The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_aio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. John S. Dyson's name may not be used to endorse or promote products
   10  *    derived from this software without specific prior written permission.
   11  *
   12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
   13  * bad that happens because of using this software isn't the responsibility
   14  * of the author.  This software is distributed AS-IS.
   15  */
   16 
   17 /*
   18  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
   19  */
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD$");
   23 
   24 #include <sys/param.h>
   25 #include <sys/systm.h>
   26 #include <sys/malloc.h>
   27 #include <sys/bio.h>
   28 #include <sys/buf.h>
   29 #include <sys/eventhandler.h>
   30 #include <sys/sysproto.h>
   31 #include <sys/filedesc.h>
   32 #include <sys/kernel.h>
   33 #include <sys/module.h>
   34 #include <sys/kthread.h>
   35 #include <sys/fcntl.h>
   36 #include <sys/file.h>
   37 #include <sys/limits.h>
   38 #include <sys/lock.h>
   39 #include <sys/mutex.h>
   40 #include <sys/unistd.h>
   41 #include <sys/posix4.h>
   42 #include <sys/proc.h>
   43 #include <sys/resourcevar.h>
   44 #include <sys/signalvar.h>
   45 #include <sys/protosw.h>
   46 #include <sys/sema.h>
   47 #include <sys/socket.h>
   48 #include <sys/socketvar.h>
   49 #include <sys/syscall.h>
   50 #include <sys/sysent.h>
   51 #include <sys/sysctl.h>
   52 #include <sys/sx.h>
   53 #include <sys/taskqueue.h>
   54 #include <sys/vnode.h>
   55 #include <sys/conf.h>
   56 #include <sys/event.h>
   57 #include <sys/mount.h>
   58 
   59 #include <machine/atomic.h>
   60 
   61 #include <vm/vm.h>
   62 #include <vm/vm_extern.h>
   63 #include <vm/pmap.h>
   64 #include <vm/vm_map.h>
   65 #include <vm/vm_object.h>
   66 #include <vm/uma.h>
   67 #include <sys/aio.h>
   68 
   69 #include "opt_vfs_aio.h"
   70 
   71 /*
   72  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
   73  * overflow. (XXX will be removed soon.)
   74  */
   75 static u_long jobrefid;
   76 
   77 /*
   78  * Counter for aio_fsync.
   79  */
   80 static uint64_t jobseqno;
   81 
   82 #define JOBST_NULL              0
   83 #define JOBST_JOBQSOCK          1
   84 #define JOBST_JOBQGLOBAL        2
   85 #define JOBST_JOBRUNNING        3
   86 #define JOBST_JOBFINISHED       4
   87 #define JOBST_JOBQBUF           5
   88 #define JOBST_JOBQSYNC          6
   89 
   90 #ifndef MAX_AIO_PER_PROC
   91 #define MAX_AIO_PER_PROC        32
   92 #endif
   93 
   94 #ifndef MAX_AIO_QUEUE_PER_PROC
   95 #define MAX_AIO_QUEUE_PER_PROC  256 /* Bigger than AIO_LISTIO_MAX */
   96 #endif
   97 
   98 #ifndef MAX_AIO_PROCS
   99 #define MAX_AIO_PROCS           32
  100 #endif
  101 
  102 #ifndef MAX_AIO_QUEUE
  103 #define MAX_AIO_QUEUE           1024 /* Bigger than AIO_LISTIO_MAX */
  104 #endif
  105 
  106 #ifndef TARGET_AIO_PROCS
  107 #define TARGET_AIO_PROCS        4
  108 #endif
  109 
  110 #ifndef MAX_BUF_AIO
  111 #define MAX_BUF_AIO             16
  112 #endif
  113 
  114 #ifndef AIOD_TIMEOUT_DEFAULT
  115 #define AIOD_TIMEOUT_DEFAULT    (10 * hz)
  116 #endif
  117 
  118 #ifndef AIOD_LIFETIME_DEFAULT
  119 #define AIOD_LIFETIME_DEFAULT   (30 * hz)
  120 #endif
  121 
  122 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
  123 
  124 static int max_aio_procs = MAX_AIO_PROCS;
  125 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
  126         CTLFLAG_RW, &max_aio_procs, 0,
  127         "Maximum number of kernel threads to use for handling async IO ");
  128 
  129 static int num_aio_procs = 0;
  130 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
  131         CTLFLAG_RD, &num_aio_procs, 0,
  132         "Number of presently active kernel threads for async IO");
  133 
  134 /*
  135  * The code will adjust the actual number of AIO processes towards this
  136  * number when it gets a chance.
  137  */
  138 static int target_aio_procs = TARGET_AIO_PROCS;
  139 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
  140         0, "Preferred number of ready kernel threads for async IO");
  141 
  142 static int max_queue_count = MAX_AIO_QUEUE;
  143 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
  144     "Maximum number of aio requests to queue, globally");
  145 
  146 static int num_queue_count = 0;
  147 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
  148     "Number of queued aio requests");
  149 
  150 static int num_buf_aio = 0;
  151 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
  152     "Number of aio requests presently handled by the buf subsystem");
  153 
  154 /* Number of async I/O thread in the process of being started */
  155 /* XXX This should be local to aio_aqueue() */
  156 static int num_aio_resv_start = 0;
  157 
  158 static int aiod_timeout;
  159 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
  160     "Timeout value for synchronous aio operations");
  161 
  162 static int aiod_lifetime;
  163 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
  164     "Maximum lifetime for idle aiod");
  165 
  166 static int unloadable = 0;
  167 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0,
  168     "Allow unload of aio (not recommended)");
  169 
  170 
  171 static int max_aio_per_proc = MAX_AIO_PER_PROC;
  172 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
  173     0, "Maximum active aio requests per process (stored in the process)");
  174 
  175 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
  176 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
  177     &max_aio_queue_per_proc, 0,
  178     "Maximum queued aio requests per process (stored in the process)");
  179 
  180 static int max_buf_aio = MAX_BUF_AIO;
  181 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
  182     "Maximum buf aio requests per process (stored in the process)");
  183 
  184 typedef struct oaiocb {
  185         int     aio_fildes;             /* File descriptor */
  186         off_t   aio_offset;             /* File offset for I/O */
  187         volatile void *aio_buf;         /* I/O buffer in process space */
  188         size_t  aio_nbytes;             /* Number of bytes for I/O */
  189         struct  osigevent aio_sigevent; /* Signal to deliver */
  190         int     aio_lio_opcode;         /* LIO opcode */
  191         int     aio_reqprio;            /* Request priority -- ignored */
  192         struct  __aiocb_private _aiocb_private;
  193 } oaiocb_t;
  194 
  195 /*
  196  * Below is a key of locks used to protect each member of struct aiocblist
  197  * aioliojob and kaioinfo and any backends.
  198  *
  199  * * - need not protected
  200  * a - locked by kaioinfo lock
  201  * b - locked by backend lock, the backend lock can be null in some cases,
  202  *     for example, BIO belongs to this type, in this case, proc lock is
  203  *     reused.
  204  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
  205  */
  206 
  207 /*
  208  * Current, there is only two backends: BIO and generic file I/O.
  209  * socket I/O is served by generic file I/O, this is not a good idea, since
  210  * disk file I/O and any other types without O_NONBLOCK flag can block daemon
  211  * threads, if there is no thread to serve socket I/O, the socket I/O will be
  212  * delayed too long or starved, we should create some threads dedicated to
  213  * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O
  214  * systems we really need non-blocking interface, fiddling O_NONBLOCK in file
  215  * structure is not safe because there is race between userland and aio
  216  * daemons.
  217  */
  218 
  219 struct aiocblist {
  220         TAILQ_ENTRY(aiocblist) list;    /* (b) internal list of for backend */
  221         TAILQ_ENTRY(aiocblist) plist;   /* (a) list of jobs for each backend */
  222         TAILQ_ENTRY(aiocblist) allist;  /* (a) list of all jobs in proc */
  223         int     jobflags;               /* (a) job flags */
  224         int     jobstate;               /* (b) job state */
  225         int     inputcharge;            /* (*) input blockes */
  226         int     outputcharge;           /* (*) output blockes */
  227         struct  buf *bp;                /* (*) private to BIO backend,
  228                                          * buffer pointer
  229                                          */
  230         struct  proc *userproc;         /* (*) user process */
  231         struct  ucred *cred;            /* (*) active credential when created */
  232         struct  file *fd_file;          /* (*) pointer to file structure */
  233         struct  aioliojob *lio;         /* (*) optional lio job */
  234         struct  aiocb *uuaiocb;         /* (*) pointer in userspace of aiocb */
  235         struct  knlist klist;           /* (a) list of knotes */
  236         struct  aiocb uaiocb;           /* (*) kernel I/O control block */
  237         ksiginfo_t ksi;                 /* (a) realtime signal info */
  238         struct  task biotask;           /* (*) private to BIO backend */
  239         uint64_t seqno;                 /* (*) job number */
  240         int     pending;                /* (a) number of pending I/O, aio_fsync only */
  241 };
  242 
  243 /* jobflags */
  244 #define AIOCBLIST_DONE          0x01
  245 #define AIOCBLIST_BUFDONE       0x02
  246 #define AIOCBLIST_RUNDOWN       0x04
  247 #define AIOCBLIST_CHECKSYNC     0x08
  248 
  249 /*
  250  * AIO process info
  251  */
  252 #define AIOP_FREE       0x1                     /* proc on free queue */
  253 
  254 struct aiothreadlist {
  255         int aiothreadflags;                     /* (c) AIO proc flags */
  256         TAILQ_ENTRY(aiothreadlist) list;        /* (c) list of processes */
  257         struct thread *aiothread;               /* (*) the AIO thread */
  258 };
  259 
  260 /*
  261  * data-structure for lio signal management
  262  */
  263 struct aioliojob {
  264         int     lioj_flags;                     /* (a) listio flags */
  265         int     lioj_count;                     /* (a) listio flags */
  266         int     lioj_finished_count;            /* (a) listio flags */
  267         struct  sigevent lioj_signal;           /* (a) signal on all I/O done */
  268         TAILQ_ENTRY(aioliojob) lioj_list;       /* (a) lio list */
  269         struct  knlist klist;                   /* (a) list of knotes */
  270         ksiginfo_t lioj_ksi;                    /* (a) Realtime signal info */
  271 };
  272 
  273 #define LIOJ_SIGNAL             0x1     /* signal on all done (lio) */
  274 #define LIOJ_SIGNAL_POSTED      0x2     /* signal has been posted */
  275 #define LIOJ_KEVENT_POSTED      0x4     /* kevent triggered */
  276 
  277 /*
  278  * per process aio data structure
  279  */
  280 struct kaioinfo {
  281         struct mtx      kaio_mtx;       /* the lock to protect this struct */
  282         int     kaio_flags;             /* (a) per process kaio flags */
  283         int     kaio_maxactive_count;   /* (*) maximum number of AIOs */
  284         int     kaio_active_count;      /* (c) number of currently used AIOs */
  285         int     kaio_qallowed_count;    /* (*) maxiumu size of AIO queue */
  286         int     kaio_count;             /* (a) size of AIO queue */
  287         int     kaio_ballowed_count;    /* (*) maximum number of buffers */
  288         int     kaio_buffer_count;      /* (a) number of physio buffers */
  289         TAILQ_HEAD(,aiocblist) kaio_all;        /* (a) all AIOs in the process */
  290         TAILQ_HEAD(,aiocblist) kaio_done;       /* (a) done queue for process */
  291         TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
  292         TAILQ_HEAD(,aiocblist) kaio_jobqueue;   /* (a) job queue for process */
  293         TAILQ_HEAD(,aiocblist) kaio_bufqueue;   /* (a) buffer job queue for process */
  294         TAILQ_HEAD(,aiocblist) kaio_sockqueue;  /* (a) queue for aios waiting on sockets,
  295                                                  *  NOT USED YET.
  296                                                  */
  297         TAILQ_HEAD(,aiocblist) kaio_syncqueue;  /* (a) queue for aio_fsync */
  298         struct  task    kaio_task;      /* (*) task to kick aio threads */
  299 };
  300 
  301 #define AIO_LOCK(ki)            mtx_lock(&(ki)->kaio_mtx)
  302 #define AIO_UNLOCK(ki)          mtx_unlock(&(ki)->kaio_mtx)
  303 #define AIO_LOCK_ASSERT(ki, f)  mtx_assert(&(ki)->kaio_mtx, (f))
  304 #define AIO_MTX(ki)             (&(ki)->kaio_mtx)
  305 
  306 #define KAIO_RUNDOWN    0x1     /* process is being run down */
  307 #define KAIO_WAKEUP     0x2     /* wakeup process when there is a significant event */
  308 
  309 static TAILQ_HEAD(,aiothreadlist) aio_freeproc;         /* (c) Idle daemons */
  310 static struct sema aio_newproc_sem;
  311 static struct mtx aio_job_mtx;
  312 static struct mtx aio_sock_mtx;
  313 static TAILQ_HEAD(,aiocblist) aio_jobs;                 /* (c) Async job list */
  314 static struct unrhdr *aiod_unr;
  315 
  316 void            aio_init_aioinfo(struct proc *p);
  317 static void     aio_onceonly(void);
  318 static int      aio_free_entry(struct aiocblist *aiocbe);
  319 static void     aio_process(struct aiocblist *aiocbe);
  320 static int      aio_newproc(int *);
  321 int             aio_aqueue(struct thread *td, struct aiocb *job,
  322                         struct aioliojob *lio, int type, int osigev);
  323 static void     aio_physwakeup(struct buf *bp);
  324 static void     aio_proc_rundown(void *arg, struct proc *p);
  325 static void     aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp);
  326 static int      aio_qphysio(struct proc *p, struct aiocblist *iocb);
  327 static void     biohelper(void *, int);
  328 static void     aio_daemon(void *param);
  329 static void     aio_swake_cb(struct socket *, struct sockbuf *);
  330 static int      aio_unload(void);
  331 static void     aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type);
  332 #define DONE_BUF        1
  333 #define DONE_QUEUE      2
  334 static int      do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev);
  335 static int      aio_kick(struct proc *userp);
  336 static void     aio_kick_nowait(struct proc *userp);
  337 static void     aio_kick_helper(void *context, int pending);
  338 static int      filt_aioattach(struct knote *kn);
  339 static void     filt_aiodetach(struct knote *kn);
  340 static int      filt_aio(struct knote *kn, long hint);
  341 static int      filt_lioattach(struct knote *kn);
  342 static void     filt_liodetach(struct knote *kn);
  343 static int      filt_lio(struct knote *kn, long hint);
  344 
  345 /*
  346  * Zones for:
  347  *      kaio    Per process async io info
  348  *      aiop    async io thread data
  349  *      aiocb   async io jobs
  350  *      aiol    list io job pointer - internal to aio_suspend XXX
  351  *      aiolio  list io jobs
  352  */
  353 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
  354 
  355 /* kqueue filters for aio */
  356 static struct filterops aio_filtops =
  357         { 0, filt_aioattach, filt_aiodetach, filt_aio };
  358 static struct filterops lio_filtops =
  359         { 0, filt_lioattach, filt_liodetach, filt_lio };
  360 
  361 static eventhandler_tag exit_tag, exec_tag;
  362 
  363 TASKQUEUE_DEFINE_THREAD(aiod_bio);
  364 
  365 /*
  366  * Main operations function for use as a kernel module.
  367  */
  368 static int
  369 aio_modload(struct module *module, int cmd, void *arg)
  370 {
  371         int error = 0;
  372 
  373         switch (cmd) {
  374         case MOD_LOAD:
  375                 aio_onceonly();
  376                 break;
  377         case MOD_UNLOAD:
  378                 error = aio_unload();
  379                 break;
  380         case MOD_SHUTDOWN:
  381                 break;
  382         default:
  383                 error = EINVAL;
  384                 break;
  385         }
  386         return (error);
  387 }
  388 
  389 static moduledata_t aio_mod = {
  390         "aio",
  391         &aio_modload,
  392         NULL
  393 };
  394 
  395 SYSCALL_MODULE_HELPER(aio_cancel);
  396 SYSCALL_MODULE_HELPER(aio_error);
  397 SYSCALL_MODULE_HELPER(aio_fsync);
  398 SYSCALL_MODULE_HELPER(aio_read);
  399 SYSCALL_MODULE_HELPER(aio_return);
  400 SYSCALL_MODULE_HELPER(aio_suspend);
  401 SYSCALL_MODULE_HELPER(aio_waitcomplete);
  402 SYSCALL_MODULE_HELPER(aio_write);
  403 SYSCALL_MODULE_HELPER(lio_listio);
  404 SYSCALL_MODULE_HELPER(oaio_read);
  405 SYSCALL_MODULE_HELPER(oaio_write);
  406 SYSCALL_MODULE_HELPER(olio_listio);
  407 
  408 DECLARE_MODULE(aio, aio_mod,
  409         SI_SUB_VFS, SI_ORDER_ANY);
  410 MODULE_VERSION(aio, 1);
  411 
  412 /*
  413  * Startup initialization
  414  */
  415 static void
  416 aio_onceonly(void)
  417 {
  418 
  419         /* XXX: should probably just use so->callback */
  420         aio_swake = &aio_swake_cb;
  421         exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
  422             EVENTHANDLER_PRI_ANY);
  423         exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL,
  424             EVENTHANDLER_PRI_ANY);
  425         kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
  426         kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
  427         TAILQ_INIT(&aio_freeproc);
  428         sema_init(&aio_newproc_sem, 0, "aio_new_proc");
  429         mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
  430         mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF);
  431         TAILQ_INIT(&aio_jobs);
  432         aiod_unr = new_unrhdr(1, INT_MAX, NULL);
  433         kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
  434             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  435         aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL,
  436             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  437         aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL,
  438             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  439         aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
  440             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  441         aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
  442             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  443         aiod_timeout = AIOD_TIMEOUT_DEFAULT;
  444         aiod_lifetime = AIOD_LIFETIME_DEFAULT;
  445         jobrefid = 1;
  446         async_io_version = _POSIX_VERSION;
  447         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
  448         p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
  449         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
  450 }
  451 
  452 /*
  453  * Callback for unload of AIO when used as a module.
  454  */
  455 static int
  456 aio_unload(void)
  457 {
  458         int error;
  459 
  460         /*
  461          * XXX: no unloads by default, it's too dangerous.
  462          * perhaps we could do it if locked out callers and then
  463          * did an aio_proc_rundown() on each process.
  464          *
  465          * jhb: aio_proc_rundown() needs to run on curproc though,
  466          * so I don't think that would fly.
  467          */
  468         if (!unloadable)
  469                 return (EOPNOTSUPP);
  470 
  471         error = kqueue_del_filteropts(EVFILT_AIO);
  472         if (error)
  473                 return error;
  474         error = kqueue_del_filteropts(EVFILT_LIO);
  475         if (error)
  476                 return error;
  477         async_io_version = 0;
  478         aio_swake = NULL;
  479         taskqueue_free(taskqueue_aiod_bio);
  480         delete_unrhdr(aiod_unr);
  481         uma_zdestroy(kaio_zone);
  482         uma_zdestroy(aiop_zone);
  483         uma_zdestroy(aiocb_zone);
  484         uma_zdestroy(aiol_zone);
  485         uma_zdestroy(aiolio_zone);
  486         EVENTHANDLER_DEREGISTER(process_exit, exit_tag);
  487         EVENTHANDLER_DEREGISTER(process_exec, exec_tag);
  488         mtx_destroy(&aio_job_mtx);
  489         mtx_destroy(&aio_sock_mtx);
  490         sema_destroy(&aio_newproc_sem);
  491         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1);
  492         p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1);
  493         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1);
  494         return (0);
  495 }
  496 
  497 /*
  498  * Init the per-process aioinfo structure.  The aioinfo limits are set
  499  * per-process for user limit (resource) management.
  500  */
  501 void
  502 aio_init_aioinfo(struct proc *p)
  503 {
  504         struct kaioinfo *ki;
  505 
  506         ki = uma_zalloc(kaio_zone, M_WAITOK);
  507         mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF);
  508         ki->kaio_flags = 0;
  509         ki->kaio_maxactive_count = max_aio_per_proc;
  510         ki->kaio_active_count = 0;
  511         ki->kaio_qallowed_count = max_aio_queue_per_proc;
  512         ki->kaio_count = 0;
  513         ki->kaio_ballowed_count = max_buf_aio;
  514         ki->kaio_buffer_count = 0;
  515         TAILQ_INIT(&ki->kaio_all);
  516         TAILQ_INIT(&ki->kaio_done);
  517         TAILQ_INIT(&ki->kaio_jobqueue);
  518         TAILQ_INIT(&ki->kaio_bufqueue);
  519         TAILQ_INIT(&ki->kaio_liojoblist);
  520         TAILQ_INIT(&ki->kaio_sockqueue);
  521         TAILQ_INIT(&ki->kaio_syncqueue);
  522         TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
  523         PROC_LOCK(p);
  524         if (p->p_aioinfo == NULL) {
  525                 p->p_aioinfo = ki;
  526                 PROC_UNLOCK(p);
  527         } else {
  528                 PROC_UNLOCK(p);
  529                 mtx_destroy(&ki->kaio_mtx);
  530                 uma_zfree(kaio_zone, ki);
  531         }
  532 
  533         while (num_aio_procs < target_aio_procs)
  534                 aio_newproc(NULL);
  535 }
  536 
  537 static int
  538 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
  539 {
  540         int ret = 0;
  541 
  542         PROC_LOCK(p);
  543         if (!KSI_ONQ(ksi)) {
  544                 ksi->ksi_code = SI_ASYNCIO;
  545                 ksi->ksi_flags |= KSI_EXT | KSI_INS;
  546                 ret = psignal_event(p, sigev, ksi);
  547         }
  548         PROC_UNLOCK(p);
  549         return (ret);
  550 }
  551 
  552 /*
  553  * Free a job entry.  Wait for completion if it is currently active, but don't
  554  * delay forever.  If we delay, we return a flag that says that we have to
  555  * restart the queue scan.
  556  */
  557 static int
  558 aio_free_entry(struct aiocblist *aiocbe)
  559 {
  560         struct kaioinfo *ki;
  561         struct aioliojob *lj;
  562         struct proc *p;
  563 
  564         p = aiocbe->userproc;
  565         MPASS(curproc == p);
  566         ki = p->p_aioinfo;
  567         MPASS(ki != NULL);
  568 
  569         AIO_LOCK_ASSERT(ki, MA_OWNED);
  570         MPASS(aiocbe->jobstate == JOBST_JOBFINISHED);
  571 
  572         atomic_subtract_int(&num_queue_count, 1);
  573 
  574         ki->kaio_count--;
  575         MPASS(ki->kaio_count >= 0);
  576 
  577         TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist);
  578         TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
  579 
  580         lj = aiocbe->lio;
  581         if (lj) {
  582                 lj->lioj_count--;
  583                 lj->lioj_finished_count--;
  584 
  585                 if (lj->lioj_count == 0) {
  586                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  587                         /* lio is going away, we need to destroy any knotes */
  588                         knlist_delete(&lj->klist, curthread, 1);
  589                         PROC_LOCK(p);
  590                         sigqueue_take(&lj->lioj_ksi);
  591                         PROC_UNLOCK(p);
  592                         uma_zfree(aiolio_zone, lj);
  593                 }
  594         }
  595 
  596         /* aiocbe is going away, we need to destroy any knotes */
  597         knlist_delete(&aiocbe->klist, curthread, 1);
  598         PROC_LOCK(p);
  599         sigqueue_take(&aiocbe->ksi);
  600         PROC_UNLOCK(p);
  601 
  602         MPASS(aiocbe->bp == NULL);
  603         aiocbe->jobstate = JOBST_NULL;
  604         AIO_UNLOCK(ki);
  605 
  606         /*
  607          * The thread argument here is used to find the owning process
  608          * and is also passed to fo_close() which may pass it to various
  609          * places such as devsw close() routines.  Because of that, we
  610          * need a thread pointer from the process owning the job that is
  611          * persistent and won't disappear out from under us or move to
  612          * another process.
  613          *
  614          * Currently, all the callers of this function call it to remove
  615          * an aiocblist from the current process' job list either via a
  616          * syscall or due to the current process calling exit() or
  617          * execve().  Thus, we know that p == curproc.  We also know that
  618          * curthread can't exit since we are curthread.
  619          *
  620          * Therefore, we use curthread as the thread to pass to
  621          * knlist_delete().  This does mean that it is possible for the
  622          * thread pointer at close time to differ from the thread pointer
  623          * at open time, but this is already true of file descriptors in
  624          * a multithreaded process.
  625          */
  626         fdrop(aiocbe->fd_file, curthread);
  627         crfree(aiocbe->cred);
  628         uma_zfree(aiocb_zone, aiocbe);
  629         AIO_LOCK(ki);
  630 
  631         return (0);
  632 }
  633 
  634 static void
  635 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
  636 {
  637         aio_proc_rundown(arg, p);
  638 }
  639 
  640 /*
  641  * Rundown the jobs for a given process.
  642  */
  643 static void
  644 aio_proc_rundown(void *arg, struct proc *p)
  645 {
  646         struct kaioinfo *ki;
  647         struct aioliojob *lj;
  648         struct aiocblist *cbe, *cbn;
  649         struct file *fp;
  650         struct socket *so;
  651         int remove;
  652 
  653         KASSERT(curthread->td_proc == p,
  654             ("%s: called on non-curproc", __func__));
  655         ki = p->p_aioinfo;
  656         if (ki == NULL)
  657                 return;
  658 
  659         AIO_LOCK(ki);
  660         ki->kaio_flags |= KAIO_RUNDOWN;
  661 
  662 restart:
  663 
  664         /*
  665          * Try to cancel all pending requests. This code simulates
  666          * aio_cancel on all pending I/O requests.
  667          */
  668         TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
  669                 remove = 0;
  670                 mtx_lock(&aio_job_mtx);
  671                 if (cbe->jobstate == JOBST_JOBQGLOBAL) {
  672                         TAILQ_REMOVE(&aio_jobs, cbe, list);
  673                         remove = 1;
  674                 } else if (cbe->jobstate == JOBST_JOBQSOCK) {
  675                         fp = cbe->fd_file;
  676                         MPASS(fp->f_type == DTYPE_SOCKET);
  677                         so = fp->f_data;
  678                         TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
  679                         remove = 1;
  680                 } else if (cbe->jobstate == JOBST_JOBQSYNC) {
  681                         TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
  682                         remove = 1;
  683                 }
  684                 mtx_unlock(&aio_job_mtx);
  685 
  686                 if (remove) {
  687                         cbe->jobstate = JOBST_JOBFINISHED;
  688                         cbe->uaiocb._aiocb_private.status = -1;
  689                         cbe->uaiocb._aiocb_private.error = ECANCELED;
  690                         TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
  691                         aio_bio_done_notify(p, cbe, DONE_QUEUE);
  692                 }
  693         }
  694 
  695         /* Wait for all running I/O to be finished */
  696         if (TAILQ_FIRST(&ki->kaio_bufqueue) ||
  697             TAILQ_FIRST(&ki->kaio_jobqueue)) {
  698                 ki->kaio_flags |= KAIO_WAKEUP;
  699                 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
  700                 goto restart;
  701         }
  702 
  703         /* Free all completed I/O requests. */
  704         while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL)
  705                 aio_free_entry(cbe);
  706 
  707         while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
  708                 if (lj->lioj_count == 0) {
  709                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  710                         knlist_delete(&lj->klist, curthread, 1);
  711                         PROC_LOCK(p);
  712                         sigqueue_take(&lj->lioj_ksi);
  713                         PROC_UNLOCK(p);
  714                         uma_zfree(aiolio_zone, lj);
  715                 } else {
  716                         panic("LIO job not cleaned up: C:%d, FC:%d\n",
  717                             lj->lioj_count, lj->lioj_finished_count);
  718                 }
  719         }
  720         AIO_UNLOCK(ki);
  721         taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task);
  722         mtx_destroy(&ki->kaio_mtx);
  723         uma_zfree(kaio_zone, ki);
  724         p->p_aioinfo = NULL;
  725 }
  726 
  727 /*
  728  * Select a job to run (called by an AIO daemon).
  729  */
  730 static struct aiocblist *
  731 aio_selectjob(struct aiothreadlist *aiop)
  732 {
  733         struct aiocblist *aiocbe;
  734         struct kaioinfo *ki;
  735         struct proc *userp;
  736 
  737         mtx_assert(&aio_job_mtx, MA_OWNED);
  738         TAILQ_FOREACH(aiocbe, &aio_jobs, list) {
  739                 userp = aiocbe->userproc;
  740                 ki = userp->p_aioinfo;
  741 
  742                 if (ki->kaio_active_count < ki->kaio_maxactive_count) {
  743                         TAILQ_REMOVE(&aio_jobs, aiocbe, list);
  744                         /* Account for currently active jobs. */
  745                         ki->kaio_active_count++;
  746                         aiocbe->jobstate = JOBST_JOBRUNNING;
  747                         break;
  748                 }
  749         }
  750         return (aiocbe);
  751 }
  752 
  753 /*
  754  *  Move all data to a permanent storage device, this code
  755  *  simulates fsync syscall.
  756  */
  757 static int
  758 aio_fsync_vnode(struct thread *td, struct vnode *vp)
  759 {
  760         struct mount *mp;
  761         int vfslocked;
  762         int error;
  763 
  764         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  765         if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  766                 goto drop;
  767         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
  768         if (vp->v_object != NULL) {
  769                 VM_OBJECT_LOCK(vp->v_object);
  770                 vm_object_page_clean(vp->v_object, 0, 0, 0);
  771                 VM_OBJECT_UNLOCK(vp->v_object);
  772         }
  773         error = VOP_FSYNC(vp, MNT_WAIT, td);
  774 
  775         VOP_UNLOCK(vp, 0, td);
  776         vn_finished_write(mp);
  777 drop:
  778         VFS_UNLOCK_GIANT(vfslocked);
  779         return (error);
  780 }
  781 
  782 /*
  783  * The AIO processing activity.  This is the code that does the I/O request for
  784  * the non-physio version of the operations.  The normal vn operations are used,
  785  * and this code should work in all instances for every type of file, including
  786  * pipes, sockets, fifos, and regular files.
  787  *
  788  * XXX I don't think it works well for socket, pipe, and fifo.
  789  */
  790 static void
  791 aio_process(struct aiocblist *aiocbe)
  792 {
  793         struct ucred *td_savedcred;
  794         struct thread *td;
  795         struct aiocb *cb;
  796         struct file *fp;
  797         struct socket *so;
  798         struct uio auio;
  799         struct iovec aiov;
  800         int cnt;
  801         int error;
  802         int oublock_st, oublock_end;
  803         int inblock_st, inblock_end;
  804 
  805         td = curthread;
  806         td_savedcred = td->td_ucred;
  807         td->td_ucred = aiocbe->cred;
  808         cb = &aiocbe->uaiocb;
  809         fp = aiocbe->fd_file;
  810 
  811         if (cb->aio_lio_opcode == LIO_SYNC) {
  812                 error = 0;
  813                 cnt = 0;
  814                 if (fp->f_vnode != NULL)
  815                         error = aio_fsync_vnode(td, fp->f_vnode);
  816                 cb->_aiocb_private.error = error;
  817                 cb->_aiocb_private.status = 0;
  818                 td->td_ucred = td_savedcred;
  819                 return;
  820         }
  821 
  822         aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
  823         aiov.iov_len = cb->aio_nbytes;
  824 
  825         auio.uio_iov = &aiov;
  826         auio.uio_iovcnt = 1;
  827         auio.uio_offset = cb->aio_offset;
  828         auio.uio_resid = cb->aio_nbytes;
  829         cnt = cb->aio_nbytes;
  830         auio.uio_segflg = UIO_USERSPACE;
  831         auio.uio_td = td;
  832 
  833         inblock_st = td->td_ru.ru_inblock;
  834         oublock_st = td->td_ru.ru_oublock;
  835         /*
  836          * aio_aqueue() acquires a reference to the file that is
  837          * released in aio_free_entry().
  838          */
  839         if (cb->aio_lio_opcode == LIO_READ) {
  840                 auio.uio_rw = UIO_READ;
  841                 if (auio.uio_resid == 0)
  842                         error = 0;
  843                 else
  844                         error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  845         } else {
  846                 if (fp->f_type == DTYPE_VNODE)
  847                         bwillwrite();
  848                 auio.uio_rw = UIO_WRITE;
  849                 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  850         }
  851         inblock_end = td->td_ru.ru_inblock;
  852         oublock_end = td->td_ru.ru_oublock;
  853 
  854         aiocbe->inputcharge = inblock_end - inblock_st;
  855         aiocbe->outputcharge = oublock_end - oublock_st;
  856 
  857         if ((error) && (auio.uio_resid != cnt)) {
  858                 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
  859                         error = 0;
  860                 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
  861                         int sigpipe = 1;
  862                         if (fp->f_type == DTYPE_SOCKET) {
  863                                 so = fp->f_data;
  864                                 if (so->so_options & SO_NOSIGPIPE)
  865                                         sigpipe = 0;
  866                         }
  867                         if (sigpipe) {
  868                                 PROC_LOCK(aiocbe->userproc);
  869                                 psignal(aiocbe->userproc, SIGPIPE);
  870                                 PROC_UNLOCK(aiocbe->userproc);
  871                         }
  872                 }
  873         }
  874 
  875         cnt -= auio.uio_resid;
  876         cb->_aiocb_private.error = error;
  877         cb->_aiocb_private.status = cnt;
  878         td->td_ucred = td_savedcred;
  879 }
  880 
  881 static void
  882 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type)
  883 {
  884         struct aioliojob *lj;
  885         struct kaioinfo *ki;
  886         struct aiocblist *scb, *scbn;
  887         int lj_done;
  888 
  889         ki = userp->p_aioinfo;
  890         AIO_LOCK_ASSERT(ki, MA_OWNED);
  891         lj = aiocbe->lio;
  892         lj_done = 0;
  893         if (lj) {
  894                 lj->lioj_finished_count++;
  895                 if (lj->lioj_count == lj->lioj_finished_count)
  896                         lj_done = 1;
  897         }
  898         if (type == DONE_QUEUE) {
  899                 aiocbe->jobflags |= AIOCBLIST_DONE;
  900         } else {
  901                 aiocbe->jobflags |= AIOCBLIST_BUFDONE;
  902         }
  903         TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist);
  904         aiocbe->jobstate = JOBST_JOBFINISHED;
  905 
  906         if (ki->kaio_flags & KAIO_RUNDOWN)
  907                 goto notification_done;
  908 
  909         if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
  910             aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
  911                 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi);
  912 
  913         KNOTE_LOCKED(&aiocbe->klist, 1);
  914 
  915         if (lj_done) {
  916                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
  917                         lj->lioj_flags |= LIOJ_KEVENT_POSTED;
  918                         KNOTE_LOCKED(&lj->klist, 1);
  919                 }
  920                 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
  921                     == LIOJ_SIGNAL
  922                     && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
  923                         lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
  924                         aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
  925                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
  926                 }
  927         }
  928 
  929 notification_done:
  930         if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) {
  931                 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) {
  932                         if (aiocbe->fd_file == scb->fd_file &&
  933                             aiocbe->seqno < scb->seqno) {
  934                                 if (--scb->pending == 0) {
  935                                         mtx_lock(&aio_job_mtx);
  936                                         scb->jobstate = JOBST_JOBQGLOBAL;
  937                                         TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list);
  938                                         TAILQ_INSERT_TAIL(&aio_jobs, scb, list);
  939                                         aio_kick_nowait(userp);
  940                                         mtx_unlock(&aio_job_mtx);
  941                                 }
  942                         }
  943                 }
  944         }
  945         if (ki->kaio_flags & KAIO_WAKEUP) {
  946                 ki->kaio_flags &= ~KAIO_WAKEUP;
  947                 wakeup(&userp->p_aioinfo);
  948         }
  949 }
  950 
  951 /*
  952  * The AIO daemon, most of the actual work is done in aio_process,
  953  * but the setup (and address space mgmt) is done in this routine.
  954  */
  955 static void
  956 aio_daemon(void *_id)
  957 {
  958         struct aiocblist *aiocbe;
  959         struct aiothreadlist *aiop;
  960         struct kaioinfo *ki;
  961         struct proc *curcp, *mycp, *userp;
  962         struct vmspace *myvm, *tmpvm;
  963         struct thread *td = curthread;
  964         int id = (intptr_t)_id;
  965 
  966         /*
  967          * Local copies of curproc (cp) and vmspace (myvm)
  968          */
  969         mycp = td->td_proc;
  970         myvm = mycp->p_vmspace;
  971 
  972         KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp"));
  973 
  974         /*
  975          * Allocate and ready the aio control info.  There is one aiop structure
  976          * per daemon.
  977          */
  978         aiop = uma_zalloc(aiop_zone, M_WAITOK);
  979         aiop->aiothread = td;
  980         aiop->aiothreadflags = 0;
  981 
  982         /* The daemon resides in its own pgrp. */
  983         setsid(td, NULL);
  984 
  985         /*
  986          * Wakeup parent process.  (Parent sleeps to keep from blasting away
  987          * and creating too many daemons.)
  988          */
  989         sema_post(&aio_newproc_sem);
  990 
  991         mtx_lock(&aio_job_mtx);
  992         for (;;) {
  993                 /*
  994                  * curcp is the current daemon process context.
  995                  * userp is the current user process context.
  996                  */
  997                 curcp = mycp;
  998 
  999                 /*
 1000                  * Take daemon off of free queue
 1001                  */
 1002                 if (aiop->aiothreadflags & AIOP_FREE) {
 1003                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1004                         aiop->aiothreadflags &= ~AIOP_FREE;
 1005                 }
 1006 
 1007                 /*
 1008                  * Check for jobs.
 1009                  */
 1010                 while ((aiocbe = aio_selectjob(aiop)) != NULL) {
 1011                         mtx_unlock(&aio_job_mtx);
 1012                         userp = aiocbe->userproc;
 1013 
 1014                         /*
 1015                          * Connect to process address space for user program.
 1016                          */
 1017                         if (userp != curcp) {
 1018                                 /*
 1019                                  * Save the current address space that we are
 1020                                  * connected to.
 1021                                  */
 1022                                 tmpvm = mycp->p_vmspace;
 1023 
 1024                                 /*
 1025                                  * Point to the new user address space, and
 1026                                  * refer to it.
 1027                                  */
 1028                                 mycp->p_vmspace = userp->p_vmspace;
 1029                                 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1);
 1030 
 1031                                 /* Activate the new mapping. */
 1032                                 pmap_activate(FIRST_THREAD_IN_PROC(mycp));
 1033 
 1034                                 /*
 1035                                  * If the old address space wasn't the daemons
 1036                                  * own address space, then we need to remove the
 1037                                  * daemon's reference from the other process
 1038                                  * that it was acting on behalf of.
 1039                                  */
 1040                                 if (tmpvm != myvm) {
 1041                                         vmspace_free(tmpvm);
 1042                                 }
 1043                                 curcp = userp;
 1044                         }
 1045 
 1046                         ki = userp->p_aioinfo;
 1047 
 1048                         /* Do the I/O function. */
 1049                         aio_process(aiocbe);
 1050 
 1051                         mtx_lock(&aio_job_mtx);
 1052                         /* Decrement the active job count. */
 1053                         ki->kaio_active_count--;
 1054                         mtx_unlock(&aio_job_mtx);
 1055 
 1056                         AIO_LOCK(ki);
 1057                         TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
 1058                         aio_bio_done_notify(userp, aiocbe, DONE_QUEUE);
 1059                         AIO_UNLOCK(ki);
 1060 
 1061                         mtx_lock(&aio_job_mtx);
 1062                 }
 1063 
 1064                 /*
 1065                  * Disconnect from user address space.
 1066                  */
 1067                 if (curcp != mycp) {
 1068 
 1069                         mtx_unlock(&aio_job_mtx);
 1070 
 1071                         /* Get the user address space to disconnect from. */
 1072                         tmpvm = mycp->p_vmspace;
 1073 
 1074                         /* Get original address space for daemon. */
 1075                         mycp->p_vmspace = myvm;
 1076 
 1077                         /* Activate the daemon's address space. */
 1078                         pmap_activate(FIRST_THREAD_IN_PROC(mycp));
 1079 #ifdef DIAGNOSTIC
 1080                         if (tmpvm == myvm) {
 1081                                 printf("AIOD: vmspace problem -- %d\n",
 1082                                     mycp->p_pid);
 1083                         }
 1084 #endif
 1085                         /* Remove our vmspace reference. */
 1086                         vmspace_free(tmpvm);
 1087 
 1088                         curcp = mycp;
 1089 
 1090                         mtx_lock(&aio_job_mtx);
 1091                         /*
 1092                          * We have to restart to avoid race, we only sleep if
 1093                          * no job can be selected, that should be
 1094                          * curcp == mycp.
 1095                          */
 1096                         continue;
 1097                 }
 1098 
 1099                 mtx_assert(&aio_job_mtx, MA_OWNED);
 1100 
 1101                 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
 1102                 aiop->aiothreadflags |= AIOP_FREE;
 1103 
 1104                 /*
 1105                  * If daemon is inactive for a long time, allow it to exit,
 1106                  * thereby freeing resources.
 1107                  */
 1108                 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy",
 1109                     aiod_lifetime)) {
 1110                         if (TAILQ_EMPTY(&aio_jobs)) {
 1111                                 if ((aiop->aiothreadflags & AIOP_FREE) &&
 1112                                     (num_aio_procs > target_aio_procs)) {
 1113                                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1114                                         num_aio_procs--;
 1115                                         mtx_unlock(&aio_job_mtx);
 1116                                         uma_zfree(aiop_zone, aiop);
 1117                                         free_unr(aiod_unr, id);
 1118 #ifdef DIAGNOSTIC
 1119                                         if (mycp->p_vmspace->vm_refcnt <= 1) {
 1120                                                 printf("AIOD: bad vm refcnt for"
 1121                                                     " exiting daemon: %d\n",
 1122                                                     mycp->p_vmspace->vm_refcnt);
 1123                                         }
 1124 #endif
 1125                                         kthread_exit(0);
 1126                                 }
 1127                         }
 1128                 }
 1129         }
 1130         mtx_unlock(&aio_job_mtx);
 1131         panic("shouldn't be here\n");
 1132 }
 1133 
 1134 /*
 1135  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
 1136  * AIO daemon modifies its environment itself.
 1137  */
 1138 static int
 1139 aio_newproc(int *start)
 1140 {
 1141         int error;
 1142         struct proc *p;
 1143         int id;
 1144 
 1145         id = alloc_unr(aiod_unr);
 1146         error = kthread_create(aio_daemon, (void *)(intptr_t)id, &p,
 1147                 RFNOWAIT, 0, "aiod%d", id);
 1148         if (error == 0) {
 1149                 /*
 1150                  * Wait until daemon is started.
 1151                  */
 1152                 sema_wait(&aio_newproc_sem);
 1153                 mtx_lock(&aio_job_mtx);
 1154                 num_aio_procs++;
 1155                 if (start != NULL)
 1156                         (*start)--;
 1157                 mtx_unlock(&aio_job_mtx);
 1158         } else {
 1159                 free_unr(aiod_unr, id);
 1160         }
 1161         return (error);
 1162 }
 1163 
 1164 /*
 1165  * Try the high-performance, low-overhead physio method for eligible
 1166  * VCHR devices.  This method doesn't use an aio helper thread, and
 1167  * thus has very low overhead.
 1168  *
 1169  * Assumes that the caller, aio_aqueue(), has incremented the file
 1170  * structure's reference count, preventing its deallocation for the
 1171  * duration of this call.
 1172  */
 1173 static int
 1174 aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
 1175 {
 1176         struct aiocb *cb;
 1177         struct file *fp;
 1178         struct buf *bp;
 1179         struct vnode *vp;
 1180         struct kaioinfo *ki;
 1181         struct aioliojob *lj;
 1182         int error;
 1183 
 1184         cb = &aiocbe->uaiocb;
 1185         fp = aiocbe->fd_file;
 1186 
 1187         if (fp->f_type != DTYPE_VNODE)
 1188                 return (-1);
 1189 
 1190         vp = fp->f_vnode;
 1191 
 1192         /*
 1193          * If its not a disk, we don't want to return a positive error.
 1194          * It causes the aio code to not fall through to try the thread
 1195          * way when you're talking to a regular file.
 1196          */
 1197         if (!vn_isdisk(vp, &error)) {
 1198                 if (error == ENOTBLK)
 1199                         return (-1);
 1200                 else
 1201                         return (error);
 1202         }
 1203 
 1204         if (vp->v_bufobj.bo_bsize == 0)
 1205                 return (-1);
 1206 
 1207         if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
 1208                 return (-1);
 1209 
 1210         if (cb->aio_nbytes > vp->v_rdev->si_iosize_max)
 1211                 return (-1);
 1212 
 1213         if (cb->aio_nbytes >
 1214             MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK))
 1215                 return (-1);
 1216 
 1217         ki = p->p_aioinfo;
 1218         if (ki->kaio_buffer_count >= ki->kaio_ballowed_count)
 1219                 return (-1);
 1220 
 1221         /* Create and build a buffer header for a transfer. */
 1222         bp = (struct buf *)getpbuf(NULL);
 1223         BUF_KERNPROC(bp);
 1224 
 1225         AIO_LOCK(ki);
 1226         ki->kaio_count++;
 1227         ki->kaio_buffer_count++;
 1228         lj = aiocbe->lio;
 1229         if (lj)
 1230                 lj->lioj_count++;
 1231         AIO_UNLOCK(ki);
 1232 
 1233         /*
 1234          * Get a copy of the kva from the physical buffer.
 1235          */
 1236         error = 0;
 1237 
 1238         bp->b_bcount = cb->aio_nbytes;
 1239         bp->b_bufsize = cb->aio_nbytes;
 1240         bp->b_iodone = aio_physwakeup;
 1241         bp->b_saveaddr = bp->b_data;
 1242         bp->b_data = (void *)(uintptr_t)cb->aio_buf;
 1243         bp->b_offset = cb->aio_offset;
 1244         bp->b_iooffset = cb->aio_offset;
 1245         bp->b_blkno = btodb(cb->aio_offset);
 1246         bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
 1247 
 1248         /*
 1249          * Bring buffer into kernel space.
 1250          */
 1251         if (vmapbuf(bp) < 0) {
 1252                 error = EFAULT;
 1253                 goto doerror;
 1254         }
 1255 
 1256         AIO_LOCK(ki);
 1257         aiocbe->bp = bp;
 1258         bp->b_caller1 = (void *)aiocbe;
 1259         TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
 1260         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1261         aiocbe->jobstate = JOBST_JOBQBUF;
 1262         cb->_aiocb_private.status = cb->aio_nbytes;
 1263         AIO_UNLOCK(ki);
 1264 
 1265         atomic_add_int(&num_queue_count, 1);
 1266         atomic_add_int(&num_buf_aio, 1);
 1267 
 1268         bp->b_error = 0;
 1269 
 1270         TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe);
 1271 
 1272         /* Perform transfer. */
 1273         dev_strategy(vp->v_rdev, bp);
 1274         return (0);
 1275 
 1276 doerror:
 1277         AIO_LOCK(ki);
 1278         ki->kaio_count--;
 1279         ki->kaio_buffer_count--;
 1280         if (lj)
 1281                 lj->lioj_count--;
 1282         aiocbe->bp = NULL;
 1283         AIO_UNLOCK(ki);
 1284         relpbuf(bp, NULL);
 1285         return (error);
 1286 }
 1287 
 1288 /*
 1289  * Wake up aio requests that may be serviceable now.
 1290  */
 1291 static void
 1292 aio_swake_cb(struct socket *so, struct sockbuf *sb)
 1293 {
 1294         struct aiocblist *cb, *cbn;
 1295         int opcode;
 1296 
 1297         if (sb == &so->so_snd)
 1298                 opcode = LIO_WRITE;
 1299         else
 1300                 opcode = LIO_READ;
 1301 
 1302         SOCKBUF_LOCK(sb);
 1303         sb->sb_flags &= ~SB_AIO;
 1304         mtx_lock(&aio_job_mtx);
 1305         TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) {
 1306                 if (opcode == cb->uaiocb.aio_lio_opcode) {
 1307                         if (cb->jobstate != JOBST_JOBQSOCK)
 1308                                 panic("invalid queue value");
 1309                         /* XXX
 1310                          * We don't have actual sockets backend yet,
 1311                          * so we simply move the requests to the generic
 1312                          * file I/O backend.
 1313                          */
 1314                         TAILQ_REMOVE(&so->so_aiojobq, cb, list);
 1315                         TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
 1316                         aio_kick_nowait(cb->userproc);
 1317                 }
 1318         }
 1319         mtx_unlock(&aio_job_mtx);
 1320         SOCKBUF_UNLOCK(sb);
 1321 }
 1322 
 1323 /*
 1324  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
 1325  * technique is done in this code.
 1326  */
 1327 int
 1328 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj,
 1329         int type, int oldsigev)
 1330 {
 1331         struct proc *p = td->td_proc;
 1332         struct file *fp;
 1333         struct socket *so;
 1334         struct aiocblist *aiocbe, *cb;
 1335         struct kaioinfo *ki;
 1336         struct kevent kev;
 1337         struct sockbuf *sb;
 1338         int opcode;
 1339         int error;
 1340         int fd, kqfd;
 1341         int jid;
 1342 
 1343         if (p->p_aioinfo == NULL)
 1344                 aio_init_aioinfo(p);
 1345 
 1346         ki = p->p_aioinfo;
 1347 
 1348         suword(&job->_aiocb_private.status, -1);
 1349         suword(&job->_aiocb_private.error, 0);
 1350         suword(&job->_aiocb_private.kernelinfo, -1);
 1351 
 1352         if (num_queue_count >= max_queue_count ||
 1353             ki->kaio_count >= ki->kaio_qallowed_count) {
 1354                 suword(&job->_aiocb_private.error, EAGAIN);
 1355                 return (EAGAIN);
 1356         }
 1357 
 1358         aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 1359         aiocbe->inputcharge = 0;
 1360         aiocbe->outputcharge = 0;
 1361         knlist_init(&aiocbe->klist, AIO_MTX(ki), NULL, NULL, NULL);
 1362 
 1363         if (oldsigev) {
 1364                 bzero(&aiocbe->uaiocb, sizeof(struct aiocb));
 1365                 error = copyin(job, &aiocbe->uaiocb, sizeof(struct oaiocb));
 1366                 bcopy(&aiocbe->uaiocb.__spare__, &aiocbe->uaiocb.aio_sigevent,
 1367                         sizeof(struct osigevent));
 1368         } else {
 1369                 error = copyin(job, &aiocbe->uaiocb, sizeof(struct aiocb));
 1370         }
 1371         if (error) {
 1372                 suword(&job->_aiocb_private.error, error);
 1373                 uma_zfree(aiocb_zone, aiocbe);
 1374                 return (error);
 1375         }
 1376 
 1377         if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
 1378             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
 1379             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
 1380             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
 1381                 suword(&job->_aiocb_private.error, EINVAL);
 1382                 uma_zfree(aiocb_zone, aiocbe);
 1383                 return (EINVAL);
 1384         }
 1385         
 1386         if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1387              aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
 1388                 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
 1389                 uma_zfree(aiocb_zone, aiocbe);
 1390                 return (EINVAL);
 1391         }
 1392 
 1393         ksiginfo_init(&aiocbe->ksi);
 1394 
 1395         /* Save userspace address of the job info. */
 1396         aiocbe->uuaiocb = job;
 1397 
 1398         /* Get the opcode. */
 1399         if (type != LIO_NOP)
 1400                 aiocbe->uaiocb.aio_lio_opcode = type;
 1401         opcode = aiocbe->uaiocb.aio_lio_opcode;
 1402 
 1403         /* Fetch the file object for the specified file descriptor. */
 1404         fd = aiocbe->uaiocb.aio_fildes;
 1405         switch (opcode) {
 1406         case LIO_WRITE:
 1407                 error = fget_write(td, fd, &fp);
 1408                 break;
 1409         case LIO_READ:
 1410                 error = fget_read(td, fd, &fp);
 1411                 break;
 1412         default:
 1413                 error = fget(td, fd, &fp);
 1414         }
 1415         if (error) {
 1416                 uma_zfree(aiocb_zone, aiocbe);
 1417                 suword(&job->_aiocb_private.error, error);
 1418                 return (error);
 1419         }
 1420 
 1421         if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
 1422                 error = EINVAL;
 1423                 goto aqueue_fail;
 1424         }
 1425 
 1426         if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) {
 1427                 error = EINVAL;
 1428                 goto aqueue_fail;
 1429         }
 1430 
 1431         aiocbe->fd_file = fp;
 1432 
 1433         mtx_lock(&aio_job_mtx);
 1434         jid = jobrefid++;
 1435         aiocbe->seqno = jobseqno++;
 1436         mtx_unlock(&aio_job_mtx);
 1437         error = suword(&job->_aiocb_private.kernelinfo, jid);
 1438         if (error) {
 1439                 error = EINVAL;
 1440                 goto aqueue_fail;
 1441         }
 1442         aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
 1443 
 1444         if (opcode == LIO_NOP) {
 1445                 fdrop(fp, td);
 1446                 uma_zfree(aiocb_zone, aiocbe);
 1447                 return (0);
 1448         }
 1449         if ((opcode != LIO_READ) && (opcode != LIO_WRITE) &&
 1450             (opcode != LIO_SYNC)) {
 1451                 error = EINVAL;
 1452                 goto aqueue_fail;
 1453         }
 1454 
 1455         if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
 1456                 goto no_kqueue;
 1457         kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
 1458         kev.ident = (uintptr_t)aiocbe->uuaiocb;
 1459         kev.filter = EVFILT_AIO;
 1460         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 1461         kev.data = (intptr_t)aiocbe;
 1462         kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr;
 1463         error = kqfd_register(kqfd, &kev, td, 1);
 1464 aqueue_fail:
 1465         if (error) {
 1466                 fdrop(fp, td);
 1467                 uma_zfree(aiocb_zone, aiocbe);
 1468                 suword(&job->_aiocb_private.error, error);
 1469                 goto done;
 1470         }
 1471 no_kqueue:
 1472 
 1473         suword(&job->_aiocb_private.error, EINPROGRESS);
 1474         aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
 1475         aiocbe->userproc = p;
 1476         aiocbe->cred = crhold(td->td_ucred);
 1477         aiocbe->jobflags = 0;
 1478         aiocbe->lio = lj;
 1479 
 1480         if (opcode == LIO_SYNC)
 1481                 goto queueit;
 1482 
 1483         if (fp->f_type == DTYPE_SOCKET) {
 1484                 /*
 1485                  * Alternate queueing for socket ops: Reach down into the
 1486                  * descriptor to get the socket data.  Then check to see if the
 1487                  * socket is ready to be read or written (based on the requested
 1488                  * operation).
 1489                  *
 1490                  * If it is not ready for io, then queue the aiocbe on the
 1491                  * socket, and set the flags so we get a call when sbnotify()
 1492                  * happens.
 1493                  *
 1494                  * Note if opcode is neither LIO_WRITE nor LIO_READ we lock
 1495                  * and unlock the snd sockbuf for no reason.
 1496                  */
 1497                 so = fp->f_data;
 1498                 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd;
 1499                 SOCKBUF_LOCK(sb);
 1500                 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
 1501                     LIO_WRITE) && (!sowriteable(so)))) {
 1502                         sb->sb_flags |= SB_AIO;
 1503 
 1504                         mtx_lock(&aio_job_mtx);
 1505                         TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
 1506                         mtx_unlock(&aio_job_mtx);
 1507 
 1508                         AIO_LOCK(ki);
 1509                         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1510                         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1511                         aiocbe->jobstate = JOBST_JOBQSOCK;
 1512                         ki->kaio_count++;
 1513                         if (lj)
 1514                                 lj->lioj_count++;
 1515                         AIO_UNLOCK(ki);
 1516                         SOCKBUF_UNLOCK(sb);
 1517                         atomic_add_int(&num_queue_count, 1);
 1518                         error = 0;
 1519                         goto done;
 1520                 }
 1521                 SOCKBUF_UNLOCK(sb);
 1522         }
 1523 
 1524         if ((error = aio_qphysio(p, aiocbe)) == 0)
 1525                 goto done;
 1526 #if 0
 1527         if (error > 0) {
 1528                 aiocbe->uaiocb._aiocb_private.error = error;
 1529                 suword(&job->_aiocb_private.error, error);
 1530                 goto done;
 1531         }
 1532 #endif
 1533 queueit:
 1534         /* No buffer for daemon I/O. */
 1535         aiocbe->bp = NULL;
 1536         atomic_add_int(&num_queue_count, 1);
 1537 
 1538         AIO_LOCK(ki);
 1539         ki->kaio_count++;
 1540         if (lj)
 1541                 lj->lioj_count++;
 1542         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1543         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1544         if (opcode == LIO_SYNC) {
 1545                 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) {
 1546                         if (cb->fd_file == aiocbe->fd_file &&
 1547                             cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1548                             cb->seqno < aiocbe->seqno) {
 1549                                 cb->jobflags |= AIOCBLIST_CHECKSYNC;
 1550                                 aiocbe->pending++;
 1551                         }
 1552                 }
 1553                 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) {
 1554                         if (cb->fd_file == aiocbe->fd_file &&
 1555                             cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1556                             cb->seqno < aiocbe->seqno) {
 1557                                 cb->jobflags |= AIOCBLIST_CHECKSYNC;
 1558                                 aiocbe->pending++;
 1559                         }
 1560                 }
 1561                 if (aiocbe->pending != 0) {
 1562                         TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list);
 1563                         aiocbe->jobstate = JOBST_JOBQSYNC;
 1564                         AIO_UNLOCK(ki);
 1565                         goto done;
 1566                 }
 1567         }
 1568         mtx_lock(&aio_job_mtx);
 1569         TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
 1570         aiocbe->jobstate = JOBST_JOBQGLOBAL;
 1571         aio_kick_nowait(p);
 1572         mtx_unlock(&aio_job_mtx);
 1573         AIO_UNLOCK(ki);
 1574         error = 0;
 1575 done:
 1576         return (error);
 1577 }
 1578 
 1579 static void
 1580 aio_kick_nowait(struct proc *userp)
 1581 {
 1582         struct kaioinfo *ki = userp->p_aioinfo;
 1583         struct aiothreadlist *aiop;
 1584 
 1585         mtx_assert(&aio_job_mtx, MA_OWNED);
 1586         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1587                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1588                 aiop->aiothreadflags &= ~AIOP_FREE;
 1589                 wakeup(aiop->aiothread);
 1590         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1591             ((ki->kaio_active_count + num_aio_resv_start) <
 1592             ki->kaio_maxactive_count)) {
 1593                 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task);
 1594         }
 1595 }
 1596 
 1597 static int
 1598 aio_kick(struct proc *userp)
 1599 {
 1600         struct kaioinfo *ki = userp->p_aioinfo;
 1601         struct aiothreadlist *aiop;
 1602         int error, ret = 0;
 1603 
 1604         mtx_assert(&aio_job_mtx, MA_OWNED);
 1605 retryproc:
 1606         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1607                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1608                 aiop->aiothreadflags &= ~AIOP_FREE;
 1609                 wakeup(aiop->aiothread);
 1610         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1611             ((ki->kaio_active_count + num_aio_resv_start) <
 1612             ki->kaio_maxactive_count)) {
 1613                 num_aio_resv_start++;
 1614                 mtx_unlock(&aio_job_mtx);
 1615                 error = aio_newproc(&num_aio_resv_start);
 1616                 mtx_lock(&aio_job_mtx);
 1617                 if (error) {
 1618                         num_aio_resv_start--;
 1619                         goto retryproc;
 1620                 }
 1621         } else {
 1622                 ret = -1;
 1623         }
 1624         return (ret);
 1625 }
 1626 
 1627 static void
 1628 aio_kick_helper(void *context, int pending)
 1629 {
 1630         struct proc *userp = context;
 1631 
 1632         mtx_lock(&aio_job_mtx);
 1633         while (--pending >= 0) {
 1634                 if (aio_kick(userp))
 1635                         break;
 1636         }
 1637         mtx_unlock(&aio_job_mtx);
 1638 }
 1639 
 1640 /*
 1641  * Support the aio_return system call, as a side-effect, kernel resources are
 1642  * released.
 1643  */
 1644 int
 1645 aio_return(struct thread *td, struct aio_return_args *uap)
 1646 {
 1647         struct proc *p = td->td_proc;
 1648         struct aiocblist *cb;
 1649         struct aiocb *uaiocb;
 1650         struct kaioinfo *ki;
 1651         int status, error;
 1652 
 1653         ki = p->p_aioinfo;
 1654         if (ki == NULL)
 1655                 return (EINVAL);
 1656         uaiocb = uap->aiocbp;
 1657         AIO_LOCK(ki);
 1658         TAILQ_FOREACH(cb, &ki->kaio_done, plist) {
 1659                 if (cb->uuaiocb == uaiocb)
 1660                         break;
 1661         }
 1662         if (cb != NULL) {
 1663                 MPASS(cb->jobstate == JOBST_JOBFINISHED);
 1664                 status = cb->uaiocb._aiocb_private.status;
 1665                 error = cb->uaiocb._aiocb_private.error;
 1666                 td->td_retval[0] = status;
 1667                 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 1668                         td->td_ru.ru_oublock += cb->outputcharge;
 1669                         cb->outputcharge = 0;
 1670                 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 1671                         td->td_ru.ru_inblock += cb->inputcharge;
 1672                         cb->inputcharge = 0;
 1673                 }
 1674                 aio_free_entry(cb);
 1675                 AIO_UNLOCK(ki);
 1676                 suword(&uaiocb->_aiocb_private.error, error);
 1677                 suword(&uaiocb->_aiocb_private.status, status);
 1678         } else {
 1679                 error = EINVAL;
 1680                 AIO_UNLOCK(ki);
 1681         }
 1682         return (error);
 1683 }
 1684 
 1685 /*
 1686  * Allow a process to wakeup when any of the I/O requests are completed.
 1687  */
 1688 int
 1689 aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 1690 {
 1691         struct proc *p = td->td_proc;
 1692         struct timeval atv;
 1693         struct timespec ts;
 1694         struct aiocb *const *cbptr, *cbp;
 1695         struct kaioinfo *ki;
 1696         struct aiocblist *cb, *cbfirst;
 1697         struct aiocb **ujoblist;
 1698         int njoblist;
 1699         int error;
 1700         int timo;
 1701         int i;
 1702 
 1703         if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
 1704                 return (EINVAL);
 1705 
 1706         timo = 0;
 1707         if (uap->timeout) {
 1708                 /* Get timespec struct. */
 1709                 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 1710                         return (error);
 1711 
 1712                 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
 1713                         return (EINVAL);
 1714 
 1715                 TIMESPEC_TO_TIMEVAL(&atv, &ts);
 1716                 if (itimerfix(&atv))
 1717                         return (EINVAL);
 1718                 timo = tvtohz(&atv);
 1719         }
 1720 
 1721         ki = p->p_aioinfo;
 1722         if (ki == NULL)
 1723                 return (EAGAIN);
 1724 
 1725         njoblist = 0;
 1726         ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 1727         cbptr = uap->aiocbp;
 1728 
 1729         for (i = 0; i < uap->nent; i++) {
 1730                 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
 1731                 if (cbp == 0)
 1732                         continue;
 1733                 ujoblist[njoblist] = cbp;
 1734                 njoblist++;
 1735         }
 1736 
 1737         if (njoblist == 0) {
 1738                 uma_zfree(aiol_zone, ujoblist);
 1739                 return (0);
 1740         }
 1741 
 1742         AIO_LOCK(ki);
 1743         for (;;) {
 1744                 cbfirst = NULL;
 1745                 error = 0;
 1746                 TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
 1747                         for (i = 0; i < njoblist; i++) {
 1748                                 if (cb->uuaiocb == ujoblist[i]) {
 1749                                         if (cbfirst == NULL)
 1750                                                 cbfirst = cb;
 1751                                         if (cb->jobstate == JOBST_JOBFINISHED)
 1752                                                 goto RETURN;
 1753                                 }
 1754                         }
 1755                 }
 1756                 /* All tasks were finished. */
 1757                 if (cbfirst == NULL)
 1758                         break;
 1759 
 1760                 ki->kaio_flags |= KAIO_WAKEUP;
 1761                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 1762                     "aiospn", timo);
 1763                 if (error == ERESTART)
 1764                         error = EINTR;
 1765                 if (error)
 1766                         break;
 1767         }
 1768 RETURN:
 1769         AIO_UNLOCK(ki);
 1770         uma_zfree(aiol_zone, ujoblist);
 1771         return (error);
 1772 }
 1773 
 1774 /*
 1775  * aio_cancel cancels any non-physio aio operations not currently in
 1776  * progress.
 1777  */
 1778 int
 1779 aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 1780 {
 1781         struct proc *p = td->td_proc;
 1782         struct kaioinfo *ki;
 1783         struct aiocblist *cbe, *cbn;
 1784         struct file *fp;
 1785         struct socket *so;
 1786         int error;
 1787         int remove;
 1788         int cancelled = 0;
 1789         int notcancelled = 0;
 1790         struct vnode *vp;
 1791 
 1792         /* Lookup file object. */
 1793         error = fget(td, uap->fd, &fp);
 1794         if (error)
 1795                 return (error);
 1796 
 1797         ki = p->p_aioinfo;
 1798         if (ki == NULL)
 1799                 goto done;
 1800 
 1801         if (fp->f_type == DTYPE_VNODE) {
 1802                 vp = fp->f_vnode;
 1803                 if (vn_isdisk(vp, &error)) {
 1804                         fdrop(fp, td);
 1805                         td->td_retval[0] = AIO_NOTCANCELED;
 1806                         return (0);
 1807                 }
 1808         }
 1809 
 1810         AIO_LOCK(ki);
 1811         TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
 1812                 if ((uap->fd == cbe->uaiocb.aio_fildes) &&
 1813                     ((uap->aiocbp == NULL) ||
 1814                      (uap->aiocbp == cbe->uuaiocb))) {
 1815                         remove = 0;
 1816 
 1817                         mtx_lock(&aio_job_mtx);
 1818                         if (cbe->jobstate == JOBST_JOBQGLOBAL) {
 1819                                 TAILQ_REMOVE(&aio_jobs, cbe, list);
 1820                                 remove = 1;
 1821                         } else if (cbe->jobstate == JOBST_JOBQSOCK) {
 1822                                 MPASS(fp->f_type == DTYPE_SOCKET);
 1823                                 so = fp->f_data;
 1824                                 TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
 1825                                 remove = 1;
 1826                         } else if (cbe->jobstate == JOBST_JOBQSYNC) {
 1827                                 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
 1828                                 remove = 1;
 1829                         }
 1830                         mtx_unlock(&aio_job_mtx);
 1831 
 1832                         if (remove) {
 1833                                 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
 1834                                 cbe->uaiocb._aiocb_private.status = -1;
 1835                                 cbe->uaiocb._aiocb_private.error = ECANCELED;
 1836                                 aio_bio_done_notify(p, cbe, DONE_QUEUE);
 1837                                 cancelled++;
 1838                         } else {
 1839                                 notcancelled++;
 1840                         }
 1841                         if (uap->aiocbp != NULL)
 1842                                 break;
 1843                 }
 1844         }
 1845         AIO_UNLOCK(ki);
 1846 
 1847 done:
 1848         fdrop(fp, td);
 1849 
 1850         if (uap->aiocbp != NULL) {
 1851                 if (cancelled) {
 1852                         td->td_retval[0] = AIO_CANCELED;
 1853                         return (0);
 1854                 }
 1855         }
 1856 
 1857         if (notcancelled) {
 1858                 td->td_retval[0] = AIO_NOTCANCELED;
 1859                 return (0);
 1860         }
 1861 
 1862         if (cancelled) {
 1863                 td->td_retval[0] = AIO_CANCELED;
 1864                 return (0);
 1865         }
 1866 
 1867         td->td_retval[0] = AIO_ALLDONE;
 1868 
 1869         return (0);
 1870 }
 1871 
 1872 /*
 1873  * aio_error is implemented in the kernel level for compatibility purposes
 1874  * only.  For a user mode async implementation, it would be best to do it in
 1875  * a userland subroutine.
 1876  */
 1877 int
 1878 aio_error(struct thread *td, struct aio_error_args *uap)
 1879 {
 1880         struct proc *p = td->td_proc;
 1881         struct aiocblist *cb;
 1882         struct kaioinfo *ki;
 1883         int status;
 1884 
 1885         ki = p->p_aioinfo;
 1886         if (ki == NULL) {
 1887                 td->td_retval[0] = EINVAL;
 1888                 return (0);
 1889         }
 1890 
 1891         AIO_LOCK(ki);
 1892         TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
 1893                 if (cb->uuaiocb == uap->aiocbp) {
 1894                         if (cb->jobstate == JOBST_JOBFINISHED)
 1895                                 td->td_retval[0] =
 1896                                         cb->uaiocb._aiocb_private.error;
 1897                         else
 1898                                 td->td_retval[0] = EINPROGRESS;
 1899                         AIO_UNLOCK(ki);
 1900                         return (0);
 1901                 }
 1902         }
 1903         AIO_UNLOCK(ki);
 1904 
 1905         /*
 1906          * Hack for failure of aio_aqueue.
 1907          */
 1908         status = fuword(&uap->aiocbp->_aiocb_private.status);
 1909         if (status == -1) {
 1910                 td->td_retval[0] = fuword(&uap->aiocbp->_aiocb_private.error);
 1911                 return (0);
 1912         }
 1913 
 1914         td->td_retval[0] = EINVAL;
 1915         return (0);
 1916 }
 1917 
 1918 /* syscall - asynchronous read from a file (REALTIME) */
 1919 int
 1920 oaio_read(struct thread *td, struct oaio_read_args *uap)
 1921 {
 1922 
 1923         return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 1);
 1924 }
 1925 
 1926 int
 1927 aio_read(struct thread *td, struct aio_read_args *uap)
 1928 {
 1929 
 1930         return aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, 0);
 1931 }
 1932 
 1933 /* syscall - asynchronous write to a file (REALTIME) */
 1934 int
 1935 oaio_write(struct thread *td, struct oaio_write_args *uap)
 1936 {
 1937 
 1938         return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 1);
 1939 }
 1940 
 1941 int
 1942 aio_write(struct thread *td, struct aio_write_args *uap)
 1943 {
 1944 
 1945         return aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, 0);
 1946 }
 1947 
 1948 /* syscall - list directed I/O (REALTIME) */
 1949 int
 1950 olio_listio(struct thread *td, struct olio_listio_args *uap)
 1951 {
 1952         return do_lio_listio(td, (struct lio_listio_args *)uap, 1);
 1953 }
 1954 
 1955 /* syscall - list directed I/O (REALTIME) */
 1956 int
 1957 lio_listio(struct thread *td, struct lio_listio_args *uap)
 1958 {
 1959         return do_lio_listio(td, uap, 0);
 1960 }
 1961 
 1962 static int
 1963 do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev)
 1964 {
 1965         struct proc *p = td->td_proc;
 1966         struct aiocb *iocb, * const *cbptr;
 1967         struct kaioinfo *ki;
 1968         struct aioliojob *lj;
 1969         struct kevent kev;
 1970         int nent;
 1971         int error;
 1972         int nerror;
 1973         int i;
 1974 
 1975         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 1976                 return (EINVAL);
 1977 
 1978         nent = uap->nent;
 1979         if (nent < 0 || nent > AIO_LISTIO_MAX)
 1980                 return (EINVAL);
 1981 
 1982         if (p->p_aioinfo == NULL)
 1983                 aio_init_aioinfo(p);
 1984 
 1985         ki = p->p_aioinfo;
 1986 
 1987         lj = uma_zalloc(aiolio_zone, M_WAITOK);
 1988         lj->lioj_flags = 0;
 1989         lj->lioj_count = 0;
 1990         lj->lioj_finished_count = 0;
 1991         knlist_init(&lj->klist, AIO_MTX(ki), NULL, NULL, NULL);
 1992         ksiginfo_init(&lj->lioj_ksi);
 1993 
 1994         /*
 1995          * Setup signal.
 1996          */
 1997         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 1998                 bzero(&lj->lioj_signal, sizeof(&lj->lioj_signal));
 1999                 error = copyin(uap->sig, &lj->lioj_signal,
 2000                                 oldsigev ? sizeof(struct osigevent) :
 2001                                            sizeof(struct sigevent));
 2002                 if (error) {
 2003                         uma_zfree(aiolio_zone, lj);
 2004                         return (error);
 2005                 }
 2006 
 2007                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2008                         /* Assume only new style KEVENT */
 2009                         kev.filter = EVFILT_LIO;
 2010                         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 2011                         kev.ident = (uintptr_t)uap->acb_list; /* something unique */
 2012                         kev.data = (intptr_t)lj;
 2013                         /* pass user defined sigval data */
 2014                         kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
 2015                         error = kqfd_register(
 2016                             lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
 2017                         if (error) {
 2018                                 uma_zfree(aiolio_zone, lj);
 2019                                 return (error);
 2020                         }
 2021                 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
 2022                         ;
 2023                 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2024                            lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
 2025                                 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 2026                                         uma_zfree(aiolio_zone, lj);
 2027                                         return EINVAL;
 2028                                 }
 2029                                 lj->lioj_flags |= LIOJ_SIGNAL;
 2030                 } else {
 2031                         uma_zfree(aiolio_zone, lj);
 2032                         return EINVAL;
 2033                 }
 2034         }
 2035 
 2036         AIO_LOCK(ki);
 2037         TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 2038         /*
 2039          * Add extra aiocb count to avoid the lio to be freed
 2040          * by other threads doing aio_waitcomplete or aio_return,
 2041          * and prevent event from being sent until we have queued
 2042          * all tasks.
 2043          */
 2044         lj->lioj_count = 1;
 2045         AIO_UNLOCK(ki);
 2046 
 2047         /*
 2048          * Get pointers to the list of I/O requests.
 2049          */
 2050         nerror = 0;
 2051         cbptr = uap->acb_list;
 2052         for (i = 0; i < uap->nent; i++) {
 2053                 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
 2054                 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) {
 2055                         error = aio_aqueue(td, iocb, lj, LIO_NOP, oldsigev);
 2056                         if (error != 0)
 2057                                 nerror++;
 2058                 }
 2059         }
 2060 
 2061         error = 0;
 2062         AIO_LOCK(ki);
 2063         if (uap->mode == LIO_WAIT) {
 2064                 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
 2065                         ki->kaio_flags |= KAIO_WAKEUP;
 2066                         error = msleep(&p->p_aioinfo, AIO_MTX(ki),
 2067                             PRIBIO | PCATCH, "aiospn", 0);
 2068                         if (error == ERESTART)
 2069                                 error = EINTR;
 2070                         if (error)
 2071                                 break;
 2072                 }
 2073         } else {
 2074                 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
 2075                         if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2076                                 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 2077                                 KNOTE_LOCKED(&lj->klist, 1);
 2078                         }
 2079                         if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
 2080                             == LIOJ_SIGNAL
 2081                             && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2082                             lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 2083                                 aio_sendsig(p, &lj->lioj_signal,
 2084                                             &lj->lioj_ksi);
 2085                                 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2086                         }
 2087                 }
 2088         }
 2089         lj->lioj_count--;
 2090         if (lj->lioj_count == 0) {
 2091                 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 2092                 knlist_delete(&lj->klist, curthread, 1);
 2093                 PROC_LOCK(p);
 2094                 sigqueue_take(&lj->lioj_ksi);
 2095                 PROC_UNLOCK(p);
 2096                 AIO_UNLOCK(ki);
 2097                 uma_zfree(aiolio_zone, lj);
 2098         } else
 2099                 AIO_UNLOCK(ki);
 2100 
 2101         if (nerror)
 2102                 return (EIO);
 2103         return (error);
 2104 }
 2105 
 2106 /*
 2107  * Called from interrupt thread for physio, we should return as fast
 2108  * as possible, so we schedule a biohelper task.
 2109  */
 2110 static void
 2111 aio_physwakeup(struct buf *bp)
 2112 {
 2113         struct aiocblist *aiocbe;
 2114 
 2115         aiocbe = (struct aiocblist *)bp->b_caller1;
 2116         taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask);
 2117 }
 2118 
 2119 /*
 2120  * Task routine to perform heavy tasks, process wakeup, and signals.
 2121  */
 2122 static void
 2123 biohelper(void *context, int pending)
 2124 {
 2125         struct aiocblist *aiocbe = context;
 2126         struct buf *bp;
 2127         struct proc *userp;
 2128         struct kaioinfo *ki;
 2129         int nblks;
 2130 
 2131         bp = aiocbe->bp;
 2132         userp = aiocbe->userproc;
 2133         ki = userp->p_aioinfo;
 2134         AIO_LOCK(ki);
 2135         aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
 2136         aiocbe->uaiocb._aiocb_private.error = 0;
 2137         if (bp->b_ioflags & BIO_ERROR)
 2138                 aiocbe->uaiocb._aiocb_private.error = bp->b_error;
 2139         nblks = btodb(aiocbe->uaiocb.aio_nbytes);
 2140         if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE)
 2141                 aiocbe->outputcharge += nblks;
 2142         else
 2143                 aiocbe->inputcharge += nblks;
 2144         aiocbe->bp = NULL;
 2145         TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist);
 2146         ki->kaio_buffer_count--;
 2147         aio_bio_done_notify(userp, aiocbe, DONE_BUF);
 2148         AIO_UNLOCK(ki);
 2149 
 2150         /* Release mapping into kernel space. */
 2151         vunmapbuf(bp);
 2152         relpbuf(bp, NULL);
 2153         atomic_subtract_int(&num_buf_aio, 1);
 2154 }
 2155 
 2156 /* syscall - wait for the next completion of an aio request */
 2157 int
 2158 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 2159 {
 2160         struct proc *p = td->td_proc;
 2161         struct timeval atv;
 2162         struct timespec ts;
 2163         struct kaioinfo *ki;
 2164         struct aiocblist *cb;
 2165         struct aiocb *uuaiocb;
 2166         int error, status, timo;
 2167 
 2168         suword(uap->aiocbp, (long)NULL);
 2169 
 2170         timo = 0;
 2171         if (uap->timeout) {
 2172                 /* Get timespec struct. */
 2173                 error = copyin(uap->timeout, &ts, sizeof(ts));
 2174                 if (error)
 2175                         return (error);
 2176 
 2177                 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000))
 2178                         return (EINVAL);
 2179 
 2180                 TIMESPEC_TO_TIMEVAL(&atv, &ts);
 2181                 if (itimerfix(&atv))
 2182                         return (EINVAL);
 2183                 timo = tvtohz(&atv);
 2184         }
 2185 
 2186         if (p->p_aioinfo == NULL)
 2187                 aio_init_aioinfo(p);
 2188         ki = p->p_aioinfo;
 2189 
 2190         error = 0;
 2191         cb = NULL;
 2192         AIO_LOCK(ki);
 2193         while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
 2194                 ki->kaio_flags |= KAIO_WAKEUP;
 2195                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2196                     "aiowc", timo);
 2197                 if (timo && error == ERESTART)
 2198                         error = EINTR;
 2199                 if (error)
 2200                         break;
 2201         }
 2202 
 2203         if (cb != NULL) {
 2204                 MPASS(cb->jobstate == JOBST_JOBFINISHED);
 2205                 uuaiocb = cb->uuaiocb;
 2206                 status = cb->uaiocb._aiocb_private.status;
 2207                 error = cb->uaiocb._aiocb_private.error;
 2208                 td->td_retval[0] = status;
 2209                 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 2210                         td->td_ru.ru_oublock += cb->outputcharge;
 2211                         cb->outputcharge = 0;
 2212                 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 2213                         td->td_ru.ru_inblock += cb->inputcharge;
 2214                         cb->inputcharge = 0;
 2215                 }
 2216                 aio_free_entry(cb);
 2217                 AIO_UNLOCK(ki);
 2218                 suword(uap->aiocbp, (long)uuaiocb);
 2219                 suword(&uuaiocb->_aiocb_private.error, error);
 2220                 suword(&uuaiocb->_aiocb_private.status, status);
 2221         } else
 2222                 AIO_UNLOCK(ki);
 2223 
 2224         return (error);
 2225 }
 2226 
 2227 int
 2228 aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 2229 {
 2230         struct proc *p = td->td_proc;
 2231         struct kaioinfo *ki;
 2232 
 2233         if (uap->op != O_SYNC) /* XXX lack of O_DSYNC */
 2234                 return (EINVAL);
 2235         ki = p->p_aioinfo;
 2236         if (ki == NULL)
 2237                 aio_init_aioinfo(p);
 2238         return aio_aqueue(td, uap->aiocbp, NULL, LIO_SYNC, 0);
 2239 }
 2240 
 2241 /* kqueue attach function */
 2242 static int
 2243 filt_aioattach(struct knote *kn)
 2244 {
 2245         struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
 2246 
 2247         /*
 2248          * The aiocbe pointer must be validated before using it, so
 2249          * registration is restricted to the kernel; the user cannot
 2250          * set EV_FLAG1.
 2251          */
 2252         if ((kn->kn_flags & EV_FLAG1) == 0)
 2253                 return (EPERM);
 2254         kn->kn_ptr.p_aio = aiocbe;
 2255         kn->kn_flags &= ~EV_FLAG1;
 2256 
 2257         knlist_add(&aiocbe->klist, kn, 0);
 2258 
 2259         return (0);
 2260 }
 2261 
 2262 /* kqueue detach function */
 2263 static void
 2264 filt_aiodetach(struct knote *kn)
 2265 {
 2266         struct aiocblist *aiocbe = kn->kn_ptr.p_aio;
 2267 
 2268         if (!knlist_empty(&aiocbe->klist))
 2269                 knlist_remove(&aiocbe->klist, kn, 0);
 2270 }
 2271 
 2272 /* kqueue filter function */
 2273 /*ARGSUSED*/
 2274 static int
 2275 filt_aio(struct knote *kn, long hint)
 2276 {
 2277         struct aiocblist *aiocbe = kn->kn_ptr.p_aio;
 2278 
 2279         kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
 2280         if (aiocbe->jobstate != JOBST_JOBFINISHED)
 2281                 return (0);
 2282         kn->kn_flags |= EV_EOF;
 2283         return (1);
 2284 }
 2285 
 2286 /* kqueue attach function */
 2287 static int
 2288 filt_lioattach(struct knote *kn)
 2289 {
 2290         struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
 2291 
 2292         /*
 2293          * The aioliojob pointer must be validated before using it, so
 2294          * registration is restricted to the kernel; the user cannot
 2295          * set EV_FLAG1.
 2296          */
 2297         if ((kn->kn_flags & EV_FLAG1) == 0)
 2298                 return (EPERM);
 2299         kn->kn_ptr.p_lio = lj;
 2300         kn->kn_flags &= ~EV_FLAG1;
 2301 
 2302         knlist_add(&lj->klist, kn, 0);
 2303 
 2304         return (0);
 2305 }
 2306 
 2307 /* kqueue detach function */
 2308 static void
 2309 filt_liodetach(struct knote *kn)
 2310 {
 2311         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2312 
 2313         if (!knlist_empty(&lj->klist))
 2314                 knlist_remove(&lj->klist, kn, 0);
 2315 }
 2316 
 2317 /* kqueue filter function */
 2318 /*ARGSUSED*/
 2319 static int
 2320 filt_lio(struct knote *kn, long hint)
 2321 {
 2322         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2323 
 2324         return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
 2325 }

Cache object: 6dd55ec595b4392feb9e0d5b8789b1e3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.