The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_aio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. John S. Dyson's name may not be used to endorse or promote products
   10  *    derived from this software without specific prior written permission.
   11  *
   12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
   13  * bad that happens because of using this software isn't the responsibility
   14  * of the author.  This software is distributed AS-IS.
   15  *
   16  * $FreeBSD: releng/5.0/sys/kern/vfs_aio.c 106998 2002-11-17 04:15:34Z alfred $
   17  */
   18 
   19 /*
   20  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
   21  */
   22 
   23 #include <sys/param.h>
   24 #include <sys/systm.h>
   25 #include <sys/malloc.h>
   26 #include <sys/bio.h>
   27 #include <sys/buf.h>
   28 #include <sys/sysproto.h>
   29 #include <sys/filedesc.h>
   30 #include <sys/kernel.h>
   31 #include <sys/kthread.h>
   32 #include <sys/fcntl.h>
   33 #include <sys/file.h>
   34 #include <sys/lock.h>
   35 #include <sys/mutex.h>
   36 #include <sys/unistd.h>
   37 #include <sys/proc.h>
   38 #include <sys/resourcevar.h>
   39 #include <sys/signalvar.h>
   40 #include <sys/protosw.h>
   41 #include <sys/socketvar.h>
   42 #include <sys/syscall.h>
   43 #include <sys/sysent.h>
   44 #include <sys/sysctl.h>
   45 #include <sys/sx.h>
   46 #include <sys/vnode.h>
   47 #include <sys/conf.h>
   48 #include <sys/event.h>
   49 
   50 #include <posix4/posix4.h>
   51 #include <vm/vm.h>
   52 #include <vm/vm_extern.h>
   53 #include <vm/pmap.h>
   54 #include <vm/vm_map.h>
   55 #include <vm/uma.h>
   56 #include <sys/aio.h>
   57 
   58 #include <machine/limits.h>
   59 
   60 #include "opt_vfs_aio.h"
   61 
   62 /*
   63  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
   64  * overflow.
   65  */
   66 static  long jobrefid;
   67 
   68 #define JOBST_NULL              0x0
   69 #define JOBST_JOBQGLOBAL        0x2
   70 #define JOBST_JOBRUNNING        0x3
   71 #define JOBST_JOBFINISHED       0x4
   72 #define JOBST_JOBQBUF           0x5
   73 #define JOBST_JOBBFINISHED      0x6
   74 
   75 #ifndef MAX_AIO_PER_PROC
   76 #define MAX_AIO_PER_PROC        32
   77 #endif
   78 
   79 #ifndef MAX_AIO_QUEUE_PER_PROC
   80 #define MAX_AIO_QUEUE_PER_PROC  256 /* Bigger than AIO_LISTIO_MAX */
   81 #endif
   82 
   83 #ifndef MAX_AIO_PROCS
   84 #define MAX_AIO_PROCS           32
   85 #endif
   86 
   87 #ifndef MAX_AIO_QUEUE
   88 #define MAX_AIO_QUEUE           1024 /* Bigger than AIO_LISTIO_MAX */
   89 #endif
   90 
   91 #ifndef TARGET_AIO_PROCS
   92 #define TARGET_AIO_PROCS        4
   93 #endif
   94 
   95 #ifndef MAX_BUF_AIO
   96 #define MAX_BUF_AIO             16
   97 #endif
   98 
   99 #ifndef AIOD_TIMEOUT_DEFAULT
  100 #define AIOD_TIMEOUT_DEFAULT    (10 * hz)
  101 #endif
  102 
  103 #ifndef AIOD_LIFETIME_DEFAULT
  104 #define AIOD_LIFETIME_DEFAULT   (30 * hz)
  105 #endif
  106 
  107 SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
  108 
  109 static int max_aio_procs = MAX_AIO_PROCS;
  110 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
  111         CTLFLAG_RW, &max_aio_procs, 0,
  112         "Maximum number of kernel threads to use for handling async IO ");
  113 
  114 static int num_aio_procs = 0;
  115 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
  116         CTLFLAG_RD, &num_aio_procs, 0,
  117         "Number of presently active kernel threads for async IO");
  118 
  119 /*
  120  * The code will adjust the actual number of AIO processes towards this
  121  * number when it gets a chance.
  122  */
  123 static int target_aio_procs = TARGET_AIO_PROCS;
  124 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
  125         0, "Preferred number of ready kernel threads for async IO");
  126 
  127 static int max_queue_count = MAX_AIO_QUEUE;
  128 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
  129     "Maximum number of aio requests to queue, globally");
  130 
  131 static int num_queue_count = 0;
  132 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
  133     "Number of queued aio requests");
  134 
  135 static int num_buf_aio = 0;
  136 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
  137     "Number of aio requests presently handled by the buf subsystem");
  138 
  139 /* Number of async I/O thread in the process of being started */
  140 /* XXX This should be local to _aio_aqueue() */
  141 static int num_aio_resv_start = 0;
  142 
  143 static int aiod_timeout;
  144 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
  145     "Timeout value for synchronous aio operations");
  146 
  147 static int aiod_lifetime;
  148 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
  149     "Maximum lifetime for idle aiod");
  150 
  151 static int unloadable = 0;
  152 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0,
  153     "Allow unload of aio (not recommended)");
  154 
  155 
  156 static int max_aio_per_proc = MAX_AIO_PER_PROC;
  157 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
  158     0, "Maximum active aio requests per process (stored in the process)");
  159 
  160 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
  161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
  162     &max_aio_queue_per_proc, 0,
  163     "Maximum queued aio requests per process (stored in the process)");
  164 
  165 static int max_buf_aio = MAX_BUF_AIO;
  166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
  167     "Maximum buf aio requests per process (stored in the process)");
  168 
  169 struct aiocblist {
  170         TAILQ_ENTRY(aiocblist) list;    /* List of jobs */
  171         TAILQ_ENTRY(aiocblist) plist;   /* List of jobs for proc */
  172         int     jobflags;
  173         int     jobstate;
  174         int     inputcharge;
  175         int     outputcharge;
  176         struct  callout_handle timeouthandle;
  177         struct  buf *bp;                /* Buffer pointer */
  178         struct  proc *userproc;         /* User process */ /* Not td! */
  179         struct  ucred *cred;            /* Active credential when created */
  180         struct  file *fd_file;          /* Pointer to file structure */ 
  181         struct  aio_liojob *lio;        /* Optional lio job */
  182         struct  aiocb *uuaiocb;         /* Pointer in userspace of aiocb */
  183         struct  klist klist;            /* list of knotes */
  184         struct  aiocb uaiocb;           /* Kernel I/O control block */
  185 };
  186 
  187 /* jobflags */
  188 #define AIOCBLIST_RUNDOWN       0x4
  189 #define AIOCBLIST_DONE          0x10
  190 
  191 /*
  192  * AIO process info
  193  */
  194 #define AIOP_FREE       0x1                     /* proc on free queue */
  195 #define AIOP_SCHED      0x2                     /* proc explicitly scheduled */
  196 
  197 struct aiothreadlist {
  198         int aiothreadflags;                     /* AIO proc flags */
  199         TAILQ_ENTRY(aiothreadlist) list;        /* List of processes */
  200         struct thread *aiothread;               /* The AIO thread */
  201 };
  202 
  203 /*
  204  * data-structure for lio signal management
  205  */
  206 struct aio_liojob {
  207         int     lioj_flags;
  208         int     lioj_buffer_count;
  209         int     lioj_buffer_finished_count;
  210         int     lioj_queue_count;
  211         int     lioj_queue_finished_count;
  212         struct  sigevent lioj_signal;   /* signal on all I/O done */
  213         TAILQ_ENTRY(aio_liojob) lioj_list;
  214         struct  kaioinfo *lioj_ki;
  215 };
  216 #define LIOJ_SIGNAL             0x1     /* signal on all done (lio) */
  217 #define LIOJ_SIGNAL_POSTED      0x2     /* signal has been posted */
  218 
  219 /*
  220  * per process aio data structure
  221  */
  222 struct kaioinfo {
  223         int     kaio_flags;             /* per process kaio flags */
  224         int     kaio_maxactive_count;   /* maximum number of AIOs */
  225         int     kaio_active_count;      /* number of currently used AIOs */
  226         int     kaio_qallowed_count;    /* maxiumu size of AIO queue */
  227         int     kaio_queue_count;       /* size of AIO queue */
  228         int     kaio_ballowed_count;    /* maximum number of buffers */
  229         int     kaio_queue_finished_count; /* number of daemon jobs finished */
  230         int     kaio_buffer_count;      /* number of physio buffers */
  231         int     kaio_buffer_finished_count; /* count of I/O done */
  232         struct  proc *kaio_p;           /* process that uses this kaio block */
  233         TAILQ_HEAD(,aio_liojob) kaio_liojoblist; /* list of lio jobs */
  234         TAILQ_HEAD(,aiocblist) kaio_jobqueue;   /* job queue for process */
  235         TAILQ_HEAD(,aiocblist) kaio_jobdone;    /* done queue for process */
  236         TAILQ_HEAD(,aiocblist) kaio_bufqueue;   /* buffer job queue for process */
  237         TAILQ_HEAD(,aiocblist) kaio_bufdone;    /* buffer done queue for process */
  238         TAILQ_HEAD(,aiocblist) kaio_sockqueue;  /* queue for aios waiting on sockets */
  239 };
  240 
  241 #define KAIO_RUNDOWN    0x1     /* process is being run down */
  242 #define KAIO_WAKEUP     0x2     /* wakeup process when there is a significant event */
  243 
  244 static TAILQ_HEAD(,aiothreadlist) aio_activeproc;       /* Active daemons */
  245 static TAILQ_HEAD(,aiothreadlist) aio_freeproc;         /* Idle daemons */
  246 static TAILQ_HEAD(,aiocblist) aio_jobs;                 /* Async job list */
  247 static TAILQ_HEAD(,aiocblist) aio_bufjobs;              /* Phys I/O job list */
  248 
  249 static void     aio_init_aioinfo(struct proc *p);
  250 static void     aio_onceonly(void);
  251 static int      aio_free_entry(struct aiocblist *aiocbe);
  252 static void     aio_process(struct aiocblist *aiocbe);
  253 static int      aio_newproc(void);
  254 static int      aio_aqueue(struct thread *td, struct aiocb *job, int type);
  255 static void     aio_physwakeup(struct buf *bp);
  256 static void     aio_proc_rundown(struct proc *p);
  257 static int      aio_fphysio(struct aiocblist *aiocbe);
  258 static int      aio_qphysio(struct proc *p, struct aiocblist *iocb);
  259 static void     aio_daemon(void *uproc);
  260 static void     aio_swake_cb(struct socket *, struct sockbuf *);
  261 static int      aio_unload(void);
  262 static void     process_signal(void *aioj);
  263 static int      filt_aioattach(struct knote *kn);
  264 static void     filt_aiodetach(struct knote *kn);
  265 static int      filt_aio(struct knote *kn, long hint);
  266 
  267 /*
  268  * Zones for:
  269  *      kaio    Per process async io info
  270  *      aiop    async io thread data
  271  *      aiocb   async io jobs
  272  *      aiol    list io job pointer - internal to aio_suspend XXX
  273  *      aiolio  list io jobs
  274  */
  275 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
  276 
  277 /* kqueue filters for aio */
  278 static struct filterops aio_filtops =
  279         { 0, filt_aioattach, filt_aiodetach, filt_aio };
  280 
  281 /*
  282  * Main operations function for use as a kernel module.
  283  */
  284 static int
  285 aio_modload(struct module *module, int cmd, void *arg)
  286 {
  287         int error = 0;
  288 
  289         switch (cmd) {
  290         case MOD_LOAD:
  291                 aio_onceonly();
  292                 break;
  293         case MOD_UNLOAD:
  294                 error = aio_unload();
  295                 break;
  296         case MOD_SHUTDOWN:
  297                 break;
  298         default:
  299                 error = EINVAL;
  300                 break;
  301         }
  302         return (error);
  303 }
  304 
  305 static moduledata_t aio_mod = {
  306         "aio",
  307         &aio_modload,
  308         NULL
  309 };
  310 
  311 SYSCALL_MODULE_HELPER(aio_return);
  312 SYSCALL_MODULE_HELPER(aio_suspend);
  313 SYSCALL_MODULE_HELPER(aio_cancel);
  314 SYSCALL_MODULE_HELPER(aio_error);
  315 SYSCALL_MODULE_HELPER(aio_read);
  316 SYSCALL_MODULE_HELPER(aio_write);
  317 SYSCALL_MODULE_HELPER(aio_waitcomplete);
  318 SYSCALL_MODULE_HELPER(lio_listio);
  319 
  320 DECLARE_MODULE(aio, aio_mod,
  321         SI_SUB_VFS, SI_ORDER_ANY);
  322 MODULE_VERSION(aio, 1);
  323 
  324 /*
  325  * Startup initialization
  326  */
  327 static void
  328 aio_onceonly(void)
  329 {
  330 
  331         /* XXX: should probably just use so->callback */
  332         aio_swake = &aio_swake_cb;
  333         at_exit(aio_proc_rundown);
  334         at_exec(aio_proc_rundown);
  335         kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
  336         TAILQ_INIT(&aio_freeproc);
  337         TAILQ_INIT(&aio_activeproc);
  338         TAILQ_INIT(&aio_jobs);
  339         TAILQ_INIT(&aio_bufjobs);
  340         kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
  341             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  342         aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL,
  343             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  344         aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL,
  345             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  346         aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
  347             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  348         aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aio_liojob), NULL,
  349             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  350         aiod_timeout = AIOD_TIMEOUT_DEFAULT;
  351         aiod_lifetime = AIOD_LIFETIME_DEFAULT;
  352         jobrefid = 1;
  353         async_io_version = _POSIX_VERSION;
  354         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
  355         p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
  356         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
  357 }
  358 
  359 /*
  360  * Callback for unload of AIO when used as a module.
  361  */
  362 static int
  363 aio_unload(void)
  364 {
  365 
  366         /*
  367          * XXX: no unloads by default, it's too dangerous.
  368          * perhaps we could do it if locked out callers and then
  369          * did an aio_proc_rundown() on each process.
  370          */
  371         if (!unloadable)
  372                 return (EOPNOTSUPP);
  373 
  374         async_io_version = 0;
  375         aio_swake = NULL;
  376         rm_at_exit(aio_proc_rundown);
  377         rm_at_exec(aio_proc_rundown);
  378         kqueue_del_filteropts(EVFILT_AIO);
  379         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1);
  380         p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1);
  381         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1);
  382         return (0);
  383 }
  384 
  385 /*
  386  * Init the per-process aioinfo structure.  The aioinfo limits are set
  387  * per-process for user limit (resource) management.
  388  */
  389 static void
  390 aio_init_aioinfo(struct proc *p)
  391 {
  392         struct kaioinfo *ki;
  393         if (p->p_aioinfo == NULL) {
  394                 ki = uma_zalloc(kaio_zone, M_WAITOK);
  395                 p->p_aioinfo = ki;
  396                 ki->kaio_flags = 0;
  397                 ki->kaio_maxactive_count = max_aio_per_proc;
  398                 ki->kaio_active_count = 0;
  399                 ki->kaio_qallowed_count = max_aio_queue_per_proc;
  400                 ki->kaio_queue_count = 0;
  401                 ki->kaio_ballowed_count = max_buf_aio;
  402                 ki->kaio_buffer_count = 0;
  403                 ki->kaio_buffer_finished_count = 0;
  404                 ki->kaio_p = p;
  405                 TAILQ_INIT(&ki->kaio_jobdone);
  406                 TAILQ_INIT(&ki->kaio_jobqueue);
  407                 TAILQ_INIT(&ki->kaio_bufdone);
  408                 TAILQ_INIT(&ki->kaio_bufqueue);
  409                 TAILQ_INIT(&ki->kaio_liojoblist);
  410                 TAILQ_INIT(&ki->kaio_sockqueue);
  411         }
  412         
  413         while (num_aio_procs < target_aio_procs)
  414                 aio_newproc();
  415 }
  416 
  417 /*
  418  * Free a job entry.  Wait for completion if it is currently active, but don't
  419  * delay forever.  If we delay, we return a flag that says that we have to
  420  * restart the queue scan.
  421  */
  422 static int
  423 aio_free_entry(struct aiocblist *aiocbe)
  424 {
  425         struct kaioinfo *ki;
  426         struct aio_liojob *lj;
  427         struct proc *p;
  428         int error;
  429         int s;
  430 
  431         if (aiocbe->jobstate == JOBST_NULL)
  432                 panic("aio_free_entry: freeing already free job");
  433 
  434         p = aiocbe->userproc;
  435         ki = p->p_aioinfo;
  436         lj = aiocbe->lio;
  437         if (ki == NULL)
  438                 panic("aio_free_entry: missing p->p_aioinfo");
  439 
  440         while (aiocbe->jobstate == JOBST_JOBRUNNING) {
  441                 aiocbe->jobflags |= AIOCBLIST_RUNDOWN;
  442                 tsleep(aiocbe, PRIBIO, "jobwai", 0);
  443         }
  444         if (aiocbe->bp == NULL) {
  445                 if (ki->kaio_queue_count <= 0)
  446                         panic("aio_free_entry: process queue size <= 0");
  447                 if (num_queue_count <= 0)
  448                         panic("aio_free_entry: system wide queue size <= 0");
  449         
  450                 if (lj) {
  451                         lj->lioj_queue_count--;
  452                         if (aiocbe->jobflags & AIOCBLIST_DONE)
  453                                 lj->lioj_queue_finished_count--;
  454                 }
  455                 ki->kaio_queue_count--;
  456                 if (aiocbe->jobflags & AIOCBLIST_DONE)
  457                         ki->kaio_queue_finished_count--;
  458                 num_queue_count--;
  459         } else {
  460                 if (lj) {
  461                         lj->lioj_buffer_count--;
  462                         if (aiocbe->jobflags & AIOCBLIST_DONE)
  463                                 lj->lioj_buffer_finished_count--;
  464                 }
  465                 if (aiocbe->jobflags & AIOCBLIST_DONE)
  466                         ki->kaio_buffer_finished_count--;
  467                 ki->kaio_buffer_count--;
  468                 num_buf_aio--;
  469         }
  470 
  471         /* aiocbe is going away, we need to destroy any knotes */
  472         /* XXXKSE Note the thread here is used to eventually find the 
  473          * owning process again, but it is also used to do a fo_close
  474          * and that requires the thread. (but does it require the
  475          * OWNING thread? (or maybe the running thread?)
  476          * There is a semantic problem here... 
  477          */
  478         knote_remove(FIRST_THREAD_IN_PROC(p), &aiocbe->klist); /* XXXKSE */
  479 
  480         if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags & KAIO_RUNDOWN)
  481             && ((ki->kaio_buffer_count == 0) && (ki->kaio_queue_count == 0)))) {
  482                 ki->kaio_flags &= ~KAIO_WAKEUP;
  483                 wakeup(p);
  484         }
  485 
  486         if (aiocbe->jobstate == JOBST_JOBQBUF) {
  487                 if ((error = aio_fphysio(aiocbe)) != 0)
  488                         return error;
  489                 if (aiocbe->jobstate != JOBST_JOBBFINISHED)
  490                         panic("aio_free_entry: invalid physio finish-up state");
  491                 s = splbio();
  492                 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
  493                 splx(s);
  494         } else if (aiocbe->jobstate == JOBST_JOBQGLOBAL) {
  495                 s = splnet();
  496                 TAILQ_REMOVE(&aio_jobs, aiocbe, list);
  497                 TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
  498                 splx(s);
  499         } else if (aiocbe->jobstate == JOBST_JOBFINISHED)
  500                 TAILQ_REMOVE(&ki->kaio_jobdone, aiocbe, plist);
  501         else if (aiocbe->jobstate == JOBST_JOBBFINISHED) {
  502                 s = splbio();
  503                 TAILQ_REMOVE(&ki->kaio_bufdone, aiocbe, plist);
  504                 splx(s);
  505                 if (aiocbe->bp) {
  506                         vunmapbuf(aiocbe->bp);
  507                         relpbuf(aiocbe->bp, NULL);
  508                         aiocbe->bp = NULL;
  509                 }
  510         }
  511         if (lj && (lj->lioj_buffer_count == 0) && (lj->lioj_queue_count == 0)) {
  512                 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  513                 uma_zfree(aiolio_zone, lj);
  514         }
  515         aiocbe->jobstate = JOBST_NULL;
  516         untimeout(process_signal, aiocbe, aiocbe->timeouthandle);
  517         fdrop(aiocbe->fd_file, curthread);
  518         crfree(aiocbe->cred);
  519         uma_zfree(aiocb_zone, aiocbe);
  520         return 0;
  521 }
  522 
  523 /*
  524  * Rundown the jobs for a given process.  
  525  */
  526 static void
  527 aio_proc_rundown(struct proc *p)
  528 {
  529         int s;
  530         struct kaioinfo *ki;
  531         struct aio_liojob *lj, *ljn;
  532         struct aiocblist *aiocbe, *aiocbn;
  533         struct file *fp;
  534         struct socket *so;
  535 
  536         ki = p->p_aioinfo;
  537         if (ki == NULL)
  538                 return;
  539 
  540         ki->kaio_flags |= LIOJ_SIGNAL_POSTED;
  541         while ((ki->kaio_active_count > 0) || (ki->kaio_buffer_count >
  542             ki->kaio_buffer_finished_count)) {
  543                 ki->kaio_flags |= KAIO_RUNDOWN;
  544                 if (tsleep(p, PRIBIO, "kaiowt", aiod_timeout))
  545                         break;
  546         }
  547 
  548         /*
  549          * Move any aio ops that are waiting on socket I/O to the normal job
  550          * queues so they are cleaned up with any others.
  551          */
  552         s = splnet();
  553         for (aiocbe = TAILQ_FIRST(&ki->kaio_sockqueue); aiocbe; aiocbe =
  554             aiocbn) {
  555                 aiocbn = TAILQ_NEXT(aiocbe, plist);
  556                 fp = aiocbe->fd_file;
  557                 if (fp != NULL) {
  558                         so = (struct socket *)fp->f_data;
  559                         TAILQ_REMOVE(&so->so_aiojobq, aiocbe, list);
  560                         if (TAILQ_EMPTY(&so->so_aiojobq)) {
  561                                 so->so_snd.sb_flags &= ~SB_AIO;
  562                                 so->so_rcv.sb_flags &= ~SB_AIO;
  563                         }
  564                 }
  565                 TAILQ_REMOVE(&ki->kaio_sockqueue, aiocbe, plist);
  566                 TAILQ_INSERT_HEAD(&aio_jobs, aiocbe, list);
  567                 TAILQ_INSERT_HEAD(&ki->kaio_jobqueue, aiocbe, plist);
  568         }
  569         splx(s);
  570 
  571 restart1:
  572         for (aiocbe = TAILQ_FIRST(&ki->kaio_jobdone); aiocbe; aiocbe = aiocbn) {
  573                 aiocbn = TAILQ_NEXT(aiocbe, plist);
  574                 if (aio_free_entry(aiocbe))
  575                         goto restart1;
  576         }
  577 
  578 restart2:
  579         for (aiocbe = TAILQ_FIRST(&ki->kaio_jobqueue); aiocbe; aiocbe =
  580             aiocbn) {
  581                 aiocbn = TAILQ_NEXT(aiocbe, plist);
  582                 if (aio_free_entry(aiocbe))
  583                         goto restart2;
  584         }
  585 
  586 /*
  587  * Note the use of lots of splbio here, trying to avoid splbio for long chains
  588  * of I/O.  Probably unnecessary.
  589  */
  590 restart3:
  591         s = splbio();
  592         while (TAILQ_FIRST(&ki->kaio_bufqueue)) {
  593                 ki->kaio_flags |= KAIO_WAKEUP;
  594                 tsleep(p, PRIBIO, "aioprn", 0);
  595                 splx(s);
  596                 goto restart3;
  597         }
  598         splx(s);
  599 
  600 restart4:
  601         s = splbio();
  602         for (aiocbe = TAILQ_FIRST(&ki->kaio_bufdone); aiocbe; aiocbe = aiocbn) {
  603                 aiocbn = TAILQ_NEXT(aiocbe, plist);
  604                 if (aio_free_entry(aiocbe)) {
  605                         splx(s);
  606                         goto restart4;
  607                 }
  608         }
  609         splx(s);
  610 
  611         /*
  612          * If we've slept, jobs might have moved from one queue to another.
  613          * Retry rundown if we didn't manage to empty the queues.
  614          */
  615         if (TAILQ_FIRST(&ki->kaio_jobdone) != NULL ||
  616             TAILQ_FIRST(&ki->kaio_jobqueue) != NULL ||
  617             TAILQ_FIRST(&ki->kaio_bufqueue) != NULL ||
  618             TAILQ_FIRST(&ki->kaio_bufdone) != NULL)
  619                 goto restart1;
  620 
  621         for (lj = TAILQ_FIRST(&ki->kaio_liojoblist); lj; lj = ljn) {
  622                 ljn = TAILQ_NEXT(lj, lioj_list);
  623                 if ((lj->lioj_buffer_count == 0) && (lj->lioj_queue_count ==
  624                     0)) {
  625                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  626                         uma_zfree(aiolio_zone, lj);
  627                 } else {
  628 #ifdef DIAGNOSTIC
  629                         printf("LIO job not cleaned up: B:%d, BF:%d, Q:%d, "
  630                             "QF:%d\n", lj->lioj_buffer_count,
  631                             lj->lioj_buffer_finished_count,
  632                             lj->lioj_queue_count,
  633                             lj->lioj_queue_finished_count);
  634 #endif
  635                 }
  636         }
  637 
  638         uma_zfree(kaio_zone, ki);
  639         p->p_aioinfo = NULL;
  640 }
  641 
  642 /*
  643  * Select a job to run (called by an AIO daemon).
  644  */
  645 static struct aiocblist *
  646 aio_selectjob(struct aiothreadlist *aiop)
  647 {
  648         int s;
  649         struct aiocblist *aiocbe;
  650         struct kaioinfo *ki;
  651         struct proc *userp;
  652 
  653         s = splnet();
  654         for (aiocbe = TAILQ_FIRST(&aio_jobs); aiocbe; aiocbe =
  655             TAILQ_NEXT(aiocbe, list)) {
  656                 userp = aiocbe->userproc;
  657                 ki = userp->p_aioinfo;
  658 
  659                 if (ki->kaio_active_count < ki->kaio_maxactive_count) {
  660                         TAILQ_REMOVE(&aio_jobs, aiocbe, list);
  661                         splx(s);
  662                         return aiocbe;
  663                 }
  664         }
  665         splx(s);
  666 
  667         return NULL;
  668 }
  669 
  670 /*
  671  * The AIO processing activity.  This is the code that does the I/O request for
  672  * the non-physio version of the operations.  The normal vn operations are used,
  673  * and this code should work in all instances for every type of file, including
  674  * pipes, sockets, fifos, and regular files.
  675  */
  676 static void
  677 aio_process(struct aiocblist *aiocbe)
  678 {
  679         struct ucred *td_savedcred;
  680         struct thread *td;
  681         struct proc *mycp;
  682         struct aiocb *cb;
  683         struct file *fp;
  684         struct uio auio;
  685         struct iovec aiov;
  686         int cnt;
  687         int error;
  688         int oublock_st, oublock_end;
  689         int inblock_st, inblock_end;
  690 
  691         td = curthread;
  692         td_savedcred = td->td_ucred;
  693         td->td_ucred = aiocbe->cred;
  694         mycp = td->td_proc;
  695         cb = &aiocbe->uaiocb;
  696         fp = aiocbe->fd_file;
  697 
  698         aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
  699         aiov.iov_len = cb->aio_nbytes;
  700 
  701         auio.uio_iov = &aiov;
  702         auio.uio_iovcnt = 1;
  703         auio.uio_offset = cb->aio_offset;
  704         auio.uio_resid = cb->aio_nbytes;
  705         cnt = cb->aio_nbytes;
  706         auio.uio_segflg = UIO_USERSPACE;
  707         auio.uio_td = td;
  708 
  709         inblock_st = mycp->p_stats->p_ru.ru_inblock;
  710         oublock_st = mycp->p_stats->p_ru.ru_oublock;
  711         /*
  712          * _aio_aqueue() acquires a reference to the file that is
  713          * released in aio_free_entry().
  714          */
  715         if (cb->aio_lio_opcode == LIO_READ) {
  716                 auio.uio_rw = UIO_READ;
  717                 error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  718         } else {
  719                 auio.uio_rw = UIO_WRITE;
  720                 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  721         }
  722         inblock_end = mycp->p_stats->p_ru.ru_inblock;
  723         oublock_end = mycp->p_stats->p_ru.ru_oublock;
  724 
  725         aiocbe->inputcharge = inblock_end - inblock_st;
  726         aiocbe->outputcharge = oublock_end - oublock_st;
  727 
  728         if ((error) && (auio.uio_resid != cnt)) {
  729                 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
  730                         error = 0;
  731                 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
  732                         PROC_LOCK(aiocbe->userproc);
  733                         psignal(aiocbe->userproc, SIGPIPE);
  734                         PROC_UNLOCK(aiocbe->userproc);
  735                 }
  736         }
  737 
  738         cnt -= auio.uio_resid;
  739         cb->_aiocb_private.error = error;
  740         cb->_aiocb_private.status = cnt;
  741         td->td_ucred = td_savedcred;
  742 }
  743 
  744 /*
  745  * The AIO daemon, most of the actual work is done in aio_process,
  746  * but the setup (and address space mgmt) is done in this routine.
  747  */
  748 static void
  749 aio_daemon(void *uproc)
  750 {
  751         int s;
  752         struct aio_liojob *lj;
  753         struct aiocb *cb;
  754         struct aiocblist *aiocbe;
  755         struct aiothreadlist *aiop;
  756         struct kaioinfo *ki;
  757         struct proc *curcp, *mycp, *userp;
  758         struct vmspace *myvm, *tmpvm;
  759         struct thread *td = curthread;
  760         struct pgrp *newpgrp;
  761         struct session *newsess;
  762 
  763         mtx_lock(&Giant);
  764         /*
  765          * Local copies of curproc (cp) and vmspace (myvm)
  766          */
  767         mycp = td->td_proc;
  768         myvm = mycp->p_vmspace;
  769 
  770         if (mycp->p_textvp) {
  771                 vrele(mycp->p_textvp);
  772                 mycp->p_textvp = NULL;
  773         }
  774 
  775         /*
  776          * Allocate and ready the aio control info.  There is one aiop structure
  777          * per daemon.
  778          */
  779         aiop = uma_zalloc(aiop_zone, M_WAITOK);
  780         aiop->aiothread = td;
  781         aiop->aiothreadflags |= AIOP_FREE;
  782 
  783         s = splnet();
  784 
  785         /*
  786          * Place thread (lightweight process) onto the AIO free thread list.
  787          */
  788         if (TAILQ_EMPTY(&aio_freeproc))
  789                 wakeup(&aio_freeproc);
  790         TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
  791 
  792         splx(s);
  793 
  794         /*
  795          * Get rid of our current filedescriptors.  AIOD's don't need any
  796          * filedescriptors, except as temporarily inherited from the client.
  797          */
  798         fdfree(td);
  799 
  800         mtx_unlock(&Giant);
  801         /* The daemon resides in its own pgrp. */
  802         MALLOC(newpgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP,
  803                 M_WAITOK | M_ZERO);
  804         MALLOC(newsess, struct session *, sizeof(struct session), M_SESSION,
  805                 M_WAITOK | M_ZERO);
  806 
  807         sx_xlock(&proctree_lock);
  808         enterpgrp(mycp, mycp->p_pid, newpgrp, newsess);
  809         sx_xunlock(&proctree_lock);
  810         mtx_lock(&Giant);
  811 
  812         /* Mark special process type. */
  813         mycp->p_flag |= P_SYSTEM;
  814 
  815         /*
  816          * Wakeup parent process.  (Parent sleeps to keep from blasting away
  817          * and creating too many daemons.)
  818          */
  819         wakeup(mycp);
  820 
  821         for (;;) {
  822                 /*
  823                  * curcp is the current daemon process context.
  824                  * userp is the current user process context.
  825                  */
  826                 curcp = mycp;
  827 
  828                 /*
  829                  * Take daemon off of free queue
  830                  */
  831                 if (aiop->aiothreadflags & AIOP_FREE) {
  832                         s = splnet();
  833                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
  834                         TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
  835                         aiop->aiothreadflags &= ~AIOP_FREE;
  836                         splx(s);
  837                 }
  838                 aiop->aiothreadflags &= ~AIOP_SCHED;
  839 
  840                 /*
  841                  * Check for jobs.
  842                  */
  843                 while ((aiocbe = aio_selectjob(aiop)) != NULL) {
  844                         cb = &aiocbe->uaiocb;
  845                         userp = aiocbe->userproc;
  846 
  847                         aiocbe->jobstate = JOBST_JOBRUNNING;
  848 
  849                         /*
  850                          * Connect to process address space for user program.
  851                          */
  852                         if (userp != curcp) {
  853                                 /*
  854                                  * Save the current address space that we are
  855                                  * connected to.
  856                                  */
  857                                 tmpvm = mycp->p_vmspace;
  858                                 
  859                                 /*
  860                                  * Point to the new user address space, and
  861                                  * refer to it.
  862                                  */
  863                                 mycp->p_vmspace = userp->p_vmspace;
  864                                 mycp->p_vmspace->vm_refcnt++;
  865                                 
  866                                 /* Activate the new mapping. */
  867                                 pmap_activate(FIRST_THREAD_IN_PROC(mycp));
  868                                 
  869                                 /*
  870                                  * If the old address space wasn't the daemons
  871                                  * own address space, then we need to remove the
  872                                  * daemon's reference from the other process
  873                                  * that it was acting on behalf of.
  874                                  */
  875                                 if (tmpvm != myvm) {
  876                                         vmspace_free(tmpvm);
  877                                 }
  878                                 curcp = userp;
  879                         }
  880 
  881                         ki = userp->p_aioinfo;
  882                         lj = aiocbe->lio;
  883 
  884                         /* Account for currently active jobs. */
  885                         ki->kaio_active_count++;
  886 
  887                         /* Do the I/O function. */
  888                         aio_process(aiocbe);
  889 
  890                         /* Decrement the active job count. */
  891                         ki->kaio_active_count--;
  892 
  893                         /*
  894                          * Increment the completion count for wakeup/signal
  895                          * comparisons.
  896                          */
  897                         aiocbe->jobflags |= AIOCBLIST_DONE;
  898                         ki->kaio_queue_finished_count++;
  899                         if (lj)
  900                                 lj->lioj_queue_finished_count++;
  901                         if ((ki->kaio_flags & KAIO_WAKEUP) || ((ki->kaio_flags
  902                             & KAIO_RUNDOWN) && (ki->kaio_active_count == 0))) {
  903                                 ki->kaio_flags &= ~KAIO_WAKEUP;
  904                                 wakeup(userp);
  905                         }
  906 
  907                         s = splbio();
  908                         if (lj && (lj->lioj_flags &
  909                             (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL) {
  910                                 if ((lj->lioj_queue_finished_count ==
  911                                     lj->lioj_queue_count) &&
  912                                     (lj->lioj_buffer_finished_count ==
  913                                     lj->lioj_buffer_count)) {
  914                                         PROC_LOCK(userp);
  915                                         psignal(userp,
  916                                             lj->lioj_signal.sigev_signo);
  917                                         PROC_UNLOCK(userp);
  918                                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
  919                                 }
  920                         }
  921                         splx(s);
  922 
  923                         aiocbe->jobstate = JOBST_JOBFINISHED;
  924 
  925                         s = splnet();
  926                         TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
  927                         TAILQ_INSERT_TAIL(&ki->kaio_jobdone, aiocbe, plist);
  928                         splx(s);
  929                         KNOTE(&aiocbe->klist, 0);
  930 
  931                         if (aiocbe->jobflags & AIOCBLIST_RUNDOWN) {
  932                                 wakeup(aiocbe);
  933                                 aiocbe->jobflags &= ~AIOCBLIST_RUNDOWN;
  934                         }
  935 
  936                         if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) {
  937                                 PROC_LOCK(userp);
  938                                 psignal(userp, cb->aio_sigevent.sigev_signo);
  939                                 PROC_UNLOCK(userp);
  940                         }
  941                 }
  942 
  943                 /*
  944                  * Disconnect from user address space.
  945                  */
  946                 if (curcp != mycp) {
  947                         /* Get the user address space to disconnect from. */
  948                         tmpvm = mycp->p_vmspace;
  949                         
  950                         /* Get original address space for daemon. */
  951                         mycp->p_vmspace = myvm;
  952                         
  953                         /* Activate the daemon's address space. */
  954                         pmap_activate(FIRST_THREAD_IN_PROC(mycp));
  955 #ifdef DIAGNOSTIC
  956                         if (tmpvm == myvm) {
  957                                 printf("AIOD: vmspace problem -- %d\n",
  958                                     mycp->p_pid);
  959                         }
  960 #endif
  961                         /* Remove our vmspace reference. */
  962                         vmspace_free(tmpvm);
  963                         
  964                         curcp = mycp;
  965                 }
  966 
  967                 /*
  968                  * If we are the first to be put onto the free queue, wakeup
  969                  * anyone waiting for a daemon.
  970                  */
  971                 s = splnet();
  972                 TAILQ_REMOVE(&aio_activeproc, aiop, list);
  973                 if (TAILQ_EMPTY(&aio_freeproc))
  974                         wakeup(&aio_freeproc);
  975                 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
  976                 aiop->aiothreadflags |= AIOP_FREE;
  977                 splx(s);
  978 
  979                 /*
  980                  * If daemon is inactive for a long time, allow it to exit,
  981                  * thereby freeing resources.
  982                  */
  983                 if ((aiop->aiothreadflags & AIOP_SCHED) == 0 &&
  984                     tsleep(aiop->aiothread, PRIBIO, "aiordy", aiod_lifetime)) {
  985                         s = splnet();
  986                         if (TAILQ_EMPTY(&aio_jobs)) {
  987                                 if ((aiop->aiothreadflags & AIOP_FREE) &&
  988                                     (num_aio_procs > target_aio_procs)) {
  989                                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
  990                                         splx(s);
  991                                         uma_zfree(aiop_zone, aiop);
  992                                         num_aio_procs--;
  993 #ifdef DIAGNOSTIC
  994                                         if (mycp->p_vmspace->vm_refcnt <= 1) {
  995                                                 printf("AIOD: bad vm refcnt for"
  996                                                     " exiting daemon: %d\n",
  997                                                     mycp->p_vmspace->vm_refcnt);
  998                                         }
  999 #endif
 1000                                         kthread_exit(0);
 1001                                 }
 1002                         }
 1003                         splx(s);
 1004                 }
 1005         }
 1006 }
 1007 
 1008 /*
 1009  * Create a new AIO daemon.  This is mostly a kernel-thread fork routine.  The
 1010  * AIO daemon modifies its environment itself.
 1011  */
 1012 static int
 1013 aio_newproc()
 1014 {
 1015         int error;
 1016         struct proc *p;
 1017 
 1018         error = kthread_create(aio_daemon, curproc, &p, RFNOWAIT, 0, "aiod%d",
 1019                                num_aio_procs);
 1020         if (error)
 1021                 return error;
 1022 
 1023         /*
 1024          * Wait until daemon is started, but continue on just in case to
 1025          * handle error conditions.
 1026          */
 1027         error = tsleep(p, PZERO, "aiosta", aiod_timeout);
 1028 
 1029         num_aio_procs++;
 1030 
 1031         return error;
 1032 }
 1033 
 1034 /*
 1035  * Try the high-performance, low-overhead physio method for eligible
 1036  * VCHR devices.  This method doesn't use an aio helper thread, and
 1037  * thus has very low overhead. 
 1038  *
 1039  * Assumes that the caller, _aio_aqueue(), has incremented the file
 1040  * structure's reference count, preventing its deallocation for the
 1041  * duration of this call. 
 1042  */
 1043 static int
 1044 aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
 1045 {
 1046         int error;
 1047         struct aiocb *cb;
 1048         struct file *fp;
 1049         struct buf *bp;
 1050         struct vnode *vp;
 1051         struct kaioinfo *ki;
 1052         struct aio_liojob *lj;
 1053         int s;
 1054         int notify;
 1055 
 1056         cb = &aiocbe->uaiocb;
 1057         fp = aiocbe->fd_file;
 1058 
 1059         if (fp->f_type != DTYPE_VNODE) 
 1060                 return (-1);
 1061 
 1062         vp = (struct vnode *)fp->f_data;
 1063 
 1064         /*
 1065          * If its not a disk, we don't want to return a positive error.
 1066          * It causes the aio code to not fall through to try the thread
 1067          * way when you're talking to a regular file.
 1068          */
 1069         if (!vn_isdisk(vp, &error)) {
 1070                 if (error == ENOTBLK)
 1071                         return (-1);
 1072                 else
 1073                         return (error);
 1074         }
 1075 
 1076         if (cb->aio_nbytes % vp->v_rdev->si_bsize_phys)
 1077                 return (-1);
 1078 
 1079         if (cb->aio_nbytes >
 1080             MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK))
 1081                 return (-1);
 1082 
 1083         ki = p->p_aioinfo;
 1084         if (ki->kaio_buffer_count >= ki->kaio_ballowed_count) 
 1085                 return (-1);
 1086 
 1087         ki->kaio_buffer_count++;
 1088 
 1089         lj = aiocbe->lio;
 1090         if (lj)
 1091                 lj->lioj_buffer_count++;
 1092 
 1093         /* Create and build a buffer header for a transfer. */
 1094         bp = (struct buf *)getpbuf(NULL);
 1095         BUF_KERNPROC(bp);
 1096 
 1097         /*
 1098          * Get a copy of the kva from the physical buffer.
 1099          */
 1100         bp->b_caller1 = p;
 1101         bp->b_dev = vp->v_rdev;
 1102         error = bp->b_error = 0;
 1103 
 1104         bp->b_bcount = cb->aio_nbytes;
 1105         bp->b_bufsize = cb->aio_nbytes;
 1106         bp->b_flags = B_PHYS;
 1107         bp->b_iodone = aio_physwakeup;
 1108         bp->b_saveaddr = bp->b_data;
 1109         bp->b_data = (void *)(uintptr_t)cb->aio_buf;
 1110         bp->b_blkno = btodb(cb->aio_offset);
 1111 
 1112         if (cb->aio_lio_opcode == LIO_WRITE) {
 1113                 bp->b_iocmd = BIO_WRITE;
 1114                 if (!useracc(bp->b_data, bp->b_bufsize, VM_PROT_READ)) {
 1115                         error = EFAULT;
 1116                         goto doerror;
 1117                 }
 1118         } else {
 1119                 bp->b_iocmd = BIO_READ;
 1120                 if (!useracc(bp->b_data, bp->b_bufsize, VM_PROT_WRITE)) {
 1121                         error = EFAULT;
 1122                         goto doerror;
 1123                 }
 1124         }
 1125 
 1126         /* Bring buffer into kernel space. */
 1127         vmapbuf(bp);
 1128 
 1129         s = splbio();
 1130         aiocbe->bp = bp;
 1131         bp->b_spc = (void *)aiocbe;
 1132         TAILQ_INSERT_TAIL(&aio_bufjobs, aiocbe, list);
 1133         TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
 1134         aiocbe->jobstate = JOBST_JOBQBUF;
 1135         cb->_aiocb_private.status = cb->aio_nbytes;
 1136         num_buf_aio++;
 1137         bp->b_error = 0;
 1138 
 1139         splx(s);
 1140         
 1141         /* Perform transfer. */
 1142         DEV_STRATEGY(bp, 0);
 1143 
 1144         notify = 0;
 1145         s = splbio();
 1146         
 1147         /*
 1148          * If we had an error invoking the request, or an error in processing
 1149          * the request before we have returned, we process it as an error in
 1150          * transfer.  Note that such an I/O error is not indicated immediately,
 1151          * but is returned using the aio_error mechanism.  In this case,
 1152          * aio_suspend will return immediately.
 1153          */
 1154         if (bp->b_error || (bp->b_ioflags & BIO_ERROR)) {
 1155                 struct aiocb *job = aiocbe->uuaiocb;
 1156 
 1157                 aiocbe->uaiocb._aiocb_private.status = 0;
 1158                 suword(&job->_aiocb_private.status, 0);
 1159                 aiocbe->uaiocb._aiocb_private.error = bp->b_error;
 1160                 suword(&job->_aiocb_private.error, bp->b_error);
 1161 
 1162                 ki->kaio_buffer_finished_count++;
 1163 
 1164                 if (aiocbe->jobstate != JOBST_JOBBFINISHED) {
 1165                         aiocbe->jobstate = JOBST_JOBBFINISHED;
 1166                         aiocbe->jobflags |= AIOCBLIST_DONE;
 1167                         TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
 1168                         TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
 1169                         TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
 1170                         notify = 1;
 1171                 }
 1172         }
 1173         splx(s);
 1174         if (notify)
 1175                 KNOTE(&aiocbe->klist, 0);
 1176         return 0;
 1177 
 1178 doerror:
 1179         ki->kaio_buffer_count--;
 1180         if (lj)
 1181                 lj->lioj_buffer_count--;
 1182         aiocbe->bp = NULL;
 1183         relpbuf(bp, NULL);
 1184         return error;
 1185 }
 1186 
 1187 /*
 1188  * This waits/tests physio completion.
 1189  */
 1190 static int
 1191 aio_fphysio(struct aiocblist *iocb)
 1192 {
 1193         int s;
 1194         struct buf *bp;
 1195         int error;
 1196 
 1197         bp = iocb->bp;
 1198 
 1199         s = splbio();
 1200         while ((bp->b_flags & B_DONE) == 0) {
 1201                 if (tsleep(bp, PRIBIO, "physstr", aiod_timeout)) {
 1202                         if ((bp->b_flags & B_DONE) == 0) {
 1203                                 splx(s);
 1204                                 return EINPROGRESS;
 1205                         } else
 1206                                 break;
 1207                 }
 1208         }
 1209         splx(s);
 1210 
 1211         /* Release mapping into kernel space. */
 1212         vunmapbuf(bp);
 1213         iocb->bp = 0;
 1214 
 1215         error = 0;
 1216         
 1217         /* Check for an error. */
 1218         if (bp->b_ioflags & BIO_ERROR)
 1219                 error = bp->b_error;
 1220 
 1221         relpbuf(bp, NULL);
 1222         return (error);
 1223 }
 1224 
 1225 /*
 1226  * Wake up aio requests that may be serviceable now.
 1227  */
 1228 static void
 1229 aio_swake_cb(struct socket *so, struct sockbuf *sb)
 1230 {
 1231         struct aiocblist *cb,*cbn;
 1232         struct proc *p;
 1233         struct kaioinfo *ki = NULL;
 1234         int opcode, wakecount = 0;
 1235         struct aiothreadlist *aiop;
 1236 
 1237         if (sb == &so->so_snd) {
 1238                 opcode = LIO_WRITE;
 1239                 so->so_snd.sb_flags &= ~SB_AIO;
 1240         } else {
 1241                 opcode = LIO_READ;
 1242                 so->so_rcv.sb_flags &= ~SB_AIO;
 1243         }
 1244 
 1245         for (cb = TAILQ_FIRST(&so->so_aiojobq); cb; cb = cbn) {
 1246                 cbn = TAILQ_NEXT(cb, list);
 1247                 if (opcode == cb->uaiocb.aio_lio_opcode) {
 1248                         p = cb->userproc;
 1249                         ki = p->p_aioinfo;
 1250                         TAILQ_REMOVE(&so->so_aiojobq, cb, list);
 1251                         TAILQ_REMOVE(&ki->kaio_sockqueue, cb, plist);
 1252                         TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
 1253                         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, cb, plist);
 1254                         wakecount++;
 1255                         if (cb->jobstate != JOBST_JOBQGLOBAL)
 1256                                 panic("invalid queue value");
 1257                 }
 1258         }
 1259 
 1260         while (wakecount--) {
 1261                 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != 0) {
 1262                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1263                         TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
 1264                         aiop->aiothreadflags &= ~AIOP_FREE;
 1265                         wakeup(aiop->aiothread);
 1266                 }
 1267         }
 1268 }
 1269 
 1270 /*
 1271  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
 1272  * technique is done in this code.
 1273  */
 1274 static int
 1275 _aio_aqueue(struct thread *td, struct aiocb *job, struct aio_liojob *lj, int type)
 1276 {
 1277         struct proc *p = td->td_proc;
 1278         struct filedesc *fdp;
 1279         struct file *fp;
 1280         unsigned int fd;
 1281         struct socket *so;
 1282         int s;
 1283         int error;
 1284         int opcode, user_opcode;
 1285         struct aiocblist *aiocbe;
 1286         struct aiothreadlist *aiop;
 1287         struct kaioinfo *ki;
 1288         struct kevent kev;
 1289         struct kqueue *kq;
 1290         struct file *kq_fp;
 1291 
 1292         aiocbe = uma_zalloc(aiocb_zone, M_WAITOK);
 1293         aiocbe->inputcharge = 0;
 1294         aiocbe->outputcharge = 0;
 1295         callout_handle_init(&aiocbe->timeouthandle);
 1296         SLIST_INIT(&aiocbe->klist);
 1297 
 1298         suword(&job->_aiocb_private.status, -1);
 1299         suword(&job->_aiocb_private.error, 0);
 1300         suword(&job->_aiocb_private.kernelinfo, -1);
 1301 
 1302         error = copyin(job, &aiocbe->uaiocb, sizeof(aiocbe->uaiocb));
 1303         if (error) {
 1304                 suword(&job->_aiocb_private.error, error);
 1305                 uma_zfree(aiocb_zone, aiocbe);
 1306                 return error;
 1307         }
 1308         if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL &&
 1309                 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
 1310                 uma_zfree(aiocb_zone, aiocbe);
 1311                 return EINVAL;
 1312         }
 1313 
 1314         /* Save userspace address of the job info. */
 1315         aiocbe->uuaiocb = job;
 1316 
 1317         /* Get the opcode. */
 1318         user_opcode = aiocbe->uaiocb.aio_lio_opcode;
 1319         if (type != LIO_NOP)
 1320                 aiocbe->uaiocb.aio_lio_opcode = type;
 1321         opcode = aiocbe->uaiocb.aio_lio_opcode;
 1322 
 1323         /* Get the fd info for process. */
 1324         fdp = p->p_fd;
 1325 
 1326         /*
 1327          * Range check file descriptor.
 1328          */
 1329         fd = aiocbe->uaiocb.aio_fildes;
 1330         if (fd >= fdp->fd_nfiles) {
 1331                 uma_zfree(aiocb_zone, aiocbe);
 1332                 if (type == 0)
 1333                         suword(&job->_aiocb_private.error, EBADF);
 1334                 return EBADF;
 1335         }
 1336 
 1337         fp = aiocbe->fd_file = fdp->fd_ofiles[fd];
 1338         if ((fp == NULL) || ((opcode == LIO_WRITE) && ((fp->f_flag & FWRITE) ==
 1339             0))) {
 1340                 uma_zfree(aiocb_zone, aiocbe);
 1341                 if (type == 0)
 1342                         suword(&job->_aiocb_private.error, EBADF);
 1343                 return EBADF;
 1344         }
 1345         fhold(fp);
 1346 
 1347         if (aiocbe->uaiocb.aio_offset == -1LL) {
 1348                 error = EINVAL;
 1349                 goto aqueue_fail;
 1350         }
 1351         error = suword(&job->_aiocb_private.kernelinfo, jobrefid);
 1352         if (error) {
 1353                 error = EINVAL;
 1354                 goto aqueue_fail;
 1355         }
 1356         aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jobrefid;
 1357         if (jobrefid == LONG_MAX)
 1358                 jobrefid = 1;
 1359         else
 1360                 jobrefid++;
 1361         
 1362         if (opcode == LIO_NOP) {
 1363                 fdrop(fp, td);
 1364                 uma_zfree(aiocb_zone, aiocbe);
 1365                 if (type == 0) {
 1366                         suword(&job->_aiocb_private.error, 0);
 1367                         suword(&job->_aiocb_private.status, 0);
 1368                         suword(&job->_aiocb_private.kernelinfo, 0);
 1369                 }
 1370                 return 0;
 1371         }
 1372         if ((opcode != LIO_READ) && (opcode != LIO_WRITE)) {
 1373                 if (type == 0)
 1374                         suword(&job->_aiocb_private.status, 0);
 1375                 error = EINVAL;
 1376                 goto aqueue_fail;
 1377         }
 1378 
 1379         if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_KEVENT) {
 1380                 kev.ident = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
 1381                 kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sigval_ptr;
 1382         }
 1383         else {
 1384                 /*
 1385                  * This method for requesting kevent-based notification won't
 1386                  * work on the alpha, since we're passing in a pointer
 1387                  * via aio_lio_opcode, which is an int.  Use the SIGEV_KEVENT-
 1388                  * based method instead.
 1389                  */
 1390                 if (user_opcode == LIO_NOP || user_opcode == LIO_READ ||
 1391                     user_opcode == LIO_WRITE)
 1392                         goto no_kqueue;
 1393 
 1394                 error = copyin((struct kevent *)(uintptr_t)user_opcode,
 1395                     &kev, sizeof(kev));
 1396                 if (error)
 1397                         goto aqueue_fail;
 1398         }
 1399         if ((u_int)kev.ident >= fdp->fd_nfiles ||
 1400             (kq_fp = fdp->fd_ofiles[kev.ident]) == NULL ||
 1401             (kq_fp->f_type != DTYPE_KQUEUE)) {
 1402                 error = EBADF;
 1403                 goto aqueue_fail;
 1404         }
 1405         kq = (struct kqueue *)kq_fp->f_data;
 1406         kev.ident = (uintptr_t)aiocbe->uuaiocb;
 1407         kev.filter = EVFILT_AIO;
 1408         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 1409         kev.data = (intptr_t)aiocbe;
 1410         error = kqueue_register(kq, &kev, td);
 1411 aqueue_fail:
 1412         if (error) {
 1413                 fdrop(fp, td);
 1414                 uma_zfree(aiocb_zone, aiocbe);
 1415                 if (type == 0)
 1416                         suword(&job->_aiocb_private.error, error);
 1417                 goto done;
 1418         }
 1419 no_kqueue:
 1420 
 1421         suword(&job->_aiocb_private.error, EINPROGRESS);
 1422         aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
 1423         aiocbe->userproc = p;
 1424         aiocbe->cred = crhold(td->td_ucred);
 1425         aiocbe->jobflags = 0;
 1426         aiocbe->lio = lj;
 1427         ki = p->p_aioinfo;
 1428 
 1429         if (fp->f_type == DTYPE_SOCKET) {
 1430                 /*
 1431                  * Alternate queueing for socket ops: Reach down into the
 1432                  * descriptor to get the socket data.  Then check to see if the
 1433                  * socket is ready to be read or written (based on the requested
 1434                  * operation).
 1435                  *
 1436                  * If it is not ready for io, then queue the aiocbe on the
 1437                  * socket, and set the flags so we get a call when sbnotify()
 1438                  * happens.
 1439                  */
 1440                 so = (struct socket *)fp->f_data;
 1441                 s = splnet();
 1442                 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
 1443                     LIO_WRITE) && (!sowriteable(so)))) {
 1444                         TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
 1445                         TAILQ_INSERT_TAIL(&ki->kaio_sockqueue, aiocbe, plist);
 1446                         if (opcode == LIO_READ)
 1447                                 so->so_rcv.sb_flags |= SB_AIO;
 1448                         else
 1449                                 so->so_snd.sb_flags |= SB_AIO;
 1450                         aiocbe->jobstate = JOBST_JOBQGLOBAL; /* XXX */
 1451                         ki->kaio_queue_count++;
 1452                         num_queue_count++;
 1453                         splx(s);
 1454                         error = 0;
 1455                         goto done;
 1456                 }
 1457                 splx(s);
 1458         }
 1459 
 1460         if ((error = aio_qphysio(p, aiocbe)) == 0)
 1461                 goto done;
 1462         if (error > 0) {
 1463                 suword(&job->_aiocb_private.status, 0);
 1464                 aiocbe->uaiocb._aiocb_private.error = error;
 1465                 suword(&job->_aiocb_private.error, error);
 1466                 goto done;
 1467         }
 1468 
 1469         /* No buffer for daemon I/O. */
 1470         aiocbe->bp = NULL;
 1471 
 1472         ki->kaio_queue_count++;
 1473         if (lj)
 1474                 lj->lioj_queue_count++;
 1475         s = splnet();
 1476         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1477         TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
 1478         splx(s);
 1479         aiocbe->jobstate = JOBST_JOBQGLOBAL;
 1480 
 1481         num_queue_count++;
 1482         error = 0;
 1483 
 1484         /*
 1485          * If we don't have a free AIO process, and we are below our quota, then
 1486          * start one.  Otherwise, depend on the subsequent I/O completions to
 1487          * pick-up this job.  If we don't sucessfully create the new process
 1488          * (thread) due to resource issues, we return an error for now (EAGAIN),
 1489          * which is likely not the correct thing to do.
 1490          */
 1491         s = splnet();
 1492 retryproc:
 1493         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1494                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1495                 TAILQ_INSERT_TAIL(&aio_activeproc, aiop, list);
 1496                 aiop->aiothreadflags &= ~AIOP_FREE;
 1497                 wakeup(aiop->aiothread);
 1498         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1499             ((ki->kaio_active_count + num_aio_resv_start) <
 1500             ki->kaio_maxactive_count)) {
 1501                 num_aio_resv_start++;
 1502                 if ((error = aio_newproc()) == 0) {
 1503                         num_aio_resv_start--;
 1504                         goto retryproc;
 1505                 }
 1506                 num_aio_resv_start--;
 1507         }
 1508         splx(s);
 1509 done:
 1510         return error;
 1511 }
 1512 
 1513 /*
 1514  * This routine queues an AIO request, checking for quotas.
 1515  */
 1516 static int
 1517 aio_aqueue(struct thread *td, struct aiocb *job, int type)
 1518 {
 1519         struct proc *p = td->td_proc;
 1520         struct kaioinfo *ki;
 1521 
 1522         if (p->p_aioinfo == NULL)
 1523                 aio_init_aioinfo(p);
 1524 
 1525         if (num_queue_count >= max_queue_count)
 1526                 return EAGAIN;
 1527 
 1528         ki = p->p_aioinfo;
 1529         if (ki->kaio_queue_count >= ki->kaio_qallowed_count)
 1530                 return EAGAIN;
 1531 
 1532         return _aio_aqueue(td, job, NULL, type);
 1533 }
 1534 
 1535 /*
 1536  * Support the aio_return system call, as a side-effect, kernel resources are
 1537  * released.
 1538  */
 1539 int
 1540 aio_return(struct thread *td, struct aio_return_args *uap)
 1541 {
 1542         struct proc *p = td->td_proc;
 1543         int s;
 1544         long jobref;
 1545         struct aiocblist *cb, *ncb;
 1546         struct aiocb *ujob;
 1547         struct kaioinfo *ki;
 1548 
 1549         ujob = uap->aiocbp;
 1550         jobref = fuword(&ujob->_aiocb_private.kernelinfo);
 1551         if (jobref == -1 || jobref == 0)
 1552                 return EINVAL;
 1553 
 1554         ki = p->p_aioinfo;
 1555         if (ki == NULL)
 1556                 return EINVAL;
 1557         TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
 1558                 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo) ==
 1559                     jobref) {
 1560                         if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 1561                                 p->p_stats->p_ru.ru_oublock +=
 1562                                     cb->outputcharge;
 1563                                 cb->outputcharge = 0;
 1564                         } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 1565                                 p->p_stats->p_ru.ru_inblock += cb->inputcharge;
 1566                                 cb->inputcharge = 0;
 1567                         }
 1568                         goto done;
 1569                 }
 1570         }
 1571         s = splbio();
 1572         for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = ncb) {
 1573                 ncb = TAILQ_NEXT(cb, plist);
 1574                 if (((intptr_t) cb->uaiocb._aiocb_private.kernelinfo)
 1575                     == jobref) {
 1576                         break;
 1577                 }
 1578         }
 1579         splx(s);
 1580  done:
 1581         if (cb != NULL) {
 1582                 if (ujob == cb->uuaiocb) {
 1583                         td->td_retval[0] =
 1584                             cb->uaiocb._aiocb_private.status;
 1585                 } else
 1586                         td->td_retval[0] = EFAULT;
 1587                 aio_free_entry(cb);
 1588                 return (0);
 1589         }
 1590         return (EINVAL);
 1591 }
 1592 
 1593 /*
 1594  * Allow a process to wakeup when any of the I/O requests are completed.
 1595  */
 1596 int
 1597 aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 1598 {
 1599         struct proc *p = td->td_proc;
 1600         struct timeval atv;
 1601         struct timespec ts;
 1602         struct aiocb *const *cbptr, *cbp;
 1603         struct kaioinfo *ki;
 1604         struct aiocblist *cb;
 1605         int i;
 1606         int njoblist;
 1607         int error, s, timo;
 1608         long *ijoblist;
 1609         struct aiocb **ujoblist;
 1610         
 1611         if (uap->nent > AIO_LISTIO_MAX)
 1612                 return EINVAL;
 1613 
 1614         timo = 0;
 1615         if (uap->timeout) {
 1616                 /* Get timespec struct. */
 1617                 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 1618                         return error;
 1619 
 1620                 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
 1621                         return (EINVAL);
 1622 
 1623                 TIMESPEC_TO_TIMEVAL(&atv, &ts);
 1624                 if (itimerfix(&atv))
 1625                         return (EINVAL);
 1626                 timo = tvtohz(&atv);
 1627         }
 1628 
 1629         ki = p->p_aioinfo;
 1630         if (ki == NULL)
 1631                 return EAGAIN;
 1632 
 1633         njoblist = 0;
 1634         ijoblist = uma_zalloc(aiol_zone, M_WAITOK);
 1635         ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 1636         cbptr = uap->aiocbp;
 1637 
 1638         for (i = 0; i < uap->nent; i++) {
 1639                 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
 1640                 if (cbp == 0)
 1641                         continue;
 1642                 ujoblist[njoblist] = cbp;
 1643                 ijoblist[njoblist] = fuword(&cbp->_aiocb_private.kernelinfo);
 1644                 njoblist++;
 1645         }
 1646 
 1647         if (njoblist == 0) {
 1648                 uma_zfree(aiol_zone, ijoblist);
 1649                 uma_zfree(aiol_zone, ujoblist);
 1650                 return 0;
 1651         }
 1652 
 1653         error = 0;
 1654         for (;;) {
 1655                 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
 1656                         for (i = 0; i < njoblist; i++) {
 1657                                 if (((intptr_t)
 1658                                     cb->uaiocb._aiocb_private.kernelinfo) ==
 1659                                     ijoblist[i]) {
 1660                                         if (ujoblist[i] != cb->uuaiocb)
 1661                                                 error = EINVAL;
 1662                                         uma_zfree(aiol_zone, ijoblist);
 1663                                         uma_zfree(aiol_zone, ujoblist);
 1664                                         return error;
 1665                                 }
 1666                         }
 1667                 }
 1668 
 1669                 s = splbio();
 1670                 for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb =
 1671                     TAILQ_NEXT(cb, plist)) {
 1672                         for (i = 0; i < njoblist; i++) {
 1673                                 if (((intptr_t)
 1674                                     cb->uaiocb._aiocb_private.kernelinfo) ==
 1675                                     ijoblist[i]) {
 1676                                         splx(s);
 1677                                         if (ujoblist[i] != cb->uuaiocb)
 1678                                                 error = EINVAL;
 1679                                         uma_zfree(aiol_zone, ijoblist);
 1680                                         uma_zfree(aiol_zone, ujoblist);
 1681                                         return error;
 1682                                 }
 1683                         }
 1684                 }
 1685 
 1686                 ki->kaio_flags |= KAIO_WAKEUP;
 1687                 error = tsleep(p, PRIBIO | PCATCH, "aiospn", timo);
 1688                 splx(s);
 1689 
 1690                 if (error == ERESTART || error == EINTR) {
 1691                         uma_zfree(aiol_zone, ijoblist);
 1692                         uma_zfree(aiol_zone, ujoblist);
 1693                         return EINTR;
 1694                 } else if (error == EWOULDBLOCK) {
 1695                         uma_zfree(aiol_zone, ijoblist);
 1696                         uma_zfree(aiol_zone, ujoblist);
 1697                         return EAGAIN;
 1698                 }
 1699         }
 1700 
 1701 /* NOTREACHED */
 1702         return EINVAL;
 1703 }
 1704 
 1705 /*
 1706  * aio_cancel cancels any non-physio aio operations not currently in
 1707  * progress.
 1708  */
 1709 int
 1710 aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 1711 {
 1712         struct proc *p = td->td_proc;
 1713         struct kaioinfo *ki;
 1714         struct aiocblist *cbe, *cbn;
 1715         struct file *fp;
 1716         struct filedesc *fdp;
 1717         struct socket *so;
 1718         struct proc *po;
 1719         int s,error;
 1720         int cancelled=0;
 1721         int notcancelled=0;
 1722         struct vnode *vp;
 1723 
 1724         fdp = p->p_fd;
 1725         if ((u_int)uap->fd >= fdp->fd_nfiles ||
 1726             (fp = fdp->fd_ofiles[uap->fd]) == NULL)
 1727                 return (EBADF);
 1728 
 1729         if (fp->f_type == DTYPE_VNODE) {
 1730                 vp = (struct vnode *)fp->f_data;
 1731                 
 1732                 if (vn_isdisk(vp,&error)) {
 1733                         td->td_retval[0] = AIO_NOTCANCELED;
 1734                         return 0;
 1735                 }
 1736         } else if (fp->f_type == DTYPE_SOCKET) {
 1737                 so = (struct socket *)fp->f_data;
 1738 
 1739                 s = splnet();
 1740 
 1741                 for (cbe = TAILQ_FIRST(&so->so_aiojobq); cbe; cbe = cbn) {
 1742                         cbn = TAILQ_NEXT(cbe, list);
 1743                         if ((uap->aiocbp == NULL) ||
 1744                                 (uap->aiocbp == cbe->uuaiocb) ) {
 1745                                 po = cbe->userproc;
 1746                                 ki = po->p_aioinfo;
 1747                                 TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
 1748                                 TAILQ_REMOVE(&ki->kaio_sockqueue, cbe, plist);
 1749                                 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe, plist);
 1750                                 if (ki->kaio_flags & KAIO_WAKEUP) {
 1751                                         wakeup(po);
 1752                                 }
 1753                                 cbe->jobstate = JOBST_JOBFINISHED;
 1754                                 cbe->uaiocb._aiocb_private.status=-1;
 1755                                 cbe->uaiocb._aiocb_private.error=ECANCELED;
 1756                                 cancelled++;
 1757 /* XXX cancelled, knote? */
 1758                                 if (cbe->uaiocb.aio_sigevent.sigev_notify ==
 1759                                     SIGEV_SIGNAL) {
 1760                                         PROC_LOCK(cbe->userproc);
 1761                                         psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo);
 1762                                         PROC_UNLOCK(cbe->userproc);
 1763                                 }
 1764                                 if (uap->aiocbp) 
 1765                                         break;
 1766                         }
 1767                 }
 1768                 splx(s);
 1769 
 1770                 if ((cancelled) && (uap->aiocbp)) {
 1771                         td->td_retval[0] = AIO_CANCELED;
 1772                         return 0;
 1773                 }
 1774         }
 1775         ki=p->p_aioinfo;
 1776         if (ki == NULL)
 1777                 goto done;
 1778         s = splnet();
 1779 
 1780         for (cbe = TAILQ_FIRST(&ki->kaio_jobqueue); cbe; cbe = cbn) {
 1781                 cbn = TAILQ_NEXT(cbe, plist);
 1782 
 1783                 if ((uap->fd == cbe->uaiocb.aio_fildes) &&
 1784                     ((uap->aiocbp == NULL ) || 
 1785                      (uap->aiocbp == cbe->uuaiocb))) {
 1786                         
 1787                         if (cbe->jobstate == JOBST_JOBQGLOBAL) {
 1788                                 TAILQ_REMOVE(&aio_jobs, cbe, list);
 1789                                 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
 1790                                 TAILQ_INSERT_TAIL(&ki->kaio_jobdone, cbe,
 1791                                     plist);
 1792                                 cancelled++;
 1793                                 ki->kaio_queue_finished_count++;
 1794                                 cbe->jobstate = JOBST_JOBFINISHED;
 1795                                 cbe->uaiocb._aiocb_private.status = -1;
 1796                                 cbe->uaiocb._aiocb_private.error = ECANCELED;
 1797 /* XXX cancelled, knote? */
 1798                                 if (cbe->uaiocb.aio_sigevent.sigev_notify ==
 1799                                     SIGEV_SIGNAL) {
 1800                                         PROC_LOCK(cbe->userproc);
 1801                                         psignal(cbe->userproc, cbe->uaiocb.aio_sigevent.sigev_signo);
 1802                                         PROC_UNLOCK(cbe->userproc);
 1803                                 }
 1804                         } else {
 1805                                 notcancelled++;
 1806                         }
 1807                 }
 1808         }
 1809         splx(s);
 1810 done:
 1811         if (notcancelled) {
 1812                 td->td_retval[0] = AIO_NOTCANCELED;
 1813                 return 0;
 1814         }
 1815         if (cancelled) {
 1816                 td->td_retval[0] = AIO_CANCELED;
 1817                 return 0;
 1818         }
 1819         td->td_retval[0] = AIO_ALLDONE;
 1820 
 1821         return 0;
 1822 }
 1823 
 1824 /*
 1825  * aio_error is implemented in the kernel level for compatibility purposes only.
 1826  * For a user mode async implementation, it would be best to do it in a userland
 1827  * subroutine.
 1828  */
 1829 int
 1830 aio_error(struct thread *td, struct aio_error_args *uap)
 1831 {
 1832         struct proc *p = td->td_proc;
 1833         int s;
 1834         struct aiocblist *cb;
 1835         struct kaioinfo *ki;
 1836         long jobref;
 1837 
 1838         ki = p->p_aioinfo;
 1839         if (ki == NULL)
 1840                 return EINVAL;
 1841 
 1842         jobref = fuword(&uap->aiocbp->_aiocb_private.kernelinfo);
 1843         if ((jobref == -1) || (jobref == 0))
 1844                 return EINVAL;
 1845 
 1846         TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
 1847                 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
 1848                     jobref) {
 1849                         td->td_retval[0] = cb->uaiocb._aiocb_private.error;
 1850                         return 0;
 1851                 }
 1852         }
 1853 
 1854         s = splnet();
 1855 
 1856         for (cb = TAILQ_FIRST(&ki->kaio_jobqueue); cb; cb = TAILQ_NEXT(cb,
 1857             plist)) {
 1858                 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
 1859                     jobref) {
 1860                         td->td_retval[0] = EINPROGRESS;
 1861                         splx(s);
 1862                         return 0;
 1863                 }
 1864         }
 1865 
 1866         for (cb = TAILQ_FIRST(&ki->kaio_sockqueue); cb; cb = TAILQ_NEXT(cb,
 1867             plist)) {
 1868                 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
 1869                     jobref) {
 1870                         td->td_retval[0] = EINPROGRESS;
 1871                         splx(s);
 1872                         return 0;
 1873                 }
 1874         }
 1875         splx(s);
 1876 
 1877         s = splbio();
 1878         for (cb = TAILQ_FIRST(&ki->kaio_bufdone); cb; cb = TAILQ_NEXT(cb,
 1879             plist)) {
 1880                 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
 1881                     jobref) {
 1882                         td->td_retval[0] = cb->uaiocb._aiocb_private.error;
 1883                         splx(s);
 1884                         return 0;
 1885                 }
 1886         }
 1887 
 1888         for (cb = TAILQ_FIRST(&ki->kaio_bufqueue); cb; cb = TAILQ_NEXT(cb,
 1889             plist)) {
 1890                 if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo) ==
 1891                     jobref) {
 1892                         td->td_retval[0] = EINPROGRESS;
 1893                         splx(s);
 1894                         return 0;
 1895                 }
 1896         }
 1897         splx(s);
 1898 
 1899 #if (0)
 1900         /*
 1901          * Hack for lio.
 1902          */
 1903         status = fuword(&uap->aiocbp->_aiocb_private.status);
 1904         if (status == -1)
 1905                 return fuword(&uap->aiocbp->_aiocb_private.error);
 1906 #endif
 1907         return EINVAL;
 1908 }
 1909 
 1910 /* syscall - asynchronous read from a file (REALTIME) */
 1911 int
 1912 aio_read(struct thread *td, struct aio_read_args *uap)
 1913 {
 1914 
 1915         return aio_aqueue(td, uap->aiocbp, LIO_READ);
 1916 }
 1917 
 1918 /* syscall - asynchronous write to a file (REALTIME) */
 1919 int
 1920 aio_write(struct thread *td, struct aio_write_args *uap)
 1921 {
 1922 
 1923         return aio_aqueue(td, uap->aiocbp, LIO_WRITE);
 1924 }
 1925 
 1926 /* syscall - XXX undocumented */
 1927 int
 1928 lio_listio(struct thread *td, struct lio_listio_args *uap)
 1929 {
 1930         struct proc *p = td->td_proc;
 1931         int nent, nentqueued;
 1932         struct aiocb *iocb, * const *cbptr;
 1933         struct aiocblist *cb;
 1934         struct kaioinfo *ki;
 1935         struct aio_liojob *lj;
 1936         int error, runningcode;
 1937         int nerror;
 1938         int i;
 1939         int s;
 1940 
 1941         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 1942                 return EINVAL;
 1943 
 1944         nent = uap->nent;
 1945         if (nent > AIO_LISTIO_MAX)
 1946                 return EINVAL;
 1947 
 1948         if (p->p_aioinfo == NULL)
 1949                 aio_init_aioinfo(p);
 1950 
 1951         if ((nent + num_queue_count) > max_queue_count)
 1952                 return EAGAIN;
 1953 
 1954         ki = p->p_aioinfo;
 1955         if ((nent + ki->kaio_queue_count) > ki->kaio_qallowed_count)
 1956                 return EAGAIN;
 1957 
 1958         lj = uma_zalloc(aiolio_zone, M_WAITOK);
 1959         if (!lj)
 1960                 return EAGAIN;
 1961 
 1962         lj->lioj_flags = 0;
 1963         lj->lioj_buffer_count = 0;
 1964         lj->lioj_buffer_finished_count = 0;
 1965         lj->lioj_queue_count = 0;
 1966         lj->lioj_queue_finished_count = 0;
 1967         lj->lioj_ki = ki;
 1968 
 1969         /*
 1970          * Setup signal.
 1971          */
 1972         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 1973                 error = copyin(uap->sig, &lj->lioj_signal,
 1974                                sizeof(lj->lioj_signal));
 1975                 if (error) {
 1976                         uma_zfree(aiolio_zone, lj);
 1977                         return error;
 1978                 }
 1979                 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 1980                         uma_zfree(aiolio_zone, lj);
 1981                         return EINVAL;
 1982                 }
 1983                 lj->lioj_flags |= LIOJ_SIGNAL;
 1984         }
 1985         TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 1986         /*
 1987          * Get pointers to the list of I/O requests.
 1988          */
 1989         nerror = 0;
 1990         nentqueued = 0;
 1991         cbptr = uap->acb_list;
 1992         for (i = 0; i < uap->nent; i++) {
 1993                 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
 1994                 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) {
 1995                         error = _aio_aqueue(td, iocb, lj, 0);
 1996                         if (error == 0)
 1997                                 nentqueued++;
 1998                         else
 1999                                 nerror++;
 2000                 }
 2001         }
 2002 
 2003         /*
 2004          * If we haven't queued any, then just return error.
 2005          */
 2006         if (nentqueued == 0)
 2007                 return 0;
 2008 
 2009         /*
 2010          * Calculate the appropriate error return.
 2011          */
 2012         runningcode = 0;
 2013         if (nerror)
 2014                 runningcode = EIO;
 2015 
 2016         if (uap->mode == LIO_WAIT) {
 2017                 int command, found, jobref;
 2018                 
 2019                 for (;;) {
 2020                         found = 0;
 2021                         for (i = 0; i < uap->nent; i++) {
 2022                                 /*
 2023                                  * Fetch address of the control buf pointer in
 2024                                  * user space.
 2025                                  */
 2026                                 iocb = (struct aiocb *)
 2027                                     (intptr_t)fuword(&cbptr[i]);
 2028                                 if (((intptr_t)iocb == -1) || ((intptr_t)iocb
 2029                                     == 0))
 2030                                         continue;
 2031 
 2032                                 /*
 2033                                  * Fetch the associated command from user space.
 2034                                  */
 2035                                 command = fuword(&iocb->aio_lio_opcode);
 2036                                 if (command == LIO_NOP) {
 2037                                         found++;
 2038                                         continue;
 2039                                 }
 2040 
 2041                                 jobref = fuword(&iocb->_aiocb_private.kernelinfo);
 2042 
 2043                                 TAILQ_FOREACH(cb, &ki->kaio_jobdone, plist) {
 2044                                         if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo)
 2045                                             == jobref) {
 2046                                                 if (cb->uaiocb.aio_lio_opcode
 2047                                                     == LIO_WRITE) {
 2048                                                         p->p_stats->p_ru.ru_oublock
 2049                                                             +=
 2050                                                             cb->outputcharge;
 2051                                                         cb->outputcharge = 0;
 2052                                                 } else if (cb->uaiocb.aio_lio_opcode
 2053                                                     == LIO_READ) {
 2054                                                         p->p_stats->p_ru.ru_inblock
 2055                                                             += cb->inputcharge;
 2056                                                         cb->inputcharge = 0;
 2057                                                 }
 2058                                                 found++;
 2059                                                 break;
 2060                                         }
 2061                                 }
 2062 
 2063                                 s = splbio();
 2064                                 TAILQ_FOREACH(cb, &ki->kaio_bufdone, plist) {
 2065                                         if (((intptr_t)cb->uaiocb._aiocb_private.kernelinfo)
 2066                                             == jobref) {
 2067                                                 found++;
 2068                                                 break;
 2069                                         }
 2070                                 }
 2071                                 splx(s);
 2072                         }
 2073 
 2074                         /*
 2075                          * If all I/Os have been disposed of, then we can
 2076                          * return.
 2077                          */
 2078                         if (found == nentqueued)
 2079                                 return runningcode;
 2080                         
 2081                         ki->kaio_flags |= KAIO_WAKEUP;
 2082                         error = tsleep(p, PRIBIO | PCATCH, "aiospn", 0);
 2083 
 2084                         if (error == EINTR)
 2085                                 return EINTR;
 2086                         else if (error == EWOULDBLOCK)
 2087                                 return EAGAIN;
 2088                 }
 2089         }
 2090 
 2091         return runningcode;
 2092 }
 2093 
 2094 /*
 2095  * This is a weird hack so that we can post a signal.  It is safe to do so from
 2096  * a timeout routine, but *not* from an interrupt routine.
 2097  */
 2098 static void
 2099 process_signal(void *aioj)
 2100 {
 2101         struct aiocblist *aiocbe = aioj;
 2102         struct aio_liojob *lj = aiocbe->lio;
 2103         struct aiocb *cb = &aiocbe->uaiocb;
 2104 
 2105         if ((lj) && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL) &&
 2106                 (lj->lioj_queue_count == lj->lioj_queue_finished_count)) {
 2107                 PROC_LOCK(lj->lioj_ki->kaio_p);
 2108                 psignal(lj->lioj_ki->kaio_p, lj->lioj_signal.sigev_signo);
 2109                 PROC_UNLOCK(lj->lioj_ki->kaio_p);
 2110                 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2111         }
 2112 
 2113         if (cb->aio_sigevent.sigev_notify == SIGEV_SIGNAL) {
 2114                 PROC_LOCK(aiocbe->userproc);
 2115                 psignal(aiocbe->userproc, cb->aio_sigevent.sigev_signo);
 2116                 PROC_UNLOCK(aiocbe->userproc);
 2117         }
 2118 }
 2119 
 2120 /*
 2121  * Interrupt handler for physio, performs the necessary process wakeups, and
 2122  * signals.
 2123  */
 2124 static void
 2125 aio_physwakeup(struct buf *bp)
 2126 {
 2127         struct aiocblist *aiocbe;
 2128         struct proc *p;
 2129         struct kaioinfo *ki;
 2130         struct aio_liojob *lj;
 2131 
 2132         wakeup(bp);
 2133 
 2134         aiocbe = (struct aiocblist *)bp->b_spc;
 2135         if (aiocbe) {
 2136                 p = bp->b_caller1;
 2137 
 2138                 aiocbe->jobstate = JOBST_JOBBFINISHED;
 2139                 aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
 2140                 aiocbe->uaiocb._aiocb_private.error = 0;
 2141                 aiocbe->jobflags |= AIOCBLIST_DONE;
 2142 
 2143                 if (bp->b_ioflags & BIO_ERROR)
 2144                         aiocbe->uaiocb._aiocb_private.error = bp->b_error;
 2145 
 2146                 lj = aiocbe->lio;
 2147                 if (lj) {
 2148                         lj->lioj_buffer_finished_count++;
 2149                         
 2150                         /*
 2151                          * wakeup/signal if all of the interrupt jobs are done.
 2152                          */
 2153                         if (lj->lioj_buffer_finished_count ==
 2154                             lj->lioj_buffer_count) {
 2155                                 /*
 2156                                  * Post a signal if it is called for.
 2157                                  */
 2158                                 if ((lj->lioj_flags &
 2159                                     (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED)) ==
 2160                                     LIOJ_SIGNAL) {
 2161                                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2162                                         aiocbe->timeouthandle =
 2163                                                 timeout(process_signal,
 2164                                                         aiocbe, 0);
 2165                                 }
 2166                         }
 2167                 }
 2168 
 2169                 ki = p->p_aioinfo;
 2170                 if (ki) {
 2171                         ki->kaio_buffer_finished_count++;
 2172                         TAILQ_REMOVE(&aio_bufjobs, aiocbe, list);
 2173                         TAILQ_REMOVE(&ki->kaio_bufqueue, aiocbe, plist);
 2174                         TAILQ_INSERT_TAIL(&ki->kaio_bufdone, aiocbe, plist);
 2175 
 2176                         KNOTE(&aiocbe->klist, 0);
 2177                         /* Do the wakeup. */
 2178                         if (ki->kaio_flags & (KAIO_RUNDOWN|KAIO_WAKEUP)) {
 2179                                 ki->kaio_flags &= ~KAIO_WAKEUP;
 2180                                 wakeup(p);
 2181                         }
 2182                 }
 2183 
 2184                 if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL)
 2185                         aiocbe->timeouthandle =
 2186                                 timeout(process_signal, aiocbe, 0);
 2187         }
 2188 }
 2189 
 2190 /* syscall - wait for the next completion of an aio request */
 2191 int
 2192 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 2193 {
 2194         struct proc *p = td->td_proc;
 2195         struct timeval atv;
 2196         struct timespec ts;
 2197         struct kaioinfo *ki;
 2198         struct aiocblist *cb = NULL;
 2199         int error, s, timo;
 2200         
 2201         suword(uap->aiocbp, (int)NULL);
 2202 
 2203         timo = 0;
 2204         if (uap->timeout) {
 2205                 /* Get timespec struct. */
 2206                 error = copyin(uap->timeout, &ts, sizeof(ts));
 2207                 if (error)
 2208                         return error;
 2209 
 2210                 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000))
 2211                         return (EINVAL);
 2212 
 2213                 TIMESPEC_TO_TIMEVAL(&atv, &ts);
 2214                 if (itimerfix(&atv))
 2215                         return (EINVAL);
 2216                 timo = tvtohz(&atv);
 2217         }
 2218 
 2219         ki = p->p_aioinfo;
 2220         if (ki == NULL)
 2221                 return EAGAIN;
 2222 
 2223         for (;;) {
 2224                 if ((cb = TAILQ_FIRST(&ki->kaio_jobdone)) != 0) {
 2225                         suword(uap->aiocbp, (uintptr_t)cb->uuaiocb);
 2226                         td->td_retval[0] = cb->uaiocb._aiocb_private.status;
 2227                         if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 2228                                 p->p_stats->p_ru.ru_oublock +=
 2229                                     cb->outputcharge;
 2230                                 cb->outputcharge = 0;
 2231                         } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 2232                                 p->p_stats->p_ru.ru_inblock += cb->inputcharge;
 2233                                 cb->inputcharge = 0;
 2234                         }
 2235                         aio_free_entry(cb);
 2236                         return cb->uaiocb._aiocb_private.error;
 2237                 }
 2238 
 2239                 s = splbio();
 2240                 if ((cb = TAILQ_FIRST(&ki->kaio_bufdone)) != 0 ) {
 2241                         splx(s);
 2242                         suword(uap->aiocbp, (uintptr_t)cb->uuaiocb);
 2243                         td->td_retval[0] = cb->uaiocb._aiocb_private.status;
 2244                         aio_free_entry(cb);
 2245                         return cb->uaiocb._aiocb_private.error;
 2246                 }
 2247 
 2248                 ki->kaio_flags |= KAIO_WAKEUP;
 2249                 error = tsleep(p, PRIBIO | PCATCH, "aiowc", timo);
 2250                 splx(s);
 2251 
 2252                 if (error == ERESTART)
 2253                         return EINTR;
 2254                 else if (error < 0)
 2255                         return error;
 2256                 else if (error == EINTR)
 2257                         return EINTR;
 2258                 else if (error == EWOULDBLOCK)
 2259                         return EAGAIN;
 2260         }
 2261 }
 2262 
 2263 /* kqueue attach function */
 2264 static int
 2265 filt_aioattach(struct knote *kn)
 2266 {
 2267         struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
 2268 
 2269         /*
 2270          * The aiocbe pointer must be validated before using it, so
 2271          * registration is restricted to the kernel; the user cannot
 2272          * set EV_FLAG1.
 2273          */
 2274         if ((kn->kn_flags & EV_FLAG1) == 0)
 2275                 return (EPERM);
 2276         kn->kn_flags &= ~EV_FLAG1;
 2277 
 2278         SLIST_INSERT_HEAD(&aiocbe->klist, kn, kn_selnext);
 2279 
 2280         return (0);
 2281 }
 2282 
 2283 /* kqueue detach function */
 2284 static void
 2285 filt_aiodetach(struct knote *kn)
 2286 {
 2287         struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
 2288 
 2289         SLIST_REMOVE(&aiocbe->klist, kn, knote, kn_selnext);
 2290 }
 2291 
 2292 /* kqueue filter function */
 2293 /*ARGSUSED*/
 2294 static int
 2295 filt_aio(struct knote *kn, long hint)
 2296 {
 2297         struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
 2298 
 2299         kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
 2300         if (aiocbe->jobstate != JOBST_JOBFINISHED &&
 2301             aiocbe->jobstate != JOBST_JOBBFINISHED)
 2302                 return (0);
 2303         kn->kn_flags |= EV_EOF; 
 2304         return (1);
 2305 }

Cache object: 33192c198929c08d478915800469e332


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.