOBQSOCK;
 1785                         ki->kaio_count++;
 1786                         if (lj)
 1787                                 lj->lioj_count++;
 1788                         AIO_UNLOCK(ki);
 1789                         SOCKBUF_UNLOCK(sb);
 1790                         atomic_add_int(&num_queue_count, 1);
 1791                         error = 0;
 1792                         goto done;
 1793                 }
 1794                 SOCKBUF_UNLOCK(sb);
 1795         }
 1796 
 1797         if ((error = aio_qphysio(p, aiocbe)) == 0)
 1798                 goto done;
 1799 #if 0
 1800         if (error > 0) {
 1801                 aiocbe->uaiocb._aiocb_private.error = error;
 1802                 ops->store_error(job, error);
 1803                 goto done;
 1804         }
 1805 #endif
 1806 queueit:
 1807         atomic_add_int(&num_queue_count, 1);
 1808 
 1809         AIO_LOCK(ki);
 1810         ki->kaio_count++;
 1811         if (lj)
 1812                 lj->lioj_count++;
 1813         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1814         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1815         if (opcode == LIO_SYNC) {
 1816                 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) {
 1817                         if (cb->fd_file == aiocbe->fd_file &&
 1818                             cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1819                             cb->seqno < aiocbe->seqno) {
 1820                                 cb->jobflags |= AIOCBLIST_CHECKSYNC;
 1821                                 aiocbe->pending++;
 1822                         }
 1823                 }
 1824                 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) {
 1825                         if (cb->fd_file == aiocbe->fd_file &&
 1826                             cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1827                             cb->seqno < aiocbe->seqno) {
 1828                                 cb->jobflags |= AIOCBLIST_CHECKSYNC;
 1829                                 aiocbe->pending++;
 1830                         }
 1831                 }
 1832                 if (aiocbe->pending != 0) {
 1833                         TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list);
 1834                         aiocbe->jobstate = JOBST_JOBQSYNC;
 1835                         AIO_UNLOCK(ki);
 1836                         goto done;
 1837                 }
 1838         }
 1839         mtx_lock(&aio_job_mtx);
 1840         TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
 1841         aiocbe->jobstate = JOBST_JOBQGLOBAL;
 1842         aio_kick_nowait(p);
 1843         mtx_unlock(&aio_job_mtx);
 1844         AIO_UNLOCK(ki);
 1845         error = 0;
 1846 done:
 1847         return (error);
 1848 }
 1849 
 1850 static void
 1851 aio_kick_nowait(struct proc *userp)
 1852 {
 1853         struct kaioinfo *ki = userp->p_aioinfo;
 1854         struct aiothreadlist *aiop;
 1855 
 1856         mtx_assert(&aio_job_mtx, MA_OWNED);
 1857         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1858                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1859                 aiop->aiothreadflags &= ~AIOP_FREE;
 1860                 wakeup(aiop->aiothread);
 1861         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1862             ((ki->kaio_active_count + num_aio_resv_start) <
 1863             ki->kaio_maxactive_count)) {
 1864                 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task);
 1865         }
 1866 }
 1867 
 1868 static int
 1869 aio_kick(struct proc *userp)
 1870 {
 1871         struct kaioinfo *ki = userp->p_aioinfo;
 1872         struct aiothreadlist *aiop;
 1873         int error, ret = 0;
 1874 
 1875         mtx_assert(&aio_job_mtx, MA_OWNED);
 1876 retryproc:
 1877         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1878                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1879                 aiop->aiothreadflags &= ~AIOP_FREE;
 1880                 wakeup(aiop->aiothread);
 1881         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1882             ((ki->kaio_active_count + num_aio_resv_start) <
 1883             ki->kaio_maxactive_count)) {
 1884                 num_aio_resv_start++;
 1885                 mtx_unlock(&aio_job_mtx);
 1886                 error = aio_newproc(&num_aio_resv_start);
 1887                 mtx_lock(&aio_job_mtx);
 1888                 if (error) {
 1889                         num_aio_resv_start--;
 1890                         goto retryproc;
 1891                 }
 1892         } else {
 1893                 ret = -1;
 1894         }
 1895         return (ret);
 1896 }
 1897 
 1898 static void
 1899 aio_kick_helper(void *context, int pending)
 1900 {
 1901         struct proc *userp = context;
 1902 
 1903         mtx_lock(&aio_job_mtx);
 1904         while (--pending >= 0) {
 1905                 if (aio_kick(userp))
 1906                         break;
 1907         }
 1908         mtx_unlock(&aio_job_mtx);
 1909 }
 1910 
 1911 /*
 1912  * Support the aio_return system call, as a side-effect, kernel resources are
 1913  * released.
 1914  */
 1915 static int
 1916 kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops)
 1917 {
 1918         struct proc *p = td->td_proc;
 1919         struct aiocblist *cb;
 1920         struct kaioinfo *ki;
 1921         int status, error;
 1922 
 1923         ki = p->p_aioinfo;
 1924         if (ki == NULL)
 1925                 return (EINVAL);
 1926         AIO_LOCK(ki);
 1927         TAILQ_FOREACH(cb, &ki->kaio_done, plist) {
 1928                 if (cb->uuaiocb == uaiocb)
 1929                         break;
 1930         }
 1931         if (cb != NULL) {
 1932                 MPASS(cb->jobstate == JOBST_JOBFINISHED);
 1933                 status = cb->uaiocb._aiocb_private.status;
 1934                 error = cb->uaiocb._aiocb_private.error;
 1935                 td->td_retval[0] = status;
 1936                 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 1937                         td->td_ru.ru_oublock += cb->outputcharge;
 1938                         cb->outputcharge = 0;
 1939                 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 1940                         td->td_ru.ru_inblock += cb->inputcharge;
 1941                         cb->inputcharge = 0;
 1942                 }
 1943                 aio_free_entry(cb);
 1944                 AIO_UNLOCK(ki);
 1945                 ops->store_error(uaiocb, error);
 1946                 ops->store_status(uaiocb, status);
 1947         } else {
 1948                 error = EINVAL;
 1949                 AIO_UNLOCK(ki);
 1950         }
 1951         return (error);
 1952 }
 1953 
 1954 int
 1955 sys_aio_return(struct thread *td, struct aio_return_args *uap)
 1956 {
 1957 
 1958         return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
 1959 }
 1960 
 1961 /*
 1962  * Allow a process to wakeup when any of the I/O requests are completed.
 1963  */
 1964 static int
 1965 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
 1966     struct timespec *ts)
 1967 {
 1968         struct proc *p = td->td_proc;
 1969         struct timeval atv;
 1970         struct kaioinfo *ki;
 1971         struct aiocblist *cb, *cbfirst;
 1972         int error, i, timo;
 1973 
 1974         timo = 0;
 1975         if (ts) {
 1976                 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1977                         return (EINVAL);
 1978 
 1979                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 1980                 if (itimerfix(&atv))
 1981                         return (EINVAL);
 1982                 timo = tvtohz(&atv);
 1983         }
 1984 
 1985         ki = p->p_aioinfo;
 1986         if (ki == NULL)
 1987                 return (EAGAIN);
 1988 
 1989         if (njoblist == 0)
 1990                 return (0);
 1991 
 1992         AIO_LOCK(ki);
 1993         for (;;) {
 1994                 cbfirst = NULL;
 1995                 error = 0;
 1996                 TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
 1997                         for (i = 0; i < njoblist; i++) {
 1998                                 if (cb->uuaiocb == ujoblist[i]) {
 1999                                         if (cbfirst == NULL)
 2000                                                 cbfirst = cb;
 2001                                         if (cb->jobstate == JOBST_JOBFINISHED)
 2002                                                 goto RETURN;
 2003                                 }
 2004                         }
 2005                 }
 2006                 /* All tasks were finished. */
 2007                 if (cbfirst == NULL)
 2008                         break;
 2009 
 2010                 ki->kaio_flags |= KAIO_WAKEUP;
 2011                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2012                     "aiospn", timo);
 2013                 if (error == ERESTART)
 2014                         error = EINTR;
 2015                 if (error)
 2016                         break;
 2017         }
 2018 RETURN:
 2019         AIO_UNLOCK(ki);
 2020         return (error);
 2021 }
 2022 
 2023 int
 2024 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 2025 {
 2026         struct timespec ts, *tsp;
 2027         struct aiocb **ujoblist;
 2028         int error;
 2029 
 2030         if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
 2031                 return (EINVAL);
 2032 
 2033         if (uap->timeout) {
 2034                 /* Get timespec struct. */
 2035                 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 2036                         return (error);
 2037                 tsp = &ts;
 2038         } else
 2039                 tsp = NULL;
 2040 
 2041         ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 2042         error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
 2043         if (error == 0)
 2044                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2045         uma_zfree(aiol_zone, ujoblist);
 2046         return (error);
 2047 }
 2048 
 2049 /*
 2050  * aio_cancel cancels any non-physio aio operations not currently in
 2051  * progress.
 2052  */
 2053 int
 2054 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 2055 {
 2056         struct proc *p = td->td_proc;
 2057         struct kaioinfo *ki;
 2058         struct aiocblist *cbe, *cbn;
 2059         struct file *fp;
 2060         struct socket *so;
 2061         int error;
 2062         int remove;
 2063         int cancelled = 0;
 2064         int notcancelled = 0;
 2065         struct vnode *vp;
 2066 
 2067         /* Lookup file object. */
 2068         error = fget(td, uap->fd, NULL, &fp);
 2069         if (error)
 2070                 return (error);
 2071 
 2072         ki = p->p_aioinfo;
 2073         if (ki == NULL)
 2074                 goto done;
 2075 
 2076         if (fp->f_type == DTYPE_VNODE) {
 2077                 vp = fp->f_vnode;
 2078                 if (vn_isdisk(vp, &error)) {
 2079                         fdrop(fp, td);
 2080                         td->td_retval[0] = AIO_NOTCANCELED;
 2081                         return (0);
 2082                 }
 2083         }
 2084 
 2085         AIO_LOCK(ki);
 2086         TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
 2087                 if ((uap->fd == cbe->uaiocb.aio_fildes) &&
 2088                     ((uap->aiocbp == NULL) ||
 2089                      (uap->aiocbp == cbe->uuaiocb))) {
 2090                         remove = 0;
 2091 
 2092                         mtx_lock(&aio_job_mtx);
 2093                         if (cbe->jobstate == JOBST_JOBQGLOBAL) {
 2094                                 TAILQ_REMOVE(&aio_jobs, cbe, list);
 2095                                 remove = 1;
 2096                         } else if (cbe->jobstate == JOBST_JOBQSOCK) {
 2097                                 MPASS(fp->f_type == DTYPE_SOCKET);
 2098                                 so = fp->f_data;
 2099                                 TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
 2100                                 remove = 1;
 2101                         } else if (cbe->jobstate == JOBST_JOBQSYNC) {
 2102                                 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
 2103                                 remove = 1;
 2104                         }
 2105                         mtx_unlock(&aio_job_mtx);
 2106 
 2107                         if (remove) {
 2108                                 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
 2109                                 cbe->uaiocb._aiocb_private.status = -1;
 2110                                 cbe->uaiocb._aiocb_private.error = ECANCELED;
 2111                                 aio_bio_done_notify(p, cbe, DONE_QUEUE);
 2112                                 cancelled++;
 2113                         } else {
 2114                                 notcancelled++;
 2115                         }
 2116                         if (uap->aiocbp != NULL)
 2117                                 break;
 2118                 }
 2119         }
 2120         AIO_UNLOCK(ki);
 2121 
 2122 done:
 2123         fdrop(fp, td);
 2124 
 2125         if (uap->aiocbp != NULL) {
 2126                 if (cancelled) {
 2127                         td->td_retval[0] = AIO_CANCELED;
 2128                         return (0);
 2129                 }
 2130         }
 2131 
 2132         if (notcancelled) {
 2133                 td->td_retval[0] = AIO_NOTCANCELED;
 2134                 return (0);
 2135         }
 2136 
 2137         if (cancelled) {
 2138                 td->td_retval[0] = AIO_CANCELED;
 2139                 return (0);
 2140         }
 2141 
 2142         td->td_retval[0] = AIO_ALLDONE;
 2143 
 2144         return (0);
 2145 }
 2146 
 2147 /*
 2148  * aio_error is implemented in the kernel level for compatibility purposes
 2149  * only.  For a user mode async implementation, it would be best to do it in
 2150  * a userland subroutine.
 2151  */
 2152 static int
 2153 kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops)
 2154 {
 2155         struct proc *p = td->td_proc;
 2156         struct aiocblist *cb;
 2157         struct kaioinfo *ki;
 2158         int status;
 2159 
 2160         ki = p->p_aioinfo;
 2161         if (ki == NULL) {
 2162                 td->td_retval[0] = EINVAL;
 2163                 return (0);
 2164         }
 2165 
 2166         AIO_LOCK(ki);
 2167         TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
 2168                 if (cb->uuaiocb == aiocbp) {
 2169                         if (cb->jobstate == JOBST_JOBFINISHED)
 2170                                 td->td_retval[0] =
 2171                                         cb->uaiocb._aiocb_private.error;
 2172                         else
 2173                                 td->td_retval[0] = EINPROGRESS;
 2174                         AIO_UNLOCK(ki);
 2175                         return (0);
 2176                 }
 2177         }
 2178         AIO_UNLOCK(ki);
 2179 
 2180         /*
 2181          * Hack for failure of aio_aqueue.
 2182          */
 2183         status = ops->fetch_status(aiocbp);
 2184         if (status == -1) {
 2185                 td->td_retval[0] = ops->fetch_error(aiocbp);
 2186                 return (0);
 2187         }
 2188 
 2189         td->td_retval[0] = EINVAL;
 2190         return (0);
 2191 }
 2192 
 2193 int
 2194 sys_aio_error(struct thread *td, struct aio_error_args *uap)
 2195 {
 2196 
 2197         return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
 2198 }
 2199 
 2200 /* syscall - asynchronous read from a file (REALTIME) */
 2201 int
 2202 sys_oaio_read(struct thread *td, struct oaio_read_args *uap)
 2203 {
 2204 
 2205         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2206             &aiocb_ops_osigevent));
 2207 }
 2208 
 2209 int
 2210 sys_aio_read(struct thread *td, struct aio_read_args *uap)
 2211 {
 2212 
 2213         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
 2214 }
 2215 
 2216 /* syscall - asynchronous write to a file (REALTIME) */
 2217 int
 2218 sys_oaio_write(struct thread *td, struct oaio_write_args *uap)
 2219 {
 2220 
 2221         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2222             &aiocb_ops_osigevent));
 2223 }
 2224 
 2225 int
 2226 sys_aio_write(struct thread *td, struct aio_write_args *uap)
 2227 {
 2228 
 2229         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
 2230 }
 2231 
 2232 int
 2233 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
 2234 {
 2235 
 2236         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
 2237 }
 2238 
 2239 static int
 2240 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
 2241     struct aiocb **acb_list, int nent, struct sigevent *sig,
 2242     struct aiocb_ops *ops)
 2243 {
 2244         struct proc *p = td->td_proc;
 2245         struct aiocb *iocb;
 2246         struct kaioinfo *ki;
 2247         struct aioliojob *lj;
 2248         struct kevent kev;
 2249         int error;
 2250         int nerror;
 2251         int i;
 2252 
 2253         if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
 2254                 return (EINVAL);
 2255 
 2256         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2257                 return (EINVAL);
 2258 
 2259         if (p->p_aioinfo == NULL)
 2260                 aio_init_aioinfo(p);
 2261 
 2262         ki = p->p_aioinfo;
 2263 
 2264         lj = uma_zalloc(aiolio_zone, M_WAITOK);
 2265         lj->lioj_flags = 0;
 2266         lj->lioj_count = 0;
 2267         lj->lioj_finished_count = 0;
 2268         knlist_init_mtx(&lj->klist, AIO_MTX(ki));
 2269         ksiginfo_init(&lj->lioj_ksi);
 2270 
 2271         /*
 2272          * Setup signal.
 2273          */
 2274         if (sig && (mode == LIO_NOWAIT)) {
 2275                 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
 2276                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2277                         /* Assume only new style KEVENT */
 2278                         kev.filter = EVFILT_LIO;
 2279                         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 2280                         kev.ident = (uintptr_t)uacb_list; /* something unique */
 2281                         kev.data = (intptr_t)lj;
 2282                         /* pass user defined sigval data */
 2283                         kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
 2284                         error = kqfd_register(
 2285                             lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
 2286                         if (error) {
 2287                                 uma_zfree(aiolio_zone, lj);
 2288                                 return (error);
 2289                         }
 2290                 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
 2291                         ;
 2292                 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2293                            lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
 2294                                 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 2295                                         uma_zfree(aiolio_zone, lj);
 2296                                         return EINVAL;
 2297                                 }
 2298                                 lj->lioj_flags |= LIOJ_SIGNAL;
 2299                 } else {
 2300                         uma_zfree(aiolio_zone, lj);
 2301                         return EINVAL;
 2302                 }
 2303         }
 2304 
 2305         AIO_LOCK(ki);
 2306         TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 2307         /*
 2308          * Add extra aiocb count to avoid the lio to be freed
 2309          * by other threads doing aio_waitcomplete or aio_return,
 2310          * and prevent event from being sent until we have queued
 2311          * all tasks.
 2312          */
 2313         lj->lioj_count = 1;
 2314         AIO_UNLOCK(ki);
 2315 
 2316         /*
 2317          * Get pointers to the list of I/O requests.
 2318          */
 2319         nerror = 0;
 2320         for (i = 0; i < nent; i++) {
 2321                 iocb = acb_list[i];
 2322                 if (iocb != NULL) {
 2323                         error = aio_aqueue(td, iocb, lj, LIO_NOP, ops);
 2324                         if (error != 0)
 2325                                 nerror++;
 2326                 }
 2327         }
 2328 
 2329         error = 0;
 2330         AIO_LOCK(ki);
 2331         if (mode == LIO_WAIT) {
 2332                 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
 2333                         ki->kaio_flags |= KAIO_WAKEUP;
 2334                         error = msleep(&p->p_aioinfo, AIO_MTX(ki),
 2335                             PRIBIO | PCATCH, "aiospn", 0);
 2336                         if (error == ERESTART)
 2337                                 error = EINTR;
 2338                         if (error)
 2339                                 break;
 2340                 }
 2341         } else {
 2342                 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
 2343                         if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2344                                 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 2345                                 KNOTE_LOCKED(&lj->klist, 1);
 2346                         }
 2347                         if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
 2348                             == LIOJ_SIGNAL
 2349                             && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2350                             lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 2351                                 aio_sendsig(p, &lj->lioj_signal,
 2352                                             &lj->lioj_ksi);
 2353                                 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2354                         }
 2355                 }
 2356         }
 2357         lj->lioj_count--;
 2358         if (lj->lioj_count == 0) {
 2359                 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 2360                 knlist_delete(&lj->klist, curthread, 1);
 2361                 PROC_LOCK(p);
 2362                 sigqueue_take(&lj->lioj_ksi);
 2363                 PROC_UNLOCK(p);
 2364                 AIO_UNLOCK(ki);
 2365                 uma_zfree(aiolio_zone, lj);
 2366         } else
 2367                 AIO_UNLOCK(ki);
 2368 
 2369         if (nerror)
 2370                 return (EIO);
 2371         return (error);
 2372 }
 2373 
 2374 /* syscall - list directed I/O (REALTIME) */
 2375 int
 2376 sys_olio_listio(struct thread *td, struct olio_listio_args *uap)
 2377 {
 2378         struct aiocb **acb_list;
 2379         struct sigevent *sigp, sig;
 2380         struct osigevent osig;
 2381         int error, nent;
 2382 
 2383         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2384                 return (EINVAL);
 2385 
 2386         nent = uap->nent;
 2387         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2388                 return (EINVAL);
 2389 
 2390         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2391                 error = copyin(uap->sig, &osig, sizeof(osig));
 2392                 if (error)
 2393                         return (error);
 2394                 error = convert_old_sigevent(&osig, &sig);
 2395                 if (error)
 2396                         return (error);
 2397                 sigp = &sig;
 2398         } else
 2399                 sigp = NULL;
 2400 
 2401         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2402         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2403         if (error == 0)
 2404                 error = kern_lio_listio(td, uap->mode,
 2405                     (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2406                     &aiocb_ops_osigevent);
 2407         free(acb_list, M_LIO);
 2408         return (error);
 2409 }
 2410 
 2411 /* syscall - list directed I/O (REALTIME) */
 2412 int
 2413 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
 2414 {
 2415         struct aiocb **acb_list;
 2416         struct sigevent *sigp, sig;
 2417         int error, nent;
 2418 
 2419         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2420                 return (EINVAL);
 2421 
 2422         nent = uap->nent;
 2423         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2424                 return (EINVAL);
 2425 
 2426         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2427                 error = copyin(uap->sig, &sig, sizeof(sig));
 2428                 if (error)
 2429                         return (error);
 2430                 sigp = &sig;
 2431         } else
 2432                 sigp = NULL;
 2433 
 2434         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2435         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2436         if (error == 0)
 2437                 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
 2438                     nent, sigp, &aiocb_ops);
 2439         free(acb_list, M_LIO);
 2440         return (error);
 2441 }
 2442 
 2443 static void
 2444 aio_physwakeup(struct bio *bp)
 2445 {
 2446         struct aiocblist *aiocbe = (struct aiocblist *)bp->bio_caller1;
 2447         struct proc *userp;
 2448         struct kaioinfo *ki;
 2449         int nblks;
 2450 
 2451         /* Release mapping into kernel space. */
 2452         if (aiocbe->pbuf) {
 2453                 pmap_qremove((vm_offset_t)aiocbe->pbuf->b_data, aiocbe->npages);
 2454                 relpbuf(aiocbe->pbuf, NULL);
 2455                 aiocbe->pbuf = NULL;
 2456                 atomic_subtract_int(&num_buf_aio, 1);
 2457         }
 2458         vm_page_unhold_pages(aiocbe->pages, aiocbe->npages);
 2459 
 2460         bp = aiocbe->bp;
 2461         aiocbe->bp = NULL;
 2462         userp = aiocbe->userproc;
 2463         ki = userp->p_aioinfo;
 2464         AIO_LOCK(ki);
 2465         aiocbe->uaiocb._aiocb_private.status -= bp->bio_resid;
 2466         aiocbe->uaiocb._aiocb_private.error = 0;
 2467         if (bp->bio_flags & BIO_ERROR)
 2468                 aiocbe->uaiocb._aiocb_private.error = bp->bio_error;
 2469         nblks = btodb(aiocbe->uaiocb.aio_nbytes);
 2470         if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE)
 2471                 aiocbe->outputcharge += nblks;
 2472         else
 2473                 aiocbe->inputcharge += nblks;
 2474         TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist);
 2475         ki->kaio_buffer_count--;
 2476         aio_bio_done_notify(userp, aiocbe, DONE_BUF);
 2477         AIO_UNLOCK(ki);
 2478 
 2479         g_destroy_bio(bp);
 2480 }
 2481 
 2482 /* syscall - wait for the next completion of an aio request */
 2483 static int
 2484 kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp,
 2485     struct timespec *ts, struct aiocb_ops *ops)
 2486 {
 2487         struct proc *p = td->td_proc;
 2488         struct timeval atv;
 2489         struct kaioinfo *ki;
 2490         struct aiocblist *cb;
 2491         struct aiocb *uuaiocb;
 2492         int error, status, timo;
 2493 
 2494         ops->store_aiocb(aiocbp, NULL);
 2495 
 2496         timo = 0;
 2497         if (ts) {
 2498                 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
 2499                         return (EINVAL);
 2500 
 2501                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 2502                 if (itimerfix(&atv))
 2503                         return (EINVAL);
 2504                 timo = tvtohz(&atv);
 2505         }
 2506 
 2507         if (p->p_aioinfo == NULL)
 2508                 aio_init_aioinfo(p);
 2509         ki = p->p_aioinfo;
 2510 
 2511         error = 0;
 2512         cb = NULL;
 2513         AIO_LOCK(ki);
 2514         while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
 2515                 ki->kaio_flags |= KAIO_WAKEUP;
 2516                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2517                     "aiowc", timo);
 2518                 if (timo && error == ERESTART)
 2519                         error = EINTR;
 2520                 if (error)
 2521                         break;
 2522         }
 2523 
 2524         if (cb != NULL) {
 2525                 MPASS(cb->jobstate == JOBST_JOBFINISHED);
 2526                 uuaiocb = cb->uuaiocb;
 2527                 status = cb->uaiocb._aiocb_private.status;
 2528                 error = cb->uaiocb._aiocb_private.error;
 2529                 td->td_retval[0] = status;
 2530                 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 2531                         td->td_ru.ru_oublock += cb->outputcharge;
 2532                         cb->outputcharge = 0;
 2533                 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 2534                         td->td_ru.ru_inblock += cb->inputcharge;
 2535                         cb->inputcharge = 0;
 2536                 }
 2537                 aio_free_entry(cb);
 2538                 AIO_UNLOCK(ki);
 2539                 ops->store_aiocb(aiocbp, uuaiocb);
 2540                 ops->store_error(uuaiocb, error);
 2541                 ops->store_status(uuaiocb, status);
 2542         } else
 2543                 AIO_UNLOCK(ki);
 2544 
 2545         return (error);
 2546 }
 2547 
 2548 int
 2549 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 2550 {
 2551         struct timespec ts, *tsp;
 2552         int error;
 2553 
 2554         if (uap->timeout) {
 2555                 /* Get timespec struct. */
 2556                 error = copyin(uap->timeout, &ts, sizeof(ts));
 2557                 if (error)
 2558                         return (error);
 2559                 tsp = &ts;
 2560         } else
 2561                 tsp = NULL;
 2562 
 2563         return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
 2564 }
 2565 
 2566 static int
 2567 kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp,
 2568     struct aiocb_ops *ops)
 2569 {
 2570         struct proc *p = td->td_proc;
 2571         struct kaioinfo *ki;
 2572 
 2573         if (op != O_SYNC) /* XXX lack of O_DSYNC */
 2574                 return (EINVAL);
 2575         ki = p->p_aioinfo;
 2576         if (ki == NULL)
 2577                 aio_init_aioinfo(p);
 2578         return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops));
 2579 }
 2580 
 2581 int
 2582 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 2583 {
 2584 
 2585         return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
 2586 }
 2587 
 2588 /* kqueue attach function */
 2589 static int
 2590 filt_aioattach(struct knote *kn)
 2591 {
 2592         struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
 2593 
 2594         /*
 2595          * The aiocbe pointer must be validated before using it, so
 2596          * registration is restricted to the kernel; the user cannot
 2597          * set EV_FLAG1.
 2598          */
 2599         if ((kn->kn_flags & EV_FLAG1) == 0)
 2600                 return (EPERM);
 2601         kn->kn_ptr.p_aio = aiocbe;
 2602         kn->kn_flags &= ~EV_FLAG1;
 2603 
 2604         knlist_add(&aiocbe->klist, kn, 0);
 2605 
 2606         return (0);
 2607 }
 2608 
 2609 /* kqueue detach function */
 2610 static void
 2611 filt_aiodetach(struct knote *kn)
 2612 {
 2613         struct knlist *knl;
 2614 
 2615         knl = &kn->kn_ptr.p_aio->klist;
 2616         knl->kl_lock(knl->kl_lockarg);
 2617         if (!knlist_empty(knl))
 2618                 knlist_remove(knl, kn, 1);
 2619         knl->kl_unlock(knl->kl_lockarg);
 2620 }
 2621 
 2622 /* kqueue filter function */
 2623 /*ARGSUSED*/
 2624 static int
 2625 filt_aio(struct knote *kn, long hint)
 2626 {
 2627         struct aiocblist *aiocbe = kn->kn_ptr.p_aio;
 2628 
 2629         kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
 2630         if (aiocbe->jobstate != JOBST_JOBFINISHED)
 2631                 return (0);
 2632         kn->kn_flags |= EV_EOF;
 2633         return (1);
 2634 }
 2635 
 2636 /* kqueue attach function */
 2637 static int
 2638 filt_lioattach(struct knote *kn)
 2639 {
 2640         struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
 2641 
 2642         /*
 2643          * The aioliojob pointer must be validated before using it, so
 2644          * registration is restricted to the kernel; the user cannot
 2645          * set EV_FLAG1.
 2646          */
 2647         if ((kn->kn_flags & EV_FLAG1) == 0)
 2648                 return (EPERM);
 2649         kn->kn_ptr.p_lio = lj;
 2650         kn->kn_flags &= ~EV_FLAG1;
 2651 
 2652         knlist_add(&lj->klist, kn, 0);
 2653 
 2654         return (0);
 2655 }
 2656 
 2657 /* kqueue detach function */
 2658 static void
 2659 filt_liodetach(struct knote *kn)
 2660 {
 2661         struct knlist *knl;
 2662 
 2663         knl = &kn->kn_ptr.p_lio->klist;
 2664         knl->kl_lock(knl->kl_lockarg);
 2665         if (!knlist_empty(knl))
 2666                 knlist_remove(knl, kn, 1);
 2667         knl->kl_unlock(knl->kl_lockarg);
 2668 }
 2669 
 2670 /* kqueue filter function */
 2671 /*ARGSUSED*/
 2672 static int
 2673 filt_lio(struct knote *kn, long hint)
 2674 {
 2675         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2676 
 2677         return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
 2678 }
 2679 
 2680 #ifdef COMPAT_FREEBSD32
 2681 
 2682 struct __aiocb_private32 {
 2683         int32_t status;
 2684         int32_t error;
 2685         uint32_t kernelinfo;
 2686 };
 2687 
 2688 typedef struct oaiocb32 {
 2689         int     aio_fildes;             /* File descriptor */
 2690         uint64_t aio_offset __packed;   /* File offset for I/O */
 2691         uint32_t aio_buf;               /* I/O buffer in process space */
 2692         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2693         struct  osigevent32 aio_sigevent; /* Signal to deliver */
 2694         int     aio_lio_opcode;         /* LIO opcode */
 2695         int     aio_reqprio;            /* Request priority -- ignored */
 2696         struct  __aiocb_private32 _aiocb_private;
 2697 } oaiocb32_t;
 2698 
 2699 typedef struct aiocb32 {
 2700         int32_t aio_fildes;             /* File descriptor */
 2701         uint64_t aio_offset __packed;   /* File offset for I/O */
 2702         uint32_t aio_buf;               /* I/O buffer in process space */
 2703         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2704         int     __spare__[2];
 2705         uint32_t __spare2__;
 2706         int     aio_lio_opcode;         /* LIO opcode */
 2707         int     aio_reqprio;            /* Request priority -- ignored */
 2708         struct __aiocb_private32 _aiocb_private;
 2709         struct sigevent32 aio_sigevent; /* Signal to deliver */
 2710 } aiocb32_t;
 2711 
 2712 static int
 2713 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
 2714 {
 2715 
 2716         /*
 2717          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 2718          * supported by AIO with the old sigevent structure.
 2719          */
 2720         CP(*osig, *nsig, sigev_notify);
 2721         switch (nsig->sigev_notify) {
 2722         case SIGEV_NONE:
 2723                 break;
 2724         case SIGEV_SIGNAL:
 2725                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 2726                 break;
 2727         case SIGEV_KEVENT:
 2728                 nsig->sigev_notify_kqueue =
 2729                     osig->__sigev_u.__sigev_notify_kqueue;
 2730                 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
 2731                 break;
 2732         default:
 2733                 return (EINVAL);
 2734         }
 2735         return (0);
 2736 }
 2737 
 2738 static int
 2739 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 2740 {
 2741         struct oaiocb32 job32;
 2742         int error;
 2743 
 2744         bzero(kjob, sizeof(struct aiocb));
 2745         error = copyin(ujob, &job32, sizeof(job32));
 2746         if (error)
 2747                 return (error);
 2748 
 2749         CP(job32, *kjob, aio_fildes);
 2750         CP(job32, *kjob, aio_offset);
 2751         PTRIN_CP(job32, *kjob, aio_buf);
 2752         CP(job32, *kjob, aio_nbytes);
 2753         CP(job32, *kjob, aio_lio_opcode);
 2754         CP(job32, *kjob, aio_reqprio);
 2755         CP(job32, *kjob, _aiocb_private.status);
 2756         CP(job32, *kjob, _aiocb_private.error);
 2757         PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 2758         return (convert_old_sigevent32(&job32.aio_sigevent,
 2759             &kjob->aio_sigevent));
 2760 }
 2761 
 2762 static int
 2763 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
 2764 {
 2765         struct aiocb32 job32;
 2766         int error;
 2767 
 2768         error = copyin(ujob, &job32, sizeof(job32));
 2769         if (error)
 2770                 return (error);
 2771         CP(job32, *kjob, aio_fildes);
 2772         CP(job32, *kjob, aio_offset);
 2773         PTRIN_CP(job32, *kjob, aio_buf);
 2774         CP(job32, *kjob, aio_nbytes);
 2775         CP(job32, *kjob, aio_lio_opcode);
 2776         CP(job32, *kjob, aio_reqprio);
 2777         CP(job32, *kjob, _aiocb_private.status);
 2778         CP(job32, *kjob, _aiocb_private.error);
 2779         PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 2780         return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
 2781 }
 2782 
 2783 static long
 2784 aiocb32_fetch_status(struct aiocb *ujob)
 2785 {
 2786         struct aiocb32 *ujob32;
 2787 
 2788         ujob32 = (struct aiocb32 *)ujob;
 2789         return (fuword32(&ujob32->_aiocb_private.status));
 2790 }
 2791 
 2792 static long
 2793 aiocb32_fetch_error(struct aiocb *ujob)
 2794 {
 2795         struct aiocb32 *ujob32;
 2796 
 2797         ujob32 = (struct aiocb32 *)ujob;
 2798         return (fuword32(&ujob32->_aiocb_private.error));
 2799 }
 2800 
 2801 static int
 2802 aiocb32_store_status(struct aiocb *ujob, long status)
 2803 {
 2804         struct aiocb32 *ujob32;
 2805 
 2806         ujob32 = (struct aiocb32 *)ujob;
 2807         return (suword32(&ujob32->_aiocb_private.status, status));
 2808 }
 2809 
 2810 static int
 2811 aiocb32_store_error(struct aiocb *ujob, long error)
 2812 {
 2813         struct aiocb32 *ujob32;
 2814 
 2815         ujob32 = (struct aiocb32 *)ujob;
 2816         return (suword32(&ujob32->_aiocb_private.error, error));
 2817 }
 2818 
 2819 static int
 2820 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
 2821 {
 2822         struct aiocb32 *ujob32;
 2823 
 2824         ujob32 = (struct aiocb32 *)ujob;
 2825         return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
 2826 }
 2827 
 2828 static int
 2829 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 2830 {
 2831 
 2832         return (suword32(ujobp, (long)ujob));
 2833 }
 2834 
 2835 static struct aiocb_ops aiocb32_ops = {
 2836         .copyin = aiocb32_copyin,
 2837         .fetch_status = aiocb32_fetch_status,
 2838         .fetch_error = aiocb32_fetch_error,
 2839         .store_status = aiocb32_store_status,
 2840         .store_error = aiocb32_store_error,
 2841         .store_kernelinfo = aiocb32_store_kernelinfo,
 2842         .store_aiocb = aiocb32_store_aiocb,
 2843 };
 2844 
 2845 static struct aiocb_ops aiocb32_ops_osigevent = {
 2846         .copyin = aiocb32_copyin_old_sigevent,
 2847         .fetch_status = aiocb32_fetch_status,
 2848         .fetch_error = aiocb32_fetch_error,
 2849         .store_status = aiocb32_store_status,
 2850         .store_error = aiocb32_store_error,
 2851         .store_kernelinfo = aiocb32_store_kernelinfo,
 2852         .store_aiocb = aiocb32_store_aiocb,
 2853 };
 2854 
 2855 int
 2856 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
 2857 {
 2858 
 2859         return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2860 }
 2861 
 2862 int
 2863 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
 2864 {
 2865         struct timespec32 ts32;
 2866         struct timespec ts, *tsp;
 2867         struct aiocb **ujoblist;
 2868         uint32_t *ujoblist32;
 2869         int error, i;
 2870 
 2871         if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
 2872                 return (EINVAL);
 2873 
 2874         if (uap->timeout) {
 2875                 /* Get timespec struct. */
 2876                 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
 2877                         return (error);
 2878                 CP(ts32, ts, tv_sec);
 2879                 CP(ts32, ts, tv_nsec);
 2880                 tsp = &ts;
 2881         } else
 2882                 tsp = NULL;
 2883 
 2884         ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 2885         ujoblist32 = (uint32_t *)ujoblist;
 2886         error = copyin(uap->aiocbp, ujoblist32, uap->nent *
 2887             sizeof(ujoblist32[0]));
 2888         if (error == 0) {
 2889                 for (i = uap->nent; i > 0; i--)
 2890                         ujoblist[i] = PTRIN(ujoblist32[i]);
 2891 
 2892                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2893         }
 2894         uma_zfree(aiol_zone, ujoblist);
 2895         return (error);
 2896 }
 2897 
 2898 int
 2899 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap)
 2900 {
 2901 
 2902         return (sys_aio_cancel(td, (struct aio_cancel_args *)uap));
 2903 }
 2904 
 2905 int
 2906 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
 2907 {
 2908 
 2909         return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2910 }
 2911 
 2912 int
 2913 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap)
 2914 {
 2915 
 2916         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2917             &aiocb32_ops_osigevent));
 2918 }
 2919 
 2920 int
 2921 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
 2922 {
 2923 
 2924         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2925             &aiocb32_ops));
 2926 }
 2927 
 2928 int
 2929 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap)
 2930 {
 2931 
 2932         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2933             &aiocb32_ops_osigevent));
 2934 }
 2935 
 2936 int
 2937 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
 2938 {
 2939 
 2940         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2941             &aiocb32_ops));
 2942 }
 2943 
 2944 int
 2945 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
 2946 {
 2947 
 2948         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
 2949             &aiocb32_ops));
 2950 }
 2951 
 2952 int
 2953 freebsd32_aio_waitcomplete(struct thread *td,
 2954     struct freebsd32_aio_waitcomplete_args *uap)
 2955 {
 2956         struct timespec32 ts32;
 2957         struct timespec ts, *tsp;
 2958         int error;
 2959 
 2960         if (uap->timeout) {
 2961                 /* Get timespec struct. */
 2962                 error = copyin(uap->timeout, &ts32, sizeof(ts32));
 2963                 if (error)
 2964                         return (error);
 2965                 CP(ts32, ts, tv_sec);
 2966                 CP(ts32, ts, tv_nsec);
 2967                 tsp = &ts;
 2968         } else
 2969                 tsp = NULL;
 2970 
 2971         return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
 2972             &aiocb32_ops));
 2973 }
 2974 
 2975 int
 2976 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
 2977 {
 2978 
 2979         return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
 2980             &aiocb32_ops));
 2981 }
 2982 
 2983 int
 2984 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap)
 2985 {
 2986         struct aiocb **acb_list;
 2987         struct sigevent *sigp, sig;
 2988         struct osigevent32 osig;
 2989         uint32_t *acb_list32;
 2990         int error, i, nent;
 2991 
 2992         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2993                 return (EINVAL);
 2994 
 2995         nent = uap->nent;
 2996         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2997                 return (EINVAL);
 2998 
 2999         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 3000                 error = copyin(uap->sig, &osig, sizeof(osig));
 3001                 if (error)
 3002                         return (error);
 3003                 error = convert_old_sigevent32(&osig, &sig);
 3004                 if (error)
 3005                         return (error);
 3006                 sigp = &sig;
 3007         } else
 3008                 sigp = NULL;
 3009 
 3010         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 3011         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 3012         if (error) {
 3013                 free(acb_list32, M_LIO);
 3014                 return (error);
 3015         }
 3016         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 3017         for (i = 0; i < nent; i++)
 3018                 acb_list[i] = PTRIN(acb_list32[i]);
 3019         free(acb_list32, M_LIO);
 3020 
 3021         error = kern_lio_listio(td, uap->mode,
 3022             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 3023             &aiocb32_ops_osigevent);
 3024         free(acb_list, M_LIO);
 3025         return (error);
 3026 }
 3027 
 3028 int
 3029 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
 3030 {
 3031         struct aiocb **acb_list;
 3032         struct sigevent *sigp, sig;
 3033         struct sigevent32 sig32;
 3034         uint32_t *acb_list32;
 3035         int error, i, nent;
 3036 
 3037         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 3038                 return (EINVAL);
 3039 
 3040         nent = uap->nent;
 3041         if (nent < 0 || nent > AIO_LISTIO_MAX)
 3042                 return (EINVAL);
 3043 
 3044         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 3045                 error = copyin(uap->sig, &sig32, sizeof(sig32));
 3046                 if (error)
 3047                         return (error);
 3048                 error = convert_sigevent32(&sig32, &sig);
 3049                 if (error)
 3050                         return (error);
 3051                 sigp = &sig;
 3052         } else
 3053                 sigp = NULL;
 3054 
 3055         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 3056         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 3057         if (error) {
 3058                 free(acb_list32, M_LIO);
 3059                 return (error);
 3060         }
 3061         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 3062         for (i = 0; i < nent; i++)
 3063                 acb_list[i] = PTRIN(acb_list32[i]);
 3064         free(acb_list32, M_LIO);
 3065 
 3066         error = kern_lio_listio(td, uap->mode,
 3067             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 3068             &aiocb32_ops);
 3069         free(acb_list, M_LIO);
 3070         return (error);
 3071 }
 3072 
 3073 #endif

Cache object: 0add8edc6992881c0906997ba67238db


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.