The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_aio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. John S. Dyson's name may not be used to endorse or promote products
   10  *    derived from this software without specific prior written permission.
   11  *
   12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
   13  * bad that happens because of using this software isn't the responsibility
   14  * of the author.  This software is distributed AS-IS.
   15  */
   16 
   17 /*
   18  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
   19  */
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD: releng/9.0/sys/kern/vfs_aio.c 225617 2011-09-16 13:58:51Z kmacy $");
   23 
   24 #include "opt_compat.h"
   25 
   26 #include <sys/param.h>
   27 #include <sys/systm.h>
   28 #include <sys/malloc.h>
   29 #include <sys/bio.h>
   30 #include <sys/buf.h>
   31 #include <sys/capability.h>
   32 #include <sys/eventhandler.h>
   33 #include <sys/sysproto.h>
   34 #include <sys/filedesc.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/kthread.h>
   38 #include <sys/fcntl.h>
   39 #include <sys/file.h>
   40 #include <sys/limits.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/unistd.h>
   44 #include <sys/posix4.h>
   45 #include <sys/proc.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/protosw.h>
   49 #include <sys/sema.h>
   50 #include <sys/socket.h>
   51 #include <sys/socketvar.h>
   52 #include <sys/syscall.h>
   53 #include <sys/sysent.h>
   54 #include <sys/sysctl.h>
   55 #include <sys/sx.h>
   56 #include <sys/taskqueue.h>
   57 #include <sys/vnode.h>
   58 #include <sys/conf.h>
   59 #include <sys/event.h>
   60 #include <sys/mount.h>
   61 
   62 #include <machine/atomic.h>
   63 
   64 #include <vm/vm.h>
   65 #include <vm/vm_extern.h>
   66 #include <vm/pmap.h>
   67 #include <vm/vm_map.h>
   68 #include <vm/vm_object.h>
   69 #include <vm/uma.h>
   70 #include <sys/aio.h>
   71 
   72 #include "opt_vfs_aio.h"
   73 
   74 /*
   75  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
   76  * overflow. (XXX will be removed soon.)
   77  */
   78 static u_long jobrefid;
   79 
   80 /*
   81  * Counter for aio_fsync.
   82  */
   83 static uint64_t jobseqno;
   84 
   85 #define JOBST_NULL              0
   86 #define JOBST_JOBQSOCK          1
   87 #define JOBST_JOBQGLOBAL        2
   88 #define JOBST_JOBRUNNING        3
   89 #define JOBST_JOBFINISHED       4
   90 #define JOBST_JOBQBUF           5
   91 #define JOBST_JOBQSYNC          6
   92 
   93 #ifndef MAX_AIO_PER_PROC
   94 #define MAX_AIO_PER_PROC        32
   95 #endif
   96 
   97 #ifndef MAX_AIO_QUEUE_PER_PROC
   98 #define MAX_AIO_QUEUE_PER_PROC  256 /* Bigger than AIO_LISTIO_MAX */
   99 #endif
  100 
  101 #ifndef MAX_AIO_PROCS
  102 #define MAX_AIO_PROCS           32
  103 #endif
  104 
  105 #ifndef MAX_AIO_QUEUE
  106 #define MAX_AIO_QUEUE           1024 /* Bigger than AIO_LISTIO_MAX */
  107 #endif
  108 
  109 #ifndef TARGET_AIO_PROCS
  110 #define TARGET_AIO_PROCS        4
  111 #endif
  112 
  113 #ifndef MAX_BUF_AIO
  114 #define MAX_BUF_AIO             16
  115 #endif
  116 
  117 #ifndef AIOD_TIMEOUT_DEFAULT
  118 #define AIOD_TIMEOUT_DEFAULT    (10 * hz)
  119 #endif
  120 
  121 #ifndef AIOD_LIFETIME_DEFAULT
  122 #define AIOD_LIFETIME_DEFAULT   (30 * hz)
  123 #endif
  124 
  125 FEATURE(aio, "Asynchronous I/O");
  126 
  127 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
  128 
  129 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
  130 
  131 static int max_aio_procs = MAX_AIO_PROCS;
  132 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
  133         CTLFLAG_RW, &max_aio_procs, 0,
  134         "Maximum number of kernel threads to use for handling async IO ");
  135 
  136 static int num_aio_procs = 0;
  137 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
  138         CTLFLAG_RD, &num_aio_procs, 0,
  139         "Number of presently active kernel threads for async IO");
  140 
  141 /*
  142  * The code will adjust the actual number of AIO processes towards this
  143  * number when it gets a chance.
  144  */
  145 static int target_aio_procs = TARGET_AIO_PROCS;
  146 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
  147         0, "Preferred number of ready kernel threads for async IO");
  148 
  149 static int max_queue_count = MAX_AIO_QUEUE;
  150 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
  151     "Maximum number of aio requests to queue, globally");
  152 
  153 static int num_queue_count = 0;
  154 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
  155     "Number of queued aio requests");
  156 
  157 static int num_buf_aio = 0;
  158 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
  159     "Number of aio requests presently handled by the buf subsystem");
  160 
  161 /* Number of async I/O thread in the process of being started */
  162 /* XXX This should be local to aio_aqueue() */
  163 static int num_aio_resv_start = 0;
  164 
  165 static int aiod_timeout;
  166 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
  167     "Timeout value for synchronous aio operations");
  168 
  169 static int aiod_lifetime;
  170 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
  171     "Maximum lifetime for idle aiod");
  172 
  173 static int unloadable = 0;
  174 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0,
  175     "Allow unload of aio (not recommended)");
  176 
  177 
  178 static int max_aio_per_proc = MAX_AIO_PER_PROC;
  179 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
  180     0, "Maximum active aio requests per process (stored in the process)");
  181 
  182 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
  183 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
  184     &max_aio_queue_per_proc, 0,
  185     "Maximum queued aio requests per process (stored in the process)");
  186 
  187 static int max_buf_aio = MAX_BUF_AIO;
  188 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
  189     "Maximum buf aio requests per process (stored in the process)");
  190 
  191 typedef struct oaiocb {
  192         int     aio_fildes;             /* File descriptor */
  193         off_t   aio_offset;             /* File offset for I/O */
  194         volatile void *aio_buf;         /* I/O buffer in process space */
  195         size_t  aio_nbytes;             /* Number of bytes for I/O */
  196         struct  osigevent aio_sigevent; /* Signal to deliver */
  197         int     aio_lio_opcode;         /* LIO opcode */
  198         int     aio_reqprio;            /* Request priority -- ignored */
  199         struct  __aiocb_private _aiocb_private;
  200 } oaiocb_t;
  201 
  202 /*
  203  * Below is a key of locks used to protect each member of struct aiocblist
  204  * aioliojob and kaioinfo and any backends.
  205  *
  206  * * - need not protected
  207  * a - locked by kaioinfo lock
  208  * b - locked by backend lock, the backend lock can be null in some cases,
  209  *     for example, BIO belongs to this type, in this case, proc lock is
  210  *     reused.
  211  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
  212  */
  213 
  214 /*
  215  * Current, there is only two backends: BIO and generic file I/O.
  216  * socket I/O is served by generic file I/O, this is not a good idea, since
  217  * disk file I/O and any other types without O_NONBLOCK flag can block daemon
  218  * threads, if there is no thread to serve socket I/O, the socket I/O will be
  219  * delayed too long or starved, we should create some threads dedicated to
  220  * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O
  221  * systems we really need non-blocking interface, fiddling O_NONBLOCK in file
  222  * structure is not safe because there is race between userland and aio
  223  * daemons.
  224  */
  225 
  226 struct aiocblist {
  227         TAILQ_ENTRY(aiocblist) list;    /* (b) internal list of for backend */
  228         TAILQ_ENTRY(aiocblist) plist;   /* (a) list of jobs for each backend */
  229         TAILQ_ENTRY(aiocblist) allist;  /* (a) list of all jobs in proc */
  230         int     jobflags;               /* (a) job flags */
  231         int     jobstate;               /* (b) job state */
  232         int     inputcharge;            /* (*) input blockes */
  233         int     outputcharge;           /* (*) output blockes */
  234         struct  buf *bp;                /* (*) private to BIO backend,
  235                                          * buffer pointer
  236                                          */
  237         struct  proc *userproc;         /* (*) user process */
  238         struct  ucred *cred;            /* (*) active credential when created */
  239         struct  file *fd_file;          /* (*) pointer to file structure */
  240         struct  aioliojob *lio;         /* (*) optional lio job */
  241         struct  aiocb *uuaiocb;         /* (*) pointer in userspace of aiocb */
  242         struct  knlist klist;           /* (a) list of knotes */
  243         struct  aiocb uaiocb;           /* (*) kernel I/O control block */
  244         ksiginfo_t ksi;                 /* (a) realtime signal info */
  245         struct  task biotask;           /* (*) private to BIO backend */
  246         uint64_t seqno;                 /* (*) job number */
  247         int     pending;                /* (a) number of pending I/O, aio_fsync only */
  248 };
  249 
  250 /* jobflags */
  251 #define AIOCBLIST_DONE          0x01
  252 #define AIOCBLIST_BUFDONE       0x02
  253 #define AIOCBLIST_RUNDOWN       0x04
  254 #define AIOCBLIST_CHECKSYNC     0x08
  255 
  256 /*
  257  * AIO process info
  258  */
  259 #define AIOP_FREE       0x1                     /* proc on free queue */
  260 
  261 struct aiothreadlist {
  262         int aiothreadflags;                     /* (c) AIO proc flags */
  263         TAILQ_ENTRY(aiothreadlist) list;        /* (c) list of processes */
  264         struct thread *aiothread;               /* (*) the AIO thread */
  265 };
  266 
  267 /*
  268  * data-structure for lio signal management
  269  */
  270 struct aioliojob {
  271         int     lioj_flags;                     /* (a) listio flags */
  272         int     lioj_count;                     /* (a) listio flags */
  273         int     lioj_finished_count;            /* (a) listio flags */
  274         struct  sigevent lioj_signal;           /* (a) signal on all I/O done */
  275         TAILQ_ENTRY(aioliojob) lioj_list;       /* (a) lio list */
  276         struct  knlist klist;                   /* (a) list of knotes */
  277         ksiginfo_t lioj_ksi;                    /* (a) Realtime signal info */
  278 };
  279 
  280 #define LIOJ_SIGNAL             0x1     /* signal on all done (lio) */
  281 #define LIOJ_SIGNAL_POSTED      0x2     /* signal has been posted */
  282 #define LIOJ_KEVENT_POSTED      0x4     /* kevent triggered */
  283 
  284 /*
  285  * per process aio data structure
  286  */
  287 struct kaioinfo {
  288         struct mtx      kaio_mtx;       /* the lock to protect this struct */
  289         int     kaio_flags;             /* (a) per process kaio flags */
  290         int     kaio_maxactive_count;   /* (*) maximum number of AIOs */
  291         int     kaio_active_count;      /* (c) number of currently used AIOs */
  292         int     kaio_qallowed_count;    /* (*) maxiumu size of AIO queue */
  293         int     kaio_count;             /* (a) size of AIO queue */
  294         int     kaio_ballowed_count;    /* (*) maximum number of buffers */
  295         int     kaio_buffer_count;      /* (a) number of physio buffers */
  296         TAILQ_HEAD(,aiocblist) kaio_all;        /* (a) all AIOs in the process */
  297         TAILQ_HEAD(,aiocblist) kaio_done;       /* (a) done queue for process */
  298         TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
  299         TAILQ_HEAD(,aiocblist) kaio_jobqueue;   /* (a) job queue for process */
  300         TAILQ_HEAD(,aiocblist) kaio_bufqueue;   /* (a) buffer job queue for process */
  301         TAILQ_HEAD(,aiocblist) kaio_sockqueue;  /* (a) queue for aios waiting on sockets,
  302                                                  *  NOT USED YET.
  303                                                  */
  304         TAILQ_HEAD(,aiocblist) kaio_syncqueue;  /* (a) queue for aio_fsync */
  305         struct  task    kaio_task;      /* (*) task to kick aio threads */
  306 };
  307 
  308 #define AIO_LOCK(ki)            mtx_lock(&(ki)->kaio_mtx)
  309 #define AIO_UNLOCK(ki)          mtx_unlock(&(ki)->kaio_mtx)
  310 #define AIO_LOCK_ASSERT(ki, f)  mtx_assert(&(ki)->kaio_mtx, (f))
  311 #define AIO_MTX(ki)             (&(ki)->kaio_mtx)
  312 
  313 #define KAIO_RUNDOWN    0x1     /* process is being run down */
  314 #define KAIO_WAKEUP     0x2     /* wakeup process when there is a significant event */
  315 
  316 /*
  317  * Operations used to interact with userland aio control blocks.
  318  * Different ABIs provide their own operations.
  319  */
  320 struct aiocb_ops {
  321         int     (*copyin)(struct aiocb *ujob, struct aiocb *kjob);
  322         long    (*fetch_status)(struct aiocb *ujob);
  323         long    (*fetch_error)(struct aiocb *ujob);
  324         int     (*store_status)(struct aiocb *ujob, long status);
  325         int     (*store_error)(struct aiocb *ujob, long error);
  326         int     (*store_kernelinfo)(struct aiocb *ujob, long jobref);
  327         int     (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
  328 };
  329 
  330 static TAILQ_HEAD(,aiothreadlist) aio_freeproc;         /* (c) Idle daemons */
  331 static struct sema aio_newproc_sem;
  332 static struct mtx aio_job_mtx;
  333 static struct mtx aio_sock_mtx;
  334 static TAILQ_HEAD(,aiocblist) aio_jobs;                 /* (c) Async job list */
  335 static struct unrhdr *aiod_unr;
  336 
  337 void            aio_init_aioinfo(struct proc *p);
  338 static int      aio_onceonly(void);
  339 static int      aio_free_entry(struct aiocblist *aiocbe);
  340 static void     aio_process(struct aiocblist *aiocbe);
  341 static int      aio_newproc(int *);
  342 int             aio_aqueue(struct thread *td, struct aiocb *job,
  343                         struct aioliojob *lio, int type, struct aiocb_ops *ops);
  344 static void     aio_physwakeup(struct buf *bp);
  345 static void     aio_proc_rundown(void *arg, struct proc *p);
  346 static void     aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp);
  347 static int      aio_qphysio(struct proc *p, struct aiocblist *iocb);
  348 static void     biohelper(void *, int);
  349 static void     aio_daemon(void *param);
  350 static void     aio_swake_cb(struct socket *, struct sockbuf *);
  351 static int      aio_unload(void);
  352 static void     aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type);
  353 #define DONE_BUF        1
  354 #define DONE_QUEUE      2
  355 static int      aio_kick(struct proc *userp);
  356 static void     aio_kick_nowait(struct proc *userp);
  357 static void     aio_kick_helper(void *context, int pending);
  358 static int      filt_aioattach(struct knote *kn);
  359 static void     filt_aiodetach(struct knote *kn);
  360 static int      filt_aio(struct knote *kn, long hint);
  361 static int      filt_lioattach(struct knote *kn);
  362 static void     filt_liodetach(struct knote *kn);
  363 static int      filt_lio(struct knote *kn, long hint);
  364 
  365 /*
  366  * Zones for:
  367  *      kaio    Per process async io info
  368  *      aiop    async io thread data
  369  *      aiocb   async io jobs
  370  *      aiol    list io job pointer - internal to aio_suspend XXX
  371  *      aiolio  list io jobs
  372  */
  373 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
  374 
  375 /* kqueue filters for aio */
  376 static struct filterops aio_filtops = {
  377         .f_isfd = 0,
  378         .f_attach = filt_aioattach,
  379         .f_detach = filt_aiodetach,
  380         .f_event = filt_aio,
  381 };
  382 static struct filterops lio_filtops = {
  383         .f_isfd = 0,
  384         .f_attach = filt_lioattach,
  385         .f_detach = filt_liodetach,
  386         .f_event = filt_lio
  387 };
  388 
  389 static eventhandler_tag exit_tag, exec_tag;
  390 
  391 TASKQUEUE_DEFINE_THREAD(aiod_bio);
  392 
  393 /*
  394  * Main operations function for use as a kernel module.
  395  */
  396 static int
  397 aio_modload(struct module *module, int cmd, void *arg)
  398 {
  399         int error = 0;
  400 
  401         switch (cmd) {
  402         case MOD_LOAD:
  403                 aio_onceonly();
  404                 break;
  405         case MOD_UNLOAD:
  406                 error = aio_unload();
  407                 break;
  408         case MOD_SHUTDOWN:
  409                 break;
  410         default:
  411                 error = EINVAL;
  412                 break;
  413         }
  414         return (error);
  415 }
  416 
  417 static moduledata_t aio_mod = {
  418         "aio",
  419         &aio_modload,
  420         NULL
  421 };
  422 
  423 static struct syscall_helper_data aio_syscalls[] = {
  424         SYSCALL_INIT_HELPER(aio_cancel),
  425         SYSCALL_INIT_HELPER(aio_error),
  426         SYSCALL_INIT_HELPER(aio_fsync),
  427         SYSCALL_INIT_HELPER(aio_read),
  428         SYSCALL_INIT_HELPER(aio_return),
  429         SYSCALL_INIT_HELPER(aio_suspend),
  430         SYSCALL_INIT_HELPER(aio_waitcomplete),
  431         SYSCALL_INIT_HELPER(aio_write),
  432         SYSCALL_INIT_HELPER(lio_listio),
  433         SYSCALL_INIT_HELPER(oaio_read),
  434         SYSCALL_INIT_HELPER(oaio_write),
  435         SYSCALL_INIT_HELPER(olio_listio),
  436         SYSCALL_INIT_LAST
  437 };
  438 
  439 #ifdef COMPAT_FREEBSD32
  440 #include <sys/mount.h>
  441 #include <sys/socket.h>
  442 #include <compat/freebsd32/freebsd32.h>
  443 #include <compat/freebsd32/freebsd32_proto.h>
  444 #include <compat/freebsd32/freebsd32_signal.h>
  445 #include <compat/freebsd32/freebsd32_syscall.h>
  446 #include <compat/freebsd32/freebsd32_util.h>
  447 
  448 static struct syscall_helper_data aio32_syscalls[] = {
  449         SYSCALL32_INIT_HELPER(freebsd32_aio_return),
  450         SYSCALL32_INIT_HELPER(freebsd32_aio_suspend),
  451         SYSCALL32_INIT_HELPER(freebsd32_aio_cancel),
  452         SYSCALL32_INIT_HELPER(freebsd32_aio_error),
  453         SYSCALL32_INIT_HELPER(freebsd32_aio_fsync),
  454         SYSCALL32_INIT_HELPER(freebsd32_aio_read),
  455         SYSCALL32_INIT_HELPER(freebsd32_aio_write),
  456         SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete),
  457         SYSCALL32_INIT_HELPER(freebsd32_lio_listio),
  458         SYSCALL32_INIT_HELPER(freebsd32_oaio_read),
  459         SYSCALL32_INIT_HELPER(freebsd32_oaio_write),
  460         SYSCALL32_INIT_HELPER(freebsd32_olio_listio),
  461         SYSCALL_INIT_LAST
  462 };
  463 #endif
  464 
  465 DECLARE_MODULE(aio, aio_mod,
  466         SI_SUB_VFS, SI_ORDER_ANY);
  467 MODULE_VERSION(aio, 1);
  468 
  469 /*
  470  * Startup initialization
  471  */
  472 static int
  473 aio_onceonly(void)
  474 {
  475         int error;
  476 
  477         /* XXX: should probably just use so->callback */
  478         aio_swake = &aio_swake_cb;
  479         exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
  480             EVENTHANDLER_PRI_ANY);
  481         exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL,
  482             EVENTHANDLER_PRI_ANY);
  483         kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
  484         kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
  485         TAILQ_INIT(&aio_freeproc);
  486         sema_init(&aio_newproc_sem, 0, "aio_new_proc");
  487         mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
  488         mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF);
  489         TAILQ_INIT(&aio_jobs);
  490         aiod_unr = new_unrhdr(1, INT_MAX, NULL);
  491         kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
  492             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  493         aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL,
  494             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  495         aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL,
  496             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  497         aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
  498             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  499         aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
  500             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  501         aiod_timeout = AIOD_TIMEOUT_DEFAULT;
  502         aiod_lifetime = AIOD_LIFETIME_DEFAULT;
  503         jobrefid = 1;
  504         async_io_version = _POSIX_VERSION;
  505         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
  506         p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
  507         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
  508 
  509         error = syscall_helper_register(aio_syscalls);
  510         if (error)
  511                 return (error);
  512 #ifdef COMPAT_FREEBSD32
  513         error = syscall32_helper_register(aio32_syscalls);
  514         if (error)
  515                 return (error);
  516 #endif
  517         return (0);
  518 }
  519 
  520 /*
  521  * Callback for unload of AIO when used as a module.
  522  */
  523 static int
  524 aio_unload(void)
  525 {
  526         int error;
  527 
  528         /*
  529          * XXX: no unloads by default, it's too dangerous.
  530          * perhaps we could do it if locked out callers and then
  531          * did an aio_proc_rundown() on each process.
  532          *
  533          * jhb: aio_proc_rundown() needs to run on curproc though,
  534          * so I don't think that would fly.
  535          */
  536         if (!unloadable)
  537                 return (EOPNOTSUPP);
  538 
  539 #ifdef COMPAT_FREEBSD32
  540         syscall32_helper_unregister(aio32_syscalls);
  541 #endif
  542         syscall_helper_unregister(aio_syscalls);
  543 
  544         error = kqueue_del_filteropts(EVFILT_AIO);
  545         if (error)
  546                 return error;
  547         error = kqueue_del_filteropts(EVFILT_LIO);
  548         if (error)
  549                 return error;
  550         async_io_version = 0;
  551         aio_swake = NULL;
  552         taskqueue_free(taskqueue_aiod_bio);
  553         delete_unrhdr(aiod_unr);
  554         uma_zdestroy(kaio_zone);
  555         uma_zdestroy(aiop_zone);
  556         uma_zdestroy(aiocb_zone);
  557         uma_zdestroy(aiol_zone);
  558         uma_zdestroy(aiolio_zone);
  559         EVENTHANDLER_DEREGISTER(process_exit, exit_tag);
  560         EVENTHANDLER_DEREGISTER(process_exec, exec_tag);
  561         mtx_destroy(&aio_job_mtx);
  562         mtx_destroy(&aio_sock_mtx);
  563         sema_destroy(&aio_newproc_sem);
  564         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1);
  565         p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1);
  566         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1);
  567         return (0);
  568 }
  569 
  570 /*
  571  * Init the per-process aioinfo structure.  The aioinfo limits are set
  572  * per-process for user limit (resource) management.
  573  */
  574 void
  575 aio_init_aioinfo(struct proc *p)
  576 {
  577         struct kaioinfo *ki;
  578 
  579         ki = uma_zalloc(kaio_zone, M_WAITOK);
  580         mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF);
  581         ki->kaio_flags = 0;
  582         ki->kaio_maxactive_count = max_aio_per_proc;
  583         ki->kaio_active_count = 0;
  584         ki->kaio_qallowed_count = max_aio_queue_per_proc;
  585         ki->kaio_count = 0;
  586         ki->kaio_ballowed_count = max_buf_aio;
  587         ki->kaio_buffer_count = 0;
  588         TAILQ_INIT(&ki->kaio_all);
  589         TAILQ_INIT(&ki->kaio_done);
  590         TAILQ_INIT(&ki->kaio_jobqueue);
  591         TAILQ_INIT(&ki->kaio_bufqueue);
  592         TAILQ_INIT(&ki->kaio_liojoblist);
  593         TAILQ_INIT(&ki->kaio_sockqueue);
  594         TAILQ_INIT(&ki->kaio_syncqueue);
  595         TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
  596         PROC_LOCK(p);
  597         if (p->p_aioinfo == NULL) {
  598                 p->p_aioinfo = ki;
  599                 PROC_UNLOCK(p);
  600         } else {
  601                 PROC_UNLOCK(p);
  602                 mtx_destroy(&ki->kaio_mtx);
  603                 uma_zfree(kaio_zone, ki);
  604         }
  605 
  606         while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
  607                 aio_newproc(NULL);
  608 }
  609 
  610 static int
  611 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
  612 {
  613         struct thread *td;
  614         int error;
  615 
  616         error = sigev_findtd(p, sigev, &td);
  617         if (error)
  618                 return (error);
  619         if (!KSI_ONQ(ksi)) {
  620                 ksiginfo_set_sigev(ksi, sigev);
  621                 ksi->ksi_code = SI_ASYNCIO;
  622                 ksi->ksi_flags |= KSI_EXT | KSI_INS;
  623                 tdsendsignal(p, td, ksi->ksi_signo, ksi);
  624         }
  625         PROC_UNLOCK(p);
  626         return (error);
  627 }
  628 
  629 /*
  630  * Free a job entry.  Wait for completion if it is currently active, but don't
  631  * delay forever.  If we delay, we return a flag that says that we have to
  632  * restart the queue scan.
  633  */
  634 static int
  635 aio_free_entry(struct aiocblist *aiocbe)
  636 {
  637         struct kaioinfo *ki;
  638         struct aioliojob *lj;
  639         struct proc *p;
  640 
  641         p = aiocbe->userproc;
  642         MPASS(curproc == p);
  643         ki = p->p_aioinfo;
  644         MPASS(ki != NULL);
  645 
  646         AIO_LOCK_ASSERT(ki, MA_OWNED);
  647         MPASS(aiocbe->jobstate == JOBST_JOBFINISHED);
  648 
  649         atomic_subtract_int(&num_queue_count, 1);
  650 
  651         ki->kaio_count--;
  652         MPASS(ki->kaio_count >= 0);
  653 
  654         TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist);
  655         TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
  656 
  657         lj = aiocbe->lio;
  658         if (lj) {
  659                 lj->lioj_count--;
  660                 lj->lioj_finished_count--;
  661 
  662                 if (lj->lioj_count == 0) {
  663                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  664                         /* lio is going away, we need to destroy any knotes */
  665                         knlist_delete(&lj->klist, curthread, 1);
  666                         PROC_LOCK(p);
  667                         sigqueue_take(&lj->lioj_ksi);
  668                         PROC_UNLOCK(p);
  669                         uma_zfree(aiolio_zone, lj);
  670                 }
  671         }
  672 
  673         /* aiocbe is going away, we need to destroy any knotes */
  674         knlist_delete(&aiocbe->klist, curthread, 1);
  675         PROC_LOCK(p);
  676         sigqueue_take(&aiocbe->ksi);
  677         PROC_UNLOCK(p);
  678 
  679         MPASS(aiocbe->bp == NULL);
  680         aiocbe->jobstate = JOBST_NULL;
  681         AIO_UNLOCK(ki);
  682 
  683         /*
  684          * The thread argument here is used to find the owning process
  685          * and is also passed to fo_close() which may pass it to various
  686          * places such as devsw close() routines.  Because of that, we
  687          * need a thread pointer from the process owning the job that is
  688          * persistent and won't disappear out from under us or move to
  689          * another process.
  690          *
  691          * Currently, all the callers of this function call it to remove
  692          * an aiocblist from the current process' job list either via a
  693          * syscall or due to the current process calling exit() or
  694          * execve().  Thus, we know that p == curproc.  We also know that
  695          * curthread can't exit since we are curthread.
  696          *
  697          * Therefore, we use curthread as the thread to pass to
  698          * knlist_delete().  This does mean that it is possible for the
  699          * thread pointer at close time to differ from the thread pointer
  700          * at open time, but this is already true of file descriptors in
  701          * a multithreaded process.
  702          */
  703         fdrop(aiocbe->fd_file, curthread);
  704         crfree(aiocbe->cred);
  705         uma_zfree(aiocb_zone, aiocbe);
  706         AIO_LOCK(ki);
  707 
  708         return (0);
  709 }
  710 
  711 static void
  712 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
  713 {
  714         aio_proc_rundown(arg, p);
  715 }
  716 
  717 /*
  718  * Rundown the jobs for a given process.
  719  */
  720 static void
  721 aio_proc_rundown(void *arg, struct proc *p)
  722 {
  723         struct kaioinfo *ki;
  724         struct aioliojob *lj;
  725         struct aiocblist *cbe, *cbn;
  726         struct file *fp;
  727         struct socket *so;
  728         int remove;
  729 
  730         KASSERT(curthread->td_proc == p,
  731             ("%s: called on non-curproc", __func__));
  732         ki = p->p_aioinfo;
  733         if (ki == NULL)
  734                 return;
  735 
  736         AIO_LOCK(ki);
  737         ki->kaio_flags |= KAIO_RUNDOWN;
  738 
  739 restart:
  740 
  741         /*
  742          * Try to cancel all pending requests. This code simulates
  743          * aio_cancel on all pending I/O requests.
  744          */
  745         TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
  746                 remove = 0;
  747                 mtx_lock(&aio_job_mtx);
  748                 if (cbe->jobstate == JOBST_JOBQGLOBAL) {
  749                         TAILQ_REMOVE(&aio_jobs, cbe, list);
  750                         remove = 1;
  751                 } else if (cbe->jobstate == JOBST_JOBQSOCK) {
  752                         fp = cbe->fd_file;
  753                         MPASS(fp->f_type == DTYPE_SOCKET);
  754                         so = fp->f_data;
  755                         TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
  756                         remove = 1;
  757                 } else if (cbe->jobstate == JOBST_JOBQSYNC) {
  758                         TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
  759                         remove = 1;
  760                 }
  761                 mtx_unlock(&aio_job_mtx);
  762 
  763                 if (remove) {
  764                         cbe->jobstate = JOBST_JOBFINISHED;
  765                         cbe->uaiocb._aiocb_private.status = -1;
  766                         cbe->uaiocb._aiocb_private.error = ECANCELED;
  767                         TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
  768                         aio_bio_done_notify(p, cbe, DONE_QUEUE);
  769                 }
  770         }
  771 
  772         /* Wait for all running I/O to be finished */
  773         if (TAILQ_FIRST(&ki->kaio_bufqueue) ||
  774             TAILQ_FIRST(&ki->kaio_jobqueue)) {
  775                 ki->kaio_flags |= KAIO_WAKEUP;
  776                 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
  777                 goto restart;
  778         }
  779 
  780         /* Free all completed I/O requests. */
  781         while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL)
  782                 aio_free_entry(cbe);
  783 
  784         while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
  785                 if (lj->lioj_count == 0) {
  786                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  787                         knlist_delete(&lj->klist, curthread, 1);
  788                         PROC_LOCK(p);
  789                         sigqueue_take(&lj->lioj_ksi);
  790                         PROC_UNLOCK(p);
  791                         uma_zfree(aiolio_zone, lj);
  792                 } else {
  793                         panic("LIO job not cleaned up: C:%d, FC:%d\n",
  794                             lj->lioj_count, lj->lioj_finished_count);
  795                 }
  796         }
  797         AIO_UNLOCK(ki);
  798         taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task);
  799         mtx_destroy(&ki->kaio_mtx);
  800         uma_zfree(kaio_zone, ki);
  801         p->p_aioinfo = NULL;
  802 }
  803 
  804 /*
  805  * Select a job to run (called by an AIO daemon).
  806  */
  807 static struct aiocblist *
  808 aio_selectjob(struct aiothreadlist *aiop)
  809 {
  810         struct aiocblist *aiocbe;
  811         struct kaioinfo *ki;
  812         struct proc *userp;
  813 
  814         mtx_assert(&aio_job_mtx, MA_OWNED);
  815         TAILQ_FOREACH(aiocbe, &aio_jobs, list) {
  816                 userp = aiocbe->userproc;
  817                 ki = userp->p_aioinfo;
  818 
  819                 if (ki->kaio_active_count < ki->kaio_maxactive_count) {
  820                         TAILQ_REMOVE(&aio_jobs, aiocbe, list);
  821                         /* Account for currently active jobs. */
  822                         ki->kaio_active_count++;
  823                         aiocbe->jobstate = JOBST_JOBRUNNING;
  824                         break;
  825                 }
  826         }
  827         return (aiocbe);
  828 }
  829 
  830 /*
  831  *  Move all data to a permanent storage device, this code
  832  *  simulates fsync syscall.
  833  */
  834 static int
  835 aio_fsync_vnode(struct thread *td, struct vnode *vp)
  836 {
  837         struct mount *mp;
  838         int vfslocked;
  839         int error;
  840 
  841         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  842         if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  843                 goto drop;
  844         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  845         if (vp->v_object != NULL) {
  846                 VM_OBJECT_LOCK(vp->v_object);
  847                 vm_object_page_clean(vp->v_object, 0, 0, 0);
  848                 VM_OBJECT_UNLOCK(vp->v_object);
  849         }
  850         error = VOP_FSYNC(vp, MNT_WAIT, td);
  851 
  852         VOP_UNLOCK(vp, 0);
  853         vn_finished_write(mp);
  854 drop:
  855         VFS_UNLOCK_GIANT(vfslocked);
  856         return (error);
  857 }
  858 
  859 /*
  860  * The AIO processing activity.  This is the code that does the I/O request for
  861  * the non-physio version of the operations.  The normal vn operations are used,
  862  * and this code should work in all instances for every type of file, including
  863  * pipes, sockets, fifos, and regular files.
  864  *
  865  * XXX I don't think it works well for socket, pipe, and fifo.
  866  */
  867 static void
  868 aio_process(struct aiocblist *aiocbe)
  869 {
  870         struct ucred *td_savedcred;
  871         struct thread *td;
  872         struct aiocb *cb;
  873         struct file *fp;
  874         struct socket *so;
  875         struct uio auio;
  876         struct iovec aiov;
  877         int cnt;
  878         int error;
  879         int oublock_st, oublock_end;
  880         int inblock_st, inblock_end;
  881 
  882         td = curthread;
  883         td_savedcred = td->td_ucred;
  884         td->td_ucred = aiocbe->cred;
  885         cb = &aiocbe->uaiocb;
  886         fp = aiocbe->fd_file;
  887 
  888         if (cb->aio_lio_opcode == LIO_SYNC) {
  889                 error = 0;
  890                 cnt = 0;
  891                 if (fp->f_vnode != NULL)
  892                         error = aio_fsync_vnode(td, fp->f_vnode);
  893                 cb->_aiocb_private.error = error;
  894                 cb->_aiocb_private.status = 0;
  895                 td->td_ucred = td_savedcred;
  896                 return;
  897         }
  898 
  899         aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
  900         aiov.iov_len = cb->aio_nbytes;
  901 
  902         auio.uio_iov = &aiov;
  903         auio.uio_iovcnt = 1;
  904         auio.uio_offset = cb->aio_offset;
  905         auio.uio_resid = cb->aio_nbytes;
  906         cnt = cb->aio_nbytes;
  907         auio.uio_segflg = UIO_USERSPACE;
  908         auio.uio_td = td;
  909 
  910         inblock_st = td->td_ru.ru_inblock;
  911         oublock_st = td->td_ru.ru_oublock;
  912         /*
  913          * aio_aqueue() acquires a reference to the file that is
  914          * released in aio_free_entry().
  915          */
  916         if (cb->aio_lio_opcode == LIO_READ) {
  917                 auio.uio_rw = UIO_READ;
  918                 if (auio.uio_resid == 0)
  919                         error = 0;
  920                 else
  921                         error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  922         } else {
  923                 if (fp->f_type == DTYPE_VNODE)
  924                         bwillwrite();
  925                 auio.uio_rw = UIO_WRITE;
  926                 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  927         }
  928         inblock_end = td->td_ru.ru_inblock;
  929         oublock_end = td->td_ru.ru_oublock;
  930 
  931         aiocbe->inputcharge = inblock_end - inblock_st;
  932         aiocbe->outputcharge = oublock_end - oublock_st;
  933 
  934         if ((error) && (auio.uio_resid != cnt)) {
  935                 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
  936                         error = 0;
  937                 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
  938                         int sigpipe = 1;
  939                         if (fp->f_type == DTYPE_SOCKET) {
  940                                 so = fp->f_data;
  941                                 if (so->so_options & SO_NOSIGPIPE)
  942                                         sigpipe = 0;
  943                         }
  944                         if (sigpipe) {
  945                                 PROC_LOCK(aiocbe->userproc);
  946                                 kern_psignal(aiocbe->userproc, SIGPIPE);
  947                                 PROC_UNLOCK(aiocbe->userproc);
  948                         }
  949                 }
  950         }
  951 
  952         cnt -= auio.uio_resid;
  953         cb->_aiocb_private.error = error;
  954         cb->_aiocb_private.status = cnt;
  955         td->td_ucred = td_savedcred;
  956 }
  957 
  958 static void
  959 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type)
  960 {
  961         struct aioliojob *lj;
  962         struct kaioinfo *ki;
  963         struct aiocblist *scb, *scbn;
  964         int lj_done;
  965 
  966         ki = userp->p_aioinfo;
  967         AIO_LOCK_ASSERT(ki, MA_OWNED);
  968         lj = aiocbe->lio;
  969         lj_done = 0;
  970         if (lj) {
  971                 lj->lioj_finished_count++;
  972                 if (lj->lioj_count == lj->lioj_finished_count)
  973                         lj_done = 1;
  974         }
  975         if (type == DONE_QUEUE) {
  976                 aiocbe->jobflags |= AIOCBLIST_DONE;
  977         } else {
  978                 aiocbe->jobflags |= AIOCBLIST_BUFDONE;
  979         }
  980         TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist);
  981         aiocbe->jobstate = JOBST_JOBFINISHED;
  982 
  983         if (ki->kaio_flags & KAIO_RUNDOWN)
  984                 goto notification_done;
  985 
  986         if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
  987             aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
  988                 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi);
  989 
  990         KNOTE_LOCKED(&aiocbe->klist, 1);
  991 
  992         if (lj_done) {
  993                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
  994                         lj->lioj_flags |= LIOJ_KEVENT_POSTED;
  995                         KNOTE_LOCKED(&lj->klist, 1);
  996                 }
  997                 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
  998                     == LIOJ_SIGNAL
  999                     && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 1000                         lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 1001                         aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
 1002                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 1003                 }
 1004         }
 1005 
 1006 notification_done:
 1007         if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) {
 1008                 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) {
 1009                         if (aiocbe->fd_file == scb->fd_file &&
 1010                             aiocbe->seqno < scb->seqno) {
 1011                                 if (--scb->pending == 0) {
 1012                                         mtx_lock(&aio_job_mtx);
 1013                                         scb->jobstate = JOBST_JOBQGLOBAL;
 1014                                         TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list);
 1015                                         TAILQ_INSERT_TAIL(&aio_jobs, scb, list);
 1016                                         aio_kick_nowait(userp);
 1017                                         mtx_unlock(&aio_job_mtx);
 1018                                 }
 1019                         }
 1020                 }
 1021         }
 1022         if (ki->kaio_flags & KAIO_WAKEUP) {
 1023                 ki->kaio_flags &= ~KAIO_WAKEUP;
 1024                 wakeup(&userp->p_aioinfo);
 1025         }
 1026 }
 1027 
 1028 /*
 1029  * The AIO daemon, most of the actual work is done in aio_process,
 1030  * but the setup (and address space mgmt) is done in this routine.
 1031  */
 1032 static void
 1033 aio_daemon(void *_id)
 1034 {
 1035         struct aiocblist *aiocbe;
 1036         struct aiothreadlist *aiop;
 1037         struct kaioinfo *ki;
 1038         struct proc *curcp, *mycp, *userp;
 1039         struct vmspace *myvm, *tmpvm;
 1040         struct thread *td = curthread;
 1041         int id = (intptr_t)_id;
 1042 
 1043         /*
 1044          * Local copies of curproc (cp) and vmspace (myvm)
 1045          */
 1046         mycp = td->td_proc;
 1047         myvm = mycp->p_vmspace;
 1048 
 1049         KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp"));
 1050 
 1051         /*
 1052          * Allocate and ready the aio control info.  There is one aiop structure
 1053          * per daemon.
 1054          */
 1055         aiop = uma_zalloc(aiop_zone, M_WAITOK);
 1056         aiop->aiothread = td;
 1057         aiop->aiothreadflags = 0;
 1058 
 1059         /* The daemon resides in its own pgrp. */
 1060         sys_setsid(td, NULL);
 1061 
 1062         /*
 1063          * Wakeup parent process.  (Parent sleeps to keep from blasting away
 1064          * and creating too many daemons.)
 1065          */
 1066         sema_post(&aio_newproc_sem);
 1067 
 1068         mtx_lock(&aio_job_mtx);
 1069         for (;;) {
 1070                 /*
 1071                  * curcp is the current daemon process context.
 1072                  * userp is the current user process context.
 1073                  */
 1074                 curcp = mycp;
 1075 
 1076                 /*
 1077                  * Take daemon off of free queue
 1078                  */
 1079                 if (aiop->aiothreadflags & AIOP_FREE) {
 1080                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1081                         aiop->aiothreadflags &= ~AIOP_FREE;
 1082                 }
 1083 
 1084                 /*
 1085                  * Check for jobs.
 1086                  */
 1087                 while ((aiocbe = aio_selectjob(aiop)) != NULL) {
 1088                         mtx_unlock(&aio_job_mtx);
 1089                         userp = aiocbe->userproc;
 1090 
 1091                         /*
 1092                          * Connect to process address space for user program.
 1093                          */
 1094                         if (userp != curcp) {
 1095                                 /*
 1096                                  * Save the current address space that we are
 1097                                  * connected to.
 1098                                  */
 1099                                 tmpvm = mycp->p_vmspace;
 1100 
 1101                                 /*
 1102                                  * Point to the new user address space, and
 1103                                  * refer to it.
 1104                                  */
 1105                                 mycp->p_vmspace = userp->p_vmspace;
 1106                                 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1);
 1107 
 1108                                 /* Activate the new mapping. */
 1109                                 pmap_activate(FIRST_THREAD_IN_PROC(mycp));
 1110 
 1111                                 /*
 1112                                  * If the old address space wasn't the daemons
 1113                                  * own address space, then we need to remove the
 1114                                  * daemon's reference from the other process
 1115                                  * that it was acting on behalf of.
 1116                                  */
 1117                                 if (tmpvm != myvm) {
 1118                                         vmspace_free(tmpvm);
 1119                                 }
 1120                                 curcp = userp;
 1121                         }
 1122 
 1123                         ki = userp->p_aioinfo;
 1124 
 1125                         /* Do the I/O function. */
 1126                         aio_process(aiocbe);
 1127 
 1128                         mtx_lock(&aio_job_mtx);
 1129                         /* Decrement the active job count. */
 1130                         ki->kaio_active_count--;
 1131                         mtx_unlock(&aio_job_mtx);
 1132 
 1133                         AIO_LOCK(ki);
 1134                         TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
 1135                         aio_bio_done_notify(userp, aiocbe, DONE_QUEUE);
 1136                         AIO_UNLOCK(ki);
 1137 
 1138                         mtx_lock(&aio_job_mtx);
 1139                 }
 1140 
 1141                 /*
 1142                  * Disconnect from user address space.
 1143                  */
 1144                 if (curcp != mycp) {
 1145 
 1146                         mtx_unlock(&aio_job_mtx);
 1147 
 1148                         /* Get the user address space to disconnect from. */
 1149                         tmpvm = mycp->p_vmspace;
 1150 
 1151                         /* Get original address space for daemon. */
 1152                         mycp->p_vmspace = myvm;
 1153 
 1154                         /* Activate the daemon's address space. */
 1155                         pmap_activate(FIRST_THREAD_IN_PROC(mycp));
 1156 #ifdef DIAGNOSTIC
 1157                         if (tmpvm == myvm) {
 1158                                 printf("AIOD: vmspace problem -- %d\n",
 1159                                     mycp->p_pid);
 1160                         }
 1161 #endif
 1162                         /* Remove our vmspace reference. */
 1163                         vmspace_free(tmpvm);
 1164 
 1165                         curcp = mycp;
 1166 
 1167                         mtx_lock(&aio_job_mtx);
 1168                         /*
 1169                          * We have to restart to avoid race, we only sleep if
 1170                          * no job can be selected, that should be
 1171                          * curcp == mycp.
 1172                          */
 1173                         continue;
 1174                 }
 1175 
 1176                 mtx_assert(&aio_job_mtx, MA_OWNED);
 1177 
 1178                 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
 1179                 aiop->aiothreadflags |= AIOP_FREE;
 1180 
 1181                 /*
 1182                  * If daemon is inactive for a long time, allow it to exit,
 1183                  * thereby freeing resources.
 1184                  */
 1185                 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy",
 1186                     aiod_lifetime)) {
 1187                         if (TAILQ_EMPTY(&aio_jobs)) {
 1188                                 if ((aiop->aiothreadflags & AIOP_FREE) &&
 1189                                     (num_aio_procs > target_aio_procs)) {
 1190                                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1191                                         num_aio_procs--;
 1192                                         mtx_unlock(&aio_job_mtx);
 1193                                         uma_zfree(aiop_zone, aiop);
 1194                                         free_unr(aiod_unr, id);
 1195 #ifdef DIAGNOSTIC
 1196                                         if (mycp->p_vmspace->vm_refcnt <= 1) {
 1197                                                 printf("AIOD: bad vm refcnt for"
 1198                                                     " exiting daemon: %d\n",
 1199                                                     mycp->p_vmspace->vm_refcnt);
 1200                                         }
 1201 #endif
 1202                                         kproc_exit(0);
 1203                                 }
 1204                         }
 1205                 }
 1206         }
 1207         mtx_unlock(&aio_job_mtx);
 1208         panic("shouldn't be here\n");
 1209 }
 1210 
 1211 /*
 1212  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
 1213  * AIO daemon modifies its environment itself.
 1214  */
 1215 static int
 1216 aio_newproc(int *start)
 1217 {
 1218         int error;
 1219         struct proc *p;
 1220         int id;
 1221 
 1222         id = alloc_unr(aiod_unr);
 1223         error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
 1224                 RFNOWAIT, 0, "aiod%d", id);
 1225         if (error == 0) {
 1226                 /*
 1227                  * Wait until daemon is started.
 1228                  */
 1229                 sema_wait(&aio_newproc_sem);
 1230                 mtx_lock(&aio_job_mtx);
 1231                 num_aio_procs++;
 1232                 if (start != NULL)
 1233                         (*start)--;
 1234                 mtx_unlock(&aio_job_mtx);
 1235         } else {
 1236                 free_unr(aiod_unr, id);
 1237         }
 1238         return (error);
 1239 }
 1240 
 1241 /*
 1242  * Try the high-performance, low-overhead physio method for eligible
 1243  * VCHR devices.  This method doesn't use an aio helper thread, and
 1244  * thus has very low overhead.
 1245  *
 1246  * Assumes that the caller, aio_aqueue(), has incremented the file
 1247  * structure's reference count, preventing its deallocation for the
 1248  * duration of this call.
 1249  */
 1250 static int
 1251 aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
 1252 {
 1253         struct aiocb *cb;
 1254         struct file *fp;
 1255         struct buf *bp;
 1256         struct vnode *vp;
 1257         struct kaioinfo *ki;
 1258         struct aioliojob *lj;
 1259         int error;
 1260 
 1261         cb = &aiocbe->uaiocb;
 1262         fp = aiocbe->fd_file;
 1263 
 1264         if (fp->f_type != DTYPE_VNODE)
 1265                 return (-1);
 1266 
 1267         vp = fp->f_vnode;
 1268 
 1269         /*
 1270          * If its not a disk, we don't want to return a positive error.
 1271          * It causes the aio code to not fall through to try the thread
 1272          * way when you're talking to a regular file.
 1273          */
 1274         if (!vn_isdisk(vp, &error)) {
 1275                 if (error == ENOTBLK)
 1276                         return (-1);
 1277                 else
 1278                         return (error);
 1279         }
 1280 
 1281         if (vp->v_bufobj.bo_bsize == 0)
 1282                 return (-1);
 1283 
 1284         if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
 1285                 return (-1);
 1286 
 1287         if (cb->aio_nbytes > vp->v_rdev->si_iosize_max)
 1288                 return (-1);
 1289 
 1290         if (cb->aio_nbytes >
 1291             MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK))
 1292                 return (-1);
 1293 
 1294         ki = p->p_aioinfo;
 1295         if (ki->kaio_buffer_count >= ki->kaio_ballowed_count)
 1296                 return (-1);
 1297 
 1298         /* Create and build a buffer header for a transfer. */
 1299         bp = (struct buf *)getpbuf(NULL);
 1300         BUF_KERNPROC(bp);
 1301 
 1302         AIO_LOCK(ki);
 1303         ki->kaio_count++;
 1304         ki->kaio_buffer_count++;
 1305         lj = aiocbe->lio;
 1306         if (lj)
 1307                 lj->lioj_count++;
 1308         AIO_UNLOCK(ki);
 1309 
 1310         /*
 1311          * Get a copy of the kva from the physical buffer.
 1312          */
 1313         error = 0;
 1314 
 1315         bp->b_bcount = cb->aio_nbytes;
 1316         bp->b_bufsize = cb->aio_nbytes;
 1317         bp->b_iodone = aio_physwakeup;
 1318         bp->b_saveaddr = bp->b_data;
 1319         bp->b_data = (void *)(uintptr_t)cb->aio_buf;
 1320         bp->b_offset = cb->aio_offset;
 1321         bp->b_iooffset = cb->aio_offset;
 1322         bp->b_blkno = btodb(cb->aio_offset);
 1323         bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
 1324 
 1325         /*
 1326          * Bring buffer into kernel space.
 1327          */
 1328         if (vmapbuf(bp) < 0) {
 1329                 error = EFAULT;
 1330                 goto doerror;
 1331         }
 1332 
 1333         AIO_LOCK(ki);
 1334         aiocbe->bp = bp;
 1335         bp->b_caller1 = (void *)aiocbe;
 1336         TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
 1337         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1338         aiocbe->jobstate = JOBST_JOBQBUF;
 1339         cb->_aiocb_private.status = cb->aio_nbytes;
 1340         AIO_UNLOCK(ki);
 1341 
 1342         atomic_add_int(&num_queue_count, 1);
 1343         atomic_add_int(&num_buf_aio, 1);
 1344 
 1345         bp->b_error = 0;
 1346 
 1347         TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe);
 1348 
 1349         /* Perform transfer. */
 1350         dev_strategy(vp->v_rdev, bp);
 1351         return (0);
 1352 
 1353 doerror:
 1354         AIO_LOCK(ki);
 1355         ki->kaio_count--;
 1356         ki->kaio_buffer_count--;
 1357         if (lj)
 1358                 lj->lioj_count--;
 1359         aiocbe->bp = NULL;
 1360         AIO_UNLOCK(ki);
 1361         relpbuf(bp, NULL);
 1362         return (error);
 1363 }
 1364 
 1365 /*
 1366  * Wake up aio requests that may be serviceable now.
 1367  */
 1368 static void
 1369 aio_swake_cb(struct socket *so, struct sockbuf *sb)
 1370 {
 1371         struct aiocblist *cb, *cbn;
 1372         int opcode;
 1373 
 1374         SOCKBUF_LOCK_ASSERT(sb);
 1375         if (sb == &so->so_snd)
 1376                 opcode = LIO_WRITE;
 1377         else
 1378                 opcode = LIO_READ;
 1379 
 1380         sb->sb_flags &= ~SB_AIO;
 1381         mtx_lock(&aio_job_mtx);
 1382         TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) {
 1383                 if (opcode == cb->uaiocb.aio_lio_opcode) {
 1384                         if (cb->jobstate != JOBST_JOBQSOCK)
 1385                                 panic("invalid queue value");
 1386                         /* XXX
 1387                          * We don't have actual sockets backend yet,
 1388                          * so we simply move the requests to the generic
 1389                          * file I/O backend.
 1390                          */
 1391                         TAILQ_REMOVE(&so->so_aiojobq, cb, list);
 1392                         TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
 1393                         aio_kick_nowait(cb->userproc);
 1394                 }
 1395         }
 1396         mtx_unlock(&aio_job_mtx);
 1397 }
 1398 
 1399 static int
 1400 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
 1401 {
 1402 
 1403         /*
 1404          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 1405          * supported by AIO with the old sigevent structure.
 1406          */
 1407         nsig->sigev_notify = osig->sigev_notify;
 1408         switch (nsig->sigev_notify) {
 1409         case SIGEV_NONE:
 1410                 break;
 1411         case SIGEV_SIGNAL:
 1412                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 1413                 break;
 1414         case SIGEV_KEVENT:
 1415                 nsig->sigev_notify_kqueue =
 1416                     osig->__sigev_u.__sigev_notify_kqueue;
 1417                 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
 1418                 break;
 1419         default:
 1420                 return (EINVAL);
 1421         }
 1422         return (0);
 1423 }
 1424 
 1425 static int
 1426 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 1427 {
 1428         struct oaiocb *ojob;
 1429         int error;
 1430 
 1431         bzero(kjob, sizeof(struct aiocb));
 1432         error = copyin(ujob, kjob, sizeof(struct oaiocb));
 1433         if (error)
 1434                 return (error);
 1435         ojob = (struct oaiocb *)kjob;
 1436         return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
 1437 }
 1438 
 1439 static int
 1440 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
 1441 {
 1442 
 1443         return (copyin(ujob, kjob, sizeof(struct aiocb)));
 1444 }
 1445 
 1446 static long
 1447 aiocb_fetch_status(struct aiocb *ujob)
 1448 {
 1449 
 1450         return (fuword(&ujob->_aiocb_private.status));
 1451 }
 1452 
 1453 static long
 1454 aiocb_fetch_error(struct aiocb *ujob)
 1455 {
 1456 
 1457         return (fuword(&ujob->_aiocb_private.error));
 1458 }
 1459 
 1460 static int
 1461 aiocb_store_status(struct aiocb *ujob, long status)
 1462 {
 1463 
 1464         return (suword(&ujob->_aiocb_private.status, status));
 1465 }
 1466 
 1467 static int
 1468 aiocb_store_error(struct aiocb *ujob, long error)
 1469 {
 1470 
 1471         return (suword(&ujob->_aiocb_private.error, error));
 1472 }
 1473 
 1474 static int
 1475 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
 1476 {
 1477 
 1478         return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
 1479 }
 1480 
 1481 static int
 1482 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 1483 {
 1484 
 1485         return (suword(ujobp, (long)ujob));
 1486 }
 1487 
 1488 static struct aiocb_ops aiocb_ops = {
 1489         .copyin = aiocb_copyin,
 1490         .fetch_status = aiocb_fetch_status,
 1491         .fetch_error = aiocb_fetch_error,
 1492         .store_status = aiocb_store_status,
 1493         .store_error = aiocb_store_error,
 1494         .store_kernelinfo = aiocb_store_kernelinfo,
 1495         .store_aiocb = aiocb_store_aiocb,
 1496 };
 1497 
 1498 static struct aiocb_ops aiocb_ops_osigevent = {
 1499         .copyin = aiocb_copyin_old_sigevent,
 1500         .fetch_status = aiocb_fetch_status,
 1501         .fetch_error = aiocb_fetch_error,
 1502         .store_status = aiocb_store_status,
 1503         .store_error = aiocb_store_error,
 1504         .store_kernelinfo = aiocb_store_kernelinfo,
 1505         .store_aiocb = aiocb_store_aiocb,
 1506 };
 1507 
 1508 /*
 1509  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
 1510  * technique is done in this code.
 1511  */
 1512 int
 1513 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj,
 1514         int type, struct aiocb_ops *ops)
 1515 {
 1516         struct proc *p = td->td_proc;
 1517         struct file *fp;
 1518         struct socket *so;
 1519         struct aiocblist *aiocbe, *cb;
 1520         struct kaioinfo *ki;
 1521         struct kevent kev;
 1522         struct sockbuf *sb;
 1523         int opcode;
 1524         int error;
 1525         int fd, kqfd;
 1526         int jid;
 1527 
 1528         if (p->p_aioinfo == NULL)
 1529                 aio_init_aioinfo(p);
 1530 
 1531         ki = p->p_aioinfo;
 1532 
 1533         ops->store_status(job, -1);
 1534         ops->store_error(job, 0);
 1535         ops->store_kernelinfo(job, -1);
 1536 
 1537         if (num_queue_count >= max_queue_count ||
 1538             ki->kaio_count >= ki->kaio_qallowed_count) {
 1539                 ops->store_error(job, EAGAIN);
 1540                 return (EAGAIN);
 1541         }
 1542 
 1543         aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 1544         aiocbe->inputcharge = 0;
 1545         aiocbe->outputcharge = 0;
 1546         knlist_init_mtx(&aiocbe->klist, AIO_MTX(ki));
 1547 
 1548         error = ops->copyin(job, &aiocbe->uaiocb);
 1549         if (error) {
 1550                 ops->store_error(job, error);
 1551                 uma_zfree(aiocb_zone, aiocbe);
 1552                 return (error);
 1553         }
 1554 
 1555         if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
 1556             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
 1557             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
 1558             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
 1559                 ops->store_error(job, EINVAL);
 1560                 uma_zfree(aiocb_zone, aiocbe);
 1561                 return (EINVAL);
 1562         }
 1563 
 1564         if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1565              aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
 1566                 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
 1567                 uma_zfree(aiocb_zone, aiocbe);
 1568                 return (EINVAL);
 1569         }
 1570 
 1571         ksiginfo_init(&aiocbe->ksi);
 1572 
 1573         /* Save userspace address of the job info. */
 1574         aiocbe->uuaiocb = job;
 1575 
 1576         /* Get the opcode. */
 1577         if (type != LIO_NOP)
 1578                 aiocbe->uaiocb.aio_lio_opcode = type;
 1579         opcode = aiocbe->uaiocb.aio_lio_opcode;
 1580 
 1581         /*
 1582          * Validate the opcode and fetch the file object for the specified
 1583          * file descriptor.
 1584          *
 1585          * XXXRW: Moved the opcode validation up here so that we don't
 1586          * retrieve a file descriptor without knowing what the capabiltity
 1587          * should be.
 1588          */
 1589         fd = aiocbe->uaiocb.aio_fildes;
 1590         switch (opcode) {
 1591         case LIO_WRITE:
 1592                 error = fget_write(td, fd, CAP_WRITE | CAP_SEEK, &fp);
 1593                 break;
 1594         case LIO_READ:
 1595                 error = fget_read(td, fd, CAP_READ | CAP_SEEK, &fp);
 1596                 break;
 1597         case LIO_SYNC:
 1598                 error = fget(td, fd, CAP_FSYNC, &fp);
 1599                 break;
 1600         case LIO_NOP:
 1601                 error = fget(td, fd, 0, &fp);
 1602                 break;
 1603         default:
 1604                 error = EINVAL;
 1605         }
 1606         if (error) {
 1607                 uma_zfree(aiocb_zone, aiocbe);
 1608                 ops->store_error(job, error);
 1609                 return (error);
 1610         }
 1611 
 1612         if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
 1613                 error = EINVAL;
 1614                 goto aqueue_fail;
 1615         }
 1616 
 1617         if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) {
 1618                 error = EINVAL;
 1619                 goto aqueue_fail;
 1620         }
 1621 
 1622         aiocbe->fd_file = fp;
 1623 
 1624         mtx_lock(&aio_job_mtx);
 1625         jid = jobrefid++;
 1626         aiocbe->seqno = jobseqno++;
 1627         mtx_unlock(&aio_job_mtx);
 1628         error = ops->store_kernelinfo(job, jid);
 1629         if (error) {
 1630                 error = EINVAL;
 1631                 goto aqueue_fail;
 1632         }
 1633         aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
 1634 
 1635         if (opcode == LIO_NOP) {
 1636                 fdrop(fp, td);
 1637                 uma_zfree(aiocb_zone, aiocbe);
 1638                 return (0);
 1639         }
 1640 
 1641         if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
 1642                 goto no_kqueue;
 1643         kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
 1644         kev.ident = (uintptr_t)aiocbe->uuaiocb;
 1645         kev.filter = EVFILT_AIO;
 1646         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 1647         kev.data = (intptr_t)aiocbe;
 1648         kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr;
 1649         error = kqfd_register(kqfd, &kev, td, 1);
 1650 aqueue_fail:
 1651         if (error) {
 1652                 fdrop(fp, td);
 1653                 uma_zfree(aiocb_zone, aiocbe);
 1654                 ops->store_error(job, error);
 1655                 goto done;
 1656         }
 1657 no_kqueue:
 1658 
 1659         ops->store_error(job, EINPROGRESS);
 1660         aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
 1661         aiocbe->userproc = p;
 1662         aiocbe->cred = crhold(td->td_ucred);
 1663         aiocbe->jobflags = 0;
 1664         aiocbe->lio = lj;
 1665 
 1666         if (opcode == LIO_SYNC)
 1667                 goto queueit;
 1668 
 1669         if (fp->f_type == DTYPE_SOCKET) {
 1670                 /*
 1671                  * Alternate queueing for socket ops: Reach down into the
 1672                  * descriptor to get the socket data.  Then check to see if the
 1673                  * socket is ready to be read or written (based on the requested
 1674                  * operation).
 1675                  *
 1676                  * If it is not ready for io, then queue the aiocbe on the
 1677                  * socket, and set the flags so we get a call when sbnotify()
 1678                  * happens.
 1679                  *
 1680                  * Note if opcode is neither LIO_WRITE nor LIO_READ we lock
 1681                  * and unlock the snd sockbuf for no reason.
 1682                  */
 1683                 so = fp->f_data;
 1684                 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd;
 1685                 SOCKBUF_LOCK(sb);
 1686                 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
 1687                     LIO_WRITE) && (!sowriteable(so)))) {
 1688                         sb->sb_flags |= SB_AIO;
 1689 
 1690                         mtx_lock(&aio_job_mtx);
 1691                         TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
 1692                         mtx_unlock(&aio_job_mtx);
 1693 
 1694                         AIO_LOCK(ki);
 1695                         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1696                         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1697                         aiocbe->jobstate = JOBST_JOBQSOCK;
 1698                         ki->kaio_count++;
 1699                         if (lj)
 1700                                 lj->lioj_count++;
 1701                         AIO_UNLOCK(ki);
 1702                         SOCKBUF_UNLOCK(sb);
 1703                         atomic_add_int(&num_queue_count, 1);
 1704                         error = 0;
 1705                         goto done;
 1706                 }
 1707                 SOCKBUF_UNLOCK(sb);
 1708         }
 1709 
 1710         if ((error = aio_qphysio(p, aiocbe)) == 0)
 1711                 goto done;
 1712 #if 0
 1713         if (error > 0) {
 1714                 aiocbe->uaiocb._aiocb_private.error = error;
 1715                 ops->store_error(job, error);
 1716                 goto done;
 1717         }
 1718 #endif
 1719 queueit:
 1720         /* No buffer for daemon I/O. */
 1721         aiocbe->bp = NULL;
 1722         atomic_add_int(&num_queue_count, 1);
 1723 
 1724         AIO_LOCK(ki);
 1725         ki->kaio_count++;
 1726         if (lj)
 1727                 lj->lioj_count++;
 1728         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1729         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1730         if (opcode == LIO_SYNC) {
 1731                 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) {
 1732                         if (cb->fd_file == aiocbe->fd_file &&
 1733                             cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1734                             cb->seqno < aiocbe->seqno) {
 1735                                 cb->jobflags |= AIOCBLIST_CHECKSYNC;
 1736                                 aiocbe->pending++;
 1737                         }
 1738                 }
 1739                 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) {
 1740                         if (cb->fd_file == aiocbe->fd_file &&
 1741                             cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1742                             cb->seqno < aiocbe->seqno) {
 1743                                 cb->jobflags |= AIOCBLIST_CHECKSYNC;
 1744                                 aiocbe->pending++;
 1745                         }
 1746                 }
 1747                 if (aiocbe->pending != 0) {
 1748                         TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list);
 1749                         aiocbe->jobstate = JOBST_JOBQSYNC;
 1750                         AIO_UNLOCK(ki);
 1751                         goto done;
 1752                 }
 1753         }
 1754         mtx_lock(&aio_job_mtx);
 1755         TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
 1756         aiocbe->jobstate = JOBST_JOBQGLOBAL;
 1757         aio_kick_nowait(p);
 1758         mtx_unlock(&aio_job_mtx);
 1759         AIO_UNLOCK(ki);
 1760         error = 0;
 1761 done:
 1762         return (error);
 1763 }
 1764 
 1765 static void
 1766 aio_kick_nowait(struct proc *userp)
 1767 {
 1768         struct kaioinfo *ki = userp->p_aioinfo;
 1769         struct aiothreadlist *aiop;
 1770 
 1771         mtx_assert(&aio_job_mtx, MA_OWNED);
 1772         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1773                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1774                 aiop->aiothreadflags &= ~AIOP_FREE;
 1775                 wakeup(aiop->aiothread);
 1776         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1777             ((ki->kaio_active_count + num_aio_resv_start) <
 1778             ki->kaio_maxactive_count)) {
 1779                 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task);
 1780         }
 1781 }
 1782 
 1783 static int
 1784 aio_kick(struct proc *userp)
 1785 {
 1786         struct kaioinfo *ki = userp->p_aioinfo;
 1787         struct aiothreadlist *aiop;
 1788         int error, ret = 0;
 1789 
 1790         mtx_assert(&aio_job_mtx, MA_OWNED);
 1791 retryproc:
 1792         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1793                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1794                 aiop->aiothreadflags &= ~AIOP_FREE;
 1795                 wakeup(aiop->aiothread);
 1796         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1797             ((ki->kaio_active_count + num_aio_resv_start) <
 1798             ki->kaio_maxactive_count)) {
 1799                 num_aio_resv_start++;
 1800                 mtx_unlock(&aio_job_mtx);
 1801                 error = aio_newproc(&num_aio_resv_start);
 1802                 mtx_lock(&aio_job_mtx);
 1803                 if (error) {
 1804                         num_aio_resv_start--;
 1805                         goto retryproc;
 1806                 }
 1807         } else {
 1808                 ret = -1;
 1809         }
 1810         return (ret);
 1811 }
 1812 
 1813 static void
 1814 aio_kick_helper(void *context, int pending)
 1815 {
 1816         struct proc *userp = context;
 1817 
 1818         mtx_lock(&aio_job_mtx);
 1819         while (--pending >= 0) {
 1820                 if (aio_kick(userp))
 1821                         break;
 1822         }
 1823         mtx_unlock(&aio_job_mtx);
 1824 }
 1825 
 1826 /*
 1827  * Support the aio_return system call, as a side-effect, kernel resources are
 1828  * released.
 1829  */
 1830 static int
 1831 kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops)
 1832 {
 1833         struct proc *p = td->td_proc;
 1834         struct aiocblist *cb;
 1835         struct kaioinfo *ki;
 1836         int status, error;
 1837 
 1838         ki = p->p_aioinfo;
 1839         if (ki == NULL)
 1840                 return (EINVAL);
 1841         AIO_LOCK(ki);
 1842         TAILQ_FOREACH(cb, &ki->kaio_done, plist) {
 1843                 if (cb->uuaiocb == uaiocb)
 1844                         break;
 1845         }
 1846         if (cb != NULL) {
 1847                 MPASS(cb->jobstate == JOBST_JOBFINISHED);
 1848                 status = cb->uaiocb._aiocb_private.status;
 1849                 error = cb->uaiocb._aiocb_private.error;
 1850                 td->td_retval[0] = status;
 1851                 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 1852                         td->td_ru.ru_oublock += cb->outputcharge;
 1853                         cb->outputcharge = 0;
 1854                 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 1855                         td->td_ru.ru_inblock += cb->inputcharge;
 1856                         cb->inputcharge = 0;
 1857                 }
 1858                 aio_free_entry(cb);
 1859                 AIO_UNLOCK(ki);
 1860                 ops->store_error(uaiocb, error);
 1861                 ops->store_status(uaiocb, status);
 1862         } else {
 1863                 error = EINVAL;
 1864                 AIO_UNLOCK(ki);
 1865         }
 1866         return (error);
 1867 }
 1868 
 1869 int
 1870 sys_aio_return(struct thread *td, struct aio_return_args *uap)
 1871 {
 1872 
 1873         return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
 1874 }
 1875 
 1876 /*
 1877  * Allow a process to wakeup when any of the I/O requests are completed.
 1878  */
 1879 static int
 1880 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
 1881     struct timespec *ts)
 1882 {
 1883         struct proc *p = td->td_proc;
 1884         struct timeval atv;
 1885         struct kaioinfo *ki;
 1886         struct aiocblist *cb, *cbfirst;
 1887         int error, i, timo;
 1888 
 1889         timo = 0;
 1890         if (ts) {
 1891                 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1892                         return (EINVAL);
 1893 
 1894                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 1895                 if (itimerfix(&atv))
 1896                         return (EINVAL);
 1897                 timo = tvtohz(&atv);
 1898         }
 1899 
 1900         ki = p->p_aioinfo;
 1901         if (ki == NULL)
 1902                 return (EAGAIN);
 1903 
 1904         if (njoblist == 0)
 1905                 return (0);
 1906 
 1907         AIO_LOCK(ki);
 1908         for (;;) {
 1909                 cbfirst = NULL;
 1910                 error = 0;
 1911                 TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
 1912                         for (i = 0; i < njoblist; i++) {
 1913                                 if (cb->uuaiocb == ujoblist[i]) {
 1914                                         if (cbfirst == NULL)
 1915                                                 cbfirst = cb;
 1916                                         if (cb->jobstate == JOBST_JOBFINISHED)
 1917                                                 goto RETURN;
 1918                                 }
 1919                         }
 1920                 }
 1921                 /* All tasks were finished. */
 1922                 if (cbfirst == NULL)
 1923                         break;
 1924 
 1925                 ki->kaio_flags |= KAIO_WAKEUP;
 1926                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 1927                     "aiospn", timo);
 1928                 if (error == ERESTART)
 1929                         error = EINTR;
 1930                 if (error)
 1931                         break;
 1932         }
 1933 RETURN:
 1934         AIO_UNLOCK(ki);
 1935         return (error);
 1936 }
 1937 
 1938 int
 1939 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 1940 {
 1941         struct timespec ts, *tsp;
 1942         struct aiocb **ujoblist;
 1943         int error;
 1944 
 1945         if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
 1946                 return (EINVAL);
 1947 
 1948         if (uap->timeout) {
 1949                 /* Get timespec struct. */
 1950                 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 1951                         return (error);
 1952                 tsp = &ts;
 1953         } else
 1954                 tsp = NULL;
 1955 
 1956         ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 1957         error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
 1958         if (error == 0)
 1959                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 1960         uma_zfree(aiol_zone, ujoblist);
 1961         return (error);
 1962 }
 1963 
 1964 /*
 1965  * aio_cancel cancels any non-physio aio operations not currently in
 1966  * progress.
 1967  */
 1968 int
 1969 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 1970 {
 1971         struct proc *p = td->td_proc;
 1972         struct kaioinfo *ki;
 1973         struct aiocblist *cbe, *cbn;
 1974         struct file *fp;
 1975         struct socket *so;
 1976         int error;
 1977         int remove;
 1978         int cancelled = 0;
 1979         int notcancelled = 0;
 1980         struct vnode *vp;
 1981 
 1982         /* Lookup file object. */
 1983         error = fget(td, uap->fd, 0, &fp);
 1984         if (error)
 1985                 return (error);
 1986 
 1987         ki = p->p_aioinfo;
 1988         if (ki == NULL)
 1989                 goto done;
 1990 
 1991         if (fp->f_type == DTYPE_VNODE) {
 1992                 vp = fp->f_vnode;
 1993                 if (vn_isdisk(vp, &error)) {
 1994                         fdrop(fp, td);
 1995                         td->td_retval[0] = AIO_NOTCANCELED;
 1996                         return (0);
 1997                 }
 1998         }
 1999 
 2000         AIO_LOCK(ki);
 2001         TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
 2002                 if ((uap->fd == cbe->uaiocb.aio_fildes) &&
 2003                     ((uap->aiocbp == NULL) ||
 2004                      (uap->aiocbp == cbe->uuaiocb))) {
 2005                         remove = 0;
 2006 
 2007                         mtx_lock(&aio_job_mtx);
 2008                         if (cbe->jobstate == JOBST_JOBQGLOBAL) {
 2009                                 TAILQ_REMOVE(&aio_jobs, cbe, list);
 2010                                 remove = 1;
 2011                         } else if (cbe->jobstate == JOBST_JOBQSOCK) {
 2012                                 MPASS(fp->f_type == DTYPE_SOCKET);
 2013                                 so = fp->f_data;
 2014                                 TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
 2015                                 remove = 1;
 2016                         } else if (cbe->jobstate == JOBST_JOBQSYNC) {
 2017                                 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
 2018                                 remove = 1;
 2019                         }
 2020                         mtx_unlock(&aio_job_mtx);
 2021 
 2022                         if (remove) {
 2023                                 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
 2024                                 cbe->uaiocb._aiocb_private.status = -1;
 2025                                 cbe->uaiocb._aiocb_private.error = ECANCELED;
 2026                                 aio_bio_done_notify(p, cbe, DONE_QUEUE);
 2027                                 cancelled++;
 2028                         } else {
 2029                                 notcancelled++;
 2030                         }
 2031                         if (uap->aiocbp != NULL)
 2032                                 break;
 2033                 }
 2034         }
 2035         AIO_UNLOCK(ki);
 2036 
 2037 done:
 2038         fdrop(fp, td);
 2039 
 2040         if (uap->aiocbp != NULL) {
 2041                 if (cancelled) {
 2042                         td->td_retval[0] = AIO_CANCELED;
 2043                         return (0);
 2044                 }
 2045         }
 2046 
 2047         if (notcancelled) {
 2048                 td->td_retval[0] = AIO_NOTCANCELED;
 2049                 return (0);
 2050         }
 2051 
 2052         if (cancelled) {
 2053                 td->td_retval[0] = AIO_CANCELED;
 2054                 return (0);
 2055         }
 2056 
 2057         td->td_retval[0] = AIO_ALLDONE;
 2058 
 2059         return (0);
 2060 }
 2061 
 2062 /*
 2063  * aio_error is implemented in the kernel level for compatibility purposes
 2064  * only.  For a user mode async implementation, it would be best to do it in
 2065  * a userland subroutine.
 2066  */
 2067 static int
 2068 kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops)
 2069 {
 2070         struct proc *p = td->td_proc;
 2071         struct aiocblist *cb;
 2072         struct kaioinfo *ki;
 2073         int status;
 2074 
 2075         ki = p->p_aioinfo;
 2076         if (ki == NULL) {
 2077                 td->td_retval[0] = EINVAL;
 2078                 return (0);
 2079         }
 2080 
 2081         AIO_LOCK(ki);
 2082         TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
 2083                 if (cb->uuaiocb == aiocbp) {
 2084                         if (cb->jobstate == JOBST_JOBFINISHED)
 2085                                 td->td_retval[0] =
 2086                                         cb->uaiocb._aiocb_private.error;
 2087                         else
 2088                                 td->td_retval[0] = EINPROGRESS;
 2089                         AIO_UNLOCK(ki);
 2090                         return (0);
 2091                 }
 2092         }
 2093         AIO_UNLOCK(ki);
 2094 
 2095         /*
 2096          * Hack for failure of aio_aqueue.
 2097          */
 2098         status = ops->fetch_status(aiocbp);
 2099         if (status == -1) {
 2100                 td->td_retval[0] = ops->fetch_error(aiocbp);
 2101                 return (0);
 2102         }
 2103 
 2104         td->td_retval[0] = EINVAL;
 2105         return (0);
 2106 }
 2107 
 2108 int
 2109 sys_aio_error(struct thread *td, struct aio_error_args *uap)
 2110 {
 2111 
 2112         return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
 2113 }
 2114 
 2115 /* syscall - asynchronous read from a file (REALTIME) */
 2116 int
 2117 sys_oaio_read(struct thread *td, struct oaio_read_args *uap)
 2118 {
 2119 
 2120         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2121             &aiocb_ops_osigevent));
 2122 }
 2123 
 2124 int
 2125 sys_aio_read(struct thread *td, struct aio_read_args *uap)
 2126 {
 2127 
 2128         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
 2129 }
 2130 
 2131 /* syscall - asynchronous write to a file (REALTIME) */
 2132 int
 2133 sys_oaio_write(struct thread *td, struct oaio_write_args *uap)
 2134 {
 2135 
 2136         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2137             &aiocb_ops_osigevent));
 2138 }
 2139 
 2140 int
 2141 sys_aio_write(struct thread *td, struct aio_write_args *uap)
 2142 {
 2143 
 2144         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
 2145 }
 2146 
 2147 static int
 2148 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
 2149     struct aiocb **acb_list, int nent, struct sigevent *sig,
 2150     struct aiocb_ops *ops)
 2151 {
 2152         struct proc *p = td->td_proc;
 2153         struct aiocb *iocb;
 2154         struct kaioinfo *ki;
 2155         struct aioliojob *lj;
 2156         struct kevent kev;
 2157         int error;
 2158         int nerror;
 2159         int i;
 2160 
 2161         if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
 2162                 return (EINVAL);
 2163 
 2164         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2165                 return (EINVAL);
 2166 
 2167         if (p->p_aioinfo == NULL)
 2168                 aio_init_aioinfo(p);
 2169 
 2170         ki = p->p_aioinfo;
 2171 
 2172         lj = uma_zalloc(aiolio_zone, M_WAITOK);
 2173         lj->lioj_flags = 0;
 2174         lj->lioj_count = 0;
 2175         lj->lioj_finished_count = 0;
 2176         knlist_init_mtx(&lj->klist, AIO_MTX(ki));
 2177         ksiginfo_init(&lj->lioj_ksi);
 2178 
 2179         /*
 2180          * Setup signal.
 2181          */
 2182         if (sig && (mode == LIO_NOWAIT)) {
 2183                 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
 2184                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2185                         /* Assume only new style KEVENT */
 2186                         kev.filter = EVFILT_LIO;
 2187                         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 2188                         kev.ident = (uintptr_t)uacb_list; /* something unique */
 2189                         kev.data = (intptr_t)lj;
 2190                         /* pass user defined sigval data */
 2191                         kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
 2192                         error = kqfd_register(
 2193                             lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
 2194                         if (error) {
 2195                                 uma_zfree(aiolio_zone, lj);
 2196                                 return (error);
 2197                         }
 2198                 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
 2199                         ;
 2200                 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2201                            lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
 2202                                 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 2203                                         uma_zfree(aiolio_zone, lj);
 2204                                         return EINVAL;
 2205                                 }
 2206                                 lj->lioj_flags |= LIOJ_SIGNAL;
 2207                 } else {
 2208                         uma_zfree(aiolio_zone, lj);
 2209                         return EINVAL;
 2210                 }
 2211         }
 2212 
 2213         AIO_LOCK(ki);
 2214         TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 2215         /*
 2216          * Add extra aiocb count to avoid the lio to be freed
 2217          * by other threads doing aio_waitcomplete or aio_return,
 2218          * and prevent event from being sent until we have queued
 2219          * all tasks.
 2220          */
 2221         lj->lioj_count = 1;
 2222         AIO_UNLOCK(ki);
 2223 
 2224         /*
 2225          * Get pointers to the list of I/O requests.
 2226          */
 2227         nerror = 0;
 2228         for (i = 0; i < nent; i++) {
 2229                 iocb = acb_list[i];
 2230                 if (iocb != NULL) {
 2231                         error = aio_aqueue(td, iocb, lj, LIO_NOP, ops);
 2232                         if (error != 0)
 2233                                 nerror++;
 2234                 }
 2235         }
 2236 
 2237         error = 0;
 2238         AIO_LOCK(ki);
 2239         if (mode == LIO_WAIT) {
 2240                 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
 2241                         ki->kaio_flags |= KAIO_WAKEUP;
 2242                         error = msleep(&p->p_aioinfo, AIO_MTX(ki),
 2243                             PRIBIO | PCATCH, "aiospn", 0);
 2244                         if (error == ERESTART)
 2245                                 error = EINTR;
 2246                         if (error)
 2247                                 break;
 2248                 }
 2249         } else {
 2250                 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
 2251                         if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2252                                 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 2253                                 KNOTE_LOCKED(&lj->klist, 1);
 2254                         }
 2255                         if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
 2256                             == LIOJ_SIGNAL
 2257                             && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2258                             lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 2259                                 aio_sendsig(p, &lj->lioj_signal,
 2260                                             &lj->lioj_ksi);
 2261                                 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2262                         }
 2263                 }
 2264         }
 2265         lj->lioj_count--;
 2266         if (lj->lioj_count == 0) {
 2267                 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 2268                 knlist_delete(&lj->klist, curthread, 1);
 2269                 PROC_LOCK(p);
 2270                 sigqueue_take(&lj->lioj_ksi);
 2271                 PROC_UNLOCK(p);
 2272                 AIO_UNLOCK(ki);
 2273                 uma_zfree(aiolio_zone, lj);
 2274         } else
 2275                 AIO_UNLOCK(ki);
 2276 
 2277         if (nerror)
 2278                 return (EIO);
 2279         return (error);
 2280 }
 2281 
 2282 /* syscall - list directed I/O (REALTIME) */
 2283 int
 2284 sys_olio_listio(struct thread *td, struct olio_listio_args *uap)
 2285 {
 2286         struct aiocb **acb_list;
 2287         struct sigevent *sigp, sig;
 2288         struct osigevent osig;
 2289         int error, nent;
 2290 
 2291         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2292                 return (EINVAL);
 2293 
 2294         nent = uap->nent;
 2295         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2296                 return (EINVAL);
 2297 
 2298         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2299                 error = copyin(uap->sig, &osig, sizeof(osig));
 2300                 if (error)
 2301                         return (error);
 2302                 error = convert_old_sigevent(&osig, &sig);
 2303                 if (error)
 2304                         return (error);
 2305                 sigp = &sig;
 2306         } else
 2307                 sigp = NULL;
 2308 
 2309         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2310         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2311         if (error == 0)
 2312                 error = kern_lio_listio(td, uap->mode,
 2313                     (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2314                     &aiocb_ops_osigevent);
 2315         free(acb_list, M_LIO);
 2316         return (error);
 2317 }
 2318 
 2319 /* syscall - list directed I/O (REALTIME) */
 2320 int
 2321 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
 2322 {
 2323         struct aiocb **acb_list;
 2324         struct sigevent *sigp, sig;
 2325         int error, nent;
 2326 
 2327         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2328                 return (EINVAL);
 2329 
 2330         nent = uap->nent;
 2331         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2332                 return (EINVAL);
 2333 
 2334         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2335                 error = copyin(uap->sig, &sig, sizeof(sig));
 2336                 if (error)
 2337                         return (error);
 2338                 sigp = &sig;
 2339         } else
 2340                 sigp = NULL;
 2341 
 2342         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2343         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2344         if (error == 0)
 2345                 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
 2346                     nent, sigp, &aiocb_ops);
 2347         free(acb_list, M_LIO);
 2348         return (error);
 2349 }
 2350 
 2351 /*
 2352  * Called from interrupt thread for physio, we should return as fast
 2353  * as possible, so we schedule a biohelper task.
 2354  */
 2355 static void
 2356 aio_physwakeup(struct buf *bp)
 2357 {
 2358         struct aiocblist *aiocbe;
 2359 
 2360         aiocbe = (struct aiocblist *)bp->b_caller1;
 2361         taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask);
 2362 }
 2363 
 2364 /*
 2365  * Task routine to perform heavy tasks, process wakeup, and signals.
 2366  */
 2367 static void
 2368 biohelper(void *context, int pending)
 2369 {
 2370         struct aiocblist *aiocbe = context;
 2371         struct buf *bp;
 2372         struct proc *userp;
 2373         struct kaioinfo *ki;
 2374         int nblks;
 2375 
 2376         bp = aiocbe->bp;
 2377         userp = aiocbe->userproc;
 2378         ki = userp->p_aioinfo;
 2379         AIO_LOCK(ki);
 2380         aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
 2381         aiocbe->uaiocb._aiocb_private.error = 0;
 2382         if (bp->b_ioflags & BIO_ERROR)
 2383                 aiocbe->uaiocb._aiocb_private.error = bp->b_error;
 2384         nblks = btodb(aiocbe->uaiocb.aio_nbytes);
 2385         if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE)
 2386                 aiocbe->outputcharge += nblks;
 2387         else
 2388                 aiocbe->inputcharge += nblks;
 2389         aiocbe->bp = NULL;
 2390         TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist);
 2391         ki->kaio_buffer_count--;
 2392         aio_bio_done_notify(userp, aiocbe, DONE_BUF);
 2393         AIO_UNLOCK(ki);
 2394 
 2395         /* Release mapping into kernel space. */
 2396         vunmapbuf(bp);
 2397         relpbuf(bp, NULL);
 2398         atomic_subtract_int(&num_buf_aio, 1);
 2399 }
 2400 
 2401 /* syscall - wait for the next completion of an aio request */
 2402 static int
 2403 kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp,
 2404     struct timespec *ts, struct aiocb_ops *ops)
 2405 {
 2406         struct proc *p = td->td_proc;
 2407         struct timeval atv;
 2408         struct kaioinfo *ki;
 2409         struct aiocblist *cb;
 2410         struct aiocb *uuaiocb;
 2411         int error, status, timo;
 2412 
 2413         ops->store_aiocb(aiocbp, NULL);
 2414 
 2415         timo = 0;
 2416         if (ts) {
 2417                 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
 2418                         return (EINVAL);
 2419 
 2420                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 2421                 if (itimerfix(&atv))
 2422                         return (EINVAL);
 2423                 timo = tvtohz(&atv);
 2424         }
 2425 
 2426         if (p->p_aioinfo == NULL)
 2427                 aio_init_aioinfo(p);
 2428         ki = p->p_aioinfo;
 2429 
 2430         error = 0;
 2431         cb = NULL;
 2432         AIO_LOCK(ki);
 2433         while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
 2434                 ki->kaio_flags |= KAIO_WAKEUP;
 2435                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2436                     "aiowc", timo);
 2437                 if (timo && error == ERESTART)
 2438                         error = EINTR;
 2439                 if (error)
 2440                         break;
 2441         }
 2442 
 2443         if (cb != NULL) {
 2444                 MPASS(cb->jobstate == JOBST_JOBFINISHED);
 2445                 uuaiocb = cb->uuaiocb;
 2446                 status = cb->uaiocb._aiocb_private.status;
 2447                 error = cb->uaiocb._aiocb_private.error;
 2448                 td->td_retval[0] = status;
 2449                 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 2450                         td->td_ru.ru_oublock += cb->outputcharge;
 2451                         cb->outputcharge = 0;
 2452                 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 2453                         td->td_ru.ru_inblock += cb->inputcharge;
 2454                         cb->inputcharge = 0;
 2455                 }
 2456                 aio_free_entry(cb);
 2457                 AIO_UNLOCK(ki);
 2458                 ops->store_aiocb(aiocbp, uuaiocb);
 2459                 ops->store_error(uuaiocb, error);
 2460                 ops->store_status(uuaiocb, status);
 2461         } else
 2462                 AIO_UNLOCK(ki);
 2463 
 2464         return (error);
 2465 }
 2466 
 2467 int
 2468 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 2469 {
 2470         struct timespec ts, *tsp;
 2471         int error;
 2472 
 2473         if (uap->timeout) {
 2474                 /* Get timespec struct. */
 2475                 error = copyin(uap->timeout, &ts, sizeof(ts));
 2476                 if (error)
 2477                         return (error);
 2478                 tsp = &ts;
 2479         } else
 2480                 tsp = NULL;
 2481 
 2482         return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
 2483 }
 2484 
 2485 static int
 2486 kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp,
 2487     struct aiocb_ops *ops)
 2488 {
 2489         struct proc *p = td->td_proc;
 2490         struct kaioinfo *ki;
 2491 
 2492         if (op != O_SYNC) /* XXX lack of O_DSYNC */
 2493                 return (EINVAL);
 2494         ki = p->p_aioinfo;
 2495         if (ki == NULL)
 2496                 aio_init_aioinfo(p);
 2497         return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops));
 2498 }
 2499 
 2500 int
 2501 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 2502 {
 2503 
 2504         return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
 2505 }
 2506 
 2507 /* kqueue attach function */
 2508 static int
 2509 filt_aioattach(struct knote *kn)
 2510 {
 2511         struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
 2512 
 2513         /*
 2514          * The aiocbe pointer must be validated before using it, so
 2515          * registration is restricted to the kernel; the user cannot
 2516          * set EV_FLAG1.
 2517          */
 2518         if ((kn->kn_flags & EV_FLAG1) == 0)
 2519                 return (EPERM);
 2520         kn->kn_ptr.p_aio = aiocbe;
 2521         kn->kn_flags &= ~EV_FLAG1;
 2522 
 2523         knlist_add(&aiocbe->klist, kn, 0);
 2524 
 2525         return (0);
 2526 }
 2527 
 2528 /* kqueue detach function */
 2529 static void
 2530 filt_aiodetach(struct knote *kn)
 2531 {
 2532         struct aiocblist *aiocbe = kn->kn_ptr.p_aio;
 2533 
 2534         if (!knlist_empty(&aiocbe->klist))
 2535                 knlist_remove(&aiocbe->klist, kn, 0);
 2536 }
 2537 
 2538 /* kqueue filter function */
 2539 /*ARGSUSED*/
 2540 static int
 2541 filt_aio(struct knote *kn, long hint)
 2542 {
 2543         struct aiocblist *aiocbe = kn->kn_ptr.p_aio;
 2544 
 2545         kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
 2546         if (aiocbe->jobstate != JOBST_JOBFINISHED)
 2547                 return (0);
 2548         kn->kn_flags |= EV_EOF;
 2549         return (1);
 2550 }
 2551 
 2552 /* kqueue attach function */
 2553 static int
 2554 filt_lioattach(struct knote *kn)
 2555 {
 2556         struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
 2557 
 2558         /*
 2559          * The aioliojob pointer must be validated before using it, so
 2560          * registration is restricted to the kernel; the user cannot
 2561          * set EV_FLAG1.
 2562          */
 2563         if ((kn->kn_flags & EV_FLAG1) == 0)
 2564                 return (EPERM);
 2565         kn->kn_ptr.p_lio = lj;
 2566         kn->kn_flags &= ~EV_FLAG1;
 2567 
 2568         knlist_add(&lj->klist, kn, 0);
 2569 
 2570         return (0);
 2571 }
 2572 
 2573 /* kqueue detach function */
 2574 static void
 2575 filt_liodetach(struct knote *kn)
 2576 {
 2577         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2578 
 2579         if (!knlist_empty(&lj->klist))
 2580                 knlist_remove(&lj->klist, kn, 0);
 2581 }
 2582 
 2583 /* kqueue filter function */
 2584 /*ARGSUSED*/
 2585 static int
 2586 filt_lio(struct knote *kn, long hint)
 2587 {
 2588         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2589 
 2590         return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
 2591 }
 2592 
 2593 #ifdef COMPAT_FREEBSD32
 2594 
 2595 struct __aiocb_private32 {
 2596         int32_t status;
 2597         int32_t error;
 2598         uint32_t kernelinfo;
 2599 };
 2600 
 2601 typedef struct oaiocb32 {
 2602         int     aio_fildes;             /* File descriptor */
 2603         uint64_t aio_offset __packed;   /* File offset for I/O */
 2604         uint32_t aio_buf;               /* I/O buffer in process space */
 2605         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2606         struct  osigevent32 aio_sigevent; /* Signal to deliver */
 2607         int     aio_lio_opcode;         /* LIO opcode */
 2608         int     aio_reqprio;            /* Request priority -- ignored */
 2609         struct  __aiocb_private32 _aiocb_private;
 2610 } oaiocb32_t;
 2611 
 2612 typedef struct aiocb32 {
 2613         int32_t aio_fildes;             /* File descriptor */
 2614         uint64_t aio_offset __packed;   /* File offset for I/O */
 2615         uint32_t aio_buf;               /* I/O buffer in process space */
 2616         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2617         int     __spare__[2];
 2618         uint32_t __spare2__;
 2619         int     aio_lio_opcode;         /* LIO opcode */
 2620         int     aio_reqprio;            /* Request priority -- ignored */
 2621         struct __aiocb_private32 _aiocb_private;
 2622         struct sigevent32 aio_sigevent; /* Signal to deliver */
 2623 } aiocb32_t;
 2624 
 2625 static int
 2626 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
 2627 {
 2628 
 2629         /*
 2630          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 2631          * supported by AIO with the old sigevent structure.
 2632          */
 2633         CP(*osig, *nsig, sigev_notify);
 2634         switch (nsig->sigev_notify) {
 2635         case SIGEV_NONE:
 2636                 break;
 2637         case SIGEV_SIGNAL:
 2638                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 2639                 break;
 2640         case SIGEV_KEVENT:
 2641                 nsig->sigev_notify_kqueue =
 2642                     osig->__sigev_u.__sigev_notify_kqueue;
 2643                 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
 2644                 break;
 2645         default:
 2646                 return (EINVAL);
 2647         }
 2648         return (0);
 2649 }
 2650 
 2651 static int
 2652 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 2653 {
 2654         struct oaiocb32 job32;
 2655         int error;
 2656 
 2657         bzero(kjob, sizeof(struct aiocb));
 2658         error = copyin(ujob, &job32, sizeof(job32));
 2659         if (error)
 2660                 return (error);
 2661 
 2662         CP(job32, *kjob, aio_fildes);
 2663         CP(job32, *kjob, aio_offset);
 2664         PTRIN_CP(job32, *kjob, aio_buf);
 2665         CP(job32, *kjob, aio_nbytes);
 2666         CP(job32, *kjob, aio_lio_opcode);
 2667         CP(job32, *kjob, aio_reqprio);
 2668         CP(job32, *kjob, _aiocb_private.status);
 2669         CP(job32, *kjob, _aiocb_private.error);
 2670         PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 2671         return (convert_old_sigevent32(&job32.aio_sigevent,
 2672             &kjob->aio_sigevent));
 2673 }
 2674 
 2675 static int
 2676 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
 2677 {
 2678 
 2679         CP(*sig32, *sig, sigev_notify);
 2680         switch (sig->sigev_notify) {
 2681         case SIGEV_NONE:
 2682                 break;
 2683         case SIGEV_THREAD_ID:
 2684                 CP(*sig32, *sig, sigev_notify_thread_id);
 2685                 /* FALLTHROUGH */
 2686         case SIGEV_SIGNAL:
 2687                 CP(*sig32, *sig, sigev_signo);
 2688                 break;
 2689         case SIGEV_KEVENT:
 2690                 CP(*sig32, *sig, sigev_notify_kqueue);
 2691                 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
 2692                 break;
 2693         default:
 2694                 return (EINVAL);
 2695         }
 2696         return (0);
 2697 }
 2698 
 2699 static int
 2700 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
 2701 {
 2702         struct aiocb32 job32;
 2703         int error;
 2704 
 2705         error = copyin(ujob, &job32, sizeof(job32));
 2706         if (error)
 2707                 return (error);
 2708         CP(job32, *kjob, aio_fildes);
 2709         CP(job32, *kjob, aio_offset);
 2710         PTRIN_CP(job32, *kjob, aio_buf);
 2711         CP(job32, *kjob, aio_nbytes);
 2712         CP(job32, *kjob, aio_lio_opcode);
 2713         CP(job32, *kjob, aio_reqprio);
 2714         CP(job32, *kjob, _aiocb_private.status);
 2715         CP(job32, *kjob, _aiocb_private.error);
 2716         PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 2717         return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
 2718 }
 2719 
 2720 static long
 2721 aiocb32_fetch_status(struct aiocb *ujob)
 2722 {
 2723         struct aiocb32 *ujob32;
 2724 
 2725         ujob32 = (struct aiocb32 *)ujob;
 2726         return (fuword32(&ujob32->_aiocb_private.status));
 2727 }
 2728 
 2729 static long
 2730 aiocb32_fetch_error(struct aiocb *ujob)
 2731 {
 2732         struct aiocb32 *ujob32;
 2733 
 2734         ujob32 = (struct aiocb32 *)ujob;
 2735         return (fuword32(&ujob32->_aiocb_private.error));
 2736 }
 2737 
 2738 static int
 2739 aiocb32_store_status(struct aiocb *ujob, long status)
 2740 {
 2741         struct aiocb32 *ujob32;
 2742 
 2743         ujob32 = (struct aiocb32 *)ujob;
 2744         return (suword32(&ujob32->_aiocb_private.status, status));
 2745 }
 2746 
 2747 static int
 2748 aiocb32_store_error(struct aiocb *ujob, long error)
 2749 {
 2750         struct aiocb32 *ujob32;
 2751 
 2752         ujob32 = (struct aiocb32 *)ujob;
 2753         return (suword32(&ujob32->_aiocb_private.error, error));
 2754 }
 2755 
 2756 static int
 2757 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
 2758 {
 2759         struct aiocb32 *ujob32;
 2760 
 2761         ujob32 = (struct aiocb32 *)ujob;
 2762         return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
 2763 }
 2764 
 2765 static int
 2766 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 2767 {
 2768 
 2769         return (suword32(ujobp, (long)ujob));
 2770 }
 2771 
 2772 static struct aiocb_ops aiocb32_ops = {
 2773         .copyin = aiocb32_copyin,
 2774         .fetch_status = aiocb32_fetch_status,
 2775         .fetch_error = aiocb32_fetch_error,
 2776         .store_status = aiocb32_store_status,
 2777         .store_error = aiocb32_store_error,
 2778         .store_kernelinfo = aiocb32_store_kernelinfo,
 2779         .store_aiocb = aiocb32_store_aiocb,
 2780 };
 2781 
 2782 static struct aiocb_ops aiocb32_ops_osigevent = {
 2783         .copyin = aiocb32_copyin_old_sigevent,
 2784         .fetch_status = aiocb32_fetch_status,
 2785         .fetch_error = aiocb32_fetch_error,
 2786         .store_status = aiocb32_store_status,
 2787         .store_error = aiocb32_store_error,
 2788         .store_kernelinfo = aiocb32_store_kernelinfo,
 2789         .store_aiocb = aiocb32_store_aiocb,
 2790 };
 2791 
 2792 int
 2793 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
 2794 {
 2795 
 2796         return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2797 }
 2798 
 2799 int
 2800 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
 2801 {
 2802         struct timespec32 ts32;
 2803         struct timespec ts, *tsp;
 2804         struct aiocb **ujoblist;
 2805         uint32_t *ujoblist32;
 2806         int error, i;
 2807 
 2808         if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
 2809                 return (EINVAL);
 2810 
 2811         if (uap->timeout) {
 2812                 /* Get timespec struct. */
 2813                 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
 2814                         return (error);
 2815                 CP(ts32, ts, tv_sec);
 2816                 CP(ts32, ts, tv_nsec);
 2817                 tsp = &ts;
 2818         } else
 2819                 tsp = NULL;
 2820 
 2821         ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 2822         ujoblist32 = (uint32_t *)ujoblist;
 2823         error = copyin(uap->aiocbp, ujoblist32, uap->nent *
 2824             sizeof(ujoblist32[0]));
 2825         if (error == 0) {
 2826                 for (i = uap->nent; i > 0; i--)
 2827                         ujoblist[i] = PTRIN(ujoblist32[i]);
 2828 
 2829                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2830         }
 2831         uma_zfree(aiol_zone, ujoblist);
 2832         return (error);
 2833 }
 2834 
 2835 int
 2836 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap)
 2837 {
 2838 
 2839         return (sys_aio_cancel(td, (struct aio_cancel_args *)uap));
 2840 }
 2841 
 2842 int
 2843 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
 2844 {
 2845 
 2846         return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2847 }
 2848 
 2849 int
 2850 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap)
 2851 {
 2852 
 2853         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2854             &aiocb32_ops_osigevent));
 2855 }
 2856 
 2857 int
 2858 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
 2859 {
 2860 
 2861         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2862             &aiocb32_ops));
 2863 }
 2864 
 2865 int
 2866 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap)
 2867 {
 2868 
 2869         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2870             &aiocb32_ops_osigevent));
 2871 }
 2872 
 2873 int
 2874 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
 2875 {
 2876 
 2877         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2878             &aiocb32_ops));
 2879 }
 2880 
 2881 int
 2882 freebsd32_aio_waitcomplete(struct thread *td,
 2883     struct freebsd32_aio_waitcomplete_args *uap)
 2884 {
 2885         struct timespec32 ts32;
 2886         struct timespec ts, *tsp;
 2887         int error;
 2888 
 2889         if (uap->timeout) {
 2890                 /* Get timespec struct. */
 2891                 error = copyin(uap->timeout, &ts32, sizeof(ts32));
 2892                 if (error)
 2893                         return (error);
 2894                 CP(ts32, ts, tv_sec);
 2895                 CP(ts32, ts, tv_nsec);
 2896                 tsp = &ts;
 2897         } else
 2898                 tsp = NULL;
 2899 
 2900         return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
 2901             &aiocb32_ops));
 2902 }
 2903 
 2904 int
 2905 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
 2906 {
 2907 
 2908         return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
 2909             &aiocb32_ops));
 2910 }
 2911 
 2912 int
 2913 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap)
 2914 {
 2915         struct aiocb **acb_list;
 2916         struct sigevent *sigp, sig;
 2917         struct osigevent32 osig;
 2918         uint32_t *acb_list32;
 2919         int error, i, nent;
 2920 
 2921         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2922                 return (EINVAL);
 2923 
 2924         nent = uap->nent;
 2925         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2926                 return (EINVAL);
 2927 
 2928         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2929                 error = copyin(uap->sig, &osig, sizeof(osig));
 2930                 if (error)
 2931                         return (error);
 2932                 error = convert_old_sigevent32(&osig, &sig);
 2933                 if (error)
 2934                         return (error);
 2935                 sigp = &sig;
 2936         } else
 2937                 sigp = NULL;
 2938 
 2939         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 2940         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 2941         if (error) {
 2942                 free(acb_list32, M_LIO);
 2943                 return (error);
 2944         }
 2945         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2946         for (i = 0; i < nent; i++)
 2947                 acb_list[i] = PTRIN(acb_list32[i]);
 2948         free(acb_list32, M_LIO);
 2949 
 2950         error = kern_lio_listio(td, uap->mode,
 2951             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2952             &aiocb32_ops_osigevent);
 2953         free(acb_list, M_LIO);
 2954         return (error);
 2955 }
 2956 
 2957 int
 2958 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
 2959 {
 2960         struct aiocb **acb_list;
 2961         struct sigevent *sigp, sig;
 2962         struct sigevent32 sig32;
 2963         uint32_t *acb_list32;
 2964         int error, i, nent;
 2965 
 2966         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2967                 return (EINVAL);
 2968 
 2969         nent = uap->nent;
 2970         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2971                 return (EINVAL);
 2972 
 2973         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2974                 error = copyin(uap->sig, &sig32, sizeof(sig32));
 2975                 if (error)
 2976                         return (error);
 2977                 error = convert_sigevent32(&sig32, &sig);
 2978                 if (error)
 2979                         return (error);
 2980                 sigp = &sig;
 2981         } else
 2982                 sigp = NULL;
 2983 
 2984         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 2985         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 2986         if (error) {
 2987                 free(acb_list32, M_LIO);
 2988                 return (error);
 2989         }
 2990         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2991         for (i = 0; i < nent; i++)
 2992                 acb_list[i] = PTRIN(acb_list32[i]);
 2993         free(acb_list32, M_LIO);
 2994 
 2995         error = kern_lio_listio(td, uap->mode,
 2996             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2997             &aiocb32_ops);
 2998         free(acb_list, M_LIO);
 2999         return (error);
 3000 }
 3001 
 3002 #endif

Cache object: ae0301e049ca1fde1c588eb8e8431a29


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.