The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_aio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. John S. Dyson's name may not be used to endorse or promote products
   10  *    derived from this software without specific prior written permission.
   11  *
   12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
   13  * bad that happens because of using this software isn't the responsibility
   14  * of the author.  This software is distributed AS-IS.
   15  */
   16 
   17 /*
   18  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
   19  */
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD$");
   23 
   24 #include "opt_compat.h"
   25 
   26 #include <sys/param.h>
   27 #include <sys/systm.h>
   28 #include <sys/malloc.h>
   29 #include <sys/bio.h>
   30 #include <sys/buf.h>
   31 #include <sys/capsicum.h>
   32 #include <sys/eventhandler.h>
   33 #include <sys/sysproto.h>
   34 #include <sys/filedesc.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/kthread.h>
   38 #include <sys/fcntl.h>
   39 #include <sys/file.h>
   40 #include <sys/limits.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/unistd.h>
   44 #include <sys/posix4.h>
   45 #include <sys/proc.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/syscallsubr.h>
   49 #include <sys/protosw.h>
   50 #include <sys/rwlock.h>
   51 #include <sys/sema.h>
   52 #include <sys/socket.h>
   53 #include <sys/socketvar.h>
   54 #include <sys/syscall.h>
   55 #include <sys/sysent.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/syslog.h>
   58 #include <sys/sx.h>
   59 #include <sys/taskqueue.h>
   60 #include <sys/vnode.h>
   61 #include <sys/conf.h>
   62 #include <sys/event.h>
   63 #include <sys/mount.h>
   64 #include <geom/geom.h>
   65 
   66 #include <machine/atomic.h>
   67 
   68 #include <vm/vm.h>
   69 #include <vm/vm_page.h>
   70 #include <vm/vm_extern.h>
   71 #include <vm/pmap.h>
   72 #include <vm/vm_map.h>
   73 #include <vm/vm_object.h>
   74 #include <vm/uma.h>
   75 #include <sys/aio.h>
   76 
   77 /*
   78  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
   79  * overflow. (XXX will be removed soon.)
   80  */
   81 static u_long jobrefid;
   82 
   83 /*
   84  * Counter for aio_fsync.
   85  */
   86 static uint64_t jobseqno;
   87 
   88 #ifndef MAX_AIO_PER_PROC
   89 #define MAX_AIO_PER_PROC        32
   90 #endif
   91 
   92 #ifndef MAX_AIO_QUEUE_PER_PROC
   93 #define MAX_AIO_QUEUE_PER_PROC  256
   94 #endif
   95 
   96 #ifndef MAX_AIO_QUEUE
   97 #define MAX_AIO_QUEUE           1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
   98 #endif
   99 
  100 #ifndef MAX_BUF_AIO
  101 #define MAX_BUF_AIO             16
  102 #endif
  103 
  104 FEATURE(aio, "Asynchronous I/O");
  105 SYSCTL_DECL(_p1003_1b);
  106 
  107 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
  108 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list");
  109 
  110 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0,
  111     "Async IO management");
  112 
  113 static int enable_aio_unsafe = 0;
  114 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
  115     "Permit asynchronous IO on all file types, not just known-safe types");
  116 
  117 static unsigned int unsafe_warningcnt = 1;
  118 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
  119     &unsafe_warningcnt, 0,
  120     "Warnings that will be triggered upon failed IO requests on unsafe files");
  121 
  122 static int max_aio_procs = MAX_AIO_PROCS;
  123 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
  124     "Maximum number of kernel processes to use for handling async IO ");
  125 
  126 static int num_aio_procs = 0;
  127 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
  128     "Number of presently active kernel processes for async IO");
  129 
  130 /*
  131  * The code will adjust the actual number of AIO processes towards this
  132  * number when it gets a chance.
  133  */
  134 static int target_aio_procs = TARGET_AIO_PROCS;
  135 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
  136     0,
  137     "Preferred number of ready kernel processes for async IO");
  138 
  139 static int max_queue_count = MAX_AIO_QUEUE;
  140 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
  141     "Maximum number of aio requests to queue, globally");
  142 
  143 static int num_queue_count = 0;
  144 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
  145     "Number of queued aio requests");
  146 
  147 static int num_buf_aio = 0;
  148 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
  149     "Number of aio requests presently handled by the buf subsystem");
  150 
  151 static int num_unmapped_aio = 0;
  152 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
  153     0,
  154     "Number of aio requests presently handled by unmapped I/O buffers");
  155 
  156 /* Number of async I/O processes in the process of being started */
  157 /* XXX This should be local to aio_aqueue() */
  158 static int num_aio_resv_start = 0;
  159 
  160 static int aiod_lifetime;
  161 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
  162     "Maximum lifetime for idle aiod");
  163 
  164 static int max_aio_per_proc = MAX_AIO_PER_PROC;
  165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
  166     0,
  167     "Maximum active aio requests per process");
  168 
  169 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
  170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
  171     &max_aio_queue_per_proc, 0,
  172     "Maximum queued aio requests per process");
  173 
  174 static int max_buf_aio = MAX_BUF_AIO;
  175 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
  176     "Maximum buf aio requests per process");
  177 
  178 /* 
  179  * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
  180  * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
  181  * vfs.aio.aio_listio_max.
  182  */
  183 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
  184     CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
  185     0, "Maximum aio requests for a single lio_listio call");
  186 
  187 #ifdef COMPAT_FREEBSD6
  188 typedef struct oaiocb {
  189         int     aio_fildes;             /* File descriptor */
  190         off_t   aio_offset;             /* File offset for I/O */
  191         volatile void *aio_buf;         /* I/O buffer in process space */
  192         size_t  aio_nbytes;             /* Number of bytes for I/O */
  193         struct  osigevent aio_sigevent; /* Signal to deliver */
  194         int     aio_lio_opcode;         /* LIO opcode */
  195         int     aio_reqprio;            /* Request priority -- ignored */
  196         struct  __aiocb_private _aiocb_private;
  197 } oaiocb_t;
  198 #endif
  199 
  200 /*
  201  * Below is a key of locks used to protect each member of struct kaiocb
  202  * aioliojob and kaioinfo and any backends.
  203  *
  204  * * - need not protected
  205  * a - locked by kaioinfo lock
  206  * b - locked by backend lock, the backend lock can be null in some cases,
  207  *     for example, BIO belongs to this type, in this case, proc lock is
  208  *     reused.
  209  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
  210  */
  211 
  212 /*
  213  * If the routine that services an AIO request blocks while running in an
  214  * AIO kernel process it can starve other I/O requests.  BIO requests
  215  * queued via aio_qbio() complete asynchronously and do not use AIO kernel
  216  * processes at all.  Socket I/O requests use a separate pool of
  217  * kprocs and also force non-blocking I/O.  Other file I/O requests
  218  * use the generic fo_read/fo_write operations which can block.  The
  219  * fsync and mlock operations can also block while executing.  Ideally
  220  * none of these requests would block while executing.
  221  *
  222  * Note that the service routines cannot toggle O_NONBLOCK in the file
  223  * structure directly while handling a request due to races with
  224  * userland threads.
  225  */
  226 
  227 /* jobflags */
  228 #define KAIOCB_QUEUEING         0x01
  229 #define KAIOCB_CANCELLED        0x02
  230 #define KAIOCB_CANCELLING       0x04
  231 #define KAIOCB_CHECKSYNC        0x08
  232 #define KAIOCB_CLEARED          0x10
  233 #define KAIOCB_FINISHED         0x20
  234 
  235 /*
  236  * AIO process info
  237  */
  238 #define AIOP_FREE       0x1                     /* proc on free queue */
  239 
  240 struct aioproc {
  241         int     aioprocflags;                   /* (c) AIO proc flags */
  242         TAILQ_ENTRY(aioproc) list;              /* (c) list of processes */
  243         struct  proc *aioproc;                  /* (*) the AIO proc */
  244 };
  245 
  246 /*
  247  * data-structure for lio signal management
  248  */
  249 struct aioliojob {
  250         int     lioj_flags;                     /* (a) listio flags */
  251         int     lioj_count;                     /* (a) listio flags */
  252         int     lioj_finished_count;            /* (a) listio flags */
  253         struct  sigevent lioj_signal;           /* (a) signal on all I/O done */
  254         TAILQ_ENTRY(aioliojob) lioj_list;       /* (a) lio list */
  255         struct  knlist klist;                   /* (a) list of knotes */
  256         ksiginfo_t lioj_ksi;                    /* (a) Realtime signal info */
  257 };
  258 
  259 #define LIOJ_SIGNAL             0x1     /* signal on all done (lio) */
  260 #define LIOJ_SIGNAL_POSTED      0x2     /* signal has been posted */
  261 #define LIOJ_KEVENT_POSTED      0x4     /* kevent triggered */
  262 
  263 /*
  264  * per process aio data structure
  265  */
  266 struct kaioinfo {
  267         struct  mtx kaio_mtx;           /* the lock to protect this struct */
  268         int     kaio_flags;             /* (a) per process kaio flags */
  269         int     kaio_active_count;      /* (c) number of currently used AIOs */
  270         int     kaio_count;             /* (a) size of AIO queue */
  271         int     kaio_buffer_count;      /* (a) number of bio buffers */
  272         TAILQ_HEAD(,kaiocb) kaio_all;   /* (a) all AIOs in a process */
  273         TAILQ_HEAD(,kaiocb) kaio_done;  /* (a) done queue for process */
  274         TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
  275         TAILQ_HEAD(,kaiocb) kaio_jobqueue;      /* (a) job queue for process */
  276         TAILQ_HEAD(,kaiocb) kaio_syncqueue;     /* (a) queue for aio_fsync */
  277         TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
  278         struct  task kaio_task;         /* (*) task to kick aio processes */
  279         struct  task kaio_sync_task;    /* (*) task to schedule fsync jobs */
  280 };
  281 
  282 #define AIO_LOCK(ki)            mtx_lock(&(ki)->kaio_mtx)
  283 #define AIO_UNLOCK(ki)          mtx_unlock(&(ki)->kaio_mtx)
  284 #define AIO_LOCK_ASSERT(ki, f)  mtx_assert(&(ki)->kaio_mtx, (f))
  285 #define AIO_MTX(ki)             (&(ki)->kaio_mtx)
  286 
  287 #define KAIO_RUNDOWN    0x1     /* process is being run down */
  288 #define KAIO_WAKEUP     0x2     /* wakeup process when AIO completes */
  289 
  290 /*
  291  * Operations used to interact with userland aio control blocks.
  292  * Different ABIs provide their own operations.
  293  */
  294 struct aiocb_ops {
  295         int     (*copyin)(struct aiocb *ujob, struct aiocb *kjob);
  296         long    (*fetch_status)(struct aiocb *ujob);
  297         long    (*fetch_error)(struct aiocb *ujob);
  298         int     (*store_status)(struct aiocb *ujob, long status);
  299         int     (*store_error)(struct aiocb *ujob, long error);
  300         int     (*store_kernelinfo)(struct aiocb *ujob, long jobref);
  301         int     (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
  302 };
  303 
  304 static TAILQ_HEAD(,aioproc) aio_freeproc;               /* (c) Idle daemons */
  305 static struct sema aio_newproc_sem;
  306 static struct mtx aio_job_mtx;
  307 static TAILQ_HEAD(,kaiocb) aio_jobs;                    /* (c) Async job list */
  308 static struct unrhdr *aiod_unr;
  309 
  310 void            aio_init_aioinfo(struct proc *p);
  311 static int      aio_onceonly(void);
  312 static int      aio_free_entry(struct kaiocb *job);
  313 static void     aio_process_rw(struct kaiocb *job);
  314 static void     aio_process_sync(struct kaiocb *job);
  315 static void     aio_process_mlock(struct kaiocb *job);
  316 static void     aio_schedule_fsync(void *context, int pending);
  317 static int      aio_newproc(int *);
  318 int             aio_aqueue(struct thread *td, struct aiocb *ujob,
  319                     struct aioliojob *lio, int type, struct aiocb_ops *ops);
  320 static int      aio_queue_file(struct file *fp, struct kaiocb *job);
  321 static void     aio_biowakeup(struct bio *bp);
  322 static void     aio_proc_rundown(void *arg, struct proc *p);
  323 static void     aio_proc_rundown_exec(void *arg, struct proc *p,
  324                     struct image_params *imgp);
  325 static int      aio_qbio(struct proc *p, struct kaiocb *job);
  326 static void     aio_daemon(void *param);
  327 static void     aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
  328 static bool     aio_clear_cancel_function_locked(struct kaiocb *job);
  329 static int      aio_kick(struct proc *userp);
  330 static void     aio_kick_nowait(struct proc *userp);
  331 static void     aio_kick_helper(void *context, int pending);
  332 static int      filt_aioattach(struct knote *kn);
  333 static void     filt_aiodetach(struct knote *kn);
  334 static int      filt_aio(struct knote *kn, long hint);
  335 static int      filt_lioattach(struct knote *kn);
  336 static void     filt_liodetach(struct knote *kn);
  337 static int      filt_lio(struct knote *kn, long hint);
  338 
  339 /*
  340  * Zones for:
  341  *      kaio    Per process async io info
  342  *      aiop    async io process data
  343  *      aiocb   async io jobs
  344  *      aiolio  list io jobs
  345  */
  346 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone;
  347 
  348 /* kqueue filters for aio */
  349 static struct filterops aio_filtops = {
  350         .f_isfd = 0,
  351         .f_attach = filt_aioattach,
  352         .f_detach = filt_aiodetach,
  353         .f_event = filt_aio,
  354 };
  355 static struct filterops lio_filtops = {
  356         .f_isfd = 0,
  357         .f_attach = filt_lioattach,
  358         .f_detach = filt_liodetach,
  359         .f_event = filt_lio
  360 };
  361 
  362 static eventhandler_tag exit_tag, exec_tag;
  363 
  364 TASKQUEUE_DEFINE_THREAD(aiod_kick);
  365 
  366 /*
  367  * Main operations function for use as a kernel module.
  368  */
  369 static int
  370 aio_modload(struct module *module, int cmd, void *arg)
  371 {
  372         int error = 0;
  373 
  374         switch (cmd) {
  375         case MOD_LOAD:
  376                 aio_onceonly();
  377                 break;
  378         case MOD_SHUTDOWN:
  379                 break;
  380         default:
  381                 error = EOPNOTSUPP;
  382                 break;
  383         }
  384         return (error);
  385 }
  386 
  387 static moduledata_t aio_mod = {
  388         "aio",
  389         &aio_modload,
  390         NULL
  391 };
  392 
  393 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
  394 MODULE_VERSION(aio, 1);
  395 
  396 /*
  397  * Startup initialization
  398  */
  399 static int
  400 aio_onceonly(void)
  401 {
  402 
  403         exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
  404             EVENTHANDLER_PRI_ANY);
  405         exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
  406             NULL, EVENTHANDLER_PRI_ANY);
  407         kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
  408         kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
  409         TAILQ_INIT(&aio_freeproc);
  410         sema_init(&aio_newproc_sem, 0, "aio_new_proc");
  411         mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
  412         TAILQ_INIT(&aio_jobs);
  413         aiod_unr = new_unrhdr(1, INT_MAX, NULL);
  414         kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
  415             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  416         aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL,
  417             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  418         aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
  419             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  420         aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
  421             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  422         aiod_lifetime = AIOD_LIFETIME_DEFAULT;
  423         jobrefid = 1;
  424         p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
  425         p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
  426         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
  427 
  428         return (0);
  429 }
  430 
  431 /*
  432  * Init the per-process aioinfo structure.  The aioinfo limits are set
  433  * per-process for user limit (resource) management.
  434  */
  435 void
  436 aio_init_aioinfo(struct proc *p)
  437 {
  438         struct kaioinfo *ki;
  439 
  440         ki = uma_zalloc(kaio_zone, M_WAITOK);
  441         mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
  442         ki->kaio_flags = 0;
  443         ki->kaio_active_count = 0;
  444         ki->kaio_count = 0;
  445         ki->kaio_buffer_count = 0;
  446         TAILQ_INIT(&ki->kaio_all);
  447         TAILQ_INIT(&ki->kaio_done);
  448         TAILQ_INIT(&ki->kaio_jobqueue);
  449         TAILQ_INIT(&ki->kaio_liojoblist);
  450         TAILQ_INIT(&ki->kaio_syncqueue);
  451         TAILQ_INIT(&ki->kaio_syncready);
  452         TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
  453         TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
  454         PROC_LOCK(p);
  455         if (p->p_aioinfo == NULL) {
  456                 p->p_aioinfo = ki;
  457                 PROC_UNLOCK(p);
  458         } else {
  459                 PROC_UNLOCK(p);
  460                 mtx_destroy(&ki->kaio_mtx);
  461                 uma_zfree(kaio_zone, ki);
  462         }
  463 
  464         while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
  465                 aio_newproc(NULL);
  466 }
  467 
  468 static int
  469 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
  470 {
  471         struct thread *td;
  472         int error;
  473 
  474         error = sigev_findtd(p, sigev, &td);
  475         if (error)
  476                 return (error);
  477         if (!KSI_ONQ(ksi)) {
  478                 ksiginfo_set_sigev(ksi, sigev);
  479                 ksi->ksi_code = SI_ASYNCIO;
  480                 ksi->ksi_flags |= KSI_EXT | KSI_INS;
  481                 tdsendsignal(p, td, ksi->ksi_signo, ksi);
  482         }
  483         PROC_UNLOCK(p);
  484         return (error);
  485 }
  486 
  487 /*
  488  * Free a job entry.  Wait for completion if it is currently active, but don't
  489  * delay forever.  If we delay, we return a flag that says that we have to
  490  * restart the queue scan.
  491  */
  492 static int
  493 aio_free_entry(struct kaiocb *job)
  494 {
  495         struct kaioinfo *ki;
  496         struct aioliojob *lj;
  497         struct proc *p;
  498 
  499         p = job->userproc;
  500         MPASS(curproc == p);
  501         ki = p->p_aioinfo;
  502         MPASS(ki != NULL);
  503 
  504         AIO_LOCK_ASSERT(ki, MA_OWNED);
  505         MPASS(job->jobflags & KAIOCB_FINISHED);
  506 
  507         atomic_subtract_int(&num_queue_count, 1);
  508 
  509         ki->kaio_count--;
  510         MPASS(ki->kaio_count >= 0);
  511 
  512         TAILQ_REMOVE(&ki->kaio_done, job, plist);
  513         TAILQ_REMOVE(&ki->kaio_all, job, allist);
  514 
  515         lj = job->lio;
  516         if (lj) {
  517                 lj->lioj_count--;
  518                 lj->lioj_finished_count--;
  519 
  520                 if (lj->lioj_count == 0) {
  521                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  522                         /* lio is going away, we need to destroy any knotes */
  523                         knlist_delete(&lj->klist, curthread, 1);
  524                         PROC_LOCK(p);
  525                         sigqueue_take(&lj->lioj_ksi);
  526                         PROC_UNLOCK(p);
  527                         uma_zfree(aiolio_zone, lj);
  528                 }
  529         }
  530 
  531         /* job is going away, we need to destroy any knotes */
  532         knlist_delete(&job->klist, curthread, 1);
  533         PROC_LOCK(p);
  534         sigqueue_take(&job->ksi);
  535         PROC_UNLOCK(p);
  536 
  537         AIO_UNLOCK(ki);
  538 
  539         /*
  540          * The thread argument here is used to find the owning process
  541          * and is also passed to fo_close() which may pass it to various
  542          * places such as devsw close() routines.  Because of that, we
  543          * need a thread pointer from the process owning the job that is
  544          * persistent and won't disappear out from under us or move to
  545          * another process.
  546          *
  547          * Currently, all the callers of this function call it to remove
  548          * a kaiocb from the current process' job list either via a
  549          * syscall or due to the current process calling exit() or
  550          * execve().  Thus, we know that p == curproc.  We also know that
  551          * curthread can't exit since we are curthread.
  552          *
  553          * Therefore, we use curthread as the thread to pass to
  554          * knlist_delete().  This does mean that it is possible for the
  555          * thread pointer at close time to differ from the thread pointer
  556          * at open time, but this is already true of file descriptors in
  557          * a multithreaded process.
  558          */
  559         if (job->fd_file)
  560                 fdrop(job->fd_file, curthread);
  561         crfree(job->cred);
  562         uma_zfree(aiocb_zone, job);
  563         AIO_LOCK(ki);
  564 
  565         return (0);
  566 }
  567 
  568 static void
  569 aio_proc_rundown_exec(void *arg, struct proc *p,
  570     struct image_params *imgp __unused)
  571 {
  572         aio_proc_rundown(arg, p);
  573 }
  574 
  575 static int
  576 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
  577 {
  578         aio_cancel_fn_t *func;
  579         int cancelled;
  580 
  581         AIO_LOCK_ASSERT(ki, MA_OWNED);
  582         if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
  583                 return (0);
  584         MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
  585         job->jobflags |= KAIOCB_CANCELLED;
  586 
  587         func = job->cancel_fn;
  588 
  589         /*
  590          * If there is no cancel routine, just leave the job marked as
  591          * cancelled.  The job should be in active use by a caller who
  592          * should complete it normally or when it fails to install a
  593          * cancel routine.
  594          */
  595         if (func == NULL)
  596                 return (0);
  597 
  598         /*
  599          * Set the CANCELLING flag so that aio_complete() will defer
  600          * completions of this job.  This prevents the job from being
  601          * freed out from under the cancel callback.  After the
  602          * callback any deferred completion (whether from the callback
  603          * or any other source) will be completed.
  604          */
  605         job->jobflags |= KAIOCB_CANCELLING;
  606         AIO_UNLOCK(ki);
  607         func(job);
  608         AIO_LOCK(ki);
  609         job->jobflags &= ~KAIOCB_CANCELLING;
  610         if (job->jobflags & KAIOCB_FINISHED) {
  611                 cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
  612                 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
  613                 aio_bio_done_notify(p, job);
  614         } else {
  615                 /*
  616                  * The cancel callback might have scheduled an
  617                  * operation to cancel this request, but it is
  618                  * only counted as cancelled if the request is
  619                  * cancelled when the callback returns.
  620                  */
  621                 cancelled = 0;
  622         }
  623         return (cancelled);
  624 }
  625 
  626 /*
  627  * Rundown the jobs for a given process.
  628  */
  629 static void
  630 aio_proc_rundown(void *arg, struct proc *p)
  631 {
  632         struct kaioinfo *ki;
  633         struct aioliojob *lj;
  634         struct kaiocb *job, *jobn;
  635 
  636         KASSERT(curthread->td_proc == p,
  637             ("%s: called on non-curproc", __func__));
  638         ki = p->p_aioinfo;
  639         if (ki == NULL)
  640                 return;
  641 
  642         AIO_LOCK(ki);
  643         ki->kaio_flags |= KAIO_RUNDOWN;
  644 
  645 restart:
  646 
  647         /*
  648          * Try to cancel all pending requests. This code simulates
  649          * aio_cancel on all pending I/O requests.
  650          */
  651         TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
  652                 aio_cancel_job(p, ki, job);
  653         }
  654 
  655         /* Wait for all running I/O to be finished */
  656         if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
  657                 ki->kaio_flags |= KAIO_WAKEUP;
  658                 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
  659                 goto restart;
  660         }
  661 
  662         /* Free all completed I/O requests. */
  663         while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
  664                 aio_free_entry(job);
  665 
  666         while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
  667                 if (lj->lioj_count == 0) {
  668                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  669                         knlist_delete(&lj->klist, curthread, 1);
  670                         PROC_LOCK(p);
  671                         sigqueue_take(&lj->lioj_ksi);
  672                         PROC_UNLOCK(p);
  673                         uma_zfree(aiolio_zone, lj);
  674                 } else {
  675                         panic("LIO job not cleaned up: C:%d, FC:%d\n",
  676                             lj->lioj_count, lj->lioj_finished_count);
  677                 }
  678         }
  679         AIO_UNLOCK(ki);
  680         taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
  681         taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
  682         mtx_destroy(&ki->kaio_mtx);
  683         uma_zfree(kaio_zone, ki);
  684         p->p_aioinfo = NULL;
  685 }
  686 
  687 /*
  688  * Select a job to run (called by an AIO daemon).
  689  */
  690 static struct kaiocb *
  691 aio_selectjob(struct aioproc *aiop)
  692 {
  693         struct kaiocb *job;
  694         struct kaioinfo *ki;
  695         struct proc *userp;
  696 
  697         mtx_assert(&aio_job_mtx, MA_OWNED);
  698 restart:
  699         TAILQ_FOREACH(job, &aio_jobs, list) {
  700                 userp = job->userproc;
  701                 ki = userp->p_aioinfo;
  702 
  703                 if (ki->kaio_active_count < max_aio_per_proc) {
  704                         TAILQ_REMOVE(&aio_jobs, job, list);
  705                         if (!aio_clear_cancel_function(job))
  706                                 goto restart;
  707 
  708                         /* Account for currently active jobs. */
  709                         ki->kaio_active_count++;
  710                         break;
  711                 }
  712         }
  713         return (job);
  714 }
  715 
  716 /*
  717  * Move all data to a permanent storage device.  This code
  718  * simulates the fsync syscall.
  719  */
  720 static int
  721 aio_fsync_vnode(struct thread *td, struct vnode *vp)
  722 {
  723         struct mount *mp;
  724         int error;
  725 
  726         if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  727                 goto drop;
  728         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  729         if (vp->v_object != NULL) {
  730                 VM_OBJECT_WLOCK(vp->v_object);
  731                 vm_object_page_clean(vp->v_object, 0, 0, 0);
  732                 VM_OBJECT_WUNLOCK(vp->v_object);
  733         }
  734         error = VOP_FSYNC(vp, MNT_WAIT, td);
  735 
  736         VOP_UNLOCK(vp, 0);
  737         vn_finished_write(mp);
  738 drop:
  739         return (error);
  740 }
  741 
  742 /*
  743  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
  744  * does the I/O request for the non-bio version of the operations.  The normal
  745  * vn operations are used, and this code should work in all instances for every
  746  * type of file, including pipes, sockets, fifos, and regular files.
  747  *
  748  * XXX I don't think it works well for socket, pipe, and fifo.
  749  */
  750 static void
  751 aio_process_rw(struct kaiocb *job)
  752 {
  753         struct ucred *td_savedcred;
  754         struct thread *td;
  755         struct aiocb *cb;
  756         struct file *fp;
  757         struct uio auio;
  758         struct iovec aiov;
  759         ssize_t cnt;
  760         long msgsnd_st, msgsnd_end;
  761         long msgrcv_st, msgrcv_end;
  762         long oublock_st, oublock_end;
  763         long inblock_st, inblock_end;
  764         int error;
  765 
  766         KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
  767             job->uaiocb.aio_lio_opcode == LIO_WRITE,
  768             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  769 
  770         aio_switch_vmspace(job);
  771         td = curthread;
  772         td_savedcred = td->td_ucred;
  773         td->td_ucred = job->cred;
  774         cb = &job->uaiocb;
  775         fp = job->fd_file;
  776 
  777         aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
  778         aiov.iov_len = cb->aio_nbytes;
  779 
  780         auio.uio_iov = &aiov;
  781         auio.uio_iovcnt = 1;
  782         auio.uio_offset = cb->aio_offset;
  783         auio.uio_resid = cb->aio_nbytes;
  784         cnt = cb->aio_nbytes;
  785         auio.uio_segflg = UIO_USERSPACE;
  786         auio.uio_td = td;
  787 
  788         msgrcv_st = td->td_ru.ru_msgrcv;
  789         msgsnd_st = td->td_ru.ru_msgsnd;
  790         inblock_st = td->td_ru.ru_inblock;
  791         oublock_st = td->td_ru.ru_oublock;
  792 
  793         /*
  794          * aio_aqueue() acquires a reference to the file that is
  795          * released in aio_free_entry().
  796          */
  797         if (cb->aio_lio_opcode == LIO_READ) {
  798                 auio.uio_rw = UIO_READ;
  799                 if (auio.uio_resid == 0)
  800                         error = 0;
  801                 else
  802                         error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  803         } else {
  804                 if (fp->f_type == DTYPE_VNODE)
  805                         bwillwrite();
  806                 auio.uio_rw = UIO_WRITE;
  807                 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  808         }
  809         msgrcv_end = td->td_ru.ru_msgrcv;
  810         msgsnd_end = td->td_ru.ru_msgsnd;
  811         inblock_end = td->td_ru.ru_inblock;
  812         oublock_end = td->td_ru.ru_oublock;
  813 
  814         job->msgrcv = msgrcv_end - msgrcv_st;
  815         job->msgsnd = msgsnd_end - msgsnd_st;
  816         job->inblock = inblock_end - inblock_st;
  817         job->outblock = oublock_end - oublock_st;
  818 
  819         if ((error) && (auio.uio_resid != cnt)) {
  820                 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
  821                         error = 0;
  822                 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
  823                         PROC_LOCK(job->userproc);
  824                         kern_psignal(job->userproc, SIGPIPE);
  825                         PROC_UNLOCK(job->userproc);
  826                 }
  827         }
  828 
  829         cnt -= auio.uio_resid;
  830         td->td_ucred = td_savedcred;
  831         if (error)
  832                 aio_complete(job, -1, error);
  833         else
  834                 aio_complete(job, cnt, 0);
  835 }
  836 
  837 static void
  838 aio_process_sync(struct kaiocb *job)
  839 {
  840         struct thread *td = curthread;
  841         struct ucred *td_savedcred = td->td_ucred;
  842         struct file *fp = job->fd_file;
  843         int error = 0;
  844 
  845         KASSERT(job->uaiocb.aio_lio_opcode == LIO_SYNC,
  846             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  847 
  848         td->td_ucred = job->cred;
  849         if (fp->f_vnode != NULL)
  850                 error = aio_fsync_vnode(td, fp->f_vnode);
  851         td->td_ucred = td_savedcred;
  852         if (error)
  853                 aio_complete(job, -1, error);
  854         else
  855                 aio_complete(job, 0, 0);
  856 }
  857 
  858 static void
  859 aio_process_mlock(struct kaiocb *job)
  860 {
  861         struct aiocb *cb = &job->uaiocb;
  862         int error;
  863 
  864         KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
  865             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  866 
  867         aio_switch_vmspace(job);
  868         error = kern_mlock(job->userproc, job->cred,
  869             __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
  870         aio_complete(job, error != 0 ? -1 : 0, error);
  871 }
  872 
  873 static void
  874 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
  875 {
  876         struct aioliojob *lj;
  877         struct kaioinfo *ki;
  878         struct kaiocb *sjob, *sjobn;
  879         int lj_done;
  880         bool schedule_fsync;
  881 
  882         ki = userp->p_aioinfo;
  883         AIO_LOCK_ASSERT(ki, MA_OWNED);
  884         lj = job->lio;
  885         lj_done = 0;
  886         if (lj) {
  887                 lj->lioj_finished_count++;
  888                 if (lj->lioj_count == lj->lioj_finished_count)
  889                         lj_done = 1;
  890         }
  891         TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
  892         MPASS(job->jobflags & KAIOCB_FINISHED);
  893 
  894         if (ki->kaio_flags & KAIO_RUNDOWN)
  895                 goto notification_done;
  896 
  897         if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
  898             job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
  899                 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi);
  900 
  901         KNOTE_LOCKED(&job->klist, 1);
  902 
  903         if (lj_done) {
  904                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
  905                         lj->lioj_flags |= LIOJ_KEVENT_POSTED;
  906                         KNOTE_LOCKED(&lj->klist, 1);
  907                 }
  908                 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
  909                     == LIOJ_SIGNAL
  910                     && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
  911                         lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
  912                         aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
  913                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
  914                 }
  915         }
  916 
  917 notification_done:
  918         if (job->jobflags & KAIOCB_CHECKSYNC) {
  919                 schedule_fsync = false;
  920                 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
  921                         if (job->fd_file != sjob->fd_file ||
  922                             job->seqno >= sjob->seqno)
  923                                 continue;
  924                         if (--sjob->pending > 0)
  925                                 continue;
  926                         TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
  927                         if (!aio_clear_cancel_function_locked(sjob))
  928                                 continue;
  929                         TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
  930                         schedule_fsync = true;
  931                 }
  932                 if (schedule_fsync)
  933                         taskqueue_enqueue(taskqueue_aiod_kick,
  934                             &ki->kaio_sync_task);
  935         }
  936         if (ki->kaio_flags & KAIO_WAKEUP) {
  937                 ki->kaio_flags &= ~KAIO_WAKEUP;
  938                 wakeup(&userp->p_aioinfo);
  939         }
  940 }
  941 
  942 static void
  943 aio_schedule_fsync(void *context, int pending)
  944 {
  945         struct kaioinfo *ki;
  946         struct kaiocb *job;
  947 
  948         ki = context;
  949         AIO_LOCK(ki);
  950         while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
  951                 job = TAILQ_FIRST(&ki->kaio_syncready);
  952                 TAILQ_REMOVE(&ki->kaio_syncready, job, list);
  953                 AIO_UNLOCK(ki);
  954                 aio_schedule(job, aio_process_sync);
  955                 AIO_LOCK(ki);
  956         }
  957         AIO_UNLOCK(ki);
  958 }
  959 
  960 bool
  961 aio_cancel_cleared(struct kaiocb *job)
  962 {
  963         struct kaioinfo *ki;
  964 
  965         /*
  966          * The caller should hold the same queue lock held when
  967          * aio_clear_cancel_function() was called and set this flag
  968          * ensuring this check sees an up-to-date value.  However,
  969          * there is no way to assert that.
  970          */
  971         ki = job->userproc->p_aioinfo;
  972         return ((job->jobflags & KAIOCB_CLEARED) != 0);
  973 }
  974 
  975 static bool
  976 aio_clear_cancel_function_locked(struct kaiocb *job)
  977 {
  978 
  979         AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
  980         MPASS(job->cancel_fn != NULL);
  981         if (job->jobflags & KAIOCB_CANCELLING) {
  982                 job->jobflags |= KAIOCB_CLEARED;
  983                 return (false);
  984         }
  985         job->cancel_fn = NULL;
  986         return (true);
  987 }
  988 
  989 bool
  990 aio_clear_cancel_function(struct kaiocb *job)
  991 {
  992         struct kaioinfo *ki;
  993         bool ret;
  994 
  995         ki = job->userproc->p_aioinfo;
  996         AIO_LOCK(ki);
  997         ret = aio_clear_cancel_function_locked(job);
  998         AIO_UNLOCK(ki);
  999         return (ret);
 1000 }
 1001 
 1002 static bool
 1003 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
 1004 {
 1005 
 1006         AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
 1007         if (job->jobflags & KAIOCB_CANCELLED)
 1008                 return (false);
 1009         job->cancel_fn = func;
 1010         return (true);
 1011 }
 1012 
 1013 bool
 1014 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
 1015 {
 1016         struct kaioinfo *ki;
 1017         bool ret;
 1018 
 1019         ki = job->userproc->p_aioinfo;
 1020         AIO_LOCK(ki);
 1021         ret = aio_set_cancel_function_locked(job, func);
 1022         AIO_UNLOCK(ki);
 1023         return (ret);
 1024 }
 1025 
 1026 void
 1027 aio_complete(struct kaiocb *job, long status, int error)
 1028 {
 1029         struct kaioinfo *ki;
 1030         struct proc *userp;
 1031 
 1032         job->uaiocb._aiocb_private.error = error;
 1033         job->uaiocb._aiocb_private.status = status;
 1034 
 1035         userp = job->userproc;
 1036         ki = userp->p_aioinfo;
 1037 
 1038         AIO_LOCK(ki);
 1039         KASSERT(!(job->jobflags & KAIOCB_FINISHED),
 1040             ("duplicate aio_complete"));
 1041         job->jobflags |= KAIOCB_FINISHED;
 1042         if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
 1043                 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
 1044                 aio_bio_done_notify(userp, job);
 1045         }
 1046         AIO_UNLOCK(ki);
 1047 }
 1048 
 1049 void
 1050 aio_cancel(struct kaiocb *job)
 1051 {
 1052 
 1053         aio_complete(job, -1, ECANCELED);
 1054 }
 1055 
 1056 void
 1057 aio_switch_vmspace(struct kaiocb *job)
 1058 {
 1059 
 1060         vmspace_switch_aio(job->userproc->p_vmspace);
 1061 }
 1062 
 1063 /*
 1064  * The AIO daemon, most of the actual work is done in aio_process_*,
 1065  * but the setup (and address space mgmt) is done in this routine.
 1066  */
 1067 static void
 1068 aio_daemon(void *_id)
 1069 {
 1070         struct kaiocb *job;
 1071         struct aioproc *aiop;
 1072         struct kaioinfo *ki;
 1073         struct proc *p;
 1074         struct vmspace *myvm;
 1075         struct thread *td = curthread;
 1076         int id = (intptr_t)_id;
 1077 
 1078         /*
 1079          * Grab an extra reference on the daemon's vmspace so that it
 1080          * doesn't get freed by jobs that switch to a different
 1081          * vmspace.
 1082          */
 1083         p = td->td_proc;
 1084         myvm = vmspace_acquire_ref(p);
 1085 
 1086         KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
 1087 
 1088         /*
 1089          * Allocate and ready the aio control info.  There is one aiop structure
 1090          * per daemon.
 1091          */
 1092         aiop = uma_zalloc(aiop_zone, M_WAITOK);
 1093         aiop->aioproc = p;
 1094         aiop->aioprocflags = 0;
 1095 
 1096         /*
 1097          * Wakeup parent process.  (Parent sleeps to keep from blasting away
 1098          * and creating too many daemons.)
 1099          */
 1100         sema_post(&aio_newproc_sem);
 1101 
 1102         mtx_lock(&aio_job_mtx);
 1103         for (;;) {
 1104                 /*
 1105                  * Take daemon off of free queue
 1106                  */
 1107                 if (aiop->aioprocflags & AIOP_FREE) {
 1108                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1109                         aiop->aioprocflags &= ~AIOP_FREE;
 1110                 }
 1111 
 1112                 /*
 1113                  * Check for jobs.
 1114                  */
 1115                 while ((job = aio_selectjob(aiop)) != NULL) {
 1116                         mtx_unlock(&aio_job_mtx);
 1117 
 1118                         ki = job->userproc->p_aioinfo;
 1119                         job->handle_fn(job);
 1120 
 1121                         mtx_lock(&aio_job_mtx);
 1122                         /* Decrement the active job count. */
 1123                         ki->kaio_active_count--;
 1124                 }
 1125 
 1126                 /*
 1127                  * Disconnect from user address space.
 1128                  */
 1129                 if (p->p_vmspace != myvm) {
 1130                         mtx_unlock(&aio_job_mtx);
 1131                         vmspace_switch_aio(myvm);
 1132                         mtx_lock(&aio_job_mtx);
 1133                         /*
 1134                          * We have to restart to avoid race, we only sleep if
 1135                          * no job can be selected.
 1136                          */
 1137                         continue;
 1138                 }
 1139 
 1140                 mtx_assert(&aio_job_mtx, MA_OWNED);
 1141 
 1142                 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
 1143                 aiop->aioprocflags |= AIOP_FREE;
 1144 
 1145                 /*
 1146                  * If daemon is inactive for a long time, allow it to exit,
 1147                  * thereby freeing resources.
 1148                  */
 1149                 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
 1150                     aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
 1151                     (aiop->aioprocflags & AIOP_FREE) &&
 1152                     num_aio_procs > target_aio_procs)
 1153                         break;
 1154         }
 1155         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1156         num_aio_procs--;
 1157         mtx_unlock(&aio_job_mtx);
 1158         uma_zfree(aiop_zone, aiop);
 1159         free_unr(aiod_unr, id);
 1160         vmspace_free(myvm);
 1161 
 1162         KASSERT(p->p_vmspace == myvm,
 1163             ("AIOD: bad vmspace for exiting daemon"));
 1164         KASSERT(myvm->vm_refcnt > 1,
 1165             ("AIOD: bad vm refcnt for exiting daemon: %d", myvm->vm_refcnt));
 1166         kproc_exit(0);
 1167 }
 1168 
 1169 /*
 1170  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
 1171  * AIO daemon modifies its environment itself.
 1172  */
 1173 static int
 1174 aio_newproc(int *start)
 1175 {
 1176         int error;
 1177         struct proc *p;
 1178         int id;
 1179 
 1180         id = alloc_unr(aiod_unr);
 1181         error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
 1182                 RFNOWAIT, 0, "aiod%d", id);
 1183         if (error == 0) {
 1184                 /*
 1185                  * Wait until daemon is started.
 1186                  */
 1187                 sema_wait(&aio_newproc_sem);
 1188                 mtx_lock(&aio_job_mtx);
 1189                 num_aio_procs++;
 1190                 if (start != NULL)
 1191                         (*start)--;
 1192                 mtx_unlock(&aio_job_mtx);
 1193         } else {
 1194                 free_unr(aiod_unr, id);
 1195         }
 1196         return (error);
 1197 }
 1198 
 1199 /*
 1200  * Try the high-performance, low-overhead bio method for eligible
 1201  * VCHR devices.  This method doesn't use an aio helper thread, and
 1202  * thus has very low overhead.
 1203  *
 1204  * Assumes that the caller, aio_aqueue(), has incremented the file
 1205  * structure's reference count, preventing its deallocation for the
 1206  * duration of this call.
 1207  */
 1208 static int
 1209 aio_qbio(struct proc *p, struct kaiocb *job)
 1210 {
 1211         struct aiocb *cb;
 1212         struct file *fp;
 1213         struct bio *bp;
 1214         struct buf *pbuf;
 1215         struct vnode *vp;
 1216         struct cdevsw *csw;
 1217         struct cdev *dev;
 1218         struct kaioinfo *ki;
 1219         int error, ref, poff;
 1220         vm_prot_t prot;
 1221 
 1222         cb = &job->uaiocb;
 1223         fp = job->fd_file;
 1224 
 1225         if (!(cb->aio_lio_opcode == LIO_WRITE ||
 1226             cb->aio_lio_opcode == LIO_READ))
 1227                 return (-1);
 1228         if (fp == NULL || fp->f_type != DTYPE_VNODE)
 1229                 return (-1);
 1230 
 1231         vp = fp->f_vnode;
 1232         if (vp->v_type != VCHR)
 1233                 return (-1);
 1234         if (vp->v_bufobj.bo_bsize == 0)
 1235                 return (-1);
 1236         if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
 1237                 return (-1);
 1238 
 1239         ref = 0;
 1240         csw = devvn_refthread(vp, &dev, &ref);
 1241         if (csw == NULL)
 1242                 return (ENXIO);
 1243 
 1244         if ((csw->d_flags & D_DISK) == 0) {
 1245                 error = -1;
 1246                 goto unref;
 1247         }
 1248         if (cb->aio_nbytes > dev->si_iosize_max) {
 1249                 error = -1;
 1250                 goto unref;
 1251         }
 1252 
 1253         ki = p->p_aioinfo;
 1254         poff = (vm_offset_t)cb->aio_buf & PAGE_MASK;
 1255         if ((dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed) {
 1256                 if (cb->aio_nbytes > MAXPHYS) {
 1257                         error = -1;
 1258                         goto unref;
 1259                 }
 1260 
 1261                 pbuf = NULL;
 1262         } else {
 1263                 if (cb->aio_nbytes > MAXPHYS - poff) {
 1264                         error = -1;
 1265                         goto unref;
 1266                 }
 1267                 if (ki->kaio_buffer_count >= max_buf_aio) {
 1268                         error = EAGAIN;
 1269                         goto unref;
 1270                 }
 1271 
 1272                 job->pbuf = pbuf = (struct buf *)getpbuf(NULL);
 1273                 BUF_KERNPROC(pbuf);
 1274                 AIO_LOCK(ki);
 1275                 ki->kaio_buffer_count++;
 1276                 AIO_UNLOCK(ki);
 1277         }
 1278         job->bp = bp = g_alloc_bio();
 1279 
 1280         bp->bio_length = cb->aio_nbytes;
 1281         bp->bio_bcount = cb->aio_nbytes;
 1282         bp->bio_done = aio_biowakeup;
 1283         bp->bio_offset = cb->aio_offset;
 1284         bp->bio_cmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
 1285         bp->bio_dev = dev;
 1286         bp->bio_caller1 = (void *)job;
 1287 
 1288         prot = VM_PROT_READ;
 1289         if (cb->aio_lio_opcode == LIO_READ)
 1290                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 1291         job->npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 1292             (vm_offset_t)cb->aio_buf, bp->bio_length, prot, job->pages,
 1293             nitems(job->pages));
 1294         if (job->npages < 0) {
 1295                 error = EFAULT;
 1296                 goto doerror;
 1297         }
 1298         if (pbuf != NULL) {
 1299                 pmap_qenter((vm_offset_t)pbuf->b_data,
 1300                     job->pages, job->npages);
 1301                 bp->bio_data = pbuf->b_data + poff;
 1302                 atomic_add_int(&num_buf_aio, 1);
 1303         } else {
 1304                 bp->bio_ma = job->pages;
 1305                 bp->bio_ma_n = job->npages;
 1306                 bp->bio_ma_offset = poff;
 1307                 bp->bio_data = unmapped_buf;
 1308                 bp->bio_flags |= BIO_UNMAPPED;
 1309                 atomic_add_int(&num_unmapped_aio, 1);
 1310         }
 1311 
 1312         /* Perform transfer. */
 1313         csw->d_strategy(bp);
 1314         dev_relthread(dev, ref);
 1315         return (0);
 1316 
 1317 doerror:
 1318         if (pbuf != NULL) {
 1319                 AIO_LOCK(ki);
 1320                 ki->kaio_buffer_count--;
 1321                 AIO_UNLOCK(ki);
 1322                 relpbuf(pbuf, NULL);
 1323                 job->pbuf = NULL;
 1324         }
 1325         g_destroy_bio(bp);
 1326         job->bp = NULL;
 1327 unref:
 1328         dev_relthread(dev, ref);
 1329         return (error);
 1330 }
 1331 
 1332 #ifdef COMPAT_FREEBSD6
 1333 static int
 1334 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
 1335 {
 1336 
 1337         /*
 1338          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 1339          * supported by AIO with the old sigevent structure.
 1340          */
 1341         nsig->sigev_notify = osig->sigev_notify;
 1342         switch (nsig->sigev_notify) {
 1343         case SIGEV_NONE:
 1344                 break;
 1345         case SIGEV_SIGNAL:
 1346                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 1347                 break;
 1348         case SIGEV_KEVENT:
 1349                 nsig->sigev_notify_kqueue =
 1350                     osig->__sigev_u.__sigev_notify_kqueue;
 1351                 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
 1352                 break;
 1353         default:
 1354                 return (EINVAL);
 1355         }
 1356         return (0);
 1357 }
 1358 
 1359 static int
 1360 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 1361 {
 1362         struct oaiocb *ojob;
 1363         int error;
 1364 
 1365         bzero(kjob, sizeof(struct aiocb));
 1366         error = copyin(ujob, kjob, sizeof(struct oaiocb));
 1367         if (error)
 1368                 return (error);
 1369         ojob = (struct oaiocb *)kjob;
 1370         return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
 1371 }
 1372 #endif
 1373 
 1374 static int
 1375 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
 1376 {
 1377 
 1378         return (copyin(ujob, kjob, sizeof(struct aiocb)));
 1379 }
 1380 
 1381 static long
 1382 aiocb_fetch_status(struct aiocb *ujob)
 1383 {
 1384 
 1385         return (fuword(&ujob->_aiocb_private.status));
 1386 }
 1387 
 1388 static long
 1389 aiocb_fetch_error(struct aiocb *ujob)
 1390 {
 1391 
 1392         return (fuword(&ujob->_aiocb_private.error));
 1393 }
 1394 
 1395 static int
 1396 aiocb_store_status(struct aiocb *ujob, long status)
 1397 {
 1398 
 1399         return (suword(&ujob->_aiocb_private.status, status));
 1400 }
 1401 
 1402 static int
 1403 aiocb_store_error(struct aiocb *ujob, long error)
 1404 {
 1405 
 1406         return (suword(&ujob->_aiocb_private.error, error));
 1407 }
 1408 
 1409 static int
 1410 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
 1411 {
 1412 
 1413         return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
 1414 }
 1415 
 1416 static int
 1417 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 1418 {
 1419 
 1420         return (suword(ujobp, (long)ujob));
 1421 }
 1422 
 1423 static struct aiocb_ops aiocb_ops = {
 1424         .copyin = aiocb_copyin,
 1425         .fetch_status = aiocb_fetch_status,
 1426         .fetch_error = aiocb_fetch_error,
 1427         .store_status = aiocb_store_status,
 1428         .store_error = aiocb_store_error,
 1429         .store_kernelinfo = aiocb_store_kernelinfo,
 1430         .store_aiocb = aiocb_store_aiocb,
 1431 };
 1432 
 1433 #ifdef COMPAT_FREEBSD6
 1434 static struct aiocb_ops aiocb_ops_osigevent = {
 1435         .copyin = aiocb_copyin_old_sigevent,
 1436         .fetch_status = aiocb_fetch_status,
 1437         .fetch_error = aiocb_fetch_error,
 1438         .store_status = aiocb_store_status,
 1439         .store_error = aiocb_store_error,
 1440         .store_kernelinfo = aiocb_store_kernelinfo,
 1441         .store_aiocb = aiocb_store_aiocb,
 1442 };
 1443 #endif
 1444 
 1445 /*
 1446  * Queue a new AIO request.  Choosing either the threaded or direct bio VCHR
 1447  * technique is done in this code.
 1448  */
 1449 int
 1450 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
 1451     int type, struct aiocb_ops *ops)
 1452 {
 1453         struct proc *p = td->td_proc;
 1454         cap_rights_t rights;
 1455         struct file *fp;
 1456         struct kaiocb *job;
 1457         struct kaioinfo *ki;
 1458         struct kevent kev;
 1459         int opcode;
 1460         int error;
 1461         int fd, kqfd;
 1462         int jid;
 1463         u_short evflags;
 1464 
 1465         if (p->p_aioinfo == NULL)
 1466                 aio_init_aioinfo(p);
 1467 
 1468         ki = p->p_aioinfo;
 1469 
 1470         ops->store_status(ujob, -1);
 1471         ops->store_error(ujob, 0);
 1472         ops->store_kernelinfo(ujob, -1);
 1473 
 1474         if (num_queue_count >= max_queue_count ||
 1475             ki->kaio_count >= max_aio_queue_per_proc) {
 1476                 ops->store_error(ujob, EAGAIN);
 1477                 return (EAGAIN);
 1478         }
 1479 
 1480         job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 1481         knlist_init_mtx(&job->klist, AIO_MTX(ki));
 1482 
 1483         error = ops->copyin(ujob, &job->uaiocb);
 1484         if (error) {
 1485                 ops->store_error(ujob, error);
 1486                 uma_zfree(aiocb_zone, job);
 1487                 return (error);
 1488         }
 1489 
 1490         if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
 1491                 uma_zfree(aiocb_zone, job);
 1492                 return (EINVAL);
 1493         }
 1494 
 1495         if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
 1496             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
 1497             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
 1498             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
 1499                 ops->store_error(ujob, EINVAL);
 1500                 uma_zfree(aiocb_zone, job);
 1501                 return (EINVAL);
 1502         }
 1503 
 1504         if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1505              job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
 1506                 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
 1507                 uma_zfree(aiocb_zone, job);
 1508                 return (EINVAL);
 1509         }
 1510 
 1511         ksiginfo_init(&job->ksi);
 1512 
 1513         /* Save userspace address of the job info. */
 1514         job->ujob = ujob;
 1515 
 1516         /* Get the opcode. */
 1517         if (type != LIO_NOP)
 1518                 job->uaiocb.aio_lio_opcode = type;
 1519         opcode = job->uaiocb.aio_lio_opcode;
 1520 
 1521         /*
 1522          * Validate the opcode and fetch the file object for the specified
 1523          * file descriptor.
 1524          *
 1525          * XXXRW: Moved the opcode validation up here so that we don't
 1526          * retrieve a file descriptor without knowing what the capabiltity
 1527          * should be.
 1528          */
 1529         fd = job->uaiocb.aio_fildes;
 1530         switch (opcode) {
 1531         case LIO_WRITE:
 1532                 error = fget_write(td, fd,
 1533                     cap_rights_init(&rights, CAP_PWRITE), &fp);
 1534                 break;
 1535         case LIO_READ:
 1536                 error = fget_read(td, fd,
 1537                     cap_rights_init(&rights, CAP_PREAD), &fp);
 1538                 break;
 1539         case LIO_SYNC:
 1540                 error = fget(td, fd, cap_rights_init(&rights, CAP_FSYNC), &fp);
 1541                 break;
 1542         case LIO_MLOCK:
 1543                 fp = NULL;
 1544                 break;
 1545         case LIO_NOP:
 1546                 error = fget(td, fd, cap_rights_init(&rights), &fp);
 1547                 break;
 1548         default:
 1549                 error = EINVAL;
 1550         }
 1551         if (error) {
 1552                 uma_zfree(aiocb_zone, job);
 1553                 ops->store_error(ujob, error);
 1554                 return (error);
 1555         }
 1556 
 1557         if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
 1558                 error = EINVAL;
 1559                 goto aqueue_fail;
 1560         }
 1561 
 1562         if ((opcode == LIO_READ || opcode == LIO_WRITE) &&
 1563             job->uaiocb.aio_offset < 0 &&
 1564             (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
 1565                 error = EINVAL;
 1566                 goto aqueue_fail;
 1567         }
 1568 
 1569         job->fd_file = fp;
 1570 
 1571         mtx_lock(&aio_job_mtx);
 1572         jid = jobrefid++;
 1573         job->seqno = jobseqno++;
 1574         mtx_unlock(&aio_job_mtx);
 1575         error = ops->store_kernelinfo(ujob, jid);
 1576         if (error) {
 1577                 error = EINVAL;
 1578                 goto aqueue_fail;
 1579         }
 1580         job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
 1581 
 1582         if (opcode == LIO_NOP) {
 1583                 fdrop(fp, td);
 1584                 uma_zfree(aiocb_zone, job);
 1585                 return (0);
 1586         }
 1587 
 1588         if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
 1589                 goto no_kqueue;
 1590         evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
 1591         if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
 1592                 error = EINVAL;
 1593                 goto aqueue_fail;
 1594         }
 1595         kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
 1596         memset(&kev, 0, sizeof(kev));
 1597         kev.ident = (uintptr_t)job->ujob;
 1598         kev.filter = EVFILT_AIO;
 1599         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
 1600         kev.data = (intptr_t)job;
 1601         kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
 1602         error = kqfd_register(kqfd, &kev, td, 1);
 1603         if (error)
 1604                 goto aqueue_fail;
 1605 
 1606 no_kqueue:
 1607 
 1608         ops->store_error(ujob, EINPROGRESS);
 1609         job->uaiocb._aiocb_private.error = EINPROGRESS;
 1610         job->userproc = p;
 1611         job->cred = crhold(td->td_ucred);
 1612         job->jobflags = KAIOCB_QUEUEING;
 1613         job->lio = lj;
 1614 
 1615         if (opcode == LIO_MLOCK) {
 1616                 aio_schedule(job, aio_process_mlock);
 1617                 error = 0;
 1618         } else if (fp->f_ops->fo_aio_queue == NULL)
 1619                 error = aio_queue_file(fp, job);
 1620         else
 1621                 error = fo_aio_queue(fp, job);
 1622         if (error)
 1623                 goto aqueue_fail;
 1624 
 1625         AIO_LOCK(ki);
 1626         job->jobflags &= ~KAIOCB_QUEUEING;
 1627         TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
 1628         ki->kaio_count++;
 1629         if (lj)
 1630                 lj->lioj_count++;
 1631         atomic_add_int(&num_queue_count, 1);
 1632         if (job->jobflags & KAIOCB_FINISHED) {
 1633                 /*
 1634                  * The queue callback completed the request synchronously.
 1635                  * The bulk of the completion is deferred in that case
 1636                  * until this point.
 1637                  */
 1638                 aio_bio_done_notify(p, job);
 1639         } else
 1640                 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
 1641         AIO_UNLOCK(ki);
 1642         return (0);
 1643 
 1644 aqueue_fail:
 1645         knlist_delete(&job->klist, curthread, 0);
 1646         if (fp)
 1647                 fdrop(fp, td);
 1648         uma_zfree(aiocb_zone, job);
 1649         ops->store_error(ujob, error);
 1650         return (error);
 1651 }
 1652 
 1653 static void
 1654 aio_cancel_daemon_job(struct kaiocb *job)
 1655 {
 1656 
 1657         mtx_lock(&aio_job_mtx);
 1658         if (!aio_cancel_cleared(job))
 1659                 TAILQ_REMOVE(&aio_jobs, job, list);
 1660         mtx_unlock(&aio_job_mtx);
 1661         aio_cancel(job);
 1662 }
 1663 
 1664 void
 1665 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
 1666 {
 1667 
 1668         mtx_lock(&aio_job_mtx);
 1669         if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
 1670                 mtx_unlock(&aio_job_mtx);
 1671                 aio_cancel(job);
 1672                 return;
 1673         }
 1674         job->handle_fn = func;
 1675         TAILQ_INSERT_TAIL(&aio_jobs, job, list);
 1676         aio_kick_nowait(job->userproc);
 1677         mtx_unlock(&aio_job_mtx);
 1678 }
 1679 
 1680 static void
 1681 aio_cancel_sync(struct kaiocb *job)
 1682 {
 1683         struct kaioinfo *ki;
 1684 
 1685         ki = job->userproc->p_aioinfo;
 1686         AIO_LOCK(ki);
 1687         if (!aio_cancel_cleared(job))
 1688                 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
 1689         AIO_UNLOCK(ki);
 1690         aio_cancel(job);
 1691 }
 1692 
 1693 int
 1694 aio_queue_file(struct file *fp, struct kaiocb *job)
 1695 {
 1696         struct aioliojob *lj;
 1697         struct kaioinfo *ki;
 1698         struct kaiocb *job2;
 1699         struct vnode *vp;
 1700         struct mount *mp;
 1701         int error;
 1702         bool safe;
 1703 
 1704         lj = job->lio;
 1705         ki = job->userproc->p_aioinfo;
 1706         error = aio_qbio(job->userproc, job);
 1707         if (error >= 0)
 1708                 return (error);
 1709         safe = false;
 1710         if (fp->f_type == DTYPE_VNODE) {
 1711                 vp = fp->f_vnode;
 1712                 if (vp->v_type == VREG || vp->v_type == VDIR) {
 1713                         mp = fp->f_vnode->v_mount;
 1714                         if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
 1715                                 safe = true;
 1716                 }
 1717         }
 1718         if (!(safe || enable_aio_unsafe)) {
 1719                 counted_warning(&unsafe_warningcnt,
 1720                     "is attempting to use unsafe AIO requests");
 1721                 return (EOPNOTSUPP);
 1722         }
 1723 
 1724         switch (job->uaiocb.aio_lio_opcode) {
 1725         case LIO_READ:
 1726         case LIO_WRITE:
 1727                 aio_schedule(job, aio_process_rw);
 1728                 error = 0;
 1729                 break;
 1730         case LIO_SYNC:
 1731                 AIO_LOCK(ki);
 1732                 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
 1733                         if (job2->fd_file == job->fd_file &&
 1734                             job2->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1735                             job2->seqno < job->seqno) {
 1736                                 job2->jobflags |= KAIOCB_CHECKSYNC;
 1737                                 job->pending++;
 1738                         }
 1739                 }
 1740                 if (job->pending != 0) {
 1741                         if (!aio_set_cancel_function_locked(job,
 1742                                 aio_cancel_sync)) {
 1743                                 AIO_UNLOCK(ki);
 1744                                 aio_cancel(job);
 1745                                 return (0);
 1746                         }
 1747                         TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
 1748                         AIO_UNLOCK(ki);
 1749                         return (0);
 1750                 }
 1751                 AIO_UNLOCK(ki);
 1752                 aio_schedule(job, aio_process_sync);
 1753                 error = 0;
 1754                 break;
 1755         default:
 1756                 error = EINVAL;
 1757         }
 1758         return (error);
 1759 }
 1760 
 1761 static void
 1762 aio_kick_nowait(struct proc *userp)
 1763 {
 1764         struct kaioinfo *ki = userp->p_aioinfo;
 1765         struct aioproc *aiop;
 1766 
 1767         mtx_assert(&aio_job_mtx, MA_OWNED);
 1768         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1769                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1770                 aiop->aioprocflags &= ~AIOP_FREE;
 1771                 wakeup(aiop->aioproc);
 1772         } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
 1773             ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
 1774                 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
 1775         }
 1776 }
 1777 
 1778 static int
 1779 aio_kick(struct proc *userp)
 1780 {
 1781         struct kaioinfo *ki = userp->p_aioinfo;
 1782         struct aioproc *aiop;
 1783         int error, ret = 0;
 1784 
 1785         mtx_assert(&aio_job_mtx, MA_OWNED);
 1786 retryproc:
 1787         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1788                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1789                 aiop->aioprocflags &= ~AIOP_FREE;
 1790                 wakeup(aiop->aioproc);
 1791         } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
 1792             ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
 1793                 num_aio_resv_start++;
 1794                 mtx_unlock(&aio_job_mtx);
 1795                 error = aio_newproc(&num_aio_resv_start);
 1796                 mtx_lock(&aio_job_mtx);
 1797                 if (error) {
 1798                         num_aio_resv_start--;
 1799                         goto retryproc;
 1800                 }
 1801         } else {
 1802                 ret = -1;
 1803         }
 1804         return (ret);
 1805 }
 1806 
 1807 static void
 1808 aio_kick_helper(void *context, int pending)
 1809 {
 1810         struct proc *userp = context;
 1811 
 1812         mtx_lock(&aio_job_mtx);
 1813         while (--pending >= 0) {
 1814                 if (aio_kick(userp))
 1815                         break;
 1816         }
 1817         mtx_unlock(&aio_job_mtx);
 1818 }
 1819 
 1820 /*
 1821  * Support the aio_return system call, as a side-effect, kernel resources are
 1822  * released.
 1823  */
 1824 static int
 1825 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
 1826 {
 1827         struct proc *p = td->td_proc;
 1828         struct kaiocb *job;
 1829         struct kaioinfo *ki;
 1830         long status, error;
 1831 
 1832         ki = p->p_aioinfo;
 1833         if (ki == NULL)
 1834                 return (EINVAL);
 1835         AIO_LOCK(ki);
 1836         TAILQ_FOREACH(job, &ki->kaio_done, plist) {
 1837                 if (job->ujob == ujob)
 1838                         break;
 1839         }
 1840         if (job != NULL) {
 1841                 MPASS(job->jobflags & KAIOCB_FINISHED);
 1842                 status = job->uaiocb._aiocb_private.status;
 1843                 error = job->uaiocb._aiocb_private.error;
 1844                 td->td_retval[0] = status;
 1845                 td->td_ru.ru_oublock += job->outblock;
 1846                 td->td_ru.ru_inblock += job->inblock;
 1847                 td->td_ru.ru_msgsnd += job->msgsnd;
 1848                 td->td_ru.ru_msgrcv += job->msgrcv;
 1849                 aio_free_entry(job);
 1850                 AIO_UNLOCK(ki);
 1851                 ops->store_error(ujob, error);
 1852                 ops->store_status(ujob, status);
 1853         } else {
 1854                 error = EINVAL;
 1855                 AIO_UNLOCK(ki);
 1856         }
 1857         return (error);
 1858 }
 1859 
 1860 int
 1861 sys_aio_return(struct thread *td, struct aio_return_args *uap)
 1862 {
 1863 
 1864         return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
 1865 }
 1866 
 1867 /*
 1868  * Allow a process to wakeup when any of the I/O requests are completed.
 1869  */
 1870 static int
 1871 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
 1872     struct timespec *ts)
 1873 {
 1874         struct proc *p = td->td_proc;
 1875         struct timeval atv;
 1876         struct kaioinfo *ki;
 1877         struct kaiocb *firstjob, *job;
 1878         int error, i, timo;
 1879 
 1880         timo = 0;
 1881         if (ts) {
 1882                 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1883                         return (EINVAL);
 1884 
 1885                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 1886                 if (itimerfix(&atv))
 1887                         return (EINVAL);
 1888                 timo = tvtohz(&atv);
 1889         }
 1890 
 1891         ki = p->p_aioinfo;
 1892         if (ki == NULL)
 1893                 return (EAGAIN);
 1894 
 1895         if (njoblist == 0)
 1896                 return (0);
 1897 
 1898         AIO_LOCK(ki);
 1899         for (;;) {
 1900                 firstjob = NULL;
 1901                 error = 0;
 1902                 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
 1903                         for (i = 0; i < njoblist; i++) {
 1904                                 if (job->ujob == ujoblist[i]) {
 1905                                         if (firstjob == NULL)
 1906                                                 firstjob = job;
 1907                                         if (job->jobflags & KAIOCB_FINISHED)
 1908                                                 goto RETURN;
 1909                                 }
 1910                         }
 1911                 }
 1912                 /* All tasks were finished. */
 1913                 if (firstjob == NULL)
 1914                         break;
 1915 
 1916                 ki->kaio_flags |= KAIO_WAKEUP;
 1917                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 1918                     "aiospn", timo);
 1919                 if (error == ERESTART)
 1920                         error = EINTR;
 1921                 if (error)
 1922                         break;
 1923         }
 1924 RETURN:
 1925         AIO_UNLOCK(ki);
 1926         return (error);
 1927 }
 1928 
 1929 int
 1930 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 1931 {
 1932         struct timespec ts, *tsp;
 1933         struct aiocb **ujoblist;
 1934         int error;
 1935 
 1936         if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
 1937                 return (EINVAL);
 1938 
 1939         if (uap->timeout) {
 1940                 /* Get timespec struct. */
 1941                 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 1942                         return (error);
 1943                 tsp = &ts;
 1944         } else
 1945                 tsp = NULL;
 1946 
 1947         ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
 1948         error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
 1949         if (error == 0)
 1950                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 1951         free(ujoblist, M_AIOS);
 1952         return (error);
 1953 }
 1954 
 1955 /*
 1956  * aio_cancel cancels any non-bio aio operations not currently in progress.
 1957  */
 1958 int
 1959 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 1960 {
 1961         struct proc *p = td->td_proc;
 1962         struct kaioinfo *ki;
 1963         struct kaiocb *job, *jobn;
 1964         struct file *fp;
 1965         cap_rights_t rights;
 1966         int error;
 1967         int cancelled = 0;
 1968         int notcancelled = 0;
 1969         struct vnode *vp;
 1970 
 1971         /* Lookup file object. */
 1972         error = fget(td, uap->fd, cap_rights_init(&rights), &fp);
 1973         if (error)
 1974                 return (error);
 1975 
 1976         ki = p->p_aioinfo;
 1977         if (ki == NULL)
 1978                 goto done;
 1979 
 1980         if (fp->f_type == DTYPE_VNODE) {
 1981                 vp = fp->f_vnode;
 1982                 if (vn_isdisk(vp, &error)) {
 1983                         fdrop(fp, td);
 1984                         td->td_retval[0] = AIO_NOTCANCELED;
 1985                         return (0);
 1986                 }
 1987         }
 1988 
 1989         AIO_LOCK(ki);
 1990         TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
 1991                 if ((uap->fd == job->uaiocb.aio_fildes) &&
 1992                     ((uap->aiocbp == NULL) ||
 1993                      (uap->aiocbp == job->ujob))) {
 1994                         if (aio_cancel_job(p, ki, job)) {
 1995                                 cancelled++;
 1996                         } else {
 1997                                 notcancelled++;
 1998                         }
 1999                         if (uap->aiocbp != NULL)
 2000                                 break;
 2001                 }
 2002         }
 2003         AIO_UNLOCK(ki);
 2004 
 2005 done:
 2006         fdrop(fp, td);
 2007 
 2008         if (uap->aiocbp != NULL) {
 2009                 if (cancelled) {
 2010                         td->td_retval[0] = AIO_CANCELED;
 2011                         return (0);
 2012                 }
 2013         }
 2014 
 2015         if (notcancelled) {
 2016                 td->td_retval[0] = AIO_NOTCANCELED;
 2017                 return (0);
 2018         }
 2019 
 2020         if (cancelled) {
 2021                 td->td_retval[0] = AIO_CANCELED;
 2022                 return (0);
 2023         }
 2024 
 2025         td->td_retval[0] = AIO_ALLDONE;
 2026 
 2027         return (0);
 2028 }
 2029 
 2030 /*
 2031  * aio_error is implemented in the kernel level for compatibility purposes
 2032  * only.  For a user mode async implementation, it would be best to do it in
 2033  * a userland subroutine.
 2034  */
 2035 static int
 2036 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
 2037 {
 2038         struct proc *p = td->td_proc;
 2039         struct kaiocb *job;
 2040         struct kaioinfo *ki;
 2041         int status;
 2042 
 2043         ki = p->p_aioinfo;
 2044         if (ki == NULL) {
 2045                 td->td_retval[0] = EINVAL;
 2046                 return (0);
 2047         }
 2048 
 2049         AIO_LOCK(ki);
 2050         TAILQ_FOREACH(job, &ki->kaio_all, allist) {
 2051                 if (job->ujob == ujob) {
 2052                         if (job->jobflags & KAIOCB_FINISHED)
 2053                                 td->td_retval[0] =
 2054                                         job->uaiocb._aiocb_private.error;
 2055                         else
 2056                                 td->td_retval[0] = EINPROGRESS;
 2057                         AIO_UNLOCK(ki);
 2058                         return (0);
 2059                 }
 2060         }
 2061         AIO_UNLOCK(ki);
 2062 
 2063         /*
 2064          * Hack for failure of aio_aqueue.
 2065          */
 2066         status = ops->fetch_status(ujob);
 2067         if (status == -1) {
 2068                 td->td_retval[0] = ops->fetch_error(ujob);
 2069                 return (0);
 2070         }
 2071 
 2072         td->td_retval[0] = EINVAL;
 2073         return (0);
 2074 }
 2075 
 2076 int
 2077 sys_aio_error(struct thread *td, struct aio_error_args *uap)
 2078 {
 2079 
 2080         return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
 2081 }
 2082 
 2083 /* syscall - asynchronous read from a file (REALTIME) */
 2084 #ifdef COMPAT_FREEBSD6
 2085 int
 2086 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
 2087 {
 2088 
 2089         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2090             &aiocb_ops_osigevent));
 2091 }
 2092 #endif
 2093 
 2094 int
 2095 sys_aio_read(struct thread *td, struct aio_read_args *uap)
 2096 {
 2097 
 2098         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
 2099 }
 2100 
 2101 /* syscall - asynchronous write to a file (REALTIME) */
 2102 #ifdef COMPAT_FREEBSD6
 2103 int
 2104 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
 2105 {
 2106 
 2107         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2108             &aiocb_ops_osigevent));
 2109 }
 2110 #endif
 2111 
 2112 int
 2113 sys_aio_write(struct thread *td, struct aio_write_args *uap)
 2114 {
 2115 
 2116         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
 2117 }
 2118 
 2119 int
 2120 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
 2121 {
 2122 
 2123         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
 2124 }
 2125 
 2126 static int
 2127 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
 2128     struct aiocb **acb_list, int nent, struct sigevent *sig,
 2129     struct aiocb_ops *ops)
 2130 {
 2131         struct proc *p = td->td_proc;
 2132         struct aiocb *job;
 2133         struct kaioinfo *ki;
 2134         struct aioliojob *lj;
 2135         struct kevent kev;
 2136         int error;
 2137         int nagain, nerror;
 2138         int i;
 2139 
 2140         if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
 2141                 return (EINVAL);
 2142 
 2143         if (nent < 0 || nent > max_aio_queue_per_proc)
 2144                 return (EINVAL);
 2145 
 2146         if (p->p_aioinfo == NULL)
 2147                 aio_init_aioinfo(p);
 2148 
 2149         ki = p->p_aioinfo;
 2150 
 2151         lj = uma_zalloc(aiolio_zone, M_WAITOK);
 2152         lj->lioj_flags = 0;
 2153         lj->lioj_count = 0;
 2154         lj->lioj_finished_count = 0;
 2155         knlist_init_mtx(&lj->klist, AIO_MTX(ki));
 2156         ksiginfo_init(&lj->lioj_ksi);
 2157 
 2158         /*
 2159          * Setup signal.
 2160          */
 2161         if (sig && (mode == LIO_NOWAIT)) {
 2162                 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
 2163                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2164                         /* Assume only new style KEVENT */
 2165                         memset(&kev, 0, sizeof(kev));
 2166                         kev.filter = EVFILT_LIO;
 2167                         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 2168                         kev.ident = (uintptr_t)uacb_list; /* something unique */
 2169                         kev.data = (intptr_t)lj;
 2170                         /* pass user defined sigval data */
 2171                         kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
 2172                         error = kqfd_register(
 2173                             lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
 2174                         if (error) {
 2175                                 uma_zfree(aiolio_zone, lj);
 2176                                 return (error);
 2177                         }
 2178                 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
 2179                         ;
 2180                 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2181                            lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
 2182                                 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 2183                                         uma_zfree(aiolio_zone, lj);
 2184                                         return EINVAL;
 2185                                 }
 2186                                 lj->lioj_flags |= LIOJ_SIGNAL;
 2187                 } else {
 2188                         uma_zfree(aiolio_zone, lj);
 2189                         return EINVAL;
 2190                 }
 2191         }
 2192 
 2193         AIO_LOCK(ki);
 2194         TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 2195         /*
 2196          * Add extra aiocb count to avoid the lio to be freed
 2197          * by other threads doing aio_waitcomplete or aio_return,
 2198          * and prevent event from being sent until we have queued
 2199          * all tasks.
 2200          */
 2201         lj->lioj_count = 1;
 2202         AIO_UNLOCK(ki);
 2203 
 2204         /*
 2205          * Get pointers to the list of I/O requests.
 2206          */
 2207         nagain = 0;
 2208         nerror = 0;
 2209         for (i = 0; i < nent; i++) {
 2210                 job = acb_list[i];
 2211                 if (job != NULL) {
 2212                         error = aio_aqueue(td, job, lj, LIO_NOP, ops);
 2213                         if (error == EAGAIN)
 2214                                 nagain++;
 2215                         else if (error != 0)
 2216                                 nerror++;
 2217                 }
 2218         }
 2219 
 2220         error = 0;
 2221         AIO_LOCK(ki);
 2222         if (mode == LIO_WAIT) {
 2223                 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
 2224                         ki->kaio_flags |= KAIO_WAKEUP;
 2225                         error = msleep(&p->p_aioinfo, AIO_MTX(ki),
 2226                             PRIBIO | PCATCH, "aiospn", 0);
 2227                         if (error == ERESTART)
 2228                                 error = EINTR;
 2229                         if (error)
 2230                                 break;
 2231                 }
 2232         } else {
 2233                 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
 2234                         if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2235                                 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 2236                                 KNOTE_LOCKED(&lj->klist, 1);
 2237                         }
 2238                         if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
 2239                             == LIOJ_SIGNAL
 2240                             && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2241                             lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 2242                                 aio_sendsig(p, &lj->lioj_signal,
 2243                                             &lj->lioj_ksi);
 2244                                 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2245                         }
 2246                 }
 2247         }
 2248         lj->lioj_count--;
 2249         if (lj->lioj_count == 0) {
 2250                 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 2251                 knlist_delete(&lj->klist, curthread, 1);
 2252                 PROC_LOCK(p);
 2253                 sigqueue_take(&lj->lioj_ksi);
 2254                 PROC_UNLOCK(p);
 2255                 AIO_UNLOCK(ki);
 2256                 uma_zfree(aiolio_zone, lj);
 2257         } else
 2258                 AIO_UNLOCK(ki);
 2259 
 2260         if (nerror)
 2261                 return (EIO);
 2262         else if (nagain)
 2263                 return (EAGAIN);
 2264         else
 2265                 return (error);
 2266 }
 2267 
 2268 /* syscall - list directed I/O (REALTIME) */
 2269 #ifdef COMPAT_FREEBSD6
 2270 int
 2271 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
 2272 {
 2273         struct aiocb **acb_list;
 2274         struct sigevent *sigp, sig;
 2275         struct osigevent osig;
 2276         int error, nent;
 2277 
 2278         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2279                 return (EINVAL);
 2280 
 2281         nent = uap->nent;
 2282         if (nent < 0 || nent > max_aio_queue_per_proc)
 2283                 return (EINVAL);
 2284 
 2285         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2286                 error = copyin(uap->sig, &osig, sizeof(osig));
 2287                 if (error)
 2288                         return (error);
 2289                 error = convert_old_sigevent(&osig, &sig);
 2290                 if (error)
 2291                         return (error);
 2292                 sigp = &sig;
 2293         } else
 2294                 sigp = NULL;
 2295 
 2296         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2297         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2298         if (error == 0)
 2299                 error = kern_lio_listio(td, uap->mode,
 2300                     (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2301                     &aiocb_ops_osigevent);
 2302         free(acb_list, M_LIO);
 2303         return (error);
 2304 }
 2305 #endif
 2306 
 2307 /* syscall - list directed I/O (REALTIME) */
 2308 int
 2309 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
 2310 {
 2311         struct aiocb **acb_list;
 2312         struct sigevent *sigp, sig;
 2313         int error, nent;
 2314 
 2315         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2316                 return (EINVAL);
 2317 
 2318         nent = uap->nent;
 2319         if (nent < 0 || nent > max_aio_queue_per_proc)
 2320                 return (EINVAL);
 2321 
 2322         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2323                 error = copyin(uap->sig, &sig, sizeof(sig));
 2324                 if (error)
 2325                         return (error);
 2326                 sigp = &sig;
 2327         } else
 2328                 sigp = NULL;
 2329 
 2330         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2331         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2332         if (error == 0)
 2333                 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
 2334                     nent, sigp, &aiocb_ops);
 2335         free(acb_list, M_LIO);
 2336         return (error);
 2337 }
 2338 
 2339 static void
 2340 aio_biowakeup(struct bio *bp)
 2341 {
 2342         struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
 2343         struct proc *userp;
 2344         struct kaioinfo *ki;
 2345         size_t nbytes;
 2346         int error, nblks;
 2347 
 2348         /* Release mapping into kernel space. */
 2349         userp = job->userproc;
 2350         ki = userp->p_aioinfo;
 2351         if (job->pbuf) {
 2352                 pmap_qremove((vm_offset_t)job->pbuf->b_data, job->npages);
 2353                 relpbuf(job->pbuf, NULL);
 2354                 job->pbuf = NULL;
 2355                 atomic_subtract_int(&num_buf_aio, 1);
 2356                 AIO_LOCK(ki);
 2357                 ki->kaio_buffer_count--;
 2358                 AIO_UNLOCK(ki);
 2359         } else
 2360                 atomic_subtract_int(&num_unmapped_aio, 1);
 2361         vm_page_unhold_pages(job->pages, job->npages);
 2362 
 2363         bp = job->bp;
 2364         job->bp = NULL;
 2365         nbytes = job->uaiocb.aio_nbytes - bp->bio_resid;
 2366         error = 0;
 2367         if (bp->bio_flags & BIO_ERROR)
 2368                 error = bp->bio_error;
 2369         nblks = btodb(nbytes);
 2370         if (job->uaiocb.aio_lio_opcode == LIO_WRITE)
 2371                 job->outblock += nblks;
 2372         else
 2373                 job->inblock += nblks;
 2374 
 2375         if (error)
 2376                 aio_complete(job, -1, error);
 2377         else
 2378                 aio_complete(job, nbytes, 0);
 2379 
 2380         g_destroy_bio(bp);
 2381 }
 2382 
 2383 /* syscall - wait for the next completion of an aio request */
 2384 static int
 2385 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
 2386     struct timespec *ts, struct aiocb_ops *ops)
 2387 {
 2388         struct proc *p = td->td_proc;
 2389         struct timeval atv;
 2390         struct kaioinfo *ki;
 2391         struct kaiocb *job;
 2392         struct aiocb *ujob;
 2393         long error, status;
 2394         int timo;
 2395 
 2396         ops->store_aiocb(ujobp, NULL);
 2397 
 2398         if (ts == NULL) {
 2399                 timo = 0;
 2400         } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
 2401                 timo = -1;
 2402         } else {
 2403                 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
 2404                         return (EINVAL);
 2405 
 2406                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 2407                 if (itimerfix(&atv))
 2408                         return (EINVAL);
 2409                 timo = tvtohz(&atv);
 2410         }
 2411 
 2412         if (p->p_aioinfo == NULL)
 2413                 aio_init_aioinfo(p);
 2414         ki = p->p_aioinfo;
 2415 
 2416         error = 0;
 2417         job = NULL;
 2418         AIO_LOCK(ki);
 2419         while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
 2420                 if (timo == -1) {
 2421                         error = EWOULDBLOCK;
 2422                         break;
 2423                 }
 2424                 ki->kaio_flags |= KAIO_WAKEUP;
 2425                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2426                     "aiowc", timo);
 2427                 if (timo && error == ERESTART)
 2428                         error = EINTR;
 2429                 if (error)
 2430                         break;
 2431         }
 2432 
 2433         if (job != NULL) {
 2434                 MPASS(job->jobflags & KAIOCB_FINISHED);
 2435                 ujob = job->ujob;
 2436                 status = job->uaiocb._aiocb_private.status;
 2437                 error = job->uaiocb._aiocb_private.error;
 2438                 td->td_retval[0] = status;
 2439                 td->td_ru.ru_oublock += job->outblock;
 2440                 td->td_ru.ru_inblock += job->inblock;
 2441                 td->td_ru.ru_msgsnd += job->msgsnd;
 2442                 td->td_ru.ru_msgrcv += job->msgrcv;
 2443                 aio_free_entry(job);
 2444                 AIO_UNLOCK(ki);
 2445                 ops->store_aiocb(ujobp, ujob);
 2446                 ops->store_error(ujob, error);
 2447                 ops->store_status(ujob, status);
 2448         } else
 2449                 AIO_UNLOCK(ki);
 2450 
 2451         return (error);
 2452 }
 2453 
 2454 int
 2455 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 2456 {
 2457         struct timespec ts, *tsp;
 2458         int error;
 2459 
 2460         if (uap->timeout) {
 2461                 /* Get timespec struct. */
 2462                 error = copyin(uap->timeout, &ts, sizeof(ts));
 2463                 if (error)
 2464                         return (error);
 2465                 tsp = &ts;
 2466         } else
 2467                 tsp = NULL;
 2468 
 2469         return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
 2470 }
 2471 
 2472 static int
 2473 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
 2474     struct aiocb_ops *ops)
 2475 {
 2476 
 2477         if (op != O_SYNC) /* XXX lack of O_DSYNC */
 2478                 return (EINVAL);
 2479         return (aio_aqueue(td, ujob, NULL, LIO_SYNC, ops));
 2480 }
 2481 
 2482 int
 2483 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 2484 {
 2485 
 2486         return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
 2487 }
 2488 
 2489 /* kqueue attach function */
 2490 static int
 2491 filt_aioattach(struct knote *kn)
 2492 {
 2493         struct kaiocb *job = (struct kaiocb *)kn->kn_sdata;
 2494 
 2495         /*
 2496          * The job pointer must be validated before using it, so
 2497          * registration is restricted to the kernel; the user cannot
 2498          * set EV_FLAG1.
 2499          */
 2500         if ((kn->kn_flags & EV_FLAG1) == 0)
 2501                 return (EPERM);
 2502         kn->kn_ptr.p_aio = job;
 2503         kn->kn_flags &= ~EV_FLAG1;
 2504 
 2505         knlist_add(&job->klist, kn, 0);
 2506 
 2507         return (0);
 2508 }
 2509 
 2510 /* kqueue detach function */
 2511 static void
 2512 filt_aiodetach(struct knote *kn)
 2513 {
 2514         struct knlist *knl;
 2515 
 2516         knl = &kn->kn_ptr.p_aio->klist;
 2517         knl->kl_lock(knl->kl_lockarg);
 2518         if (!knlist_empty(knl))
 2519                 knlist_remove(knl, kn, 1);
 2520         knl->kl_unlock(knl->kl_lockarg);
 2521 }
 2522 
 2523 /* kqueue filter function */
 2524 /*ARGSUSED*/
 2525 static int
 2526 filt_aio(struct knote *kn, long hint)
 2527 {
 2528         struct kaiocb *job = kn->kn_ptr.p_aio;
 2529 
 2530         kn->kn_data = job->uaiocb._aiocb_private.error;
 2531         if (!(job->jobflags & KAIOCB_FINISHED))
 2532                 return (0);
 2533         kn->kn_flags |= EV_EOF;
 2534         return (1);
 2535 }
 2536 
 2537 /* kqueue attach function */
 2538 static int
 2539 filt_lioattach(struct knote *kn)
 2540 {
 2541         struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
 2542 
 2543         /*
 2544          * The aioliojob pointer must be validated before using it, so
 2545          * registration is restricted to the kernel; the user cannot
 2546          * set EV_FLAG1.
 2547          */
 2548         if ((kn->kn_flags & EV_FLAG1) == 0)
 2549                 return (EPERM);
 2550         kn->kn_ptr.p_lio = lj;
 2551         kn->kn_flags &= ~EV_FLAG1;
 2552 
 2553         knlist_add(&lj->klist, kn, 0);
 2554 
 2555         return (0);
 2556 }
 2557 
 2558 /* kqueue detach function */
 2559 static void
 2560 filt_liodetach(struct knote *kn)
 2561 {
 2562         struct knlist *knl;
 2563 
 2564         knl = &kn->kn_ptr.p_lio->klist;
 2565         knl->kl_lock(knl->kl_lockarg);
 2566         if (!knlist_empty(knl))
 2567                 knlist_remove(knl, kn, 1);
 2568         knl->kl_unlock(knl->kl_lockarg);
 2569 }
 2570 
 2571 /* kqueue filter function */
 2572 /*ARGSUSED*/
 2573 static int
 2574 filt_lio(struct knote *kn, long hint)
 2575 {
 2576         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2577 
 2578         return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
 2579 }
 2580 
 2581 #ifdef COMPAT_FREEBSD32
 2582 #include <sys/mount.h>
 2583 #include <sys/socket.h>
 2584 #include <compat/freebsd32/freebsd32.h>
 2585 #include <compat/freebsd32/freebsd32_proto.h>
 2586 #include <compat/freebsd32/freebsd32_signal.h>
 2587 #include <compat/freebsd32/freebsd32_syscall.h>
 2588 #include <compat/freebsd32/freebsd32_util.h>
 2589 
 2590 struct __aiocb_private32 {
 2591         int32_t status;
 2592         int32_t error;
 2593         uint32_t kernelinfo;
 2594 };
 2595 
 2596 #ifdef COMPAT_FREEBSD6
 2597 typedef struct oaiocb32 {
 2598         int     aio_fildes;             /* File descriptor */
 2599         uint64_t aio_offset __packed;   /* File offset for I/O */
 2600         uint32_t aio_buf;               /* I/O buffer in process space */
 2601         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2602         struct  osigevent32 aio_sigevent; /* Signal to deliver */
 2603         int     aio_lio_opcode;         /* LIO opcode */
 2604         int     aio_reqprio;            /* Request priority -- ignored */
 2605         struct  __aiocb_private32 _aiocb_private;
 2606 } oaiocb32_t;
 2607 #endif
 2608 
 2609 typedef struct aiocb32 {
 2610         int32_t aio_fildes;             /* File descriptor */
 2611         uint64_t aio_offset __packed;   /* File offset for I/O */
 2612         uint32_t aio_buf;               /* I/O buffer in process space */
 2613         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2614         int     __spare__[2];
 2615         uint32_t __spare2__;
 2616         int     aio_lio_opcode;         /* LIO opcode */
 2617         int     aio_reqprio;            /* Request priority -- ignored */
 2618         struct  __aiocb_private32 _aiocb_private;
 2619         struct  sigevent32 aio_sigevent;        /* Signal to deliver */
 2620 } aiocb32_t;
 2621 
 2622 #ifdef COMPAT_FREEBSD6
 2623 static int
 2624 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
 2625 {
 2626 
 2627         /*
 2628          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 2629          * supported by AIO with the old sigevent structure.
 2630          */
 2631         CP(*osig, *nsig, sigev_notify);
 2632         switch (nsig->sigev_notify) {
 2633         case SIGEV_NONE:
 2634                 break;
 2635         case SIGEV_SIGNAL:
 2636                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 2637                 break;
 2638         case SIGEV_KEVENT:
 2639                 nsig->sigev_notify_kqueue =
 2640                     osig->__sigev_u.__sigev_notify_kqueue;
 2641                 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
 2642                 break;
 2643         default:
 2644                 return (EINVAL);
 2645         }
 2646         return (0);
 2647 }
 2648 
 2649 static int
 2650 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 2651 {
 2652         struct oaiocb32 job32;
 2653         int error;
 2654 
 2655         bzero(kjob, sizeof(struct aiocb));
 2656         error = copyin(ujob, &job32, sizeof(job32));
 2657         if (error)
 2658                 return (error);
 2659 
 2660         CP(job32, *kjob, aio_fildes);
 2661         CP(job32, *kjob, aio_offset);
 2662         PTRIN_CP(job32, *kjob, aio_buf);
 2663         CP(job32, *kjob, aio_nbytes);
 2664         CP(job32, *kjob, aio_lio_opcode);
 2665         CP(job32, *kjob, aio_reqprio);
 2666         CP(job32, *kjob, _aiocb_private.status);
 2667         CP(job32, *kjob, _aiocb_private.error);
 2668         PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 2669         return (convert_old_sigevent32(&job32.aio_sigevent,
 2670             &kjob->aio_sigevent));
 2671 }
 2672 #endif
 2673 
 2674 static int
 2675 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
 2676 {
 2677         struct aiocb32 job32;
 2678         int error;
 2679 
 2680         error = copyin(ujob, &job32, sizeof(job32));
 2681         if (error)
 2682                 return (error);
 2683         CP(job32, *kjob, aio_fildes);
 2684         CP(job32, *kjob, aio_offset);
 2685         PTRIN_CP(job32, *kjob, aio_buf);
 2686         CP(job32, *kjob, aio_nbytes);
 2687         CP(job32, *kjob, aio_lio_opcode);
 2688         CP(job32, *kjob, aio_reqprio);
 2689         CP(job32, *kjob, _aiocb_private.status);
 2690         CP(job32, *kjob, _aiocb_private.error);
 2691         PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 2692         return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
 2693 }
 2694 
 2695 static long
 2696 aiocb32_fetch_status(struct aiocb *ujob)
 2697 {
 2698         struct aiocb32 *ujob32;
 2699 
 2700         ujob32 = (struct aiocb32 *)ujob;
 2701         return (fuword32(&ujob32->_aiocb_private.status));
 2702 }
 2703 
 2704 static long
 2705 aiocb32_fetch_error(struct aiocb *ujob)
 2706 {
 2707         struct aiocb32 *ujob32;
 2708 
 2709         ujob32 = (struct aiocb32 *)ujob;
 2710         return (fuword32(&ujob32->_aiocb_private.error));
 2711 }
 2712 
 2713 static int
 2714 aiocb32_store_status(struct aiocb *ujob, long status)
 2715 {
 2716         struct aiocb32 *ujob32;
 2717 
 2718         ujob32 = (struct aiocb32 *)ujob;
 2719         return (suword32(&ujob32->_aiocb_private.status, status));
 2720 }
 2721 
 2722 static int
 2723 aiocb32_store_error(struct aiocb *ujob, long error)
 2724 {
 2725         struct aiocb32 *ujob32;
 2726 
 2727         ujob32 = (struct aiocb32 *)ujob;
 2728         return (suword32(&ujob32->_aiocb_private.error, error));
 2729 }
 2730 
 2731 static int
 2732 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
 2733 {
 2734         struct aiocb32 *ujob32;
 2735 
 2736         ujob32 = (struct aiocb32 *)ujob;
 2737         return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
 2738 }
 2739 
 2740 static int
 2741 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 2742 {
 2743 
 2744         return (suword32(ujobp, (long)ujob));
 2745 }
 2746 
 2747 static struct aiocb_ops aiocb32_ops = {
 2748         .copyin = aiocb32_copyin,
 2749         .fetch_status = aiocb32_fetch_status,
 2750         .fetch_error = aiocb32_fetch_error,
 2751         .store_status = aiocb32_store_status,
 2752         .store_error = aiocb32_store_error,
 2753         .store_kernelinfo = aiocb32_store_kernelinfo,
 2754         .store_aiocb = aiocb32_store_aiocb,
 2755 };
 2756 
 2757 #ifdef COMPAT_FREEBSD6
 2758 static struct aiocb_ops aiocb32_ops_osigevent = {
 2759         .copyin = aiocb32_copyin_old_sigevent,
 2760         .fetch_status = aiocb32_fetch_status,
 2761         .fetch_error = aiocb32_fetch_error,
 2762         .store_status = aiocb32_store_status,
 2763         .store_error = aiocb32_store_error,
 2764         .store_kernelinfo = aiocb32_store_kernelinfo,
 2765         .store_aiocb = aiocb32_store_aiocb,
 2766 };
 2767 #endif
 2768 
 2769 int
 2770 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
 2771 {
 2772 
 2773         return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2774 }
 2775 
 2776 int
 2777 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
 2778 {
 2779         struct timespec32 ts32;
 2780         struct timespec ts, *tsp;
 2781         struct aiocb **ujoblist;
 2782         uint32_t *ujoblist32;
 2783         int error, i;
 2784 
 2785         if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
 2786                 return (EINVAL);
 2787 
 2788         if (uap->timeout) {
 2789                 /* Get timespec struct. */
 2790                 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
 2791                         return (error);
 2792                 CP(ts32, ts, tv_sec);
 2793                 CP(ts32, ts, tv_nsec);
 2794                 tsp = &ts;
 2795         } else
 2796                 tsp = NULL;
 2797 
 2798         ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
 2799         ujoblist32 = (uint32_t *)ujoblist;
 2800         error = copyin(uap->aiocbp, ujoblist32, uap->nent *
 2801             sizeof(ujoblist32[0]));
 2802         if (error == 0) {
 2803                 for (i = uap->nent - 1; i >= 0; i--)
 2804                         ujoblist[i] = PTRIN(ujoblist32[i]);
 2805 
 2806                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2807         }
 2808         free(ujoblist, M_AIOS);
 2809         return (error);
 2810 }
 2811 
 2812 int
 2813 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
 2814 {
 2815 
 2816         return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2817 }
 2818 
 2819 #ifdef COMPAT_FREEBSD6
 2820 int
 2821 freebsd6_freebsd32_aio_read(struct thread *td,
 2822     struct freebsd6_freebsd32_aio_read_args *uap)
 2823 {
 2824 
 2825         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2826             &aiocb32_ops_osigevent));
 2827 }
 2828 #endif
 2829 
 2830 int
 2831 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
 2832 {
 2833 
 2834         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2835             &aiocb32_ops));
 2836 }
 2837 
 2838 #ifdef COMPAT_FREEBSD6
 2839 int
 2840 freebsd6_freebsd32_aio_write(struct thread *td,
 2841     struct freebsd6_freebsd32_aio_write_args *uap)
 2842 {
 2843 
 2844         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2845             &aiocb32_ops_osigevent));
 2846 }
 2847 #endif
 2848 
 2849 int
 2850 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
 2851 {
 2852 
 2853         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2854             &aiocb32_ops));
 2855 }
 2856 
 2857 int
 2858 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
 2859 {
 2860 
 2861         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
 2862             &aiocb32_ops));
 2863 }
 2864 
 2865 int
 2866 freebsd32_aio_waitcomplete(struct thread *td,
 2867     struct freebsd32_aio_waitcomplete_args *uap)
 2868 {
 2869         struct timespec32 ts32;
 2870         struct timespec ts, *tsp;
 2871         int error;
 2872 
 2873         if (uap->timeout) {
 2874                 /* Get timespec struct. */
 2875                 error = copyin(uap->timeout, &ts32, sizeof(ts32));
 2876                 if (error)
 2877                         return (error);
 2878                 CP(ts32, ts, tv_sec);
 2879                 CP(ts32, ts, tv_nsec);
 2880                 tsp = &ts;
 2881         } else
 2882                 tsp = NULL;
 2883 
 2884         return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
 2885             &aiocb32_ops));
 2886 }
 2887 
 2888 int
 2889 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
 2890 {
 2891 
 2892         return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
 2893             &aiocb32_ops));
 2894 }
 2895 
 2896 #ifdef COMPAT_FREEBSD6
 2897 int
 2898 freebsd6_freebsd32_lio_listio(struct thread *td,
 2899     struct freebsd6_freebsd32_lio_listio_args *uap)
 2900 {
 2901         struct aiocb **acb_list;
 2902         struct sigevent *sigp, sig;
 2903         struct osigevent32 osig;
 2904         uint32_t *acb_list32;
 2905         int error, i, nent;
 2906 
 2907         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2908                 return (EINVAL);
 2909 
 2910         nent = uap->nent;
 2911         if (nent < 0 || nent > max_aio_queue_per_proc)
 2912                 return (EINVAL);
 2913 
 2914         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2915                 error = copyin(uap->sig, &osig, sizeof(osig));
 2916                 if (error)
 2917                         return (error);
 2918                 error = convert_old_sigevent32(&osig, &sig);
 2919                 if (error)
 2920                         return (error);
 2921                 sigp = &sig;
 2922         } else
 2923                 sigp = NULL;
 2924 
 2925         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 2926         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 2927         if (error) {
 2928                 free(acb_list32, M_LIO);
 2929                 return (error);
 2930         }
 2931         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2932         for (i = 0; i < nent; i++)
 2933                 acb_list[i] = PTRIN(acb_list32[i]);
 2934         free(acb_list32, M_LIO);
 2935 
 2936         error = kern_lio_listio(td, uap->mode,
 2937             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2938             &aiocb32_ops_osigevent);
 2939         free(acb_list, M_LIO);
 2940         return (error);
 2941 }
 2942 #endif
 2943 
 2944 int
 2945 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
 2946 {
 2947         struct aiocb **acb_list;
 2948         struct sigevent *sigp, sig;
 2949         struct sigevent32 sig32;
 2950         uint32_t *acb_list32;
 2951         int error, i, nent;
 2952 
 2953         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2954                 return (EINVAL);
 2955 
 2956         nent = uap->nent;
 2957         if (nent < 0 || nent > max_aio_queue_per_proc)
 2958                 return (EINVAL);
 2959 
 2960         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2961                 error = copyin(uap->sig, &sig32, sizeof(sig32));
 2962                 if (error)
 2963                         return (error);
 2964                 error = convert_sigevent32(&sig32, &sig);
 2965                 if (error)
 2966                         return (error);
 2967                 sigp = &sig;
 2968         } else
 2969                 sigp = NULL;
 2970 
 2971         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 2972         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 2973         if (error) {
 2974                 free(acb_list32, M_LIO);
 2975                 return (error);
 2976         }
 2977         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2978         for (i = 0; i < nent; i++)
 2979                 acb_list[i] = PTRIN(acb_list32[i]);
 2980         free(acb_list32, M_LIO);
 2981 
 2982         error = kern_lio_listio(td, uap->mode,
 2983             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2984             &aiocb32_ops);
 2985         free(acb_list, M_LIO);
 2986         return (error);
 2987 }
 2988 
 2989 #endif

Cache object: 986ffb0543a4ae64da7b1c7344074880


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.