The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_aio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. John S. Dyson's name may not be used to endorse or promote products
   12  *    derived from this software without specific prior written permission.
   13  *
   14  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
   15  * bad that happens because of using this software isn't the responsibility
   16  * of the author.  This software is distributed AS-IS.
   17  */
   18 
   19 /*
   20  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
   21  */
   22 
   23 #include <sys/cdefs.h>
   24 __FBSDID("$FreeBSD$");
   25 
   26 #include <sys/param.h>
   27 #include <sys/systm.h>
   28 #include <sys/malloc.h>
   29 #include <sys/bio.h>
   30 #include <sys/buf.h>
   31 #include <sys/capsicum.h>
   32 #include <sys/eventhandler.h>
   33 #include <sys/sysproto.h>
   34 #include <sys/filedesc.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/kthread.h>
   38 #include <sys/fcntl.h>
   39 #include <sys/file.h>
   40 #include <sys/limits.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/unistd.h>
   44 #include <sys/posix4.h>
   45 #include <sys/proc.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/syscallsubr.h>
   49 #include <sys/protosw.h>
   50 #include <sys/rwlock.h>
   51 #include <sys/sema.h>
   52 #include <sys/socket.h>
   53 #include <sys/socketvar.h>
   54 #include <sys/syscall.h>
   55 #include <sys/sysent.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/syslog.h>
   58 #include <sys/sx.h>
   59 #include <sys/taskqueue.h>
   60 #include <sys/vnode.h>
   61 #include <sys/conf.h>
   62 #include <sys/event.h>
   63 #include <sys/mount.h>
   64 #include <geom/geom.h>
   65 
   66 #include <machine/atomic.h>
   67 
   68 #include <vm/vm.h>
   69 #include <vm/vm_page.h>
   70 #include <vm/vm_extern.h>
   71 #include <vm/pmap.h>
   72 #include <vm/vm_map.h>
   73 #include <vm/vm_object.h>
   74 #include <vm/uma.h>
   75 #include <sys/aio.h>
   76 
   77 /*
   78  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
   79  * overflow. (XXX will be removed soon.)
   80  */
   81 static u_long jobrefid;
   82 
   83 /*
   84  * Counter for aio_fsync.
   85  */
   86 static uint64_t jobseqno;
   87 
   88 #ifndef MAX_AIO_PER_PROC
   89 #define MAX_AIO_PER_PROC        32
   90 #endif
   91 
   92 #ifndef MAX_AIO_QUEUE_PER_PROC
   93 #define MAX_AIO_QUEUE_PER_PROC  256
   94 #endif
   95 
   96 #ifndef MAX_AIO_QUEUE
   97 #define MAX_AIO_QUEUE           1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
   98 #endif
   99 
  100 #ifndef MAX_BUF_AIO
  101 #define MAX_BUF_AIO             16
  102 #endif
  103 
  104 FEATURE(aio, "Asynchronous I/O");
  105 SYSCTL_DECL(_p1003_1b);
  106 
  107 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
  108 static MALLOC_DEFINE(M_AIOS, "aios", "aio_suspend aio control block list");
  109 
  110 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  111     "Async IO management");
  112 
  113 static int enable_aio_unsafe = 0;
  114 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
  115     "Permit asynchronous IO on all file types, not just known-safe types");
  116 
  117 static unsigned int unsafe_warningcnt = 1;
  118 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
  119     &unsafe_warningcnt, 0,
  120     "Warnings that will be triggered upon failed IO requests on unsafe files");
  121 
  122 static int max_aio_procs = MAX_AIO_PROCS;
  123 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
  124     "Maximum number of kernel processes to use for handling async IO ");
  125 
  126 static int num_aio_procs = 0;
  127 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
  128     "Number of presently active kernel processes for async IO");
  129 
  130 /*
  131  * The code will adjust the actual number of AIO processes towards this
  132  * number when it gets a chance.
  133  */
  134 static int target_aio_procs = TARGET_AIO_PROCS;
  135 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
  136     0,
  137     "Preferred number of ready kernel processes for async IO");
  138 
  139 static int max_queue_count = MAX_AIO_QUEUE;
  140 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
  141     "Maximum number of aio requests to queue, globally");
  142 
  143 static int num_queue_count = 0;
  144 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
  145     "Number of queued aio requests");
  146 
  147 static int num_buf_aio = 0;
  148 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
  149     "Number of aio requests presently handled by the buf subsystem");
  150 
  151 static int num_unmapped_aio = 0;
  152 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
  153     0,
  154     "Number of aio requests presently handled by unmapped I/O buffers");
  155 
  156 /* Number of async I/O processes in the process of being started */
  157 /* XXX This should be local to aio_aqueue() */
  158 static int num_aio_resv_start = 0;
  159 
  160 static int aiod_lifetime;
  161 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
  162     "Maximum lifetime for idle aiod");
  163 
  164 static int max_aio_per_proc = MAX_AIO_PER_PROC;
  165 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
  166     0,
  167     "Maximum active aio requests per process");
  168 
  169 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
  170 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
  171     &max_aio_queue_per_proc, 0,
  172     "Maximum queued aio requests per process");
  173 
  174 static int max_buf_aio = MAX_BUF_AIO;
  175 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
  176     "Maximum buf aio requests per process");
  177 
  178 /* 
  179  * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
  180  * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
  181  * vfs.aio.aio_listio_max.
  182  */
  183 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
  184     CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
  185     0, "Maximum aio requests for a single lio_listio call");
  186 
  187 #ifdef COMPAT_FREEBSD6
  188 typedef struct oaiocb {
  189         int     aio_fildes;             /* File descriptor */
  190         off_t   aio_offset;             /* File offset for I/O */
  191         volatile void *aio_buf;         /* I/O buffer in process space */
  192         size_t  aio_nbytes;             /* Number of bytes for I/O */
  193         struct  osigevent aio_sigevent; /* Signal to deliver */
  194         int     aio_lio_opcode;         /* LIO opcode */
  195         int     aio_reqprio;            /* Request priority -- ignored */
  196         struct  __aiocb_private _aiocb_private;
  197 } oaiocb_t;
  198 #endif
  199 
  200 /*
  201  * Below is a key of locks used to protect each member of struct kaiocb
  202  * aioliojob and kaioinfo and any backends.
  203  *
  204  * * - need not protected
  205  * a - locked by kaioinfo lock
  206  * b - locked by backend lock, the backend lock can be null in some cases,
  207  *     for example, BIO belongs to this type, in this case, proc lock is
  208  *     reused.
  209  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
  210  */
  211 
  212 /*
  213  * If the routine that services an AIO request blocks while running in an
  214  * AIO kernel process it can starve other I/O requests.  BIO requests
  215  * queued via aio_qbio() complete asynchronously and do not use AIO kernel
  216  * processes at all.  Socket I/O requests use a separate pool of
  217  * kprocs and also force non-blocking I/O.  Other file I/O requests
  218  * use the generic fo_read/fo_write operations which can block.  The
  219  * fsync and mlock operations can also block while executing.  Ideally
  220  * none of these requests would block while executing.
  221  *
  222  * Note that the service routines cannot toggle O_NONBLOCK in the file
  223  * structure directly while handling a request due to races with
  224  * userland threads.
  225  */
  226 
  227 /* jobflags */
  228 #define KAIOCB_QUEUEING         0x01
  229 #define KAIOCB_CANCELLED        0x02
  230 #define KAIOCB_CANCELLING       0x04
  231 #define KAIOCB_CHECKSYNC        0x08
  232 #define KAIOCB_CLEARED          0x10
  233 #define KAIOCB_FINISHED         0x20
  234 
  235 /*
  236  * AIO process info
  237  */
  238 #define AIOP_FREE       0x1                     /* proc on free queue */
  239 
  240 struct aioproc {
  241         int     aioprocflags;                   /* (c) AIO proc flags */
  242         TAILQ_ENTRY(aioproc) list;              /* (c) list of processes */
  243         struct  proc *aioproc;                  /* (*) the AIO proc */
  244 };
  245 
  246 /*
  247  * data-structure for lio signal management
  248  */
  249 struct aioliojob {
  250         int     lioj_flags;                     /* (a) listio flags */
  251         int     lioj_count;                     /* (a) count of jobs */
  252         int     lioj_finished_count;            /* (a) count of finished jobs */
  253         struct  sigevent lioj_signal;           /* (a) signal on all I/O done */
  254         TAILQ_ENTRY(aioliojob) lioj_list;       /* (a) lio list */
  255         struct  knlist klist;                   /* (a) list of knotes */
  256         ksiginfo_t lioj_ksi;                    /* (a) Realtime signal info */
  257 };
  258 
  259 #define LIOJ_SIGNAL             0x1     /* signal on all done (lio) */
  260 #define LIOJ_SIGNAL_POSTED      0x2     /* signal has been posted */
  261 #define LIOJ_KEVENT_POSTED      0x4     /* kevent triggered */
  262 
  263 /*
  264  * per process aio data structure
  265  */
  266 struct kaioinfo {
  267         struct  mtx kaio_mtx;           /* the lock to protect this struct */
  268         int     kaio_flags;             /* (a) per process kaio flags */
  269         int     kaio_active_count;      /* (c) number of currently used AIOs */
  270         int     kaio_count;             /* (a) size of AIO queue */
  271         int     kaio_buffer_count;      /* (a) number of bio buffers */
  272         TAILQ_HEAD(,kaiocb) kaio_all;   /* (a) all AIOs in a process */
  273         TAILQ_HEAD(,kaiocb) kaio_done;  /* (a) done queue for process */
  274         TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
  275         TAILQ_HEAD(,kaiocb) kaio_jobqueue;      /* (a) job queue for process */
  276         TAILQ_HEAD(,kaiocb) kaio_syncqueue;     /* (a) queue for aio_fsync */
  277         TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
  278         struct  task kaio_task;         /* (*) task to kick aio processes */
  279         struct  task kaio_sync_task;    /* (*) task to schedule fsync jobs */
  280 };
  281 
  282 #define AIO_LOCK(ki)            mtx_lock(&(ki)->kaio_mtx)
  283 #define AIO_UNLOCK(ki)          mtx_unlock(&(ki)->kaio_mtx)
  284 #define AIO_LOCK_ASSERT(ki, f)  mtx_assert(&(ki)->kaio_mtx, (f))
  285 #define AIO_MTX(ki)             (&(ki)->kaio_mtx)
  286 
  287 #define KAIO_RUNDOWN    0x1     /* process is being run down */
  288 #define KAIO_WAKEUP     0x2     /* wakeup process when AIO completes */
  289 
  290 /*
  291  * Operations used to interact with userland aio control blocks.
  292  * Different ABIs provide their own operations.
  293  */
  294 struct aiocb_ops {
  295         int     (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
  296         long    (*fetch_status)(struct aiocb *ujob);
  297         long    (*fetch_error)(struct aiocb *ujob);
  298         int     (*store_status)(struct aiocb *ujob, long status);
  299         int     (*store_error)(struct aiocb *ujob, long error);
  300         int     (*store_kernelinfo)(struct aiocb *ujob, long jobref);
  301         int     (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
  302 };
  303 
  304 static TAILQ_HEAD(,aioproc) aio_freeproc;               /* (c) Idle daemons */
  305 static struct sema aio_newproc_sem;
  306 static struct mtx aio_job_mtx;
  307 static TAILQ_HEAD(,kaiocb) aio_jobs;                    /* (c) Async job list */
  308 static struct unrhdr *aiod_unr;
  309 
  310 static void     aio_biocleanup(struct bio *bp);
  311 void            aio_init_aioinfo(struct proc *p);
  312 static int      aio_onceonly(void);
  313 static int      aio_free_entry(struct kaiocb *job);
  314 static void     aio_process_rw(struct kaiocb *job);
  315 static void     aio_process_sync(struct kaiocb *job);
  316 static void     aio_process_mlock(struct kaiocb *job);
  317 static void     aio_schedule_fsync(void *context, int pending);
  318 static int      aio_newproc(int *);
  319 int             aio_aqueue(struct thread *td, struct aiocb *ujob,
  320                     struct aioliojob *lio, int type, struct aiocb_ops *ops);
  321 static int      aio_queue_file(struct file *fp, struct kaiocb *job);
  322 static void     aio_biowakeup(struct bio *bp);
  323 static void     aio_proc_rundown(void *arg, struct proc *p);
  324 static void     aio_proc_rundown_exec(void *arg, struct proc *p,
  325                     struct image_params *imgp);
  326 static int      aio_qbio(struct proc *p, struct kaiocb *job);
  327 static void     aio_daemon(void *param);
  328 static void     aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
  329 static bool     aio_clear_cancel_function_locked(struct kaiocb *job);
  330 static int      aio_kick(struct proc *userp);
  331 static void     aio_kick_nowait(struct proc *userp);
  332 static void     aio_kick_helper(void *context, int pending);
  333 static int      filt_aioattach(struct knote *kn);
  334 static void     filt_aiodetach(struct knote *kn);
  335 static int      filt_aio(struct knote *kn, long hint);
  336 static int      filt_lioattach(struct knote *kn);
  337 static void     filt_liodetach(struct knote *kn);
  338 static int      filt_lio(struct knote *kn, long hint);
  339 
  340 /*
  341  * Zones for:
  342  *      kaio    Per process async io info
  343  *      aiop    async io process data
  344  *      aiocb   async io jobs
  345  *      aiolio  list io jobs
  346  */
  347 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiolio_zone;
  348 
  349 /* kqueue filters for aio */
  350 static struct filterops aio_filtops = {
  351         .f_isfd = 0,
  352         .f_attach = filt_aioattach,
  353         .f_detach = filt_aiodetach,
  354         .f_event = filt_aio,
  355 };
  356 static struct filterops lio_filtops = {
  357         .f_isfd = 0,
  358         .f_attach = filt_lioattach,
  359         .f_detach = filt_liodetach,
  360         .f_event = filt_lio
  361 };
  362 
  363 static eventhandler_tag exit_tag, exec_tag;
  364 
  365 TASKQUEUE_DEFINE_THREAD(aiod_kick);
  366 
  367 /*
  368  * Main operations function for use as a kernel module.
  369  */
  370 static int
  371 aio_modload(struct module *module, int cmd, void *arg)
  372 {
  373         int error = 0;
  374 
  375         switch (cmd) {
  376         case MOD_LOAD:
  377                 aio_onceonly();
  378                 break;
  379         case MOD_SHUTDOWN:
  380                 break;
  381         default:
  382                 error = EOPNOTSUPP;
  383                 break;
  384         }
  385         return (error);
  386 }
  387 
  388 static moduledata_t aio_mod = {
  389         "aio",
  390         &aio_modload,
  391         NULL
  392 };
  393 
  394 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
  395 MODULE_VERSION(aio, 1);
  396 
  397 /*
  398  * Startup initialization
  399  */
  400 static int
  401 aio_onceonly(void)
  402 {
  403 
  404         exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
  405             EVENTHANDLER_PRI_ANY);
  406         exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
  407             NULL, EVENTHANDLER_PRI_ANY);
  408         kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
  409         kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
  410         TAILQ_INIT(&aio_freeproc);
  411         sema_init(&aio_newproc_sem, 0, "aio_new_proc");
  412         mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
  413         TAILQ_INIT(&aio_jobs);
  414         aiod_unr = new_unrhdr(1, INT_MAX, NULL);
  415         kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
  416             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  417         aiop_zone = uma_zcreate("AIOP", sizeof(struct aioproc), NULL,
  418             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  419         aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
  420             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  421         aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
  422             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  423         aiod_lifetime = AIOD_LIFETIME_DEFAULT;
  424         jobrefid = 1;
  425         p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
  426         p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
  427         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
  428 
  429         return (0);
  430 }
  431 
  432 /*
  433  * Init the per-process aioinfo structure.  The aioinfo limits are set
  434  * per-process for user limit (resource) management.
  435  */
  436 void
  437 aio_init_aioinfo(struct proc *p)
  438 {
  439         struct kaioinfo *ki;
  440 
  441         ki = uma_zalloc(kaio_zone, M_WAITOK);
  442         mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
  443         ki->kaio_flags = 0;
  444         ki->kaio_active_count = 0;
  445         ki->kaio_count = 0;
  446         ki->kaio_buffer_count = 0;
  447         TAILQ_INIT(&ki->kaio_all);
  448         TAILQ_INIT(&ki->kaio_done);
  449         TAILQ_INIT(&ki->kaio_jobqueue);
  450         TAILQ_INIT(&ki->kaio_liojoblist);
  451         TAILQ_INIT(&ki->kaio_syncqueue);
  452         TAILQ_INIT(&ki->kaio_syncready);
  453         TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
  454         TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
  455         PROC_LOCK(p);
  456         if (p->p_aioinfo == NULL) {
  457                 p->p_aioinfo = ki;
  458                 PROC_UNLOCK(p);
  459         } else {
  460                 PROC_UNLOCK(p);
  461                 mtx_destroy(&ki->kaio_mtx);
  462                 uma_zfree(kaio_zone, ki);
  463         }
  464 
  465         while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
  466                 aio_newproc(NULL);
  467 }
  468 
  469 static int
  470 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
  471 {
  472         struct thread *td;
  473         int error;
  474 
  475         error = sigev_findtd(p, sigev, &td);
  476         if (error)
  477                 return (error);
  478         if (!KSI_ONQ(ksi)) {
  479                 ksiginfo_set_sigev(ksi, sigev);
  480                 ksi->ksi_code = SI_ASYNCIO;
  481                 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
  482                 tdsendsignal(p, td, ksi->ksi_signo, ksi);
  483         }
  484         PROC_UNLOCK(p);
  485         return (error);
  486 }
  487 
  488 /*
  489  * Free a job entry.  Wait for completion if it is currently active, but don't
  490  * delay forever.  If we delay, we return a flag that says that we have to
  491  * restart the queue scan.
  492  */
  493 static int
  494 aio_free_entry(struct kaiocb *job)
  495 {
  496         struct kaioinfo *ki;
  497         struct aioliojob *lj;
  498         struct proc *p;
  499 
  500         p = job->userproc;
  501         MPASS(curproc == p);
  502         ki = p->p_aioinfo;
  503         MPASS(ki != NULL);
  504 
  505         AIO_LOCK_ASSERT(ki, MA_OWNED);
  506         MPASS(job->jobflags & KAIOCB_FINISHED);
  507 
  508         atomic_subtract_int(&num_queue_count, 1);
  509 
  510         ki->kaio_count--;
  511         MPASS(ki->kaio_count >= 0);
  512 
  513         TAILQ_REMOVE(&ki->kaio_done, job, plist);
  514         TAILQ_REMOVE(&ki->kaio_all, job, allist);
  515 
  516         lj = job->lio;
  517         if (lj) {
  518                 lj->lioj_count--;
  519                 lj->lioj_finished_count--;
  520 
  521                 if (lj->lioj_count == 0) {
  522                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  523                         /* lio is going away, we need to destroy any knotes */
  524                         knlist_delete(&lj->klist, curthread, 1);
  525                         PROC_LOCK(p);
  526                         sigqueue_take(&lj->lioj_ksi);
  527                         PROC_UNLOCK(p);
  528                         uma_zfree(aiolio_zone, lj);
  529                 }
  530         }
  531 
  532         /* job is going away, we need to destroy any knotes */
  533         knlist_delete(&job->klist, curthread, 1);
  534         PROC_LOCK(p);
  535         sigqueue_take(&job->ksi);
  536         PROC_UNLOCK(p);
  537 
  538         AIO_UNLOCK(ki);
  539 
  540         /*
  541          * The thread argument here is used to find the owning process
  542          * and is also passed to fo_close() which may pass it to various
  543          * places such as devsw close() routines.  Because of that, we
  544          * need a thread pointer from the process owning the job that is
  545          * persistent and won't disappear out from under us or move to
  546          * another process.
  547          *
  548          * Currently, all the callers of this function call it to remove
  549          * a kaiocb from the current process' job list either via a
  550          * syscall or due to the current process calling exit() or
  551          * execve().  Thus, we know that p == curproc.  We also know that
  552          * curthread can't exit since we are curthread.
  553          *
  554          * Therefore, we use curthread as the thread to pass to
  555          * knlist_delete().  This does mean that it is possible for the
  556          * thread pointer at close time to differ from the thread pointer
  557          * at open time, but this is already true of file descriptors in
  558          * a multithreaded process.
  559          */
  560         if (job->fd_file)
  561                 fdrop(job->fd_file, curthread);
  562         crfree(job->cred);
  563         if (job->uiop != &job->uio)
  564                 free(job->uiop, M_IOV);
  565         uma_zfree(aiocb_zone, job);
  566         AIO_LOCK(ki);
  567 
  568         return (0);
  569 }
  570 
  571 static void
  572 aio_proc_rundown_exec(void *arg, struct proc *p,
  573     struct image_params *imgp __unused)
  574 {
  575         aio_proc_rundown(arg, p);
  576 }
  577 
  578 static int
  579 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
  580 {
  581         aio_cancel_fn_t *func;
  582         int cancelled;
  583 
  584         AIO_LOCK_ASSERT(ki, MA_OWNED);
  585         if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
  586                 return (0);
  587         MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
  588         job->jobflags |= KAIOCB_CANCELLED;
  589 
  590         func = job->cancel_fn;
  591 
  592         /*
  593          * If there is no cancel routine, just leave the job marked as
  594          * cancelled.  The job should be in active use by a caller who
  595          * should complete it normally or when it fails to install a
  596          * cancel routine.
  597          */
  598         if (func == NULL)
  599                 return (0);
  600 
  601         /*
  602          * Set the CANCELLING flag so that aio_complete() will defer
  603          * completions of this job.  This prevents the job from being
  604          * freed out from under the cancel callback.  After the
  605          * callback any deferred completion (whether from the callback
  606          * or any other source) will be completed.
  607          */
  608         job->jobflags |= KAIOCB_CANCELLING;
  609         AIO_UNLOCK(ki);
  610         func(job);
  611         AIO_LOCK(ki);
  612         job->jobflags &= ~KAIOCB_CANCELLING;
  613         if (job->jobflags & KAIOCB_FINISHED) {
  614                 cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
  615                 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
  616                 aio_bio_done_notify(p, job);
  617         } else {
  618                 /*
  619                  * The cancel callback might have scheduled an
  620                  * operation to cancel this request, but it is
  621                  * only counted as cancelled if the request is
  622                  * cancelled when the callback returns.
  623                  */
  624                 cancelled = 0;
  625         }
  626         return (cancelled);
  627 }
  628 
  629 /*
  630  * Rundown the jobs for a given process.
  631  */
  632 static void
  633 aio_proc_rundown(void *arg, struct proc *p)
  634 {
  635         struct kaioinfo *ki;
  636         struct aioliojob *lj;
  637         struct kaiocb *job, *jobn;
  638 
  639         KASSERT(curthread->td_proc == p,
  640             ("%s: called on non-curproc", __func__));
  641         ki = p->p_aioinfo;
  642         if (ki == NULL)
  643                 return;
  644 
  645         AIO_LOCK(ki);
  646         ki->kaio_flags |= KAIO_RUNDOWN;
  647 
  648 restart:
  649 
  650         /*
  651          * Try to cancel all pending requests. This code simulates
  652          * aio_cancel on all pending I/O requests.
  653          */
  654         TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
  655                 aio_cancel_job(p, ki, job);
  656         }
  657 
  658         /* Wait for all running I/O to be finished */
  659         if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
  660                 ki->kaio_flags |= KAIO_WAKEUP;
  661                 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
  662                 goto restart;
  663         }
  664 
  665         /* Free all completed I/O requests. */
  666         while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
  667                 aio_free_entry(job);
  668 
  669         while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
  670                 if (lj->lioj_count == 0) {
  671                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  672                         knlist_delete(&lj->klist, curthread, 1);
  673                         PROC_LOCK(p);
  674                         sigqueue_take(&lj->lioj_ksi);
  675                         PROC_UNLOCK(p);
  676                         uma_zfree(aiolio_zone, lj);
  677                 } else {
  678                         panic("LIO job not cleaned up: C:%d, FC:%d\n",
  679                             lj->lioj_count, lj->lioj_finished_count);
  680                 }
  681         }
  682         AIO_UNLOCK(ki);
  683         taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
  684         taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
  685         mtx_destroy(&ki->kaio_mtx);
  686         uma_zfree(kaio_zone, ki);
  687         p->p_aioinfo = NULL;
  688 }
  689 
  690 /*
  691  * Select a job to run (called by an AIO daemon).
  692  */
  693 static struct kaiocb *
  694 aio_selectjob(struct aioproc *aiop)
  695 {
  696         struct kaiocb *job;
  697         struct kaioinfo *ki;
  698         struct proc *userp;
  699 
  700         mtx_assert(&aio_job_mtx, MA_OWNED);
  701 restart:
  702         TAILQ_FOREACH(job, &aio_jobs, list) {
  703                 userp = job->userproc;
  704                 ki = userp->p_aioinfo;
  705 
  706                 if (ki->kaio_active_count < max_aio_per_proc) {
  707                         TAILQ_REMOVE(&aio_jobs, job, list);
  708                         if (!aio_clear_cancel_function(job))
  709                                 goto restart;
  710 
  711                         /* Account for currently active jobs. */
  712                         ki->kaio_active_count++;
  713                         break;
  714                 }
  715         }
  716         return (job);
  717 }
  718 
  719 /*
  720  * Move all data to a permanent storage device.  This code
  721  * simulates the fsync and fdatasync syscalls.
  722  */
  723 static int
  724 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
  725 {
  726         struct mount *mp;
  727         int error;
  728 
  729         if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  730                 goto drop;
  731         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  732         if (vp->v_object != NULL) {
  733                 VM_OBJECT_WLOCK(vp->v_object);
  734                 vm_object_page_clean(vp->v_object, 0, 0, 0);
  735                 VM_OBJECT_WUNLOCK(vp->v_object);
  736         }
  737         if (op == LIO_DSYNC)
  738                 error = VOP_FDATASYNC(vp, td);
  739         else
  740                 error = VOP_FSYNC(vp, MNT_WAIT, td);
  741 
  742         VOP_UNLOCK(vp);
  743         vn_finished_write(mp);
  744 drop:
  745         return (error);
  746 }
  747 
  748 /*
  749  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
  750  * does the I/O request for the non-bio version of the operations.  The normal
  751  * vn operations are used, and this code should work in all instances for every
  752  * type of file, including pipes, sockets, fifos, and regular files.
  753  *
  754  * XXX I don't think it works well for socket, pipe, and fifo.
  755  */
  756 static void
  757 aio_process_rw(struct kaiocb *job)
  758 {
  759         struct ucred *td_savedcred;
  760         struct thread *td;
  761         struct aiocb *cb;
  762         struct file *fp;
  763         ssize_t cnt;
  764         long msgsnd_st, msgsnd_end;
  765         long msgrcv_st, msgrcv_end;
  766         long oublock_st, oublock_end;
  767         long inblock_st, inblock_end;
  768         int error, opcode;
  769 
  770         KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
  771             job->uaiocb.aio_lio_opcode == LIO_READV ||
  772             job->uaiocb.aio_lio_opcode == LIO_WRITE ||
  773             job->uaiocb.aio_lio_opcode == LIO_WRITEV,
  774             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  775 
  776         aio_switch_vmspace(job);
  777         td = curthread;
  778         td_savedcred = td->td_ucred;
  779         td->td_ucred = job->cred;
  780         job->uiop->uio_td = td;
  781         cb = &job->uaiocb;
  782         fp = job->fd_file;
  783 
  784         opcode = job->uaiocb.aio_lio_opcode;
  785         cnt = job->uiop->uio_resid;
  786 
  787         msgrcv_st = td->td_ru.ru_msgrcv;
  788         msgsnd_st = td->td_ru.ru_msgsnd;
  789         inblock_st = td->td_ru.ru_inblock;
  790         oublock_st = td->td_ru.ru_oublock;
  791 
  792         /*
  793          * aio_aqueue() acquires a reference to the file that is
  794          * released in aio_free_entry().
  795          */
  796         if (opcode == LIO_READ || opcode == LIO_READV) {
  797                 if (job->uiop->uio_resid == 0)
  798                         error = 0;
  799                 else
  800                         error = fo_read(fp, job->uiop, fp->f_cred, FOF_OFFSET,
  801                             td);
  802         } else {
  803                 if (fp->f_type == DTYPE_VNODE)
  804                         bwillwrite();
  805                 error = fo_write(fp, job->uiop, fp->f_cred, FOF_OFFSET, td);
  806         }
  807         msgrcv_end = td->td_ru.ru_msgrcv;
  808         msgsnd_end = td->td_ru.ru_msgsnd;
  809         inblock_end = td->td_ru.ru_inblock;
  810         oublock_end = td->td_ru.ru_oublock;
  811 
  812         job->msgrcv = msgrcv_end - msgrcv_st;
  813         job->msgsnd = msgsnd_end - msgsnd_st;
  814         job->inblock = inblock_end - inblock_st;
  815         job->outblock = oublock_end - oublock_st;
  816 
  817         if (error != 0 && job->uiop->uio_resid != cnt) {
  818                 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
  819                         error = 0;
  820                 if (error == EPIPE && (opcode & LIO_WRITE)) {
  821                         PROC_LOCK(job->userproc);
  822                         kern_psignal(job->userproc, SIGPIPE);
  823                         PROC_UNLOCK(job->userproc);
  824                 }
  825         }
  826 
  827         cnt -= job->uiop->uio_resid;
  828         td->td_ucred = td_savedcred;
  829         if (error)
  830                 aio_complete(job, -1, error);
  831         else
  832                 aio_complete(job, cnt, 0);
  833 }
  834 
  835 static void
  836 aio_process_sync(struct kaiocb *job)
  837 {
  838         struct thread *td = curthread;
  839         struct ucred *td_savedcred = td->td_ucred;
  840         struct file *fp = job->fd_file;
  841         int error = 0;
  842 
  843         KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
  844             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  845 
  846         td->td_ucred = job->cred;
  847         if (fp->f_vnode != NULL) {
  848                 error = aio_fsync_vnode(td, fp->f_vnode,
  849                     job->uaiocb.aio_lio_opcode);
  850         }
  851         td->td_ucred = td_savedcred;
  852         if (error)
  853                 aio_complete(job, -1, error);
  854         else
  855                 aio_complete(job, 0, 0);
  856 }
  857 
  858 static void
  859 aio_process_mlock(struct kaiocb *job)
  860 {
  861         struct aiocb *cb = &job->uaiocb;
  862         int error;
  863 
  864         KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
  865             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  866 
  867         aio_switch_vmspace(job);
  868         error = kern_mlock(job->userproc, job->cred,
  869             __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
  870         aio_complete(job, error != 0 ? -1 : 0, error);
  871 }
  872 
  873 static void
  874 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
  875 {
  876         struct aioliojob *lj;
  877         struct kaioinfo *ki;
  878         struct kaiocb *sjob, *sjobn;
  879         int lj_done;
  880         bool schedule_fsync;
  881 
  882         ki = userp->p_aioinfo;
  883         AIO_LOCK_ASSERT(ki, MA_OWNED);
  884         lj = job->lio;
  885         lj_done = 0;
  886         if (lj) {
  887                 lj->lioj_finished_count++;
  888                 if (lj->lioj_count == lj->lioj_finished_count)
  889                         lj_done = 1;
  890         }
  891         TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
  892         MPASS(job->jobflags & KAIOCB_FINISHED);
  893 
  894         if (ki->kaio_flags & KAIO_RUNDOWN)
  895                 goto notification_done;
  896 
  897         if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
  898             job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
  899                 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
  900 
  901         KNOTE_LOCKED(&job->klist, 1);
  902 
  903         if (lj_done) {
  904                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
  905                         lj->lioj_flags |= LIOJ_KEVENT_POSTED;
  906                         KNOTE_LOCKED(&lj->klist, 1);
  907                 }
  908                 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
  909                     == LIOJ_SIGNAL &&
  910                     (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
  911                     lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
  912                         aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
  913                             true);
  914                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
  915                 }
  916         }
  917 
  918 notification_done:
  919         if (job->jobflags & KAIOCB_CHECKSYNC) {
  920                 schedule_fsync = false;
  921                 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
  922                         if (job->fd_file != sjob->fd_file ||
  923                             job->seqno >= sjob->seqno)
  924                                 continue;
  925                         if (--sjob->pending > 0)
  926                                 continue;
  927                         TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
  928                         if (!aio_clear_cancel_function_locked(sjob))
  929                                 continue;
  930                         TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
  931                         schedule_fsync = true;
  932                 }
  933                 if (schedule_fsync)
  934                         taskqueue_enqueue(taskqueue_aiod_kick,
  935                             &ki->kaio_sync_task);
  936         }
  937         if (ki->kaio_flags & KAIO_WAKEUP) {
  938                 ki->kaio_flags &= ~KAIO_WAKEUP;
  939                 wakeup(&userp->p_aioinfo);
  940         }
  941 }
  942 
  943 static void
  944 aio_schedule_fsync(void *context, int pending)
  945 {
  946         struct kaioinfo *ki;
  947         struct kaiocb *job;
  948 
  949         ki = context;
  950         AIO_LOCK(ki);
  951         while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
  952                 job = TAILQ_FIRST(&ki->kaio_syncready);
  953                 TAILQ_REMOVE(&ki->kaio_syncready, job, list);
  954                 AIO_UNLOCK(ki);
  955                 aio_schedule(job, aio_process_sync);
  956                 AIO_LOCK(ki);
  957         }
  958         AIO_UNLOCK(ki);
  959 }
  960 
  961 bool
  962 aio_cancel_cleared(struct kaiocb *job)
  963 {
  964 
  965         /*
  966          * The caller should hold the same queue lock held when
  967          * aio_clear_cancel_function() was called and set this flag
  968          * ensuring this check sees an up-to-date value.  However,
  969          * there is no way to assert that.
  970          */
  971         return ((job->jobflags & KAIOCB_CLEARED) != 0);
  972 }
  973 
  974 static bool
  975 aio_clear_cancel_function_locked(struct kaiocb *job)
  976 {
  977 
  978         AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
  979         MPASS(job->cancel_fn != NULL);
  980         if (job->jobflags & KAIOCB_CANCELLING) {
  981                 job->jobflags |= KAIOCB_CLEARED;
  982                 return (false);
  983         }
  984         job->cancel_fn = NULL;
  985         return (true);
  986 }
  987 
  988 bool
  989 aio_clear_cancel_function(struct kaiocb *job)
  990 {
  991         struct kaioinfo *ki;
  992         bool ret;
  993 
  994         ki = job->userproc->p_aioinfo;
  995         AIO_LOCK(ki);
  996         ret = aio_clear_cancel_function_locked(job);
  997         AIO_UNLOCK(ki);
  998         return (ret);
  999 }
 1000 
 1001 static bool
 1002 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
 1003 {
 1004 
 1005         AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
 1006         if (job->jobflags & KAIOCB_CANCELLED)
 1007                 return (false);
 1008         job->cancel_fn = func;
 1009         return (true);
 1010 }
 1011 
 1012 bool
 1013 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
 1014 {
 1015         struct kaioinfo *ki;
 1016         bool ret;
 1017 
 1018         ki = job->userproc->p_aioinfo;
 1019         AIO_LOCK(ki);
 1020         ret = aio_set_cancel_function_locked(job, func);
 1021         AIO_UNLOCK(ki);
 1022         return (ret);
 1023 }
 1024 
 1025 void
 1026 aio_complete(struct kaiocb *job, long status, int error)
 1027 {
 1028         struct kaioinfo *ki;
 1029         struct proc *userp;
 1030 
 1031         job->uaiocb._aiocb_private.error = error;
 1032         job->uaiocb._aiocb_private.status = status;
 1033 
 1034         userp = job->userproc;
 1035         ki = userp->p_aioinfo;
 1036 
 1037         AIO_LOCK(ki);
 1038         KASSERT(!(job->jobflags & KAIOCB_FINISHED),
 1039             ("duplicate aio_complete"));
 1040         job->jobflags |= KAIOCB_FINISHED;
 1041         if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
 1042                 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
 1043                 aio_bio_done_notify(userp, job);
 1044         }
 1045         AIO_UNLOCK(ki);
 1046 }
 1047 
 1048 void
 1049 aio_cancel(struct kaiocb *job)
 1050 {
 1051 
 1052         aio_complete(job, -1, ECANCELED);
 1053 }
 1054 
 1055 void
 1056 aio_switch_vmspace(struct kaiocb *job)
 1057 {
 1058 
 1059         vmspace_switch_aio(job->userproc->p_vmspace);
 1060 }
 1061 
 1062 /*
 1063  * The AIO daemon, most of the actual work is done in aio_process_*,
 1064  * but the setup (and address space mgmt) is done in this routine.
 1065  */
 1066 static void
 1067 aio_daemon(void *_id)
 1068 {
 1069         struct kaiocb *job;
 1070         struct aioproc *aiop;
 1071         struct kaioinfo *ki;
 1072         struct proc *p;
 1073         struct vmspace *myvm;
 1074         struct thread *td = curthread;
 1075         int id = (intptr_t)_id;
 1076 
 1077         /*
 1078          * Grab an extra reference on the daemon's vmspace so that it
 1079          * doesn't get freed by jobs that switch to a different
 1080          * vmspace.
 1081          */
 1082         p = td->td_proc;
 1083         myvm = vmspace_acquire_ref(p);
 1084 
 1085         KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
 1086 
 1087         /*
 1088          * Allocate and ready the aio control info.  There is one aiop structure
 1089          * per daemon.
 1090          */
 1091         aiop = uma_zalloc(aiop_zone, M_WAITOK);
 1092         aiop->aioproc = p;
 1093         aiop->aioprocflags = 0;
 1094 
 1095         /*
 1096          * Wakeup parent process.  (Parent sleeps to keep from blasting away
 1097          * and creating too many daemons.)
 1098          */
 1099         sema_post(&aio_newproc_sem);
 1100 
 1101         mtx_lock(&aio_job_mtx);
 1102         for (;;) {
 1103                 /*
 1104                  * Take daemon off of free queue
 1105                  */
 1106                 if (aiop->aioprocflags & AIOP_FREE) {
 1107                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1108                         aiop->aioprocflags &= ~AIOP_FREE;
 1109                 }
 1110 
 1111                 /*
 1112                  * Check for jobs.
 1113                  */
 1114                 while ((job = aio_selectjob(aiop)) != NULL) {
 1115                         mtx_unlock(&aio_job_mtx);
 1116 
 1117                         ki = job->userproc->p_aioinfo;
 1118                         job->handle_fn(job);
 1119 
 1120                         mtx_lock(&aio_job_mtx);
 1121                         /* Decrement the active job count. */
 1122                         ki->kaio_active_count--;
 1123                 }
 1124 
 1125                 /*
 1126                  * Disconnect from user address space.
 1127                  */
 1128                 if (p->p_vmspace != myvm) {
 1129                         mtx_unlock(&aio_job_mtx);
 1130                         vmspace_switch_aio(myvm);
 1131                         mtx_lock(&aio_job_mtx);
 1132                         /*
 1133                          * We have to restart to avoid race, we only sleep if
 1134                          * no job can be selected.
 1135                          */
 1136                         continue;
 1137                 }
 1138 
 1139                 mtx_assert(&aio_job_mtx, MA_OWNED);
 1140 
 1141                 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
 1142                 aiop->aioprocflags |= AIOP_FREE;
 1143 
 1144                 /*
 1145                  * If daemon is inactive for a long time, allow it to exit,
 1146                  * thereby freeing resources.
 1147                  */
 1148                 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
 1149                     aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
 1150                     (aiop->aioprocflags & AIOP_FREE) &&
 1151                     num_aio_procs > target_aio_procs)
 1152                         break;
 1153         }
 1154         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1155         num_aio_procs--;
 1156         mtx_unlock(&aio_job_mtx);
 1157         uma_zfree(aiop_zone, aiop);
 1158         free_unr(aiod_unr, id);
 1159         vmspace_free(myvm);
 1160 
 1161         KASSERT(p->p_vmspace == myvm,
 1162             ("AIOD: bad vmspace for exiting daemon"));
 1163         KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
 1164             ("AIOD: bad vm refcnt for exiting daemon: %d",
 1165             refcount_load(&myvm->vm_refcnt)));
 1166         kproc_exit(0);
 1167 }
 1168 
 1169 /*
 1170  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
 1171  * AIO daemon modifies its environment itself.
 1172  */
 1173 static int
 1174 aio_newproc(int *start)
 1175 {
 1176         int error;
 1177         struct proc *p;
 1178         int id;
 1179 
 1180         id = alloc_unr(aiod_unr);
 1181         error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
 1182                 RFNOWAIT, 0, "aiod%d", id);
 1183         if (error == 0) {
 1184                 /*
 1185                  * Wait until daemon is started.
 1186                  */
 1187                 sema_wait(&aio_newproc_sem);
 1188                 mtx_lock(&aio_job_mtx);
 1189                 num_aio_procs++;
 1190                 if (start != NULL)
 1191                         (*start)--;
 1192                 mtx_unlock(&aio_job_mtx);
 1193         } else {
 1194                 free_unr(aiod_unr, id);
 1195         }
 1196         return (error);
 1197 }
 1198 
 1199 /*
 1200  * Try the high-performance, low-overhead bio method for eligible
 1201  * VCHR devices.  This method doesn't use an aio helper thread, and
 1202  * thus has very low overhead.
 1203  *
 1204  * Assumes that the caller, aio_aqueue(), has incremented the file
 1205  * structure's reference count, preventing its deallocation for the
 1206  * duration of this call.
 1207  */
 1208 static int
 1209 aio_qbio(struct proc *p, struct kaiocb *job)
 1210 {
 1211         struct aiocb *cb;
 1212         struct file *fp;
 1213         struct buf *pbuf;
 1214         struct vnode *vp;
 1215         struct cdevsw *csw;
 1216         struct cdev *dev;
 1217         struct kaioinfo *ki;
 1218         struct bio **bios = NULL;
 1219         off_t offset;
 1220         int bio_cmd, error, i, iovcnt, opcode, poff, ref;
 1221         vm_prot_t prot;
 1222         bool use_unmapped;
 1223 
 1224         cb = &job->uaiocb;
 1225         fp = job->fd_file;
 1226         opcode = cb->aio_lio_opcode;
 1227 
 1228         if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
 1229             opcode == LIO_READ || opcode == LIO_READV))
 1230                 return (-1);
 1231         if (fp == NULL || fp->f_type != DTYPE_VNODE)
 1232                 return (-1);
 1233 
 1234         vp = fp->f_vnode;
 1235         if (vp->v_type != VCHR)
 1236                 return (-1);
 1237         if (vp->v_bufobj.bo_bsize == 0)
 1238                 return (-1);
 1239 
 1240         bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
 1241         iovcnt = job->uiop->uio_iovcnt;
 1242         if (iovcnt > max_buf_aio)
 1243                 return (-1);
 1244         for (i = 0; i < iovcnt; i++) {
 1245                 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
 1246                         return (-1);
 1247                 if (job->uiop->uio_iov[i].iov_len > maxphys) {
 1248                         error = -1;
 1249                         return (-1);
 1250                 }
 1251         }
 1252         offset = cb->aio_offset;
 1253 
 1254         ref = 0;
 1255         csw = devvn_refthread(vp, &dev, &ref);
 1256         if (csw == NULL)
 1257                 return (ENXIO);
 1258 
 1259         if ((csw->d_flags & D_DISK) == 0) {
 1260                 error = -1;
 1261                 goto unref;
 1262         }
 1263         if (job->uiop->uio_resid > dev->si_iosize_max) {
 1264                 error = -1;
 1265                 goto unref;
 1266         }
 1267 
 1268         ki = p->p_aioinfo;
 1269         job->error = 0;
 1270 
 1271         use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
 1272         if (!use_unmapped) {
 1273                 AIO_LOCK(ki);
 1274                 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
 1275                         AIO_UNLOCK(ki);
 1276                         error = EAGAIN;
 1277                         goto unref;
 1278                 }
 1279                 ki->kaio_buffer_count += iovcnt;
 1280                 AIO_UNLOCK(ki);
 1281         }
 1282 
 1283         bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
 1284         atomic_store_int(&job->nbio, iovcnt);
 1285         for (i = 0; i < iovcnt; i++) {
 1286                 struct vm_page** pages;
 1287                 struct bio *bp;
 1288                 void *buf;
 1289                 size_t nbytes;
 1290                 int npages;
 1291 
 1292                 buf = job->uiop->uio_iov[i].iov_base;
 1293                 nbytes = job->uiop->uio_iov[i].iov_len;
 1294 
 1295                 bios[i] = g_alloc_bio();
 1296                 bp = bios[i];
 1297 
 1298                 poff = (vm_offset_t)buf & PAGE_MASK;
 1299                 if (use_unmapped) {
 1300                         pbuf = NULL;
 1301                         pages = malloc(sizeof(vm_page_t) * (atop(round_page(
 1302                             nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
 1303                 } else {
 1304                         pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
 1305                         BUF_KERNPROC(pbuf);
 1306                         pages = pbuf->b_pages;
 1307                 }
 1308 
 1309                 bp->bio_length = nbytes;
 1310                 bp->bio_bcount = nbytes;
 1311                 bp->bio_done = aio_biowakeup;
 1312                 bp->bio_offset = offset;
 1313                 bp->bio_cmd = bio_cmd;
 1314                 bp->bio_dev = dev;
 1315                 bp->bio_caller1 = job;
 1316                 bp->bio_caller2 = pbuf;
 1317 
 1318                 prot = VM_PROT_READ;
 1319                 if (opcode == LIO_READ || opcode == LIO_READV)
 1320                         prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 1321                 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 1322                     (vm_offset_t)buf, bp->bio_length, prot, pages,
 1323                     atop(maxphys) + 1);
 1324                 if (npages < 0) {
 1325                         if (pbuf != NULL)
 1326                                 uma_zfree(pbuf_zone, pbuf);
 1327                         else
 1328                                 free(pages, M_TEMP);
 1329                         error = EFAULT;
 1330                         g_destroy_bio(bp);
 1331                         i--;
 1332                         goto destroy_bios;
 1333                 }
 1334                 if (pbuf != NULL) {
 1335                         pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
 1336                         bp->bio_data = pbuf->b_data + poff;
 1337                         pbuf->b_npages = npages;
 1338                         atomic_add_int(&num_buf_aio, 1);
 1339                 } else {
 1340                         bp->bio_ma = pages;
 1341                         bp->bio_ma_n = npages;
 1342                         bp->bio_ma_offset = poff;
 1343                         bp->bio_data = unmapped_buf;
 1344                         bp->bio_flags |= BIO_UNMAPPED;
 1345                         atomic_add_int(&num_unmapped_aio, 1);
 1346                 }
 1347 
 1348                 offset += nbytes;
 1349         }
 1350 
 1351         /* Perform transfer. */
 1352         for (i = 0; i < iovcnt; i++)
 1353                 csw->d_strategy(bios[i]);
 1354         free(bios, M_TEMP);
 1355 
 1356         dev_relthread(dev, ref);
 1357         return (0);
 1358 
 1359 destroy_bios:
 1360         for (; i >= 0; i--)
 1361                 aio_biocleanup(bios[i]);
 1362         free(bios, M_TEMP);
 1363 unref:
 1364         dev_relthread(dev, ref);
 1365         return (error);
 1366 }
 1367 
 1368 #ifdef COMPAT_FREEBSD6
 1369 static int
 1370 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
 1371 {
 1372 
 1373         /*
 1374          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 1375          * supported by AIO with the old sigevent structure.
 1376          */
 1377         nsig->sigev_notify = osig->sigev_notify;
 1378         switch (nsig->sigev_notify) {
 1379         case SIGEV_NONE:
 1380                 break;
 1381         case SIGEV_SIGNAL:
 1382                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 1383                 break;
 1384         case SIGEV_KEVENT:
 1385                 nsig->sigev_notify_kqueue =
 1386                     osig->__sigev_u.__sigev_notify_kqueue;
 1387                 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
 1388                 break;
 1389         default:
 1390                 return (EINVAL);
 1391         }
 1392         return (0);
 1393 }
 1394 
 1395 static int
 1396 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
 1397     int type __unused)
 1398 {
 1399         struct oaiocb *ojob;
 1400         struct aiocb *kcb = &kjob->uaiocb;
 1401         int error;
 1402 
 1403         bzero(kcb, sizeof(struct aiocb));
 1404         error = copyin(ujob, kcb, sizeof(struct oaiocb));
 1405         if (error)
 1406                 return (error);
 1407         /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
 1408         ojob = (struct oaiocb *)kcb;
 1409         return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
 1410 }
 1411 #endif
 1412 
 1413 static int
 1414 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
 1415 {
 1416         struct aiocb *kcb = &kjob->uaiocb;
 1417         int error;
 1418 
 1419         error = copyin(ujob, kcb, sizeof(struct aiocb));
 1420         if (error)
 1421                 return (error);
 1422         if (type & LIO_VECTORED) {
 1423                 /* malloc a uio and copy in the iovec */
 1424                 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
 1425                     kcb->aio_iovcnt, &kjob->uiop);
 1426         }
 1427 
 1428         return (error);
 1429 }
 1430 
 1431 static long
 1432 aiocb_fetch_status(struct aiocb *ujob)
 1433 {
 1434 
 1435         return (fuword(&ujob->_aiocb_private.status));
 1436 }
 1437 
 1438 static long
 1439 aiocb_fetch_error(struct aiocb *ujob)
 1440 {
 1441 
 1442         return (fuword(&ujob->_aiocb_private.error));
 1443 }
 1444 
 1445 static int
 1446 aiocb_store_status(struct aiocb *ujob, long status)
 1447 {
 1448 
 1449         return (suword(&ujob->_aiocb_private.status, status));
 1450 }
 1451 
 1452 static int
 1453 aiocb_store_error(struct aiocb *ujob, long error)
 1454 {
 1455 
 1456         return (suword(&ujob->_aiocb_private.error, error));
 1457 }
 1458 
 1459 static int
 1460 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
 1461 {
 1462 
 1463         return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
 1464 }
 1465 
 1466 static int
 1467 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 1468 {
 1469 
 1470         return (suword(ujobp, (long)ujob));
 1471 }
 1472 
 1473 static struct aiocb_ops aiocb_ops = {
 1474         .aio_copyin = aiocb_copyin,
 1475         .fetch_status = aiocb_fetch_status,
 1476         .fetch_error = aiocb_fetch_error,
 1477         .store_status = aiocb_store_status,
 1478         .store_error = aiocb_store_error,
 1479         .store_kernelinfo = aiocb_store_kernelinfo,
 1480         .store_aiocb = aiocb_store_aiocb,
 1481 };
 1482 
 1483 #ifdef COMPAT_FREEBSD6
 1484 static struct aiocb_ops aiocb_ops_osigevent = {
 1485         .aio_copyin = aiocb_copyin_old_sigevent,
 1486         .fetch_status = aiocb_fetch_status,
 1487         .fetch_error = aiocb_fetch_error,
 1488         .store_status = aiocb_store_status,
 1489         .store_error = aiocb_store_error,
 1490         .store_kernelinfo = aiocb_store_kernelinfo,
 1491         .store_aiocb = aiocb_store_aiocb,
 1492 };
 1493 #endif
 1494 
 1495 /*
 1496  * Queue a new AIO request.  Choosing either the threaded or direct bio VCHR
 1497  * technique is done in this code.
 1498  */
 1499 int
 1500 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
 1501     int type, struct aiocb_ops *ops)
 1502 {
 1503         struct proc *p = td->td_proc;
 1504         struct file *fp = NULL;
 1505         struct kaiocb *job;
 1506         struct kaioinfo *ki;
 1507         struct kevent kev;
 1508         int opcode;
 1509         int error;
 1510         int fd, kqfd;
 1511         int jid;
 1512         u_short evflags;
 1513 
 1514         if (p->p_aioinfo == NULL)
 1515                 aio_init_aioinfo(p);
 1516 
 1517         ki = p->p_aioinfo;
 1518 
 1519         ops->store_status(ujob, -1);
 1520         ops->store_error(ujob, 0);
 1521         ops->store_kernelinfo(ujob, -1);
 1522 
 1523         if (num_queue_count >= max_queue_count ||
 1524             ki->kaio_count >= max_aio_queue_per_proc) {
 1525                 error = EAGAIN;
 1526                 goto err1;
 1527         }
 1528 
 1529         job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 1530         knlist_init_mtx(&job->klist, AIO_MTX(ki));
 1531 
 1532         error = ops->aio_copyin(ujob, job, type);
 1533         if (error)
 1534                 goto err2;
 1535 
 1536         if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
 1537                 error = EINVAL;
 1538                 goto err2;
 1539         }
 1540 
 1541         if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
 1542             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
 1543             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
 1544             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
 1545                 error = EINVAL;
 1546                 goto err2;
 1547         }
 1548 
 1549         if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1550              job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
 1551                 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
 1552                 error = EINVAL;
 1553                 goto err2;
 1554         }
 1555 
 1556         /* Get the opcode. */
 1557         if (type == LIO_NOP) {
 1558                 switch (job->uaiocb.aio_lio_opcode) {
 1559                 case LIO_WRITE:
 1560                 case LIO_NOP:
 1561                 case LIO_READ:
 1562                         opcode = job->uaiocb.aio_lio_opcode;
 1563                         break;
 1564                 default:
 1565                         error = EINVAL;
 1566                         goto err2;
 1567                 }
 1568         } else
 1569                 opcode = job->uaiocb.aio_lio_opcode = type;
 1570 
 1571         ksiginfo_init(&job->ksi);
 1572 
 1573         /* Save userspace address of the job info. */
 1574         job->ujob = ujob;
 1575 
 1576         /*
 1577          * Validate the opcode and fetch the file object for the specified
 1578          * file descriptor.
 1579          *
 1580          * XXXRW: Moved the opcode validation up here so that we don't
 1581          * retrieve a file descriptor without knowing what the capabiltity
 1582          * should be.
 1583          */
 1584         fd = job->uaiocb.aio_fildes;
 1585         switch (opcode) {
 1586         case LIO_WRITE:
 1587         case LIO_WRITEV:
 1588                 error = fget_write(td, fd, &cap_pwrite_rights, &fp);
 1589                 break;
 1590         case LIO_READ:
 1591         case LIO_READV:
 1592                 error = fget_read(td, fd, &cap_pread_rights, &fp);
 1593                 break;
 1594         case LIO_SYNC:
 1595         case LIO_DSYNC:
 1596                 error = fget(td, fd, &cap_fsync_rights, &fp);
 1597                 break;
 1598         case LIO_MLOCK:
 1599                 break;
 1600         case LIO_NOP:
 1601                 error = fget(td, fd, &cap_no_rights, &fp);
 1602                 break;
 1603         default:
 1604                 error = EINVAL;
 1605         }
 1606         if (error)
 1607                 goto err3;
 1608 
 1609         if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
 1610                 error = EINVAL;
 1611                 goto err3;
 1612         }
 1613 
 1614         if ((opcode == LIO_READ || opcode == LIO_READV ||
 1615             opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
 1616             job->uaiocb.aio_offset < 0 &&
 1617             (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
 1618                 error = EINVAL;
 1619                 goto err3;
 1620         }
 1621 
 1622         job->fd_file = fp;
 1623 
 1624         mtx_lock(&aio_job_mtx);
 1625         jid = jobrefid++;
 1626         job->seqno = jobseqno++;
 1627         mtx_unlock(&aio_job_mtx);
 1628         error = ops->store_kernelinfo(ujob, jid);
 1629         if (error) {
 1630                 error = EINVAL;
 1631                 goto err3;
 1632         }
 1633         job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
 1634 
 1635         if (opcode == LIO_NOP) {
 1636                 fdrop(fp, td);
 1637                 MPASS(job->uiop == &job->uio || job->uiop == NULL);
 1638                 uma_zfree(aiocb_zone, job);
 1639                 return (0);
 1640         }
 1641 
 1642         if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
 1643                 goto no_kqueue;
 1644         evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
 1645         if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
 1646                 error = EINVAL;
 1647                 goto err3;
 1648         }
 1649         kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
 1650         memset(&kev, 0, sizeof(kev));
 1651         kev.ident = (uintptr_t)job->ujob;
 1652         kev.filter = EVFILT_AIO;
 1653         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
 1654         kev.data = (intptr_t)job;
 1655         kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
 1656         error = kqfd_register(kqfd, &kev, td, M_WAITOK);
 1657         if (error)
 1658                 goto err3;
 1659 
 1660 no_kqueue:
 1661 
 1662         ops->store_error(ujob, EINPROGRESS);
 1663         job->uaiocb._aiocb_private.error = EINPROGRESS;
 1664         job->userproc = p;
 1665         job->cred = crhold(td->td_ucred);
 1666         job->jobflags = KAIOCB_QUEUEING;
 1667         job->lio = lj;
 1668 
 1669         if (opcode & LIO_VECTORED) {
 1670                 /* Use the uio copied in by aio_copyin */
 1671                 MPASS(job->uiop != &job->uio && job->uiop != NULL);
 1672         } else {
 1673                 /* Setup the inline uio */
 1674                 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
 1675                 job->iov[0].iov_len = job->uaiocb.aio_nbytes;
 1676                 job->uio.uio_iov = job->iov;
 1677                 job->uio.uio_iovcnt = 1;
 1678                 job->uio.uio_resid = job->uaiocb.aio_nbytes;
 1679                 job->uio.uio_segflg = UIO_USERSPACE;
 1680                 job->uiop = &job->uio;
 1681         }
 1682         switch (opcode & (LIO_READ | LIO_WRITE)) {
 1683         case LIO_READ:
 1684                 job->uiop->uio_rw = UIO_READ;
 1685                 break;
 1686         case LIO_WRITE:
 1687                 job->uiop->uio_rw = UIO_WRITE;
 1688                 break;
 1689         }
 1690         job->uiop->uio_offset = job->uaiocb.aio_offset;
 1691         job->uiop->uio_td = td;
 1692 
 1693         if (opcode == LIO_MLOCK) {
 1694                 aio_schedule(job, aio_process_mlock);
 1695                 error = 0;
 1696         } else if (fp->f_ops->fo_aio_queue == NULL)
 1697                 error = aio_queue_file(fp, job);
 1698         else
 1699                 error = fo_aio_queue(fp, job);
 1700         if (error)
 1701                 goto err4;
 1702 
 1703         AIO_LOCK(ki);
 1704         job->jobflags &= ~KAIOCB_QUEUEING;
 1705         TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
 1706         ki->kaio_count++;
 1707         if (lj)
 1708                 lj->lioj_count++;
 1709         atomic_add_int(&num_queue_count, 1);
 1710         if (job->jobflags & KAIOCB_FINISHED) {
 1711                 /*
 1712                  * The queue callback completed the request synchronously.
 1713                  * The bulk of the completion is deferred in that case
 1714                  * until this point.
 1715                  */
 1716                 aio_bio_done_notify(p, job);
 1717         } else
 1718                 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
 1719         AIO_UNLOCK(ki);
 1720         return (0);
 1721 
 1722 err4:
 1723         crfree(job->cred);
 1724 err3:
 1725         if (fp)
 1726                 fdrop(fp, td);
 1727         knlist_delete(&job->klist, curthread, 0);
 1728 err2:
 1729         if (job->uiop != &job->uio)
 1730                 free(job->uiop, M_IOV);
 1731         uma_zfree(aiocb_zone, job);
 1732 err1:
 1733         ops->store_error(ujob, error);
 1734         return (error);
 1735 }
 1736 
 1737 static void
 1738 aio_cancel_daemon_job(struct kaiocb *job)
 1739 {
 1740 
 1741         mtx_lock(&aio_job_mtx);
 1742         if (!aio_cancel_cleared(job))
 1743                 TAILQ_REMOVE(&aio_jobs, job, list);
 1744         mtx_unlock(&aio_job_mtx);
 1745         aio_cancel(job);
 1746 }
 1747 
 1748 void
 1749 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
 1750 {
 1751 
 1752         mtx_lock(&aio_job_mtx);
 1753         if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
 1754                 mtx_unlock(&aio_job_mtx);
 1755                 aio_cancel(job);
 1756                 return;
 1757         }
 1758         job->handle_fn = func;
 1759         TAILQ_INSERT_TAIL(&aio_jobs, job, list);
 1760         aio_kick_nowait(job->userproc);
 1761         mtx_unlock(&aio_job_mtx);
 1762 }
 1763 
 1764 static void
 1765 aio_cancel_sync(struct kaiocb *job)
 1766 {
 1767         struct kaioinfo *ki;
 1768 
 1769         ki = job->userproc->p_aioinfo;
 1770         AIO_LOCK(ki);
 1771         if (!aio_cancel_cleared(job))
 1772                 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
 1773         AIO_UNLOCK(ki);
 1774         aio_cancel(job);
 1775 }
 1776 
 1777 int
 1778 aio_queue_file(struct file *fp, struct kaiocb *job)
 1779 {
 1780         struct kaioinfo *ki;
 1781         struct kaiocb *job2;
 1782         struct vnode *vp;
 1783         struct mount *mp;
 1784         int error;
 1785         bool safe;
 1786 
 1787         ki = job->userproc->p_aioinfo;
 1788         error = aio_qbio(job->userproc, job);
 1789         if (error >= 0)
 1790                 return (error);
 1791         safe = false;
 1792         if (fp->f_type == DTYPE_VNODE) {
 1793                 vp = fp->f_vnode;
 1794                 if (vp->v_type == VREG || vp->v_type == VDIR) {
 1795                         mp = fp->f_vnode->v_mount;
 1796                         if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
 1797                                 safe = true;
 1798                 }
 1799         }
 1800         if (!(safe || enable_aio_unsafe)) {
 1801                 counted_warning(&unsafe_warningcnt,
 1802                     "is attempting to use unsafe AIO requests");
 1803                 return (EOPNOTSUPP);
 1804         }
 1805 
 1806         if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
 1807                 aio_schedule(job, aio_process_rw);
 1808                 error = 0;
 1809         } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
 1810                 AIO_LOCK(ki);
 1811                 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
 1812                         if (job2->fd_file == job->fd_file &&
 1813                             ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
 1814                             job2->seqno < job->seqno) {
 1815                                 job2->jobflags |= KAIOCB_CHECKSYNC;
 1816                                 job->pending++;
 1817                         }
 1818                 }
 1819                 if (job->pending != 0) {
 1820                         if (!aio_set_cancel_function_locked(job,
 1821                                 aio_cancel_sync)) {
 1822                                 AIO_UNLOCK(ki);
 1823                                 aio_cancel(job);
 1824                                 return (0);
 1825                         }
 1826                         TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
 1827                         AIO_UNLOCK(ki);
 1828                         return (0);
 1829                 }
 1830                 AIO_UNLOCK(ki);
 1831                 aio_schedule(job, aio_process_sync);
 1832                 error = 0;
 1833         } else {
 1834                 error = EINVAL;
 1835         }
 1836         return (error);
 1837 }
 1838 
 1839 static void
 1840 aio_kick_nowait(struct proc *userp)
 1841 {
 1842         struct kaioinfo *ki = userp->p_aioinfo;
 1843         struct aioproc *aiop;
 1844 
 1845         mtx_assert(&aio_job_mtx, MA_OWNED);
 1846         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1847                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1848                 aiop->aioprocflags &= ~AIOP_FREE;
 1849                 wakeup(aiop->aioproc);
 1850         } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
 1851             ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
 1852                 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
 1853         }
 1854 }
 1855 
 1856 static int
 1857 aio_kick(struct proc *userp)
 1858 {
 1859         struct kaioinfo *ki = userp->p_aioinfo;
 1860         struct aioproc *aiop;
 1861         int error, ret = 0;
 1862 
 1863         mtx_assert(&aio_job_mtx, MA_OWNED);
 1864 retryproc:
 1865         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1866                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1867                 aiop->aioprocflags &= ~AIOP_FREE;
 1868                 wakeup(aiop->aioproc);
 1869         } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
 1870             ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
 1871                 num_aio_resv_start++;
 1872                 mtx_unlock(&aio_job_mtx);
 1873                 error = aio_newproc(&num_aio_resv_start);
 1874                 mtx_lock(&aio_job_mtx);
 1875                 if (error) {
 1876                         num_aio_resv_start--;
 1877                         goto retryproc;
 1878                 }
 1879         } else {
 1880                 ret = -1;
 1881         }
 1882         return (ret);
 1883 }
 1884 
 1885 static void
 1886 aio_kick_helper(void *context, int pending)
 1887 {
 1888         struct proc *userp = context;
 1889 
 1890         mtx_lock(&aio_job_mtx);
 1891         while (--pending >= 0) {
 1892                 if (aio_kick(userp))
 1893                         break;
 1894         }
 1895         mtx_unlock(&aio_job_mtx);
 1896 }
 1897 
 1898 /*
 1899  * Support the aio_return system call, as a side-effect, kernel resources are
 1900  * released.
 1901  */
 1902 static int
 1903 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
 1904 {
 1905         struct proc *p = td->td_proc;
 1906         struct kaiocb *job;
 1907         struct kaioinfo *ki;
 1908         long status, error;
 1909 
 1910         ki = p->p_aioinfo;
 1911         if (ki == NULL)
 1912                 return (EINVAL);
 1913         AIO_LOCK(ki);
 1914         TAILQ_FOREACH(job, &ki->kaio_done, plist) {
 1915                 if (job->ujob == ujob)
 1916                         break;
 1917         }
 1918         if (job != NULL) {
 1919                 MPASS(job->jobflags & KAIOCB_FINISHED);
 1920                 status = job->uaiocb._aiocb_private.status;
 1921                 error = job->uaiocb._aiocb_private.error;
 1922                 td->td_retval[0] = status;
 1923                 td->td_ru.ru_oublock += job->outblock;
 1924                 td->td_ru.ru_inblock += job->inblock;
 1925                 td->td_ru.ru_msgsnd += job->msgsnd;
 1926                 td->td_ru.ru_msgrcv += job->msgrcv;
 1927                 aio_free_entry(job);
 1928                 AIO_UNLOCK(ki);
 1929                 ops->store_error(ujob, error);
 1930                 ops->store_status(ujob, status);
 1931         } else {
 1932                 error = EINVAL;
 1933                 AIO_UNLOCK(ki);
 1934         }
 1935         return (error);
 1936 }
 1937 
 1938 int
 1939 sys_aio_return(struct thread *td, struct aio_return_args *uap)
 1940 {
 1941 
 1942         return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
 1943 }
 1944 
 1945 /*
 1946  * Allow a process to wakeup when any of the I/O requests are completed.
 1947  */
 1948 static int
 1949 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
 1950     struct timespec *ts)
 1951 {
 1952         struct proc *p = td->td_proc;
 1953         struct timeval atv;
 1954         struct kaioinfo *ki;
 1955         struct kaiocb *firstjob, *job;
 1956         int error, i, timo;
 1957 
 1958         timo = 0;
 1959         if (ts) {
 1960                 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1961                         return (EINVAL);
 1962 
 1963                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 1964                 if (itimerfix(&atv))
 1965                         return (EINVAL);
 1966                 timo = tvtohz(&atv);
 1967         }
 1968 
 1969         ki = p->p_aioinfo;
 1970         if (ki == NULL)
 1971                 return (EAGAIN);
 1972 
 1973         if (njoblist == 0)
 1974                 return (0);
 1975 
 1976         AIO_LOCK(ki);
 1977         for (;;) {
 1978                 firstjob = NULL;
 1979                 error = 0;
 1980                 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
 1981                         for (i = 0; i < njoblist; i++) {
 1982                                 if (job->ujob == ujoblist[i]) {
 1983                                         if (firstjob == NULL)
 1984                                                 firstjob = job;
 1985                                         if (job->jobflags & KAIOCB_FINISHED)
 1986                                                 goto RETURN;
 1987                                 }
 1988                         }
 1989                 }
 1990                 /* All tasks were finished. */
 1991                 if (firstjob == NULL)
 1992                         break;
 1993 
 1994                 ki->kaio_flags |= KAIO_WAKEUP;
 1995                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 1996                     "aiospn", timo);
 1997                 if (error == ERESTART)
 1998                         error = EINTR;
 1999                 if (error)
 2000                         break;
 2001         }
 2002 RETURN:
 2003         AIO_UNLOCK(ki);
 2004         return (error);
 2005 }
 2006 
 2007 int
 2008 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 2009 {
 2010         struct timespec ts, *tsp;
 2011         struct aiocb **ujoblist;
 2012         int error;
 2013 
 2014         if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
 2015                 return (EINVAL);
 2016 
 2017         if (uap->timeout) {
 2018                 /* Get timespec struct. */
 2019                 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 2020                         return (error);
 2021                 tsp = &ts;
 2022         } else
 2023                 tsp = NULL;
 2024 
 2025         ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
 2026         error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
 2027         if (error == 0)
 2028                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2029         free(ujoblist, M_AIOS);
 2030         return (error);
 2031 }
 2032 
 2033 /*
 2034  * aio_cancel cancels any non-bio aio operations not currently in progress.
 2035  */
 2036 int
 2037 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 2038 {
 2039         struct proc *p = td->td_proc;
 2040         struct kaioinfo *ki;
 2041         struct kaiocb *job, *jobn;
 2042         struct file *fp;
 2043         int error;
 2044         int cancelled = 0;
 2045         int notcancelled = 0;
 2046         struct vnode *vp;
 2047 
 2048         /* Lookup file object. */
 2049         error = fget(td, uap->fd, &cap_no_rights, &fp);
 2050         if (error)
 2051                 return (error);
 2052 
 2053         ki = p->p_aioinfo;
 2054         if (ki == NULL)
 2055                 goto done;
 2056 
 2057         if (fp->f_type == DTYPE_VNODE) {
 2058                 vp = fp->f_vnode;
 2059                 if (vn_isdisk(vp)) {
 2060                         fdrop(fp, td);
 2061                         td->td_retval[0] = AIO_NOTCANCELED;
 2062                         return (0);
 2063                 }
 2064         }
 2065 
 2066         AIO_LOCK(ki);
 2067         TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
 2068                 if ((uap->fd == job->uaiocb.aio_fildes) &&
 2069                     ((uap->aiocbp == NULL) ||
 2070                      (uap->aiocbp == job->ujob))) {
 2071                         if (aio_cancel_job(p, ki, job)) {
 2072                                 cancelled++;
 2073                         } else {
 2074                                 notcancelled++;
 2075                         }
 2076                         if (uap->aiocbp != NULL)
 2077                                 break;
 2078                 }
 2079         }
 2080         AIO_UNLOCK(ki);
 2081 
 2082 done:
 2083         fdrop(fp, td);
 2084 
 2085         if (uap->aiocbp != NULL) {
 2086                 if (cancelled) {
 2087                         td->td_retval[0] = AIO_CANCELED;
 2088                         return (0);
 2089                 }
 2090         }
 2091 
 2092         if (notcancelled) {
 2093                 td->td_retval[0] = AIO_NOTCANCELED;
 2094                 return (0);
 2095         }
 2096 
 2097         if (cancelled) {
 2098                 td->td_retval[0] = AIO_CANCELED;
 2099                 return (0);
 2100         }
 2101 
 2102         td->td_retval[0] = AIO_ALLDONE;
 2103 
 2104         return (0);
 2105 }
 2106 
 2107 /*
 2108  * aio_error is implemented in the kernel level for compatibility purposes
 2109  * only.  For a user mode async implementation, it would be best to do it in
 2110  * a userland subroutine.
 2111  */
 2112 static int
 2113 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
 2114 {
 2115         struct proc *p = td->td_proc;
 2116         struct kaiocb *job;
 2117         struct kaioinfo *ki;
 2118         int status;
 2119 
 2120         ki = p->p_aioinfo;
 2121         if (ki == NULL) {
 2122                 td->td_retval[0] = EINVAL;
 2123                 return (0);
 2124         }
 2125 
 2126         AIO_LOCK(ki);
 2127         TAILQ_FOREACH(job, &ki->kaio_all, allist) {
 2128                 if (job->ujob == ujob) {
 2129                         if (job->jobflags & KAIOCB_FINISHED)
 2130                                 td->td_retval[0] =
 2131                                         job->uaiocb._aiocb_private.error;
 2132                         else
 2133                                 td->td_retval[0] = EINPROGRESS;
 2134                         AIO_UNLOCK(ki);
 2135                         return (0);
 2136                 }
 2137         }
 2138         AIO_UNLOCK(ki);
 2139 
 2140         /*
 2141          * Hack for failure of aio_aqueue.
 2142          */
 2143         status = ops->fetch_status(ujob);
 2144         if (status == -1) {
 2145                 td->td_retval[0] = ops->fetch_error(ujob);
 2146                 return (0);
 2147         }
 2148 
 2149         td->td_retval[0] = EINVAL;
 2150         return (0);
 2151 }
 2152 
 2153 int
 2154 sys_aio_error(struct thread *td, struct aio_error_args *uap)
 2155 {
 2156 
 2157         return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
 2158 }
 2159 
 2160 /* syscall - asynchronous read from a file (REALTIME) */
 2161 #ifdef COMPAT_FREEBSD6
 2162 int
 2163 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
 2164 {
 2165 
 2166         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2167             &aiocb_ops_osigevent));
 2168 }
 2169 #endif
 2170 
 2171 int
 2172 sys_aio_read(struct thread *td, struct aio_read_args *uap)
 2173 {
 2174 
 2175         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
 2176 }
 2177 
 2178 int
 2179 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
 2180 {
 2181 
 2182         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
 2183 }
 2184 
 2185 /* syscall - asynchronous write to a file (REALTIME) */
 2186 #ifdef COMPAT_FREEBSD6
 2187 int
 2188 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
 2189 {
 2190 
 2191         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2192             &aiocb_ops_osigevent));
 2193 }
 2194 #endif
 2195 
 2196 int
 2197 sys_aio_write(struct thread *td, struct aio_write_args *uap)
 2198 {
 2199 
 2200         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
 2201 }
 2202 
 2203 int
 2204 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
 2205 {
 2206 
 2207         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
 2208 }
 2209 
 2210 int
 2211 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
 2212 {
 2213 
 2214         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
 2215 }
 2216 
 2217 static int
 2218 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
 2219     struct aiocb **acb_list, int nent, struct sigevent *sig,
 2220     struct aiocb_ops *ops)
 2221 {
 2222         struct proc *p = td->td_proc;
 2223         struct aiocb *job;
 2224         struct kaioinfo *ki;
 2225         struct aioliojob *lj;
 2226         struct kevent kev;
 2227         int error;
 2228         int nagain, nerror;
 2229         int i;
 2230 
 2231         if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
 2232                 return (EINVAL);
 2233 
 2234         if (nent < 0 || nent > max_aio_queue_per_proc)
 2235                 return (EINVAL);
 2236 
 2237         if (p->p_aioinfo == NULL)
 2238                 aio_init_aioinfo(p);
 2239 
 2240         ki = p->p_aioinfo;
 2241 
 2242         lj = uma_zalloc(aiolio_zone, M_WAITOK);
 2243         lj->lioj_flags = 0;
 2244         lj->lioj_count = 0;
 2245         lj->lioj_finished_count = 0;
 2246         knlist_init_mtx(&lj->klist, AIO_MTX(ki));
 2247         ksiginfo_init(&lj->lioj_ksi);
 2248 
 2249         /*
 2250          * Setup signal.
 2251          */
 2252         if (sig && (mode == LIO_NOWAIT)) {
 2253                 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
 2254                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2255                         /* Assume only new style KEVENT */
 2256                         memset(&kev, 0, sizeof(kev));
 2257                         kev.filter = EVFILT_LIO;
 2258                         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 2259                         kev.ident = (uintptr_t)uacb_list; /* something unique */
 2260                         kev.data = (intptr_t)lj;
 2261                         /* pass user defined sigval data */
 2262                         kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
 2263                         error = kqfd_register(
 2264                             lj->lioj_signal.sigev_notify_kqueue, &kev, td,
 2265                             M_WAITOK);
 2266                         if (error) {
 2267                                 uma_zfree(aiolio_zone, lj);
 2268                                 return (error);
 2269                         }
 2270                 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
 2271                         ;
 2272                 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2273                            lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
 2274                                 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 2275                                         uma_zfree(aiolio_zone, lj);
 2276                                         return EINVAL;
 2277                                 }
 2278                                 lj->lioj_flags |= LIOJ_SIGNAL;
 2279                 } else {
 2280                         uma_zfree(aiolio_zone, lj);
 2281                         return EINVAL;
 2282                 }
 2283         }
 2284 
 2285         AIO_LOCK(ki);
 2286         TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 2287         /*
 2288          * Add extra aiocb count to avoid the lio to be freed
 2289          * by other threads doing aio_waitcomplete or aio_return,
 2290          * and prevent event from being sent until we have queued
 2291          * all tasks.
 2292          */
 2293         lj->lioj_count = 1;
 2294         AIO_UNLOCK(ki);
 2295 
 2296         /*
 2297          * Get pointers to the list of I/O requests.
 2298          */
 2299         nagain = 0;
 2300         nerror = 0;
 2301         for (i = 0; i < nent; i++) {
 2302                 job = acb_list[i];
 2303                 if (job != NULL) {
 2304                         error = aio_aqueue(td, job, lj, LIO_NOP, ops);
 2305                         if (error == EAGAIN)
 2306                                 nagain++;
 2307                         else if (error != 0)
 2308                                 nerror++;
 2309                 }
 2310         }
 2311 
 2312         error = 0;
 2313         AIO_LOCK(ki);
 2314         if (mode == LIO_WAIT) {
 2315                 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
 2316                         ki->kaio_flags |= KAIO_WAKEUP;
 2317                         error = msleep(&p->p_aioinfo, AIO_MTX(ki),
 2318                             PRIBIO | PCATCH, "aiospn", 0);
 2319                         if (error == ERESTART)
 2320                                 error = EINTR;
 2321                         if (error)
 2322                                 break;
 2323                 }
 2324         } else {
 2325                 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
 2326                         if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2327                                 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 2328                                 KNOTE_LOCKED(&lj->klist, 1);
 2329                         }
 2330                         if ((lj->lioj_flags & (LIOJ_SIGNAL |
 2331                             LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
 2332                             (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2333                             lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 2334                                 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
 2335                                     lj->lioj_count != 1);
 2336                                 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2337                         }
 2338                 }
 2339         }
 2340         lj->lioj_count--;
 2341         if (lj->lioj_count == 0) {
 2342                 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 2343                 knlist_delete(&lj->klist, curthread, 1);
 2344                 PROC_LOCK(p);
 2345                 sigqueue_take(&lj->lioj_ksi);
 2346                 PROC_UNLOCK(p);
 2347                 AIO_UNLOCK(ki);
 2348                 uma_zfree(aiolio_zone, lj);
 2349         } else
 2350                 AIO_UNLOCK(ki);
 2351 
 2352         if (nerror)
 2353                 return (EIO);
 2354         else if (nagain)
 2355                 return (EAGAIN);
 2356         else
 2357                 return (error);
 2358 }
 2359 
 2360 /* syscall - list directed I/O (REALTIME) */
 2361 #ifdef COMPAT_FREEBSD6
 2362 int
 2363 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
 2364 {
 2365         struct aiocb **acb_list;
 2366         struct sigevent *sigp, sig;
 2367         struct osigevent osig;
 2368         int error, nent;
 2369 
 2370         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2371                 return (EINVAL);
 2372 
 2373         nent = uap->nent;
 2374         if (nent < 0 || nent > max_aio_queue_per_proc)
 2375                 return (EINVAL);
 2376 
 2377         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2378                 error = copyin(uap->sig, &osig, sizeof(osig));
 2379                 if (error)
 2380                         return (error);
 2381                 error = convert_old_sigevent(&osig, &sig);
 2382                 if (error)
 2383                         return (error);
 2384                 sigp = &sig;
 2385         } else
 2386                 sigp = NULL;
 2387 
 2388         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2389         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2390         if (error == 0)
 2391                 error = kern_lio_listio(td, uap->mode,
 2392                     (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2393                     &aiocb_ops_osigevent);
 2394         free(acb_list, M_LIO);
 2395         return (error);
 2396 }
 2397 #endif
 2398 
 2399 /* syscall - list directed I/O (REALTIME) */
 2400 int
 2401 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
 2402 {
 2403         struct aiocb **acb_list;
 2404         struct sigevent *sigp, sig;
 2405         int error, nent;
 2406 
 2407         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2408                 return (EINVAL);
 2409 
 2410         nent = uap->nent;
 2411         if (nent < 0 || nent > max_aio_queue_per_proc)
 2412                 return (EINVAL);
 2413 
 2414         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2415                 error = copyin(uap->sig, &sig, sizeof(sig));
 2416                 if (error)
 2417                         return (error);
 2418                 sigp = &sig;
 2419         } else
 2420                 sigp = NULL;
 2421 
 2422         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2423         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2424         if (error == 0)
 2425                 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
 2426                     nent, sigp, &aiocb_ops);
 2427         free(acb_list, M_LIO);
 2428         return (error);
 2429 }
 2430 
 2431 static void
 2432 aio_biocleanup(struct bio *bp)
 2433 {
 2434         struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
 2435         struct kaioinfo *ki;
 2436         struct buf *pbuf = (struct buf *)bp->bio_caller2;
 2437 
 2438         /* Release mapping into kernel space. */
 2439         if (pbuf != NULL) {
 2440                 MPASS(pbuf->b_npages <= atop(maxphys) + 1);
 2441                 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
 2442                 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
 2443                 uma_zfree(pbuf_zone, pbuf);
 2444                 atomic_subtract_int(&num_buf_aio, 1);
 2445                 ki = job->userproc->p_aioinfo;
 2446                 AIO_LOCK(ki);
 2447                 ki->kaio_buffer_count--;
 2448                 AIO_UNLOCK(ki);
 2449         } else {
 2450                 MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
 2451                 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
 2452                 free(bp->bio_ma, M_TEMP);
 2453                 atomic_subtract_int(&num_unmapped_aio, 1);
 2454         }
 2455         g_destroy_bio(bp);
 2456 }
 2457 
 2458 static void
 2459 aio_biowakeup(struct bio *bp)
 2460 {
 2461         struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
 2462         size_t nbytes;
 2463         long bcount = bp->bio_bcount;
 2464         long resid = bp->bio_resid;
 2465         int error, opcode, nblks;
 2466         int bio_error = bp->bio_error;
 2467         uint16_t flags = bp->bio_flags;
 2468 
 2469         opcode = job->uaiocb.aio_lio_opcode;
 2470 
 2471         aio_biocleanup(bp);
 2472 
 2473         nbytes =bcount - resid;
 2474         atomic_add_acq_long(&job->nbytes, nbytes);
 2475         nblks = btodb(nbytes);
 2476         error = 0;
 2477         /*
 2478          * If multiple bios experienced an error, the job will reflect the
 2479          * error of whichever failed bio completed last.
 2480          */
 2481         if (flags & BIO_ERROR)
 2482                 atomic_set_int(&job->error, bio_error);
 2483         if (opcode & LIO_WRITE)
 2484                 atomic_add_int(&job->outblock, nblks);
 2485         else
 2486                 atomic_add_int(&job->inblock, nblks);
 2487         atomic_subtract_int(&job->nbio, 1);
 2488 
 2489 
 2490         if (atomic_load_int(&job->nbio) == 0) {
 2491                 if (atomic_load_int(&job->error))
 2492                         aio_complete(job, -1, job->error);
 2493                 else
 2494                         aio_complete(job, atomic_load_long(&job->nbytes), 0);
 2495         }
 2496 }
 2497 
 2498 /* syscall - wait for the next completion of an aio request */
 2499 static int
 2500 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
 2501     struct timespec *ts, struct aiocb_ops *ops)
 2502 {
 2503         struct proc *p = td->td_proc;
 2504         struct timeval atv;
 2505         struct kaioinfo *ki;
 2506         struct kaiocb *job;
 2507         struct aiocb *ujob;
 2508         long error, status;
 2509         int timo;
 2510 
 2511         ops->store_aiocb(ujobp, NULL);
 2512 
 2513         if (ts == NULL) {
 2514                 timo = 0;
 2515         } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
 2516                 timo = -1;
 2517         } else {
 2518                 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
 2519                         return (EINVAL);
 2520 
 2521                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 2522                 if (itimerfix(&atv))
 2523                         return (EINVAL);
 2524                 timo = tvtohz(&atv);
 2525         }
 2526 
 2527         if (p->p_aioinfo == NULL)
 2528                 aio_init_aioinfo(p);
 2529         ki = p->p_aioinfo;
 2530 
 2531         error = 0;
 2532         job = NULL;
 2533         AIO_LOCK(ki);
 2534         while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
 2535                 if (timo == -1) {
 2536                         error = EWOULDBLOCK;
 2537                         break;
 2538                 }
 2539                 ki->kaio_flags |= KAIO_WAKEUP;
 2540                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2541                     "aiowc", timo);
 2542                 if (timo && error == ERESTART)
 2543                         error = EINTR;
 2544                 if (error)
 2545                         break;
 2546         }
 2547 
 2548         if (job != NULL) {
 2549                 MPASS(job->jobflags & KAIOCB_FINISHED);
 2550                 ujob = job->ujob;
 2551                 status = job->uaiocb._aiocb_private.status;
 2552                 error = job->uaiocb._aiocb_private.error;
 2553                 td->td_retval[0] = status;
 2554                 td->td_ru.ru_oublock += job->outblock;
 2555                 td->td_ru.ru_inblock += job->inblock;
 2556                 td->td_ru.ru_msgsnd += job->msgsnd;
 2557                 td->td_ru.ru_msgrcv += job->msgrcv;
 2558                 aio_free_entry(job);
 2559                 AIO_UNLOCK(ki);
 2560                 ops->store_aiocb(ujobp, ujob);
 2561                 ops->store_error(ujob, error);
 2562                 ops->store_status(ujob, status);
 2563         } else
 2564                 AIO_UNLOCK(ki);
 2565 
 2566         return (error);
 2567 }
 2568 
 2569 int
 2570 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 2571 {
 2572         struct timespec ts, *tsp;
 2573         int error;
 2574 
 2575         if (uap->timeout) {
 2576                 /* Get timespec struct. */
 2577                 error = copyin(uap->timeout, &ts, sizeof(ts));
 2578                 if (error)
 2579                         return (error);
 2580                 tsp = &ts;
 2581         } else
 2582                 tsp = NULL;
 2583 
 2584         return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
 2585 }
 2586 
 2587 static int
 2588 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
 2589     struct aiocb_ops *ops)
 2590 {
 2591         int listop;
 2592 
 2593         switch (op) {
 2594         case O_SYNC:
 2595                 listop = LIO_SYNC;
 2596                 break;
 2597         case O_DSYNC:
 2598                 listop = LIO_DSYNC;
 2599                 break;
 2600         default:
 2601                 return (EINVAL);
 2602         }
 2603 
 2604         return (aio_aqueue(td, ujob, NULL, listop, ops));
 2605 }
 2606 
 2607 int
 2608 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 2609 {
 2610 
 2611         return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
 2612 }
 2613 
 2614 /* kqueue attach function */
 2615 static int
 2616 filt_aioattach(struct knote *kn)
 2617 {
 2618         struct kaiocb *job;
 2619 
 2620         job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
 2621 
 2622         /*
 2623          * The job pointer must be validated before using it, so
 2624          * registration is restricted to the kernel; the user cannot
 2625          * set EV_FLAG1.
 2626          */
 2627         if ((kn->kn_flags & EV_FLAG1) == 0)
 2628                 return (EPERM);
 2629         kn->kn_ptr.p_aio = job;
 2630         kn->kn_flags &= ~EV_FLAG1;
 2631 
 2632         knlist_add(&job->klist, kn, 0);
 2633 
 2634         return (0);
 2635 }
 2636 
 2637 /* kqueue detach function */
 2638 static void
 2639 filt_aiodetach(struct knote *kn)
 2640 {
 2641         struct knlist *knl;
 2642 
 2643         knl = &kn->kn_ptr.p_aio->klist;
 2644         knl->kl_lock(knl->kl_lockarg);
 2645         if (!knlist_empty(knl))
 2646                 knlist_remove(knl, kn, 1);
 2647         knl->kl_unlock(knl->kl_lockarg);
 2648 }
 2649 
 2650 /* kqueue filter function */
 2651 /*ARGSUSED*/
 2652 static int
 2653 filt_aio(struct knote *kn, long hint)
 2654 {
 2655         struct kaiocb *job = kn->kn_ptr.p_aio;
 2656 
 2657         kn->kn_data = job->uaiocb._aiocb_private.error;
 2658         if (!(job->jobflags & KAIOCB_FINISHED))
 2659                 return (0);
 2660         kn->kn_flags |= EV_EOF;
 2661         return (1);
 2662 }
 2663 
 2664 /* kqueue attach function */
 2665 static int
 2666 filt_lioattach(struct knote *kn)
 2667 {
 2668         struct aioliojob *lj;
 2669 
 2670         lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
 2671 
 2672         /*
 2673          * The aioliojob pointer must be validated before using it, so
 2674          * registration is restricted to the kernel; the user cannot
 2675          * set EV_FLAG1.
 2676          */
 2677         if ((kn->kn_flags & EV_FLAG1) == 0)
 2678                 return (EPERM);
 2679         kn->kn_ptr.p_lio = lj;
 2680         kn->kn_flags &= ~EV_FLAG1;
 2681 
 2682         knlist_add(&lj->klist, kn, 0);
 2683 
 2684         return (0);
 2685 }
 2686 
 2687 /* kqueue detach function */
 2688 static void
 2689 filt_liodetach(struct knote *kn)
 2690 {
 2691         struct knlist *knl;
 2692 
 2693         knl = &kn->kn_ptr.p_lio->klist;
 2694         knl->kl_lock(knl->kl_lockarg);
 2695         if (!knlist_empty(knl))
 2696                 knlist_remove(knl, kn, 1);
 2697         knl->kl_unlock(knl->kl_lockarg);
 2698 }
 2699 
 2700 /* kqueue filter function */
 2701 /*ARGSUSED*/
 2702 static int
 2703 filt_lio(struct knote *kn, long hint)
 2704 {
 2705         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2706 
 2707         return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
 2708 }
 2709 
 2710 #ifdef COMPAT_FREEBSD32
 2711 #include <sys/mount.h>
 2712 #include <sys/socket.h>
 2713 #include <compat/freebsd32/freebsd32.h>
 2714 #include <compat/freebsd32/freebsd32_proto.h>
 2715 #include <compat/freebsd32/freebsd32_signal.h>
 2716 #include <compat/freebsd32/freebsd32_syscall.h>
 2717 #include <compat/freebsd32/freebsd32_util.h>
 2718 
 2719 struct __aiocb_private32 {
 2720         int32_t status;
 2721         int32_t error;
 2722         uint32_t kernelinfo;
 2723 };
 2724 
 2725 #ifdef COMPAT_FREEBSD6
 2726 typedef struct oaiocb32 {
 2727         int     aio_fildes;             /* File descriptor */
 2728         uint64_t aio_offset __packed;   /* File offset for I/O */
 2729         uint32_t aio_buf;               /* I/O buffer in process space */
 2730         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2731         struct  osigevent32 aio_sigevent; /* Signal to deliver */
 2732         int     aio_lio_opcode;         /* LIO opcode */
 2733         int     aio_reqprio;            /* Request priority -- ignored */
 2734         struct  __aiocb_private32 _aiocb_private;
 2735 } oaiocb32_t;
 2736 #endif
 2737 
 2738 typedef struct aiocb32 {
 2739         int32_t aio_fildes;             /* File descriptor */
 2740         uint64_t aio_offset __packed;   /* File offset for I/O */
 2741         uint32_t aio_buf;       /* I/O buffer in process space */
 2742         uint32_t aio_nbytes;    /* Number of bytes for I/O */
 2743         int     __spare__[2];
 2744         uint32_t __spare2__;
 2745         int     aio_lio_opcode;         /* LIO opcode */
 2746         int     aio_reqprio;            /* Request priority -- ignored */
 2747         struct  __aiocb_private32 _aiocb_private;
 2748         struct  sigevent32 aio_sigevent;        /* Signal to deliver */
 2749 } aiocb32_t;
 2750 
 2751 #ifdef COMPAT_FREEBSD6
 2752 static int
 2753 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
 2754 {
 2755 
 2756         /*
 2757          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 2758          * supported by AIO with the old sigevent structure.
 2759          */
 2760         CP(*osig, *nsig, sigev_notify);
 2761         switch (nsig->sigev_notify) {
 2762         case SIGEV_NONE:
 2763                 break;
 2764         case SIGEV_SIGNAL:
 2765                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 2766                 break;
 2767         case SIGEV_KEVENT:
 2768                 nsig->sigev_notify_kqueue =
 2769                     osig->__sigev_u.__sigev_notify_kqueue;
 2770                 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
 2771                 break;
 2772         default:
 2773                 return (EINVAL);
 2774         }
 2775         return (0);
 2776 }
 2777 
 2778 static int
 2779 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
 2780     int type __unused)
 2781 {
 2782         struct oaiocb32 job32;
 2783         struct aiocb *kcb = &kjob->uaiocb;
 2784         int error;
 2785 
 2786         bzero(kcb, sizeof(struct aiocb));
 2787         error = copyin(ujob, &job32, sizeof(job32));
 2788         if (error)
 2789                 return (error);
 2790 
 2791         /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
 2792 
 2793         CP(job32, *kcb, aio_fildes);
 2794         CP(job32, *kcb, aio_offset);
 2795         PTRIN_CP(job32, *kcb, aio_buf);
 2796         CP(job32, *kcb, aio_nbytes);
 2797         CP(job32, *kcb, aio_lio_opcode);
 2798         CP(job32, *kcb, aio_reqprio);
 2799         CP(job32, *kcb, _aiocb_private.status);
 2800         CP(job32, *kcb, _aiocb_private.error);
 2801         PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
 2802         return (convert_old_sigevent32(&job32.aio_sigevent,
 2803             &kcb->aio_sigevent));
 2804 }
 2805 #endif
 2806 
 2807 static int
 2808 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
 2809 {
 2810         struct aiocb32 job32;
 2811         struct aiocb *kcb = &kjob->uaiocb;
 2812         struct iovec32 *iov32;
 2813         int error;
 2814 
 2815         error = copyin(ujob, &job32, sizeof(job32));
 2816         if (error)
 2817                 return (error);
 2818         CP(job32, *kcb, aio_fildes);
 2819         CP(job32, *kcb, aio_offset);
 2820         CP(job32, *kcb, aio_lio_opcode);
 2821         if (type & LIO_VECTORED) {
 2822                 iov32 = PTRIN(job32.aio_iov);
 2823                 CP(job32, *kcb, aio_iovcnt);
 2824                 /* malloc a uio and copy in the iovec */
 2825                 error = freebsd32_copyinuio(iov32,
 2826                     kcb->aio_iovcnt, &kjob->uiop);
 2827                 if (error)
 2828                         return (error);
 2829         } else {
 2830                 PTRIN_CP(job32, *kcb, aio_buf);
 2831                 CP(job32, *kcb, aio_nbytes);
 2832         }
 2833         CP(job32, *kcb, aio_reqprio);
 2834         CP(job32, *kcb, _aiocb_private.status);
 2835         CP(job32, *kcb, _aiocb_private.error);
 2836         PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
 2837         error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
 2838 
 2839         return (error);
 2840 }
 2841 
 2842 static long
 2843 aiocb32_fetch_status(struct aiocb *ujob)
 2844 {
 2845         struct aiocb32 *ujob32;
 2846 
 2847         ujob32 = (struct aiocb32 *)ujob;
 2848         return (fuword32(&ujob32->_aiocb_private.status));
 2849 }
 2850 
 2851 static long
 2852 aiocb32_fetch_error(struct aiocb *ujob)
 2853 {
 2854         struct aiocb32 *ujob32;
 2855 
 2856         ujob32 = (struct aiocb32 *)ujob;
 2857         return (fuword32(&ujob32->_aiocb_private.error));
 2858 }
 2859 
 2860 static int
 2861 aiocb32_store_status(struct aiocb *ujob, long status)
 2862 {
 2863         struct aiocb32 *ujob32;
 2864 
 2865         ujob32 = (struct aiocb32 *)ujob;
 2866         return (suword32(&ujob32->_aiocb_private.status, status));
 2867 }
 2868 
 2869 static int
 2870 aiocb32_store_error(struct aiocb *ujob, long error)
 2871 {
 2872         struct aiocb32 *ujob32;
 2873 
 2874         ujob32 = (struct aiocb32 *)ujob;
 2875         return (suword32(&ujob32->_aiocb_private.error, error));
 2876 }
 2877 
 2878 static int
 2879 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
 2880 {
 2881         struct aiocb32 *ujob32;
 2882 
 2883         ujob32 = (struct aiocb32 *)ujob;
 2884         return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
 2885 }
 2886 
 2887 static int
 2888 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 2889 {
 2890 
 2891         return (suword32(ujobp, (long)ujob));
 2892 }
 2893 
 2894 static struct aiocb_ops aiocb32_ops = {
 2895         .aio_copyin = aiocb32_copyin,
 2896         .fetch_status = aiocb32_fetch_status,
 2897         .fetch_error = aiocb32_fetch_error,
 2898         .store_status = aiocb32_store_status,
 2899         .store_error = aiocb32_store_error,
 2900         .store_kernelinfo = aiocb32_store_kernelinfo,
 2901         .store_aiocb = aiocb32_store_aiocb,
 2902 };
 2903 
 2904 #ifdef COMPAT_FREEBSD6
 2905 static struct aiocb_ops aiocb32_ops_osigevent = {
 2906         .aio_copyin = aiocb32_copyin_old_sigevent,
 2907         .fetch_status = aiocb32_fetch_status,
 2908         .fetch_error = aiocb32_fetch_error,
 2909         .store_status = aiocb32_store_status,
 2910         .store_error = aiocb32_store_error,
 2911         .store_kernelinfo = aiocb32_store_kernelinfo,
 2912         .store_aiocb = aiocb32_store_aiocb,
 2913 };
 2914 #endif
 2915 
 2916 int
 2917 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
 2918 {
 2919 
 2920         return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2921 }
 2922 
 2923 int
 2924 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
 2925 {
 2926         struct timespec32 ts32;
 2927         struct timespec ts, *tsp;
 2928         struct aiocb **ujoblist;
 2929         uint32_t *ujoblist32;
 2930         int error, i;
 2931 
 2932         if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
 2933                 return (EINVAL);
 2934 
 2935         if (uap->timeout) {
 2936                 /* Get timespec struct. */
 2937                 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
 2938                         return (error);
 2939                 CP(ts32, ts, tv_sec);
 2940                 CP(ts32, ts, tv_nsec);
 2941                 tsp = &ts;
 2942         } else
 2943                 tsp = NULL;
 2944 
 2945         ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIOS, M_WAITOK);
 2946         ujoblist32 = (uint32_t *)ujoblist;
 2947         error = copyin(uap->aiocbp, ujoblist32, uap->nent *
 2948             sizeof(ujoblist32[0]));
 2949         if (error == 0) {
 2950                 for (i = uap->nent - 1; i >= 0; i--)
 2951                         ujoblist[i] = PTRIN(ujoblist32[i]);
 2952 
 2953                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2954         }
 2955         free(ujoblist, M_AIOS);
 2956         return (error);
 2957 }
 2958 
 2959 int
 2960 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
 2961 {
 2962 
 2963         return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2964 }
 2965 
 2966 #ifdef COMPAT_FREEBSD6
 2967 int
 2968 freebsd6_freebsd32_aio_read(struct thread *td,
 2969     struct freebsd6_freebsd32_aio_read_args *uap)
 2970 {
 2971 
 2972         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2973             &aiocb32_ops_osigevent));
 2974 }
 2975 #endif
 2976 
 2977 int
 2978 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
 2979 {
 2980 
 2981         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2982             &aiocb32_ops));
 2983 }
 2984 
 2985 int
 2986 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
 2987 {
 2988 
 2989         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
 2990             &aiocb32_ops));
 2991 }
 2992 
 2993 #ifdef COMPAT_FREEBSD6
 2994 int
 2995 freebsd6_freebsd32_aio_write(struct thread *td,
 2996     struct freebsd6_freebsd32_aio_write_args *uap)
 2997 {
 2998 
 2999         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 3000             &aiocb32_ops_osigevent));
 3001 }
 3002 #endif
 3003 
 3004 int
 3005 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
 3006 {
 3007 
 3008         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 3009             &aiocb32_ops));
 3010 }
 3011 
 3012 int
 3013 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
 3014 {
 3015 
 3016         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
 3017             &aiocb32_ops));
 3018 }
 3019 
 3020 int
 3021 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
 3022 {
 3023 
 3024         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
 3025             &aiocb32_ops));
 3026 }
 3027 
 3028 int
 3029 freebsd32_aio_waitcomplete(struct thread *td,
 3030     struct freebsd32_aio_waitcomplete_args *uap)
 3031 {
 3032         struct timespec32 ts32;
 3033         struct timespec ts, *tsp;
 3034         int error;
 3035 
 3036         if (uap->timeout) {
 3037                 /* Get timespec struct. */
 3038                 error = copyin(uap->timeout, &ts32, sizeof(ts32));
 3039                 if (error)
 3040                         return (error);
 3041                 CP(ts32, ts, tv_sec);
 3042                 CP(ts32, ts, tv_nsec);
 3043                 tsp = &ts;
 3044         } else
 3045                 tsp = NULL;
 3046 
 3047         return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
 3048             &aiocb32_ops));
 3049 }
 3050 
 3051 int
 3052 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
 3053 {
 3054 
 3055         return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
 3056             &aiocb32_ops));
 3057 }
 3058 
 3059 #ifdef COMPAT_FREEBSD6
 3060 int
 3061 freebsd6_freebsd32_lio_listio(struct thread *td,
 3062     struct freebsd6_freebsd32_lio_listio_args *uap)
 3063 {
 3064         struct aiocb **acb_list;
 3065         struct sigevent *sigp, sig;
 3066         struct osigevent32 osig;
 3067         uint32_t *acb_list32;
 3068         int error, i, nent;
 3069 
 3070         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 3071                 return (EINVAL);
 3072 
 3073         nent = uap->nent;
 3074         if (nent < 0 || nent > max_aio_queue_per_proc)
 3075                 return (EINVAL);
 3076 
 3077         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 3078                 error = copyin(uap->sig, &osig, sizeof(osig));
 3079                 if (error)
 3080                         return (error);
 3081                 error = convert_old_sigevent32(&osig, &sig);
 3082                 if (error)
 3083                         return (error);
 3084                 sigp = &sig;
 3085         } else
 3086                 sigp = NULL;
 3087 
 3088         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 3089         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 3090         if (error) {
 3091                 free(acb_list32, M_LIO);
 3092                 return (error);
 3093         }
 3094         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 3095         for (i = 0; i < nent; i++)
 3096                 acb_list[i] = PTRIN(acb_list32[i]);
 3097         free(acb_list32, M_LIO);
 3098 
 3099         error = kern_lio_listio(td, uap->mode,
 3100             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 3101             &aiocb32_ops_osigevent);
 3102         free(acb_list, M_LIO);
 3103         return (error);
 3104 }
 3105 #endif
 3106 
 3107 int
 3108 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
 3109 {
 3110         struct aiocb **acb_list;
 3111         struct sigevent *sigp, sig;
 3112         struct sigevent32 sig32;
 3113         uint32_t *acb_list32;
 3114         int error, i, nent;
 3115 
 3116         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 3117                 return (EINVAL);
 3118 
 3119         nent = uap->nent;
 3120         if (nent < 0 || nent > max_aio_queue_per_proc)
 3121                 return (EINVAL);
 3122 
 3123         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 3124                 error = copyin(uap->sig, &sig32, sizeof(sig32));
 3125                 if (error)
 3126                         return (error);
 3127                 error = convert_sigevent32(&sig32, &sig);
 3128                 if (error)
 3129                         return (error);
 3130                 sigp = &sig;
 3131         } else
 3132                 sigp = NULL;
 3133 
 3134         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 3135         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 3136         if (error) {
 3137                 free(acb_list32, M_LIO);
 3138                 return (error);
 3139         }
 3140         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 3141         for (i = 0; i < nent; i++)
 3142                 acb_list[i] = PTRIN(acb_list32[i]);
 3143         free(acb_list32, M_LIO);
 3144 
 3145         error = kern_lio_listio(td, uap->mode,
 3146             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 3147             &aiocb32_ops);
 3148         free(acb_list, M_LIO);
 3149         return (error);
 3150 }
 3151 
 3152 #endif

Cache object: 9f136f27edf4cfa28b08ae2748075350


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.