The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_aio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. John S. Dyson's name may not be used to endorse or promote products
   12  *    derived from this software without specific prior written permission.
   13  *
   14  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
   15  * bad that happens because of using this software isn't the responsibility
   16  * of the author.  This software is distributed AS-IS.
   17  */
   18 
   19 /*
   20  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
   21  */
   22 
   23 #include <sys/cdefs.h>
   24 __FBSDID("$FreeBSD$");
   25 
   26 #include <sys/param.h>
   27 #include <sys/systm.h>
   28 #include <sys/malloc.h>
   29 #include <sys/bio.h>
   30 #include <sys/buf.h>
   31 #include <sys/capsicum.h>
   32 #include <sys/eventhandler.h>
   33 #include <sys/sysproto.h>
   34 #include <sys/filedesc.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/kthread.h>
   38 #include <sys/fcntl.h>
   39 #include <sys/file.h>
   40 #include <sys/limits.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/unistd.h>
   44 #include <sys/posix4.h>
   45 #include <sys/proc.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/syscallsubr.h>
   49 #include <sys/protosw.h>
   50 #include <sys/rwlock.h>
   51 #include <sys/sema.h>
   52 #include <sys/socket.h>
   53 #include <sys/socketvar.h>
   54 #include <sys/syscall.h>
   55 #include <sys/sysctl.h>
   56 #include <sys/syslog.h>
   57 #include <sys/sx.h>
   58 #include <sys/taskqueue.h>
   59 #include <sys/vnode.h>
   60 #include <sys/conf.h>
   61 #include <sys/event.h>
   62 #include <sys/mount.h>
   63 #include <geom/geom.h>
   64 
   65 #include <machine/atomic.h>
   66 
   67 #include <vm/vm.h>
   68 #include <vm/vm_page.h>
   69 #include <vm/vm_extern.h>
   70 #include <vm/pmap.h>
   71 #include <vm/vm_map.h>
   72 #include <vm/vm_object.h>
   73 #include <vm/uma.h>
   74 #include <sys/aio.h>
   75 
   76 /*
   77  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
   78  * overflow. (XXX will be removed soon.)
   79  */
   80 static u_long jobrefid;
   81 
   82 /*
   83  * Counter for aio_fsync.
   84  */
   85 static uint64_t jobseqno;
   86 
   87 #ifndef MAX_AIO_PER_PROC
   88 #define MAX_AIO_PER_PROC        32
   89 #endif
   90 
   91 #ifndef MAX_AIO_QUEUE_PER_PROC
   92 #define MAX_AIO_QUEUE_PER_PROC  256
   93 #endif
   94 
   95 #ifndef MAX_AIO_QUEUE
   96 #define MAX_AIO_QUEUE           1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
   97 #endif
   98 
   99 #ifndef MAX_BUF_AIO
  100 #define MAX_BUF_AIO             16
  101 #endif
  102 
  103 FEATURE(aio, "Asynchronous I/O");
  104 SYSCTL_DECL(_p1003_1b);
  105 
  106 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
  107 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O");
  108 
  109 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  110     "Async IO management");
  111 
  112 static int enable_aio_unsafe = 0;
  113 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
  114     "Permit asynchronous IO on all file types, not just known-safe types");
  115 
  116 static unsigned int unsafe_warningcnt = 1;
  117 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
  118     &unsafe_warningcnt, 0,
  119     "Warnings that will be triggered upon failed IO requests on unsafe files");
  120 
  121 static int max_aio_procs = MAX_AIO_PROCS;
  122 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
  123     "Maximum number of kernel processes to use for handling async IO ");
  124 
  125 static int num_aio_procs = 0;
  126 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
  127     "Number of presently active kernel processes for async IO");
  128 
  129 /*
  130  * The code will adjust the actual number of AIO processes towards this
  131  * number when it gets a chance.
  132  */
  133 static int target_aio_procs = TARGET_AIO_PROCS;
  134 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
  135     0,
  136     "Preferred number of ready kernel processes for async IO");
  137 
  138 static int max_queue_count = MAX_AIO_QUEUE;
  139 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
  140     "Maximum number of aio requests to queue, globally");
  141 
  142 static int num_queue_count = 0;
  143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
  144     "Number of queued aio requests");
  145 
  146 static int num_buf_aio = 0;
  147 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
  148     "Number of aio requests presently handled by the buf subsystem");
  149 
  150 static int num_unmapped_aio = 0;
  151 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
  152     0,
  153     "Number of aio requests presently handled by unmapped I/O buffers");
  154 
  155 /* Number of async I/O processes in the process of being started */
  156 /* XXX This should be local to aio_aqueue() */
  157 static int num_aio_resv_start = 0;
  158 
  159 static int aiod_lifetime;
  160 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
  161     "Maximum lifetime for idle aiod");
  162 
  163 static int max_aio_per_proc = MAX_AIO_PER_PROC;
  164 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
  165     0,
  166     "Maximum active aio requests per process");
  167 
  168 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
  169 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
  170     &max_aio_queue_per_proc, 0,
  171     "Maximum queued aio requests per process");
  172 
  173 static int max_buf_aio = MAX_BUF_AIO;
  174 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
  175     "Maximum buf aio requests per process");
  176 
  177 /* 
  178  * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
  179  * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
  180  * vfs.aio.aio_listio_max.
  181  */
  182 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
  183     CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
  184     0, "Maximum aio requests for a single lio_listio call");
  185 
  186 #ifdef COMPAT_FREEBSD6
  187 typedef struct oaiocb {
  188         int     aio_fildes;             /* File descriptor */
  189         off_t   aio_offset;             /* File offset for I/O */
  190         volatile void *aio_buf;         /* I/O buffer in process space */
  191         size_t  aio_nbytes;             /* Number of bytes for I/O */
  192         struct  osigevent aio_sigevent; /* Signal to deliver */
  193         int     aio_lio_opcode;         /* LIO opcode */
  194         int     aio_reqprio;            /* Request priority -- ignored */
  195         struct  __aiocb_private _aiocb_private;
  196 } oaiocb_t;
  197 #endif
  198 
  199 /*
  200  * Below is a key of locks used to protect each member of struct kaiocb
  201  * aioliojob and kaioinfo and any backends.
  202  *
  203  * * - need not protected
  204  * a - locked by kaioinfo lock
  205  * b - locked by backend lock, the backend lock can be null in some cases,
  206  *     for example, BIO belongs to this type, in this case, proc lock is
  207  *     reused.
  208  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
  209  */
  210 
  211 /*
  212  * If the routine that services an AIO request blocks while running in an
  213  * AIO kernel process it can starve other I/O requests.  BIO requests
  214  * queued via aio_qbio() complete asynchronously and do not use AIO kernel
  215  * processes at all.  Socket I/O requests use a separate pool of
  216  * kprocs and also force non-blocking I/O.  Other file I/O requests
  217  * use the generic fo_read/fo_write operations which can block.  The
  218  * fsync and mlock operations can also block while executing.  Ideally
  219  * none of these requests would block while executing.
  220  *
  221  * Note that the service routines cannot toggle O_NONBLOCK in the file
  222  * structure directly while handling a request due to races with
  223  * userland threads.
  224  */
  225 
  226 /* jobflags */
  227 #define KAIOCB_QUEUEING         0x01
  228 #define KAIOCB_CANCELLED        0x02
  229 #define KAIOCB_CANCELLING       0x04
  230 #define KAIOCB_CHECKSYNC        0x08
  231 #define KAIOCB_CLEARED          0x10
  232 #define KAIOCB_FINISHED         0x20
  233 
  234 /*
  235  * AIO process info
  236  */
  237 #define AIOP_FREE       0x1                     /* proc on free queue */
  238 
  239 struct aioproc {
  240         int     aioprocflags;                   /* (c) AIO proc flags */
  241         TAILQ_ENTRY(aioproc) list;              /* (c) list of processes */
  242         struct  proc *aioproc;                  /* (*) the AIO proc */
  243 };
  244 
  245 /*
  246  * data-structure for lio signal management
  247  */
  248 struct aioliojob {
  249         int     lioj_flags;                     /* (a) listio flags */
  250         int     lioj_count;                     /* (a) count of jobs */
  251         int     lioj_finished_count;            /* (a) count of finished jobs */
  252         struct  sigevent lioj_signal;           /* (a) signal on all I/O done */
  253         TAILQ_ENTRY(aioliojob) lioj_list;       /* (a) lio list */
  254         struct  knlist klist;                   /* (a) list of knotes */
  255         ksiginfo_t lioj_ksi;                    /* (a) Realtime signal info */
  256 };
  257 
  258 #define LIOJ_SIGNAL             0x1     /* signal on all done (lio) */
  259 #define LIOJ_SIGNAL_POSTED      0x2     /* signal has been posted */
  260 #define LIOJ_KEVENT_POSTED      0x4     /* kevent triggered */
  261 
  262 /*
  263  * per process aio data structure
  264  */
  265 struct kaioinfo {
  266         struct  mtx kaio_mtx;           /* the lock to protect this struct */
  267         int     kaio_flags;             /* (a) per process kaio flags */
  268         int     kaio_active_count;      /* (c) number of currently used AIOs */
  269         int     kaio_count;             /* (a) size of AIO queue */
  270         int     kaio_buffer_count;      /* (a) number of bio buffers */
  271         TAILQ_HEAD(,kaiocb) kaio_all;   /* (a) all AIOs in a process */
  272         TAILQ_HEAD(,kaiocb) kaio_done;  /* (a) done queue for process */
  273         TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
  274         TAILQ_HEAD(,kaiocb) kaio_jobqueue;      /* (a) job queue for process */
  275         TAILQ_HEAD(,kaiocb) kaio_syncqueue;     /* (a) queue for aio_fsync */
  276         TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
  277         struct  task kaio_task;         /* (*) task to kick aio processes */
  278         struct  task kaio_sync_task;    /* (*) task to schedule fsync jobs */
  279 };
  280 
  281 #define AIO_LOCK(ki)            mtx_lock(&(ki)->kaio_mtx)
  282 #define AIO_UNLOCK(ki)          mtx_unlock(&(ki)->kaio_mtx)
  283 #define AIO_LOCK_ASSERT(ki, f)  mtx_assert(&(ki)->kaio_mtx, (f))
  284 #define AIO_MTX(ki)             (&(ki)->kaio_mtx)
  285 
  286 #define KAIO_RUNDOWN    0x1     /* process is being run down */
  287 #define KAIO_WAKEUP     0x2     /* wakeup process when AIO completes */
  288 
  289 /*
  290  * Operations used to interact with userland aio control blocks.
  291  * Different ABIs provide their own operations.
  292  */
  293 struct aiocb_ops {
  294         int     (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
  295         long    (*fetch_status)(struct aiocb *ujob);
  296         long    (*fetch_error)(struct aiocb *ujob);
  297         int     (*store_status)(struct aiocb *ujob, long status);
  298         int     (*store_error)(struct aiocb *ujob, long error);
  299         int     (*store_kernelinfo)(struct aiocb *ujob, long jobref);
  300         int     (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
  301 };
  302 
  303 static TAILQ_HEAD(,aioproc) aio_freeproc;               /* (c) Idle daemons */
  304 static struct sema aio_newproc_sem;
  305 static struct mtx aio_job_mtx;
  306 static TAILQ_HEAD(,kaiocb) aio_jobs;                    /* (c) Async job list */
  307 static struct unrhdr *aiod_unr;
  308 
  309 static void     aio_biocleanup(struct bio *bp);
  310 void            aio_init_aioinfo(struct proc *p);
  311 static int      aio_onceonly(void);
  312 static int      aio_free_entry(struct kaiocb *job);
  313 static void     aio_process_rw(struct kaiocb *job);
  314 static void     aio_process_sync(struct kaiocb *job);
  315 static void     aio_process_mlock(struct kaiocb *job);
  316 static void     aio_schedule_fsync(void *context, int pending);
  317 static int      aio_newproc(int *);
  318 int             aio_aqueue(struct thread *td, struct aiocb *ujob,
  319                     struct aioliojob *lio, int type, struct aiocb_ops *ops);
  320 static int      aio_queue_file(struct file *fp, struct kaiocb *job);
  321 static void     aio_biowakeup(struct bio *bp);
  322 static void     aio_proc_rundown(void *arg, struct proc *p);
  323 static void     aio_proc_rundown_exec(void *arg, struct proc *p,
  324                     struct image_params *imgp);
  325 static int      aio_qbio(struct proc *p, struct kaiocb *job);
  326 static void     aio_daemon(void *param);
  327 static void     aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
  328 static bool     aio_clear_cancel_function_locked(struct kaiocb *job);
  329 static int      aio_kick(struct proc *userp);
  330 static void     aio_kick_nowait(struct proc *userp);
  331 static void     aio_kick_helper(void *context, int pending);
  332 static int      filt_aioattach(struct knote *kn);
  333 static void     filt_aiodetach(struct knote *kn);
  334 static int      filt_aio(struct knote *kn, long hint);
  335 static int      filt_lioattach(struct knote *kn);
  336 static void     filt_liodetach(struct knote *kn);
  337 static int      filt_lio(struct knote *kn, long hint);
  338 
  339 /*
  340  * Zones for:
  341  *      kaio    Per process async io info
  342  *      aiocb   async io jobs
  343  *      aiolio  list io jobs
  344  */
  345 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone;
  346 
  347 /* kqueue filters for aio */
  348 static struct filterops aio_filtops = {
  349         .f_isfd = 0,
  350         .f_attach = filt_aioattach,
  351         .f_detach = filt_aiodetach,
  352         .f_event = filt_aio,
  353 };
  354 static struct filterops lio_filtops = {
  355         .f_isfd = 0,
  356         .f_attach = filt_lioattach,
  357         .f_detach = filt_liodetach,
  358         .f_event = filt_lio
  359 };
  360 
  361 static eventhandler_tag exit_tag, exec_tag;
  362 
  363 TASKQUEUE_DEFINE_THREAD(aiod_kick);
  364 
  365 /*
  366  * Main operations function for use as a kernel module.
  367  */
  368 static int
  369 aio_modload(struct module *module, int cmd, void *arg)
  370 {
  371         int error = 0;
  372 
  373         switch (cmd) {
  374         case MOD_LOAD:
  375                 aio_onceonly();
  376                 break;
  377         case MOD_SHUTDOWN:
  378                 break;
  379         default:
  380                 error = EOPNOTSUPP;
  381                 break;
  382         }
  383         return (error);
  384 }
  385 
  386 static moduledata_t aio_mod = {
  387         "aio",
  388         &aio_modload,
  389         NULL
  390 };
  391 
  392 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
  393 MODULE_VERSION(aio, 1);
  394 
  395 /*
  396  * Startup initialization
  397  */
  398 static int
  399 aio_onceonly(void)
  400 {
  401 
  402         exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
  403             EVENTHANDLER_PRI_ANY);
  404         exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
  405             NULL, EVENTHANDLER_PRI_ANY);
  406         kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
  407         kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
  408         TAILQ_INIT(&aio_freeproc);
  409         sema_init(&aio_newproc_sem, 0, "aio_new_proc");
  410         mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
  411         TAILQ_INIT(&aio_jobs);
  412         aiod_unr = new_unrhdr(1, INT_MAX, NULL);
  413         kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
  414             NULL, NULL, UMA_ALIGN_PTR, 0);
  415         aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
  416             NULL, NULL, UMA_ALIGN_PTR, 0);
  417         aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
  418             NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
  419         aiod_lifetime = AIOD_LIFETIME_DEFAULT;
  420         jobrefid = 1;
  421         p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
  422         p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
  423         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
  424 
  425         return (0);
  426 }
  427 
  428 /*
  429  * Init the per-process aioinfo structure.  The aioinfo limits are set
  430  * per-process for user limit (resource) management.
  431  */
  432 void
  433 aio_init_aioinfo(struct proc *p)
  434 {
  435         struct kaioinfo *ki;
  436 
  437         ki = uma_zalloc(kaio_zone, M_WAITOK);
  438         mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
  439         ki->kaio_flags = 0;
  440         ki->kaio_active_count = 0;
  441         ki->kaio_count = 0;
  442         ki->kaio_buffer_count = 0;
  443         TAILQ_INIT(&ki->kaio_all);
  444         TAILQ_INIT(&ki->kaio_done);
  445         TAILQ_INIT(&ki->kaio_jobqueue);
  446         TAILQ_INIT(&ki->kaio_liojoblist);
  447         TAILQ_INIT(&ki->kaio_syncqueue);
  448         TAILQ_INIT(&ki->kaio_syncready);
  449         TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
  450         TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
  451         PROC_LOCK(p);
  452         if (p->p_aioinfo == NULL) {
  453                 p->p_aioinfo = ki;
  454                 PROC_UNLOCK(p);
  455         } else {
  456                 PROC_UNLOCK(p);
  457                 mtx_destroy(&ki->kaio_mtx);
  458                 uma_zfree(kaio_zone, ki);
  459         }
  460 
  461         while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
  462                 aio_newproc(NULL);
  463 }
  464 
  465 static int
  466 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
  467 {
  468         struct thread *td;
  469         int error;
  470 
  471         error = sigev_findtd(p, sigev, &td);
  472         if (error)
  473                 return (error);
  474         if (!KSI_ONQ(ksi)) {
  475                 ksiginfo_set_sigev(ksi, sigev);
  476                 ksi->ksi_code = SI_ASYNCIO;
  477                 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
  478                 tdsendsignal(p, td, ksi->ksi_signo, ksi);
  479         }
  480         PROC_UNLOCK(p);
  481         return (error);
  482 }
  483 
  484 /*
  485  * Free a job entry.  Wait for completion if it is currently active, but don't
  486  * delay forever.  If we delay, we return a flag that says that we have to
  487  * restart the queue scan.
  488  */
  489 static int
  490 aio_free_entry(struct kaiocb *job)
  491 {
  492         struct kaioinfo *ki;
  493         struct aioliojob *lj;
  494         struct proc *p;
  495 
  496         p = job->userproc;
  497         MPASS(curproc == p);
  498         ki = p->p_aioinfo;
  499         MPASS(ki != NULL);
  500 
  501         AIO_LOCK_ASSERT(ki, MA_OWNED);
  502         MPASS(job->jobflags & KAIOCB_FINISHED);
  503 
  504         atomic_subtract_int(&num_queue_count, 1);
  505 
  506         ki->kaio_count--;
  507         MPASS(ki->kaio_count >= 0);
  508 
  509         TAILQ_REMOVE(&ki->kaio_done, job, plist);
  510         TAILQ_REMOVE(&ki->kaio_all, job, allist);
  511 
  512         lj = job->lio;
  513         if (lj) {
  514                 lj->lioj_count--;
  515                 lj->lioj_finished_count--;
  516 
  517                 if (lj->lioj_count == 0) {
  518                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  519                         /* lio is going away, we need to destroy any knotes */
  520                         knlist_delete(&lj->klist, curthread, 1);
  521                         PROC_LOCK(p);
  522                         sigqueue_take(&lj->lioj_ksi);
  523                         PROC_UNLOCK(p);
  524                         uma_zfree(aiolio_zone, lj);
  525                 }
  526         }
  527 
  528         /* job is going away, we need to destroy any knotes */
  529         knlist_delete(&job->klist, curthread, 1);
  530         PROC_LOCK(p);
  531         sigqueue_take(&job->ksi);
  532         PROC_UNLOCK(p);
  533 
  534         AIO_UNLOCK(ki);
  535 
  536         /*
  537          * The thread argument here is used to find the owning process
  538          * and is also passed to fo_close() which may pass it to various
  539          * places such as devsw close() routines.  Because of that, we
  540          * need a thread pointer from the process owning the job that is
  541          * persistent and won't disappear out from under us or move to
  542          * another process.
  543          *
  544          * Currently, all the callers of this function call it to remove
  545          * a kaiocb from the current process' job list either via a
  546          * syscall or due to the current process calling exit() or
  547          * execve().  Thus, we know that p == curproc.  We also know that
  548          * curthread can't exit since we are curthread.
  549          *
  550          * Therefore, we use curthread as the thread to pass to
  551          * knlist_delete().  This does mean that it is possible for the
  552          * thread pointer at close time to differ from the thread pointer
  553          * at open time, but this is already true of file descriptors in
  554          * a multithreaded process.
  555          */
  556         if (job->fd_file)
  557                 fdrop(job->fd_file, curthread);
  558         crfree(job->cred);
  559         if (job->uiop != &job->uio)
  560                 free(job->uiop, M_IOV);
  561         uma_zfree(aiocb_zone, job);
  562         AIO_LOCK(ki);
  563 
  564         return (0);
  565 }
  566 
  567 static void
  568 aio_proc_rundown_exec(void *arg, struct proc *p,
  569     struct image_params *imgp __unused)
  570 {
  571         aio_proc_rundown(arg, p);
  572 }
  573 
  574 static int
  575 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
  576 {
  577         aio_cancel_fn_t *func;
  578         int cancelled;
  579 
  580         AIO_LOCK_ASSERT(ki, MA_OWNED);
  581         if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
  582                 return (0);
  583         MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
  584         job->jobflags |= KAIOCB_CANCELLED;
  585 
  586         func = job->cancel_fn;
  587 
  588         /*
  589          * If there is no cancel routine, just leave the job marked as
  590          * cancelled.  The job should be in active use by a caller who
  591          * should complete it normally or when it fails to install a
  592          * cancel routine.
  593          */
  594         if (func == NULL)
  595                 return (0);
  596 
  597         /*
  598          * Set the CANCELLING flag so that aio_complete() will defer
  599          * completions of this job.  This prevents the job from being
  600          * freed out from under the cancel callback.  After the
  601          * callback any deferred completion (whether from the callback
  602          * or any other source) will be completed.
  603          */
  604         job->jobflags |= KAIOCB_CANCELLING;
  605         AIO_UNLOCK(ki);
  606         func(job);
  607         AIO_LOCK(ki);
  608         job->jobflags &= ~KAIOCB_CANCELLING;
  609         if (job->jobflags & KAIOCB_FINISHED) {
  610                 cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
  611                 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
  612                 aio_bio_done_notify(p, job);
  613         } else {
  614                 /*
  615                  * The cancel callback might have scheduled an
  616                  * operation to cancel this request, but it is
  617                  * only counted as cancelled if the request is
  618                  * cancelled when the callback returns.
  619                  */
  620                 cancelled = 0;
  621         }
  622         return (cancelled);
  623 }
  624 
  625 /*
  626  * Rundown the jobs for a given process.
  627  */
  628 static void
  629 aio_proc_rundown(void *arg, struct proc *p)
  630 {
  631         struct kaioinfo *ki;
  632         struct aioliojob *lj;
  633         struct kaiocb *job, *jobn;
  634 
  635         KASSERT(curthread->td_proc == p,
  636             ("%s: called on non-curproc", __func__));
  637         ki = p->p_aioinfo;
  638         if (ki == NULL)
  639                 return;
  640 
  641         AIO_LOCK(ki);
  642         ki->kaio_flags |= KAIO_RUNDOWN;
  643 
  644 restart:
  645 
  646         /*
  647          * Try to cancel all pending requests. This code simulates
  648          * aio_cancel on all pending I/O requests.
  649          */
  650         TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
  651                 aio_cancel_job(p, ki, job);
  652         }
  653 
  654         /* Wait for all running I/O to be finished */
  655         if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
  656                 ki->kaio_flags |= KAIO_WAKEUP;
  657                 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
  658                 goto restart;
  659         }
  660 
  661         /* Free all completed I/O requests. */
  662         while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
  663                 aio_free_entry(job);
  664 
  665         while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
  666                 if (lj->lioj_count == 0) {
  667                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  668                         knlist_delete(&lj->klist, curthread, 1);
  669                         PROC_LOCK(p);
  670                         sigqueue_take(&lj->lioj_ksi);
  671                         PROC_UNLOCK(p);
  672                         uma_zfree(aiolio_zone, lj);
  673                 } else {
  674                         panic("LIO job not cleaned up: C:%d, FC:%d\n",
  675                             lj->lioj_count, lj->lioj_finished_count);
  676                 }
  677         }
  678         AIO_UNLOCK(ki);
  679         taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
  680         taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
  681         mtx_destroy(&ki->kaio_mtx);
  682         uma_zfree(kaio_zone, ki);
  683         p->p_aioinfo = NULL;
  684 }
  685 
  686 /*
  687  * Select a job to run (called by an AIO daemon).
  688  */
  689 static struct kaiocb *
  690 aio_selectjob(struct aioproc *aiop)
  691 {
  692         struct kaiocb *job;
  693         struct kaioinfo *ki;
  694         struct proc *userp;
  695 
  696         mtx_assert(&aio_job_mtx, MA_OWNED);
  697 restart:
  698         TAILQ_FOREACH(job, &aio_jobs, list) {
  699                 userp = job->userproc;
  700                 ki = userp->p_aioinfo;
  701 
  702                 if (ki->kaio_active_count < max_aio_per_proc) {
  703                         TAILQ_REMOVE(&aio_jobs, job, list);
  704                         if (!aio_clear_cancel_function(job))
  705                                 goto restart;
  706 
  707                         /* Account for currently active jobs. */
  708                         ki->kaio_active_count++;
  709                         break;
  710                 }
  711         }
  712         return (job);
  713 }
  714 
  715 /*
  716  * Move all data to a permanent storage device.  This code
  717  * simulates the fsync and fdatasync syscalls.
  718  */
  719 static int
  720 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
  721 {
  722         struct mount *mp;
  723         vm_object_t obj;
  724         int error;
  725 
  726         for (;;) {
  727                 error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
  728                 if (error != 0)
  729                         break;
  730                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  731                 obj = vp->v_object;
  732                 if (obj != NULL) {
  733                         VM_OBJECT_WLOCK(obj);
  734                         vm_object_page_clean(obj, 0, 0, 0);
  735                         VM_OBJECT_WUNLOCK(obj);
  736                 }
  737                 if (op == LIO_DSYNC)
  738                         error = VOP_FDATASYNC(vp, td);
  739                 else
  740                         error = VOP_FSYNC(vp, MNT_WAIT, td);
  741 
  742                 VOP_UNLOCK(vp);
  743                 vn_finished_write(mp);
  744                 if (error != ERELOOKUP)
  745                         break;
  746         }
  747         return (error);
  748 }
  749 
  750 /*
  751  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
  752  * does the I/O request for the non-bio version of the operations.  The normal
  753  * vn operations are used, and this code should work in all instances for every
  754  * type of file, including pipes, sockets, fifos, and regular files.
  755  *
  756  * XXX I don't think it works well for socket, pipe, and fifo.
  757  */
  758 static void
  759 aio_process_rw(struct kaiocb *job)
  760 {
  761         struct ucred *td_savedcred;
  762         struct thread *td;
  763         struct aiocb *cb;
  764         struct file *fp;
  765         ssize_t cnt;
  766         long msgsnd_st, msgsnd_end;
  767         long msgrcv_st, msgrcv_end;
  768         long oublock_st, oublock_end;
  769         long inblock_st, inblock_end;
  770         int error, opcode;
  771 
  772         KASSERT(job->uaiocb.aio_lio_opcode == LIO_READ ||
  773             job->uaiocb.aio_lio_opcode == LIO_READV ||
  774             job->uaiocb.aio_lio_opcode == LIO_WRITE ||
  775             job->uaiocb.aio_lio_opcode == LIO_WRITEV,
  776             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  777 
  778         aio_switch_vmspace(job);
  779         td = curthread;
  780         td_savedcred = td->td_ucred;
  781         td->td_ucred = job->cred;
  782         job->uiop->uio_td = td;
  783         cb = &job->uaiocb;
  784         fp = job->fd_file;
  785 
  786         opcode = job->uaiocb.aio_lio_opcode;
  787         cnt = job->uiop->uio_resid;
  788 
  789         msgrcv_st = td->td_ru.ru_msgrcv;
  790         msgsnd_st = td->td_ru.ru_msgsnd;
  791         inblock_st = td->td_ru.ru_inblock;
  792         oublock_st = td->td_ru.ru_oublock;
  793 
  794         /*
  795          * aio_aqueue() acquires a reference to the file that is
  796          * released in aio_free_entry().
  797          */
  798         if (opcode == LIO_READ || opcode == LIO_READV) {
  799                 if (job->uiop->uio_resid == 0)
  800                         error = 0;
  801                 else
  802                         error = fo_read(fp, job->uiop, fp->f_cred, FOF_OFFSET,
  803                             td);
  804         } else {
  805                 if (fp->f_type == DTYPE_VNODE)
  806                         bwillwrite();
  807                 error = fo_write(fp, job->uiop, fp->f_cred, FOF_OFFSET, td);
  808         }
  809         msgrcv_end = td->td_ru.ru_msgrcv;
  810         msgsnd_end = td->td_ru.ru_msgsnd;
  811         inblock_end = td->td_ru.ru_inblock;
  812         oublock_end = td->td_ru.ru_oublock;
  813 
  814         job->msgrcv = msgrcv_end - msgrcv_st;
  815         job->msgsnd = msgsnd_end - msgsnd_st;
  816         job->inblock = inblock_end - inblock_st;
  817         job->outblock = oublock_end - oublock_st;
  818 
  819         if (error != 0 && job->uiop->uio_resid != cnt) {
  820                 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
  821                         error = 0;
  822                 if (error == EPIPE && (opcode & LIO_WRITE)) {
  823                         PROC_LOCK(job->userproc);
  824                         kern_psignal(job->userproc, SIGPIPE);
  825                         PROC_UNLOCK(job->userproc);
  826                 }
  827         }
  828 
  829         cnt -= job->uiop->uio_resid;
  830         td->td_ucred = td_savedcred;
  831         if (error)
  832                 aio_complete(job, -1, error);
  833         else
  834                 aio_complete(job, cnt, 0);
  835 }
  836 
  837 static void
  838 aio_process_sync(struct kaiocb *job)
  839 {
  840         struct thread *td = curthread;
  841         struct ucred *td_savedcred = td->td_ucred;
  842         struct file *fp = job->fd_file;
  843         int error = 0;
  844 
  845         KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
  846             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  847 
  848         td->td_ucred = job->cred;
  849         if (fp->f_vnode != NULL) {
  850                 error = aio_fsync_vnode(td, fp->f_vnode,
  851                     job->uaiocb.aio_lio_opcode);
  852         }
  853         td->td_ucred = td_savedcred;
  854         if (error)
  855                 aio_complete(job, -1, error);
  856         else
  857                 aio_complete(job, 0, 0);
  858 }
  859 
  860 static void
  861 aio_process_mlock(struct kaiocb *job)
  862 {
  863         struct aiocb *cb = &job->uaiocb;
  864         int error;
  865 
  866         KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
  867             ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
  868 
  869         aio_switch_vmspace(job);
  870         error = kern_mlock(job->userproc, job->cred,
  871             __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
  872         aio_complete(job, error != 0 ? -1 : 0, error);
  873 }
  874 
  875 static void
  876 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
  877 {
  878         struct aioliojob *lj;
  879         struct kaioinfo *ki;
  880         struct kaiocb *sjob, *sjobn;
  881         int lj_done;
  882         bool schedule_fsync;
  883 
  884         ki = userp->p_aioinfo;
  885         AIO_LOCK_ASSERT(ki, MA_OWNED);
  886         lj = job->lio;
  887         lj_done = 0;
  888         if (lj) {
  889                 lj->lioj_finished_count++;
  890                 if (lj->lioj_count == lj->lioj_finished_count)
  891                         lj_done = 1;
  892         }
  893         TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
  894         MPASS(job->jobflags & KAIOCB_FINISHED);
  895 
  896         if (ki->kaio_flags & KAIO_RUNDOWN)
  897                 goto notification_done;
  898 
  899         if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
  900             job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
  901                 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
  902 
  903         KNOTE_LOCKED(&job->klist, 1);
  904 
  905         if (lj_done) {
  906                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
  907                         lj->lioj_flags |= LIOJ_KEVENT_POSTED;
  908                         KNOTE_LOCKED(&lj->klist, 1);
  909                 }
  910                 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
  911                     == LIOJ_SIGNAL &&
  912                     (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
  913                     lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
  914                         aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
  915                             true);
  916                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
  917                 }
  918         }
  919 
  920 notification_done:
  921         if (job->jobflags & KAIOCB_CHECKSYNC) {
  922                 schedule_fsync = false;
  923                 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
  924                         if (job->fd_file != sjob->fd_file ||
  925                             job->seqno >= sjob->seqno)
  926                                 continue;
  927                         if (--sjob->pending > 0)
  928                                 continue;
  929                         TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
  930                         if (!aio_clear_cancel_function_locked(sjob))
  931                                 continue;
  932                         TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
  933                         schedule_fsync = true;
  934                 }
  935                 if (schedule_fsync)
  936                         taskqueue_enqueue(taskqueue_aiod_kick,
  937                             &ki->kaio_sync_task);
  938         }
  939         if (ki->kaio_flags & KAIO_WAKEUP) {
  940                 ki->kaio_flags &= ~KAIO_WAKEUP;
  941                 wakeup(&userp->p_aioinfo);
  942         }
  943 }
  944 
  945 static void
  946 aio_schedule_fsync(void *context, int pending)
  947 {
  948         struct kaioinfo *ki;
  949         struct kaiocb *job;
  950 
  951         ki = context;
  952         AIO_LOCK(ki);
  953         while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
  954                 job = TAILQ_FIRST(&ki->kaio_syncready);
  955                 TAILQ_REMOVE(&ki->kaio_syncready, job, list);
  956                 AIO_UNLOCK(ki);
  957                 aio_schedule(job, aio_process_sync);
  958                 AIO_LOCK(ki);
  959         }
  960         AIO_UNLOCK(ki);
  961 }
  962 
  963 bool
  964 aio_cancel_cleared(struct kaiocb *job)
  965 {
  966 
  967         /*
  968          * The caller should hold the same queue lock held when
  969          * aio_clear_cancel_function() was called and set this flag
  970          * ensuring this check sees an up-to-date value.  However,
  971          * there is no way to assert that.
  972          */
  973         return ((job->jobflags & KAIOCB_CLEARED) != 0);
  974 }
  975 
  976 static bool
  977 aio_clear_cancel_function_locked(struct kaiocb *job)
  978 {
  979 
  980         AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
  981         MPASS(job->cancel_fn != NULL);
  982         if (job->jobflags & KAIOCB_CANCELLING) {
  983                 job->jobflags |= KAIOCB_CLEARED;
  984                 return (false);
  985         }
  986         job->cancel_fn = NULL;
  987         return (true);
  988 }
  989 
  990 bool
  991 aio_clear_cancel_function(struct kaiocb *job)
  992 {
  993         struct kaioinfo *ki;
  994         bool ret;
  995 
  996         ki = job->userproc->p_aioinfo;
  997         AIO_LOCK(ki);
  998         ret = aio_clear_cancel_function_locked(job);
  999         AIO_UNLOCK(ki);
 1000         return (ret);
 1001 }
 1002 
 1003 static bool
 1004 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
 1005 {
 1006 
 1007         AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
 1008         if (job->jobflags & KAIOCB_CANCELLED)
 1009                 return (false);
 1010         job->cancel_fn = func;
 1011         return (true);
 1012 }
 1013 
 1014 bool
 1015 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
 1016 {
 1017         struct kaioinfo *ki;
 1018         bool ret;
 1019 
 1020         ki = job->userproc->p_aioinfo;
 1021         AIO_LOCK(ki);
 1022         ret = aio_set_cancel_function_locked(job, func);
 1023         AIO_UNLOCK(ki);
 1024         return (ret);
 1025 }
 1026 
 1027 void
 1028 aio_complete(struct kaiocb *job, long status, int error)
 1029 {
 1030         struct kaioinfo *ki;
 1031         struct proc *userp;
 1032 
 1033         job->uaiocb._aiocb_private.error = error;
 1034         job->uaiocb._aiocb_private.status = status;
 1035 
 1036         userp = job->userproc;
 1037         ki = userp->p_aioinfo;
 1038 
 1039         AIO_LOCK(ki);
 1040         KASSERT(!(job->jobflags & KAIOCB_FINISHED),
 1041             ("duplicate aio_complete"));
 1042         job->jobflags |= KAIOCB_FINISHED;
 1043         if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
 1044                 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
 1045                 aio_bio_done_notify(userp, job);
 1046         }
 1047         AIO_UNLOCK(ki);
 1048 }
 1049 
 1050 void
 1051 aio_cancel(struct kaiocb *job)
 1052 {
 1053 
 1054         aio_complete(job, -1, ECANCELED);
 1055 }
 1056 
 1057 void
 1058 aio_switch_vmspace(struct kaiocb *job)
 1059 {
 1060 
 1061         vmspace_switch_aio(job->userproc->p_vmspace);
 1062 }
 1063 
 1064 /*
 1065  * The AIO daemon, most of the actual work is done in aio_process_*,
 1066  * but the setup (and address space mgmt) is done in this routine.
 1067  */
 1068 static void
 1069 aio_daemon(void *_id)
 1070 {
 1071         struct kaiocb *job;
 1072         struct aioproc *aiop;
 1073         struct kaioinfo *ki;
 1074         struct proc *p;
 1075         struct vmspace *myvm;
 1076         struct thread *td = curthread;
 1077         int id = (intptr_t)_id;
 1078 
 1079         /*
 1080          * Grab an extra reference on the daemon's vmspace so that it
 1081          * doesn't get freed by jobs that switch to a different
 1082          * vmspace.
 1083          */
 1084         p = td->td_proc;
 1085         myvm = vmspace_acquire_ref(p);
 1086 
 1087         KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
 1088 
 1089         /*
 1090          * Allocate and ready the aio control info.  There is one aiop structure
 1091          * per daemon.
 1092          */
 1093         aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK);
 1094         aiop->aioproc = p;
 1095         aiop->aioprocflags = 0;
 1096 
 1097         /*
 1098          * Wakeup parent process.  (Parent sleeps to keep from blasting away
 1099          * and creating too many daemons.)
 1100          */
 1101         sema_post(&aio_newproc_sem);
 1102 
 1103         mtx_lock(&aio_job_mtx);
 1104         for (;;) {
 1105                 /*
 1106                  * Take daemon off of free queue
 1107                  */
 1108                 if (aiop->aioprocflags & AIOP_FREE) {
 1109                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1110                         aiop->aioprocflags &= ~AIOP_FREE;
 1111                 }
 1112 
 1113                 /*
 1114                  * Check for jobs.
 1115                  */
 1116                 while ((job = aio_selectjob(aiop)) != NULL) {
 1117                         mtx_unlock(&aio_job_mtx);
 1118 
 1119                         ki = job->userproc->p_aioinfo;
 1120                         job->handle_fn(job);
 1121 
 1122                         mtx_lock(&aio_job_mtx);
 1123                         /* Decrement the active job count. */
 1124                         ki->kaio_active_count--;
 1125                 }
 1126 
 1127                 /*
 1128                  * Disconnect from user address space.
 1129                  */
 1130                 if (p->p_vmspace != myvm) {
 1131                         mtx_unlock(&aio_job_mtx);
 1132                         vmspace_switch_aio(myvm);
 1133                         mtx_lock(&aio_job_mtx);
 1134                         /*
 1135                          * We have to restart to avoid race, we only sleep if
 1136                          * no job can be selected.
 1137                          */
 1138                         continue;
 1139                 }
 1140 
 1141                 mtx_assert(&aio_job_mtx, MA_OWNED);
 1142 
 1143                 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
 1144                 aiop->aioprocflags |= AIOP_FREE;
 1145 
 1146                 /*
 1147                  * If daemon is inactive for a long time, allow it to exit,
 1148                  * thereby freeing resources.
 1149                  */
 1150                 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
 1151                     aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
 1152                     (aiop->aioprocflags & AIOP_FREE) &&
 1153                     num_aio_procs > target_aio_procs)
 1154                         break;
 1155         }
 1156         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1157         num_aio_procs--;
 1158         mtx_unlock(&aio_job_mtx);
 1159         free(aiop, M_AIO);
 1160         free_unr(aiod_unr, id);
 1161         vmspace_free(myvm);
 1162 
 1163         KASSERT(p->p_vmspace == myvm,
 1164             ("AIOD: bad vmspace for exiting daemon"));
 1165         KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
 1166             ("AIOD: bad vm refcnt for exiting daemon: %d",
 1167             refcount_load(&myvm->vm_refcnt)));
 1168         kproc_exit(0);
 1169 }
 1170 
 1171 /*
 1172  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
 1173  * AIO daemon modifies its environment itself.
 1174  */
 1175 static int
 1176 aio_newproc(int *start)
 1177 {
 1178         int error;
 1179         struct proc *p;
 1180         int id;
 1181 
 1182         id = alloc_unr(aiod_unr);
 1183         error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
 1184                 RFNOWAIT, 0, "aiod%d", id);
 1185         if (error == 0) {
 1186                 /*
 1187                  * Wait until daemon is started.
 1188                  */
 1189                 sema_wait(&aio_newproc_sem);
 1190                 mtx_lock(&aio_job_mtx);
 1191                 num_aio_procs++;
 1192                 if (start != NULL)
 1193                         (*start)--;
 1194                 mtx_unlock(&aio_job_mtx);
 1195         } else {
 1196                 free_unr(aiod_unr, id);
 1197         }
 1198         return (error);
 1199 }
 1200 
 1201 /*
 1202  * Try the high-performance, low-overhead bio method for eligible
 1203  * VCHR devices.  This method doesn't use an aio helper thread, and
 1204  * thus has very low overhead.
 1205  *
 1206  * Assumes that the caller, aio_aqueue(), has incremented the file
 1207  * structure's reference count, preventing its deallocation for the
 1208  * duration of this call.
 1209  */
 1210 static int
 1211 aio_qbio(struct proc *p, struct kaiocb *job)
 1212 {
 1213         struct aiocb *cb;
 1214         struct file *fp;
 1215         struct buf *pbuf;
 1216         struct vnode *vp;
 1217         struct cdevsw *csw;
 1218         struct cdev *dev;
 1219         struct kaioinfo *ki;
 1220         struct bio **bios = NULL;
 1221         off_t offset;
 1222         int bio_cmd, error, i, iovcnt, opcode, poff, ref;
 1223         vm_prot_t prot;
 1224         bool use_unmapped;
 1225 
 1226         cb = &job->uaiocb;
 1227         fp = job->fd_file;
 1228         opcode = cb->aio_lio_opcode;
 1229 
 1230         if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
 1231             opcode == LIO_READ || opcode == LIO_READV))
 1232                 return (-1);
 1233         if (fp == NULL || fp->f_type != DTYPE_VNODE)
 1234                 return (-1);
 1235 
 1236         vp = fp->f_vnode;
 1237         if (vp->v_type != VCHR)
 1238                 return (-1);
 1239         if (vp->v_bufobj.bo_bsize == 0)
 1240                 return (-1);
 1241 
 1242         bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
 1243         iovcnt = job->uiop->uio_iovcnt;
 1244         if (iovcnt > max_buf_aio)
 1245                 return (-1);
 1246         for (i = 0; i < iovcnt; i++) {
 1247                 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
 1248                         return (-1);
 1249                 if (job->uiop->uio_iov[i].iov_len > maxphys) {
 1250                         error = -1;
 1251                         return (-1);
 1252                 }
 1253         }
 1254         offset = cb->aio_offset;
 1255 
 1256         ref = 0;
 1257         csw = devvn_refthread(vp, &dev, &ref);
 1258         if (csw == NULL)
 1259                 return (ENXIO);
 1260 
 1261         if ((csw->d_flags & D_DISK) == 0) {
 1262                 error = -1;
 1263                 goto unref;
 1264         }
 1265         if (job->uiop->uio_resid > dev->si_iosize_max) {
 1266                 error = -1;
 1267                 goto unref;
 1268         }
 1269 
 1270         ki = p->p_aioinfo;
 1271         job->error = 0;
 1272 
 1273         use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
 1274         if (!use_unmapped) {
 1275                 AIO_LOCK(ki);
 1276                 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
 1277                         AIO_UNLOCK(ki);
 1278                         error = EAGAIN;
 1279                         goto unref;
 1280                 }
 1281                 ki->kaio_buffer_count += iovcnt;
 1282                 AIO_UNLOCK(ki);
 1283         }
 1284 
 1285         bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
 1286         atomic_store_int(&job->nbio, iovcnt);
 1287         for (i = 0; i < iovcnt; i++) {
 1288                 struct vm_page** pages;
 1289                 struct bio *bp;
 1290                 void *buf;
 1291                 size_t nbytes;
 1292                 int npages;
 1293 
 1294                 buf = job->uiop->uio_iov[i].iov_base;
 1295                 nbytes = job->uiop->uio_iov[i].iov_len;
 1296 
 1297                 bios[i] = g_alloc_bio();
 1298                 bp = bios[i];
 1299 
 1300                 poff = (vm_offset_t)buf & PAGE_MASK;
 1301                 if (use_unmapped) {
 1302                         pbuf = NULL;
 1303                         pages = malloc(sizeof(vm_page_t) * (atop(round_page(
 1304                             nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
 1305                 } else {
 1306                         pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
 1307                         BUF_KERNPROC(pbuf);
 1308                         pages = pbuf->b_pages;
 1309                 }
 1310 
 1311                 bp->bio_length = nbytes;
 1312                 bp->bio_bcount = nbytes;
 1313                 bp->bio_done = aio_biowakeup;
 1314                 bp->bio_offset = offset;
 1315                 bp->bio_cmd = bio_cmd;
 1316                 bp->bio_dev = dev;
 1317                 bp->bio_caller1 = job;
 1318                 bp->bio_caller2 = pbuf;
 1319 
 1320                 prot = VM_PROT_READ;
 1321                 if (opcode == LIO_READ || opcode == LIO_READV)
 1322                         prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 1323                 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 1324                     (vm_offset_t)buf, bp->bio_length, prot, pages,
 1325                     atop(maxphys) + 1);
 1326                 if (npages < 0) {
 1327                         if (pbuf != NULL)
 1328                                 uma_zfree(pbuf_zone, pbuf);
 1329                         else
 1330                                 free(pages, M_TEMP);
 1331                         error = EFAULT;
 1332                         g_destroy_bio(bp);
 1333                         i--;
 1334                         goto destroy_bios;
 1335                 }
 1336                 if (pbuf != NULL) {
 1337                         pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
 1338                         bp->bio_data = pbuf->b_data + poff;
 1339                         pbuf->b_npages = npages;
 1340                         atomic_add_int(&num_buf_aio, 1);
 1341                 } else {
 1342                         bp->bio_ma = pages;
 1343                         bp->bio_ma_n = npages;
 1344                         bp->bio_ma_offset = poff;
 1345                         bp->bio_data = unmapped_buf;
 1346                         bp->bio_flags |= BIO_UNMAPPED;
 1347                         atomic_add_int(&num_unmapped_aio, 1);
 1348                 }
 1349 
 1350                 offset += nbytes;
 1351         }
 1352 
 1353         /* Perform transfer. */
 1354         for (i = 0; i < iovcnt; i++)
 1355                 csw->d_strategy(bios[i]);
 1356         free(bios, M_TEMP);
 1357 
 1358         dev_relthread(dev, ref);
 1359         return (0);
 1360 
 1361 destroy_bios:
 1362         for (; i >= 0; i--)
 1363                 aio_biocleanup(bios[i]);
 1364         free(bios, M_TEMP);
 1365 unref:
 1366         dev_relthread(dev, ref);
 1367         return (error);
 1368 }
 1369 
 1370 #ifdef COMPAT_FREEBSD6
 1371 static int
 1372 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
 1373 {
 1374 
 1375         /*
 1376          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 1377          * supported by AIO with the old sigevent structure.
 1378          */
 1379         nsig->sigev_notify = osig->sigev_notify;
 1380         switch (nsig->sigev_notify) {
 1381         case SIGEV_NONE:
 1382                 break;
 1383         case SIGEV_SIGNAL:
 1384                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 1385                 break;
 1386         case SIGEV_KEVENT:
 1387                 nsig->sigev_notify_kqueue =
 1388                     osig->__sigev_u.__sigev_notify_kqueue;
 1389                 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
 1390                 break;
 1391         default:
 1392                 return (EINVAL);
 1393         }
 1394         return (0);
 1395 }
 1396 
 1397 static int
 1398 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
 1399     int type __unused)
 1400 {
 1401         struct oaiocb *ojob;
 1402         struct aiocb *kcb = &kjob->uaiocb;
 1403         int error;
 1404 
 1405         bzero(kcb, sizeof(struct aiocb));
 1406         error = copyin(ujob, kcb, sizeof(struct oaiocb));
 1407         if (error)
 1408                 return (error);
 1409         /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
 1410         ojob = (struct oaiocb *)kcb;
 1411         return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
 1412 }
 1413 #endif
 1414 
 1415 static int
 1416 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
 1417 {
 1418         struct aiocb *kcb = &kjob->uaiocb;
 1419         int error;
 1420 
 1421         error = copyin(ujob, kcb, sizeof(struct aiocb));
 1422         if (error)
 1423                 return (error);
 1424         if (type & LIO_VECTORED) {
 1425                 /* malloc a uio and copy in the iovec */
 1426                 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
 1427                     kcb->aio_iovcnt, &kjob->uiop);
 1428         }
 1429 
 1430         return (error);
 1431 }
 1432 
 1433 static long
 1434 aiocb_fetch_status(struct aiocb *ujob)
 1435 {
 1436 
 1437         return (fuword(&ujob->_aiocb_private.status));
 1438 }
 1439 
 1440 static long
 1441 aiocb_fetch_error(struct aiocb *ujob)
 1442 {
 1443 
 1444         return (fuword(&ujob->_aiocb_private.error));
 1445 }
 1446 
 1447 static int
 1448 aiocb_store_status(struct aiocb *ujob, long status)
 1449 {
 1450 
 1451         return (suword(&ujob->_aiocb_private.status, status));
 1452 }
 1453 
 1454 static int
 1455 aiocb_store_error(struct aiocb *ujob, long error)
 1456 {
 1457 
 1458         return (suword(&ujob->_aiocb_private.error, error));
 1459 }
 1460 
 1461 static int
 1462 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
 1463 {
 1464 
 1465         return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
 1466 }
 1467 
 1468 static int
 1469 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 1470 {
 1471 
 1472         return (suword(ujobp, (long)ujob));
 1473 }
 1474 
 1475 static struct aiocb_ops aiocb_ops = {
 1476         .aio_copyin = aiocb_copyin,
 1477         .fetch_status = aiocb_fetch_status,
 1478         .fetch_error = aiocb_fetch_error,
 1479         .store_status = aiocb_store_status,
 1480         .store_error = aiocb_store_error,
 1481         .store_kernelinfo = aiocb_store_kernelinfo,
 1482         .store_aiocb = aiocb_store_aiocb,
 1483 };
 1484 
 1485 #ifdef COMPAT_FREEBSD6
 1486 static struct aiocb_ops aiocb_ops_osigevent = {
 1487         .aio_copyin = aiocb_copyin_old_sigevent,
 1488         .fetch_status = aiocb_fetch_status,
 1489         .fetch_error = aiocb_fetch_error,
 1490         .store_status = aiocb_store_status,
 1491         .store_error = aiocb_store_error,
 1492         .store_kernelinfo = aiocb_store_kernelinfo,
 1493         .store_aiocb = aiocb_store_aiocb,
 1494 };
 1495 #endif
 1496 
 1497 /*
 1498  * Queue a new AIO request.  Choosing either the threaded or direct bio VCHR
 1499  * technique is done in this code.
 1500  */
 1501 int
 1502 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
 1503     int type, struct aiocb_ops *ops)
 1504 {
 1505         struct proc *p = td->td_proc;
 1506         struct file *fp = NULL;
 1507         struct kaiocb *job;
 1508         struct kaioinfo *ki;
 1509         struct kevent kev;
 1510         int opcode;
 1511         int error;
 1512         int fd, kqfd;
 1513         int jid;
 1514         u_short evflags;
 1515 
 1516         if (p->p_aioinfo == NULL)
 1517                 aio_init_aioinfo(p);
 1518 
 1519         ki = p->p_aioinfo;
 1520 
 1521         ops->store_status(ujob, -1);
 1522         ops->store_error(ujob, 0);
 1523         ops->store_kernelinfo(ujob, -1);
 1524 
 1525         if (num_queue_count >= max_queue_count ||
 1526             ki->kaio_count >= max_aio_queue_per_proc) {
 1527                 error = EAGAIN;
 1528                 goto err1;
 1529         }
 1530 
 1531         job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 1532         knlist_init_mtx(&job->klist, AIO_MTX(ki));
 1533 
 1534         error = ops->aio_copyin(ujob, job, type);
 1535         if (error)
 1536                 goto err2;
 1537 
 1538         if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
 1539                 error = EINVAL;
 1540                 goto err2;
 1541         }
 1542 
 1543         if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
 1544             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
 1545             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
 1546             job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
 1547                 error = EINVAL;
 1548                 goto err2;
 1549         }
 1550 
 1551         if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1552              job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
 1553                 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
 1554                 error = EINVAL;
 1555                 goto err2;
 1556         }
 1557 
 1558         /* Get the opcode. */
 1559         if (type == LIO_NOP) {
 1560                 switch (job->uaiocb.aio_lio_opcode) {
 1561                 case LIO_WRITE:
 1562                 case LIO_NOP:
 1563                 case LIO_READ:
 1564                         opcode = job->uaiocb.aio_lio_opcode;
 1565                         break;
 1566                 default:
 1567                         error = EINVAL;
 1568                         goto err2;
 1569                 }
 1570         } else
 1571                 opcode = job->uaiocb.aio_lio_opcode = type;
 1572 
 1573         ksiginfo_init(&job->ksi);
 1574 
 1575         /* Save userspace address of the job info. */
 1576         job->ujob = ujob;
 1577 
 1578         /*
 1579          * Validate the opcode and fetch the file object for the specified
 1580          * file descriptor.
 1581          *
 1582          * XXXRW: Moved the opcode validation up here so that we don't
 1583          * retrieve a file descriptor without knowing what the capabiltity
 1584          * should be.
 1585          */
 1586         fd = job->uaiocb.aio_fildes;
 1587         switch (opcode) {
 1588         case LIO_WRITE:
 1589         case LIO_WRITEV:
 1590                 error = fget_write(td, fd, &cap_pwrite_rights, &fp);
 1591                 break;
 1592         case LIO_READ:
 1593         case LIO_READV:
 1594                 error = fget_read(td, fd, &cap_pread_rights, &fp);
 1595                 break;
 1596         case LIO_SYNC:
 1597         case LIO_DSYNC:
 1598                 error = fget(td, fd, &cap_fsync_rights, &fp);
 1599                 break;
 1600         case LIO_MLOCK:
 1601                 break;
 1602         case LIO_NOP:
 1603                 error = fget(td, fd, &cap_no_rights, &fp);
 1604                 break;
 1605         default:
 1606                 error = EINVAL;
 1607         }
 1608         if (error)
 1609                 goto err3;
 1610 
 1611         if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
 1612                 error = EINVAL;
 1613                 goto err3;
 1614         }
 1615 
 1616         if ((opcode == LIO_READ || opcode == LIO_READV ||
 1617             opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
 1618             job->uaiocb.aio_offset < 0 &&
 1619             (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
 1620                 error = EINVAL;
 1621                 goto err3;
 1622         }
 1623 
 1624         if (fp != NULL && fp->f_ops == &path_fileops) {
 1625                 error = EBADF;
 1626                 goto err3;
 1627         }
 1628 
 1629         job->fd_file = fp;
 1630 
 1631         mtx_lock(&aio_job_mtx);
 1632         jid = jobrefid++;
 1633         job->seqno = jobseqno++;
 1634         mtx_unlock(&aio_job_mtx);
 1635         error = ops->store_kernelinfo(ujob, jid);
 1636         if (error) {
 1637                 error = EINVAL;
 1638                 goto err3;
 1639         }
 1640         job->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
 1641 
 1642         if (opcode == LIO_NOP) {
 1643                 fdrop(fp, td);
 1644                 MPASS(job->uiop == &job->uio || job->uiop == NULL);
 1645                 uma_zfree(aiocb_zone, job);
 1646                 return (0);
 1647         }
 1648 
 1649         if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
 1650                 goto no_kqueue;
 1651         evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
 1652         if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
 1653                 error = EINVAL;
 1654                 goto err3;
 1655         }
 1656         kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
 1657         memset(&kev, 0, sizeof(kev));
 1658         kev.ident = (uintptr_t)job->ujob;
 1659         kev.filter = EVFILT_AIO;
 1660         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
 1661         kev.data = (intptr_t)job;
 1662         kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
 1663         error = kqfd_register(kqfd, &kev, td, M_WAITOK);
 1664         if (error)
 1665                 goto err3;
 1666 
 1667 no_kqueue:
 1668 
 1669         ops->store_error(ujob, EINPROGRESS);
 1670         job->uaiocb._aiocb_private.error = EINPROGRESS;
 1671         job->userproc = p;
 1672         job->cred = crhold(td->td_ucred);
 1673         job->jobflags = KAIOCB_QUEUEING;
 1674         job->lio = lj;
 1675 
 1676         if (opcode & LIO_VECTORED) {
 1677                 /* Use the uio copied in by aio_copyin */
 1678                 MPASS(job->uiop != &job->uio && job->uiop != NULL);
 1679         } else {
 1680                 /* Setup the inline uio */
 1681                 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
 1682                 job->iov[0].iov_len = job->uaiocb.aio_nbytes;
 1683                 job->uio.uio_iov = job->iov;
 1684                 job->uio.uio_iovcnt = 1;
 1685                 job->uio.uio_resid = job->uaiocb.aio_nbytes;
 1686                 job->uio.uio_segflg = UIO_USERSPACE;
 1687                 job->uiop = &job->uio;
 1688         }
 1689         switch (opcode & (LIO_READ | LIO_WRITE)) {
 1690         case LIO_READ:
 1691                 job->uiop->uio_rw = UIO_READ;
 1692                 break;
 1693         case LIO_WRITE:
 1694                 job->uiop->uio_rw = UIO_WRITE;
 1695                 break;
 1696         }
 1697         job->uiop->uio_offset = job->uaiocb.aio_offset;
 1698         job->uiop->uio_td = td;
 1699 
 1700         if (opcode == LIO_MLOCK) {
 1701                 aio_schedule(job, aio_process_mlock);
 1702                 error = 0;
 1703         } else if (fp->f_ops->fo_aio_queue == NULL)
 1704                 error = aio_queue_file(fp, job);
 1705         else
 1706                 error = fo_aio_queue(fp, job);
 1707         if (error)
 1708                 goto err4;
 1709 
 1710         AIO_LOCK(ki);
 1711         job->jobflags &= ~KAIOCB_QUEUEING;
 1712         TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
 1713         ki->kaio_count++;
 1714         if (lj)
 1715                 lj->lioj_count++;
 1716         atomic_add_int(&num_queue_count, 1);
 1717         if (job->jobflags & KAIOCB_FINISHED) {
 1718                 /*
 1719                  * The queue callback completed the request synchronously.
 1720                  * The bulk of the completion is deferred in that case
 1721                  * until this point.
 1722                  */
 1723                 aio_bio_done_notify(p, job);
 1724         } else
 1725                 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
 1726         AIO_UNLOCK(ki);
 1727         return (0);
 1728 
 1729 err4:
 1730         crfree(job->cred);
 1731 err3:
 1732         if (fp)
 1733                 fdrop(fp, td);
 1734         knlist_delete(&job->klist, curthread, 0);
 1735 err2:
 1736         if (job->uiop != &job->uio)
 1737                 free(job->uiop, M_IOV);
 1738         uma_zfree(aiocb_zone, job);
 1739 err1:
 1740         ops->store_error(ujob, error);
 1741         return (error);
 1742 }
 1743 
 1744 static void
 1745 aio_cancel_daemon_job(struct kaiocb *job)
 1746 {
 1747 
 1748         mtx_lock(&aio_job_mtx);
 1749         if (!aio_cancel_cleared(job))
 1750                 TAILQ_REMOVE(&aio_jobs, job, list);
 1751         mtx_unlock(&aio_job_mtx);
 1752         aio_cancel(job);
 1753 }
 1754 
 1755 void
 1756 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
 1757 {
 1758 
 1759         mtx_lock(&aio_job_mtx);
 1760         if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
 1761                 mtx_unlock(&aio_job_mtx);
 1762                 aio_cancel(job);
 1763                 return;
 1764         }
 1765         job->handle_fn = func;
 1766         TAILQ_INSERT_TAIL(&aio_jobs, job, list);
 1767         aio_kick_nowait(job->userproc);
 1768         mtx_unlock(&aio_job_mtx);
 1769 }
 1770 
 1771 static void
 1772 aio_cancel_sync(struct kaiocb *job)
 1773 {
 1774         struct kaioinfo *ki;
 1775 
 1776         ki = job->userproc->p_aioinfo;
 1777         AIO_LOCK(ki);
 1778         if (!aio_cancel_cleared(job))
 1779                 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
 1780         AIO_UNLOCK(ki);
 1781         aio_cancel(job);
 1782 }
 1783 
 1784 int
 1785 aio_queue_file(struct file *fp, struct kaiocb *job)
 1786 {
 1787         struct kaioinfo *ki;
 1788         struct kaiocb *job2;
 1789         struct vnode *vp;
 1790         struct mount *mp;
 1791         int error;
 1792         bool safe;
 1793 
 1794         ki = job->userproc->p_aioinfo;
 1795         error = aio_qbio(job->userproc, job);
 1796         if (error >= 0)
 1797                 return (error);
 1798         safe = false;
 1799         if (fp->f_type == DTYPE_VNODE) {
 1800                 vp = fp->f_vnode;
 1801                 if (vp->v_type == VREG || vp->v_type == VDIR) {
 1802                         mp = fp->f_vnode->v_mount;
 1803                         if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
 1804                                 safe = true;
 1805                 }
 1806         }
 1807         if (!(safe || enable_aio_unsafe)) {
 1808                 counted_warning(&unsafe_warningcnt,
 1809                     "is attempting to use unsafe AIO requests");
 1810                 return (EOPNOTSUPP);
 1811         }
 1812 
 1813         if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
 1814                 aio_schedule(job, aio_process_rw);
 1815                 error = 0;
 1816         } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
 1817                 AIO_LOCK(ki);
 1818                 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
 1819                         if (job2->fd_file == job->fd_file &&
 1820                             ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
 1821                             job2->seqno < job->seqno) {
 1822                                 job2->jobflags |= KAIOCB_CHECKSYNC;
 1823                                 job->pending++;
 1824                         }
 1825                 }
 1826                 if (job->pending != 0) {
 1827                         if (!aio_set_cancel_function_locked(job,
 1828                                 aio_cancel_sync)) {
 1829                                 AIO_UNLOCK(ki);
 1830                                 aio_cancel(job);
 1831                                 return (0);
 1832                         }
 1833                         TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
 1834                         AIO_UNLOCK(ki);
 1835                         return (0);
 1836                 }
 1837                 AIO_UNLOCK(ki);
 1838                 aio_schedule(job, aio_process_sync);
 1839                 error = 0;
 1840         } else {
 1841                 error = EINVAL;
 1842         }
 1843         return (error);
 1844 }
 1845 
 1846 static void
 1847 aio_kick_nowait(struct proc *userp)
 1848 {
 1849         struct kaioinfo *ki = userp->p_aioinfo;
 1850         struct aioproc *aiop;
 1851 
 1852         mtx_assert(&aio_job_mtx, MA_OWNED);
 1853         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1854                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1855                 aiop->aioprocflags &= ~AIOP_FREE;
 1856                 wakeup(aiop->aioproc);
 1857         } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
 1858             ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
 1859                 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
 1860         }
 1861 }
 1862 
 1863 static int
 1864 aio_kick(struct proc *userp)
 1865 {
 1866         struct kaioinfo *ki = userp->p_aioinfo;
 1867         struct aioproc *aiop;
 1868         int error, ret = 0;
 1869 
 1870         mtx_assert(&aio_job_mtx, MA_OWNED);
 1871 retryproc:
 1872         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1873                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1874                 aiop->aioprocflags &= ~AIOP_FREE;
 1875                 wakeup(aiop->aioproc);
 1876         } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
 1877             ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
 1878                 num_aio_resv_start++;
 1879                 mtx_unlock(&aio_job_mtx);
 1880                 error = aio_newproc(&num_aio_resv_start);
 1881                 mtx_lock(&aio_job_mtx);
 1882                 if (error) {
 1883                         num_aio_resv_start--;
 1884                         goto retryproc;
 1885                 }
 1886         } else {
 1887                 ret = -1;
 1888         }
 1889         return (ret);
 1890 }
 1891 
 1892 static void
 1893 aio_kick_helper(void *context, int pending)
 1894 {
 1895         struct proc *userp = context;
 1896 
 1897         mtx_lock(&aio_job_mtx);
 1898         while (--pending >= 0) {
 1899                 if (aio_kick(userp))
 1900                         break;
 1901         }
 1902         mtx_unlock(&aio_job_mtx);
 1903 }
 1904 
 1905 /*
 1906  * Support the aio_return system call, as a side-effect, kernel resources are
 1907  * released.
 1908  */
 1909 static int
 1910 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
 1911 {
 1912         struct proc *p = td->td_proc;
 1913         struct kaiocb *job;
 1914         struct kaioinfo *ki;
 1915         long status, error;
 1916 
 1917         ki = p->p_aioinfo;
 1918         if (ki == NULL)
 1919                 return (EINVAL);
 1920         AIO_LOCK(ki);
 1921         TAILQ_FOREACH(job, &ki->kaio_done, plist) {
 1922                 if (job->ujob == ujob)
 1923                         break;
 1924         }
 1925         if (job != NULL) {
 1926                 MPASS(job->jobflags & KAIOCB_FINISHED);
 1927                 status = job->uaiocb._aiocb_private.status;
 1928                 error = job->uaiocb._aiocb_private.error;
 1929                 td->td_retval[0] = status;
 1930                 td->td_ru.ru_oublock += job->outblock;
 1931                 td->td_ru.ru_inblock += job->inblock;
 1932                 td->td_ru.ru_msgsnd += job->msgsnd;
 1933                 td->td_ru.ru_msgrcv += job->msgrcv;
 1934                 aio_free_entry(job);
 1935                 AIO_UNLOCK(ki);
 1936                 ops->store_error(ujob, error);
 1937                 ops->store_status(ujob, status);
 1938         } else {
 1939                 error = EINVAL;
 1940                 AIO_UNLOCK(ki);
 1941         }
 1942         return (error);
 1943 }
 1944 
 1945 int
 1946 sys_aio_return(struct thread *td, struct aio_return_args *uap)
 1947 {
 1948 
 1949         return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
 1950 }
 1951 
 1952 /*
 1953  * Allow a process to wakeup when any of the I/O requests are completed.
 1954  */
 1955 static int
 1956 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
 1957     struct timespec *ts)
 1958 {
 1959         struct proc *p = td->td_proc;
 1960         struct timeval atv;
 1961         struct kaioinfo *ki;
 1962         struct kaiocb *firstjob, *job;
 1963         int error, i, timo;
 1964 
 1965         timo = 0;
 1966         if (ts) {
 1967                 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1968                         return (EINVAL);
 1969 
 1970                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 1971                 if (itimerfix(&atv))
 1972                         return (EINVAL);
 1973                 timo = tvtohz(&atv);
 1974         }
 1975 
 1976         ki = p->p_aioinfo;
 1977         if (ki == NULL)
 1978                 return (EAGAIN);
 1979 
 1980         if (njoblist == 0)
 1981                 return (0);
 1982 
 1983         AIO_LOCK(ki);
 1984         for (;;) {
 1985                 firstjob = NULL;
 1986                 error = 0;
 1987                 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
 1988                         for (i = 0; i < njoblist; i++) {
 1989                                 if (job->ujob == ujoblist[i]) {
 1990                                         if (firstjob == NULL)
 1991                                                 firstjob = job;
 1992                                         if (job->jobflags & KAIOCB_FINISHED)
 1993                                                 goto RETURN;
 1994                                 }
 1995                         }
 1996                 }
 1997                 /* All tasks were finished. */
 1998                 if (firstjob == NULL)
 1999                         break;
 2000 
 2001                 ki->kaio_flags |= KAIO_WAKEUP;
 2002                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2003                     "aiospn", timo);
 2004                 if (error == ERESTART)
 2005                         error = EINTR;
 2006                 if (error)
 2007                         break;
 2008         }
 2009 RETURN:
 2010         AIO_UNLOCK(ki);
 2011         return (error);
 2012 }
 2013 
 2014 int
 2015 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 2016 {
 2017         struct timespec ts, *tsp;
 2018         struct aiocb **ujoblist;
 2019         int error;
 2020 
 2021         if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
 2022                 return (EINVAL);
 2023 
 2024         if (uap->timeout) {
 2025                 /* Get timespec struct. */
 2026                 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 2027                         return (error);
 2028                 tsp = &ts;
 2029         } else
 2030                 tsp = NULL;
 2031 
 2032         ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
 2033         error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
 2034         if (error == 0)
 2035                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2036         free(ujoblist, M_AIO);
 2037         return (error);
 2038 }
 2039 
 2040 /*
 2041  * aio_cancel cancels any non-bio aio operations not currently in progress.
 2042  */
 2043 int
 2044 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 2045 {
 2046         struct proc *p = td->td_proc;
 2047         struct kaioinfo *ki;
 2048         struct kaiocb *job, *jobn;
 2049         struct file *fp;
 2050         int error;
 2051         int cancelled = 0;
 2052         int notcancelled = 0;
 2053         struct vnode *vp;
 2054 
 2055         /* Lookup file object. */
 2056         error = fget(td, uap->fd, &cap_no_rights, &fp);
 2057         if (error)
 2058                 return (error);
 2059 
 2060         ki = p->p_aioinfo;
 2061         if (ki == NULL)
 2062                 goto done;
 2063 
 2064         if (fp->f_type == DTYPE_VNODE) {
 2065                 vp = fp->f_vnode;
 2066                 if (vn_isdisk(vp)) {
 2067                         fdrop(fp, td);
 2068                         td->td_retval[0] = AIO_NOTCANCELED;
 2069                         return (0);
 2070                 }
 2071         }
 2072 
 2073         AIO_LOCK(ki);
 2074         TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
 2075                 if ((uap->fd == job->uaiocb.aio_fildes) &&
 2076                     ((uap->aiocbp == NULL) ||
 2077                      (uap->aiocbp == job->ujob))) {
 2078                         if (aio_cancel_job(p, ki, job)) {
 2079                                 cancelled++;
 2080                         } else {
 2081                                 notcancelled++;
 2082                         }
 2083                         if (uap->aiocbp != NULL)
 2084                                 break;
 2085                 }
 2086         }
 2087         AIO_UNLOCK(ki);
 2088 
 2089 done:
 2090         fdrop(fp, td);
 2091 
 2092         if (uap->aiocbp != NULL) {
 2093                 if (cancelled) {
 2094                         td->td_retval[0] = AIO_CANCELED;
 2095                         return (0);
 2096                 }
 2097         }
 2098 
 2099         if (notcancelled) {
 2100                 td->td_retval[0] = AIO_NOTCANCELED;
 2101                 return (0);
 2102         }
 2103 
 2104         if (cancelled) {
 2105                 td->td_retval[0] = AIO_CANCELED;
 2106                 return (0);
 2107         }
 2108 
 2109         td->td_retval[0] = AIO_ALLDONE;
 2110 
 2111         return (0);
 2112 }
 2113 
 2114 /*
 2115  * aio_error is implemented in the kernel level for compatibility purposes
 2116  * only.  For a user mode async implementation, it would be best to do it in
 2117  * a userland subroutine.
 2118  */
 2119 static int
 2120 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
 2121 {
 2122         struct proc *p = td->td_proc;
 2123         struct kaiocb *job;
 2124         struct kaioinfo *ki;
 2125         int status;
 2126 
 2127         ki = p->p_aioinfo;
 2128         if (ki == NULL) {
 2129                 td->td_retval[0] = EINVAL;
 2130                 return (0);
 2131         }
 2132 
 2133         AIO_LOCK(ki);
 2134         TAILQ_FOREACH(job, &ki->kaio_all, allist) {
 2135                 if (job->ujob == ujob) {
 2136                         if (job->jobflags & KAIOCB_FINISHED)
 2137                                 td->td_retval[0] =
 2138                                         job->uaiocb._aiocb_private.error;
 2139                         else
 2140                                 td->td_retval[0] = EINPROGRESS;
 2141                         AIO_UNLOCK(ki);
 2142                         return (0);
 2143                 }
 2144         }
 2145         AIO_UNLOCK(ki);
 2146 
 2147         /*
 2148          * Hack for failure of aio_aqueue.
 2149          */
 2150         status = ops->fetch_status(ujob);
 2151         if (status == -1) {
 2152                 td->td_retval[0] = ops->fetch_error(ujob);
 2153                 return (0);
 2154         }
 2155 
 2156         td->td_retval[0] = EINVAL;
 2157         return (0);
 2158 }
 2159 
 2160 int
 2161 sys_aio_error(struct thread *td, struct aio_error_args *uap)
 2162 {
 2163 
 2164         return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
 2165 }
 2166 
 2167 /* syscall - asynchronous read from a file (REALTIME) */
 2168 #ifdef COMPAT_FREEBSD6
 2169 int
 2170 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
 2171 {
 2172 
 2173         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2174             &aiocb_ops_osigevent));
 2175 }
 2176 #endif
 2177 
 2178 int
 2179 sys_aio_read(struct thread *td, struct aio_read_args *uap)
 2180 {
 2181 
 2182         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
 2183 }
 2184 
 2185 int
 2186 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
 2187 {
 2188 
 2189         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
 2190 }
 2191 
 2192 /* syscall - asynchronous write to a file (REALTIME) */
 2193 #ifdef COMPAT_FREEBSD6
 2194 int
 2195 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
 2196 {
 2197 
 2198         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2199             &aiocb_ops_osigevent));
 2200 }
 2201 #endif
 2202 
 2203 int
 2204 sys_aio_write(struct thread *td, struct aio_write_args *uap)
 2205 {
 2206 
 2207         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
 2208 }
 2209 
 2210 int
 2211 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
 2212 {
 2213 
 2214         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
 2215 }
 2216 
 2217 int
 2218 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
 2219 {
 2220 
 2221         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
 2222 }
 2223 
 2224 static int
 2225 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
 2226     struct aiocb **acb_list, int nent, struct sigevent *sig,
 2227     struct aiocb_ops *ops)
 2228 {
 2229         struct proc *p = td->td_proc;
 2230         struct aiocb *job;
 2231         struct kaioinfo *ki;
 2232         struct aioliojob *lj;
 2233         struct kevent kev;
 2234         int error;
 2235         int nagain, nerror;
 2236         int i;
 2237 
 2238         if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
 2239                 return (EINVAL);
 2240 
 2241         if (nent < 0 || nent > max_aio_queue_per_proc)
 2242                 return (EINVAL);
 2243 
 2244         if (p->p_aioinfo == NULL)
 2245                 aio_init_aioinfo(p);
 2246 
 2247         ki = p->p_aioinfo;
 2248 
 2249         lj = uma_zalloc(aiolio_zone, M_WAITOK);
 2250         lj->lioj_flags = 0;
 2251         lj->lioj_count = 0;
 2252         lj->lioj_finished_count = 0;
 2253         lj->lioj_signal.sigev_notify = SIGEV_NONE;
 2254         knlist_init_mtx(&lj->klist, AIO_MTX(ki));
 2255         ksiginfo_init(&lj->lioj_ksi);
 2256 
 2257         /*
 2258          * Setup signal.
 2259          */
 2260         if (sig && (mode == LIO_NOWAIT)) {
 2261                 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
 2262                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2263                         /* Assume only new style KEVENT */
 2264                         memset(&kev, 0, sizeof(kev));
 2265                         kev.filter = EVFILT_LIO;
 2266                         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 2267                         kev.ident = (uintptr_t)uacb_list; /* something unique */
 2268                         kev.data = (intptr_t)lj;
 2269                         /* pass user defined sigval data */
 2270                         kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
 2271                         error = kqfd_register(
 2272                             lj->lioj_signal.sigev_notify_kqueue, &kev, td,
 2273                             M_WAITOK);
 2274                         if (error) {
 2275                                 uma_zfree(aiolio_zone, lj);
 2276                                 return (error);
 2277                         }
 2278                 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
 2279                         ;
 2280                 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2281                            lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
 2282                                 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 2283                                         uma_zfree(aiolio_zone, lj);
 2284                                         return EINVAL;
 2285                                 }
 2286                                 lj->lioj_flags |= LIOJ_SIGNAL;
 2287                 } else {
 2288                         uma_zfree(aiolio_zone, lj);
 2289                         return EINVAL;
 2290                 }
 2291         }
 2292 
 2293         AIO_LOCK(ki);
 2294         TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 2295         /*
 2296          * Add extra aiocb count to avoid the lio to be freed
 2297          * by other threads doing aio_waitcomplete or aio_return,
 2298          * and prevent event from being sent until we have queued
 2299          * all tasks.
 2300          */
 2301         lj->lioj_count = 1;
 2302         AIO_UNLOCK(ki);
 2303 
 2304         /*
 2305          * Get pointers to the list of I/O requests.
 2306          */
 2307         nagain = 0;
 2308         nerror = 0;
 2309         for (i = 0; i < nent; i++) {
 2310                 job = acb_list[i];
 2311                 if (job != NULL) {
 2312                         error = aio_aqueue(td, job, lj, LIO_NOP, ops);
 2313                         if (error == EAGAIN)
 2314                                 nagain++;
 2315                         else if (error != 0)
 2316                                 nerror++;
 2317                 }
 2318         }
 2319 
 2320         error = 0;
 2321         AIO_LOCK(ki);
 2322         if (mode == LIO_WAIT) {
 2323                 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
 2324                         ki->kaio_flags |= KAIO_WAKEUP;
 2325                         error = msleep(&p->p_aioinfo, AIO_MTX(ki),
 2326                             PRIBIO | PCATCH, "aiospn", 0);
 2327                         if (error == ERESTART)
 2328                                 error = EINTR;
 2329                         if (error)
 2330                                 break;
 2331                 }
 2332         } else {
 2333                 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
 2334                         if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2335                                 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 2336                                 KNOTE_LOCKED(&lj->klist, 1);
 2337                         }
 2338                         if ((lj->lioj_flags & (LIOJ_SIGNAL |
 2339                             LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
 2340                             (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2341                             lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 2342                                 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
 2343                                     lj->lioj_count != 1);
 2344                                 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2345                         }
 2346                 }
 2347         }
 2348         lj->lioj_count--;
 2349         if (lj->lioj_count == 0) {
 2350                 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 2351                 knlist_delete(&lj->klist, curthread, 1);
 2352                 PROC_LOCK(p);
 2353                 sigqueue_take(&lj->lioj_ksi);
 2354                 PROC_UNLOCK(p);
 2355                 AIO_UNLOCK(ki);
 2356                 uma_zfree(aiolio_zone, lj);
 2357         } else
 2358                 AIO_UNLOCK(ki);
 2359 
 2360         if (nerror)
 2361                 return (EIO);
 2362         else if (nagain)
 2363                 return (EAGAIN);
 2364         else
 2365                 return (error);
 2366 }
 2367 
 2368 /* syscall - list directed I/O (REALTIME) */
 2369 #ifdef COMPAT_FREEBSD6
 2370 int
 2371 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
 2372 {
 2373         struct aiocb **acb_list;
 2374         struct sigevent *sigp, sig;
 2375         struct osigevent osig;
 2376         int error, nent;
 2377 
 2378         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2379                 return (EINVAL);
 2380 
 2381         nent = uap->nent;
 2382         if (nent < 0 || nent > max_aio_queue_per_proc)
 2383                 return (EINVAL);
 2384 
 2385         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2386                 error = copyin(uap->sig, &osig, sizeof(osig));
 2387                 if (error)
 2388                         return (error);
 2389                 error = convert_old_sigevent(&osig, &sig);
 2390                 if (error)
 2391                         return (error);
 2392                 sigp = &sig;
 2393         } else
 2394                 sigp = NULL;
 2395 
 2396         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2397         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2398         if (error == 0)
 2399                 error = kern_lio_listio(td, uap->mode,
 2400                     (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2401                     &aiocb_ops_osigevent);
 2402         free(acb_list, M_LIO);
 2403         return (error);
 2404 }
 2405 #endif
 2406 
 2407 /* syscall - list directed I/O (REALTIME) */
 2408 int
 2409 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
 2410 {
 2411         struct aiocb **acb_list;
 2412         struct sigevent *sigp, sig;
 2413         int error, nent;
 2414 
 2415         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2416                 return (EINVAL);
 2417 
 2418         nent = uap->nent;
 2419         if (nent < 0 || nent > max_aio_queue_per_proc)
 2420                 return (EINVAL);
 2421 
 2422         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2423                 error = copyin(uap->sig, &sig, sizeof(sig));
 2424                 if (error)
 2425                         return (error);
 2426                 sigp = &sig;
 2427         } else
 2428                 sigp = NULL;
 2429 
 2430         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2431         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2432         if (error == 0)
 2433                 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
 2434                     nent, sigp, &aiocb_ops);
 2435         free(acb_list, M_LIO);
 2436         return (error);
 2437 }
 2438 
 2439 static void
 2440 aio_biocleanup(struct bio *bp)
 2441 {
 2442         struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
 2443         struct kaioinfo *ki;
 2444         struct buf *pbuf = (struct buf *)bp->bio_caller2;
 2445 
 2446         /* Release mapping into kernel space. */
 2447         if (pbuf != NULL) {
 2448                 MPASS(pbuf->b_npages <= atop(maxphys) + 1);
 2449                 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
 2450                 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
 2451                 uma_zfree(pbuf_zone, pbuf);
 2452                 atomic_subtract_int(&num_buf_aio, 1);
 2453                 ki = job->userproc->p_aioinfo;
 2454                 AIO_LOCK(ki);
 2455                 ki->kaio_buffer_count--;
 2456                 AIO_UNLOCK(ki);
 2457         } else {
 2458                 MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
 2459                 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
 2460                 free(bp->bio_ma, M_TEMP);
 2461                 atomic_subtract_int(&num_unmapped_aio, 1);
 2462         }
 2463         g_destroy_bio(bp);
 2464 }
 2465 
 2466 static void
 2467 aio_biowakeup(struct bio *bp)
 2468 {
 2469         struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
 2470         size_t nbytes;
 2471         long bcount = bp->bio_bcount;
 2472         long resid = bp->bio_resid;
 2473         int error, opcode, nblks;
 2474         int bio_error = bp->bio_error;
 2475         uint16_t flags = bp->bio_flags;
 2476 
 2477         opcode = job->uaiocb.aio_lio_opcode;
 2478 
 2479         aio_biocleanup(bp);
 2480 
 2481         nbytes =bcount - resid;
 2482         atomic_add_acq_long(&job->nbytes, nbytes);
 2483         nblks = btodb(nbytes);
 2484         error = 0;
 2485         /*
 2486          * If multiple bios experienced an error, the job will reflect the
 2487          * error of whichever failed bio completed last.
 2488          */
 2489         if (flags & BIO_ERROR)
 2490                 atomic_set_int(&job->error, bio_error);
 2491         if (opcode & LIO_WRITE)
 2492                 atomic_add_int(&job->outblock, nblks);
 2493         else
 2494                 atomic_add_int(&job->inblock, nblks);
 2495         atomic_subtract_int(&job->nbio, 1);
 2496 
 2497 
 2498         if (atomic_load_int(&job->nbio) == 0) {
 2499                 if (atomic_load_int(&job->error))
 2500                         aio_complete(job, -1, job->error);
 2501                 else
 2502                         aio_complete(job, atomic_load_long(&job->nbytes), 0);
 2503         }
 2504 }
 2505 
 2506 /* syscall - wait for the next completion of an aio request */
 2507 static int
 2508 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
 2509     struct timespec *ts, struct aiocb_ops *ops)
 2510 {
 2511         struct proc *p = td->td_proc;
 2512         struct timeval atv;
 2513         struct kaioinfo *ki;
 2514         struct kaiocb *job;
 2515         struct aiocb *ujob;
 2516         long error, status;
 2517         int timo;
 2518 
 2519         ops->store_aiocb(ujobp, NULL);
 2520 
 2521         if (ts == NULL) {
 2522                 timo = 0;
 2523         } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
 2524                 timo = -1;
 2525         } else {
 2526                 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
 2527                         return (EINVAL);
 2528 
 2529                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 2530                 if (itimerfix(&atv))
 2531                         return (EINVAL);
 2532                 timo = tvtohz(&atv);
 2533         }
 2534 
 2535         if (p->p_aioinfo == NULL)
 2536                 aio_init_aioinfo(p);
 2537         ki = p->p_aioinfo;
 2538 
 2539         error = 0;
 2540         job = NULL;
 2541         AIO_LOCK(ki);
 2542         while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
 2543                 if (timo == -1) {
 2544                         error = EWOULDBLOCK;
 2545                         break;
 2546                 }
 2547                 ki->kaio_flags |= KAIO_WAKEUP;
 2548                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2549                     "aiowc", timo);
 2550                 if (timo && error == ERESTART)
 2551                         error = EINTR;
 2552                 if (error)
 2553                         break;
 2554         }
 2555 
 2556         if (job != NULL) {
 2557                 MPASS(job->jobflags & KAIOCB_FINISHED);
 2558                 ujob = job->ujob;
 2559                 status = job->uaiocb._aiocb_private.status;
 2560                 error = job->uaiocb._aiocb_private.error;
 2561                 td->td_retval[0] = status;
 2562                 td->td_ru.ru_oublock += job->outblock;
 2563                 td->td_ru.ru_inblock += job->inblock;
 2564                 td->td_ru.ru_msgsnd += job->msgsnd;
 2565                 td->td_ru.ru_msgrcv += job->msgrcv;
 2566                 aio_free_entry(job);
 2567                 AIO_UNLOCK(ki);
 2568                 ops->store_aiocb(ujobp, ujob);
 2569                 ops->store_error(ujob, error);
 2570                 ops->store_status(ujob, status);
 2571         } else
 2572                 AIO_UNLOCK(ki);
 2573 
 2574         return (error);
 2575 }
 2576 
 2577 int
 2578 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 2579 {
 2580         struct timespec ts, *tsp;
 2581         int error;
 2582 
 2583         if (uap->timeout) {
 2584                 /* Get timespec struct. */
 2585                 error = copyin(uap->timeout, &ts, sizeof(ts));
 2586                 if (error)
 2587                         return (error);
 2588                 tsp = &ts;
 2589         } else
 2590                 tsp = NULL;
 2591 
 2592         return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
 2593 }
 2594 
 2595 static int
 2596 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
 2597     struct aiocb_ops *ops)
 2598 {
 2599         int listop;
 2600 
 2601         switch (op) {
 2602         case O_SYNC:
 2603                 listop = LIO_SYNC;
 2604                 break;
 2605         case O_DSYNC:
 2606                 listop = LIO_DSYNC;
 2607                 break;
 2608         default:
 2609                 return (EINVAL);
 2610         }
 2611 
 2612         return (aio_aqueue(td, ujob, NULL, listop, ops));
 2613 }
 2614 
 2615 int
 2616 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 2617 {
 2618 
 2619         return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
 2620 }
 2621 
 2622 /* kqueue attach function */
 2623 static int
 2624 filt_aioattach(struct knote *kn)
 2625 {
 2626         struct kaiocb *job;
 2627 
 2628         job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
 2629 
 2630         /*
 2631          * The job pointer must be validated before using it, so
 2632          * registration is restricted to the kernel; the user cannot
 2633          * set EV_FLAG1.
 2634          */
 2635         if ((kn->kn_flags & EV_FLAG1) == 0)
 2636                 return (EPERM);
 2637         kn->kn_ptr.p_aio = job;
 2638         kn->kn_flags &= ~EV_FLAG1;
 2639 
 2640         knlist_add(&job->klist, kn, 0);
 2641 
 2642         return (0);
 2643 }
 2644 
 2645 /* kqueue detach function */
 2646 static void
 2647 filt_aiodetach(struct knote *kn)
 2648 {
 2649         struct knlist *knl;
 2650 
 2651         knl = &kn->kn_ptr.p_aio->klist;
 2652         knl->kl_lock(knl->kl_lockarg);
 2653         if (!knlist_empty(knl))
 2654                 knlist_remove(knl, kn, 1);
 2655         knl->kl_unlock(knl->kl_lockarg);
 2656 }
 2657 
 2658 /* kqueue filter function */
 2659 /*ARGSUSED*/
 2660 static int
 2661 filt_aio(struct knote *kn, long hint)
 2662 {
 2663         struct kaiocb *job = kn->kn_ptr.p_aio;
 2664 
 2665         kn->kn_data = job->uaiocb._aiocb_private.error;
 2666         if (!(job->jobflags & KAIOCB_FINISHED))
 2667                 return (0);
 2668         kn->kn_flags |= EV_EOF;
 2669         return (1);
 2670 }
 2671 
 2672 /* kqueue attach function */
 2673 static int
 2674 filt_lioattach(struct knote *kn)
 2675 {
 2676         struct aioliojob *lj;
 2677 
 2678         lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
 2679 
 2680         /*
 2681          * The aioliojob pointer must be validated before using it, so
 2682          * registration is restricted to the kernel; the user cannot
 2683          * set EV_FLAG1.
 2684          */
 2685         if ((kn->kn_flags & EV_FLAG1) == 0)
 2686                 return (EPERM);
 2687         kn->kn_ptr.p_lio = lj;
 2688         kn->kn_flags &= ~EV_FLAG1;
 2689 
 2690         knlist_add(&lj->klist, kn, 0);
 2691 
 2692         return (0);
 2693 }
 2694 
 2695 /* kqueue detach function */
 2696 static void
 2697 filt_liodetach(struct knote *kn)
 2698 {
 2699         struct knlist *knl;
 2700 
 2701         knl = &kn->kn_ptr.p_lio->klist;
 2702         knl->kl_lock(knl->kl_lockarg);
 2703         if (!knlist_empty(knl))
 2704                 knlist_remove(knl, kn, 1);
 2705         knl->kl_unlock(knl->kl_lockarg);
 2706 }
 2707 
 2708 /* kqueue filter function */
 2709 /*ARGSUSED*/
 2710 static int
 2711 filt_lio(struct knote *kn, long hint)
 2712 {
 2713         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2714 
 2715         return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
 2716 }
 2717 
 2718 #ifdef COMPAT_FREEBSD32
 2719 #include <sys/mount.h>
 2720 #include <sys/socket.h>
 2721 #include <sys/sysent.h>
 2722 #include <compat/freebsd32/freebsd32.h>
 2723 #include <compat/freebsd32/freebsd32_proto.h>
 2724 #include <compat/freebsd32/freebsd32_signal.h>
 2725 #include <compat/freebsd32/freebsd32_syscall.h>
 2726 #include <compat/freebsd32/freebsd32_util.h>
 2727 
 2728 struct __aiocb_private32 {
 2729         int32_t status;
 2730         int32_t error;
 2731         uint32_t kernelinfo;
 2732 };
 2733 
 2734 #ifdef COMPAT_FREEBSD6
 2735 typedef struct oaiocb32 {
 2736         int     aio_fildes;             /* File descriptor */
 2737         uint64_t aio_offset __packed;   /* File offset for I/O */
 2738         uint32_t aio_buf;               /* I/O buffer in process space */
 2739         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2740         struct  osigevent32 aio_sigevent; /* Signal to deliver */
 2741         int     aio_lio_opcode;         /* LIO opcode */
 2742         int     aio_reqprio;            /* Request priority -- ignored */
 2743         struct  __aiocb_private32 _aiocb_private;
 2744 } oaiocb32_t;
 2745 #endif
 2746 
 2747 typedef struct aiocb32 {
 2748         int32_t aio_fildes;             /* File descriptor */
 2749         uint64_t aio_offset __packed;   /* File offset for I/O */
 2750         uint32_t aio_buf;       /* I/O buffer in process space */
 2751         uint32_t aio_nbytes;    /* Number of bytes for I/O */
 2752         int     __spare__[2];
 2753         uint32_t __spare2__;
 2754         int     aio_lio_opcode;         /* LIO opcode */
 2755         int     aio_reqprio;            /* Request priority -- ignored */
 2756         struct  __aiocb_private32 _aiocb_private;
 2757         struct  sigevent32 aio_sigevent;        /* Signal to deliver */
 2758 } aiocb32_t;
 2759 
 2760 #ifdef COMPAT_FREEBSD6
 2761 static int
 2762 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
 2763 {
 2764 
 2765         /*
 2766          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 2767          * supported by AIO with the old sigevent structure.
 2768          */
 2769         CP(*osig, *nsig, sigev_notify);
 2770         switch (nsig->sigev_notify) {
 2771         case SIGEV_NONE:
 2772                 break;
 2773         case SIGEV_SIGNAL:
 2774                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 2775                 break;
 2776         case SIGEV_KEVENT:
 2777                 nsig->sigev_notify_kqueue =
 2778                     osig->__sigev_u.__sigev_notify_kqueue;
 2779                 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
 2780                 break;
 2781         default:
 2782                 return (EINVAL);
 2783         }
 2784         return (0);
 2785 }
 2786 
 2787 static int
 2788 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
 2789     int type __unused)
 2790 {
 2791         struct oaiocb32 job32;
 2792         struct aiocb *kcb = &kjob->uaiocb;
 2793         int error;
 2794 
 2795         bzero(kcb, sizeof(struct aiocb));
 2796         error = copyin(ujob, &job32, sizeof(job32));
 2797         if (error)
 2798                 return (error);
 2799 
 2800         /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
 2801 
 2802         CP(job32, *kcb, aio_fildes);
 2803         CP(job32, *kcb, aio_offset);
 2804         PTRIN_CP(job32, *kcb, aio_buf);
 2805         CP(job32, *kcb, aio_nbytes);
 2806         CP(job32, *kcb, aio_lio_opcode);
 2807         CP(job32, *kcb, aio_reqprio);
 2808         CP(job32, *kcb, _aiocb_private.status);
 2809         CP(job32, *kcb, _aiocb_private.error);
 2810         PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
 2811         return (convert_old_sigevent32(&job32.aio_sigevent,
 2812             &kcb->aio_sigevent));
 2813 }
 2814 #endif
 2815 
 2816 static int
 2817 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
 2818 {
 2819         struct aiocb32 job32;
 2820         struct aiocb *kcb = &kjob->uaiocb;
 2821         struct iovec32 *iov32;
 2822         int error;
 2823 
 2824         error = copyin(ujob, &job32, sizeof(job32));
 2825         if (error)
 2826                 return (error);
 2827         CP(job32, *kcb, aio_fildes);
 2828         CP(job32, *kcb, aio_offset);
 2829         CP(job32, *kcb, aio_lio_opcode);
 2830         if (type & LIO_VECTORED) {
 2831                 iov32 = PTRIN(job32.aio_iov);
 2832                 CP(job32, *kcb, aio_iovcnt);
 2833                 /* malloc a uio and copy in the iovec */
 2834                 error = freebsd32_copyinuio(iov32,
 2835                     kcb->aio_iovcnt, &kjob->uiop);
 2836                 if (error)
 2837                         return (error);
 2838         } else {
 2839                 PTRIN_CP(job32, *kcb, aio_buf);
 2840                 CP(job32, *kcb, aio_nbytes);
 2841         }
 2842         CP(job32, *kcb, aio_reqprio);
 2843         CP(job32, *kcb, _aiocb_private.status);
 2844         CP(job32, *kcb, _aiocb_private.error);
 2845         PTRIN_CP(job32, *kcb, _aiocb_private.kernelinfo);
 2846         error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
 2847 
 2848         return (error);
 2849 }
 2850 
 2851 static long
 2852 aiocb32_fetch_status(struct aiocb *ujob)
 2853 {
 2854         struct aiocb32 *ujob32;
 2855 
 2856         ujob32 = (struct aiocb32 *)ujob;
 2857         return (fuword32(&ujob32->_aiocb_private.status));
 2858 }
 2859 
 2860 static long
 2861 aiocb32_fetch_error(struct aiocb *ujob)
 2862 {
 2863         struct aiocb32 *ujob32;
 2864 
 2865         ujob32 = (struct aiocb32 *)ujob;
 2866         return (fuword32(&ujob32->_aiocb_private.error));
 2867 }
 2868 
 2869 static int
 2870 aiocb32_store_status(struct aiocb *ujob, long status)
 2871 {
 2872         struct aiocb32 *ujob32;
 2873 
 2874         ujob32 = (struct aiocb32 *)ujob;
 2875         return (suword32(&ujob32->_aiocb_private.status, status));
 2876 }
 2877 
 2878 static int
 2879 aiocb32_store_error(struct aiocb *ujob, long error)
 2880 {
 2881         struct aiocb32 *ujob32;
 2882 
 2883         ujob32 = (struct aiocb32 *)ujob;
 2884         return (suword32(&ujob32->_aiocb_private.error, error));
 2885 }
 2886 
 2887 static int
 2888 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
 2889 {
 2890         struct aiocb32 *ujob32;
 2891 
 2892         ujob32 = (struct aiocb32 *)ujob;
 2893         return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
 2894 }
 2895 
 2896 static int
 2897 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 2898 {
 2899 
 2900         return (suword32(ujobp, (long)ujob));
 2901 }
 2902 
 2903 static struct aiocb_ops aiocb32_ops = {
 2904         .aio_copyin = aiocb32_copyin,
 2905         .fetch_status = aiocb32_fetch_status,
 2906         .fetch_error = aiocb32_fetch_error,
 2907         .store_status = aiocb32_store_status,
 2908         .store_error = aiocb32_store_error,
 2909         .store_kernelinfo = aiocb32_store_kernelinfo,
 2910         .store_aiocb = aiocb32_store_aiocb,
 2911 };
 2912 
 2913 #ifdef COMPAT_FREEBSD6
 2914 static struct aiocb_ops aiocb32_ops_osigevent = {
 2915         .aio_copyin = aiocb32_copyin_old_sigevent,
 2916         .fetch_status = aiocb32_fetch_status,
 2917         .fetch_error = aiocb32_fetch_error,
 2918         .store_status = aiocb32_store_status,
 2919         .store_error = aiocb32_store_error,
 2920         .store_kernelinfo = aiocb32_store_kernelinfo,
 2921         .store_aiocb = aiocb32_store_aiocb,
 2922 };
 2923 #endif
 2924 
 2925 int
 2926 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
 2927 {
 2928 
 2929         return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2930 }
 2931 
 2932 int
 2933 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
 2934 {
 2935         struct timespec32 ts32;
 2936         struct timespec ts, *tsp;
 2937         struct aiocb **ujoblist;
 2938         uint32_t *ujoblist32;
 2939         int error, i;
 2940 
 2941         if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
 2942                 return (EINVAL);
 2943 
 2944         if (uap->timeout) {
 2945                 /* Get timespec struct. */
 2946                 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
 2947                         return (error);
 2948                 CP(ts32, ts, tv_sec);
 2949                 CP(ts32, ts, tv_nsec);
 2950                 tsp = &ts;
 2951         } else
 2952                 tsp = NULL;
 2953 
 2954         ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
 2955         ujoblist32 = (uint32_t *)ujoblist;
 2956         error = copyin(uap->aiocbp, ujoblist32, uap->nent *
 2957             sizeof(ujoblist32[0]));
 2958         if (error == 0) {
 2959                 for (i = uap->nent - 1; i >= 0; i--)
 2960                         ujoblist[i] = PTRIN(ujoblist32[i]);
 2961 
 2962                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2963         }
 2964         free(ujoblist, M_AIO);
 2965         return (error);
 2966 }
 2967 
 2968 int
 2969 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
 2970 {
 2971 
 2972         return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2973 }
 2974 
 2975 #ifdef COMPAT_FREEBSD6
 2976 int
 2977 freebsd6_freebsd32_aio_read(struct thread *td,
 2978     struct freebsd6_freebsd32_aio_read_args *uap)
 2979 {
 2980 
 2981         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2982             &aiocb32_ops_osigevent));
 2983 }
 2984 #endif
 2985 
 2986 int
 2987 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
 2988 {
 2989 
 2990         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2991             &aiocb32_ops));
 2992 }
 2993 
 2994 int
 2995 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
 2996 {
 2997 
 2998         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
 2999             &aiocb32_ops));
 3000 }
 3001 
 3002 #ifdef COMPAT_FREEBSD6
 3003 int
 3004 freebsd6_freebsd32_aio_write(struct thread *td,
 3005     struct freebsd6_freebsd32_aio_write_args *uap)
 3006 {
 3007 
 3008         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 3009             &aiocb32_ops_osigevent));
 3010 }
 3011 #endif
 3012 
 3013 int
 3014 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
 3015 {
 3016 
 3017         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 3018             &aiocb32_ops));
 3019 }
 3020 
 3021 int
 3022 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
 3023 {
 3024 
 3025         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
 3026             &aiocb32_ops));
 3027 }
 3028 
 3029 int
 3030 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
 3031 {
 3032 
 3033         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
 3034             &aiocb32_ops));
 3035 }
 3036 
 3037 int
 3038 freebsd32_aio_waitcomplete(struct thread *td,
 3039     struct freebsd32_aio_waitcomplete_args *uap)
 3040 {
 3041         struct timespec32 ts32;
 3042         struct timespec ts, *tsp;
 3043         int error;
 3044 
 3045         if (uap->timeout) {
 3046                 /* Get timespec struct. */
 3047                 error = copyin(uap->timeout, &ts32, sizeof(ts32));
 3048                 if (error)
 3049                         return (error);
 3050                 CP(ts32, ts, tv_sec);
 3051                 CP(ts32, ts, tv_nsec);
 3052                 tsp = &ts;
 3053         } else
 3054                 tsp = NULL;
 3055 
 3056         return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
 3057             &aiocb32_ops));
 3058 }
 3059 
 3060 int
 3061 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
 3062 {
 3063 
 3064         return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
 3065             &aiocb32_ops));
 3066 }
 3067 
 3068 #ifdef COMPAT_FREEBSD6
 3069 int
 3070 freebsd6_freebsd32_lio_listio(struct thread *td,
 3071     struct freebsd6_freebsd32_lio_listio_args *uap)
 3072 {
 3073         struct aiocb **acb_list;
 3074         struct sigevent *sigp, sig;
 3075         struct osigevent32 osig;
 3076         uint32_t *acb_list32;
 3077         int error, i, nent;
 3078 
 3079         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 3080                 return (EINVAL);
 3081 
 3082         nent = uap->nent;
 3083         if (nent < 0 || nent > max_aio_queue_per_proc)
 3084                 return (EINVAL);
 3085 
 3086         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 3087                 error = copyin(uap->sig, &osig, sizeof(osig));
 3088                 if (error)
 3089                         return (error);
 3090                 error = convert_old_sigevent32(&osig, &sig);
 3091                 if (error)
 3092                         return (error);
 3093                 sigp = &sig;
 3094         } else
 3095                 sigp = NULL;
 3096 
 3097         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 3098         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 3099         if (error) {
 3100                 free(acb_list32, M_LIO);
 3101                 return (error);
 3102         }
 3103         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 3104         for (i = 0; i < nent; i++)
 3105                 acb_list[i] = PTRIN(acb_list32[i]);
 3106         free(acb_list32, M_LIO);
 3107 
 3108         error = kern_lio_listio(td, uap->mode,
 3109             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 3110             &aiocb32_ops_osigevent);
 3111         free(acb_list, M_LIO);
 3112         return (error);
 3113 }
 3114 #endif
 3115 
 3116 int
 3117 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
 3118 {
 3119         struct aiocb **acb_list;
 3120         struct sigevent *sigp, sig;
 3121         struct sigevent32 sig32;
 3122         uint32_t *acb_list32;
 3123         int error, i, nent;
 3124 
 3125         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 3126                 return (EINVAL);
 3127 
 3128         nent = uap->nent;
 3129         if (nent < 0 || nent > max_aio_queue_per_proc)
 3130                 return (EINVAL);
 3131 
 3132         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 3133                 error = copyin(uap->sig, &sig32, sizeof(sig32));
 3134                 if (error)
 3135                         return (error);
 3136                 error = convert_sigevent32(&sig32, &sig);
 3137                 if (error)
 3138                         return (error);
 3139                 sigp = &sig;
 3140         } else
 3141                 sigp = NULL;
 3142 
 3143         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 3144         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 3145         if (error) {
 3146                 free(acb_list32, M_LIO);
 3147                 return (error);
 3148         }
 3149         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 3150         for (i = 0; i < nent; i++)
 3151                 acb_list[i] = PTRIN(acb_list32[i]);
 3152         free(acb_list32, M_LIO);
 3153 
 3154         error = kern_lio_listio(td, uap->mode,
 3155             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 3156             &aiocb32_ops);
 3157         free(acb_list, M_LIO);
 3158         return (error);
 3159 }
 3160 
 3161 #endif

Cache object: 104ff0000c1614746046abd87664ec96


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.