The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_aio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. John S. Dyson's name may not be used to endorse or promote products
   10  *    derived from this software without specific prior written permission.
   11  *
   12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
   13  * bad that happens because of using this software isn't the responsibility
   14  * of the author.  This software is distributed AS-IS.
   15  */
   16 
   17 /*
   18  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
   19  */
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD$");
   23 
   24 #include <sys/param.h>
   25 #include <sys/systm.h>
   26 #include <sys/malloc.h>
   27 #include <sys/bio.h>
   28 #include <sys/buf.h>
   29 #include <sys/eventhandler.h>
   30 #include <sys/sysproto.h>
   31 #include <sys/filedesc.h>
   32 #include <sys/kernel.h>
   33 #include <sys/module.h>
   34 #include <sys/kthread.h>
   35 #include <sys/fcntl.h>
   36 #include <sys/file.h>
   37 #include <sys/limits.h>
   38 #include <sys/lock.h>
   39 #include <sys/mutex.h>
   40 #include <sys/unistd.h>
   41 #include <sys/posix4.h>
   42 #include <sys/proc.h>
   43 #include <sys/resourcevar.h>
   44 #include <sys/signalvar.h>
   45 #include <sys/protosw.h>
   46 #include <sys/sema.h>
   47 #include <sys/socket.h>
   48 #include <sys/socketvar.h>
   49 #include <sys/syscall.h>
   50 #include <sys/sysent.h>
   51 #include <sys/sysctl.h>
   52 #include <sys/sx.h>
   53 #include <sys/taskqueue.h>
   54 #include <sys/vnode.h>
   55 #include <sys/conf.h>
   56 #include <sys/event.h>
   57 #include <sys/mount.h>
   58 
   59 #include <machine/atomic.h>
   60 
   61 #include <vm/vm.h>
   62 #include <vm/vm_extern.h>
   63 #include <vm/pmap.h>
   64 #include <vm/vm_map.h>
   65 #include <vm/vm_object.h>
   66 #include <vm/uma.h>
   67 #include <sys/aio.h>
   68 
   69 #include "opt_vfs_aio.h"
   70 
   71 /*
   72  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
   73  * overflow. (XXX will be removed soon.)
   74  */
   75 static u_long jobrefid;
   76 
   77 /*
   78  * Counter for aio_fsync.
   79  */
   80 static uint64_t jobseqno;
   81 
   82 #define JOBST_NULL              0
   83 #define JOBST_JOBQSOCK          1
   84 #define JOBST_JOBQGLOBAL        2
   85 #define JOBST_JOBRUNNING        3
   86 #define JOBST_JOBFINISHED       4
   87 #define JOBST_JOBQBUF           5
   88 #define JOBST_JOBQSYNC          6
   89 
   90 #ifndef MAX_AIO_PER_PROC
   91 #define MAX_AIO_PER_PROC        32
   92 #endif
   93 
   94 #ifndef MAX_AIO_QUEUE_PER_PROC
   95 #define MAX_AIO_QUEUE_PER_PROC  256 /* Bigger than AIO_LISTIO_MAX */
   96 #endif
   97 
   98 #ifndef MAX_AIO_PROCS
   99 #define MAX_AIO_PROCS           32
  100 #endif
  101 
  102 #ifndef MAX_AIO_QUEUE
  103 #define MAX_AIO_QUEUE           1024 /* Bigger than AIO_LISTIO_MAX */
  104 #endif
  105 
  106 #ifndef TARGET_AIO_PROCS
  107 #define TARGET_AIO_PROCS        4
  108 #endif
  109 
  110 #ifndef MAX_BUF_AIO
  111 #define MAX_BUF_AIO             16
  112 #endif
  113 
  114 #ifndef AIOD_TIMEOUT_DEFAULT
  115 #define AIOD_TIMEOUT_DEFAULT    (10 * hz)
  116 #endif
  117 
  118 #ifndef AIOD_LIFETIME_DEFAULT
  119 #define AIOD_LIFETIME_DEFAULT   (30 * hz)
  120 #endif
  121 
  122 FEATURE(aio, "Asynchronous I/O");
  123 
  124 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
  125 
  126 static int max_aio_procs = MAX_AIO_PROCS;
  127 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
  128         CTLFLAG_RW, &max_aio_procs, 0,
  129         "Maximum number of kernel threads to use for handling async IO ");
  130 
  131 static int num_aio_procs = 0;
  132 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
  133         CTLFLAG_RD, &num_aio_procs, 0,
  134         "Number of presently active kernel threads for async IO");
  135 
  136 /*
  137  * The code will adjust the actual number of AIO processes towards this
  138  * number when it gets a chance.
  139  */
  140 static int target_aio_procs = TARGET_AIO_PROCS;
  141 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
  142         0, "Preferred number of ready kernel threads for async IO");
  143 
  144 static int max_queue_count = MAX_AIO_QUEUE;
  145 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
  146     "Maximum number of aio requests to queue, globally");
  147 
  148 static int num_queue_count = 0;
  149 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
  150     "Number of queued aio requests");
  151 
  152 static int num_buf_aio = 0;
  153 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
  154     "Number of aio requests presently handled by the buf subsystem");
  155 
  156 /* Number of async I/O thread in the process of being started */
  157 /* XXX This should be local to aio_aqueue() */
  158 static int num_aio_resv_start = 0;
  159 
  160 static int aiod_timeout;
  161 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
  162     "Timeout value for synchronous aio operations");
  163 
  164 static int aiod_lifetime;
  165 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
  166     "Maximum lifetime for idle aiod");
  167 
  168 static int unloadable = 0;
  169 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0,
  170     "Allow unload of aio (not recommended)");
  171 
  172 
  173 static int max_aio_per_proc = MAX_AIO_PER_PROC;
  174 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
  175     0, "Maximum active aio requests per process (stored in the process)");
  176 
  177 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
  178 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
  179     &max_aio_queue_per_proc, 0,
  180     "Maximum queued aio requests per process (stored in the process)");
  181 
  182 static int max_buf_aio = MAX_BUF_AIO;
  183 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
  184     "Maximum buf aio requests per process (stored in the process)");
  185 
  186 typedef struct oaiocb {
  187         int     aio_fildes;             /* File descriptor */
  188         off_t   aio_offset;             /* File offset for I/O */
  189         volatile void *aio_buf;         /* I/O buffer in process space */
  190         size_t  aio_nbytes;             /* Number of bytes for I/O */
  191         struct  osigevent aio_sigevent; /* Signal to deliver */
  192         int     aio_lio_opcode;         /* LIO opcode */
  193         int     aio_reqprio;            /* Request priority -- ignored */
  194         struct  __aiocb_private _aiocb_private;
  195 } oaiocb_t;
  196 
  197 /*
  198  * Below is a key of locks used to protect each member of struct aiocblist
  199  * aioliojob and kaioinfo and any backends.
  200  *
  201  * * - need not protected
  202  * a - locked by kaioinfo lock
  203  * b - locked by backend lock, the backend lock can be null in some cases,
  204  *     for example, BIO belongs to this type, in this case, proc lock is
  205  *     reused.
  206  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
  207  */
  208 
  209 /*
  210  * Current, there is only two backends: BIO and generic file I/O.
  211  * socket I/O is served by generic file I/O, this is not a good idea, since
  212  * disk file I/O and any other types without O_NONBLOCK flag can block daemon
  213  * threads, if there is no thread to serve socket I/O, the socket I/O will be
  214  * delayed too long or starved, we should create some threads dedicated to
  215  * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O
  216  * systems we really need non-blocking interface, fiddling O_NONBLOCK in file
  217  * structure is not safe because there is race between userland and aio
  218  * daemons.
  219  */
  220 
  221 struct aiocblist {
  222         TAILQ_ENTRY(aiocblist) list;    /* (b) internal list of for backend */
  223         TAILQ_ENTRY(aiocblist) plist;   /* (a) list of jobs for each backend */
  224         TAILQ_ENTRY(aiocblist) allist;  /* (a) list of all jobs in proc */
  225         int     jobflags;               /* (a) job flags */
  226         int     jobstate;               /* (b) job state */
  227         int     inputcharge;            /* (*) input blockes */
  228         int     outputcharge;           /* (*) output blockes */
  229         struct  buf *bp;                /* (*) private to BIO backend,
  230                                          * buffer pointer
  231                                          */
  232         struct  proc *userproc;         /* (*) user process */
  233         struct  ucred *cred;            /* (*) active credential when created */
  234         struct  file *fd_file;          /* (*) pointer to file structure */
  235         struct  aioliojob *lio;         /* (*) optional lio job */
  236         struct  aiocb *uuaiocb;         /* (*) pointer in userspace of aiocb */
  237         struct  knlist klist;           /* (a) list of knotes */
  238         struct  aiocb uaiocb;           /* (*) kernel I/O control block */
  239         ksiginfo_t ksi;                 /* (a) realtime signal info */
  240         struct  task biotask;           /* (*) private to BIO backend */
  241         uint64_t seqno;                 /* (*) job number */
  242         int     pending;                /* (a) number of pending I/O, aio_fsync only */
  243 };
  244 
  245 /* jobflags */
  246 #define AIOCBLIST_DONE          0x01
  247 #define AIOCBLIST_BUFDONE       0x02
  248 #define AIOCBLIST_RUNDOWN       0x04
  249 #define AIOCBLIST_CHECKSYNC     0x08
  250 
  251 /*
  252  * AIO process info
  253  */
  254 #define AIOP_FREE       0x1                     /* proc on free queue */
  255 
  256 struct aiothreadlist {
  257         int aiothreadflags;                     /* (c) AIO proc flags */
  258         TAILQ_ENTRY(aiothreadlist) list;        /* (c) list of processes */
  259         struct thread *aiothread;               /* (*) the AIO thread */
  260 };
  261 
  262 /*
  263  * data-structure for lio signal management
  264  */
  265 struct aioliojob {
  266         int     lioj_flags;                     /* (a) listio flags */
  267         int     lioj_count;                     /* (a) listio flags */
  268         int     lioj_finished_count;            /* (a) listio flags */
  269         struct  sigevent lioj_signal;           /* (a) signal on all I/O done */
  270         TAILQ_ENTRY(aioliojob) lioj_list;       /* (a) lio list */
  271         struct  knlist klist;                   /* (a) list of knotes */
  272         ksiginfo_t lioj_ksi;                    /* (a) Realtime signal info */
  273 };
  274 
  275 #define LIOJ_SIGNAL             0x1     /* signal on all done (lio) */
  276 #define LIOJ_SIGNAL_POSTED      0x2     /* signal has been posted */
  277 #define LIOJ_KEVENT_POSTED      0x4     /* kevent triggered */
  278 
  279 /*
  280  * per process aio data structure
  281  */
  282 struct kaioinfo {
  283         struct mtx      kaio_mtx;       /* the lock to protect this struct */
  284         int     kaio_flags;             /* (a) per process kaio flags */
  285         int     kaio_maxactive_count;   /* (*) maximum number of AIOs */
  286         int     kaio_active_count;      /* (c) number of currently used AIOs */
  287         int     kaio_qallowed_count;    /* (*) maxiumu size of AIO queue */
  288         int     kaio_count;             /* (a) size of AIO queue */
  289         int     kaio_ballowed_count;    /* (*) maximum number of buffers */
  290         int     kaio_buffer_count;      /* (a) number of physio buffers */
  291         TAILQ_HEAD(,aiocblist) kaio_all;        /* (a) all AIOs in the process */
  292         TAILQ_HEAD(,aiocblist) kaio_done;       /* (a) done queue for process */
  293         TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
  294         TAILQ_HEAD(,aiocblist) kaio_jobqueue;   /* (a) job queue for process */
  295         TAILQ_HEAD(,aiocblist) kaio_bufqueue;   /* (a) buffer job queue for process */
  296         TAILQ_HEAD(,aiocblist) kaio_sockqueue;  /* (a) queue for aios waiting on sockets,
  297                                                  *  NOT USED YET.
  298                                                  */
  299         TAILQ_HEAD(,aiocblist) kaio_syncqueue;  /* (a) queue for aio_fsync */
  300         struct  task    kaio_task;      /* (*) task to kick aio threads */
  301 };
  302 
  303 #define AIO_LOCK(ki)            mtx_lock(&(ki)->kaio_mtx)
  304 #define AIO_UNLOCK(ki)          mtx_unlock(&(ki)->kaio_mtx)
  305 #define AIO_LOCK_ASSERT(ki, f)  mtx_assert(&(ki)->kaio_mtx, (f))
  306 #define AIO_MTX(ki)             (&(ki)->kaio_mtx)
  307 
  308 #define KAIO_RUNDOWN    0x1     /* process is being run down */
  309 #define KAIO_WAKEUP     0x2     /* wakeup process when there is a significant event */
  310 
  311 static TAILQ_HEAD(,aiothreadlist) aio_freeproc;         /* (c) Idle daemons */
  312 static struct sema aio_newproc_sem;
  313 static struct mtx aio_job_mtx;
  314 static struct mtx aio_sock_mtx;
  315 static TAILQ_HEAD(,aiocblist) aio_jobs;                 /* (c) Async job list */
  316 static struct unrhdr *aiod_unr;
  317 
  318 void            aio_init_aioinfo(struct proc *p);
  319 static void     aio_onceonly(void);
  320 static int      aio_free_entry(struct aiocblist *aiocbe);
  321 static void     aio_process(struct aiocblist *aiocbe);
  322 static int      aio_newproc(int *);
  323 int             aio_aqueue(struct thread *td, struct aiocb *job,
  324                         struct aioliojob *lio, int type, int osigev);
  325 static void     aio_physwakeup(struct buf *bp);
  326 static void     aio_proc_rundown(void *arg, struct proc *p);
  327 static void     aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp);
  328 static int      aio_qphysio(struct proc *p, struct aiocblist *iocb);
  329 static void     biohelper(void *, int);
  330 static void     aio_daemon(void *param);
  331 static void     aio_swake_cb(struct socket *, struct sockbuf *);
  332 static int      aio_unload(void);
  333 static void     aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type);
  334 #define DONE_BUF        1
  335 #define DONE_QUEUE      2
  336 static int      do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev);
  337 static int      aio_kick(struct proc *userp);
  338 static void     aio_kick_nowait(struct proc *userp);
  339 static void     aio_kick_helper(void *context, int pending);
  340 static int      filt_aioattach(struct knote *kn);
  341 static void     filt_aiodetach(struct knote *kn);
  342 static int      filt_aio(struct knote *kn, long hint);
  343 static int      filt_lioattach(struct knote *kn);
  344 static void     filt_liodetach(struct knote *kn);
  345 static int      filt_lio(struct knote *kn, long hint);
  346 
  347 /*
  348  * Zones for:
  349  *      kaio    Per process async io info
  350  *      aiop    async io thread data
  351  *      aiocb   async io jobs
  352  *      aiol    list io job pointer - internal to aio_suspend XXX
  353  *      aiolio  list io jobs
  354  */
  355 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
  356 
  357 /* kqueue filters for aio */
  358 static struct filterops aio_filtops =
  359         { 0, filt_aioattach, filt_aiodetach, filt_aio };
  360 static struct filterops lio_filtops =
  361         { 0, filt_lioattach, filt_liodetach, filt_lio };
  362 
  363 static eventhandler_tag exit_tag, exec_tag;
  364 
  365 TASKQUEUE_DEFINE_THREAD(aiod_bio);
  366 
  367 /*
  368  * Main operations function for use as a kernel module.
  369  */
  370 static int
  371 aio_modload(struct module *module, int cmd, void *arg)
  372 {
  373         int error = 0;
  374 
  375         switch (cmd) {
  376         case MOD_LOAD:
  377                 aio_onceonly();
  378                 break;
  379         case MOD_UNLOAD:
  380                 error = aio_unload();
  381                 break;
  382         case MOD_SHUTDOWN:
  383                 break;
  384         default:
  385                 error = EINVAL;
  386                 break;
  387         }
  388         return (error);
  389 }
  390 
  391 static moduledata_t aio_mod = {
  392         "aio",
  393         &aio_modload,
  394         NULL
  395 };
  396 
  397 SYSCALL_MODULE_HELPER(aio_cancel);
  398 SYSCALL_MODULE_HELPER(aio_error);
  399 SYSCALL_MODULE_HELPER(aio_fsync);
  400 SYSCALL_MODULE_HELPER(aio_read);
  401 SYSCALL_MODULE_HELPER(aio_return);
  402 SYSCALL_MODULE_HELPER(aio_suspend);
  403 SYSCALL_MODULE_HELPER(aio_waitcomplete);
  404 SYSCALL_MODULE_HELPER(aio_write);
  405 SYSCALL_MODULE_HELPER(lio_listio);
  406 SYSCALL_MODULE_HELPER(oaio_read);
  407 SYSCALL_MODULE_HELPER(oaio_write);
  408 SYSCALL_MODULE_HELPER(olio_listio);
  409 
  410 DECLARE_MODULE(aio, aio_mod,
  411         SI_SUB_VFS, SI_ORDER_ANY);
  412 MODULE_VERSION(aio, 1);
  413 
  414 /*
  415  * Startup initialization
  416  */
  417 static void
  418 aio_onceonly(void)
  419 {
  420 
  421         /* XXX: should probably just use so->callback */
  422         aio_swake = &aio_swake_cb;
  423         exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
  424             EVENTHANDLER_PRI_ANY);
  425         exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL,
  426             EVENTHANDLER_PRI_ANY);
  427         kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
  428         kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
  429         TAILQ_INIT(&aio_freeproc);
  430         sema_init(&aio_newproc_sem, 0, "aio_new_proc");
  431         mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
  432         mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF);
  433         TAILQ_INIT(&aio_jobs);
  434         aiod_unr = new_unrhdr(1, INT_MAX, NULL);
  435         kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
  436             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  437         aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL,
  438             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  439         aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL,
  440             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  441         aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
  442             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  443         aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
  444             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  445         aiod_timeout = AIOD_TIMEOUT_DEFAULT;
  446         aiod_lifetime = AIOD_LIFETIME_DEFAULT;
  447         jobrefid = 1;
  448         async_io_version = _POSIX_VERSION;
  449         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
  450         p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
  451         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
  452 }
  453 
  454 /*
  455  * Callback for unload of AIO when used as a module.
  456  */
  457 static int
  458 aio_unload(void)
  459 {
  460         int error;
  461 
  462         /*
  463          * XXX: no unloads by default, it's too dangerous.
  464          * perhaps we could do it if locked out callers and then
  465          * did an aio_proc_rundown() on each process.
  466          *
  467          * jhb: aio_proc_rundown() needs to run on curproc though,
  468          * so I don't think that would fly.
  469          */
  470         if (!unloadable)
  471                 return (EOPNOTSUPP);
  472 
  473         error = kqueue_del_filteropts(EVFILT_AIO);
  474         if (error)
  475                 return error;
  476         error = kqueue_del_filteropts(EVFILT_LIO);
  477         if (error)
  478                 return error;
  479         async_io_version = 0;
  480         aio_swake = NULL;
  481         taskqueue_free(taskqueue_aiod_bio);
  482         delete_unrhdr(aiod_unr);
  483         uma_zdestroy(kaio_zone);
  484         uma_zdestroy(aiop_zone);
  485         uma_zdestroy(aiocb_zone);
  486         uma_zdestroy(aiol_zone);
  487         uma_zdestroy(aiolio_zone);
  488         EVENTHANDLER_DEREGISTER(process_exit, exit_tag);
  489         EVENTHANDLER_DEREGISTER(process_exec, exec_tag);
  490         mtx_destroy(&aio_job_mtx);
  491         mtx_destroy(&aio_sock_mtx);
  492         sema_destroy(&aio_newproc_sem);
  493         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1);
  494         p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1);
  495         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1);
  496         return (0);
  497 }
  498 
  499 /*
  500  * Init the per-process aioinfo structure.  The aioinfo limits are set
  501  * per-process for user limit (resource) management.
  502  */
  503 void
  504 aio_init_aioinfo(struct proc *p)
  505 {
  506         struct kaioinfo *ki;
  507 
  508         ki = uma_zalloc(kaio_zone, M_WAITOK);
  509         mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF);
  510         ki->kaio_flags = 0;
  511         ki->kaio_maxactive_count = max_aio_per_proc;
  512         ki->kaio_active_count = 0;
  513         ki->kaio_qallowed_count = max_aio_queue_per_proc;
  514         ki->kaio_count = 0;
  515         ki->kaio_ballowed_count = max_buf_aio;
  516         ki->kaio_buffer_count = 0;
  517         TAILQ_INIT(&ki->kaio_all);
  518         TAILQ_INIT(&ki->kaio_done);
  519         TAILQ_INIT(&ki->kaio_jobqueue);
  520         TAILQ_INIT(&ki->kaio_bufqueue);
  521         TAILQ_INIT(&ki->kaio_liojoblist);
  522         TAILQ_INIT(&ki->kaio_sockqueue);
  523         TAILQ_INIT(&ki->kaio_syncqueue);
  524         TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
  525         PROC_LOCK(p);
  526         if (p->p_aioinfo == NULL) {
  527                 p->p_aioinfo = ki;
  528                 PROC_UNLOCK(p);
  529         } else {
  530                 PROC_UNLOCK(p);
  531                 mtx_destroy(&ki->kaio_mtx);
  532                 uma_zfree(kaio_zone, ki);
  533         }
  534 
  535         while (num_aio_procs < target_aio_procs)
  536                 aio_newproc(NULL);
  537 }
  538 
  539 static int
  540 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
  541 {
  542         int ret = 0;
  543 
  544         PROC_LOCK(p);
  545         if (!KSI_ONQ(ksi)) {
  546                 ksi->ksi_code = SI_ASYNCIO;
  547                 ksi->ksi_flags |= KSI_EXT | KSI_INS;
  548                 ret = psignal_event(p, sigev, ksi);
  549         }
  550         PROC_UNLOCK(p);
  551         return (ret);
  552 }
  553 
  554 /*
  555  * Free a job entry.  Wait for completion if it is currently active, but don't
  556  * delay forever.  If we delay, we return a flag that says that we have to
  557  * restart the queue scan.
  558  */
  559 static int
  560 aio_free_entry(struct aiocblist *aiocbe)
  561 {
  562         struct kaioinfo *ki;
  563         struct aioliojob *lj;
  564         struct proc *p;
  565 
  566         p = aiocbe->userproc;
  567         MPASS(curproc == p);
  568         ki = p->p_aioinfo;
  569         MPASS(ki != NULL);
  570 
  571         AIO_LOCK_ASSERT(ki, MA_OWNED);
  572         MPASS(aiocbe->jobstate == JOBST_JOBFINISHED);
  573 
  574         atomic_subtract_int(&num_queue_count, 1);
  575 
  576         ki->kaio_count--;
  577         MPASS(ki->kaio_count >= 0);
  578 
  579         TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist);
  580         TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
  581 
  582         lj = aiocbe->lio;
  583         if (lj) {
  584                 lj->lioj_count--;
  585                 lj->lioj_finished_count--;
  586 
  587                 if (lj->lioj_count == 0) {
  588                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  589                         /* lio is going away, we need to destroy any knotes */
  590                         knlist_delete(&lj->klist, curthread, 1);
  591                         PROC_LOCK(p);
  592                         sigqueue_take(&lj->lioj_ksi);
  593                         PROC_UNLOCK(p);
  594                         uma_zfree(aiolio_zone, lj);
  595                 }
  596         }
  597 
  598         /* aiocbe is going away, we need to destroy any knotes */
  599         knlist_delete(&aiocbe->klist, curthread, 1);
  600         PROC_LOCK(p);
  601         sigqueue_take(&aiocbe->ksi);
  602         PROC_UNLOCK(p);
  603 
  604         MPASS(aiocbe->bp == NULL);
  605         aiocbe->jobstate = JOBST_NULL;
  606         AIO_UNLOCK(ki);
  607 
  608         /*
  609          * The thread argument here is used to find the owning process
  610          * and is also passed to fo_close() which may pass it to various
  611          * places such as devsw close() routines.  Because of that, we
  612          * need a thread pointer from the process owning the job that is
  613          * persistent and won't disappear out from under us or move to
  614          * another process.
  615          *
  616          * Currently, all the callers of this function call it to remove
  617          * an aiocblist from the current process' job list either via a
  618          * syscall or due to the current process calling exit() or
  619          * execve().  Thus, we know that p == curproc.  We also know that
  620          * curthread can't exit since we are curthread.
  621          *
  622          * Therefore, we use curthread as the thread to pass to
  623          * knlist_delete().  This does mean that it is possible for the
  624          * thread pointer at close time to differ from the thread pointer
  625          * at open time, but this is already true of file descriptors in
  626          * a multithreaded process.
  627          */
  628         fdrop(aiocbe->fd_file, curthread);
  629         crfree(aiocbe->cred);
  630         uma_zfree(aiocb_zone, aiocbe);
  631         AIO_LOCK(ki);
  632 
  633         return (0);
  634 }
  635 
  636 static void
  637 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
  638 {
  639         aio_proc_rundown(arg, p);
  640 }
  641 
  642 /*
  643  * Rundown the jobs for a given process.
  644  */
  645 static void
  646 aio_proc_rundown(void *arg, struct proc *p)
  647 {
  648         struct kaioinfo *ki;
  649         struct aioliojob *lj;
  650         struct aiocblist *cbe, *cbn;
  651         struct file *fp;
  652         struct socket *so;
  653         int remove;
  654 
  655         KASSERT(curthread->td_proc == p,
  656             ("%s: called on non-curproc", __func__));
  657         ki = p->p_aioinfo;
  658         if (ki == NULL)
  659                 return;
  660 
  661         AIO_LOCK(ki);
  662         ki->kaio_flags |= KAIO_RUNDOWN;
  663 
  664 restart:
  665 
  666         /*
  667          * Try to cancel all pending requests. This code simulates
  668          * aio_cancel on all pending I/O requests.
  669          */
  670         TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
  671                 remove = 0;
  672                 mtx_lock(&aio_job_mtx);
  673                 if (cbe->jobstate == JOBST_JOBQGLOBAL) {
  674                         TAILQ_REMOVE(&aio_jobs, cbe, list);
  675                         remove = 1;
  676                 } else if (cbe->jobstate == JOBST_JOBQSOCK) {
  677                         fp = cbe->fd_file;
  678                         MPASS(fp->f_type == DTYPE_SOCKET);
  679                         so = fp->f_data;
  680                         TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
  681                         remove = 1;
  682                 } else if (cbe->jobstate == JOBST_JOBQSYNC) {
  683                         TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
  684                         remove = 1;
  685                 }
  686                 mtx_unlock(&aio_job_mtx);
  687 
  688                 if (remove) {
  689                         cbe->jobstate = JOBST_JOBFINISHED;
  690                         cbe->uaiocb._aiocb_private.status = -1;
  691                         cbe->uaiocb._aiocb_private.error = ECANCELED;
  692                         TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
  693                         aio_bio_done_notify(p, cbe, DONE_QUEUE);
  694                 }
  695         }
  696 
  697         /* Wait for all running I/O to be finished */
  698         if (TAILQ_FIRST(&ki->kaio_bufqueue) ||
  699             TAILQ_FIRST(&ki->kaio_jobqueue)) {
  700                 ki->kaio_flags |= KAIO_WAKEUP;
  701                 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
  702                 goto restart;
  703         }
  704 
  705         /* Free all completed I/O requests. */
  706         while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL)
  707                 aio_free_entry(cbe);
  708 
  709         while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
  710                 if (lj->lioj_count == 0) {
  711                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  712                         knlist_delete(&lj->klist, curthread, 1);
  713                         PROC_LOCK(p);
  714                         sigqueue_take(&lj->lioj_ksi);
  715                         PROC_UNLOCK(p);
  716                         uma_zfree(aiolio_zone, lj);
  717                 } else {
  718                         panic("LIO job not cleaned up: C:%d, FC:%d\n",
  719                             lj->lioj_count, lj->lioj_finished_count);
  720                 }
  721         }
  722         AIO_UNLOCK(ki);
  723         taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task);
  724         mtx_destroy(&ki->kaio_mtx);
  725         uma_zfree(kaio_zone, ki);
  726         p->p_aioinfo = NULL;
  727 }
  728 
  729 /*
  730  * Select a job to run (called by an AIO daemon).
  731  */
  732 static struct aiocblist *
  733 aio_selectjob(struct aiothreadlist *aiop)
  734 {
  735         struct aiocblist *aiocbe;
  736         struct kaioinfo *ki;
  737         struct proc *userp;
  738 
  739         mtx_assert(&aio_job_mtx, MA_OWNED);
  740         TAILQ_FOREACH(aiocbe, &aio_jobs, list) {
  741                 userp = aiocbe->userproc;
  742                 ki = userp->p_aioinfo;
  743 
  744                 if (ki->kaio_active_count < ki->kaio_maxactive_count) {
  745                         TAILQ_REMOVE(&aio_jobs, aiocbe, list);
  746                         /* Account for currently active jobs. */
  747                         ki->kaio_active_count++;
  748                         aiocbe->jobstate = JOBST_JOBRUNNING;
  749                         break;
  750                 }
  751         }
  752         return (aiocbe);
  753 }
  754 
  755 /*
  756  *  Move all data to a permanent storage device, this code
  757  *  simulates fsync syscall.
  758  */
  759 static int
  760 aio_fsync_vnode(struct thread *td, struct vnode *vp)
  761 {
  762         struct mount *mp;
  763         int vfslocked;
  764         int error;
  765 
  766         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  767         if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  768                 goto drop;
  769         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
  770         if (vp->v_object != NULL) {
  771                 VM_OBJECT_LOCK(vp->v_object);
  772                 vm_object_page_clean(vp->v_object, 0, 0, 0);
  773                 VM_OBJECT_UNLOCK(vp->v_object);
  774         }
  775         error = VOP_FSYNC(vp, MNT_WAIT, td);
  776 
  777         VOP_UNLOCK(vp, 0, td);
  778         vn_finished_write(mp);
  779 drop:
  780         VFS_UNLOCK_GIANT(vfslocked);
  781         return (error);
  782 }
  783 
  784 /*
  785  * The AIO processing activity.  This is the code that does the I/O request for
  786  * the non-physio version of the operations.  The normal vn operations are used,
  787  * and this code should work in all instances for every type of file, including
  788  * pipes, sockets, fifos, and regular files.
  789  *
  790  * XXX I don't think it works well for socket, pipe, and fifo.
  791  */
  792 static void
  793 aio_process(struct aiocblist *aiocbe)
  794 {
  795         struct ucred *td_savedcred;
  796         struct thread *td;
  797         struct aiocb *cb;
  798         struct file *fp;
  799         struct socket *so;
  800         struct uio auio;
  801         struct iovec aiov;
  802         int cnt;
  803         int error;
  804         int oublock_st, oublock_end;
  805         int inblock_st, inblock_end;
  806 
  807         td = curthread;
  808         td_savedcred = td->td_ucred;
  809         td->td_ucred = aiocbe->cred;
  810         cb = &aiocbe->uaiocb;
  811         fp = aiocbe->fd_file;
  812 
  813         if (cb->aio_lio_opcode == LIO_SYNC) {
  814                 error = 0;
  815                 cnt = 0;
  816                 if (fp->f_vnode != NULL)
  817                         error = aio_fsync_vnode(td, fp->f_vnode);
  818                 cb->_aiocb_private.error = error;
  819                 cb->_aiocb_private.status = 0;
  820                 td->td_ucred = td_savedcred;
  821                 return;
  822         }
  823 
  824         aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
  825         aiov.iov_len = cb->aio_nbytes;
  826 
  827         auio.uio_iov = &aiov;
  828         auio.uio_iovcnt = 1;
  829         auio.uio_offset = cb->aio_offset;
  830         auio.uio_resid = cb->aio_nbytes;
  831         cnt = cb->aio_nbytes;
  832         auio.uio_segflg = UIO_USERSPACE;
  833         auio.uio_td = td;
  834 
  835         inblock_st = td->td_ru.ru_inblock;
  836         oublock_st = td->td_ru.ru_oublock;
  837         /*
  838          * aio_aqueue() acquires a reference to the file that is
  839          * released in aio_free_entry().
  840          */
  841         if (cb->aio_lio_opcode == LIO_READ) {
  842                 auio.uio_rw = UIO_READ;
  843                 if (auio.uio_resid == 0)
  844                         error = 0;
  845                 else
  846                         error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  847         } else {
  848                 if (fp->f_type == DTYPE_VNODE)
  849                         bwillwrite();
  850                 auio.uio_rw = UIO_WRITE;
  851                 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  852         }
  853         inblock_end = td->td_ru.ru_inblock;
  854         oublock_end = td->td_ru.ru_oublock;
  855 
  856         aiocbe->inputcharge = inblock_end - inblock_st;
  857         aiocbe->outputcharge = oublock_end - oublock_st;
  858 
  859         if ((error) && (auio.uio_resid != cnt)) {
  860                 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
  861                         error = 0;
  862                 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
  863                         int sigpipe = 1;
  864                         if (fp->f_type == DTYPE_SOCKET) {
  865                                 so = fp->f_data;
  866                                 if (so->so_options & SO_NOSIGPIPE)
  867                                         sigpipe = 0;
  868                         }
  869                         if (sigpipe) {
  870                                 PROC_LOCK(aiocbe->userproc);
  871                                 psignal(aiocbe->userproc, SIGPIPE);
  872                                 PROC_UNLOCK(aiocbe->userproc);
  873                         }
  874                 }
  875         }
  876 
  877         cnt -= auio.uio_resid;
  878         cb->_aiocb_private.error = error;
  879         cb->_aiocb_private.status = cnt;
  880         td->td_ucred = td_savedcred;
  881 }
  882 
  883 static void
  884 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type)
  885 {
  886         struct aioliojob *lj;
  887         struct kaioinfo *ki;
  888         struct aiocblist *scb, *scbn;
  889         int lj_done;
  890 
  891         ki = userp->p_aioinfo;
  892         AIO_LOCK_ASSERT(ki, MA_OWNED);
  893         lj = aiocbe->lio;
  894         lj_done = 0;
  895         if (lj) {
  896                 lj->lioj_finished_count++;
  897                 if (lj->lioj_count == lj->lioj_finished_count)
  898                         lj_done = 1;
  899         }
  900         if (type == DONE_QUEUE) {
  901                 aiocbe->jobflags |= AIOCBLIST_DONE;
  902         } else {
  903                 aiocbe->jobflags |= AIOCBLIST_BUFDONE;
  904         }
  905         TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist);
  906         aiocbe->jobstate = JOBST_JOBFINISHED;
  907 
  908         if (ki->kaio_flags & KAIO_RUNDOWN)
  909                 goto notification_done;
  910 
  911         if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
  912             aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
  913                 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi);
  914 
  915         KNOTE_LOCKED(&aiocbe->klist, 1);
  916 
  917         if (lj_done) {
  918                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
  919                         lj->lioj_flags |= LIOJ_KEVENT_POSTED;
  920                         KNOTE_LOCKED(&lj->klist, 1);
  921                 }
  922                 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
  923                     == LIOJ_SIGNAL
  924                     && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
  925                         lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
  926                         aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
  927                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
  928                 }
  929         }
  930 
  931 notification_done:
  932         if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) {
  933                 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) {
  934                         if (aiocbe->fd_file == scb->fd_file &&
  935                             aiocbe->seqno < scb->seqno) {
  936                                 if (--scb->pending == 0) {
  937                                         mtx_lock(&aio_job_mtx);
  938                                         scb->jobstate = JOBST_JOBQGLOBAL;
  939                                         TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list);
  940                                         TAILQ_INSERT_TAIL(&aio_jobs, scb, list);
  941                                         aio_kick_nowait(userp);
  942                                         mtx_unlock(&aio_job_mtx);
  943                                 }
  944                         }
  945                 }
  946         }
  947         if (ki->kaio_flags & KAIO_WAKEUP) {
  948                 ki->kaio_flags &= ~KAIO_WAKEUP;
  949                 wakeup(&userp->p_aioinfo);
  950         }
  951 }
  952 
  953 /*
  954  * The AIO daemon, most of the actual work is done in aio_process,
  955  * but the setup (and address space mgmt) is done in this routine.
  956  */
  957 static void
  958 aio_daemon(void *_id)
  959 {
  960         struct aiocblist *aiocbe;
  961         struct aiothreadlist *aiop;
  962         struct kaioinfo *ki;
  963         struct proc *curcp, *mycp, *userp;
  964         struct vmspace *myvm, *tmpvm;
  965         struct thread *td = curthread;
  966         int id = (intptr_t)_id;
  967 
  968         /*
  969          * Local copies of curproc (cp) and vmspace (myvm)
  970          */
  971         mycp = td->td_proc;
  972         myvm = mycp->p_vmspace;
  973 
  974         KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp"));
  975 
  976         /*
  977          * Allocate and ready the aio control info.  There is one aiop structure
  978          * per daemon.
  979          */
  980         aiop = uma_zalloc(aiop_zone, M_WAITOK);
  981         aiop->aiothread = td;
  982         aiop->aiothreadflags = 0;
  983 
  984         /* The daemon resides in its own pgrp. */
  985         setsid(td, NULL);
  986 
  987         /*
  988          * Wakeup parent process.  (Parent sleeps to keep from blasting away
  989          * and creating too many daemons.)
  990          */
  991         sema_post(&aio_newproc_sem);
  992 
  993         mtx_lock(&aio_job_mtx);
  994         for (;;) {
  995                 /*
  996                  * curcp is the current daemon process context.
  997                  * userp is the current user process context.
  998                  */
  999                 curcp = mycp;
 1000 
 1001                 /*
 1002                  * Take daemon off of free queue
 1003                  */
 1004                 if (aiop->aiothreadflags & AIOP_FREE) {
 1005                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1006                         aiop->aiothreadflags &= ~AIOP_FREE;
 1007                 }
 1008 
 1009                 /*
 1010                  * Check for jobs.
 1011                  */
 1012                 while ((aiocbe = aio_selectjob(aiop)) != NULL) {
 1013                         mtx_unlock(&aio_job_mtx);
 1014                         userp = aiocbe->userproc;
 1015 
 1016                         /*
 1017                          * Connect to process address space for user program.
 1018                          */
 1019                         if (userp != curcp) {
 1020                                 /*
 1021                                  * Save the current address space that we are
 1022                                  * connected to.
 1023                                  */
 1024                                 tmpvm = mycp->p_vmspace;
 1025 
 1026                                 /*
 1027                                  * Point to the new user address space, and
 1028                                  * refer to it.
 1029                                  */
 1030                                 mycp->p_vmspace = userp->p_vmspace;
 1031                                 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1);
 1032 
 1033                                 /* Activate the new mapping. */
 1034                                 pmap_activate(FIRST_THREAD_IN_PROC(mycp));
 1035 
 1036                                 /*
 1037                                  * If the old address space wasn't the daemons
 1038                                  * own address space, then we need to remove the
 1039                                  * daemon's reference from the other process
 1040                                  * that it was acting on behalf of.
 1041                                  */
 1042                                 if (tmpvm != myvm) {
 1043                                         vmspace_free(tmpvm);
 1044                                 }
 1045                                 curcp = userp;
 1046                         }
 1047 
 1048                         ki = userp->p_aioinfo;
 1049 
 1050                         /* Do the I/O function. */
 1051                         aio_process(aiocbe);
 1052 
 1053                         mtx_lock(&aio_job_mtx);
 1054                         /* Decrement the active job count. */
 1055                         ki->kaio_active_count--;
 1056                         mtx_unlock(&aio_job_mtx);
 1057 
 1058                         AIO_LOCK(ki);
 1059                         TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
 1060                         aio_bio_done_notify(userp, aiocbe, DONE_QUEUE);
 1061                         AIO_UNLOCK(ki);
 1062 
 1063                         mtx_lock(&aio_job_mtx);
 1064                 }
 1065 
 1066                 /*
 1067                  * Disconnect from user address space.
 1068                  */
 1069                 if (curcp != mycp) {
 1070 
 1071                         mtx_unlock(&aio_job_mtx);
 1072 
 1073                         /* Get the user address space to disconnect from. */
 1074                         tmpvm = mycp->p_vmspace;
 1075 
 1076                         /* Get original address space for daemon. */
 1077                         mycp->p_vmspace = myvm;
 1078 
 1079                         /* Activate the daemon's address space. */
 1080                         pmap_activate(FIRST_THREAD_IN_PROC(mycp));
 1081 #ifdef DIAGNOSTIC
 1082                         if (tmpvm == myvm) {
 1083                                 printf("AIOD: vmspace problem -- %d\n",
 1084                                     mycp->p_pid);
 1085                         }
 1086 #endif
 1087                         /* Remove our vmspace reference. */
 1088                         vmspace_free(tmpvm);
 1089 
 1090                         curcp = mycp;
 1091 
 1092                         mtx_lock(&aio_job_mtx);
 1093                         /*
 1094                          * We have to restart to avoid race, we only sleep if
 1095                          * no job can be selected, that should be
 1096                          * curcp == mycp.
 1097                          */
 1098                         continue;
 1099                 }
 1100 
 1101                 mtx_assert(&aio_job_mtx, MA_OWNED);
 1102 
 1103                 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
 1104                 aiop->aiothreadflags |= AIOP_FREE;
 1105 
 1106                 /*
 1107                  * If daemon is inactive for a long time, allow it to exit,
 1108                  * thereby freeing resources.
 1109                  */
 1110                 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy",
 1111                     aiod_lifetime)) {
 1112                         if (TAILQ_EMPTY(&aio_jobs)) {
 1113                                 if ((aiop->aiothreadflags & AIOP_FREE) &&
 1114                                     (num_aio_procs > target_aio_procs)) {
 1115                                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1116                                         num_aio_procs--;
 1117                                         mtx_unlock(&aio_job_mtx);
 1118                                         uma_zfree(aiop_zone, aiop);
 1119                                         free_unr(aiod_unr, id);
 1120 #ifdef DIAGNOSTIC
 1121                                         if (mycp->p_vmspace->vm_refcnt <= 1) {
 1122                                                 printf("AIOD: bad vm refcnt for"
 1123                                                     " exiting daemon: %d\n",
 1124                                                     mycp->p_vmspace->vm_refcnt);
 1125                                         }
 1126 #endif
 1127                                         kthread_exit(0);
 1128                                 }
 1129                         }
 1130                 }
 1131         }
 1132         mtx_unlock(&aio_job_mtx);
 1133         panic("shouldn't be here\n");
 1134 }
 1135 
 1136 /*
 1137  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
 1138  * AIO daemon modifies its environment itself.
 1139  */
 1140 static int
 1141 aio_newproc(int *start)
 1142 {
 1143         int error;
 1144         struct proc *p;
 1145         int id;
 1146 
 1147         id = alloc_unr(aiod_unr);
 1148         error = kthread_create(aio_daemon, (void *)(intptr_t)id, &p,
 1149                 RFNOWAIT, 0, "aiod%d", id);
 1150         if (error == 0) {
 1151                 /*
 1152                  * Wait until daemon is started.
 1153                  */
 1154                 sema_wait(&aio_newproc_sem);
 1155                 mtx_lock(&aio_job_mtx);
 1156                 num_aio_procs++;
 1157                 if (start != NULL)
 1158                         (*start)--;
 1159                 mtx_unlock(&aio_job_mtx);
 1160         } else {
 1161                 free_unr(aiod_unr, id);
 1162         }
 1163         return (error);
 1164 }
 1165 
 1166 /*
 1167  * Try the high-performance, low-overhead physio method for eligible
 1168  * VCHR devices.  This method doesn't use an aio helper thread, and
 1169  * thus has very low overhead.
 1170  *
 1171  * Assumes that the caller, aio_aqueue(), has incremented the file
 1172  * structure's reference count, preventing its deallocation for the
 1173  * duration of this call.
 1174  */
 1175 static int
 1176 aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
 1177 {
 1178         struct aiocb *cb;
 1179         struct file *fp;
 1180         struct buf *bp;
 1181         struct vnode *vp;
 1182         struct kaioinfo *ki;
 1183         struct aioliojob *lj;
 1184         int error;
 1185 
 1186         cb = &aiocbe->uaiocb;
 1187         fp = aiocbe->fd_file;
 1188 
 1189         if (fp->f_type != DTYPE_VNODE)
 1190                 return (-1);
 1191 
 1192         vp = fp->f_vnode;
 1193 
 1194         /*
 1195          * If its not a disk, we don't want to return a positive error.
 1196          * It causes the aio code to not fall through to try the thread
 1197          * way when you're talking to a regular file.
 1198          */
 1199         if (!vn_isdisk(vp, &error)) {
 1200                 if (error == ENOTBLK)
 1201                         return (-1);
 1202                 else
 1203                         return (error);
 1204         }
 1205 
 1206         if (vp->v_bufobj.bo_bsize == 0)
 1207                 return (-1);
 1208 
 1209         if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
 1210                 return (-1);
 1211 
 1212         if (cb->aio_nbytes > vp->v_rdev->si_iosize_max)
 1213                 return (-1);
 1214 
 1215         if (cb->aio_nbytes >
 1216             MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK))
 1217                 return (-1);
 1218 
 1219         ki = p->p_aioinfo;
 1220         if (ki->kaio_buffer_count >= ki->kaio_ballowed_count)
 1221                 return (-1);
 1222 
 1223         /* Create and build a buffer header for a transfer. */
 1224         bp = (struct buf *)getpbuf(NULL);
 1225         BUF_KERNPROC(bp);
 1226 
 1227         AIO_LOCK(ki);
 1228         ki->kaio_count++;
 1229         ki->kaio_buffer_count++;
 1230         lj = aiocbe->lio;
 1231         if (lj)
 1232                 lj->lioj_count++;
 1233         AIO_UNLOCK(ki);
 1234 
 1235         /*
 1236          * Get a copy of the kva from the physical buffer.
 1237          */
 1238         error = 0;
 1239 
 1240         bp->b_bcount = cb->aio_nbytes;
 1241         bp->b_bufsize = cb->aio_nbytes;
 1242         bp->b_iodone = aio_physwakeup;
 1243         bp->b_saveaddr = bp->b_data;
 1244         bp->b_data = (void *)(uintptr_t)cb->aio_buf;
 1245         bp->b_offset = cb->aio_offset;
 1246         bp->b_iooffset = cb->aio_offset;
 1247         bp->b_blkno = btodb(cb->aio_offset);
 1248         bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
 1249 
 1250         /*
 1251          * Bring buffer into kernel space.
 1252          */
 1253         if (vmapbuf(bp) < 0) {
 1254                 error = EFAULT;
 1255                 goto doerror;
 1256         }
 1257 
 1258         AIO_LOCK(ki);
 1259         aiocbe->bp = bp;
 1260         bp->b_caller1 = (void *)aiocbe;
 1261         TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
 1262         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1263         aiocbe->jobstate = JOBST_JOBQBUF;
 1264         cb->_aiocb_private.status = cb->aio_nbytes;
 1265         AIO_UNLOCK(ki);
 1266 
 1267         atomic_add_int(&num_queue_count, 1);
 1268         atomic_add_int(&num_buf_aio, 1);
 1269 
 1270         bp->b_error = 0;
 1271 
 1272         TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe);
 1273 
 1274         /* Perform transfer. */
 1275         dev_strategy(vp->v_rdev, bp);
 1276         return (0);
 1277 
 1278 doerror:
 1279         AIO_LOCK(ki);
 1280         ki->kaio_count--;
 1281         ki->kaio_buffer_count--;
 1282         if (lj)
 1283                 lj->lioj_count--;
 1284         aiocbe->bp = NULL;
 1285         AIO_UNLOCK(ki);
 1286         relpbuf(bp, NULL);
 1287         return (error);
 1288 }
 1289 
 1290 /*
 1291  * Wake up aio requests that may be serviceable now.
 1292  */
 1293 static void
 1294 aio_swake_cb(struct socket *so, struct sockbuf *sb)
 1295 {
 1296         struct aiocblist *cb, *cbn;
 1297         int opcode;
 1298 
 1299         if (sb == &so->so_snd)
 1300                 opcode = LIO_WRITE;
 1301         else
 1302                 opcode = LIO_READ;
 1303 
 1304         SOCKBUF_LOCK(sb);
 1305         sb->sb_flags &= ~SB_AIO;
 1306         mtx_lock(&aio_job_mtx);
 1307         TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) {
 1308                 if (opcode == cb->uaiocb.aio_lio_opcode) {
 1309                         if (cb->jobstate != JOBST_JOBQSOCK)
 1310                                 panic("invalid queue value");
 1311                         /* XXX
 1312                          * We don't have actual sockets backend yet,
 1313                          * so we simply move the requests to the generic
 1314                          * file I/O backend.
 1315                          */
 1316                         TAILQ_REMOVE(&so->so_aiojobq, cb, list);
 1317                         TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
 1318                         aio_kick_nowait(cb->userproc);
 1319                 }
 1320         }
 1321         mtx_unlock(&aio_job_mtx);
 1322         SOCKBUF_UNLOCK(sb);
 1323 }
 1324 
 1325 /*
 1326  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
 1327  * technique is done in this code.
 1328  */
 1329 int
 1330 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj,
 1331         int type, int oldsigev)
 1332 {
 1333         struct proc *p = td->td_proc;
 1334         struct file *fp;
 1335         struct socket *so;
 1336         struct aiocblist *aiocbe, *cb;
 1337         struct kaioinfo *ki;
 1338         struct kevent kev;
 1339         struct sockbuf *sb;
 1340         int opcode;
 1341         int error;
 1342         int fd, kqfd;
 1343         int jid;
 1344 
 1345         if (p->p_aioinfo == NULL)
 1346                 aio_init_aioinfo(p);
 1347 
 1348         ki = p->p_aioinfo;
 1349 
 1350         suword(&job->_aiocb_private.status, -1);
 1351         suword(&job->_aiocb_private.error, 0);
 1352         suword(&job->_aiocb_private.kernelinfo, -1);
 1353 
 1354         if (num_queue_count >= max_queue_count ||
 1355             ki->kaio_count >= ki->kaio_qallowed_count) {
 1356                 suword(&job->_aiocb_private.error, EAGAIN);
 1357                 return (EAGAIN);
 1358         }
 1359 
 1360         aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 1361         aiocbe->inputcharge = 0;
 1362         aiocbe->outputcharge = 0;
 1363         knlist_init(&aiocbe->klist, AIO_MTX(ki), NULL, NULL, NULL);
 1364 
 1365         if (oldsigev) {
 1366                 bzero(&aiocbe->uaiocb, sizeof(struct aiocb));
 1367                 error = copyin(job, &aiocbe->uaiocb, sizeof(struct oaiocb));
 1368                 bcopy(&aiocbe->uaiocb.__spare__, &aiocbe->uaiocb.aio_sigevent,
 1369                         sizeof(struct osigevent));
 1370         } else {
 1371                 error = copyin(job, &aiocbe->uaiocb, sizeof(struct aiocb));
 1372         }
 1373         if (error) {
 1374                 suword(&job->_aiocb_private.error, error);
 1375                 uma_zfree(aiocb_zone, aiocbe);
 1376                 return (error);
 1377         }
 1378 
 1379         if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
 1380             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
 1381             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
 1382             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
 1383                 suword(&job->_aiocb_private.error, EINVAL);
 1384                 uma_zfree(aiocb_zone, aiocbe);
 1385                 return (EINVAL);
 1386         }
 1387         
 1388         if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1389              aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
 1390                 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
 1391                 uma_zfree(aiocb_zone, aiocbe);
 1392                 return (EINVAL);
 1393         }
 1394 
 1395         ksiginfo_init(&aiocbe->ksi);
 1396 
 1397         /* Save userspace address of the job info. */
 1398         aiocbe->uuaiocb = job;
 1399 
 1400         /* Get the opcode. */
 1401         if (type != LIO_NOP)
 1402                 aiocbe->uaiocb.aio_lio_opcode = type;
 1403         opcode = aiocbe->uaiocb.aio_lio_opcode;
 1404 
 1405         /* Fetch the file object for the specified file descriptor. */
 1406         fd = aiocbe->uaiocb.aio_fildes;
 1407         switch (opcode) {
 1408         case LIO_WRITE:
 1409                 error = fget_write(td, fd, &fp);
 1410                 break;
 1411         case LIO_READ:
 1412                 error = fget_read(td, fd, &fp);
 1413                 break;
 1414         default:
 1415                 error = fget(td, fd, &fp);
 1416         }
 1417         if (error) {
 1418                 uma_zfree(aiocb_zone, aiocbe);
 1419                 suword(&job->_aiocb_private.error, error);
 1420                 return (error);
 1421         }
 1422 
 1423         if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
 1424                 error = EINVAL;
 1425                 goto aqueue_fail;
 1426         }
 1427 
 1428         if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) {
 1429                 error = EINVAL;
 1430                 goto aqueue_fail;
 1431         }
 1432 
 1433         aiocbe->fd_file = fp;
 1434 
 1435         mtx_lock(&aio_job_mtx);
 1436         jid = jobrefid++;
 1437         aiocbe->seqno = jobseqno++;
 1438         mtx_unlock(&aio_job_mtx);
 1439         error = suword(&job->_aiocb_private.kernelinfo, jid);
 1440         if (error) {
 1441                 error = EINVAL;
 1442                 goto aqueue_fail;
 1443         }
 1444         aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
 1445 
 1446         if (opcode == LIO_NOP) {
 1447                 fdrop(fp, td);
 1448                 uma_zfree(aiocb_zone, aiocbe);
 1449                 return (0);
 1450         }
 1451         if ((opcode != LIO_READ) && (opcode != LIO_WRITE) &&
 1452             (opcode != LIO_SYNC)) {
 1453                 error = EINVAL;
 1454                 goto aqueue_fail;
 1455         }
 1456 
 1457         if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
 1458                 goto no_kqueue;
 1459         kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
 1460         kev.ident = (uintptr_t)aiocbe->uuaiocb;
 1461         kev.filter = EVFILT_AIO;
 1462         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 1463         kev.data = (intptr_t)aiocbe;
 1464         kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr;
 1465         error = kqfd_register(kqfd, &kev, td, 1);
 1466 aqueue_fail:
 1467         if (error) {
 1468                 fdrop(fp, td);
 1469                 uma_zfree(aiocb_zone, aiocbe);
 1470                 suword(&job->_aiocb_private.error, error);
 1471                 goto done;
 1472         }
 1473 no_kqueue:
 1474 
 1475         suword(&job->_aiocb_private.error, EINPROGRESS);
 1476         aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
 1477         aiocbe->userproc = p;
 1478         aiocbe->cred = crhold(td->td_ucred);
 1479         aiocbe->jobflags = 0;
 1480         aiocbe->lio = lj;
 1481 
 1482         if (opcode == LIO_SYNC)
 1483                 goto queueit;
 1484 
 1485         if (fp->f_type == DTYPE_SOCKET) {
 1486                 /*
 1487                  * Alternate queueing for socket ops: Reach down into the
 1488                  * descriptor to get the socket data.  Then check to see if the
 1489                  * socket is ready to be read or written (based on the requested
 1490                  * operation).
 1491                  *
 1492                  * If it is not ready for io, then queue the aiocbe on the
 1493                  * socket, and set the flags so we get a call when sbnotify()
 1494                  * happens.
 1495                  *
 1496                  * Note if opcode is neither LIO_WRITE nor LIO_READ we lock
 1497                  * and unlock the snd sockbuf for no reason.
 1498                  */
 1499                 so = fp->f_data;
 1500                 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd;
 1501                 SOCKBUF_LOCK(sb);
 1502                 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
 1503                     LIO_WRITE) && (!sowriteable(so)))) {
 1504                         sb->sb_flags |= SB_AIO;
 1505 
 1506                         mtx_lock(&aio_job_mtx);
 1507                         TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
 1508                         mtx_unlock(&aio_job_mtx);
 1509 
 1510                         AIO_LOCK(ki);
 1511                         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1512                         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1513                         aiocbe->jobstate = JOBST_JOBQSOCK;
 1514                         ki->kaio_count++;
 1515                         if (lj)
 1516                                 lj->lioj_count++;
 1517                         AIO_UNLOCK(ki);
 1518                         SOCKBUF_UNLOCK(sb);
 1519                         atomic_add_int(&num_queue_count, 1);
 1520                         error = 0;
 1521                         goto done;
 1522                 }
 1523                 SOCKBUF_UNLOCK(sb);
 1524         }
 1525 
 1526         if ((error = aio_qphysio(p, aiocbe)) == 0)
 1527                 goto done;
 1528 #if 0
 1529         if (error > 0) {
 1530                 aiocbe->uaiocb._aiocb_private.error = error;
 1531                 suword(&job->_aiocb_private.error, error);
 1532                 goto done;
 1533         }
 1534 #endif
 1535 queueit:
 1536         /* No buffer for daemon I/O. */
 1537         aiocbe->bp = NULL;
 1538         atomic_add_int(&num_queue_count, 1);
 1539 
 1540         AIO_LOCK(ki);
 1541         ki->kaio_count++;
 1542         if (lj)
 1543                 lj->lioj_count++;
 1544         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1545         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1546         if (opcode == LIO_SYNC) {
 1547                 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) {
 1548                         if (cb->fd_file == aiocbe->fd_file &&
 1549                             cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1550                             cb->seqno < aiocbe->seqno) {
 1551                                 cb->jobflags |= AIOCBLIST_CHECKSYNC;
 1552                                 aiocbe->pending++;
 1553                         }
 1554                 }
 1555                 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) {
 1556                         if (cb->fd_file == aiocbe->fd_file &&
 1557                             cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1558                             cb->seqno < aiocbe->seqno) {
 1559                                 cb->jobflags |= AIOCBLIST_CHECKSYNC;
 1560                                 aiocbe->pending++;
 1561                         }
 1562                 }
 1563                 if (aiocbe->pending != 0) {
 1564                         TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list);
 1565                         aiocbe->jobstate = JOBST_JOBQSYNC;
 1566                         AIO_UNLOCK(ki);
 1567                         goto done;
 1568                 }
 1569         }
 1570         mtx_lock(&aio_job_mtx);
 1571         TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
 1572         aiocbe->jobstate = JOBST_JOBQGLOBAL;
 1573         aio_kick_nowait(p);
 1574         mtx_unlock(&aio_job_mtx);
 1575         AIO_UNLOCK(ki);
 1576         error = 0;
 1577 done:
 1578         return (error);
 1579 }
 1580 
 1581 static void
 1582 aio_kick_nowait(struct proc *userp)
 1583 {
 1584         struct kaioinfo *ki = userp->p_aioinfo;
 1585         struct aiothreadlist *aiop;
 1586 
 1587         mtx_assert(&aio_job_mtx, MA_OWNED);
 1588         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1589                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1590                 aiop->aiothreadflags &= ~AIOP_FREE;
 1591                 wakeup(aiop->aiothread);
 1592         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1593             ((ki->kaio_active_count + num_aio_resv_start) <
 1594             ki->kaio_maxactive_count)) {
 1595                 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task);
 1596         }
 1597 }
 1598 
 1599 static int
 1600 aio_kick(struct proc *userp)
 1601 {
 1602         struct kaioinfo *ki = userp->p_aioinfo;
 1603         struct aiothreadlist *aiop;
 1604         int error, ret = 0;
 1605 
 1606         mtx_assert(&aio_job_mtx, MA_OWNED);
 1607 retryproc:
 1608         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1609                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1610                 aiop->aiothreadflags &= ~AIOP_FREE;
 1611                 wakeup(aiop->aiothread);
 1612         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1613             ((ki->kaio_active_count + num_aio_resv_start) <
 1614             ki->kaio_maxactive_count)) {
 1615                 num_aio_resv_start++;
 1616                 mtx_unlock(&aio_job_mtx);
 1617                 error = aio_newproc(&num_aio_resv_start);
 1618                 mtx_lock(&aio_job_mtx);
 1619                 if (error) {
 1620                         num_aio_resv_start--;
 1621                         goto retryproc;
 1622                 }
 1623         } else {
 1624                 ret = -1;
 1625         }
 1626         return (ret);
 1627 }
 1628 
 1629 static void
 1630 aio_kick_helper(void *context, int pending)
 1631 {
 1632         struct proc *userp = context;
 1633 
 1634         mtx_lock(&aio_job_mtx);
 1635         while (--pending >= 0) {
 1636                 if (aio_kick(userp))
 1637                         break;
 1638         }
 1639         mtx_unlock(&aio_job_mtx);
 1640 }
 1641 
 1642 /*
 1643  * Support the aio_return system call, as a side-effect, kernel resources are
 1644  * released.
 1645  */
 1646 int
 1647 aio_return(struct thread *td, struct aio_return_args *uap)
 1648 {
 1649         struct proc *p = td->td_proc;
 1650         struct aiocblist *cb;
 1651         struct aiocb *uaiocb;
 1652         struct kaioinfo *ki;
 1653         int status, error;
 1654 
 1655         ki = p->p_aioinfo;
 1656         if (ki == NULL)
 1657                 return (EINVAL);
 1658         uaiocb = uap->aiocbp;
 1659         AIO_LOCK(ki);
 1660         TAILQ_FOREACH(cb, &ki->kaio_done, plist) {
 1661                 if (cb->uuaiocb == uaiocb)
 1662                         break;
 1663         }
 1664         if (cb != NULL) {
 1665                 MPASS(cb->jobstate == JOBST_JOBFINISHED);
 1666                 status = cb->uaiocb._aiocb_private.status;
 1667                 error = cb->uaiocb._aiocb_private.error;
 1668                 td->td_retval[0] = status;
 1669                 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 1670                         td->td_ru.ru_oublock += cb->outputcharge;
 1671                         cb->outputcharge = 0;
 1672                 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 1673                         td->td_ru.ru_inblock += cb->inputcharge;
 1674                         cb->inputcharge = 0;
 1675                 }
 1676                 aio_free_entry(cb);
 1677                 AIO_UNLOCK(ki);
 1678                 suword(&uaiocb->_aiocb_private.error, error);
 1679                 suword(&uaiocb->_aiocb_private.status, status);
 1680         } else {
 1681                 error = EINVAL;
 1682                 AIO_UNLOCK(ki);
 1683         }
 1684         return (error);
 1685 }
 1686 
 1687 /*
 1688  * Allow a process to wakeup when any of the I/O requests are completed.
 1689  */
 1690 int
 1691 aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 1692 {
 1693         struct proc *p = td->td_proc;
 1694         struct timeval atv;
 1695         struct timespec ts;
 1696         struct aiocb *const *cbptr, *cbp;
 1697         struct kaioinfo *ki;
 1698         struct aiocblist *cb, *cbfirst;
 1699         struct aiocb **ujoblist;
 1700         int njoblist;
 1701         int error;
 1702         int timo;
 1703         int i;
 1704 
 1705         if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
 1706                 return (EINVAL);
 1707 
 1708         timo = 0;
 1709         if (uap->timeout) {
 1710                 /* Get timespec struct. */
 1711                 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 1712                         return (error);
 1713 
 1714                 if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
 1715                         return (EINVAL);
 1716 
 1717                 TIMESPEC_TO_TIMEVAL(&atv, &ts);
 1718                 if (itimerfix(&atv))
 1719                         return (EINVAL);
 1720                 timo = tvtohz(&atv);
 1721         }
 1722 
 1723         ki = p->p_aioinfo;
 1724         if (ki == NULL)
 1725                 return (EAGAIN);
 1726 
 1727         njoblist = 0;
 1728         ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 1729         cbptr = uap->aiocbp;
 1730 
 1731         for (i = 0; i < uap->nent; i++) {
 1732                 cbp = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
 1733                 if (cbp == 0)
 1734                         continue;
 1735                 ujoblist[njoblist] = cbp;
 1736                 njoblist++;
 1737         }
 1738 
 1739         if (njoblist == 0) {
 1740                 uma_zfree(aiol_zone, ujoblist);
 1741                 return (0);
 1742         }
 1743 
 1744         AIO_LOCK(ki);
 1745         for (;;) {
 1746                 cbfirst = NULL;
 1747                 error = 0;
 1748                 TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
 1749                         for (i = 0; i < njoblist; i++) {
 1750                                 if (cb->uuaiocb == ujoblist[i]) {
 1751                                         if (cbfirst == NULL)
 1752                                                 cbfirst = cb;
 1753                                         if (cb->jobstate == JOBST_JOBFINISHED)
 1754                                                 goto RETURN;
 1755                                 }
 1756                         }
 1757                 }
 1758                 /* All tasks were finished. */
 1759                 if (cbfirst == NULL)
 1760                         break;
 1761 
 1762                 ki->kaio_flags |= KAIO_WAKEUP;
 1763                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 1764                     "aiospn", timo);
 1765                 if (error == ERESTART)
 1766                         error = EINTR;
 1767                 if (error)
 1768                         break;
 1769         }
 1770 RETURN:
 1771         AIO_UNLOCK(ki);
 1772         uma_zfree(aiol_zone, ujoblist);
 1773         return (error);
 1774 }
 1775 
 1776 /*
 1777  * aio_cancel cancels any non-physio aio operations not currently in
 1778  * progress.
 1779  */
 1780 int
 1781 aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 1782 {
 1783         struct proc *p = td->td_proc;
 1784         struct kaioinfo *ki;
 1785         struct aiocblist *cbe, *cbn;
 1786         struct file *fp;
 1787         struct socket *so;
 1788         int error;
 1789         int remove;
 1790         int cancelled = 0;
 1791         int notcancelled = 0;
 1792         struct vnode *vp;
 1793 
 1794         /* Lookup file object. */
 1795         error = fget(td, uap->fd, &fp);
 1796         if (error)
 1797                 return (error);
 1798 
 1799         ki = p->p_aioinfo;
 1800         if (ki == NULL)
 1801                 goto done;
 1802 
 1803         if (fp->f_type == DTYPE_VNODE) {
 1804                 vp = fp->f_vnode;
 1805                 if (vn_isdisk(vp, &error)) {
 1806                         fdrop(fp, td);
 1807                         td->td_retval[0] = AIO_NOTCANCELED;
 1808                         return (0);
 1809                 }
 1810         }
 1811 
 1812         AIO_LOCK(ki);
 1813         TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
 1814                 if ((uap->fd == cbe->uaiocb.aio_fildes) &&
 1815                     ((uap->aiocbp == NULL) ||
 1816                      (uap->aiocbp == cbe->uuaiocb))) {
 1817                         remove = 0;
 1818 
 1819                         mtx_lock(&aio_job_mtx);
 1820                         if (cbe->jobstate == JOBST_JOBQGLOBAL) {
 1821                                 TAILQ_REMOVE(&aio_jobs, cbe, list);
 1822                                 remove = 1;
 1823                         } else if (cbe->jobstate == JOBST_JOBQSOCK) {
 1824                                 MPASS(fp->f_type == DTYPE_SOCKET);
 1825                                 so = fp->f_data;
 1826                                 TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
 1827                                 remove = 1;
 1828                         } else if (cbe->jobstate == JOBST_JOBQSYNC) {
 1829                                 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
 1830                                 remove = 1;
 1831                         }
 1832                         mtx_unlock(&aio_job_mtx);
 1833 
 1834                         if (remove) {
 1835                                 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
 1836                                 cbe->uaiocb._aiocb_private.status = -1;
 1837                                 cbe->uaiocb._aiocb_private.error = ECANCELED;
 1838                                 aio_bio_done_notify(p, cbe, DONE_QUEUE);
 1839                                 cancelled++;
 1840                         } else {
 1841                                 notcancelled++;
 1842                         }
 1843                         if (uap->aiocbp != NULL)
 1844                                 break;
 1845                 }
 1846         }
 1847         AIO_UNLOCK(ki);
 1848 
 1849 done:
 1850         fdrop(fp, td);
 1851 
 1852         if (uap->aiocbp != NULL) {
 1853                 if (cancelled) {
 1854                         td->td_retval[0] = AIO_CANCELED;
 1855                         return (0);
 1856                 }
 1857         }
 1858 
 1859         if (notcancelled) {
 1860                 td->td_retval[0] = AIO_NOTCANCELED;
 1861                 return (0);
 1862         }
 1863 
 1864         if (cancelled) {
 1865                 td->td_retval[0] = AIO_CANCELED;
 1866                 return (0);
 1867         }
 1868 
 1869         td->td_retval[0] = AIO_ALLDONE;
 1870 
 1871         return (0);
 1872 }
 1873 
 1874 /*
 1875  * aio_error is implemented in the kernel level for compatibility purposes
 1876  * only.  For a user mode async implementation, it would be best to do it in
 1877  * a userland subroutine.
 1878  */
 1879 int
 1880 aio_error(struct thread *td, struct aio_error_args *uap)
 1881 {
 1882         struct proc *p = td->td_proc;
 1883         struct aiocblist *cb;
 1884         struct kaioinfo *ki;
 1885         int status;
 1886 
 1887         ki = p->p_aioinfo;
 1888         if (ki == NULL) {
 1889                 td->td_retval[0] = EINVAL;
 1890                 return (0);
 1891         }
 1892 
 1893         AIO_LOCK(ki);
 1894         TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
 1895                 if (cb->uuaiocb == uap->aiocbp) {
 1896                         if (cb->jobstate == JOBST_JOBFINISHED)
 1897                                 td->td_retval[0] =
 1898                                         cb->uaiocb._aiocb_private.error;
 1899                         else
 1900                                 td->td_retval[0] = EINPROGRESS;
 1901                         AIO_UNLOCK(ki);
 1902                         return (0);
 1903                 }
 1904         }
 1905         AIO_UNLOCK(ki);
 1906 
 1907         /*
 1908          * Hack for failure of aio_aqueue.
 1909          */
 1910         status = fuword(&uap->aiocbp->_aiocb_private.status);
 1911         if (status == -1) {
 1912                 td->td_retval[0] = fuword(&uap->aiocbp->_aiocb_private.error);
 1913                 return (0);
 1914         }
 1915 
 1916         td->td_retval[0] = EINVAL;
 1917         return (0);
 1918 }
 1919 
 1920 /* syscall - asynchronous read from a file (REALTIME) */
 1921 int
 1922 oaio_read(struct thread *td, struct oaio_read_args *uap)
 1923 {
 1924 
 1925         return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ, 1);
 1926 }
 1927 
 1928 int
 1929 aio_read(struct thread *td, struct aio_read_args *uap)
 1930 {
 1931 
 1932         return aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, 0);
 1933 }
 1934 
 1935 /* syscall - asynchronous write to a file (REALTIME) */
 1936 int
 1937 oaio_write(struct thread *td, struct oaio_write_args *uap)
 1938 {
 1939 
 1940         return aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE, 1);
 1941 }
 1942 
 1943 int
 1944 aio_write(struct thread *td, struct aio_write_args *uap)
 1945 {
 1946 
 1947         return aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, 0);
 1948 }
 1949 
 1950 /* syscall - list directed I/O (REALTIME) */
 1951 int
 1952 olio_listio(struct thread *td, struct olio_listio_args *uap)
 1953 {
 1954         return do_lio_listio(td, (struct lio_listio_args *)uap, 1);
 1955 }
 1956 
 1957 /* syscall - list directed I/O (REALTIME) */
 1958 int
 1959 lio_listio(struct thread *td, struct lio_listio_args *uap)
 1960 {
 1961         return do_lio_listio(td, uap, 0);
 1962 }
 1963 
 1964 static int
 1965 do_lio_listio(struct thread *td, struct lio_listio_args *uap, int oldsigev)
 1966 {
 1967         struct proc *p = td->td_proc;
 1968         struct aiocb *iocb, * const *cbptr;
 1969         struct kaioinfo *ki;
 1970         struct aioliojob *lj;
 1971         struct kevent kev;
 1972         int nent;
 1973         int error;
 1974         int nerror;
 1975         int i;
 1976 
 1977         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 1978                 return (EINVAL);
 1979 
 1980         nent = uap->nent;
 1981         if (nent < 0 || nent > AIO_LISTIO_MAX)
 1982                 return (EINVAL);
 1983 
 1984         if (p->p_aioinfo == NULL)
 1985                 aio_init_aioinfo(p);
 1986 
 1987         ki = p->p_aioinfo;
 1988 
 1989         lj = uma_zalloc(aiolio_zone, M_WAITOK);
 1990         lj->lioj_flags = 0;
 1991         lj->lioj_count = 0;
 1992         lj->lioj_finished_count = 0;
 1993         knlist_init(&lj->klist, AIO_MTX(ki), NULL, NULL, NULL);
 1994         ksiginfo_init(&lj->lioj_ksi);
 1995 
 1996         /*
 1997          * Setup signal.
 1998          */
 1999         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2000                 bzero(&lj->lioj_signal, sizeof(&lj->lioj_signal));
 2001                 error = copyin(uap->sig, &lj->lioj_signal,
 2002                                 oldsigev ? sizeof(struct osigevent) :
 2003                                            sizeof(struct sigevent));
 2004                 if (error) {
 2005                         uma_zfree(aiolio_zone, lj);
 2006                         return (error);
 2007                 }
 2008 
 2009                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2010                         /* Assume only new style KEVENT */
 2011                         kev.filter = EVFILT_LIO;
 2012                         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 2013                         kev.ident = (uintptr_t)uap->acb_list; /* something unique */
 2014                         kev.data = (intptr_t)lj;
 2015                         /* pass user defined sigval data */
 2016                         kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
 2017                         error = kqfd_register(
 2018                             lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
 2019                         if (error) {
 2020                                 uma_zfree(aiolio_zone, lj);
 2021                                 return (error);
 2022                         }
 2023                 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
 2024                         ;
 2025                 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2026                            lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
 2027                                 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 2028                                         uma_zfree(aiolio_zone, lj);
 2029                                         return EINVAL;
 2030                                 }
 2031                                 lj->lioj_flags |= LIOJ_SIGNAL;
 2032                 } else {
 2033                         uma_zfree(aiolio_zone, lj);
 2034                         return EINVAL;
 2035                 }
 2036         }
 2037 
 2038         AIO_LOCK(ki);
 2039         TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 2040         /*
 2041          * Add extra aiocb count to avoid the lio to be freed
 2042          * by other threads doing aio_waitcomplete or aio_return,
 2043          * and prevent event from being sent until we have queued
 2044          * all tasks.
 2045          */
 2046         lj->lioj_count = 1;
 2047         AIO_UNLOCK(ki);
 2048 
 2049         /*
 2050          * Get pointers to the list of I/O requests.
 2051          */
 2052         nerror = 0;
 2053         cbptr = uap->acb_list;
 2054         for (i = 0; i < uap->nent; i++) {
 2055                 iocb = (struct aiocb *)(intptr_t)fuword(&cbptr[i]);
 2056                 if (((intptr_t)iocb != -1) && ((intptr_t)iocb != 0)) {
 2057                         error = aio_aqueue(td, iocb, lj, LIO_NOP, oldsigev);
 2058                         if (error != 0)
 2059                                 nerror++;
 2060                 }
 2061         }
 2062 
 2063         error = 0;
 2064         AIO_LOCK(ki);
 2065         if (uap->mode == LIO_WAIT) {
 2066                 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
 2067                         ki->kaio_flags |= KAIO_WAKEUP;
 2068                         error = msleep(&p->p_aioinfo, AIO_MTX(ki),
 2069                             PRIBIO | PCATCH, "aiospn", 0);
 2070                         if (error == ERESTART)
 2071                                 error = EINTR;
 2072                         if (error)
 2073                                 break;
 2074                 }
 2075         } else {
 2076                 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
 2077                         if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2078                                 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 2079                                 KNOTE_LOCKED(&lj->klist, 1);
 2080                         }
 2081                         if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
 2082                             == LIOJ_SIGNAL
 2083                             && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2084                             lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 2085                                 aio_sendsig(p, &lj->lioj_signal,
 2086                                             &lj->lioj_ksi);
 2087                                 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2088                         }
 2089                 }
 2090         }
 2091         lj->lioj_count--;
 2092         if (lj->lioj_count == 0) {
 2093                 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 2094                 knlist_delete(&lj->klist, curthread, 1);
 2095                 PROC_LOCK(p);
 2096                 sigqueue_take(&lj->lioj_ksi);
 2097                 PROC_UNLOCK(p);
 2098                 AIO_UNLOCK(ki);
 2099                 uma_zfree(aiolio_zone, lj);
 2100         } else
 2101                 AIO_UNLOCK(ki);
 2102 
 2103         if (nerror)
 2104                 return (EIO);
 2105         return (error);
 2106 }
 2107 
 2108 /*
 2109  * Called from interrupt thread for physio, we should return as fast
 2110  * as possible, so we schedule a biohelper task.
 2111  */
 2112 static void
 2113 aio_physwakeup(struct buf *bp)
 2114 {
 2115         struct aiocblist *aiocbe;
 2116 
 2117         aiocbe = (struct aiocblist *)bp->b_caller1;
 2118         taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask);
 2119 }
 2120 
 2121 /*
 2122  * Task routine to perform heavy tasks, process wakeup, and signals.
 2123  */
 2124 static void
 2125 biohelper(void *context, int pending)
 2126 {
 2127         struct aiocblist *aiocbe = context;
 2128         struct buf *bp;
 2129         struct proc *userp;
 2130         struct kaioinfo *ki;
 2131         int nblks;
 2132 
 2133         bp = aiocbe->bp;
 2134         userp = aiocbe->userproc;
 2135         ki = userp->p_aioinfo;
 2136         AIO_LOCK(ki);
 2137         aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
 2138         aiocbe->uaiocb._aiocb_private.error = 0;
 2139         if (bp->b_ioflags & BIO_ERROR)
 2140                 aiocbe->uaiocb._aiocb_private.error = bp->b_error;
 2141         nblks = btodb(aiocbe->uaiocb.aio_nbytes);
 2142         if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE)
 2143                 aiocbe->outputcharge += nblks;
 2144         else
 2145                 aiocbe->inputcharge += nblks;
 2146         aiocbe->bp = NULL;
 2147         TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist);
 2148         ki->kaio_buffer_count--;
 2149         aio_bio_done_notify(userp, aiocbe, DONE_BUF);
 2150         AIO_UNLOCK(ki);
 2151 
 2152         /* Release mapping into kernel space. */
 2153         vunmapbuf(bp);
 2154         relpbuf(bp, NULL);
 2155         atomic_subtract_int(&num_buf_aio, 1);
 2156 }
 2157 
 2158 /* syscall - wait for the next completion of an aio request */
 2159 int
 2160 aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 2161 {
 2162         struct proc *p = td->td_proc;
 2163         struct timeval atv;
 2164         struct timespec ts;
 2165         struct kaioinfo *ki;
 2166         struct aiocblist *cb;
 2167         struct aiocb *uuaiocb;
 2168         int error, status, timo;
 2169 
 2170         suword(uap->aiocbp, (long)NULL);
 2171 
 2172         timo = 0;
 2173         if (uap->timeout) {
 2174                 /* Get timespec struct. */
 2175                 error = copyin(uap->timeout, &ts, sizeof(ts));
 2176                 if (error)
 2177                         return (error);
 2178 
 2179                 if ((ts.tv_nsec < 0) || (ts.tv_nsec >= 1000000000))
 2180                         return (EINVAL);
 2181 
 2182                 TIMESPEC_TO_TIMEVAL(&atv, &ts);
 2183                 if (itimerfix(&atv))
 2184                         return (EINVAL);
 2185                 timo = tvtohz(&atv);
 2186         }
 2187 
 2188         if (p->p_aioinfo == NULL)
 2189                 aio_init_aioinfo(p);
 2190         ki = p->p_aioinfo;
 2191 
 2192         error = 0;
 2193         cb = NULL;
 2194         AIO_LOCK(ki);
 2195         while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
 2196                 ki->kaio_flags |= KAIO_WAKEUP;
 2197                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2198                     "aiowc", timo);
 2199                 if (timo && error == ERESTART)
 2200                         error = EINTR;
 2201                 if (error)
 2202                         break;
 2203         }
 2204 
 2205         if (cb != NULL) {
 2206                 MPASS(cb->jobstate == JOBST_JOBFINISHED);
 2207                 uuaiocb = cb->uuaiocb;
 2208                 status = cb->uaiocb._aiocb_private.status;
 2209                 error = cb->uaiocb._aiocb_private.error;
 2210                 td->td_retval[0] = status;
 2211                 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 2212                         td->td_ru.ru_oublock += cb->outputcharge;
 2213                         cb->outputcharge = 0;
 2214                 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 2215                         td->td_ru.ru_inblock += cb->inputcharge;
 2216                         cb->inputcharge = 0;
 2217                 }
 2218                 aio_free_entry(cb);
 2219                 AIO_UNLOCK(ki);
 2220                 suword(uap->aiocbp, (long)uuaiocb);
 2221                 suword(&uuaiocb->_aiocb_private.error, error);
 2222                 suword(&uuaiocb->_aiocb_private.status, status);
 2223         } else
 2224                 AIO_UNLOCK(ki);
 2225 
 2226         return (error);
 2227 }
 2228 
 2229 int
 2230 aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 2231 {
 2232         struct proc *p = td->td_proc;
 2233         struct kaioinfo *ki;
 2234 
 2235         if (uap->op != O_SYNC) /* XXX lack of O_DSYNC */
 2236                 return (EINVAL);
 2237         ki = p->p_aioinfo;
 2238         if (ki == NULL)
 2239                 aio_init_aioinfo(p);
 2240         return aio_aqueue(td, uap->aiocbp, NULL, LIO_SYNC, 0);
 2241 }
 2242 
 2243 /* kqueue attach function */
 2244 static int
 2245 filt_aioattach(struct knote *kn)
 2246 {
 2247         struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
 2248 
 2249         /*
 2250          * The aiocbe pointer must be validated before using it, so
 2251          * registration is restricted to the kernel; the user cannot
 2252          * set EV_FLAG1.
 2253          */
 2254         if ((kn->kn_flags & EV_FLAG1) == 0)
 2255                 return (EPERM);
 2256         kn->kn_ptr.p_aio = aiocbe;
 2257         kn->kn_flags &= ~EV_FLAG1;
 2258 
 2259         knlist_add(&aiocbe->klist, kn, 0);
 2260 
 2261         return (0);
 2262 }
 2263 
 2264 /* kqueue detach function */
 2265 static void
 2266 filt_aiodetach(struct knote *kn)
 2267 {
 2268         struct aiocblist *aiocbe = kn->kn_ptr.p_aio;
 2269 
 2270         if (!knlist_empty(&aiocbe->klist))
 2271                 knlist_remove(&aiocbe->klist, kn, 0);
 2272 }
 2273 
 2274 /* kqueue filter function */
 2275 /*ARGSUSED*/
 2276 static int
 2277 filt_aio(struct knote *kn, long hint)
 2278 {
 2279         struct aiocblist *aiocbe = kn->kn_ptr.p_aio;
 2280 
 2281         kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
 2282         if (aiocbe->jobstate != JOBST_JOBFINISHED)
 2283                 return (0);
 2284         kn->kn_flags |= EV_EOF;
 2285         return (1);
 2286 }
 2287 
 2288 /* kqueue attach function */
 2289 static int
 2290 filt_lioattach(struct knote *kn)
 2291 {
 2292         struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
 2293 
 2294         /*
 2295          * The aioliojob pointer must be validated before using it, so
 2296          * registration is restricted to the kernel; the user cannot
 2297          * set EV_FLAG1.
 2298          */
 2299         if ((kn->kn_flags & EV_FLAG1) == 0)
 2300                 return (EPERM);
 2301         kn->kn_ptr.p_lio = lj;
 2302         kn->kn_flags &= ~EV_FLAG1;
 2303 
 2304         knlist_add(&lj->klist, kn, 0);
 2305 
 2306         return (0);
 2307 }
 2308 
 2309 /* kqueue detach function */
 2310 static void
 2311 filt_liodetach(struct knote *kn)
 2312 {
 2313         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2314 
 2315         if (!knlist_empty(&lj->klist))
 2316                 knlist_remove(&lj->klist, kn, 0);
 2317 }
 2318 
 2319 /* kqueue filter function */
 2320 /*ARGSUSED*/
 2321 static int
 2322 filt_lio(struct knote *kn, long hint)
 2323 {
 2324         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2325 
 2326         return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
 2327 }

Cache object: fff31c173751b4b3371d67f26e33e9dc


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.