The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_aio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. John S. Dyson's name may not be used to endorse or promote products
   10  *    derived from this software without specific prior written permission.
   11  *
   12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
   13  * bad that happens because of using this software isn't the responsibility
   14  * of the author.  This software is distributed AS-IS.
   15  */
   16 
   17 /*
   18  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
   19  */
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD: releng/11.2/sys/kern/vfs_aio.c 328582 2018-01-30 00:52:22Z jhb $");
   23 
   24 #include "opt_compat.h"
   25 
   26 #include <sys/param.h>
   27 #include <sys/systm.h>
   28 #include <sys/malloc.h>
   29 #include <sys/bio.h>
   30 #include <sys/buf.h>
   31 #include <sys/capsicum.h>
   32 #include <sys/eventhandler.h>
   33 #include <sys/sysproto.h>
   34 #include <sys/filedesc.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/kthread.h>
   38 #include <sys/fcntl.h>
   39 #include <sys/file.h>
   40 #include <sys/limits.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/unistd.h>
   44 #include <sys/posix4.h>
   45 #include <sys/proc.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/syscallsubr.h>
   49 #include <sys/protosw.h>
   50 #include <sys/rwlock.h>
   51 #include <sys/sema.h>
   52 #include <sys/socket.h>
   53 #include <sys/socketvar.h>
   54 #include <sys/syscall.h>
   55 #include <sys/sysent.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/syslog.h>
   58 #include <sys/sx.h>
   59 #include <sys/taskqueue.h>
   60 #include <sys/vnode.h>
   61 #include <sys/conf.h>
   62 #include <sys/event.h>
   63 #include <sys/mount.h>
   64 #include <geom/geom.h>
   65 
   66 #include <machine/atomic.h>
   67 
   68 #include <vm/vm.h>
   69 #include <vm/vm_page.h>
   70 #include <vm/vm_extern.h>
   71 #include <vm/pmap.h>
   72 #include <vm/vm_map.h>
   73 #include <vm/vm_object.h>
   74 #include <vm/uma.h>
   75 #include <sys/aio.h>
   76 
   77 /*
   78  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
   79  * overflow. (XXX will be removed soon.)
   80  */
   81 static u_long jobrefid;
   82 
   83 /*
   84  * Counter for aio_fsync.
   85  */
   86 static uint64_t jobseqno;
   87 
   88 #ifndef MAX_AIO_PER_PROC
   89 #define MAX_AIO_PER_PROC        32
   90 #endif
   91 
   92 #ifndef MAX_AIO_QUEUE_PER_PROC
   93 #define MAX_AIO_QUEUE_PER_PROC  256
   94 #endif
   95 
   96 #ifndef MAX_AIO_QUEUE
   97 #define MAX_AIO_QUEUE           1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
   98 #endif
   99 
  100 #ifndef MAX_BUF_AIO
  101 #define MAX_BUF_AIO             16
  102 #endif
  103 
  104 FEATURE(aio, "Asynchronous I/O");
  105 SYSCTL_DECL(_p1003_1b);
  106 
  107 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
  108 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list");
  109 
  110 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0,
  111     "Async IO management");
  112 
  113 static int enable_aio_unsafe = 0;
  114 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
  115     "Permit asynchronous IO on all file types, not just known-safe types");
  116 
  117 static unsigned int unsafe_warningcnt = 1;
  118 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
  119     &unsafe_warningcnt, 0,
  120     "Warnings that will be triggered upon failed IO requests on unsafe files");
  121 
  122 static int max_aio_procs = MAX_AIO_PROCS;
  123 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
  124     "Maximum number of kernel processes to use for handling async IO ");
  125 
  126 static int num_aio_procs = 0;
  127 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
  128     "Number of presently active kernel processes for async IO");
  129 
  130 /*
  131  * The code will adjust the actual number of AIO processes towards this
  132  * number when it gets a chance.
  133  */
  134 static int target_aio_procs = TARGET_AIO_PROCS;
  135 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
  136     0,
  137     "Preferred number of ready kernel processes for async IO");
  138 
  139 static int max_queue_count = MAX_AIO_QUEUE;
  140 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
  141     "Maximum number of aio requests to queue, globally");
  142 
  143 static int num_queue_count = 0;
  144 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
  145     "Number of queued aio requests");
  146 
  147 static int num_buf_aio = 0;
  148 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
  149     "Number of aio requests presently handled by the buf subsystem");
  150 
  151 static int num_unmapped_aio = 0;
  152 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
  153     0,
  154     "Number of aio requests presently handled by unmapped I/O buffers");
  155 
  156 /* Number of async I/O processes in the process of being started */
  157 /* XXX This should be local to aio_aqueue() */
  158 static int num_aio_resv_start = 0;
  159 
  160 static int aiod_lifetime;
  161 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
  162     "Maximum lifetime for idle aiod");
  163 
  164 static int max_aio_per_proc = MAX_AIO_PER_PROC;
  165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
  166     0,
  167     "Maximum active aio requests per process");
  168 
  169 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
  170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
  171     &max_aio_queue_per_proc, 0,
  172     "Maximum queued aio requests per process");
  173 
  174 static int max_buf_aio = MAX_BUF_AIO;
  175 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
  176     "Maximum buf aio requests per process");
  177 
  178 /* 
  179  * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
  180  * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
  181  * vfs.aio.aio_listio_max.
  182  */
  183 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
  184     CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
  185     0, "Maximum aio requests for a single lio_listio call");
  186 
  187 #ifdef COMPAT_FREEBSD6
  188 typedef struct oaiocb {
  189         int     aio_fildes;             /* File descriptor */
  190         off_t   aio_offset;             /* File offset for I/O */
  191         volatile void *aio_buf;         /* I/O buffer in process space */
  192         size_t  aio_nbytes;             /* Number of bytes for I/O */
  193         struct  osigevent aio_sigevent; /* Signal to deliver */
  194         int     aio_lio_opcode;         /* LIO opcode */
  195         int     aio_reqprio;            /* Request priority -- ignored */
  196         struct  __aiocb_private _aiocb_private;
  197 } oaiocb_t;
  198 #endif
  199 
  200 /*
  201  * Below is a key of locks used to protect each member of struct kaiocb
  202  * aioliojob and kaioinfo and any backends.
  203  *
  204  * * - need not protected
  205  * a - locked by kaioinfo lock
  206  * b - locked by backend lock, the backend lock can be null in some cases,
  207  *     for example, BIO belongs to this type, in this case, proc lock is
  208  *     reused.
  209  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
  210  */
  211 
  212 /*
  213  * If the routine that services an AIO request blocks while running in an
  214  * AIO kernel process it can starve other I/O requests.  BIO requests
  215  * queued via aio_qphysio() complete in GEOM and do not use AIO kernel
  216  * processes at all.  Socket I/O requests use a separate pool of
  217  * kprocs and also force non-blocking I/O.  Other file I/O requests
  218  * use the generic fo_read/fo_write operations which can block.  The
  219  * fsync and mlock operations can also block while executing.  Ideally
  220  * none of these requests would block while executing.
  221  *
  222  * Note that the service routines cannot toggle O_NONBLOCK in the file
  223  * structure directly while handling a request due to races with
  224  * userland threads.
  225  */
  226 
  227 /* jobflags */
  228 #define KAIOCB_QUEUEING         0x01
  229 #define KAIOCB_CANCELLED        0x02
  230 #define KAIOCB_CANCELLING       0x04
  231 #define KAIOCB_CHECKSYNC        0x08
  232 #define KAIOCB_CLEARED          0x10
  233 #define KAIOCB_FINISHED         0x20
  234 
  235 /*
  236  * AIO process info
  237  */
  238 #define AIOP_FREE       0x1                     /* proc on free queue */
  239 
  240 struct aioproc {
  241         int     aioprocflags;                   /* (c) AIO proc flags */
  242         TAILQ_ENTRY(aioproc) list;              /* (c) list of processes */
  243         struct  proc *aioproc;                  /* (*) the AIO proc */
  244 };
  245 
  246 /*
  247  * data-structure for lio signal management
  248  */
  249 struct aioliojob {
  250         int     lioj_flags;                     /* (a) listio flags */
  251         int     lioj_count;                     /* (a) listio flags */
  252         int     lioj_finished_count;            /* (a) listio flags */
  253         struct  sigevent lioj_signal;           /* (a) signal on all I/O done */
  254         TAILQ_ENTRY(aioliojob) lioj_list;       /* (a) lio list */
  255         struct  knlist klist;                   /* (a) list of knotes */
  256         ksiginfo_t lioj_ksi;                    /* (a) Realtime signal info */
  257 };
  258 
  259 #define LIOJ_SIGNAL             0x1     /* signal on all done (lio) */
  260 #define LIOJ_SIGNAL_POSTED      0x2     /* signal has been posted */
  261 #define LIOJ_KEVENT_POSTED      0x4     /* kevent triggered */
  262 
  263 /*
  264  * per process aio data structure
  265  */
  266 struct kaioinfo {
  267         struct  mtx kaio_mtx;           /* the lock to protect this struct */
  268         int     kaio_flags;             /* (a) per process kaio flags */
  269         int     kaio_active_count;      /* (c) number of currently used AIOs */
  270         int     kaio_count;             /* (a) size of AIO queue */
  271         int     kaio_buffer_count;      /* (a) number of physio buffers */
  272         TAILQ_HEAD(,kaiocb) kaio_all;   /* (a) all AIOs in a process */
  273         TAILQ_HEAD(,kaiocb) kaio_done;  /* (a) done queue for process */
  274         TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
  275         TAILQ_HEAD(,kaiocb) kaio_jobqueue;      /* (a) job queue for process */
  276         TAILQ_HEAD(,kaiocb) kaio_syncqueue;     /* (a) queue for aio_fsync */
  277         TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
  278         struct  task kaio_task;         /* (*) task to kick aio processes */
  279         struct  task kaio_sync_task;    /* (*) task to schedule fsync jobs */
  280 };
  281 
  282 #define AIO_LOCK(ki)            mtx_lock(&(ki)->kaio_mtx)
  283 #define AIO_UNLOCK(ki)          mtx_unlock(&(ki)->kaio_mtx)
  284 #define AIO_LOCK_ASSERT(ki, f)  mtx_assert(&(ki)->kaio_mtx, (f))
  285 #define AIO_MTX(ki)             (&(ki)->kaio_mtx)
  286 
  287 #define KAIO_RUNDOWN    0x1     /* process is being run down */
  288 #define KAIO_WAKEUP     0x2     /* wakeup process when AIO completes */
  289 
  290 /*
  291  * Operations used to interact with userland aio control blocks.
  292  * Different ABIs provide their own operations.
  293  */
  294 struct aiocb_ops {
  295         int     (*copyin)(struct aiocb *ujob, struct aiocb *kjob);
  296         long    (*fetch_status)(struct aiocb *ujob);
  297         long    (*fetch_error)(struct aiocb *ujob);
  298         int     (*store_status)(struct aiocb *ujob, long status);
  299         int     (*store_error)(struct aiocb *ujob, long error);
  300         int     (*store_kernelinfo)(struct aiocb *ujob, long jobref);
  301         int     (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
  302 };
  303 
  304 static TAILQ_HEAD(,aioproc) aio_freeproc;               /* (c) Idle daemons */
  305 static struct sema aio_newproc_sem;
  306 static struct mtx aio_job_mtx;
  307 static TAILQ_HEAD(,kaiocb) aio_jobs;                    /* (c) Async job list */
  308 static struct unrhdr *aiod_unr;
  309 
  310 void            aio_init_aioinfo(struct proc *p);
  311 static int      aio_onceonly(void);
  312 static int      aio_free_entry(struct kaiocb *job);
  313 static void     aio_process_rw(struct kaiocb *job);
  314 static void     aio_process_sync(struct kaiocb *job);
  315 static void     aio_process_mlock(struct kaiocb *job);
  316 static void     aio_schedule_fsync(void *context, int pending);
  317 static int      aio_newproc(int *);
  318 int             aio_aqueue(struct thread *td, struct aiocb *ujob,
  319                     struct aioliojob *lio, int type, struct aiocb_ops *ops);
  320 static int      aio_queue_file(struct file *fp, struct kaiocb *job);
  321 static void     aio_physwakeup(struct bio *bp);
  322 static void     aio_proc_rundown(void *arg, struct proc *p);
  323 static void     aio_proc_rundown_exec(void *arg, struct proc *p,
  324                     struct image_params *imgp);
  325 static int      aio_qphysio(struct proc *p, struct kaiocb *job);
  326 static void     aio_daemon(void *param);
  327 static void     aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
  328 static bool     aio_clear_cancel_function_locked(struct kaiocb *job);
  329 static int      aio_kick(struct proc *userp);
  330 static void     aio_kick_nowait(struct proc *userp);
  331 static void     aio_kick_helper(void *context, int pending);
  332 static int      filt_aioattach(struct knote *kn);
  333 static void     filt_aiodetach(struct knote *kn);
  334 static int      filt_aio(struct knote *kn, long hint);
  335 static int      filt_lioattach(struct knote *kn);
  336 static void     filt_liodetach(struct knote *kn);
  337 static int      filt_lio(struct knote *kn, long hint);
  338 
  339 /*
  340  * Zones for:
  341  *      kaio    Per process async io info
  342  *      aiop    async io process data
  343  *      aiocb   async io jobs
  344  *      aiolio  list io jobs
  345  */
  346 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone;
  347 
  348 /* kqueue filters for aio */
  349 static struct filterops aio_filtops = {
  350         .f_isfd = 0,
  351         .f_attach = filt_aioattach,
  352         .f_detach = filt_aiodetach,
  353         .f_event = filt_aio,
  354 };
  355 static struct filterops lio_filtops = {
  356         .f_isfd = 0,
  357         .f_attach = filt_lioattach,
  358         .f_detach = filt_liodetach,
  359         .f_event = filt_lio
  360 };
  361 
  362 static eventhandler_tag exit_tag, exec_tag;
  363 
  364 TASKQUEUE_DEFINE_THREAD(aiod_kick);
  365 
  366 /*
  367  * Main operations function for use as a kernel module.
  368  */
  369 static int
  370 aio_modload(struct module *module, int cmd, void *arg)
  371 {
  372         int error = 0;
  373 
  374         switch (cmd) {
  375         case MOD_LOAD:
  376                 aio_onceonly();
  377                 break;
  378         case MOD_SHUTDOWN:
  379                 break;
  380         default:
  381                 error = EOPNOTSUPP;
  382                 break;
  383         }
  384         return (error);
  385 }
  386 
  387 static moduledata_t aio_mod = {
  388         "aio",
  389         &aio_modload,
  390         NULL
  391 };
  392 
  393 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
  394 MODULE_VERSION(aio, 1);
  395 
  396 /*
  397  * Startup initialization
  398  */
  399 static int
  400 aio_onceonly(void)
  401 {
  402 
  403         exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
  404             EVENTHANDLER_PRI_ANY);
  405         exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
  406             NULL, EVENTHANDLER_PRI_ANY);
  407         kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
  408         kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
  409         TAILQ_INIT(&aio_freeproc);
  410         sema_init(&aio_newproc_sem, 0, "aio_new_proc");
  411         mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
  412         TAILQ_INIT(&aio_jobs);
  413         aiod_unr = new_unrhdr(1, INT_MAX, NULL);
  414         kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
  415             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  416         aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL,
  417             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  418         aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
  419             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  420         aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
  421             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  422         aiod_lifetime = AIOD_LIFETIME_DEFAULT;
  423         jobrefid = 1;
  424         p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
  425         p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
  426         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
  427 
  428         return (0);
  429 }
  430 
  431 /*
  432  * Init the per-process aioinfo structure.  The aioinfo limits are set
  433  * per-process for user limit (resource) management.
  434  */
  435 void
  436 aio_init_aioinfo(struct proc *p)
  437 {
  438         struct kaioinfo *ki;
  439 
  440         ki = uma_zalloc(kaio_zone, M_WAITOK);
  441         mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
  442         ki->kaio_flags = 0;
  443         ki->kaio_active_count = 0;
  444         ki->kaio_count = 0;
  445         ki->kaio_buffer_count = 0;
  446         TAILQ_INIT(&ki->kaio_all);
  447         TAILQ_INIT(&ki->kaio_done);
  448         TAILQ_INIT(&ki->kaio_jobqueue);
  449         TAILQ_INIT(&ki->kaio_liojoblist);
  450         TAILQ_INIT(&ki->kaio_syncqueue);
  451         TAILQ_INIT(&ki->kaio_syncready);
  452         TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
  453         TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
  454         PROC_LOCK(p);
  455         if (p->p_aioinfo == NULL) {
  456                 p->p_aioinfo = ki;
  457                 PROC_UNLOCK(p);
  458         } else {
  459                 PROC_UNLOCK(p);
  460                 mtx_destroy(&ki->kaio_mtx);
  461                 uma_zfree(kaio_zone, ki);
  462         }
  463 
  464         while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
  465                 aio_newproc(NULL);
  466 }
  467 
  468 static int
  469 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
  470 {
  471         struct thread *td;
  472         int error;
  473 
  474         error = sigev_findtd(p, sigev, &td);
  475         if (error)
  476                 return (error);
  477         if (!KSI_ONQ(ksi)) {
  478                 ksiginfo_set_sigev(ksi, sigev);
  479                 ksi->ksi_code = SI_ASYNCIO;
  480                 ksi->ksi_flags |= KSI_EXT | KSI_INS;
  481                 tdsendsignal(p, td, ksi->ksi_signo, ksi);
  482         }
  483         PROC_UNLOCK(p);
  484         return (error);
  485 }
  486 
  487 /*
  488  * Free a job entry.  Wait for completion if it is currently active, but don't
  489  * delay forever.  If we delay, we return a flag that says that we have to
  490  * restart the queue scan.
  491  */
  492 static int
  493 aio_free_entry(struct kaiocb *job)
  494 {
  495         struct kaioinfo *ki;
  496         struct aioliojob *lj;
  497         struct proc *p;
  498 
  499         p = job->userproc;
  500         MPASS(curproc == p);
  501         ki = p->p_aioinfo;
  502         MPASS(ki != NULL);
  503 
  504         AIO_LOCK_ASSERT(ki, MA_OWNED);
  505         MPASS(job->jobflags & KAIOCB_FINISHED);
  506 
  507         atomic_subtract_int(&num_queue_count, 1);
  508 
  509         ki->kaio_count--;
  510         MPASS(ki->kaio_count >= 0);
  511 
  512         TAILQ_REMOVE(&ki->kaio_done, job, plist);
  513         TAILQ_REMOVE(&ki->kaio_all, job, allist);
  514 
  515         lj = job->lio;
  516         if (lj) {
  517                 lj->lioj_count--;
  518                 lj->lioj_finished_count--;
  519 
  520                 if (lj->lioj_count == 0) {
  521                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  522                         /* lio is going away, we need to destroy any knotes */
  523                         knlist_delete(&lj->klist, curthread, 1);
  524                         PROC_LOCK(p);
  525                         sigqueue_take(&lj->lioj_ksi);
  526                         PROC_UNLOCK(p);
  527                         uma_zfree(aiolio_zone, lj);
  528                 }
  529         }
  530 
  531         /* job is going away, we need to destroy any knotes */
  532         knlist_delete(&job->klist, curthread, 1);
  533         PROC_LOCK(p);
  534         sigqueue_take(&job->ksi);
  535         PROC_UNLOCK(p);
  536 
  537         AIO_UNLOCK(ki);
  538 
  539         /*
  540          * The thread argument here is used to find the owning process
  541          * and is also passed to fo_close() which may pass it to various
  542          * places such as devsw close() routines.  Because of that, we
  543          * need a thread pointer from the process owning the job that is
  544          * persistent and won't disappear out from under us or move to
  545          * another process.
  546          *
  547          * Currently, all the callers of this function call it to remove
  548          * a kaiocb from the current process' job list either via a
  549          * syscall or due to the current process calling exit() or
  550          * execve().  Thus, we know that p == curproc.  We also know that
  551          * curthread can't exit since we are curthread.
  552          *
  553          * Therefore, we use curthread as the thread to pass to
  554          * knlist_delete().  This does mean that it is possible for the
  555          * thread pointer at close time to differ from the thread pointer
  556          * at open time, but this is already true of file descriptors in
  557          * a multithreaded process.
  558          */
  559         if (job->fd_file)
  560                 fdrop(job->fd_file, curthread);
  561         crfree(job->cred);
  562         uma_zfree(aiocb_zone, job);
  563         AIO_LOCK(ki);
  564 
  565         return (0);
  566 }
  567 
  568 static void
  569 aio_proc_rundown_exec(void *arg, struct proc *p,
  570     struct image_params *imgp __unused)
  571 {
  572         aio_proc_rundown(arg, p);
  573 }
  574 
  575 static int
  576 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
  577 {
  578         aio_cancel_fn_t *func;
  579         int cancelled;
  580 
  581         AIO_LOCK_ASSERT(ki, MA_OWNED);
  582         if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
  583                 return (0);
  584         MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
  585         job->jobflags |= KAIOCB_CANCELLED;
  586 
  587         func = job->cancel_fn;
  588 
  589         /*
  590          * If there is no cancel routine, just leave the job marked as
  591          * cancelled.  The job should be in active use by a caller who
  592          * should complete it normally or when it fails to install a
  593          * cancel routine.
  594          */
  595         if (func == NULL)
  596                 return (0);
  597 
  598         /*
  599          * Set the CANCELLING flag so that aio_complete() will defer
  600          * completions of this job.  This prevents the job from being
  601          * freed out from under the cancel callback.  After the
  602          * callback any deferred completion (whether from the callback
  603          * or any other source) will be completed.
  604          */
  605         job->jobflags |= KAIOCB_CANCELLING;
  606         AIO_UNLOCK(ki);
  607         func(job);
  608         AIO_LOCK(ki);
  609         job->jobflags &= ~KAIOCB_CANCELLING;
  610         if (job->jobflags & KAIOCB_FINISHED) {
  611                 cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
  612                 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
  613                 aio_bio_done_notify(p, job);
  614         } else {
  615                 /*
  616                  * The cancel callback might have scheduled an
  617                  * operation to cancel this request, but it is
  618                  * only counted as cancelled if the request is
  619                  * cancelled when the callback returns.
  620                  */
  621                 cancelled = 0;
  622         }
  623         return (cancelled);
  624 }
  625 
  626 /*
  627  * Rundown the jobs for a given process.
  628  */
  629 static void
  630 aio_proc_rundown(void *arg, struct proc *p)
  631 {
  632         struct kaioinfo *ki;
  633         struct aioliojob *lj;
  634         struct kaiocb *job, *jobn;
  635 
  636         KASSERT(curthread->td_proc == p,
  637             ("%s: called on non-curproc", __func__));
  638         ki = p->p_aioinfo;
  639         if (ki == NULL)
  640                 return;
  641 
  642         AIO_LOCK(ki);
  643         ki->kaio_flags |= KAIO_RUNDOWN;
  644 
  645 restart:
  646 
  647         /*
  648          * Try to cancel all pending requests. This code simulates
  649          * aio_cancel on all pending I/O requests.
  650          */
  651         TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
  652                 aio_cancel_job(p, ki, job);
  653         }
  654 
  655         /* Wait for all running I/O to be finished */
  656         if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
  657                 ki->kaio_flags |= KAIO_WAKEUP;
  658                 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
  659                 goto restart;
  660         }
  661 
  662         /* Free all completed I/O requests. */
  663         while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
  664                 aio_free_entry(job);
  665 
  666         while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
  667                 if (lj->lioj_count == 0) {
  668                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  669                         knlist_delete(&lj->klist, curthread, 1);
  670                         PROC_LOCK(p);
  671                         sigqueue_take(&lj->lioj_ksi);
  672                         PROC_UNLOCK(p);
  673                         uma_zfree(aiolio_zone, lj);
  674                 } else {
  675                         panic("LIO job not cleaned up: C:%d, FC:%d\n",
  676                             lj->lioj_count, lj->lioj_finished_count);
  677                 }
  678         }
  679         AIO_UNLOCK(ki);
  680         taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
  681         taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
  682         mtx_destroy(&ki->kaio_mtx);
  683         uma_zfree(kaio_zone, ki);
  684         p->p_aioinfo = NULL;
  685 }
  686 
  687 /*
  688  * Select a job to run (called by an AIO daemon).
  689  */
  690 static struct kaiocb *
  691 aio_selectjob(struct aioproc *aiop)
  692 {
  693         struct kaiocb *job;
  694         struct kaioinfo *ki;
  695         struct proc *userp;
  696 
  697         mtx_assert(&aio_job_mtx, MA_OWNED);
  698 restart:
  699         TAILQ_FOREACH(job, &aio_jobs, list) {
  700                 userp = job->userproc;
  701                 ki = userp->p_aioinfo;
  702 
  703                 if (ki->kaio_active_count < max_aio_per_proc) {
  704                         TAILQ_REMOVE(&aio_jobs, job, list);
  705                         if (!aio_clear_cancel_function(job))
  706                                 goto restart;
  707 
  708                         /* Account for currently active jobs. */
  709                         ki->kaio_active_count++;
  710                         break;
  711                 }
  712         }
  713         return (job);
  714 }
  715 
  716 /*
  717  * Move all data to a permanent storage device.  This code
  718  * simulates the fsync syscall.
  719  */
  720 static int
  721 aio_fsync_vnode(struct thread *td, struct vnode *vp)
  722 {
  723         struct mount *mp;
  724         int error;
  725 
  726         if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  727                 goto drop;
  728         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  729         if (vp->v_object != NULL) {
  730                 VM_OBJECT_WLOCK(vp->v_object);
  731                 vm_object_page_clean(vp->v_object, 0, 0, 0);
  732                 VM_OBJECT_WUNLOCK(vp->v_object);
  733         }
  734         error = VOP_FSYNC(vp, MNT_WAIT, td);
  735 
  736         VOP_UNLOCK(vp, 0);
  737         vn_finished_write(mp);
  738 drop:
  739         return (error);
  740 }
  741 
  742 /*
  743  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
  744  * does the I/O request for the non-physio version of the operations.  The
  745  * normal vn operations are used, and this code should work in all instances
  746  * for every type of file, including pipes, sockets, fifos, and regular files.
  747  *
  748  * XXX I don't think it works well for socket, pipe, and fifo.
  749  */
  750 static void
  751 aio_process_rw(struct kaiocb *job)
  752 {
  753         struct ucred *td_savedcred;
  754         struct thread *td;
  755         struct aiocb *cb;
  756         struct file *fp;
  757         struct uio auio;
  758         struct iovec aiov;
  759         ssize_t cnt;
  760         long msgsnd_st, msgsnd_end;
  761         long msgrcv_st, msgrcv_end;
  762         long oublock_st, oublock_end;
  763         long inblock_st, inblock_end;
  764         int error;
  765 
  766         KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
  767             job->uaiocb.aio_lio_opcode == LIO_WRITE,
  768             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  769 
  770         aio_switch_vmspace(job);
  771         td = curthread;
  772         td_savedcred = td->td_ucred;
  773         td->td_ucred = job->cred;
  774         cb = &job->uaiocb;
  775         fp = job->fd_file;
  776 
  777         aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
  778         aiov.iov_len = cb->aio_nbytes;
  779 
  780         auio.uio_iov = &aiov;
  781         auio.uio_iovcnt = 1;
  782         auio.uio_offset = cb->aio_offset;
  783         auio.uio_resid = cb->aio_nbytes;
  784         cnt = cb->aio_nbytes;
  785         auio.uio_segflg = UIO_USERSPACE;
  786         auio.uio_td = td;
  787 
  788         msgrcv_st = td->td_ru.ru_msgrcv;
  789         msgsnd_st = td->td_ru.ru_msgsnd;
  790         inblock_st = td->td_ru.ru_inblock;
  791         oublock_st = td->td_ru.ru_oublock;
  792 
  793         /*
  794          * aio_aqueue() acquires a reference to the file that is
  795          * released in aio_free_entry().
  796          */
  797         if (cb->aio_lio_opcode == LIO_READ) {
  798                 auio.uio_rw = UIO_READ;
  799                 if (auio.uio_resid == 0)
  800                         error = 0;
  801                 else
  802                         error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  803         } else {
  804                 if (fp->f_type == DTYPE_VNODE)
  805                         bwillwrite();
  806                 auio.uio_rw = UIO_WRITE;
  807                 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  808         }
  809         msgrcv_end = td->td_ru.ru_msgrcv;
  810         msgsnd_end = td->td_ru.ru_msgsnd;
  811         inblock_end = td->td_ru.ru_inblock;
  812         oublock_end = td->td_ru.ru_oublock;
  813 
  814         job->msgrcv = msgrcv_end - msgrcv_st;
  815         job->msgsnd = msgsnd_end - msgsnd_st;
  816         job->inblock = inblock_end - inblock_st;
  817         job->outblock = oublock_end - oublock_st;
  818 
  819         if ((error) && (auio.uio_resid != cnt)) {
  820                 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
  821                         error = 0;
  822                 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
  823                         PROC_LOCK(job->userproc);
  824                         kern_psignal(job->userproc, SIGPIPE);
  825                         PROC_UNLOCK(job->userproc);
  826                 }
  827         }
  828 
  829         cnt -= auio.uio_resid;
  830         td->td_ucred = td_savedcred;
  831         if (error)
  832                 aio_complete(job, -1, error);
  833         else
  834                 aio_complete(job, cnt, 0);
  835 }
  836 
  837 static void
  838 aio_process_sync(struct kaiocb *job)
  839 {
  840         struct thread *td = curthread;
  841         struct ucred *td_savedcred = td->td_ucred;
  842         struct file *fp = job->fd_file;
  843         int error = 0;
  844 
  845         KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC,
  846             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  847 
  848         td->td_ucred = job->cred;
  849         if (fp->f_vnode != NULL)
  850                 error = aio_fsync_vnode(td, fp->f_vnode);
  851         td->td_ucred = td_savedcred;
  852         if (error)
  853                 aio_complete(job, -1, error);
  854         else
  855                 aio_complete(job, 0, 0);
  856 }
  857 
  858 static void
  859 aio_process_mlock(struct kaiocb *job)
  860 {
  861         struct aiocb *cb = &job->uaiocb;
  862         int error;
  863 
  864         KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
  865             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  866 
  867         aio_switch_vmspace(job);
  868         error = kern_mlock(job->userproc, job->cred,
  869             __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
  870         aio_complete(job, error != 0 ? -1 : 0, error);
  871 }
  872 
  873 static void
  874 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
  875 {
  876         struct aioliojob *lj;
  877         struct kaioinfo *ki;
  878         struct kaiocb *sjob, *sjobn;
  879         int lj_done;
  880         bool schedule_fsync;
  881 
  882         ki = userp->p_aioinfo;
  883         AIO_LOCK_ASSERT(ki, MA_OWNED);
  884         lj = job->lio;
  885         lj_done = 0;
  886         if (lj) {
  887                 lj->lioj_finished_count++;
  888                 if (lj->lioj_count == lj->lioj_finished_count)
  889                         lj_done = 1;
  890         }
  891         TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
  892         MPASS(job->jobflags & KAIOCB_FINISHED);
  893 
  894         if (ki->kaio_flags & KAIO_RUNDOWN)
  895                 goto notification_done;
  896 
  897         if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
  898             job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
  899                 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi);
  900 
  901         KNOTE_LOCKED(&job->klist, 1);
  902 
  903         if (lj_done) {
  904                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
  905                         lj->lioj_flags |= LIOJ_KEVENT_POSTED;
  906                         KNOTE_LOCKED(&lj->klist, 1);
  907                 }
  908                 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
  909                     == LIOJ_SIGNAL
  910                     && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
  911                         lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
  912                         aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
  913                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
  914                 }
  915         }
  916 
  917 notification_done:
  918         if (job->jobflags & KAIOCB_CHECKSYNC) {
  919                 schedule_fsync = false;
  920                 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
  921                         if (job->fd_file != sjob->fd_file ||
  922                             job->seqno >= sjob->seqno)
  923                                 continue;
  924                         if (--sjob->pending > 0)
  925                                 continue;
  926                         TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
  927                         if (!aio_clear_cancel_function_locked(sjob))
  928                                 continue;
  929                         TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
  930                         schedule_fsync = true;
  931                 }
  932                 if (schedule_fsync)
  933                         taskqueue_enqueue(taskqueue_aiod_kick,
  934                             &ki->kaio_sync_task);
  935         }
  936         if (ki->kaio_flags & KAIO_WAKEUP) {
  937                 ki->kaio_flags &= ~KAIO_WAKEUP;
  938                 wakeup(&userp->p_aioinfo);
  939         }
  940 }
  941 
  942 static void
  943 aio_schedule_fsync(void *context, int pending)
  944 {
  945         struct kaioinfo *ki;
  946         struct kaiocb *job;
  947 
  948         ki = context;
  949         AIO_LOCK(ki);
  950         while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
  951                 job = TAILQ_FIRST(&ki->kaio_syncready);
  952                 TAILQ_REMOVE(&ki->kaio_syncready, job, list);
  953                 AIO_UNLOCK(ki);
  954                 aio_schedule(job, aio_process_sync);
  955                 AIO_LOCK(ki);
  956         }
  957         AIO_UNLOCK(ki);
  958 }
  959 
  960 bool
  961 aio_cancel_cleared(struct kaiocb *job)
  962 {
  963         struct kaioinfo *ki;
  964 
  965         /*
  966          * The caller should hold the same queue lock held when
  967          * aio_clear_cancel_function() was called and set this flag
  968          * ensuring this check sees an up-to-date value.  However,
  969          * there is no way to assert that.
  970          */
  971         ki = job->userproc->p_aioinfo;
  972         return ((job->jobflags & KAIOCB_CLEARED) != 0);
  973 }
  974 
  975 static bool
  976 aio_clear_cancel_function_locked(struct kaiocb *job)
  977 {
  978 
  979         AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
  980         MPASS(job->cancel_fn != NULL);
  981         if (job->jobflags & KAIOCB_CANCELLING) {
  982                 job->jobflags |= KAIOCB_CLEARED;
  983                 return (false);
  984         }
  985         job->cancel_fn = NULL;
  986         return (true);
  987 }
  988 
  989 bool
  990 aio_clear_cancel_function(struct kaiocb *job)
  991 {
  992         struct kaioinfo *ki;
  993         bool ret;
  994 
  995         ki = job->userproc->p_aioinfo;
  996         AIO_LOCK(ki);
  997         ret = aio_clear_cancel_function_locked(job);
  998         AIO_UNLOCK(ki);
  999         return (ret);
 1000 }
 1001 
 1002 static bool
 1003 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
 1004 {
 1005 
 1006         AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
 1007         if (job->jobflags & KAIOCB_CANCELLED)
 1008                 return (false);
 1009         job->cancel_fn = func;
 1010         return (true);
 1011 }
 1012 
 1013 bool
 1014 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
 1015 {
 1016         struct kaioinfo *ki;
 1017         bool ret;
 1018 
 1019         ki = job->userproc->p_aioinfo;
 1020         AIO_LOCK(ki);
 1021         ret = aio_set_cancel_function_locked(job, func);
 1022         AIO_UNLOCK(ki);
 1023         return (ret);
 1024 }
 1025 
 1026 void
 1027 aio_complete(struct kaiocb *job, long status, int error)
 1028 {
 1029         struct kaioinfo *ki;
 1030         struct proc *userp;
 1031 
 1032         job->uaiocb._aiocb_private.error = error;
 1033         job->uaiocb._aiocb_private.status = status;
 1034 
 1035         userp = job->userproc;
 1036         ki = userp->p_aioinfo;
 1037 
 1038         AIO_LOCK(ki);
 1039         KASSERT(!(job->jobflags & KAIOCB_FINISHED),
 1040             ("duplicate aio_complete"));
 1041         job->jobflags |= KAIOCB_FINISHED;
 1042         if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
 1043                 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
 1044                 aio_bio_done_notify(userp, job);
 1045         }
 1046         AIO_UNLOCK(ki);
 1047 }
 1048 
 1049 void
 1050 aio_cancel(struct kaiocb *job)
 1051 {
 1052 
 1053         aio_complete(job, -1, ECANCELED);
 1054 }
 1055 
 1056 void
 1057 aio_switch_vmspace(struct kaiocb *job)
 1058 {
 1059 
 1060         vmspace_switch_aio(job->userproc->p_vmspace);
 1061 }
 1062 
 1063 /*
 1064  * The AIO daemon, most of the actual work is done in aio_process_*,
 1065  * but the setup (and address space mgmt) is done in this routine.
 1066  */
 1067 static void
 1068 aio_daemon(void *_id)
 1069 {
 1070         struct kaiocb *job;
 1071         struct aioproc *aiop;
 1072         struct kaioinfo *ki;
 1073         struct proc *p;
 1074         struct vmspace *myvm;
 1075         struct thread *td = curthread;
 1076         int id = (intptr_t)_id;
 1077 
 1078         /*
 1079          * Grab an extra reference on the daemon's vmspace so that it
 1080          * doesn't get freed by jobs that switch to a different
 1081          * vmspace.
 1082          */
 1083         p = td->td_proc;
 1084         myvm = vmspace_acquire_ref(p);
 1085 
 1086         KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
 1087 
 1088         /*
 1089          * Allocate and ready the aio control info.  There is one aiop structure
 1090          * per daemon.
 1091          */
 1092         aiop = uma_zalloc(aiop_zone, M_WAITOK);
 1093         aiop->aioproc = p;
 1094         aiop->aioprocflags = 0;
 1095 
 1096         /*
 1097          * Wakeup parent process.  (Parent sleeps to keep from blasting away
 1098          * and creating too many daemons.)
 1099          */
 1100         sema_post(&aio_newproc_sem);
 1101 
 1102         mtx_lock(&aio_job_mtx);
 1103         for (;;) {
 1104                 /*
 1105                  * Take daemon off of free queue
 1106                  */
 1107                 if (aiop->aioprocflags & AIOP_FREE) {
 1108                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1109                         aiop->aioprocflags &= ~AIOP_FREE;
 1110                 }
 1111 
 1112                 /*
 1113                  * Check for jobs.
 1114                  */
 1115                 while ((job = aio_selectjob(aiop)) != NULL) {
 1116                         mtx_unlock(&aio_job_mtx);
 1117 
 1118                         ki = job->userproc->p_aioinfo;
 1119                         job->handle_fn(job);
 1120 
 1121                         mtx_lock(&aio_job_mtx);
 1122                         /* Decrement the active job count. */
 1123                         ki->kaio_active_count--;
 1124                 }
 1125 
 1126                 /*
 1127                  * Disconnect from user address space.
 1128                  */
 1129                 if (p->p_vmspace != myvm) {
 1130                         mtx_unlock(&aio_job_mtx);
 1131                         vmspace_switch_aio(myvm);
 1132                         mtx_lock(&aio_job_mtx);
 1133                         /*
 1134                          * We have to restart to avoid race, we only sleep if
 1135                          * no job can be selected.
 1136                          */
 1137                         continue;
 1138                 }
 1139 
 1140                 mtx_assert(&aio_job_mtx, MA_OWNED);
 1141 
 1142                 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
 1143                 aiop->aioprocflags |= AIOP_FREE;
 1144 
 1145                 /*
 1146                  * If daemon is inactive for a long time, allow it to exit,
 1147                  * thereby freeing resources.
 1148                  */
 1149                 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
 1150                     aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
 1151                     (aiop->aioprocflags & AIOP_FREE) &&
 1152                     num_aio_procs > target_aio_procs)
 1153                         break;
 1154         }
 1155         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1156         num_aio_procs--;
 1157         mtx_unlock(&aio_job_mtx);
 1158         uma_zfree(aiop_zone, aiop);
 1159         free_unr(aiod_unr, id);
 1160         vmspace_free(myvm);
 1161 
 1162         KASSERT(p->p_vmspace == myvm,
 1163             ("AIOD: bad vmspace for exiting daemon"));
 1164         KASSERT(myvm->vm_refcnt > 1,
 1165             ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt));
 1166         kproc_exit(0);
 1167 }
 1168 
 1169 /*
 1170  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
 1171  * AIO daemon modifies its environment itself.
 1172  */
 1173 static int
 1174 aio_newproc(int *start)
 1175 {
 1176         int error;
 1177         struct proc *p;
 1178         int id;
 1179 
 1180         id = alloc_unr(aiod_unr);
 1181         error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
 1182                 RFNOWAIT, 0, "aiod%d", id);
 1183         if (error == 0) {
 1184                 /*
 1185                  * Wait until daemon is started.
 1186                  */
 1187                 sema_wait(&aio_newproc_sem);
 1188                 mtx_lock(&aio_job_mtx);
 1189                 num_aio_procs++;
 1190                 if (start != NULL)
 1191                         (*start)--;
 1192                 mtx_unlock(&aio_job_mtx);
 1193         } else {
 1194                 free_unr(aiod_unr, id);
 1195         }
 1196         return (error);
 1197 }
 1198 
 1199 /*
 1200  * Try the high-performance, low-overhead physio method for eligible
 1201  * VCHR devices.  This method doesn't use an aio helper thread, and
 1202  * thus has very low overhead.
 1203  *
 1204  * Assumes that the caller, aio_aqueue(), has incremented the file
 1205  * structure's reference count, preventing its deallocation for the
 1206  * duration of this call.
 1207  */
 1208 static int
 1209 aio_qphysio(struct proc *p, struct kaiocb *job)
 1210 {
 1211         struct aiocb *cb;
 1212         struct file *fp;
 1213         struct bio *bp;
 1214         struct buf *pbuf;
 1215         struct vnode *vp;
 1216         struct cdevsw *csw;
 1217         struct cdev *dev;
 1218         struct kaioinfo *ki;
 1219         int error, ref, poff;
 1220         vm_prot_t prot;
 1221 
 1222         cb = &job->uaiocb;
 1223         fp = job->fd_file;
 1224 
 1225         if (!(cb->aio_lio_opcode == LIO_WRITE ||
 1226             cb->aio_lio_opcode == LIO_READ))
 1227                 return (-1);
 1228         if (fp == NULL || fp->f_type != DTYPE_VNODE)
 1229                 return (-1);
 1230 
 1231         vp = fp->f_vnode;
 1232         if (vp->v_type != VCHR)
 1233                 return (-1);
 1234         if (vp->v_bufobj.bo_bsize == 0)
 1235                 return (-1);
 1236         if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
 1237                 return (-1);
 1238 
 1239         ref = 0;
 1240         csw = devvn_refthread(vp, &dev, &ref);
 1241         if (csw == NULL)
 1242                 return (ENXIO);
 1243 
 1244         if ((csw->d_flags & D_DISK) == 0) {
 1245                 error = -1;
 1246                 goto unref;
 1247         }
 1248         if (cb->aio_nbytes > dev->si_iosize_max) {
 1249                 error = -1;
 1250                 goto unref;
 1251         }
 1252 
 1253         ki = p->p_aioinfo;
 1254         poff = (vm_offset_t)cb->aio_buf & PAGE_MASK;
 1255         if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) {
 1256                 if (cb->aio_nbytes > MAXPHYS) {
 1257                         error = -1;
 1258                         goto unref;
 1259                 }
 1260 
 1261                 pbuf = NULL;
 1262         } else {
 1263                 if (cb->aio_nbytes > MAXPHYS - poff) {
 1264                         error = -1;
 1265                         goto unref;
 1266                 }
 1267                 if (ki->kaio_buffer_count >= max_buf_aio) {
 1268                         error = EAGAIN;
 1269                         goto unref;
 1270                 }
 1271 
 1272                 job->pbuf = pbuf = (struct buf *)getpbuf(NULL);
 1273                 BUF_KERNPROC(pbuf);
 1274                 AIO_LOCK(ki);
 1275                 ki->kaio_buffer_count++;
 1276                 AIO_UNLOCK(ki);
 1277         }
 1278         job->bp = bp = g_alloc_bio();
 1279 
 1280         bp->bio_length = cb->aio_nbytes;
 1281         bp->bio_bcount = cb->aio_nbytes;
 1282         bp->bio_done = aio_physwakeup;
 1283         bp->bio_data = (void *)(uintptr_t)cb->aio_buf;
 1284         bp->bio_offset = cb->aio_offset;
 1285         bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
 1286         bp->bio_dev = dev;
 1287         bp->bio_caller1 = (void *)job;
 1288 
 1289         prot = VM_PROT_READ;
 1290         if (cb->aio_lio_opcode == LIO_READ)
 1291                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 1292         job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 1293             (vm_offset_t)bp->bio_data, bp->bio_length, prot, job->pages,
 1294             nitems(job->pages));
 1295         if (job->npages < 0) {
 1296                 error = EFAULT;
 1297                 goto doerror;
 1298         }
 1299         if (pbuf != NULL) {
 1300                 pmap_qenter((vm_offset_t)pbuf->b_data,
 1301                     job->pages, job->npages);
 1302                 bp->bio_data = pbuf->b_data + poff;
 1303                 atomic_add_int(&num_buf_aio, 1);
 1304         } else {
 1305                 bp->bio_ma = job->pages;
 1306                 bp->bio_ma_n = job->npages;
 1307                 bp->bio_ma_offset = poff;
 1308                 bp->bio_data = unmapped_buf;
 1309                 bp->bio_flags |= BIO_UNMAPPED;
 1310                 atomic_add_int(&num_unmapped_aio, 1);
 1311         }
 1312 
 1313         /* Perform transfer. */
 1314         csw->d_strategy(bp);
 1315         dev_relthread(dev, ref);
 1316         return (0);
 1317 
 1318 doerror:
 1319         if (pbuf != NULL) {
 1320                 AIO_LOCK(ki);
 1321                 ki->kaio_buffer_count--;
 1322                 AIO_UNLOCK(ki);
 1323                 relpbuf(pbuf, NULL);
 1324                 job->pbuf = NULL;
 1325         }
 1326         g_destroy_bio(bp);
 1327         job->bp = NULL;
 1328 unref:
 1329         dev_relthread(dev, ref);
 1330         return (error);
 1331 }
 1332 
 1333 #ifdef COMPAT_FREEBSD6
 1334 static int
 1335 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
 1336 {
 1337 
 1338         /*
 1339          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 1340          * supported by AIO with the old sigevent structure.
 1341          */
 1342         nsig->sigev_notify = osig->sigev_notify;
 1343         switch (nsig->sigev_notify) {
 1344         case SIGEV_NONE:
 1345                 break;
 1346         case SIGEV_SIGNAL:
 1347                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 1348                 break;
 1349         case SIGEV_KEVENT:
 1350                 nsig->sigev_notify_kqueue =
 1351                     osig->__sigev_u.__sigev_notify_kqueue;
 1352                 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
 1353                 break;
 1354         default:
 1355                 return (EINVAL);
 1356         }
 1357         return (0);
 1358 }
 1359 
 1360 static int
 1361 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 1362 {
 1363         struct oaiocb *ojob;
 1364         int error;
 1365 
 1366         bzero(kjob, sizeof(struct aiocb));
 1367         error = copyin(ujob, kjob, sizeof(struct oaiocb));
 1368         if (error)
 1369                 return (error);
 1370         ojob = (struct oaiocb *)kjob;
 1371         return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
 1372 }
 1373 #endif
 1374 
 1375 static int
 1376 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
 1377 {
 1378 
 1379         return (copyin(ujob, kjob, sizeof(struct aiocb)));
 1380 }
 1381 
 1382 static long
 1383 aiocb_fetch_status(struct aiocb *ujob)
 1384 {
 1385 
 1386         return (fuword(&ujob->_aiocb_private.status));
 1387 }
 1388 
 1389 static long
 1390 aiocb_fetch_error(struct aiocb *ujob)
 1391 {
 1392 
 1393         return (fuword(&ujob->_aiocb_private.error));
 1394 }
 1395 
 1396 static int
 1397 aiocb_store_status(struct aiocb *ujob, long status)
 1398 {
 1399 
 1400         return (suword(&ujob->_aiocb_private.status, status));
 1401 }
 1402 
 1403 static int
 1404 aiocb_store_error(struct aiocb *ujob, long error)
 1405 {
 1406 
 1407         return (suword(&ujob->_aiocb_private.error, error));
 1408 }
 1409 
 1410 static int
 1411 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
 1412 {
 1413 
 1414         return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
 1415 }
 1416 
 1417 static int
 1418 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 1419 {
 1420 
 1421         return (suword(ujobp, (long)ujob));
 1422 }
 1423 
 1424 static struct aiocb_ops aiocb_ops = {
 1425         .copyin = aiocb_copyin,
 1426         .fetch_status = aiocb_fetch_status,
 1427         .fetch_error = aiocb_fetch_error,
 1428         .store_status = aiocb_store_status,
 1429         .store_error = aiocb_store_error,
 1430         .store_kernelinfo = aiocb_store_kernelinfo,
 1431         .store_aiocb = aiocb_store_aiocb,
 1432 };
 1433 
 1434 #ifdef COMPAT_FREEBSD6
 1435 static struct aiocb_ops aiocb_ops_osigevent = {
 1436         .copyin = aiocb_copyin_old_sigevent,
 1437         .fetch_status = aiocb_fetch_status,
 1438         .fetch_error = aiocb_fetch_error,
 1439         .store_status = aiocb_store_status,
 1440         .store_error = aiocb_store_error,
 1441         .store_kernelinfo = aiocb_store_kernelinfo,
 1442         .store_aiocb = aiocb_store_aiocb,
 1443 };
 1444 #endif
 1445 
 1446 /*
 1447  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
 1448  * technique is done in this code.
 1449  */
 1450 int
 1451 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
 1452     int type, struct aiocb_ops *ops)
 1453 {
 1454         struct proc *p = td->td_proc;
 1455         cap_rights_t rights;
 1456         struct file *fp;
 1457         struct kaiocb *job;
 1458         struct kaioinfo *ki;
 1459         struct kevent kev;
 1460         int opcode;
 1461         int error;
 1462         int fd, kqfd;
 1463         int jid;
 1464         u_short evflags;
 1465 
 1466         if (p->p_aioinfo == NULL)
 1467                 aio_init_aioinfo(p);
 1468 
 1469         ki = p->p_aioinfo;
 1470 
 1471         ops->store_status(ujob, -1);
 1472         ops->store_error(ujob, 0);
 1473         ops->store_kernelinfo(ujob, -1);
 1474 
 1475         if (num_queue_count >= max_queue_count ||
 1476             ki->kaio_count >= max_aio_queue_per_proc) {
 1477                 ops->store_error(ujob, EAGAIN);
 1478                 return (EAGAIN);
 1479         }
 1480 
 1481         job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 1482         knlist_init_mtx(&job->klist, AIO_MTX(ki));
 1483 
 1484         error = ops->copyin(ujob, &job->uaiocb);
 1485         if (error) {
 1486                 ops->store_error(ujob, error);
 1487                 uma_zfree(aiocb_zone, job);
 1488                 return (error);
 1489         }
 1490 
 1491         if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
 1492                 uma_zfree(aiocb_zone, job);
 1493                 return (EINVAL);
 1494         }
 1495 
 1496         if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
 1497             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
 1498             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
 1499             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
 1500                 ops->store_error(ujob, EINVAL);
 1501                 uma_zfree(aiocb_zone, job);
 1502                 return (EINVAL);
 1503         }
 1504 
 1505         if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1506              job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
 1507                 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
 1508                 uma_zfree(aiocb_zone, job);
 1509                 return (EINVAL);
 1510         }
 1511 
 1512         ksiginfo_init(&job->ksi);
 1513 
 1514         /* Save userspace address of the job info. */
 1515         job->ujob = ujob;
 1516 
 1517         /* Get the opcode. */
 1518         if (type != LIO_NOP)
 1519                 job->uaiocb.aio_lio_opcode = type;
 1520         opcode = job->uaiocb.aio_lio_opcode;
 1521 
 1522         /*
 1523          * Validate the opcode and fetch the file object for the specified
 1524          * file descriptor.
 1525          *
 1526          * XXXRW: Moved the opcode validation up here so that we don't
 1527          * retrieve a file descriptor without knowing what the capabiltity
 1528          * should be.
 1529          */
 1530         fd = job->uaiocb.aio_fildes;
 1531         switch (opcode) {
 1532         case LIO_WRITE:
 1533                 error = fget_write(td, fd,
 1534                     cap_rights_init(&rights, CAP_PWRITE), &fp);
 1535                 break;
 1536         case LIO_READ:
 1537                 error = fget_read(td, fd,
 1538                     cap_rights_init(&rights, CAP_PREAD), &fp);
 1539                 break;
 1540         case LIO_SYNC:
 1541                 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp);
 1542                 break;
 1543         case LIO_MLOCK:
 1544                 fp = NULL;
 1545                 break;
 1546         case LIO_NOP:
 1547                 error = fget(td, fd, cap_rights_init(&rights), &fp);
 1548                 break;
 1549         default:
 1550                 error = EINVAL;
 1551         }
 1552         if (error) {
 1553                 uma_zfree(aiocb_zone, job);
 1554                 ops->store_error(ujob, error);
 1555                 return (error);
 1556         }
 1557 
 1558         if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
 1559                 error = EINVAL;
 1560                 goto aqueue_fail;
 1561         }
 1562 
 1563         if ((opcode == LIO_READ || opcode == LIO_WRITE) &&
 1564             job->uaiocb.aio_offset < 0 &&
 1565             (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
 1566                 error = EINVAL;
 1567                 goto aqueue_fail;
 1568         }
 1569 
 1570         job->fd_file = fp;
 1571 
 1572         mtx_lock(&aio_job_mtx);
 1573         jid = jobrefid++;
 1574         job->seqno = jobseqno++;
 1575         mtx_unlock(&aio_job_mtx);
 1576         error = ops->store_kernelinfo(ujob, jid);
 1577         if (error) {
 1578                 error = EINVAL;
 1579                 goto aqueue_fail;
 1580         }
 1581         job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
 1582 
 1583         if (opcode == LIO_NOP) {
 1584                 fdrop(fp, td);
 1585                 uma_zfree(aiocb_zone, job);
 1586                 return (0);
 1587         }
 1588 
 1589         if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
 1590                 goto no_kqueue;
 1591         evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
 1592         if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
 1593                 error = EINVAL;
 1594                 goto aqueue_fail;
 1595         }
 1596         kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
 1597         kev.ident = (uintptr_t)job->ujob;
 1598         kev.filter = EVFILT_AIO;
 1599         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
 1600         kev.data = (intptr_t)job;
 1601         kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
 1602         error = kqfd_register(kqfd, &kev, td, 1);
 1603         if (error)
 1604                 goto aqueue_fail;
 1605 
 1606 no_kqueue:
 1607 
 1608         ops->store_error(ujob, EINPROGRESS);
 1609         job->uaiocb._aiocb_private.error = EINPROGRESS;
 1610         job->userproc = p;
 1611         job->cred = crhold(td->td_ucred);
 1612         job->jobflags = KAIOCB_QUEUEING;
 1613         job->lio = lj;
 1614 
 1615         if (opcode == LIO_MLOCK) {
 1616                 aio_schedule(job, aio_process_mlock);
 1617                 error = 0;
 1618         } else if (fp->f_ops->fo_aio_queue == NULL)
 1619                 error = aio_queue_file(fp, job);
 1620         else
 1621                 error = fo_aio_queue(fp, job);
 1622         if (error)
 1623                 goto aqueue_fail;
 1624 
 1625         AIO_LOCK(ki);
 1626         job->jobflags &= ~KAIOCB_QUEUEING;
 1627         TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
 1628         ki->kaio_count++;
 1629         if (lj)
 1630                 lj->lioj_count++;
 1631         atomic_add_int(&num_queue_count, 1);
 1632         if (job->jobflags & KAIOCB_FINISHED) {
 1633                 /*
 1634                  * The queue callback completed the request synchronously.
 1635                  * The bulk of the completion is deferred in that case
 1636                  * until this point.
 1637                  */
 1638                 aio_bio_done_notify(p, job);
 1639         } else
 1640                 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
 1641         AIO_UNLOCK(ki);
 1642         return (0);
 1643 
 1644 aqueue_fail:
 1645         knlist_delete(&job->klist, curthread, 0);
 1646         if (fp)
 1647                 fdrop(fp, td);
 1648         uma_zfree(aiocb_zone, job);
 1649         ops->store_error(ujob, error);
 1650         return (error);
 1651 }
 1652 
 1653 static void
 1654 aio_cancel_daemon_job(struct kaiocb *job)
 1655 {
 1656 
 1657         mtx_lock(&aio_job_mtx);
 1658         if (!aio_cancel_cleared(job))
 1659                 TAILQ_REMOVE(&aio_jobs, job, list);
 1660         mtx_unlock(&aio_job_mtx);
 1661         aio_cancel(job);
 1662 }
 1663 
 1664 void
 1665 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
 1666 {
 1667 
 1668         mtx_lock(&aio_job_mtx);
 1669         if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
 1670                 mtx_unlock(&aio_job_mtx);
 1671                 aio_cancel(job);
 1672                 return;
 1673         }
 1674         job->handle_fn = func;
 1675         TAILQ_INSERT_TAIL(&aio_jobs, job, list);
 1676         aio_kick_nowait(job->userproc);
 1677         mtx_unlock(&aio_job_mtx);
 1678 }
 1679 
 1680 static void
 1681 aio_cancel_sync(struct kaiocb *job)
 1682 {
 1683         struct kaioinfo *ki;
 1684 
 1685         ki = job->userproc->p_aioinfo;
 1686         AIO_LOCK(ki);
 1687         if (!aio_cancel_cleared(job))
 1688                 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
 1689         AIO_UNLOCK(ki);
 1690         aio_cancel(job);
 1691 }
 1692 
 1693 int
 1694 aio_queue_file(struct file *fp, struct kaiocb *job)
 1695 {
 1696         struct aioliojob *lj;
 1697         struct kaioinfo *ki;
 1698         struct kaiocb *job2;
 1699         struct vnode *vp;
 1700         struct mount *mp;
 1701         int error;
 1702         bool safe;
 1703 
 1704         lj = job->lio;
 1705         ki = job->userproc->p_aioinfo;
 1706         error = aio_qphysio(job->userproc, job);
 1707         if (error >= 0)
 1708                 return (error);
 1709         safe = false;
 1710         if (fp->f_type == DTYPE_VNODE) {
 1711                 vp = fp->f_vnode;
 1712                 if (vp->v_type == VREG || vp->v_type == VDIR) {
 1713                         mp = fp->f_vnode->v_mount;
 1714                         if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
 1715                                 safe = true;
 1716                 }
 1717         }
 1718         if (!(safe || enable_aio_unsafe)) {
 1719                 counted_warning(&unsafe_warningcnt,
 1720                     "is attempting to use unsafe AIO requests");
 1721                 return (EOPNOTSUPP);
 1722         }
 1723 
 1724         switch (job->uaiocb.aio_lio_opcode) {
 1725         case LIO_READ:
 1726         case LIO_WRITE:
 1727                 aio_schedule(job, aio_process_rw);
 1728                 error = 0;
 1729                 break;
 1730         case LIO_SYNC:
 1731                 AIO_LOCK(ki);
 1732                 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
 1733                         if (job2->fd_file == job->fd_file &&
 1734                             job2->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1735                             job2->seqno < job->seqno) {
 1736                                 job2->jobflags |= KAIOCB_CHECKSYNC;
 1737                                 job->pending++;
 1738                         }
 1739                 }
 1740                 if (job->pending != 0) {
 1741                         if (!aio_set_cancel_function_locked(job,
 1742                                 aio_cancel_sync)) {
 1743                                 AIO_UNLOCK(ki);
 1744                                 aio_cancel(job);
 1745                                 return (0);
 1746                         }
 1747                         TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
 1748                         AIO_UNLOCK(ki);
 1749                         return (0);
 1750                 }
 1751                 AIO_UNLOCK(ki);
 1752                 aio_schedule(job, aio_process_sync);
 1753                 error = 0;
 1754                 break;
 1755         default:
 1756                 error = EINVAL;
 1757         }
 1758         return (error);
 1759 }
 1760 
 1761 static void
 1762 aio_kick_nowait(struct proc *userp)
 1763 {
 1764         struct kaioinfo *ki = userp->p_aioinfo;
 1765         struct aioproc *aiop;
 1766 
 1767         mtx_assert(&aio_job_mtx, MA_OWNED);
 1768         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1769                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1770                 aiop->aioprocflags &= ~AIOP_FREE;
 1771                 wakeup(aiop->aioproc);
 1772         } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
 1773             ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
 1774                 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
 1775         }
 1776 }
 1777 
 1778 static int
 1779 aio_kick(struct proc *userp)
 1780 {
 1781         struct kaioinfo *ki = userp->p_aioinfo;
 1782         struct aioproc *aiop;
 1783         int error, ret = 0;
 1784 
 1785         mtx_assert(&aio_job_mtx, MA_OWNED);
 1786 retryproc:
 1787         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1788                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1789                 aiop->aioprocflags &= ~AIOP_FREE;
 1790                 wakeup(aiop->aioproc);
 1791         } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
 1792             ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
 1793                 num_aio_resv_start++;
 1794                 mtx_unlock(&aio_job_mtx);
 1795                 error = aio_newproc(&num_aio_resv_start);
 1796                 mtx_lock(&aio_job_mtx);
 1797                 if (error) {
 1798                         num_aio_resv_start--;
 1799                         goto retryproc;
 1800                 }
 1801         } else {
 1802                 ret = -1;
 1803         }
 1804         return (ret);
 1805 }
 1806 
 1807 static void
 1808 aio_kick_helper(void *context, int pending)
 1809 {
 1810         struct proc *userp = context;
 1811 
 1812         mtx_lock(&aio_job_mtx);
 1813         while (--pending >= 0) {
 1814                 if (aio_kick(userp))
 1815                         break;
 1816         }
 1817         mtx_unlock(&aio_job_mtx);
 1818 }
 1819 
 1820 /*
 1821  * Support the aio_return system call, as a side-effect, kernel resources are
 1822  * released.
 1823  */
 1824 static int
 1825 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
 1826 {
 1827         struct proc *p = td->td_proc;
 1828         struct kaiocb *job;
 1829         struct kaioinfo *ki;
 1830         long status, error;
 1831 
 1832         ki = p->p_aioinfo;
 1833         if (ki == NULL)
 1834                 return (EINVAL);
 1835         AIO_LOCK(ki);
 1836         TAILQ_FOREACH(job, &ki->kaio_done, plist) {
 1837                 if (job->ujob == ujob)
 1838                         break;
 1839         }
 1840         if (job != NULL) {
 1841                 MPASS(job->jobflags & KAIOCB_FINISHED);
 1842                 status = job->uaiocb._aiocb_private.status;
 1843                 error = job->uaiocb._aiocb_private.error;
 1844                 td->td_retval[0] = status;
 1845                 td->td_ru.ru_oublock += job->outblock;
 1846                 td->td_ru.ru_inblock += job->inblock;
 1847                 td->td_ru.ru_msgsnd += job->msgsnd;
 1848                 td->td_ru.ru_msgrcv += job->msgrcv;
 1849                 aio_free_entry(job);
 1850                 AIO_UNLOCK(ki);
 1851                 ops->store_error(ujob, error);
 1852                 ops->store_status(ujob, status);
 1853         } else {
 1854                 error = EINVAL;
 1855                 AIO_UNLOCK(ki);
 1856         }
 1857         return (error);
 1858 }
 1859 
 1860 int
 1861 sys_aio_return(struct thread *td, struct aio_return_args *uap)
 1862 {
 1863 
 1864         return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
 1865 }
 1866 
 1867 /*
 1868  * Allow a process to wakeup when any of the I/O requests are completed.
 1869  */
 1870 static int
 1871 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
 1872     struct timespec *ts)
 1873 {
 1874         struct proc *p = td->td_proc;
 1875         struct timeval atv;
 1876         struct kaioinfo *ki;
 1877         struct kaiocb *firstjob, *job;
 1878         int error, i, timo;
 1879 
 1880         timo = 0;
 1881         if (ts) {
 1882                 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1883                         return (EINVAL);
 1884 
 1885                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 1886                 if (itimerfix(&atv))
 1887                         return (EINVAL);
 1888                 timo = tvtohz(&atv);
 1889         }
 1890 
 1891         ki = p->p_aioinfo;
 1892         if (ki == NULL)
 1893                 return (EAGAIN);
 1894 
 1895         if (njoblist == 0)
 1896                 return (0);
 1897 
 1898         AIO_LOCK(ki);
 1899         for (;;) {
 1900                 firstjob = NULL;
 1901                 error = 0;
 1902                 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
 1903                         for (i = 0; i < njoblist; i++) {
 1904                                 if (job->ujob == ujoblist[i]) {
 1905                                         if (firstjob == NULL)
 1906                                                 firstjob = job;
 1907                                         if (job->jobflags & KAIOCB_FINISHED)
 1908                                                 goto RETURN;
 1909                                 }
 1910                         }
 1911                 }
 1912                 /* All tasks were finished. */
 1913                 if (firstjob == NULL)
 1914                         break;
 1915 
 1916                 ki->kaio_flags |= KAIO_WAKEUP;
 1917                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 1918                     "aiospn", timo);
 1919                 if (error == ERESTART)
 1920                         error = EINTR;
 1921                 if (error)
 1922                         break;
 1923         }
 1924 RETURN:
 1925         AIO_UNLOCK(ki);
 1926         return (error);
 1927 }
 1928 
 1929 int
 1930 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 1931 {
 1932         struct timespec ts, *tsp;
 1933         struct aiocb **ujoblist;
 1934         int error;
 1935 
 1936         if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
 1937                 return (EINVAL);
 1938 
 1939         if (uap->timeout) {
 1940                 /* Get timespec struct. */
 1941                 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 1942                         return (error);
 1943                 tsp = &ts;
 1944         } else
 1945                 tsp = NULL;
 1946 
 1947         ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
 1948         error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
 1949         if (error == 0)
 1950                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 1951         free(ujoblist, M_AIOS);
 1952         return (error);
 1953 }
 1954 
 1955 /*
 1956  * aio_cancel cancels any non-physio aio operations not currently in
 1957  * progress.
 1958  */
 1959 int
 1960 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 1961 {
 1962         struct proc *p = td->td_proc;
 1963         struct kaioinfo *ki;
 1964         struct kaiocb *job, *jobn;
 1965         struct file *fp;
 1966         cap_rights_t rights;
 1967         int error;
 1968         int cancelled = 0;
 1969         int notcancelled = 0;
 1970         struct vnode *vp;
 1971 
 1972         /* Lookup file object. */
 1973         error = fget(td, uap->fd, cap_rights_init(&rights), &fp);
 1974         if (error)
 1975                 return (error);
 1976 
 1977         ki = p->p_aioinfo;
 1978         if (ki == NULL)
 1979                 goto done;
 1980 
 1981         if (fp->f_type == DTYPE_VNODE) {
 1982                 vp = fp->f_vnode;
 1983                 if (vn_isdisk(vp, &error)) {
 1984                         fdrop(fp, td);
 1985                         td->td_retval[0] = AIO_NOTCANCELED;
 1986                         return (0);
 1987                 }
 1988         }
 1989 
 1990         AIO_LOCK(ki);
 1991         TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
 1992                 if ((uap->fd == job->uaiocb.aio_fildes) &&
 1993                     ((uap->aiocbp == NULL) ||
 1994                      (uap->aiocbp == job->ujob))) {
 1995                         if (aio_cancel_job(p, ki, job)) {
 1996                                 cancelled++;
 1997                         } else {
 1998                                 notcancelled++;
 1999                         }
 2000                         if (uap->aiocbp != NULL)
 2001                                 break;
 2002                 }
 2003         }
 2004         AIO_UNLOCK(ki);
 2005 
 2006 done:
 2007         fdrop(fp, td);
 2008 
 2009         if (uap->aiocbp != NULL) {
 2010                 if (cancelled) {
 2011                         td->td_retval[0] = AIO_CANCELED;
 2012                         return (0);
 2013                 }
 2014         }
 2015 
 2016         if (notcancelled) {
 2017                 td->td_retval[0] = AIO_NOTCANCELED;
 2018                 return (0);
 2019         }
 2020 
 2021         if (cancelled) {
 2022                 td->td_retval[0] = AIO_CANCELED;
 2023                 return (0);
 2024         }
 2025 
 2026         td->td_retval[0] = AIO_ALLDONE;
 2027 
 2028         return (0);
 2029 }
 2030 
 2031 /*
 2032  * aio_error is implemented in the kernel level for compatibility purposes
 2033  * only.  For a user mode async implementation, it would be best to do it in
 2034  * a userland subroutine.
 2035  */
 2036 static int
 2037 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
 2038 {
 2039         struct proc *p = td->td_proc;
 2040         struct kaiocb *job;
 2041         struct kaioinfo *ki;
 2042         int status;
 2043 
 2044         ki = p->p_aioinfo;
 2045         if (ki == NULL) {
 2046                 td->td_retval[0] = EINVAL;
 2047                 return (0);
 2048         }
 2049 
 2050         AIO_LOCK(ki);
 2051         TAILQ_FOREACH(job, &ki->kaio_all, allist) {
 2052                 if (job->ujob == ujob) {
 2053                         if (job->jobflags & KAIOCB_FINISHED)
 2054                                 td->td_retval[0] =
 2055                                         job->uaiocb._aiocb_private.error;
 2056                         else
 2057                                 td->td_retval[0] = EINPROGRESS;
 2058                         AIO_UNLOCK(ki);
 2059                         return (0);
 2060                 }
 2061         }
 2062         AIO_UNLOCK(ki);
 2063 
 2064         /*
 2065          * Hack for failure of aio_aqueue.
 2066          */
 2067         status = ops->fetch_status(ujob);
 2068         if (status == -1) {
 2069                 td->td_retval[0] = ops->fetch_error(ujob);
 2070                 return (0);
 2071         }
 2072 
 2073         td->td_retval[0] = EINVAL;
 2074         return (0);
 2075 }
 2076 
 2077 int
 2078 sys_aio_error(struct thread *td, struct aio_error_args *uap)
 2079 {
 2080 
 2081         return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
 2082 }
 2083 
 2084 /* syscall - asynchronous read from a file (REALTIME) */
 2085 #ifdef COMPAT_FREEBSD6
 2086 int
 2087 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
 2088 {
 2089 
 2090         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2091             &aiocb_ops_osigevent));
 2092 }
 2093 #endif
 2094 
 2095 int
 2096 sys_aio_read(struct thread *td, struct aio_read_args *uap)
 2097 {
 2098 
 2099         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
 2100 }
 2101 
 2102 /* syscall - asynchronous write to a file (REALTIME) */
 2103 #ifdef COMPAT_FREEBSD6
 2104 int
 2105 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
 2106 {
 2107 
 2108         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2109             &aiocb_ops_osigevent));
 2110 }
 2111 #endif
 2112 
 2113 int
 2114 sys_aio_write(struct thread *td, struct aio_write_args *uap)
 2115 {
 2116 
 2117         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
 2118 }
 2119 
 2120 int
 2121 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
 2122 {
 2123 
 2124         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
 2125 }
 2126 
 2127 static int
 2128 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
 2129     struct aiocb **acb_list, int nent, struct sigevent *sig,
 2130     struct aiocb_ops *ops)
 2131 {
 2132         struct proc *p = td->td_proc;
 2133         struct aiocb *job;
 2134         struct kaioinfo *ki;
 2135         struct aioliojob *lj;
 2136         struct kevent kev;
 2137         int error;
 2138         int nerror;
 2139         int i;
 2140 
 2141         if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
 2142                 return (EINVAL);
 2143 
 2144         if (nent < 0 || nent > max_aio_queue_per_proc)
 2145                 return (EINVAL);
 2146 
 2147         if (p->p_aioinfo == NULL)
 2148                 aio_init_aioinfo(p);
 2149 
 2150         ki = p->p_aioinfo;
 2151 
 2152         lj = uma_zalloc(aiolio_zone, M_WAITOK);
 2153         lj->lioj_flags = 0;
 2154         lj->lioj_count = 0;
 2155         lj->lioj_finished_count = 0;
 2156         knlist_init_mtx(&lj->klist, AIO_MTX(ki));
 2157         ksiginfo_init(&lj->lioj_ksi);
 2158 
 2159         /*
 2160          * Setup signal.
 2161          */
 2162         if (sig && (mode == LIO_NOWAIT)) {
 2163                 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
 2164                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2165                         /* Assume only new style KEVENT */
 2166                         kev.filter = EVFILT_LIO;
 2167                         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 2168                         kev.ident = (uintptr_t)uacb_list; /* something unique */
 2169                         kev.data = (intptr_t)lj;
 2170                         /* pass user defined sigval data */
 2171                         kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
 2172                         error = kqfd_register(
 2173                             lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
 2174                         if (error) {
 2175                                 uma_zfree(aiolio_zone, lj);
 2176                                 return (error);
 2177                         }
 2178                 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
 2179                         ;
 2180                 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2181                            lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
 2182                                 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 2183                                         uma_zfree(aiolio_zone, lj);
 2184                                         return EINVAL;
 2185                                 }
 2186                                 lj->lioj_flags |= LIOJ_SIGNAL;
 2187                 } else {
 2188                         uma_zfree(aiolio_zone, lj);
 2189                         return EINVAL;
 2190                 }
 2191         }
 2192 
 2193         AIO_LOCK(ki);
 2194         TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 2195         /*
 2196          * Add extra aiocb count to avoid the lio to be freed
 2197          * by other threads doing aio_waitcomplete or aio_return,
 2198          * and prevent event from being sent until we have queued
 2199          * all tasks.
 2200          */
 2201         lj->lioj_count = 1;
 2202         AIO_UNLOCK(ki);
 2203 
 2204         /*
 2205          * Get pointers to the list of I/O requests.
 2206          */
 2207         nerror = 0;
 2208         for (i = 0; i < nent; i++) {
 2209                 job = acb_list[i];
 2210                 if (job != NULL) {
 2211                         error = aio_aqueue(td, job, lj, LIO_NOP, ops);
 2212                         if (error != 0)
 2213                                 nerror++;
 2214                 }
 2215         }
 2216 
 2217         error = 0;
 2218         AIO_LOCK(ki);
 2219         if (mode == LIO_WAIT) {
 2220                 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
 2221                         ki->kaio_flags |= KAIO_WAKEUP;
 2222                         error = msleep(&p->p_aioinfo, AIO_MTX(ki),
 2223                             PRIBIO | PCATCH, "aiospn", 0);
 2224                         if (error == ERESTART)
 2225                                 error = EINTR;
 2226                         if (error)
 2227                                 break;
 2228                 }
 2229         } else {
 2230                 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
 2231                         if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2232                                 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 2233                                 KNOTE_LOCKED(&lj->klist, 1);
 2234                         }
 2235                         if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
 2236                             == LIOJ_SIGNAL
 2237                             && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2238                             lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 2239                                 aio_sendsig(p, &lj->lioj_signal,
 2240                                             &lj->lioj_ksi);
 2241                                 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2242                         }
 2243                 }
 2244         }
 2245         lj->lioj_count--;
 2246         if (lj->lioj_count == 0) {
 2247                 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 2248                 knlist_delete(&lj->klist, curthread, 1);
 2249                 PROC_LOCK(p);
 2250                 sigqueue_take(&lj->lioj_ksi);
 2251                 PROC_UNLOCK(p);
 2252                 AIO_UNLOCK(ki);
 2253                 uma_zfree(aiolio_zone, lj);
 2254         } else
 2255                 AIO_UNLOCK(ki);
 2256 
 2257         if (nerror)
 2258                 return (EIO);
 2259         return (error);
 2260 }
 2261 
 2262 /* syscall - list directed I/O (REALTIME) */
 2263 #ifdef COMPAT_FREEBSD6
 2264 int
 2265 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
 2266 {
 2267         struct aiocb **acb_list;
 2268         struct sigevent *sigp, sig;
 2269         struct osigevent osig;
 2270         int error, nent;
 2271 
 2272         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2273                 return (EINVAL);
 2274 
 2275         nent = uap->nent;
 2276         if (nent < 0 || nent > max_aio_queue_per_proc)
 2277                 return (EINVAL);
 2278 
 2279         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2280                 error = copyin(uap->sig, &osig, sizeof(osig));
 2281                 if (error)
 2282                         return (error);
 2283                 error = convert_old_sigevent(&osig, &sig);
 2284                 if (error)
 2285                         return (error);
 2286                 sigp = &sig;
 2287         } else
 2288                 sigp = NULL;
 2289 
 2290         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2291         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2292         if (error == 0)
 2293                 error = kern_lio_listio(td, uap->mode,
 2294                     (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2295                     &aiocb_ops_osigevent);
 2296         free(acb_list, M_LIO);
 2297         return (error);
 2298 }
 2299 #endif
 2300 
 2301 /* syscall - list directed I/O (REALTIME) */
 2302 int
 2303 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
 2304 {
 2305         struct aiocb **acb_list;
 2306         struct sigevent *sigp, sig;
 2307         int error, nent;
 2308 
 2309         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2310                 return (EINVAL);
 2311 
 2312         nent = uap->nent;
 2313         if (nent < 0 || nent > max_aio_queue_per_proc)
 2314                 return (EINVAL);
 2315 
 2316         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2317                 error = copyin(uap->sig, &sig, sizeof(sig));
 2318                 if (error)
 2319                         return (error);
 2320                 sigp = &sig;
 2321         } else
 2322                 sigp = NULL;
 2323 
 2324         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2325         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2326         if (error == 0)
 2327                 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
 2328                     nent, sigp, &aiocb_ops);
 2329         free(acb_list, M_LIO);
 2330         return (error);
 2331 }
 2332 
 2333 static void
 2334 aio_physwakeup(struct bio *bp)
 2335 {
 2336         struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
 2337         struct proc *userp;
 2338         struct kaioinfo *ki;
 2339         size_t nbytes;
 2340         int error, nblks;
 2341 
 2342         /* Release mapping into kernel space. */
 2343         userp = job->userproc;
 2344         ki = userp->p_aioinfo;
 2345         if (job->pbuf) {
 2346                 pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages);
 2347                 relpbuf(job->pbuf, NULL);
 2348                 job->pbuf = NULL;
 2349                 atomic_subtract_int(&num_buf_aio, 1);
 2350                 AIO_LOCK(ki);
 2351                 ki->kaio_buffer_count--;
 2352                 AIO_UNLOCK(ki);
 2353         } else
 2354                 atomic_subtract_int(&num_unmapped_aio, 1);
 2355         vm_page_unhold_pages(job->pages, job->npages);
 2356 
 2357         bp = job->bp;
 2358         job->bp = NULL;
 2359         nbytes = job->uaiocb.aio_nbytes - bp->bio_resid;
 2360         error = 0;
 2361         if (bp->bio_flags & BIO_ERROR)
 2362                 error = bp->bio_error;
 2363         nblks = btodb(nbytes);
 2364         if (job->uaiocb.aio_lio_opcode == LIO_WRITE)
 2365                 job->outblock += nblks;
 2366         else
 2367                 job->inblock += nblks;
 2368 
 2369         if (error)
 2370                 aio_complete(job, -1, error);
 2371         else
 2372                 aio_complete(job, nbytes, 0);
 2373 
 2374         g_destroy_bio(bp);
 2375 }
 2376 
 2377 /* syscall - wait for the next completion of an aio request */
 2378 static int
 2379 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
 2380     struct timespec *ts, struct aiocb_ops *ops)
 2381 {
 2382         struct proc *p = td->td_proc;
 2383         struct timeval atv;
 2384         struct kaioinfo *ki;
 2385         struct kaiocb *job;
 2386         struct aiocb *ujob;
 2387         long error, status;
 2388         int timo;
 2389 
 2390         ops->store_aiocb(ujobp, NULL);
 2391 
 2392         if (ts == NULL) {
 2393                 timo = 0;
 2394         } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
 2395                 timo = -1;
 2396         } else {
 2397                 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
 2398                         return (EINVAL);
 2399 
 2400                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 2401                 if (itimerfix(&atv))
 2402                         return (EINVAL);
 2403                 timo = tvtohz(&atv);
 2404         }
 2405 
 2406         if (p->p_aioinfo == NULL)
 2407                 aio_init_aioinfo(p);
 2408         ki = p->p_aioinfo;
 2409 
 2410         error = 0;
 2411         job = NULL;
 2412         AIO_LOCK(ki);
 2413         while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
 2414                 if (timo == -1) {
 2415                         error = EWOULDBLOCK;
 2416                         break;
 2417                 }
 2418                 ki->kaio_flags |= KAIO_WAKEUP;
 2419                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2420                     "aiowc", timo);
 2421                 if (timo && error == ERESTART)
 2422                         error = EINTR;
 2423                 if (error)
 2424                         break;
 2425         }
 2426 
 2427         if (job != NULL) {
 2428                 MPASS(job->jobflags & KAIOCB_FINISHED);
 2429                 ujob = job->ujob;
 2430                 status = job->uaiocb._aiocb_private.status;
 2431                 error = job->uaiocb._aiocb_private.error;
 2432                 td->td_retval[0] = status;
 2433                 td->td_ru.ru_oublock += job->outblock;
 2434                 td->td_ru.ru_inblock += job->inblock;
 2435                 td->td_ru.ru_msgsnd += job->msgsnd;
 2436                 td->td_ru.ru_msgrcv += job->msgrcv;
 2437                 aio_free_entry(job);
 2438                 AIO_UNLOCK(ki);
 2439                 ops->store_aiocb(ujobp, ujob);
 2440                 ops->store_error(ujob, error);
 2441                 ops->store_status(ujob, status);
 2442         } else
 2443                 AIO_UNLOCK(ki);
 2444 
 2445         return (error);
 2446 }
 2447 
 2448 int
 2449 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 2450 {
 2451         struct timespec ts, *tsp;
 2452         int error;
 2453 
 2454         if (uap->timeout) {
 2455                 /* Get timespec struct. */
 2456                 error = copyin(uap->timeout, &ts, sizeof(ts));
 2457                 if (error)
 2458                         return (error);
 2459                 tsp = &ts;
 2460         } else
 2461                 tsp = NULL;
 2462 
 2463         return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
 2464 }
 2465 
 2466 static int
 2467 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
 2468     struct aiocb_ops *ops)
 2469 {
 2470 
 2471         if (op != O_SYNC) /* XXX lack of O_DSYNC */
 2472                 return (EINVAL);
 2473         return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops));
 2474 }
 2475 
 2476 int
 2477 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 2478 {
 2479 
 2480         return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
 2481 }
 2482 
 2483 /* kqueue attach function */
 2484 static int
 2485 filt_aioattach(struct knote *kn)
 2486 {
 2487         struct kaiocb *job = (struct kaiocb *)kn->kn_sdata;
 2488 
 2489         /*
 2490          * The job pointer must be validated before using it, so
 2491          * registration is restricted to the kernel; the user cannot
 2492          * set EV_FLAG1.
 2493          */
 2494         if ((kn->kn_flags & EV_FLAG1) == 0)
 2495                 return (EPERM);
 2496         kn->kn_ptr.p_aio = job;
 2497         kn->kn_flags &= ~EV_FLAG1;
 2498 
 2499         knlist_add(&job->klist, kn, 0);
 2500 
 2501         return (0);
 2502 }
 2503 
 2504 /* kqueue detach function */
 2505 static void
 2506 filt_aiodetach(struct knote *kn)
 2507 {
 2508         struct knlist *knl;
 2509 
 2510         knl = &kn->kn_ptr.p_aio->klist;
 2511         knl->kl_lock(knl->kl_lockarg);
 2512         if (!knlist_empty(knl))
 2513                 knlist_remove(knl, kn, 1);
 2514         knl->kl_unlock(knl->kl_lockarg);
 2515 }
 2516 
 2517 /* kqueue filter function */
 2518 /*ARGSUSED*/
 2519 static int
 2520 filt_aio(struct knote *kn, long hint)
 2521 {
 2522         struct kaiocb *job = kn->kn_ptr.p_aio;
 2523 
 2524         kn->kn_data = job->uaiocb._aiocb_private.error;
 2525         if (!(job->jobflags & KAIOCB_FINISHED))
 2526                 return (0);
 2527         kn->kn_flags |= EV_EOF;
 2528         return (1);
 2529 }
 2530 
 2531 /* kqueue attach function */
 2532 static int
 2533 filt_lioattach(struct knote *kn)
 2534 {
 2535         struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
 2536 
 2537         /*
 2538          * The aioliojob pointer must be validated before using it, so
 2539          * registration is restricted to the kernel; the user cannot
 2540          * set EV_FLAG1.
 2541          */
 2542         if ((kn->kn_flags & EV_FLAG1) == 0)
 2543                 return (EPERM);
 2544         kn->kn_ptr.p_lio = lj;
 2545         kn->kn_flags &= ~EV_FLAG1;
 2546 
 2547         knlist_add(&lj->klist, kn, 0);
 2548 
 2549         return (0);
 2550 }
 2551 
 2552 /* kqueue detach function */
 2553 static void
 2554 filt_liodetach(struct knote *kn)
 2555 {
 2556         struct knlist *knl;
 2557 
 2558         knl = &kn->kn_ptr.p_lio->klist;
 2559         knl->kl_lock(knl->kl_lockarg);
 2560         if (!knlist_empty(knl))
 2561                 knlist_remove(knl, kn, 1);
 2562         knl->kl_unlock(knl->kl_lockarg);
 2563 }
 2564 
 2565 /* kqueue filter function */
 2566 /*ARGSUSED*/
 2567 static int
 2568 filt_lio(struct knote *kn, long hint)
 2569 {
 2570         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2571 
 2572         return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
 2573 }
 2574 
 2575 #ifdef COMPAT_FREEBSD32
 2576 #include <sys/mount.h>
 2577 #include <sys/socket.h>
 2578 #include <compat/freebsd32/freebsd32.h>
 2579 #include <compat/freebsd32/freebsd32_proto.h>
 2580 #include <compat/freebsd32/freebsd32_signal.h>
 2581 #include <compat/freebsd32/freebsd32_syscall.h>
 2582 #include <compat/freebsd32/freebsd32_util.h>
 2583 
 2584 struct __aiocb_private32 {
 2585         int32_t status;
 2586         int32_t error;
 2587         uint32_t kernelinfo;
 2588 };
 2589 
 2590 #ifdef COMPAT_FREEBSD6
 2591 typedef struct oaiocb32 {
 2592         int     aio_fildes;             /* File descriptor */
 2593         uint64_t aio_offset __packed;   /* File offset for I/O */
 2594         uint32_t aio_buf;               /* I/O buffer in process space */
 2595         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2596         struct  osigevent32 aio_sigevent; /* Signal to deliver */
 2597         int     aio_lio_opcode;         /* LIO opcode */
 2598         int     aio_reqprio;            /* Request priority -- ignored */
 2599         struct  __aiocb_private32 _aiocb_private;
 2600 } oaiocb32_t;
 2601 #endif
 2602 
 2603 typedef struct aiocb32 {
 2604         int32_t aio_fildes;             /* File descriptor */
 2605         uint64_t aio_offset __packed;   /* File offset for I/O */
 2606         uint32_t aio_buf;               /* I/O buffer in process space */
 2607         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2608         int     __spare__[2];
 2609         uint32_t __spare2__;
 2610         int     aio_lio_opcode;         /* LIO opcode */
 2611         int     aio_reqprio;            /* Request priority -- ignored */
 2612         struct  __aiocb_private32 _aiocb_private;
 2613         struct  sigevent32 aio_sigevent;        /* Signal to deliver */
 2614 } aiocb32_t;
 2615 
 2616 #ifdef COMPAT_FREEBSD6
 2617 static int
 2618 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
 2619 {
 2620 
 2621         /*
 2622          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 2623          * supported by AIO with the old sigevent structure.
 2624          */
 2625         CP(*osig, *nsig, sigev_notify);
 2626         switch (nsig->sigev_notify) {
 2627         case SIGEV_NONE:
 2628                 break;
 2629         case SIGEV_SIGNAL:
 2630                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 2631                 break;
 2632         case SIGEV_KEVENT:
 2633                 nsig->sigev_notify_kqueue =
 2634                     osig->__sigev_u.__sigev_notify_kqueue;
 2635                 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
 2636                 break;
 2637         default:
 2638                 return (EINVAL);
 2639         }
 2640         return (0);
 2641 }
 2642 
 2643 static int
 2644 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 2645 {
 2646         struct oaiocb32 job32;
 2647         int error;
 2648 
 2649         bzero(kjob, sizeof(struct aiocb));
 2650         error = copyin(ujob, &job32, sizeof(job32));
 2651         if (error)
 2652                 return (error);
 2653 
 2654         CP(job32, *kjob, aio_fildes);
 2655         CP(job32, *kjob, aio_offset);
 2656         PTRIN_CP(job32, *kjob, aio_buf);
 2657         CP(job32, *kjob, aio_nbytes);
 2658         CP(job32, *kjob, aio_lio_opcode);
 2659         CP(job32, *kjob, aio_reqprio);
 2660         CP(job32, *kjob, _aiocb_private.status);
 2661         CP(job32, *kjob, _aiocb_private.error);
 2662         PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 2663         return (convert_old_sigevent32(&job32.aio_sigevent,
 2664             &kjob->aio_sigevent));
 2665 }
 2666 #endif
 2667 
 2668 static int
 2669 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
 2670 {
 2671         struct aiocb32 job32;
 2672         int error;
 2673 
 2674         error = copyin(ujob, &job32, sizeof(job32));
 2675         if (error)
 2676                 return (error);
 2677         CP(job32, *kjob, aio_fildes);
 2678         CP(job32, *kjob, aio_offset);
 2679         PTRIN_CP(job32, *kjob, aio_buf);
 2680         CP(job32, *kjob, aio_nbytes);
 2681         CP(job32, *kjob, aio_lio_opcode);
 2682         CP(job32, *kjob, aio_reqprio);
 2683         CP(job32, *kjob, _aiocb_private.status);
 2684         CP(job32, *kjob, _aiocb_private.error);
 2685         PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 2686         return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
 2687 }
 2688 
 2689 static long
 2690 aiocb32_fetch_status(struct aiocb *ujob)
 2691 {
 2692         struct aiocb32 *ujob32;
 2693 
 2694         ujob32 = (struct aiocb32 *)ujob;
 2695         return (fuword32(&ujob32->_aiocb_private.status));
 2696 }
 2697 
 2698 static long
 2699 aiocb32_fetch_error(struct aiocb *ujob)
 2700 {
 2701         struct aiocb32 *ujob32;
 2702 
 2703         ujob32 = (struct aiocb32 *)ujob;
 2704         return (fuword32(&ujob32->_aiocb_private.error));
 2705 }
 2706 
 2707 static int
 2708 aiocb32_store_status(struct aiocb *ujob, long status)
 2709 {
 2710         struct aiocb32 *ujob32;
 2711 
 2712         ujob32 = (struct aiocb32 *)ujob;
 2713         return (suword32(&ujob32->_aiocb_private.status, status));
 2714 }
 2715 
 2716 static int
 2717 aiocb32_store_error(struct aiocb *ujob, long error)
 2718 {
 2719         struct aiocb32 *ujob32;
 2720 
 2721         ujob32 = (struct aiocb32 *)ujob;
 2722         return (suword32(&ujob32->_aiocb_private.error, error));
 2723 }
 2724 
 2725 static int
 2726 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
 2727 {
 2728         struct aiocb32 *ujob32;
 2729 
 2730         ujob32 = (struct aiocb32 *)ujob;
 2731         return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
 2732 }
 2733 
 2734 static int
 2735 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 2736 {
 2737 
 2738         return (suword32(ujobp, (long)ujob));
 2739 }
 2740 
 2741 static struct aiocb_ops aiocb32_ops = {
 2742         .copyin = aiocb32_copyin,
 2743         .fetch_status = aiocb32_fetch_status,
 2744         .fetch_error = aiocb32_fetch_error,
 2745         .store_status = aiocb32_store_status,
 2746         .store_error = aiocb32_store_error,
 2747         .store_kernelinfo = aiocb32_store_kernelinfo,
 2748         .store_aiocb = aiocb32_store_aiocb,
 2749 };
 2750 
 2751 #ifdef COMPAT_FREEBSD6
 2752 static struct aiocb_ops aiocb32_ops_osigevent = {
 2753         .copyin = aiocb32_copyin_old_sigevent,
 2754         .fetch_status = aiocb32_fetch_status,
 2755         .fetch_error = aiocb32_fetch_error,
 2756         .store_status = aiocb32_store_status,
 2757         .store_error = aiocb32_store_error,
 2758         .store_kernelinfo = aiocb32_store_kernelinfo,
 2759         .store_aiocb = aiocb32_store_aiocb,
 2760 };
 2761 #endif
 2762 
 2763 int
 2764 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
 2765 {
 2766 
 2767         return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2768 }
 2769 
 2770 int
 2771 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
 2772 {
 2773         struct timespec32 ts32;
 2774         struct timespec ts, *tsp;
 2775         struct aiocb **ujoblist;
 2776         uint32_t *ujoblist32;
 2777         int error, i;
 2778 
 2779         if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
 2780                 return (EINVAL);
 2781 
 2782         if (uap->timeout) {
 2783                 /* Get timespec struct. */
 2784                 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
 2785                         return (error);
 2786                 CP(ts32, ts, tv_sec);
 2787                 CP(ts32, ts, tv_nsec);
 2788                 tsp = &ts;
 2789         } else
 2790                 tsp = NULL;
 2791 
 2792         ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
 2793         ujoblist32 = (uint32_t *)ujoblist;
 2794         error = copyin(uap->aiocbp, ujoblist32, uap->nent *
 2795             sizeof(ujoblist32[0]));
 2796         if (error == 0) {
 2797                 for (i = uap->nent - 1; i >= 0; i--)
 2798                         ujoblist[i] = PTRIN(ujoblist32[i]);
 2799 
 2800                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2801         }
 2802         free(ujoblist, M_AIOS);
 2803         return (error);
 2804 }
 2805 
 2806 int
 2807 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
 2808 {
 2809 
 2810         return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2811 }
 2812 
 2813 #ifdef COMPAT_FREEBSD6
 2814 int
 2815 freebsd6_freebsd32_aio_read(struct thread *td,
 2816     struct freebsd6_freebsd32_aio_read_args *uap)
 2817 {
 2818 
 2819         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2820             &aiocb32_ops_osigevent));
 2821 }
 2822 #endif
 2823 
 2824 int
 2825 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
 2826 {
 2827 
 2828         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2829             &aiocb32_ops));
 2830 }
 2831 
 2832 #ifdef COMPAT_FREEBSD6
 2833 int
 2834 freebsd6_freebsd32_aio_write(struct thread *td,
 2835     struct freebsd6_freebsd32_aio_write_args *uap)
 2836 {
 2837 
 2838         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2839             &aiocb32_ops_osigevent));
 2840 }
 2841 #endif
 2842 
 2843 int
 2844 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
 2845 {
 2846 
 2847         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2848             &aiocb32_ops));
 2849 }
 2850 
 2851 int
 2852 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
 2853 {
 2854 
 2855         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
 2856             &aiocb32_ops));
 2857 }
 2858 
 2859 int
 2860 freebsd32_aio_waitcomplete(struct thread *td,
 2861     struct freebsd32_aio_waitcomplete_args *uap)
 2862 {
 2863         struct timespec32 ts32;
 2864         struct timespec ts, *tsp;
 2865         int error;
 2866 
 2867         if (uap->timeout) {
 2868                 /* Get timespec struct. */
 2869                 error = copyin(uap->timeout, &ts32, sizeof(ts32));
 2870                 if (error)
 2871                         return (error);
 2872                 CP(ts32, ts, tv_sec);
 2873                 CP(ts32, ts, tv_nsec);
 2874                 tsp = &ts;
 2875         } else
 2876                 tsp = NULL;
 2877 
 2878         return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
 2879             &aiocb32_ops));
 2880 }
 2881 
 2882 int
 2883 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
 2884 {
 2885 
 2886         return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
 2887             &aiocb32_ops));
 2888 }
 2889 
 2890 #ifdef COMPAT_FREEBSD6
 2891 int
 2892 freebsd6_freebsd32_lio_listio(struct thread *td,
 2893     struct freebsd6_freebsd32_lio_listio_args *uap)
 2894 {
 2895         struct aiocb **acb_list;
 2896         struct sigevent *sigp, sig;
 2897         struct osigevent32 osig;
 2898         uint32_t *acb_list32;
 2899         int error, i, nent;
 2900 
 2901         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2902                 return (EINVAL);
 2903 
 2904         nent = uap->nent;
 2905         if (nent < 0 || nent > max_aio_queue_per_proc)
 2906                 return (EINVAL);
 2907 
 2908         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2909                 error = copyin(uap->sig, &osig, sizeof(osig));
 2910                 if (error)
 2911                         return (error);
 2912                 error = convert_old_sigevent32(&osig, &sig);
 2913                 if (error)
 2914                         return (error);
 2915                 sigp = &sig;
 2916         } else
 2917                 sigp = NULL;
 2918 
 2919         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 2920         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 2921         if (error) {
 2922                 free(acb_list32, M_LIO);
 2923                 return (error);
 2924         }
 2925         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2926         for (i = 0; i < nent; i++)
 2927                 acb_list[i] = PTRIN(acb_list32[i]);
 2928         free(acb_list32, M_LIO);
 2929 
 2930         error = kern_lio_listio(td, uap->mode,
 2931             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2932             &aiocb32_ops_osigevent);
 2933         free(acb_list, M_LIO);
 2934         return (error);
 2935 }
 2936 #endif
 2937 
 2938 int
 2939 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
 2940 {
 2941         struct aiocb **acb_list;
 2942         struct sigevent *sigp, sig;
 2943         struct sigevent32 sig32;
 2944         uint32_t *acb_list32;
 2945         int error, i, nent;
 2946 
 2947         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2948                 return (EINVAL);
 2949 
 2950         nent = uap->nent;
 2951         if (nent < 0 || nent > max_aio_queue_per_proc)
 2952                 return (EINVAL);
 2953 
 2954         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2955                 error = copyin(uap->sig, &sig32, sizeof(sig32));
 2956                 if (error)
 2957                         return (error);
 2958                 error = convert_sigevent32(&sig32, &sig);
 2959                 if (error)
 2960                         return (error);
 2961                 sigp = &sig;
 2962         } else
 2963                 sigp = NULL;
 2964 
 2965         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 2966         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 2967         if (error) {
 2968                 free(acb_list32, M_LIO);
 2969                 return (error);
 2970         }
 2971         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2972         for (i = 0; i < nent; i++)
 2973                 acb_list[i] = PTRIN(acb_list32[i]);
 2974         free(acb_list32, M_LIO);
 2975 
 2976         error = kern_lio_listio(td, uap->mode,
 2977             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2978             &aiocb32_ops);
 2979         free(acb_list, M_LIO);
 2980         return (error);
 2981 }
 2982 
 2983 #endif

Cache object: 443dcdd909bdeebfe3d4e260a4d7c5dc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.