The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_aio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. John S. Dyson's name may not be used to endorse or promote products
   10  *    derived from this software without specific prior written permission.
   11  *
   12  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
   13  * bad that happens because of using this software isn't the responsibility
   14  * of the author.  This software is distributed AS-IS.
   15  */
   16 
   17 /*
   18  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
   19  */
   20 
   21 #include <sys/cdefs.h>
   22 __FBSDID("$FreeBSD: releng/9.2/sys/kern/vfs_aio.c 251897 2013-06-18 05:21:40Z scottl $");
   23 
   24 #include "opt_compat.h"
   25 
   26 #include <sys/param.h>
   27 #include <sys/systm.h>
   28 #include <sys/malloc.h>
   29 #include <sys/bio.h>
   30 #include <sys/buf.h>
   31 #include <sys/capability.h>
   32 #include <sys/eventhandler.h>
   33 #include <sys/sysproto.h>
   34 #include <sys/filedesc.h>
   35 #include <sys/kernel.h>
   36 #include <sys/module.h>
   37 #include <sys/kthread.h>
   38 #include <sys/fcntl.h>
   39 #include <sys/file.h>
   40 #include <sys/limits.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/unistd.h>
   44 #include <sys/posix4.h>
   45 #include <sys/proc.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/signalvar.h>
   48 #include <sys/protosw.h>
   49 #include <sys/sema.h>
   50 #include <sys/socket.h>
   51 #include <sys/socketvar.h>
   52 #include <sys/syscall.h>
   53 #include <sys/sysent.h>
   54 #include <sys/sysctl.h>
   55 #include <sys/sx.h>
   56 #include <sys/taskqueue.h>
   57 #include <sys/vnode.h>
   58 #include <sys/conf.h>
   59 #include <sys/event.h>
   60 #include <sys/mount.h>
   61 
   62 #include <machine/atomic.h>
   63 
   64 #include <vm/vm.h>
   65 #include <vm/vm_extern.h>
   66 #include <vm/pmap.h>
   67 #include <vm/vm_map.h>
   68 #include <vm/vm_object.h>
   69 #include <vm/uma.h>
   70 #include <sys/aio.h>
   71 
   72 #include "opt_vfs_aio.h"
   73 
   74 /*
   75  * Counter for allocating reference ids to new jobs.  Wrapped to 1 on
   76  * overflow. (XXX will be removed soon.)
   77  */
   78 static u_long jobrefid;
   79 
   80 /*
   81  * Counter for aio_fsync.
   82  */
   83 static uint64_t jobseqno;
   84 
   85 #define JOBST_NULL              0
   86 #define JOBST_JOBQSOCK          1
   87 #define JOBST_JOBQGLOBAL        2
   88 #define JOBST_JOBRUNNING        3
   89 #define JOBST_JOBFINISHED       4
   90 #define JOBST_JOBQBUF           5
   91 #define JOBST_JOBQSYNC          6
   92 
   93 #ifndef MAX_AIO_PER_PROC
   94 #define MAX_AIO_PER_PROC        32
   95 #endif
   96 
   97 #ifndef MAX_AIO_QUEUE_PER_PROC
   98 #define MAX_AIO_QUEUE_PER_PROC  256 /* Bigger than AIO_LISTIO_MAX */
   99 #endif
  100 
  101 #ifndef MAX_AIO_PROCS
  102 #define MAX_AIO_PROCS           32
  103 #endif
  104 
  105 #ifndef MAX_AIO_QUEUE
  106 #define MAX_AIO_QUEUE           1024 /* Bigger than AIO_LISTIO_MAX */
  107 #endif
  108 
  109 #ifndef TARGET_AIO_PROCS
  110 #define TARGET_AIO_PROCS        4
  111 #endif
  112 
  113 #ifndef MAX_BUF_AIO
  114 #define MAX_BUF_AIO             16
  115 #endif
  116 
  117 #ifndef AIOD_TIMEOUT_DEFAULT
  118 #define AIOD_TIMEOUT_DEFAULT    (10 * hz)
  119 #endif
  120 
  121 #ifndef AIOD_LIFETIME_DEFAULT
  122 #define AIOD_LIFETIME_DEFAULT   (30 * hz)
  123 #endif
  124 
  125 FEATURE(aio, "Asynchronous I/O");
  126 
  127 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
  128 
  129 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW, 0, "Async IO management");
  130 
  131 static int max_aio_procs = MAX_AIO_PROCS;
  132 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs,
  133         CTLFLAG_RW, &max_aio_procs, 0,
  134         "Maximum number of kernel threads to use for handling async IO ");
  135 
  136 static int num_aio_procs = 0;
  137 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs,
  138         CTLFLAG_RD, &num_aio_procs, 0,
  139         "Number of presently active kernel threads for async IO");
  140 
  141 /*
  142  * The code will adjust the actual number of AIO processes towards this
  143  * number when it gets a chance.
  144  */
  145 static int target_aio_procs = TARGET_AIO_PROCS;
  146 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
  147         0, "Preferred number of ready kernel threads for async IO");
  148 
  149 static int max_queue_count = MAX_AIO_QUEUE;
  150 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
  151     "Maximum number of aio requests to queue, globally");
  152 
  153 static int num_queue_count = 0;
  154 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
  155     "Number of queued aio requests");
  156 
  157 static int num_buf_aio = 0;
  158 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
  159     "Number of aio requests presently handled by the buf subsystem");
  160 
  161 /* Number of async I/O thread in the process of being started */
  162 /* XXX This should be local to aio_aqueue() */
  163 static int num_aio_resv_start = 0;
  164 
  165 static int aiod_timeout;
  166 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_timeout, CTLFLAG_RW, &aiod_timeout, 0,
  167     "Timeout value for synchronous aio operations");
  168 
  169 static int aiod_lifetime;
  170 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
  171     "Maximum lifetime for idle aiod");
  172 
  173 static int unloadable = 0;
  174 SYSCTL_INT(_vfs_aio, OID_AUTO, unloadable, CTLFLAG_RW, &unloadable, 0,
  175     "Allow unload of aio (not recommended)");
  176 
  177 
  178 static int max_aio_per_proc = MAX_AIO_PER_PROC;
  179 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
  180     0, "Maximum active aio requests per process (stored in the process)");
  181 
  182 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
  183 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
  184     &max_aio_queue_per_proc, 0,
  185     "Maximum queued aio requests per process (stored in the process)");
  186 
  187 static int max_buf_aio = MAX_BUF_AIO;
  188 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
  189     "Maximum buf aio requests per process (stored in the process)");
  190 
  191 typedef struct oaiocb {
  192         int     aio_fildes;             /* File descriptor */
  193         off_t   aio_offset;             /* File offset for I/O */
  194         volatile void *aio_buf;         /* I/O buffer in process space */
  195         size_t  aio_nbytes;             /* Number of bytes for I/O */
  196         struct  osigevent aio_sigevent; /* Signal to deliver */
  197         int     aio_lio_opcode;         /* LIO opcode */
  198         int     aio_reqprio;            /* Request priority -- ignored */
  199         struct  __aiocb_private _aiocb_private;
  200 } oaiocb_t;
  201 
  202 /*
  203  * Below is a key of locks used to protect each member of struct aiocblist
  204  * aioliojob and kaioinfo and any backends.
  205  *
  206  * * - need not protected
  207  * a - locked by kaioinfo lock
  208  * b - locked by backend lock, the backend lock can be null in some cases,
  209  *     for example, BIO belongs to this type, in this case, proc lock is
  210  *     reused.
  211  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
  212  */
  213 
  214 /*
  215  * Current, there is only two backends: BIO and generic file I/O.
  216  * socket I/O is served by generic file I/O, this is not a good idea, since
  217  * disk file I/O and any other types without O_NONBLOCK flag can block daemon
  218  * threads, if there is no thread to serve socket I/O, the socket I/O will be
  219  * delayed too long or starved, we should create some threads dedicated to
  220  * sockets to do non-blocking I/O, same for pipe and fifo, for these I/O
  221  * systems we really need non-blocking interface, fiddling O_NONBLOCK in file
  222  * structure is not safe because there is race between userland and aio
  223  * daemons.
  224  */
  225 
  226 struct aiocblist {
  227         TAILQ_ENTRY(aiocblist) list;    /* (b) internal list of for backend */
  228         TAILQ_ENTRY(aiocblist) plist;   /* (a) list of jobs for each backend */
  229         TAILQ_ENTRY(aiocblist) allist;  /* (a) list of all jobs in proc */
  230         int     jobflags;               /* (a) job flags */
  231         int     jobstate;               /* (b) job state */
  232         int     inputcharge;            /* (*) input blockes */
  233         int     outputcharge;           /* (*) output blockes */
  234         struct  buf *bp;                /* (*) private to BIO backend,
  235                                          * buffer pointer
  236                                          */
  237         struct  proc *userproc;         /* (*) user process */
  238         struct  ucred *cred;            /* (*) active credential when created */
  239         struct  file *fd_file;          /* (*) pointer to file structure */
  240         struct  aioliojob *lio;         /* (*) optional lio job */
  241         struct  aiocb *uuaiocb;         /* (*) pointer in userspace of aiocb */
  242         struct  knlist klist;           /* (a) list of knotes */
  243         struct  aiocb uaiocb;           /* (*) kernel I/O control block */
  244         ksiginfo_t ksi;                 /* (a) realtime signal info */
  245         struct  task biotask;           /* (*) private to BIO backend */
  246         uint64_t seqno;                 /* (*) job number */
  247         int     pending;                /* (a) number of pending I/O, aio_fsync only */
  248 };
  249 
  250 /* jobflags */
  251 #define AIOCBLIST_DONE          0x01
  252 #define AIOCBLIST_BUFDONE       0x02
  253 #define AIOCBLIST_RUNDOWN       0x04
  254 #define AIOCBLIST_CHECKSYNC     0x08
  255 
  256 /*
  257  * AIO process info
  258  */
  259 #define AIOP_FREE       0x1                     /* proc on free queue */
  260 
  261 struct aiothreadlist {
  262         int aiothreadflags;                     /* (c) AIO proc flags */
  263         TAILQ_ENTRY(aiothreadlist) list;        /* (c) list of processes */
  264         struct thread *aiothread;               /* (*) the AIO thread */
  265 };
  266 
  267 /*
  268  * data-structure for lio signal management
  269  */
  270 struct aioliojob {
  271         int     lioj_flags;                     /* (a) listio flags */
  272         int     lioj_count;                     /* (a) listio flags */
  273         int     lioj_finished_count;            /* (a) listio flags */
  274         struct  sigevent lioj_signal;           /* (a) signal on all I/O done */
  275         TAILQ_ENTRY(aioliojob) lioj_list;       /* (a) lio list */
  276         struct  knlist klist;                   /* (a) list of knotes */
  277         ksiginfo_t lioj_ksi;                    /* (a) Realtime signal info */
  278 };
  279 
  280 #define LIOJ_SIGNAL             0x1     /* signal on all done (lio) */
  281 #define LIOJ_SIGNAL_POSTED      0x2     /* signal has been posted */
  282 #define LIOJ_KEVENT_POSTED      0x4     /* kevent triggered */
  283 
  284 /*
  285  * per process aio data structure
  286  */
  287 struct kaioinfo {
  288         struct mtx      kaio_mtx;       /* the lock to protect this struct */
  289         int     kaio_flags;             /* (a) per process kaio flags */
  290         int     kaio_maxactive_count;   /* (*) maximum number of AIOs */
  291         int     kaio_active_count;      /* (c) number of currently used AIOs */
  292         int     kaio_qallowed_count;    /* (*) maxiumu size of AIO queue */
  293         int     kaio_count;             /* (a) size of AIO queue */
  294         int     kaio_ballowed_count;    /* (*) maximum number of buffers */
  295         int     kaio_buffer_count;      /* (a) number of physio buffers */
  296         TAILQ_HEAD(,aiocblist) kaio_all;        /* (a) all AIOs in the process */
  297         TAILQ_HEAD(,aiocblist) kaio_done;       /* (a) done queue for process */
  298         TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
  299         TAILQ_HEAD(,aiocblist) kaio_jobqueue;   /* (a) job queue for process */
  300         TAILQ_HEAD(,aiocblist) kaio_bufqueue;   /* (a) buffer job queue for process */
  301         TAILQ_HEAD(,aiocblist) kaio_sockqueue;  /* (a) queue for aios waiting on sockets,
  302                                                  *  NOT USED YET.
  303                                                  */
  304         TAILQ_HEAD(,aiocblist) kaio_syncqueue;  /* (a) queue for aio_fsync */
  305         struct  task    kaio_task;      /* (*) task to kick aio threads */
  306 };
  307 
  308 #define AIO_LOCK(ki)            mtx_lock(&(ki)->kaio_mtx)
  309 #define AIO_UNLOCK(ki)          mtx_unlock(&(ki)->kaio_mtx)
  310 #define AIO_LOCK_ASSERT(ki, f)  mtx_assert(&(ki)->kaio_mtx, (f))
  311 #define AIO_MTX(ki)             (&(ki)->kaio_mtx)
  312 
  313 #define KAIO_RUNDOWN    0x1     /* process is being run down */
  314 #define KAIO_WAKEUP     0x2     /* wakeup process when there is a significant event */
  315 
  316 /*
  317  * Operations used to interact with userland aio control blocks.
  318  * Different ABIs provide their own operations.
  319  */
  320 struct aiocb_ops {
  321         int     (*copyin)(struct aiocb *ujob, struct aiocb *kjob);
  322         long    (*fetch_status)(struct aiocb *ujob);
  323         long    (*fetch_error)(struct aiocb *ujob);
  324         int     (*store_status)(struct aiocb *ujob, long status);
  325         int     (*store_error)(struct aiocb *ujob, long error);
  326         int     (*store_kernelinfo)(struct aiocb *ujob, long jobref);
  327         int     (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
  328 };
  329 
  330 static TAILQ_HEAD(,aiothreadlist) aio_freeproc;         /* (c) Idle daemons */
  331 static struct sema aio_newproc_sem;
  332 static struct mtx aio_job_mtx;
  333 static struct mtx aio_sock_mtx;
  334 static TAILQ_HEAD(,aiocblist) aio_jobs;                 /* (c) Async job list */
  335 static struct unrhdr *aiod_unr;
  336 
  337 void            aio_init_aioinfo(struct proc *p);
  338 static int      aio_onceonly(void);
  339 static int      aio_free_entry(struct aiocblist *aiocbe);
  340 static void     aio_process(struct aiocblist *aiocbe);
  341 static int      aio_newproc(int *);
  342 int             aio_aqueue(struct thread *td, struct aiocb *job,
  343                         struct aioliojob *lio, int type, struct aiocb_ops *ops);
  344 static void     aio_physwakeup(struct buf *bp);
  345 static void     aio_proc_rundown(void *arg, struct proc *p);
  346 static void     aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp);
  347 static int      aio_qphysio(struct proc *p, struct aiocblist *iocb);
  348 static void     biohelper(void *, int);
  349 static void     aio_daemon(void *param);
  350 static void     aio_swake_cb(struct socket *, struct sockbuf *);
  351 static int      aio_unload(void);
  352 static void     aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type);
  353 #define DONE_BUF        1
  354 #define DONE_QUEUE      2
  355 static int      aio_kick(struct proc *userp);
  356 static void     aio_kick_nowait(struct proc *userp);
  357 static void     aio_kick_helper(void *context, int pending);
  358 static int      filt_aioattach(struct knote *kn);
  359 static void     filt_aiodetach(struct knote *kn);
  360 static int      filt_aio(struct knote *kn, long hint);
  361 static int      filt_lioattach(struct knote *kn);
  362 static void     filt_liodetach(struct knote *kn);
  363 static int      filt_lio(struct knote *kn, long hint);
  364 
  365 /*
  366  * Zones for:
  367  *      kaio    Per process async io info
  368  *      aiop    async io thread data
  369  *      aiocb   async io jobs
  370  *      aiol    list io job pointer - internal to aio_suspend XXX
  371  *      aiolio  list io jobs
  372  */
  373 static uma_zone_t kaio_zone, aiop_zone, aiocb_zone, aiol_zone, aiolio_zone;
  374 
  375 /* kqueue filters for aio */
  376 static struct filterops aio_filtops = {
  377         .f_isfd = 0,
  378         .f_attach = filt_aioattach,
  379         .f_detach = filt_aiodetach,
  380         .f_event = filt_aio,
  381 };
  382 static struct filterops lio_filtops = {
  383         .f_isfd = 0,
  384         .f_attach = filt_lioattach,
  385         .f_detach = filt_liodetach,
  386         .f_event = filt_lio
  387 };
  388 
  389 static eventhandler_tag exit_tag, exec_tag;
  390 
  391 TASKQUEUE_DEFINE_THREAD(aiod_bio);
  392 
  393 /*
  394  * Main operations function for use as a kernel module.
  395  */
  396 static int
  397 aio_modload(struct module *module, int cmd, void *arg)
  398 {
  399         int error = 0;
  400 
  401         switch (cmd) {
  402         case MOD_LOAD:
  403                 aio_onceonly();
  404                 break;
  405         case MOD_UNLOAD:
  406                 error = aio_unload();
  407                 break;
  408         case MOD_SHUTDOWN:
  409                 break;
  410         default:
  411                 error = EINVAL;
  412                 break;
  413         }
  414         return (error);
  415 }
  416 
  417 static moduledata_t aio_mod = {
  418         "aio",
  419         &aio_modload,
  420         NULL
  421 };
  422 
  423 static struct syscall_helper_data aio_syscalls[] = {
  424         SYSCALL_INIT_HELPER(aio_cancel),
  425         SYSCALL_INIT_HELPER(aio_error),
  426         SYSCALL_INIT_HELPER(aio_fsync),
  427         SYSCALL_INIT_HELPER(aio_read),
  428         SYSCALL_INIT_HELPER(aio_return),
  429         SYSCALL_INIT_HELPER(aio_suspend),
  430         SYSCALL_INIT_HELPER(aio_waitcomplete),
  431         SYSCALL_INIT_HELPER(aio_write),
  432         SYSCALL_INIT_HELPER(lio_listio),
  433         SYSCALL_INIT_HELPER(oaio_read),
  434         SYSCALL_INIT_HELPER(oaio_write),
  435         SYSCALL_INIT_HELPER(olio_listio),
  436         SYSCALL_INIT_LAST
  437 };
  438 
  439 #ifdef COMPAT_FREEBSD32
  440 #include <sys/mount.h>
  441 #include <sys/socket.h>
  442 #include <compat/freebsd32/freebsd32.h>
  443 #include <compat/freebsd32/freebsd32_proto.h>
  444 #include <compat/freebsd32/freebsd32_signal.h>
  445 #include <compat/freebsd32/freebsd32_syscall.h>
  446 #include <compat/freebsd32/freebsd32_util.h>
  447 
  448 static struct syscall_helper_data aio32_syscalls[] = {
  449         SYSCALL32_INIT_HELPER(freebsd32_aio_return),
  450         SYSCALL32_INIT_HELPER(freebsd32_aio_suspend),
  451         SYSCALL32_INIT_HELPER(freebsd32_aio_cancel),
  452         SYSCALL32_INIT_HELPER(freebsd32_aio_error),
  453         SYSCALL32_INIT_HELPER(freebsd32_aio_fsync),
  454         SYSCALL32_INIT_HELPER(freebsd32_aio_read),
  455         SYSCALL32_INIT_HELPER(freebsd32_aio_write),
  456         SYSCALL32_INIT_HELPER(freebsd32_aio_waitcomplete),
  457         SYSCALL32_INIT_HELPER(freebsd32_lio_listio),
  458         SYSCALL32_INIT_HELPER(freebsd32_oaio_read),
  459         SYSCALL32_INIT_HELPER(freebsd32_oaio_write),
  460         SYSCALL32_INIT_HELPER(freebsd32_olio_listio),
  461         SYSCALL_INIT_LAST
  462 };
  463 #endif
  464 
  465 DECLARE_MODULE(aio, aio_mod,
  466         SI_SUB_VFS, SI_ORDER_ANY);
  467 MODULE_VERSION(aio, 1);
  468 
  469 /*
  470  * Startup initialization
  471  */
  472 static int
  473 aio_onceonly(void)
  474 {
  475         int error;
  476 
  477         /* XXX: should probably just use so->callback */
  478         aio_swake = &aio_swake_cb;
  479         exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
  480             EVENTHANDLER_PRI_ANY);
  481         exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec, NULL,
  482             EVENTHANDLER_PRI_ANY);
  483         kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
  484         kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
  485         TAILQ_INIT(&aio_freeproc);
  486         sema_init(&aio_newproc_sem, 0, "aio_new_proc");
  487         mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
  488         mtx_init(&aio_sock_mtx, "aio_sock", NULL, MTX_DEF);
  489         TAILQ_INIT(&aio_jobs);
  490         aiod_unr = new_unrhdr(1, INT_MAX, NULL);
  491         kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
  492             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  493         aiop_zone = uma_zcreate("AIOP", sizeof(struct aiothreadlist), NULL,
  494             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  495         aiocb_zone = uma_zcreate("AIOCB", sizeof(struct aiocblist), NULL, NULL,
  496             NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  497         aiol_zone = uma_zcreate("AIOL", AIO_LISTIO_MAX*sizeof(intptr_t) , NULL,
  498             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  499         aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
  500             NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  501         aiod_timeout = AIOD_TIMEOUT_DEFAULT;
  502         aiod_lifetime = AIOD_LIFETIME_DEFAULT;
  503         jobrefid = 1;
  504         async_io_version = _POSIX_VERSION;
  505         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, AIO_LISTIO_MAX);
  506         p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
  507         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
  508 
  509         error = syscall_helper_register(aio_syscalls);
  510         if (error)
  511                 return (error);
  512 #ifdef COMPAT_FREEBSD32
  513         error = syscall32_helper_register(aio32_syscalls);
  514         if (error)
  515                 return (error);
  516 #endif
  517         return (0);
  518 }
  519 
  520 /*
  521  * Callback for unload of AIO when used as a module.
  522  */
  523 static int
  524 aio_unload(void)
  525 {
  526         int error;
  527 
  528         /*
  529          * XXX: no unloads by default, it's too dangerous.
  530          * perhaps we could do it if locked out callers and then
  531          * did an aio_proc_rundown() on each process.
  532          *
  533          * jhb: aio_proc_rundown() needs to run on curproc though,
  534          * so I don't think that would fly.
  535          */
  536         if (!unloadable)
  537                 return (EOPNOTSUPP);
  538 
  539 #ifdef COMPAT_FREEBSD32
  540         syscall32_helper_unregister(aio32_syscalls);
  541 #endif
  542         syscall_helper_unregister(aio_syscalls);
  543 
  544         error = kqueue_del_filteropts(EVFILT_AIO);
  545         if (error)
  546                 return error;
  547         error = kqueue_del_filteropts(EVFILT_LIO);
  548         if (error)
  549                 return error;
  550         async_io_version = 0;
  551         aio_swake = NULL;
  552         taskqueue_free(taskqueue_aiod_bio);
  553         delete_unrhdr(aiod_unr);
  554         uma_zdestroy(kaio_zone);
  555         uma_zdestroy(aiop_zone);
  556         uma_zdestroy(aiocb_zone);
  557         uma_zdestroy(aiol_zone);
  558         uma_zdestroy(aiolio_zone);
  559         EVENTHANDLER_DEREGISTER(process_exit, exit_tag);
  560         EVENTHANDLER_DEREGISTER(process_exec, exec_tag);
  561         mtx_destroy(&aio_job_mtx);
  562         mtx_destroy(&aio_sock_mtx);
  563         sema_destroy(&aio_newproc_sem);
  564         p31b_setcfg(CTL_P1003_1B_AIO_LISTIO_MAX, -1);
  565         p31b_setcfg(CTL_P1003_1B_AIO_MAX, -1);
  566         p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, -1);
  567         return (0);
  568 }
  569 
  570 /*
  571  * Init the per-process aioinfo structure.  The aioinfo limits are set
  572  * per-process for user limit (resource) management.
  573  */
  574 void
  575 aio_init_aioinfo(struct proc *p)
  576 {
  577         struct kaioinfo *ki;
  578 
  579         ki = uma_zalloc(kaio_zone, M_WAITOK);
  580         mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF);
  581         ki->kaio_flags = 0;
  582         ki->kaio_maxactive_count = max_aio_per_proc;
  583         ki->kaio_active_count = 0;
  584         ki->kaio_qallowed_count = max_aio_queue_per_proc;
  585         ki->kaio_count = 0;
  586         ki->kaio_ballowed_count = max_buf_aio;
  587         ki->kaio_buffer_count = 0;
  588         TAILQ_INIT(&ki->kaio_all);
  589         TAILQ_INIT(&ki->kaio_done);
  590         TAILQ_INIT(&ki->kaio_jobqueue);
  591         TAILQ_INIT(&ki->kaio_bufqueue);
  592         TAILQ_INIT(&ki->kaio_liojoblist);
  593         TAILQ_INIT(&ki->kaio_sockqueue);
  594         TAILQ_INIT(&ki->kaio_syncqueue);
  595         TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
  596         PROC_LOCK(p);
  597         if (p->p_aioinfo == NULL) {
  598                 p->p_aioinfo = ki;
  599                 PROC_UNLOCK(p);
  600         } else {
  601                 PROC_UNLOCK(p);
  602                 mtx_destroy(&ki->kaio_mtx);
  603                 uma_zfree(kaio_zone, ki);
  604         }
  605 
  606         while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
  607                 aio_newproc(NULL);
  608 }
  609 
  610 static int
  611 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
  612 {
  613         struct thread *td;
  614         int error;
  615 
  616         error = sigev_findtd(p, sigev, &td);
  617         if (error)
  618                 return (error);
  619         if (!KSI_ONQ(ksi)) {
  620                 ksiginfo_set_sigev(ksi, sigev);
  621                 ksi->ksi_code = SI_ASYNCIO;
  622                 ksi->ksi_flags |= KSI_EXT | KSI_INS;
  623                 tdsendsignal(p, td, ksi->ksi_signo, ksi);
  624         }
  625         PROC_UNLOCK(p);
  626         return (error);
  627 }
  628 
  629 /*
  630  * Free a job entry.  Wait for completion if it is currently active, but don't
  631  * delay forever.  If we delay, we return a flag that says that we have to
  632  * restart the queue scan.
  633  */
  634 static int
  635 aio_free_entry(struct aiocblist *aiocbe)
  636 {
  637         struct kaioinfo *ki;
  638         struct aioliojob *lj;
  639         struct proc *p;
  640 
  641         p = aiocbe->userproc;
  642         MPASS(curproc == p);
  643         ki = p->p_aioinfo;
  644         MPASS(ki != NULL);
  645 
  646         AIO_LOCK_ASSERT(ki, MA_OWNED);
  647         MPASS(aiocbe->jobstate == JOBST_JOBFINISHED);
  648 
  649         atomic_subtract_int(&num_queue_count, 1);
  650 
  651         ki->kaio_count--;
  652         MPASS(ki->kaio_count >= 0);
  653 
  654         TAILQ_REMOVE(&ki->kaio_done, aiocbe, plist);
  655         TAILQ_REMOVE(&ki->kaio_all, aiocbe, allist);
  656 
  657         lj = aiocbe->lio;
  658         if (lj) {
  659                 lj->lioj_count--;
  660                 lj->lioj_finished_count--;
  661 
  662                 if (lj->lioj_count == 0) {
  663                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  664                         /* lio is going away, we need to destroy any knotes */
  665                         knlist_delete(&lj->klist, curthread, 1);
  666                         PROC_LOCK(p);
  667                         sigqueue_take(&lj->lioj_ksi);
  668                         PROC_UNLOCK(p);
  669                         uma_zfree(aiolio_zone, lj);
  670                 }
  671         }
  672 
  673         /* aiocbe is going away, we need to destroy any knotes */
  674         knlist_delete(&aiocbe->klist, curthread, 1);
  675         PROC_LOCK(p);
  676         sigqueue_take(&aiocbe->ksi);
  677         PROC_UNLOCK(p);
  678 
  679         MPASS(aiocbe->bp == NULL);
  680         aiocbe->jobstate = JOBST_NULL;
  681         AIO_UNLOCK(ki);
  682 
  683         /*
  684          * The thread argument here is used to find the owning process
  685          * and is also passed to fo_close() which may pass it to various
  686          * places such as devsw close() routines.  Because of that, we
  687          * need a thread pointer from the process owning the job that is
  688          * persistent and won't disappear out from under us or move to
  689          * another process.
  690          *
  691          * Currently, all the callers of this function call it to remove
  692          * an aiocblist from the current process' job list either via a
  693          * syscall or due to the current process calling exit() or
  694          * execve().  Thus, we know that p == curproc.  We also know that
  695          * curthread can't exit since we are curthread.
  696          *
  697          * Therefore, we use curthread as the thread to pass to
  698          * knlist_delete().  This does mean that it is possible for the
  699          * thread pointer at close time to differ from the thread pointer
  700          * at open time, but this is already true of file descriptors in
  701          * a multithreaded process.
  702          */
  703         fdrop(aiocbe->fd_file, curthread);
  704         crfree(aiocbe->cred);
  705         uma_zfree(aiocb_zone, aiocbe);
  706         AIO_LOCK(ki);
  707 
  708         return (0);
  709 }
  710 
  711 static void
  712 aio_proc_rundown_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
  713 {
  714         aio_proc_rundown(arg, p);
  715 }
  716 
  717 /*
  718  * Rundown the jobs for a given process.
  719  */
  720 static void
  721 aio_proc_rundown(void *arg, struct proc *p)
  722 {
  723         struct kaioinfo *ki;
  724         struct aioliojob *lj;
  725         struct aiocblist *cbe, *cbn;
  726         struct file *fp;
  727         struct socket *so;
  728         int remove;
  729 
  730         KASSERT(curthread->td_proc == p,
  731             ("%s: called on non-curproc", __func__));
  732         ki = p->p_aioinfo;
  733         if (ki == NULL)
  734                 return;
  735 
  736         AIO_LOCK(ki);
  737         ki->kaio_flags |= KAIO_RUNDOWN;
  738 
  739 restart:
  740 
  741         /*
  742          * Try to cancel all pending requests. This code simulates
  743          * aio_cancel on all pending I/O requests.
  744          */
  745         TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
  746                 remove = 0;
  747                 mtx_lock(&aio_job_mtx);
  748                 if (cbe->jobstate == JOBST_JOBQGLOBAL) {
  749                         TAILQ_REMOVE(&aio_jobs, cbe, list);
  750                         remove = 1;
  751                 } else if (cbe->jobstate == JOBST_JOBQSOCK) {
  752                         fp = cbe->fd_file;
  753                         MPASS(fp->f_type == DTYPE_SOCKET);
  754                         so = fp->f_data;
  755                         TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
  756                         remove = 1;
  757                 } else if (cbe->jobstate == JOBST_JOBQSYNC) {
  758                         TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
  759                         remove = 1;
  760                 }
  761                 mtx_unlock(&aio_job_mtx);
  762 
  763                 if (remove) {
  764                         cbe->jobstate = JOBST_JOBFINISHED;
  765                         cbe->uaiocb._aiocb_private.status = -1;
  766                         cbe->uaiocb._aiocb_private.error = ECANCELED;
  767                         TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
  768                         aio_bio_done_notify(p, cbe, DONE_QUEUE);
  769                 }
  770         }
  771 
  772         /* Wait for all running I/O to be finished */
  773         if (TAILQ_FIRST(&ki->kaio_bufqueue) ||
  774             TAILQ_FIRST(&ki->kaio_jobqueue)) {
  775                 ki->kaio_flags |= KAIO_WAKEUP;
  776                 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
  777                 goto restart;
  778         }
  779 
  780         /* Free all completed I/O requests. */
  781         while ((cbe = TAILQ_FIRST(&ki->kaio_done)) != NULL)
  782                 aio_free_entry(cbe);
  783 
  784         while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
  785                 if (lj->lioj_count == 0) {
  786                         TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
  787                         knlist_delete(&lj->klist, curthread, 1);
  788                         PROC_LOCK(p);
  789                         sigqueue_take(&lj->lioj_ksi);
  790                         PROC_UNLOCK(p);
  791                         uma_zfree(aiolio_zone, lj);
  792                 } else {
  793                         panic("LIO job not cleaned up: C:%d, FC:%d\n",
  794                             lj->lioj_count, lj->lioj_finished_count);
  795                 }
  796         }
  797         AIO_UNLOCK(ki);
  798         taskqueue_drain(taskqueue_aiod_bio, &ki->kaio_task);
  799         mtx_destroy(&ki->kaio_mtx);
  800         uma_zfree(kaio_zone, ki);
  801         p->p_aioinfo = NULL;
  802 }
  803 
  804 /*
  805  * Select a job to run (called by an AIO daemon).
  806  */
  807 static struct aiocblist *
  808 aio_selectjob(struct aiothreadlist *aiop)
  809 {
  810         struct aiocblist *aiocbe;
  811         struct kaioinfo *ki;
  812         struct proc *userp;
  813 
  814         mtx_assert(&aio_job_mtx, MA_OWNED);
  815         TAILQ_FOREACH(aiocbe, &aio_jobs, list) {
  816                 userp = aiocbe->userproc;
  817                 ki = userp->p_aioinfo;
  818 
  819                 if (ki->kaio_active_count < ki->kaio_maxactive_count) {
  820                         TAILQ_REMOVE(&aio_jobs, aiocbe, list);
  821                         /* Account for currently active jobs. */
  822                         ki->kaio_active_count++;
  823                         aiocbe->jobstate = JOBST_JOBRUNNING;
  824                         break;
  825                 }
  826         }
  827         return (aiocbe);
  828 }
  829 
  830 /*
  831  *  Move all data to a permanent storage device, this code
  832  *  simulates fsync syscall.
  833  */
  834 static int
  835 aio_fsync_vnode(struct thread *td, struct vnode *vp)
  836 {
  837         struct mount *mp;
  838         int vfslocked;
  839         int error;
  840 
  841         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  842         if ((error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
  843                 goto drop;
  844         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
  845         if (vp->v_object != NULL) {
  846                 VM_OBJECT_LOCK(vp->v_object);
  847                 vm_object_page_clean(vp->v_object, 0, 0, 0);
  848                 VM_OBJECT_UNLOCK(vp->v_object);
  849         }
  850         error = VOP_FSYNC(vp, MNT_WAIT, td);
  851 
  852         VOP_UNLOCK(vp, 0);
  853         vn_finished_write(mp);
  854 drop:
  855         VFS_UNLOCK_GIANT(vfslocked);
  856         return (error);
  857 }
  858 
  859 /*
  860  * The AIO processing activity.  This is the code that does the I/O request for
  861  * the non-physio version of the operations.  The normal vn operations are used,
  862  * and this code should work in all instances for every type of file, including
  863  * pipes, sockets, fifos, and regular files.
  864  *
  865  * XXX I don't think it works well for socket, pipe, and fifo.
  866  */
  867 static void
  868 aio_process(struct aiocblist *aiocbe)
  869 {
  870         struct ucred *td_savedcred;
  871         struct thread *td;
  872         struct aiocb *cb;
  873         struct file *fp;
  874         struct socket *so;
  875         struct uio auio;
  876         struct iovec aiov;
  877         int cnt;
  878         int error;
  879         int oublock_st, oublock_end;
  880         int inblock_st, inblock_end;
  881 
  882         td = curthread;
  883         td_savedcred = td->td_ucred;
  884         td->td_ucred = aiocbe->cred;
  885         cb = &aiocbe->uaiocb;
  886         fp = aiocbe->fd_file;
  887 
  888         if (cb->aio_lio_opcode == LIO_SYNC) {
  889                 error = 0;
  890                 cnt = 0;
  891                 if (fp->f_vnode != NULL)
  892                         error = aio_fsync_vnode(td, fp->f_vnode);
  893                 cb->_aiocb_private.error = error;
  894                 cb->_aiocb_private.status = 0;
  895                 td->td_ucred = td_savedcred;
  896                 return;
  897         }
  898 
  899         aiov.iov_base = (void *)(uintptr_t)cb->aio_buf;
  900         aiov.iov_len = cb->aio_nbytes;
  901 
  902         auio.uio_iov = &aiov;
  903         auio.uio_iovcnt = 1;
  904         auio.uio_offset = cb->aio_offset;
  905         auio.uio_resid = cb->aio_nbytes;
  906         cnt = cb->aio_nbytes;
  907         auio.uio_segflg = UIO_USERSPACE;
  908         auio.uio_td = td;
  909 
  910         inblock_st = td->td_ru.ru_inblock;
  911         oublock_st = td->td_ru.ru_oublock;
  912         /*
  913          * aio_aqueue() acquires a reference to the file that is
  914          * released in aio_free_entry().
  915          */
  916         if (cb->aio_lio_opcode == LIO_READ) {
  917                 auio.uio_rw = UIO_READ;
  918                 if (auio.uio_resid == 0)
  919                         error = 0;
  920                 else
  921                         error = fo_read(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  922         } else {
  923                 if (fp->f_type == DTYPE_VNODE)
  924                         bwillwrite();
  925                 auio.uio_rw = UIO_WRITE;
  926                 error = fo_write(fp, &auio, fp->f_cred, FOF_OFFSET, td);
  927         }
  928         inblock_end = td->td_ru.ru_inblock;
  929         oublock_end = td->td_ru.ru_oublock;
  930 
  931         aiocbe->inputcharge = inblock_end - inblock_st;
  932         aiocbe->outputcharge = oublock_end - oublock_st;
  933 
  934         if ((error) && (auio.uio_resid != cnt)) {
  935                 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
  936                         error = 0;
  937                 if ((error == EPIPE) && (cb->aio_lio_opcode == LIO_WRITE)) {
  938                         int sigpipe = 1;
  939                         if (fp->f_type == DTYPE_SOCKET) {
  940                                 so = fp->f_data;
  941                                 if (so->so_options & SO_NOSIGPIPE)
  942                                         sigpipe = 0;
  943                         }
  944                         if (sigpipe) {
  945                                 PROC_LOCK(aiocbe->userproc);
  946                                 kern_psignal(aiocbe->userproc, SIGPIPE);
  947                                 PROC_UNLOCK(aiocbe->userproc);
  948                         }
  949                 }
  950         }
  951 
  952         cnt -= auio.uio_resid;
  953         cb->_aiocb_private.error = error;
  954         cb->_aiocb_private.status = cnt;
  955         td->td_ucred = td_savedcred;
  956 }
  957 
  958 static void
  959 aio_bio_done_notify(struct proc *userp, struct aiocblist *aiocbe, int type)
  960 {
  961         struct aioliojob *lj;
  962         struct kaioinfo *ki;
  963         struct aiocblist *scb, *scbn;
  964         int lj_done;
  965 
  966         ki = userp->p_aioinfo;
  967         AIO_LOCK_ASSERT(ki, MA_OWNED);
  968         lj = aiocbe->lio;
  969         lj_done = 0;
  970         if (lj) {
  971                 lj->lioj_finished_count++;
  972                 if (lj->lioj_count == lj->lioj_finished_count)
  973                         lj_done = 1;
  974         }
  975         if (type == DONE_QUEUE) {
  976                 aiocbe->jobflags |= AIOCBLIST_DONE;
  977         } else {
  978                 aiocbe->jobflags |= AIOCBLIST_BUFDONE;
  979         }
  980         TAILQ_INSERT_TAIL(&ki->kaio_done, aiocbe, plist);
  981         aiocbe->jobstate = JOBST_JOBFINISHED;
  982 
  983         if (ki->kaio_flags & KAIO_RUNDOWN)
  984                 goto notification_done;
  985 
  986         if (aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
  987             aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
  988                 aio_sendsig(userp, &aiocbe->uaiocb.aio_sigevent, &aiocbe->ksi);
  989 
  990         KNOTE_LOCKED(&aiocbe->klist, 1);
  991 
  992         if (lj_done) {
  993                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
  994                         lj->lioj_flags |= LIOJ_KEVENT_POSTED;
  995                         KNOTE_LOCKED(&lj->klist, 1);
  996                 }
  997                 if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
  998                     == LIOJ_SIGNAL
  999                     && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 1000                         lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 1001                         aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi);
 1002                         lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 1003                 }
 1004         }
 1005 
 1006 notification_done:
 1007         if (aiocbe->jobflags & AIOCBLIST_CHECKSYNC) {
 1008                 TAILQ_FOREACH_SAFE(scb, &ki->kaio_syncqueue, list, scbn) {
 1009                         if (aiocbe->fd_file == scb->fd_file &&
 1010                             aiocbe->seqno < scb->seqno) {
 1011                                 if (--scb->pending == 0) {
 1012                                         mtx_lock(&aio_job_mtx);
 1013                                         scb->jobstate = JOBST_JOBQGLOBAL;
 1014                                         TAILQ_REMOVE(&ki->kaio_syncqueue, scb, list);
 1015                                         TAILQ_INSERT_TAIL(&aio_jobs, scb, list);
 1016                                         aio_kick_nowait(userp);
 1017                                         mtx_unlock(&aio_job_mtx);
 1018                                 }
 1019                         }
 1020                 }
 1021         }
 1022         if (ki->kaio_flags & KAIO_WAKEUP) {
 1023                 ki->kaio_flags &= ~KAIO_WAKEUP;
 1024                 wakeup(&userp->p_aioinfo);
 1025         }
 1026 }
 1027 
 1028 /*
 1029  * The AIO daemon, most of the actual work is done in aio_process,
 1030  * but the setup (and address space mgmt) is done in this routine.
 1031  */
 1032 static void
 1033 aio_daemon(void *_id)
 1034 {
 1035         struct aiocblist *aiocbe;
 1036         struct aiothreadlist *aiop;
 1037         struct kaioinfo *ki;
 1038         struct proc *curcp, *mycp, *userp;
 1039         struct vmspace *myvm, *tmpvm;
 1040         struct thread *td = curthread;
 1041         int id = (intptr_t)_id;
 1042 
 1043         /*
 1044          * Local copies of curproc (cp) and vmspace (myvm)
 1045          */
 1046         mycp = td->td_proc;
 1047         myvm = mycp->p_vmspace;
 1048 
 1049         KASSERT(mycp->p_textvp == NULL, ("kthread has a textvp"));
 1050 
 1051         /*
 1052          * Allocate and ready the aio control info.  There is one aiop structure
 1053          * per daemon.
 1054          */
 1055         aiop = uma_zalloc(aiop_zone, M_WAITOK);
 1056         aiop->aiothread = td;
 1057         aiop->aiothreadflags = 0;
 1058 
 1059         /* The daemon resides in its own pgrp. */
 1060         sys_setsid(td, NULL);
 1061 
 1062         /*
 1063          * Wakeup parent process.  (Parent sleeps to keep from blasting away
 1064          * and creating too many daemons.)
 1065          */
 1066         sema_post(&aio_newproc_sem);
 1067 
 1068         mtx_lock(&aio_job_mtx);
 1069         for (;;) {
 1070                 /*
 1071                  * curcp is the current daemon process context.
 1072                  * userp is the current user process context.
 1073                  */
 1074                 curcp = mycp;
 1075 
 1076                 /*
 1077                  * Take daemon off of free queue
 1078                  */
 1079                 if (aiop->aiothreadflags & AIOP_FREE) {
 1080                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1081                         aiop->aiothreadflags &= ~AIOP_FREE;
 1082                 }
 1083 
 1084                 /*
 1085                  * Check for jobs.
 1086                  */
 1087                 while ((aiocbe = aio_selectjob(aiop)) != NULL) {
 1088                         mtx_unlock(&aio_job_mtx);
 1089                         userp = aiocbe->userproc;
 1090 
 1091                         /*
 1092                          * Connect to process address space for user program.
 1093                          */
 1094                         if (userp != curcp) {
 1095                                 /*
 1096                                  * Save the current address space that we are
 1097                                  * connected to.
 1098                                  */
 1099                                 tmpvm = mycp->p_vmspace;
 1100 
 1101                                 /*
 1102                                  * Point to the new user address space, and
 1103                                  * refer to it.
 1104                                  */
 1105                                 mycp->p_vmspace = userp->p_vmspace;
 1106                                 atomic_add_int(&mycp->p_vmspace->vm_refcnt, 1);
 1107 
 1108                                 /* Activate the new mapping. */
 1109                                 pmap_activate(FIRST_THREAD_IN_PROC(mycp));
 1110 
 1111                                 /*
 1112                                  * If the old address space wasn't the daemons
 1113                                  * own address space, then we need to remove the
 1114                                  * daemon's reference from the other process
 1115                                  * that it was acting on behalf of.
 1116                                  */
 1117                                 if (tmpvm != myvm) {
 1118                                         vmspace_free(tmpvm);
 1119                                 }
 1120                                 curcp = userp;
 1121                         }
 1122 
 1123                         ki = userp->p_aioinfo;
 1124 
 1125                         /* Do the I/O function. */
 1126                         aio_process(aiocbe);
 1127 
 1128                         mtx_lock(&aio_job_mtx);
 1129                         /* Decrement the active job count. */
 1130                         ki->kaio_active_count--;
 1131                         mtx_unlock(&aio_job_mtx);
 1132 
 1133                         AIO_LOCK(ki);
 1134                         TAILQ_REMOVE(&ki->kaio_jobqueue, aiocbe, plist);
 1135                         aio_bio_done_notify(userp, aiocbe, DONE_QUEUE);
 1136                         AIO_UNLOCK(ki);
 1137 
 1138                         mtx_lock(&aio_job_mtx);
 1139                 }
 1140 
 1141                 /*
 1142                  * Disconnect from user address space.
 1143                  */
 1144                 if (curcp != mycp) {
 1145 
 1146                         mtx_unlock(&aio_job_mtx);
 1147 
 1148                         /* Get the user address space to disconnect from. */
 1149                         tmpvm = mycp->p_vmspace;
 1150 
 1151                         /* Get original address space for daemon. */
 1152                         mycp->p_vmspace = myvm;
 1153 
 1154                         /* Activate the daemon's address space. */
 1155                         pmap_activate(FIRST_THREAD_IN_PROC(mycp));
 1156 #ifdef DIAGNOSTIC
 1157                         if (tmpvm == myvm) {
 1158                                 printf("AIOD: vmspace problem -- %d\n",
 1159                                     mycp->p_pid);
 1160                         }
 1161 #endif
 1162                         /* Remove our vmspace reference. */
 1163                         vmspace_free(tmpvm);
 1164 
 1165                         curcp = mycp;
 1166 
 1167                         mtx_lock(&aio_job_mtx);
 1168                         /*
 1169                          * We have to restart to avoid race, we only sleep if
 1170                          * no job can be selected, that should be
 1171                          * curcp == mycp.
 1172                          */
 1173                         continue;
 1174                 }
 1175 
 1176                 mtx_assert(&aio_job_mtx, MA_OWNED);
 1177 
 1178                 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
 1179                 aiop->aiothreadflags |= AIOP_FREE;
 1180 
 1181                 /*
 1182                  * If daemon is inactive for a long time, allow it to exit,
 1183                  * thereby freeing resources.
 1184                  */
 1185                 if (msleep(aiop->aiothread, &aio_job_mtx, PRIBIO, "aiordy",
 1186                     aiod_lifetime)) {
 1187                         if (TAILQ_EMPTY(&aio_jobs)) {
 1188                                 if ((aiop->aiothreadflags & AIOP_FREE) &&
 1189                                     (num_aio_procs > target_aio_procs)) {
 1190                                         TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1191                                         num_aio_procs--;
 1192                                         mtx_unlock(&aio_job_mtx);
 1193                                         uma_zfree(aiop_zone, aiop);
 1194                                         free_unr(aiod_unr, id);
 1195 #ifdef DIAGNOSTIC
 1196                                         if (mycp->p_vmspace->vm_refcnt <= 1) {
 1197                                                 printf("AIOD: bad vm refcnt for"
 1198                                                     " exiting daemon: %d\n",
 1199                                                     mycp->p_vmspace->vm_refcnt);
 1200                                         }
 1201 #endif
 1202                                         kproc_exit(0);
 1203                                 }
 1204                         }
 1205                 }
 1206         }
 1207         mtx_unlock(&aio_job_mtx);
 1208         panic("shouldn't be here\n");
 1209 }
 1210 
 1211 /*
 1212  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
 1213  * AIO daemon modifies its environment itself.
 1214  */
 1215 static int
 1216 aio_newproc(int *start)
 1217 {
 1218         int error;
 1219         struct proc *p;
 1220         int id;
 1221 
 1222         id = alloc_unr(aiod_unr);
 1223         error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
 1224                 RFNOWAIT, 0, "aiod%d", id);
 1225         if (error == 0) {
 1226                 /*
 1227                  * Wait until daemon is started.
 1228                  */
 1229                 sema_wait(&aio_newproc_sem);
 1230                 mtx_lock(&aio_job_mtx);
 1231                 num_aio_procs++;
 1232                 if (start != NULL)
 1233                         (*start)--;
 1234                 mtx_unlock(&aio_job_mtx);
 1235         } else {
 1236                 free_unr(aiod_unr, id);
 1237         }
 1238         return (error);
 1239 }
 1240 
 1241 /*
 1242  * Try the high-performance, low-overhead physio method for eligible
 1243  * VCHR devices.  This method doesn't use an aio helper thread, and
 1244  * thus has very low overhead.
 1245  *
 1246  * Assumes that the caller, aio_aqueue(), has incremented the file
 1247  * structure's reference count, preventing its deallocation for the
 1248  * duration of this call.
 1249  */
 1250 static int
 1251 aio_qphysio(struct proc *p, struct aiocblist *aiocbe)
 1252 {
 1253         struct aiocb *cb;
 1254         struct file *fp;
 1255         struct buf *bp;
 1256         struct vnode *vp;
 1257         struct cdevsw *csw;
 1258         struct cdev *dev;
 1259         struct kaioinfo *ki;
 1260         struct aioliojob *lj;
 1261         int error, ref;
 1262 
 1263         cb = &aiocbe->uaiocb;
 1264         fp = aiocbe->fd_file;
 1265 
 1266         if (fp->f_type != DTYPE_VNODE)
 1267                 return (-1);
 1268 
 1269         vp = fp->f_vnode;
 1270 
 1271         /*
 1272          * If its not a disk, we don't want to return a positive error.
 1273          * It causes the aio code to not fall through to try the thread
 1274          * way when you're talking to a regular file.
 1275          */
 1276         if (!vn_isdisk(vp, &error)) {
 1277                 if (error == ENOTBLK)
 1278                         return (-1);
 1279                 else
 1280                         return (error);
 1281         }
 1282 
 1283         if (vp->v_bufobj.bo_bsize == 0)
 1284                 return (-1);
 1285 
 1286         if (cb->aio_nbytes % vp->v_bufobj.bo_bsize)
 1287                 return (-1);
 1288 
 1289         if (cb->aio_nbytes >
 1290             MAXPHYS - (((vm_offset_t) cb->aio_buf) & PAGE_MASK))
 1291                 return (-1);
 1292 
 1293         ki = p->p_aioinfo;
 1294         if (ki->kaio_buffer_count >= ki->kaio_ballowed_count)
 1295                 return (-1);
 1296 
 1297         ref = 0;
 1298         csw = devvn_refthread(vp, &dev, &ref);
 1299         if (csw == NULL)
 1300                 return (ENXIO);
 1301         if (cb->aio_nbytes > dev->si_iosize_max) {
 1302                 error = -1;
 1303                 goto unref;
 1304         }
 1305 
 1306         /* Create and build a buffer header for a transfer. */
 1307         bp = (struct buf *)getpbuf(NULL);
 1308         BUF_KERNPROC(bp);
 1309 
 1310         AIO_LOCK(ki);
 1311         ki->kaio_count++;
 1312         ki->kaio_buffer_count++;
 1313         lj = aiocbe->lio;
 1314         if (lj)
 1315                 lj->lioj_count++;
 1316         AIO_UNLOCK(ki);
 1317 
 1318         /*
 1319          * Get a copy of the kva from the physical buffer.
 1320          */
 1321         error = 0;
 1322 
 1323         bp->b_bcount = cb->aio_nbytes;
 1324         bp->b_bufsize = cb->aio_nbytes;
 1325         bp->b_iodone = aio_physwakeup;
 1326         bp->b_saveaddr = bp->b_data;
 1327         bp->b_data = (void *)(uintptr_t)cb->aio_buf;
 1328         bp->b_offset = cb->aio_offset;
 1329         bp->b_iooffset = cb->aio_offset;
 1330         bp->b_blkno = btodb(cb->aio_offset);
 1331         bp->b_iocmd = cb->aio_lio_opcode == LIO_WRITE ? BIO_WRITE : BIO_READ;
 1332 
 1333         /*
 1334          * Bring buffer into kernel space.
 1335          */
 1336         if (vmapbuf(bp, 1) < 0) {
 1337                 error = EFAULT;
 1338                 goto doerror;
 1339         }
 1340 
 1341         AIO_LOCK(ki);
 1342         aiocbe->bp = bp;
 1343         bp->b_caller1 = (void *)aiocbe;
 1344         TAILQ_INSERT_TAIL(&ki->kaio_bufqueue, aiocbe, plist);
 1345         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1346         aiocbe->jobstate = JOBST_JOBQBUF;
 1347         cb->_aiocb_private.status = cb->aio_nbytes;
 1348         AIO_UNLOCK(ki);
 1349 
 1350         atomic_add_int(&num_queue_count, 1);
 1351         atomic_add_int(&num_buf_aio, 1);
 1352 
 1353         bp->b_error = 0;
 1354 
 1355         TASK_INIT(&aiocbe->biotask, 0, biohelper, aiocbe);
 1356 
 1357         /* Perform transfer. */
 1358         dev_strategy_csw(dev, csw, bp);
 1359         dev_relthread(dev, ref);
 1360         return (0);
 1361 
 1362 doerror:
 1363         AIO_LOCK(ki);
 1364         ki->kaio_count--;
 1365         ki->kaio_buffer_count--;
 1366         if (lj)
 1367                 lj->lioj_count--;
 1368         aiocbe->bp = NULL;
 1369         AIO_UNLOCK(ki);
 1370         relpbuf(bp, NULL);
 1371 unref:
 1372         dev_relthread(dev, ref);
 1373         return (error);
 1374 }
 1375 
 1376 /*
 1377  * Wake up aio requests that may be serviceable now.
 1378  */
 1379 static void
 1380 aio_swake_cb(struct socket *so, struct sockbuf *sb)
 1381 {
 1382         struct aiocblist *cb, *cbn;
 1383         int opcode;
 1384 
 1385         SOCKBUF_LOCK_ASSERT(sb);
 1386         if (sb == &so->so_snd)
 1387                 opcode = LIO_WRITE;
 1388         else
 1389                 opcode = LIO_READ;
 1390 
 1391         sb->sb_flags &= ~SB_AIO;
 1392         mtx_lock(&aio_job_mtx);
 1393         TAILQ_FOREACH_SAFE(cb, &so->so_aiojobq, list, cbn) {
 1394                 if (opcode == cb->uaiocb.aio_lio_opcode) {
 1395                         if (cb->jobstate != JOBST_JOBQSOCK)
 1396                                 panic("invalid queue value");
 1397                         /* XXX
 1398                          * We don't have actual sockets backend yet,
 1399                          * so we simply move the requests to the generic
 1400                          * file I/O backend.
 1401                          */
 1402                         TAILQ_REMOVE(&so->so_aiojobq, cb, list);
 1403                         TAILQ_INSERT_TAIL(&aio_jobs, cb, list);
 1404                         aio_kick_nowait(cb->userproc);
 1405                 }
 1406         }
 1407         mtx_unlock(&aio_job_mtx);
 1408 }
 1409 
 1410 static int
 1411 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
 1412 {
 1413 
 1414         /*
 1415          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 1416          * supported by AIO with the old sigevent structure.
 1417          */
 1418         nsig->sigev_notify = osig->sigev_notify;
 1419         switch (nsig->sigev_notify) {
 1420         case SIGEV_NONE:
 1421                 break;
 1422         case SIGEV_SIGNAL:
 1423                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 1424                 break;
 1425         case SIGEV_KEVENT:
 1426                 nsig->sigev_notify_kqueue =
 1427                     osig->__sigev_u.__sigev_notify_kqueue;
 1428                 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
 1429                 break;
 1430         default:
 1431                 return (EINVAL);
 1432         }
 1433         return (0);
 1434 }
 1435 
 1436 static int
 1437 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 1438 {
 1439         struct oaiocb *ojob;
 1440         int error;
 1441 
 1442         bzero(kjob, sizeof(struct aiocb));
 1443         error = copyin(ujob, kjob, sizeof(struct oaiocb));
 1444         if (error)
 1445                 return (error);
 1446         ojob = (struct oaiocb *)kjob;
 1447         return (convert_old_sigevent(&ojob->aio_sigevent, &kjob->aio_sigevent));
 1448 }
 1449 
 1450 static int
 1451 aiocb_copyin(struct aiocb *ujob, struct aiocb *kjob)
 1452 {
 1453 
 1454         return (copyin(ujob, kjob, sizeof(struct aiocb)));
 1455 }
 1456 
 1457 static long
 1458 aiocb_fetch_status(struct aiocb *ujob)
 1459 {
 1460 
 1461         return (fuword(&ujob->_aiocb_private.status));
 1462 }
 1463 
 1464 static long
 1465 aiocb_fetch_error(struct aiocb *ujob)
 1466 {
 1467 
 1468         return (fuword(&ujob->_aiocb_private.error));
 1469 }
 1470 
 1471 static int
 1472 aiocb_store_status(struct aiocb *ujob, long status)
 1473 {
 1474 
 1475         return (suword(&ujob->_aiocb_private.status, status));
 1476 }
 1477 
 1478 static int
 1479 aiocb_store_error(struct aiocb *ujob, long error)
 1480 {
 1481 
 1482         return (suword(&ujob->_aiocb_private.error, error));
 1483 }
 1484 
 1485 static int
 1486 aiocb_store_kernelinfo(struct aiocb *ujob, long jobref)
 1487 {
 1488 
 1489         return (suword(&ujob->_aiocb_private.kernelinfo, jobref));
 1490 }
 1491 
 1492 static int
 1493 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 1494 {
 1495 
 1496         return (suword(ujobp, (long)ujob));
 1497 }
 1498 
 1499 static struct aiocb_ops aiocb_ops = {
 1500         .copyin = aiocb_copyin,
 1501         .fetch_status = aiocb_fetch_status,
 1502         .fetch_error = aiocb_fetch_error,
 1503         .store_status = aiocb_store_status,
 1504         .store_error = aiocb_store_error,
 1505         .store_kernelinfo = aiocb_store_kernelinfo,
 1506         .store_aiocb = aiocb_store_aiocb,
 1507 };
 1508 
 1509 static struct aiocb_ops aiocb_ops_osigevent = {
 1510         .copyin = aiocb_copyin_old_sigevent,
 1511         .fetch_status = aiocb_fetch_status,
 1512         .fetch_error = aiocb_fetch_error,
 1513         .store_status = aiocb_store_status,
 1514         .store_error = aiocb_store_error,
 1515         .store_kernelinfo = aiocb_store_kernelinfo,
 1516         .store_aiocb = aiocb_store_aiocb,
 1517 };
 1518 
 1519 /*
 1520  * Queue a new AIO request.  Choosing either the threaded or direct physio VCHR
 1521  * technique is done in this code.
 1522  */
 1523 int
 1524 aio_aqueue(struct thread *td, struct aiocb *job, struct aioliojob *lj,
 1525         int type, struct aiocb_ops *ops)
 1526 {
 1527         struct proc *p = td->td_proc;
 1528         struct file *fp;
 1529         struct socket *so;
 1530         struct aiocblist *aiocbe, *cb;
 1531         struct kaioinfo *ki;
 1532         struct kevent kev;
 1533         struct sockbuf *sb;
 1534         int opcode;
 1535         int error;
 1536         int fd, kqfd;
 1537         int jid;
 1538         u_short evflags;
 1539 
 1540         if (p->p_aioinfo == NULL)
 1541                 aio_init_aioinfo(p);
 1542 
 1543         ki = p->p_aioinfo;
 1544 
 1545         ops->store_status(job, -1);
 1546         ops->store_error(job, 0);
 1547         ops->store_kernelinfo(job, -1);
 1548 
 1549         if (num_queue_count >= max_queue_count ||
 1550             ki->kaio_count >= ki->kaio_qallowed_count) {
 1551                 ops->store_error(job, EAGAIN);
 1552                 return (EAGAIN);
 1553         }
 1554 
 1555         aiocbe = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
 1556         aiocbe->inputcharge = 0;
 1557         aiocbe->outputcharge = 0;
 1558         knlist_init_mtx(&aiocbe->klist, AIO_MTX(ki));
 1559 
 1560         error = ops->copyin(job, &aiocbe->uaiocb);
 1561         if (error) {
 1562                 ops->store_error(job, error);
 1563                 uma_zfree(aiocb_zone, aiocbe);
 1564                 return (error);
 1565         }
 1566 
 1567         if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
 1568             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
 1569             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
 1570             aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
 1571                 ops->store_error(job, EINVAL);
 1572                 uma_zfree(aiocb_zone, aiocbe);
 1573                 return (EINVAL);
 1574         }
 1575 
 1576         if ((aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
 1577              aiocbe->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
 1578                 !_SIG_VALID(aiocbe->uaiocb.aio_sigevent.sigev_signo)) {
 1579                 uma_zfree(aiocb_zone, aiocbe);
 1580                 return (EINVAL);
 1581         }
 1582 
 1583         ksiginfo_init(&aiocbe->ksi);
 1584 
 1585         /* Save userspace address of the job info. */
 1586         aiocbe->uuaiocb = job;
 1587 
 1588         /* Get the opcode. */
 1589         if (type != LIO_NOP)
 1590                 aiocbe->uaiocb.aio_lio_opcode = type;
 1591         opcode = aiocbe->uaiocb.aio_lio_opcode;
 1592 
 1593         /*
 1594          * Validate the opcode and fetch the file object for the specified
 1595          * file descriptor.
 1596          *
 1597          * XXXRW: Moved the opcode validation up here so that we don't
 1598          * retrieve a file descriptor without knowing what the capabiltity
 1599          * should be.
 1600          */
 1601         fd = aiocbe->uaiocb.aio_fildes;
 1602         switch (opcode) {
 1603         case LIO_WRITE:
 1604                 error = fget_write(td, fd, CAP_WRITE | CAP_SEEK, &fp);
 1605                 break;
 1606         case LIO_READ:
 1607                 error = fget_read(td, fd, CAP_READ | CAP_SEEK, &fp);
 1608                 break;
 1609         case LIO_SYNC:
 1610                 error = fget(td, fd, CAP_FSYNC, &fp);
 1611                 break;
 1612         case LIO_NOP:
 1613                 error = fget(td, fd, 0, &fp);
 1614                 break;
 1615         default:
 1616                 error = EINVAL;
 1617         }
 1618         if (error) {
 1619                 uma_zfree(aiocb_zone, aiocbe);
 1620                 ops->store_error(job, error);
 1621                 return (error);
 1622         }
 1623 
 1624         if (opcode == LIO_SYNC && fp->f_vnode == NULL) {
 1625                 error = EINVAL;
 1626                 goto aqueue_fail;
 1627         }
 1628 
 1629         if (opcode != LIO_SYNC && aiocbe->uaiocb.aio_offset == -1LL) {
 1630                 error = EINVAL;
 1631                 goto aqueue_fail;
 1632         }
 1633 
 1634         aiocbe->fd_file = fp;
 1635 
 1636         mtx_lock(&aio_job_mtx);
 1637         jid = jobrefid++;
 1638         aiocbe->seqno = jobseqno++;
 1639         mtx_unlock(&aio_job_mtx);
 1640         error = ops->store_kernelinfo(job, jid);
 1641         if (error) {
 1642                 error = EINVAL;
 1643                 goto aqueue_fail;
 1644         }
 1645         aiocbe->uaiocb._aiocb_private.kernelinfo = (void *)(intptr_t)jid;
 1646 
 1647         if (opcode == LIO_NOP) {
 1648                 fdrop(fp, td);
 1649                 uma_zfree(aiocb_zone, aiocbe);
 1650                 return (0);
 1651         }
 1652 
 1653         if (aiocbe->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
 1654                 goto no_kqueue;
 1655         evflags = aiocbe->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
 1656         if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
 1657                 error = EINVAL;
 1658                 goto aqueue_fail;
 1659         }
 1660         kqfd = aiocbe->uaiocb.aio_sigevent.sigev_notify_kqueue;
 1661         kev.ident = (uintptr_t)aiocbe->uuaiocb;
 1662         kev.filter = EVFILT_AIO;
 1663         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
 1664         kev.data = (intptr_t)aiocbe;
 1665         kev.udata = aiocbe->uaiocb.aio_sigevent.sigev_value.sival_ptr;
 1666         error = kqfd_register(kqfd, &kev, td, 1);
 1667 aqueue_fail:
 1668         if (error) {
 1669                 fdrop(fp, td);
 1670                 uma_zfree(aiocb_zone, aiocbe);
 1671                 ops->store_error(job, error);
 1672                 goto done;
 1673         }
 1674 no_kqueue:
 1675 
 1676         ops->store_error(job, EINPROGRESS);
 1677         aiocbe->uaiocb._aiocb_private.error = EINPROGRESS;
 1678         aiocbe->userproc = p;
 1679         aiocbe->cred = crhold(td->td_ucred);
 1680         aiocbe->jobflags = 0;
 1681         aiocbe->lio = lj;
 1682 
 1683         if (opcode == LIO_SYNC)
 1684                 goto queueit;
 1685 
 1686         if (fp->f_type == DTYPE_SOCKET) {
 1687                 /*
 1688                  * Alternate queueing for socket ops: Reach down into the
 1689                  * descriptor to get the socket data.  Then check to see if the
 1690                  * socket is ready to be read or written (based on the requested
 1691                  * operation).
 1692                  *
 1693                  * If it is not ready for io, then queue the aiocbe on the
 1694                  * socket, and set the flags so we get a call when sbnotify()
 1695                  * happens.
 1696                  *
 1697                  * Note if opcode is neither LIO_WRITE nor LIO_READ we lock
 1698                  * and unlock the snd sockbuf for no reason.
 1699                  */
 1700                 so = fp->f_data;
 1701                 sb = (opcode == LIO_READ) ? &so->so_rcv : &so->so_snd;
 1702                 SOCKBUF_LOCK(sb);
 1703                 if (((opcode == LIO_READ) && (!soreadable(so))) || ((opcode ==
 1704                     LIO_WRITE) && (!sowriteable(so)))) {
 1705                         sb->sb_flags |= SB_AIO;
 1706 
 1707                         mtx_lock(&aio_job_mtx);
 1708                         TAILQ_INSERT_TAIL(&so->so_aiojobq, aiocbe, list);
 1709                         mtx_unlock(&aio_job_mtx);
 1710 
 1711                         AIO_LOCK(ki);
 1712                         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1713                         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1714                         aiocbe->jobstate = JOBST_JOBQSOCK;
 1715                         ki->kaio_count++;
 1716                         if (lj)
 1717                                 lj->lioj_count++;
 1718                         AIO_UNLOCK(ki);
 1719                         SOCKBUF_UNLOCK(sb);
 1720                         atomic_add_int(&num_queue_count, 1);
 1721                         error = 0;
 1722                         goto done;
 1723                 }
 1724                 SOCKBUF_UNLOCK(sb);
 1725         }
 1726 
 1727         if ((error = aio_qphysio(p, aiocbe)) == 0)
 1728                 goto done;
 1729 #if 0
 1730         if (error > 0) {
 1731                 aiocbe->uaiocb._aiocb_private.error = error;
 1732                 ops->store_error(job, error);
 1733                 goto done;
 1734         }
 1735 #endif
 1736 queueit:
 1737         /* No buffer for daemon I/O. */
 1738         aiocbe->bp = NULL;
 1739         atomic_add_int(&num_queue_count, 1);
 1740 
 1741         AIO_LOCK(ki);
 1742         ki->kaio_count++;
 1743         if (lj)
 1744                 lj->lioj_count++;
 1745         TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, aiocbe, plist);
 1746         TAILQ_INSERT_TAIL(&ki->kaio_all, aiocbe, allist);
 1747         if (opcode == LIO_SYNC) {
 1748                 TAILQ_FOREACH(cb, &ki->kaio_jobqueue, plist) {
 1749                         if (cb->fd_file == aiocbe->fd_file &&
 1750                             cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1751                             cb->seqno < aiocbe->seqno) {
 1752                                 cb->jobflags |= AIOCBLIST_CHECKSYNC;
 1753                                 aiocbe->pending++;
 1754                         }
 1755                 }
 1756                 TAILQ_FOREACH(cb, &ki->kaio_bufqueue, plist) {
 1757                         if (cb->fd_file == aiocbe->fd_file &&
 1758                             cb->uaiocb.aio_lio_opcode != LIO_SYNC &&
 1759                             cb->seqno < aiocbe->seqno) {
 1760                                 cb->jobflags |= AIOCBLIST_CHECKSYNC;
 1761                                 aiocbe->pending++;
 1762                         }
 1763                 }
 1764                 if (aiocbe->pending != 0) {
 1765                         TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, aiocbe, list);
 1766                         aiocbe->jobstate = JOBST_JOBQSYNC;
 1767                         AIO_UNLOCK(ki);
 1768                         goto done;
 1769                 }
 1770         }
 1771         mtx_lock(&aio_job_mtx);
 1772         TAILQ_INSERT_TAIL(&aio_jobs, aiocbe, list);
 1773         aiocbe->jobstate = JOBST_JOBQGLOBAL;
 1774         aio_kick_nowait(p);
 1775         mtx_unlock(&aio_job_mtx);
 1776         AIO_UNLOCK(ki);
 1777         error = 0;
 1778 done:
 1779         return (error);
 1780 }
 1781 
 1782 static void
 1783 aio_kick_nowait(struct proc *userp)
 1784 {
 1785         struct kaioinfo *ki = userp->p_aioinfo;
 1786         struct aiothreadlist *aiop;
 1787 
 1788         mtx_assert(&aio_job_mtx, MA_OWNED);
 1789         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1790                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1791                 aiop->aiothreadflags &= ~AIOP_FREE;
 1792                 wakeup(aiop->aiothread);
 1793         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1794             ((ki->kaio_active_count + num_aio_resv_start) <
 1795             ki->kaio_maxactive_count)) {
 1796                 taskqueue_enqueue(taskqueue_aiod_bio, &ki->kaio_task);
 1797         }
 1798 }
 1799 
 1800 static int
 1801 aio_kick(struct proc *userp)
 1802 {
 1803         struct kaioinfo *ki = userp->p_aioinfo;
 1804         struct aiothreadlist *aiop;
 1805         int error, ret = 0;
 1806 
 1807         mtx_assert(&aio_job_mtx, MA_OWNED);
 1808 retryproc:
 1809         if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
 1810                 TAILQ_REMOVE(&aio_freeproc, aiop, list);
 1811                 aiop->aiothreadflags &= ~AIOP_FREE;
 1812                 wakeup(aiop->aiothread);
 1813         } else if (((num_aio_resv_start + num_aio_procs) < max_aio_procs) &&
 1814             ((ki->kaio_active_count + num_aio_resv_start) <
 1815             ki->kaio_maxactive_count)) {
 1816                 num_aio_resv_start++;
 1817                 mtx_unlock(&aio_job_mtx);
 1818                 error = aio_newproc(&num_aio_resv_start);
 1819                 mtx_lock(&aio_job_mtx);
 1820                 if (error) {
 1821                         num_aio_resv_start--;
 1822                         goto retryproc;
 1823                 }
 1824         } else {
 1825                 ret = -1;
 1826         }
 1827         return (ret);
 1828 }
 1829 
 1830 static void
 1831 aio_kick_helper(void *context, int pending)
 1832 {
 1833         struct proc *userp = context;
 1834 
 1835         mtx_lock(&aio_job_mtx);
 1836         while (--pending >= 0) {
 1837                 if (aio_kick(userp))
 1838                         break;
 1839         }
 1840         mtx_unlock(&aio_job_mtx);
 1841 }
 1842 
 1843 /*
 1844  * Support the aio_return system call, as a side-effect, kernel resources are
 1845  * released.
 1846  */
 1847 static int
 1848 kern_aio_return(struct thread *td, struct aiocb *uaiocb, struct aiocb_ops *ops)
 1849 {
 1850         struct proc *p = td->td_proc;
 1851         struct aiocblist *cb;
 1852         struct kaioinfo *ki;
 1853         int status, error;
 1854 
 1855         ki = p->p_aioinfo;
 1856         if (ki == NULL)
 1857                 return (EINVAL);
 1858         AIO_LOCK(ki);
 1859         TAILQ_FOREACH(cb, &ki->kaio_done, plist) {
 1860                 if (cb->uuaiocb == uaiocb)
 1861                         break;
 1862         }
 1863         if (cb != NULL) {
 1864                 MPASS(cb->jobstate == JOBST_JOBFINISHED);
 1865                 status = cb->uaiocb._aiocb_private.status;
 1866                 error = cb->uaiocb._aiocb_private.error;
 1867                 td->td_retval[0] = status;
 1868                 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 1869                         td->td_ru.ru_oublock += cb->outputcharge;
 1870                         cb->outputcharge = 0;
 1871                 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 1872                         td->td_ru.ru_inblock += cb->inputcharge;
 1873                         cb->inputcharge = 0;
 1874                 }
 1875                 aio_free_entry(cb);
 1876                 AIO_UNLOCK(ki);
 1877                 ops->store_error(uaiocb, error);
 1878                 ops->store_status(uaiocb, status);
 1879         } else {
 1880                 error = EINVAL;
 1881                 AIO_UNLOCK(ki);
 1882         }
 1883         return (error);
 1884 }
 1885 
 1886 int
 1887 sys_aio_return(struct thread *td, struct aio_return_args *uap)
 1888 {
 1889 
 1890         return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
 1891 }
 1892 
 1893 /*
 1894  * Allow a process to wakeup when any of the I/O requests are completed.
 1895  */
 1896 static int
 1897 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
 1898     struct timespec *ts)
 1899 {
 1900         struct proc *p = td->td_proc;
 1901         struct timeval atv;
 1902         struct kaioinfo *ki;
 1903         struct aiocblist *cb, *cbfirst;
 1904         int error, i, timo;
 1905 
 1906         timo = 0;
 1907         if (ts) {
 1908                 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
 1909                         return (EINVAL);
 1910 
 1911                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 1912                 if (itimerfix(&atv))
 1913                         return (EINVAL);
 1914                 timo = tvtohz(&atv);
 1915         }
 1916 
 1917         ki = p->p_aioinfo;
 1918         if (ki == NULL)
 1919                 return (EAGAIN);
 1920 
 1921         if (njoblist == 0)
 1922                 return (0);
 1923 
 1924         AIO_LOCK(ki);
 1925         for (;;) {
 1926                 cbfirst = NULL;
 1927                 error = 0;
 1928                 TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
 1929                         for (i = 0; i < njoblist; i++) {
 1930                                 if (cb->uuaiocb == ujoblist[i]) {
 1931                                         if (cbfirst == NULL)
 1932                                                 cbfirst = cb;
 1933                                         if (cb->jobstate == JOBST_JOBFINISHED)
 1934                                                 goto RETURN;
 1935                                 }
 1936                         }
 1937                 }
 1938                 /* All tasks were finished. */
 1939                 if (cbfirst == NULL)
 1940                         break;
 1941 
 1942                 ki->kaio_flags |= KAIO_WAKEUP;
 1943                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 1944                     "aiospn", timo);
 1945                 if (error == ERESTART)
 1946                         error = EINTR;
 1947                 if (error)
 1948                         break;
 1949         }
 1950 RETURN:
 1951         AIO_UNLOCK(ki);
 1952         return (error);
 1953 }
 1954 
 1955 int
 1956 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
 1957 {
 1958         struct timespec ts, *tsp;
 1959         struct aiocb **ujoblist;
 1960         int error;
 1961 
 1962         if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
 1963                 return (EINVAL);
 1964 
 1965         if (uap->timeout) {
 1966                 /* Get timespec struct. */
 1967                 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
 1968                         return (error);
 1969                 tsp = &ts;
 1970         } else
 1971                 tsp = NULL;
 1972 
 1973         ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 1974         error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
 1975         if (error == 0)
 1976                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 1977         uma_zfree(aiol_zone, ujoblist);
 1978         return (error);
 1979 }
 1980 
 1981 /*
 1982  * aio_cancel cancels any non-physio aio operations not currently in
 1983  * progress.
 1984  */
 1985 int
 1986 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
 1987 {
 1988         struct proc *p = td->td_proc;
 1989         struct kaioinfo *ki;
 1990         struct aiocblist *cbe, *cbn;
 1991         struct file *fp;
 1992         struct socket *so;
 1993         int error;
 1994         int remove;
 1995         int cancelled = 0;
 1996         int notcancelled = 0;
 1997         struct vnode *vp;
 1998 
 1999         /* Lookup file object. */
 2000         error = fget(td, uap->fd, 0, &fp);
 2001         if (error)
 2002                 return (error);
 2003 
 2004         ki = p->p_aioinfo;
 2005         if (ki == NULL)
 2006                 goto done;
 2007 
 2008         if (fp->f_type == DTYPE_VNODE) {
 2009                 vp = fp->f_vnode;
 2010                 if (vn_isdisk(vp, &error)) {
 2011                         fdrop(fp, td);
 2012                         td->td_retval[0] = AIO_NOTCANCELED;
 2013                         return (0);
 2014                 }
 2015         }
 2016 
 2017         AIO_LOCK(ki);
 2018         TAILQ_FOREACH_SAFE(cbe, &ki->kaio_jobqueue, plist, cbn) {
 2019                 if ((uap->fd == cbe->uaiocb.aio_fildes) &&
 2020                     ((uap->aiocbp == NULL) ||
 2021                      (uap->aiocbp == cbe->uuaiocb))) {
 2022                         remove = 0;
 2023 
 2024                         mtx_lock(&aio_job_mtx);
 2025                         if (cbe->jobstate == JOBST_JOBQGLOBAL) {
 2026                                 TAILQ_REMOVE(&aio_jobs, cbe, list);
 2027                                 remove = 1;
 2028                         } else if (cbe->jobstate == JOBST_JOBQSOCK) {
 2029                                 MPASS(fp->f_type == DTYPE_SOCKET);
 2030                                 so = fp->f_data;
 2031                                 TAILQ_REMOVE(&so->so_aiojobq, cbe, list);
 2032                                 remove = 1;
 2033                         } else if (cbe->jobstate == JOBST_JOBQSYNC) {
 2034                                 TAILQ_REMOVE(&ki->kaio_syncqueue, cbe, list);
 2035                                 remove = 1;
 2036                         }
 2037                         mtx_unlock(&aio_job_mtx);
 2038 
 2039                         if (remove) {
 2040                                 TAILQ_REMOVE(&ki->kaio_jobqueue, cbe, plist);
 2041                                 cbe->uaiocb._aiocb_private.status = -1;
 2042                                 cbe->uaiocb._aiocb_private.error = ECANCELED;
 2043                                 aio_bio_done_notify(p, cbe, DONE_QUEUE);
 2044                                 cancelled++;
 2045                         } else {
 2046                                 notcancelled++;
 2047                         }
 2048                         if (uap->aiocbp != NULL)
 2049                                 break;
 2050                 }
 2051         }
 2052         AIO_UNLOCK(ki);
 2053 
 2054 done:
 2055         fdrop(fp, td);
 2056 
 2057         if (uap->aiocbp != NULL) {
 2058                 if (cancelled) {
 2059                         td->td_retval[0] = AIO_CANCELED;
 2060                         return (0);
 2061                 }
 2062         }
 2063 
 2064         if (notcancelled) {
 2065                 td->td_retval[0] = AIO_NOTCANCELED;
 2066                 return (0);
 2067         }
 2068 
 2069         if (cancelled) {
 2070                 td->td_retval[0] = AIO_CANCELED;
 2071                 return (0);
 2072         }
 2073 
 2074         td->td_retval[0] = AIO_ALLDONE;
 2075 
 2076         return (0);
 2077 }
 2078 
 2079 /*
 2080  * aio_error is implemented in the kernel level for compatibility purposes
 2081  * only.  For a user mode async implementation, it would be best to do it in
 2082  * a userland subroutine.
 2083  */
 2084 static int
 2085 kern_aio_error(struct thread *td, struct aiocb *aiocbp, struct aiocb_ops *ops)
 2086 {
 2087         struct proc *p = td->td_proc;
 2088         struct aiocblist *cb;
 2089         struct kaioinfo *ki;
 2090         int status;
 2091 
 2092         ki = p->p_aioinfo;
 2093         if (ki == NULL) {
 2094                 td->td_retval[0] = EINVAL;
 2095                 return (0);
 2096         }
 2097 
 2098         AIO_LOCK(ki);
 2099         TAILQ_FOREACH(cb, &ki->kaio_all, allist) {
 2100                 if (cb->uuaiocb == aiocbp) {
 2101                         if (cb->jobstate == JOBST_JOBFINISHED)
 2102                                 td->td_retval[0] =
 2103                                         cb->uaiocb._aiocb_private.error;
 2104                         else
 2105                                 td->td_retval[0] = EINPROGRESS;
 2106                         AIO_UNLOCK(ki);
 2107                         return (0);
 2108                 }
 2109         }
 2110         AIO_UNLOCK(ki);
 2111 
 2112         /*
 2113          * Hack for failure of aio_aqueue.
 2114          */
 2115         status = ops->fetch_status(aiocbp);
 2116         if (status == -1) {
 2117                 td->td_retval[0] = ops->fetch_error(aiocbp);
 2118                 return (0);
 2119         }
 2120 
 2121         td->td_retval[0] = EINVAL;
 2122         return (0);
 2123 }
 2124 
 2125 int
 2126 sys_aio_error(struct thread *td, struct aio_error_args *uap)
 2127 {
 2128 
 2129         return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
 2130 }
 2131 
 2132 /* syscall - asynchronous read from a file (REALTIME) */
 2133 int
 2134 sys_oaio_read(struct thread *td, struct oaio_read_args *uap)
 2135 {
 2136 
 2137         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2138             &aiocb_ops_osigevent));
 2139 }
 2140 
 2141 int
 2142 sys_aio_read(struct thread *td, struct aio_read_args *uap)
 2143 {
 2144 
 2145         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
 2146 }
 2147 
 2148 /* syscall - asynchronous write to a file (REALTIME) */
 2149 int
 2150 sys_oaio_write(struct thread *td, struct oaio_write_args *uap)
 2151 {
 2152 
 2153         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2154             &aiocb_ops_osigevent));
 2155 }
 2156 
 2157 int
 2158 sys_aio_write(struct thread *td, struct aio_write_args *uap)
 2159 {
 2160 
 2161         return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
 2162 }
 2163 
 2164 static int
 2165 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
 2166     struct aiocb **acb_list, int nent, struct sigevent *sig,
 2167     struct aiocb_ops *ops)
 2168 {
 2169         struct proc *p = td->td_proc;
 2170         struct aiocb *iocb;
 2171         struct kaioinfo *ki;
 2172         struct aioliojob *lj;
 2173         struct kevent kev;
 2174         int error;
 2175         int nerror;
 2176         int i;
 2177 
 2178         if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
 2179                 return (EINVAL);
 2180 
 2181         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2182                 return (EINVAL);
 2183 
 2184         if (p->p_aioinfo == NULL)
 2185                 aio_init_aioinfo(p);
 2186 
 2187         ki = p->p_aioinfo;
 2188 
 2189         lj = uma_zalloc(aiolio_zone, M_WAITOK);
 2190         lj->lioj_flags = 0;
 2191         lj->lioj_count = 0;
 2192         lj->lioj_finished_count = 0;
 2193         knlist_init_mtx(&lj->klist, AIO_MTX(ki));
 2194         ksiginfo_init(&lj->lioj_ksi);
 2195 
 2196         /*
 2197          * Setup signal.
 2198          */
 2199         if (sig && (mode == LIO_NOWAIT)) {
 2200                 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
 2201                 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2202                         /* Assume only new style KEVENT */
 2203                         kev.filter = EVFILT_LIO;
 2204                         kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
 2205                         kev.ident = (uintptr_t)uacb_list; /* something unique */
 2206                         kev.data = (intptr_t)lj;
 2207                         /* pass user defined sigval data */
 2208                         kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
 2209                         error = kqfd_register(
 2210                             lj->lioj_signal.sigev_notify_kqueue, &kev, td, 1);
 2211                         if (error) {
 2212                                 uma_zfree(aiolio_zone, lj);
 2213                                 return (error);
 2214                         }
 2215                 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
 2216                         ;
 2217                 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2218                            lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
 2219                                 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
 2220                                         uma_zfree(aiolio_zone, lj);
 2221                                         return EINVAL;
 2222                                 }
 2223                                 lj->lioj_flags |= LIOJ_SIGNAL;
 2224                 } else {
 2225                         uma_zfree(aiolio_zone, lj);
 2226                         return EINVAL;
 2227                 }
 2228         }
 2229 
 2230         AIO_LOCK(ki);
 2231         TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
 2232         /*
 2233          * Add extra aiocb count to avoid the lio to be freed
 2234          * by other threads doing aio_waitcomplete or aio_return,
 2235          * and prevent event from being sent until we have queued
 2236          * all tasks.
 2237          */
 2238         lj->lioj_count = 1;
 2239         AIO_UNLOCK(ki);
 2240 
 2241         /*
 2242          * Get pointers to the list of I/O requests.
 2243          */
 2244         nerror = 0;
 2245         for (i = 0; i < nent; i++) {
 2246                 iocb = acb_list[i];
 2247                 if (iocb != NULL) {
 2248                         error = aio_aqueue(td, iocb, lj, LIO_NOP, ops);
 2249                         if (error != 0)
 2250                                 nerror++;
 2251                 }
 2252         }
 2253 
 2254         error = 0;
 2255         AIO_LOCK(ki);
 2256         if (mode == LIO_WAIT) {
 2257                 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
 2258                         ki->kaio_flags |= KAIO_WAKEUP;
 2259                         error = msleep(&p->p_aioinfo, AIO_MTX(ki),
 2260                             PRIBIO | PCATCH, "aiospn", 0);
 2261                         if (error == ERESTART)
 2262                                 error = EINTR;
 2263                         if (error)
 2264                                 break;
 2265                 }
 2266         } else {
 2267                 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
 2268                         if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
 2269                                 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
 2270                                 KNOTE_LOCKED(&lj->klist, 1);
 2271                         }
 2272                         if ((lj->lioj_flags & (LIOJ_SIGNAL|LIOJ_SIGNAL_POSTED))
 2273                             == LIOJ_SIGNAL
 2274                             && (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
 2275                             lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
 2276                                 aio_sendsig(p, &lj->lioj_signal,
 2277                                             &lj->lioj_ksi);
 2278                                 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
 2279                         }
 2280                 }
 2281         }
 2282         lj->lioj_count--;
 2283         if (lj->lioj_count == 0) {
 2284                 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
 2285                 knlist_delete(&lj->klist, curthread, 1);
 2286                 PROC_LOCK(p);
 2287                 sigqueue_take(&lj->lioj_ksi);
 2288                 PROC_UNLOCK(p);
 2289                 AIO_UNLOCK(ki);
 2290                 uma_zfree(aiolio_zone, lj);
 2291         } else
 2292                 AIO_UNLOCK(ki);
 2293 
 2294         if (nerror)
 2295                 return (EIO);
 2296         return (error);
 2297 }
 2298 
 2299 /* syscall - list directed I/O (REALTIME) */
 2300 int
 2301 sys_olio_listio(struct thread *td, struct olio_listio_args *uap)
 2302 {
 2303         struct aiocb **acb_list;
 2304         struct sigevent *sigp, sig;
 2305         struct osigevent osig;
 2306         int error, nent;
 2307 
 2308         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2309                 return (EINVAL);
 2310 
 2311         nent = uap->nent;
 2312         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2313                 return (EINVAL);
 2314 
 2315         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2316                 error = copyin(uap->sig, &osig, sizeof(osig));
 2317                 if (error)
 2318                         return (error);
 2319                 error = convert_old_sigevent(&osig, &sig);
 2320                 if (error)
 2321                         return (error);
 2322                 sigp = &sig;
 2323         } else
 2324                 sigp = NULL;
 2325 
 2326         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2327         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2328         if (error == 0)
 2329                 error = kern_lio_listio(td, uap->mode,
 2330                     (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2331                     &aiocb_ops_osigevent);
 2332         free(acb_list, M_LIO);
 2333         return (error);
 2334 }
 2335 
 2336 /* syscall - list directed I/O (REALTIME) */
 2337 int
 2338 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
 2339 {
 2340         struct aiocb **acb_list;
 2341         struct sigevent *sigp, sig;
 2342         int error, nent;
 2343 
 2344         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2345                 return (EINVAL);
 2346 
 2347         nent = uap->nent;
 2348         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2349                 return (EINVAL);
 2350 
 2351         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2352                 error = copyin(uap->sig, &sig, sizeof(sig));
 2353                 if (error)
 2354                         return (error);
 2355                 sigp = &sig;
 2356         } else
 2357                 sigp = NULL;
 2358 
 2359         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2360         error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
 2361         if (error == 0)
 2362                 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
 2363                     nent, sigp, &aiocb_ops);
 2364         free(acb_list, M_LIO);
 2365         return (error);
 2366 }
 2367 
 2368 /*
 2369  * Called from interrupt thread for physio, we should return as fast
 2370  * as possible, so we schedule a biohelper task.
 2371  */
 2372 static void
 2373 aio_physwakeup(struct buf *bp)
 2374 {
 2375         struct aiocblist *aiocbe;
 2376 
 2377         aiocbe = (struct aiocblist *)bp->b_caller1;
 2378         taskqueue_enqueue(taskqueue_aiod_bio, &aiocbe->biotask);
 2379 }
 2380 
 2381 /*
 2382  * Task routine to perform heavy tasks, process wakeup, and signals.
 2383  */
 2384 static void
 2385 biohelper(void *context, int pending)
 2386 {
 2387         struct aiocblist *aiocbe = context;
 2388         struct buf *bp;
 2389         struct proc *userp;
 2390         struct kaioinfo *ki;
 2391         int nblks;
 2392 
 2393         bp = aiocbe->bp;
 2394         userp = aiocbe->userproc;
 2395         ki = userp->p_aioinfo;
 2396         AIO_LOCK(ki);
 2397         aiocbe->uaiocb._aiocb_private.status -= bp->b_resid;
 2398         aiocbe->uaiocb._aiocb_private.error = 0;
 2399         if (bp->b_ioflags & BIO_ERROR)
 2400                 aiocbe->uaiocb._aiocb_private.error = bp->b_error;
 2401         nblks = btodb(aiocbe->uaiocb.aio_nbytes);
 2402         if (aiocbe->uaiocb.aio_lio_opcode == LIO_WRITE)
 2403                 aiocbe->outputcharge += nblks;
 2404         else
 2405                 aiocbe->inputcharge += nblks;
 2406         aiocbe->bp = NULL;
 2407         TAILQ_REMOVE(&userp->p_aioinfo->kaio_bufqueue, aiocbe, plist);
 2408         ki->kaio_buffer_count--;
 2409         aio_bio_done_notify(userp, aiocbe, DONE_BUF);
 2410         AIO_UNLOCK(ki);
 2411 
 2412         /* Release mapping into kernel space. */
 2413         vunmapbuf(bp);
 2414         relpbuf(bp, NULL);
 2415         atomic_subtract_int(&num_buf_aio, 1);
 2416 }
 2417 
 2418 /* syscall - wait for the next completion of an aio request */
 2419 static int
 2420 kern_aio_waitcomplete(struct thread *td, struct aiocb **aiocbp,
 2421     struct timespec *ts, struct aiocb_ops *ops)
 2422 {
 2423         struct proc *p = td->td_proc;
 2424         struct timeval atv;
 2425         struct kaioinfo *ki;
 2426         struct aiocblist *cb;
 2427         struct aiocb *uuaiocb;
 2428         int error, status, timo;
 2429 
 2430         ops->store_aiocb(aiocbp, NULL);
 2431 
 2432         timo = 0;
 2433         if (ts) {
 2434                 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
 2435                         return (EINVAL);
 2436 
 2437                 TIMESPEC_TO_TIMEVAL(&atv, ts);
 2438                 if (itimerfix(&atv))
 2439                         return (EINVAL);
 2440                 timo = tvtohz(&atv);
 2441         }
 2442 
 2443         if (p->p_aioinfo == NULL)
 2444                 aio_init_aioinfo(p);
 2445         ki = p->p_aioinfo;
 2446 
 2447         error = 0;
 2448         cb = NULL;
 2449         AIO_LOCK(ki);
 2450         while ((cb = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
 2451                 ki->kaio_flags |= KAIO_WAKEUP;
 2452                 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
 2453                     "aiowc", timo);
 2454                 if (timo && error == ERESTART)
 2455                         error = EINTR;
 2456                 if (error)
 2457                         break;
 2458         }
 2459 
 2460         if (cb != NULL) {
 2461                 MPASS(cb->jobstate == JOBST_JOBFINISHED);
 2462                 uuaiocb = cb->uuaiocb;
 2463                 status = cb->uaiocb._aiocb_private.status;
 2464                 error = cb->uaiocb._aiocb_private.error;
 2465                 td->td_retval[0] = status;
 2466                 if (cb->uaiocb.aio_lio_opcode == LIO_WRITE) {
 2467                         td->td_ru.ru_oublock += cb->outputcharge;
 2468                         cb->outputcharge = 0;
 2469                 } else if (cb->uaiocb.aio_lio_opcode == LIO_READ) {
 2470                         td->td_ru.ru_inblock += cb->inputcharge;
 2471                         cb->inputcharge = 0;
 2472                 }
 2473                 aio_free_entry(cb);
 2474                 AIO_UNLOCK(ki);
 2475                 ops->store_aiocb(aiocbp, uuaiocb);
 2476                 ops->store_error(uuaiocb, error);
 2477                 ops->store_status(uuaiocb, status);
 2478         } else
 2479                 AIO_UNLOCK(ki);
 2480 
 2481         return (error);
 2482 }
 2483 
 2484 int
 2485 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
 2486 {
 2487         struct timespec ts, *tsp;
 2488         int error;
 2489 
 2490         if (uap->timeout) {
 2491                 /* Get timespec struct. */
 2492                 error = copyin(uap->timeout, &ts, sizeof(ts));
 2493                 if (error)
 2494                         return (error);
 2495                 tsp = &ts;
 2496         } else
 2497                 tsp = NULL;
 2498 
 2499         return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
 2500 }
 2501 
 2502 static int
 2503 kern_aio_fsync(struct thread *td, int op, struct aiocb *aiocbp,
 2504     struct aiocb_ops *ops)
 2505 {
 2506         struct proc *p = td->td_proc;
 2507         struct kaioinfo *ki;
 2508 
 2509         if (op != O_SYNC) /* XXX lack of O_DSYNC */
 2510                 return (EINVAL);
 2511         ki = p->p_aioinfo;
 2512         if (ki == NULL)
 2513                 aio_init_aioinfo(p);
 2514         return (aio_aqueue(td, aiocbp, NULL, LIO_SYNC, ops));
 2515 }
 2516 
 2517 int
 2518 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
 2519 {
 2520 
 2521         return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
 2522 }
 2523 
 2524 /* kqueue attach function */
 2525 static int
 2526 filt_aioattach(struct knote *kn)
 2527 {
 2528         struct aiocblist *aiocbe = (struct aiocblist *)kn->kn_sdata;
 2529 
 2530         /*
 2531          * The aiocbe pointer must be validated before using it, so
 2532          * registration is restricted to the kernel; the user cannot
 2533          * set EV_FLAG1.
 2534          */
 2535         if ((kn->kn_flags & EV_FLAG1) == 0)
 2536                 return (EPERM);
 2537         kn->kn_ptr.p_aio = aiocbe;
 2538         kn->kn_flags &= ~EV_FLAG1;
 2539 
 2540         knlist_add(&aiocbe->klist, kn, 0);
 2541 
 2542         return (0);
 2543 }
 2544 
 2545 /* kqueue detach function */
 2546 static void
 2547 filt_aiodetach(struct knote *kn)
 2548 {
 2549         struct knlist *knl;
 2550 
 2551         knl = &kn->kn_ptr.p_aio->klist;
 2552         knl->kl_lock(knl->kl_lockarg);
 2553         if (!knlist_empty(knl))
 2554                 knlist_remove(knl, kn, 1);
 2555         knl->kl_unlock(knl->kl_lockarg);
 2556 }
 2557 
 2558 /* kqueue filter function */
 2559 /*ARGSUSED*/
 2560 static int
 2561 filt_aio(struct knote *kn, long hint)
 2562 {
 2563         struct aiocblist *aiocbe = kn->kn_ptr.p_aio;
 2564 
 2565         kn->kn_data = aiocbe->uaiocb._aiocb_private.error;
 2566         if (aiocbe->jobstate != JOBST_JOBFINISHED)
 2567                 return (0);
 2568         kn->kn_flags |= EV_EOF;
 2569         return (1);
 2570 }
 2571 
 2572 /* kqueue attach function */
 2573 static int
 2574 filt_lioattach(struct knote *kn)
 2575 {
 2576         struct aioliojob * lj = (struct aioliojob *)kn->kn_sdata;
 2577 
 2578         /*
 2579          * The aioliojob pointer must be validated before using it, so
 2580          * registration is restricted to the kernel; the user cannot
 2581          * set EV_FLAG1.
 2582          */
 2583         if ((kn->kn_flags & EV_FLAG1) == 0)
 2584                 return (EPERM);
 2585         kn->kn_ptr.p_lio = lj;
 2586         kn->kn_flags &= ~EV_FLAG1;
 2587 
 2588         knlist_add(&lj->klist, kn, 0);
 2589 
 2590         return (0);
 2591 }
 2592 
 2593 /* kqueue detach function */
 2594 static void
 2595 filt_liodetach(struct knote *kn)
 2596 {
 2597         struct knlist *knl;
 2598 
 2599         knl = &kn->kn_ptr.p_lio->klist;
 2600         knl->kl_lock(knl->kl_lockarg);
 2601         if (!knlist_empty(knl))
 2602                 knlist_remove(knl, kn, 1);
 2603         knl->kl_unlock(knl->kl_lockarg);
 2604 }
 2605 
 2606 /* kqueue filter function */
 2607 /*ARGSUSED*/
 2608 static int
 2609 filt_lio(struct knote *kn, long hint)
 2610 {
 2611         struct aioliojob * lj = kn->kn_ptr.p_lio;
 2612 
 2613         return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
 2614 }
 2615 
 2616 #ifdef COMPAT_FREEBSD32
 2617 
 2618 struct __aiocb_private32 {
 2619         int32_t status;
 2620         int32_t error;
 2621         uint32_t kernelinfo;
 2622 };
 2623 
 2624 typedef struct oaiocb32 {
 2625         int     aio_fildes;             /* File descriptor */
 2626         uint64_t aio_offset __packed;   /* File offset for I/O */
 2627         uint32_t aio_buf;               /* I/O buffer in process space */
 2628         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2629         struct  osigevent32 aio_sigevent; /* Signal to deliver */
 2630         int     aio_lio_opcode;         /* LIO opcode */
 2631         int     aio_reqprio;            /* Request priority -- ignored */
 2632         struct  __aiocb_private32 _aiocb_private;
 2633 } oaiocb32_t;
 2634 
 2635 typedef struct aiocb32 {
 2636         int32_t aio_fildes;             /* File descriptor */
 2637         uint64_t aio_offset __packed;   /* File offset for I/O */
 2638         uint32_t aio_buf;               /* I/O buffer in process space */
 2639         uint32_t aio_nbytes;            /* Number of bytes for I/O */
 2640         int     __spare__[2];
 2641         uint32_t __spare2__;
 2642         int     aio_lio_opcode;         /* LIO opcode */
 2643         int     aio_reqprio;            /* Request priority -- ignored */
 2644         struct __aiocb_private32 _aiocb_private;
 2645         struct sigevent32 aio_sigevent; /* Signal to deliver */
 2646 } aiocb32_t;
 2647 
 2648 static int
 2649 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
 2650 {
 2651 
 2652         /*
 2653          * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
 2654          * supported by AIO with the old sigevent structure.
 2655          */
 2656         CP(*osig, *nsig, sigev_notify);
 2657         switch (nsig->sigev_notify) {
 2658         case SIGEV_NONE:
 2659                 break;
 2660         case SIGEV_SIGNAL:
 2661                 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
 2662                 break;
 2663         case SIGEV_KEVENT:
 2664                 nsig->sigev_notify_kqueue =
 2665                     osig->__sigev_u.__sigev_notify_kqueue;
 2666                 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
 2667                 break;
 2668         default:
 2669                 return (EINVAL);
 2670         }
 2671         return (0);
 2672 }
 2673 
 2674 static int
 2675 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct aiocb *kjob)
 2676 {
 2677         struct oaiocb32 job32;
 2678         int error;
 2679 
 2680         bzero(kjob, sizeof(struct aiocb));
 2681         error = copyin(ujob, &job32, sizeof(job32));
 2682         if (error)
 2683                 return (error);
 2684 
 2685         CP(job32, *kjob, aio_fildes);
 2686         CP(job32, *kjob, aio_offset);
 2687         PTRIN_CP(job32, *kjob, aio_buf);
 2688         CP(job32, *kjob, aio_nbytes);
 2689         CP(job32, *kjob, aio_lio_opcode);
 2690         CP(job32, *kjob, aio_reqprio);
 2691         CP(job32, *kjob, _aiocb_private.status);
 2692         CP(job32, *kjob, _aiocb_private.error);
 2693         PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 2694         return (convert_old_sigevent32(&job32.aio_sigevent,
 2695             &kjob->aio_sigevent));
 2696 }
 2697 
 2698 static int
 2699 convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig)
 2700 {
 2701 
 2702         CP(*sig32, *sig, sigev_notify);
 2703         switch (sig->sigev_notify) {
 2704         case SIGEV_NONE:
 2705                 break;
 2706         case SIGEV_THREAD_ID:
 2707                 CP(*sig32, *sig, sigev_notify_thread_id);
 2708                 /* FALLTHROUGH */
 2709         case SIGEV_SIGNAL:
 2710                 CP(*sig32, *sig, sigev_signo);
 2711                 break;
 2712         case SIGEV_KEVENT:
 2713                 CP(*sig32, *sig, sigev_notify_kqueue);
 2714                 CP(*sig32, *sig, sigev_notify_kevent_flags);
 2715                 PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr);
 2716                 break;
 2717         default:
 2718                 return (EINVAL);
 2719         }
 2720         return (0);
 2721 }
 2722 
 2723 static int
 2724 aiocb32_copyin(struct aiocb *ujob, struct aiocb *kjob)
 2725 {
 2726         struct aiocb32 job32;
 2727         int error;
 2728 
 2729         error = copyin(ujob, &job32, sizeof(job32));
 2730         if (error)
 2731                 return (error);
 2732         CP(job32, *kjob, aio_fildes);
 2733         CP(job32, *kjob, aio_offset);
 2734         PTRIN_CP(job32, *kjob, aio_buf);
 2735         CP(job32, *kjob, aio_nbytes);
 2736         CP(job32, *kjob, aio_lio_opcode);
 2737         CP(job32, *kjob, aio_reqprio);
 2738         CP(job32, *kjob, _aiocb_private.status);
 2739         CP(job32, *kjob, _aiocb_private.error);
 2740         PTRIN_CP(job32, *kjob, _aiocb_private.kernelinfo);
 2741         return (convert_sigevent32(&job32.aio_sigevent, &kjob->aio_sigevent));
 2742 }
 2743 
 2744 static long
 2745 aiocb32_fetch_status(struct aiocb *ujob)
 2746 {
 2747         struct aiocb32 *ujob32;
 2748 
 2749         ujob32 = (struct aiocb32 *)ujob;
 2750         return (fuword32(&ujob32->_aiocb_private.status));
 2751 }
 2752 
 2753 static long
 2754 aiocb32_fetch_error(struct aiocb *ujob)
 2755 {
 2756         struct aiocb32 *ujob32;
 2757 
 2758         ujob32 = (struct aiocb32 *)ujob;
 2759         return (fuword32(&ujob32->_aiocb_private.error));
 2760 }
 2761 
 2762 static int
 2763 aiocb32_store_status(struct aiocb *ujob, long status)
 2764 {
 2765         struct aiocb32 *ujob32;
 2766 
 2767         ujob32 = (struct aiocb32 *)ujob;
 2768         return (suword32(&ujob32->_aiocb_private.status, status));
 2769 }
 2770 
 2771 static int
 2772 aiocb32_store_error(struct aiocb *ujob, long error)
 2773 {
 2774         struct aiocb32 *ujob32;
 2775 
 2776         ujob32 = (struct aiocb32 *)ujob;
 2777         return (suword32(&ujob32->_aiocb_private.error, error));
 2778 }
 2779 
 2780 static int
 2781 aiocb32_store_kernelinfo(struct aiocb *ujob, long jobref)
 2782 {
 2783         struct aiocb32 *ujob32;
 2784 
 2785         ujob32 = (struct aiocb32 *)ujob;
 2786         return (suword32(&ujob32->_aiocb_private.kernelinfo, jobref));
 2787 }
 2788 
 2789 static int
 2790 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
 2791 {
 2792 
 2793         return (suword32(ujobp, (long)ujob));
 2794 }
 2795 
 2796 static struct aiocb_ops aiocb32_ops = {
 2797         .copyin = aiocb32_copyin,
 2798         .fetch_status = aiocb32_fetch_status,
 2799         .fetch_error = aiocb32_fetch_error,
 2800         .store_status = aiocb32_store_status,
 2801         .store_error = aiocb32_store_error,
 2802         .store_kernelinfo = aiocb32_store_kernelinfo,
 2803         .store_aiocb = aiocb32_store_aiocb,
 2804 };
 2805 
 2806 static struct aiocb_ops aiocb32_ops_osigevent = {
 2807         .copyin = aiocb32_copyin_old_sigevent,
 2808         .fetch_status = aiocb32_fetch_status,
 2809         .fetch_error = aiocb32_fetch_error,
 2810         .store_status = aiocb32_store_status,
 2811         .store_error = aiocb32_store_error,
 2812         .store_kernelinfo = aiocb32_store_kernelinfo,
 2813         .store_aiocb = aiocb32_store_aiocb,
 2814 };
 2815 
 2816 int
 2817 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
 2818 {
 2819 
 2820         return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2821 }
 2822 
 2823 int
 2824 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
 2825 {
 2826         struct timespec32 ts32;
 2827         struct timespec ts, *tsp;
 2828         struct aiocb **ujoblist;
 2829         uint32_t *ujoblist32;
 2830         int error, i;
 2831 
 2832         if (uap->nent < 0 || uap->nent > AIO_LISTIO_MAX)
 2833                 return (EINVAL);
 2834 
 2835         if (uap->timeout) {
 2836                 /* Get timespec struct. */
 2837                 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
 2838                         return (error);
 2839                 CP(ts32, ts, tv_sec);
 2840                 CP(ts32, ts, tv_nsec);
 2841                 tsp = &ts;
 2842         } else
 2843                 tsp = NULL;
 2844 
 2845         ujoblist = uma_zalloc(aiol_zone, M_WAITOK);
 2846         ujoblist32 = (uint32_t *)ujoblist;
 2847         error = copyin(uap->aiocbp, ujoblist32, uap->nent *
 2848             sizeof(ujoblist32[0]));
 2849         if (error == 0) {
 2850                 for (i = uap->nent; i > 0; i--)
 2851                         ujoblist[i] = PTRIN(ujoblist32[i]);
 2852 
 2853                 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
 2854         }
 2855         uma_zfree(aiol_zone, ujoblist);
 2856         return (error);
 2857 }
 2858 
 2859 int
 2860 freebsd32_aio_cancel(struct thread *td, struct freebsd32_aio_cancel_args *uap)
 2861 {
 2862 
 2863         return (sys_aio_cancel(td, (struct aio_cancel_args *)uap));
 2864 }
 2865 
 2866 int
 2867 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
 2868 {
 2869 
 2870         return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
 2871 }
 2872 
 2873 int
 2874 freebsd32_oaio_read(struct thread *td, struct freebsd32_oaio_read_args *uap)
 2875 {
 2876 
 2877         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2878             &aiocb32_ops_osigevent));
 2879 }
 2880 
 2881 int
 2882 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
 2883 {
 2884 
 2885         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
 2886             &aiocb32_ops));
 2887 }
 2888 
 2889 int
 2890 freebsd32_oaio_write(struct thread *td, struct freebsd32_oaio_write_args *uap)
 2891 {
 2892 
 2893         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2894             &aiocb32_ops_osigevent));
 2895 }
 2896 
 2897 int
 2898 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
 2899 {
 2900 
 2901         return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
 2902             &aiocb32_ops));
 2903 }
 2904 
 2905 int
 2906 freebsd32_aio_waitcomplete(struct thread *td,
 2907     struct freebsd32_aio_waitcomplete_args *uap)
 2908 {
 2909         struct timespec32 ts32;
 2910         struct timespec ts, *tsp;
 2911         int error;
 2912 
 2913         if (uap->timeout) {
 2914                 /* Get timespec struct. */
 2915                 error = copyin(uap->timeout, &ts32, sizeof(ts32));
 2916                 if (error)
 2917                         return (error);
 2918                 CP(ts32, ts, tv_sec);
 2919                 CP(ts32, ts, tv_nsec);
 2920                 tsp = &ts;
 2921         } else
 2922                 tsp = NULL;
 2923 
 2924         return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
 2925             &aiocb32_ops));
 2926 }
 2927 
 2928 int
 2929 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
 2930 {
 2931 
 2932         return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
 2933             &aiocb32_ops));
 2934 }
 2935 
 2936 int
 2937 freebsd32_olio_listio(struct thread *td, struct freebsd32_olio_listio_args *uap)
 2938 {
 2939         struct aiocb **acb_list;
 2940         struct sigevent *sigp, sig;
 2941         struct osigevent32 osig;
 2942         uint32_t *acb_list32;
 2943         int error, i, nent;
 2944 
 2945         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2946                 return (EINVAL);
 2947 
 2948         nent = uap->nent;
 2949         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2950                 return (EINVAL);
 2951 
 2952         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2953                 error = copyin(uap->sig, &osig, sizeof(osig));
 2954                 if (error)
 2955                         return (error);
 2956                 error = convert_old_sigevent32(&osig, &sig);
 2957                 if (error)
 2958                         return (error);
 2959                 sigp = &sig;
 2960         } else
 2961                 sigp = NULL;
 2962 
 2963         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 2964         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 2965         if (error) {
 2966                 free(acb_list32, M_LIO);
 2967                 return (error);
 2968         }
 2969         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 2970         for (i = 0; i < nent; i++)
 2971                 acb_list[i] = PTRIN(acb_list32[i]);
 2972         free(acb_list32, M_LIO);
 2973 
 2974         error = kern_lio_listio(td, uap->mode,
 2975             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 2976             &aiocb32_ops_osigevent);
 2977         free(acb_list, M_LIO);
 2978         return (error);
 2979 }
 2980 
 2981 int
 2982 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
 2983 {
 2984         struct aiocb **acb_list;
 2985         struct sigevent *sigp, sig;
 2986         struct sigevent32 sig32;
 2987         uint32_t *acb_list32;
 2988         int error, i, nent;
 2989 
 2990         if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
 2991                 return (EINVAL);
 2992 
 2993         nent = uap->nent;
 2994         if (nent < 0 || nent > AIO_LISTIO_MAX)
 2995                 return (EINVAL);
 2996 
 2997         if (uap->sig && (uap->mode == LIO_NOWAIT)) {
 2998                 error = copyin(uap->sig, &sig32, sizeof(sig32));
 2999                 if (error)
 3000                         return (error);
 3001                 error = convert_sigevent32(&sig32, &sig);
 3002                 if (error)
 3003                         return (error);
 3004                 sigp = &sig;
 3005         } else
 3006                 sigp = NULL;
 3007 
 3008         acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
 3009         error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
 3010         if (error) {
 3011                 free(acb_list32, M_LIO);
 3012                 return (error);
 3013         }
 3014         acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
 3015         for (i = 0; i < nent; i++)
 3016                 acb_list[i] = PTRIN(acb_list32[i]);
 3017         free(acb_list32, M_LIO);
 3018 
 3019         error = kern_lio_listio(td, uap->mode,
 3020             (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
 3021             &aiocb32_ops);
 3022         free(acb_list, M_LIO);
 3023         return (error);
 3024 }
 3025 
 3026 #endif

Cache object: a2b12f2499c9397e891ce794a7ad516b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.