The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2004 Poul-Henning Kamp
    5  * Copyright (c) 1994,1997 John S. Dyson
    6  * Copyright (c) 2013 The FreeBSD Foundation
    7  * All rights reserved.
    8  *
    9  * Portions of this software were developed by Konstantin Belousov
   10  * under sponsorship from the FreeBSD Foundation.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  */
   33 
   34 /*
   35  * this file contains a new buffer I/O scheme implementing a coherent
   36  * VM object and buffer cache scheme.  Pains have been taken to make
   37  * sure that the performance degradation associated with schemes such
   38  * as this is not realized.
   39  *
   40  * Author:  John S. Dyson
   41  * Significant help during the development and debugging phases
   42  * had been provided by David Greenman, also of the FreeBSD core team.
   43  *
   44  * see man buf(9) for more info.
   45  */
   46 
   47 #include <sys/cdefs.h>
   48 __FBSDID("$FreeBSD$");
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/asan.h>
   53 #include <sys/bio.h>
   54 #include <sys/bitset.h>
   55 #include <sys/boottrace.h>
   56 #include <sys/buf.h>
   57 #include <sys/conf.h>
   58 #include <sys/counter.h>
   59 #include <sys/devicestat.h>
   60 #include <sys/eventhandler.h>
   61 #include <sys/fail.h>
   62 #include <sys/ktr.h>
   63 #include <sys/limits.h>
   64 #include <sys/lock.h>
   65 #include <sys/malloc.h>
   66 #include <sys/mount.h>
   67 #include <sys/mutex.h>
   68 #include <sys/kernel.h>
   69 #include <sys/kthread.h>
   70 #include <sys/proc.h>
   71 #include <sys/racct.h>
   72 #include <sys/refcount.h>
   73 #include <sys/resourcevar.h>
   74 #include <sys/rwlock.h>
   75 #include <sys/smp.h>
   76 #include <sys/sysctl.h>
   77 #include <sys/syscallsubr.h>
   78 #include <sys/vmem.h>
   79 #include <sys/vmmeter.h>
   80 #include <sys/vnode.h>
   81 #include <sys/watchdog.h>
   82 #include <geom/geom.h>
   83 #include <vm/vm.h>
   84 #include <vm/vm_param.h>
   85 #include <vm/vm_kern.h>
   86 #include <vm/vm_object.h>
   87 #include <vm/vm_page.h>
   88 #include <vm/vm_pageout.h>
   89 #include <vm/vm_pager.h>
   90 #include <vm/vm_extern.h>
   91 #include <vm/vm_map.h>
   92 #include <vm/swap_pager.h>
   93 
   94 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
   95 
   96 struct  bio_ops bioops;         /* I/O operation notification */
   97 
   98 struct  buf_ops buf_ops_bio = {
   99         .bop_name       =       "buf_ops_bio",
  100         .bop_write      =       bufwrite,
  101         .bop_strategy   =       bufstrategy,
  102         .bop_sync       =       bufsync,
  103         .bop_bdflush    =       bufbdflush,
  104 };
  105 
  106 struct bufqueue {
  107         struct mtx_padalign     bq_lock;
  108         TAILQ_HEAD(, buf)       bq_queue;
  109         uint8_t                 bq_index;
  110         uint16_t                bq_subqueue;
  111         int                     bq_len;
  112 } __aligned(CACHE_LINE_SIZE);
  113 
  114 #define BQ_LOCKPTR(bq)          (&(bq)->bq_lock)
  115 #define BQ_LOCK(bq)             mtx_lock(BQ_LOCKPTR((bq)))
  116 #define BQ_UNLOCK(bq)           mtx_unlock(BQ_LOCKPTR((bq)))
  117 #define BQ_ASSERT_LOCKED(bq)    mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
  118 
  119 struct bufdomain {
  120         struct bufqueue bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
  121         struct bufqueue bd_dirtyq;
  122         struct bufqueue *bd_cleanq;
  123         struct mtx_padalign bd_run_lock;
  124         /* Constants */
  125         long            bd_maxbufspace;
  126         long            bd_hibufspace;
  127         long            bd_lobufspace;
  128         long            bd_bufspacethresh;
  129         int             bd_hifreebuffers;
  130         int             bd_lofreebuffers;
  131         int             bd_hidirtybuffers;
  132         int             bd_lodirtybuffers;
  133         int             bd_dirtybufthresh;
  134         int             bd_lim;
  135         /* atomics */
  136         int             bd_wanted;
  137         bool            bd_shutdown;
  138         int __aligned(CACHE_LINE_SIZE)  bd_numdirtybuffers;
  139         int __aligned(CACHE_LINE_SIZE)  bd_running;
  140         long __aligned(CACHE_LINE_SIZE) bd_bufspace;
  141         int __aligned(CACHE_LINE_SIZE)  bd_freebuffers;
  142 } __aligned(CACHE_LINE_SIZE);
  143 
  144 #define BD_LOCKPTR(bd)          (&(bd)->bd_cleanq->bq_lock)
  145 #define BD_LOCK(bd)             mtx_lock(BD_LOCKPTR((bd)))
  146 #define BD_UNLOCK(bd)           mtx_unlock(BD_LOCKPTR((bd)))
  147 #define BD_ASSERT_LOCKED(bd)    mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
  148 #define BD_RUN_LOCKPTR(bd)      (&(bd)->bd_run_lock)
  149 #define BD_RUN_LOCK(bd)         mtx_lock(BD_RUN_LOCKPTR((bd)))
  150 #define BD_RUN_UNLOCK(bd)       mtx_unlock(BD_RUN_LOCKPTR((bd)))
  151 #define BD_DOMAIN(bd)           (bd - bdomain)
  152 
  153 static char *buf;               /* buffer header pool */
  154 static struct buf *
  155 nbufp(unsigned i)
  156 {
  157         return ((struct buf *)(buf + (sizeof(struct buf) +
  158             sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
  159 }
  160 
  161 caddr_t __read_mostly unmapped_buf;
  162 
  163 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
  164 struct proc *bufdaemonproc;
  165 
  166 static void vm_hold_free_pages(struct buf *bp, int newbsize);
  167 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
  168                 vm_offset_t to);
  169 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
  170 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
  171                 vm_page_t m);
  172 static void vfs_clean_pages_dirty_buf(struct buf *bp);
  173 static void vfs_setdirty_range(struct buf *bp);
  174 static void vfs_vmio_invalidate(struct buf *bp);
  175 static void vfs_vmio_truncate(struct buf *bp, int npages);
  176 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
  177 static int vfs_bio_clcheck(struct vnode *vp, int size,
  178                 daddr_t lblkno, daddr_t blkno);
  179 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
  180                 void (*)(struct buf *));
  181 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
  182 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
  183 static void buf_daemon(void);
  184 static __inline void bd_wakeup(void);
  185 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
  186 static void bufkva_reclaim(vmem_t *, int);
  187 static void bufkva_free(struct buf *);
  188 static int buf_import(void *, void **, int, int, int);
  189 static void buf_release(void *, void **, int);
  190 static void maxbcachebuf_adjust(void);
  191 static inline struct bufdomain *bufdomain(struct buf *);
  192 static void bq_remove(struct bufqueue *bq, struct buf *bp);
  193 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
  194 static int buf_recycle(struct bufdomain *, bool kva);
  195 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
  196             const char *lockname);
  197 static void bd_init(struct bufdomain *bd);
  198 static int bd_flushall(struct bufdomain *bd);
  199 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
  200 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
  201 
  202 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
  203 int vmiodirenable = TRUE;
  204 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
  205     "Use the VM system for directory writes");
  206 long runningbufspace;
  207 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
  208     "Amount of presently outstanding async buffer io");
  209 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
  210     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
  211 static counter_u64_t bufkvaspace;
  212 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
  213     "Kernel virtual memory used for buffers");
  214 static long maxbufspace;
  215 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
  216     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
  217     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
  218     "Maximum allowed value of bufspace (including metadata)");
  219 static long bufmallocspace;
  220 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
  221     "Amount of malloced memory for buffers");
  222 static long maxbufmallocspace;
  223 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
  224     0, "Maximum amount of malloced memory for buffers");
  225 static long lobufspace;
  226 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
  227     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
  228     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
  229     "Minimum amount of buffers we want to have");
  230 long hibufspace;
  231 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
  232     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
  233     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
  234     "Maximum allowed value of bufspace (excluding metadata)");
  235 long bufspacethresh;
  236 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
  237     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
  238     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
  239     "Bufspace consumed before waking the daemon to free some");
  240 static counter_u64_t buffreekvacnt;
  241 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
  242     "Number of times we have freed the KVA space from some buffer");
  243 static counter_u64_t bufdefragcnt;
  244 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
  245     "Number of times we have had to repeat buffer allocation to defragment");
  246 static long lorunningspace;
  247 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
  248     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
  249     "Minimum preferred space used for in-progress I/O");
  250 static long hirunningspace;
  251 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
  252     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
  253     "Maximum amount of space to use for in-progress I/O");
  254 int dirtybufferflushes;
  255 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
  256     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
  257 int bdwriteskip;
  258 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
  259     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
  260 int altbufferflushes;
  261 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
  262     &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
  263 static int recursiveflushes;
  264 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
  265     &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
  266 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
  267 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
  268     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
  269     "Number of buffers that are dirty (has unwritten changes) at the moment");
  270 static int lodirtybuffers;
  271 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
  272     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
  273     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
  274     "How many buffers we want to have free before bufdaemon can sleep");
  275 static int hidirtybuffers;
  276 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
  277     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
  278     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
  279     "When the number of dirty buffers is considered severe");
  280 int dirtybufthresh;
  281 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
  282     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
  283     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
  284     "Number of bdwrite to bawrite conversions to clear dirty buffers");
  285 static int numfreebuffers;
  286 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
  287     "Number of free buffers");
  288 static int lofreebuffers;
  289 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
  290     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
  291     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
  292    "Target number of free buffers");
  293 static int hifreebuffers;
  294 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
  295     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
  296     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
  297    "Threshold for clean buffer recycling");
  298 static counter_u64_t getnewbufcalls;
  299 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
  300    &getnewbufcalls, "Number of calls to getnewbuf");
  301 static counter_u64_t getnewbufrestarts;
  302 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
  303     &getnewbufrestarts,
  304     "Number of times getnewbuf has had to restart a buffer acquisition");
  305 static counter_u64_t mappingrestarts;
  306 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
  307     &mappingrestarts,
  308     "Number of times getblk has had to restart a buffer mapping for "
  309     "unmapped buffer");
  310 static counter_u64_t numbufallocfails;
  311 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
  312     &numbufallocfails, "Number of times buffer allocations failed");
  313 static int flushbufqtarget = 100;
  314 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
  315     "Amount of work to do in flushbufqueues when helping bufdaemon");
  316 static counter_u64_t notbufdflushes;
  317 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
  318     "Number of dirty buffer flushes done by the bufdaemon helpers");
  319 static long barrierwrites;
  320 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
  321     &barrierwrites, 0, "Number of barrier writes");
  322 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
  323     &unmapped_buf_allowed, 0,
  324     "Permit the use of the unmapped i/o");
  325 int maxbcachebuf = MAXBCACHEBUF;
  326 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
  327     "Maximum size of a buffer cache block");
  328 
  329 /*
  330  * This lock synchronizes access to bd_request.
  331  */
  332 static struct mtx_padalign __exclusive_cache_line bdlock;
  333 
  334 /*
  335  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  336  * waitrunningbufspace().
  337  */
  338 static struct mtx_padalign __exclusive_cache_line rbreqlock;
  339 
  340 /*
  341  * Lock that protects bdirtywait.
  342  */
  343 static struct mtx_padalign __exclusive_cache_line bdirtylock;
  344 
  345 /*
  346  * bufdaemon shutdown request and sleep channel.
  347  */
  348 static bool bd_shutdown;
  349 
  350 /*
  351  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  352  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  353  * is idling.
  354  */
  355 static int bd_request;
  356 
  357 /*
  358  * Request for the buf daemon to write more buffers than is indicated by
  359  * lodirtybuf.  This may be necessary to push out excess dependencies or
  360  * defragment the address space where a simple count of the number of dirty
  361  * buffers is insufficient to characterize the demand for flushing them.
  362  */
  363 static int bd_speedupreq;
  364 
  365 /*
  366  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  367  * Set when wait starts, cleared prior to wakeup().
  368  * Used in runningbufwakeup() and waitrunningbufspace().
  369  */
  370 static int runningbufreq;
  371 
  372 /*
  373  * Synchronization for bwillwrite() waiters.
  374  */
  375 static int bdirtywait;
  376 
  377 /*
  378  * Definitions for the buffer free lists.
  379  */
  380 #define QUEUE_NONE      0       /* on no queue */
  381 #define QUEUE_EMPTY     1       /* empty buffer headers */
  382 #define QUEUE_DIRTY     2       /* B_DELWRI buffers */
  383 #define QUEUE_CLEAN     3       /* non-B_DELWRI buffers */
  384 #define QUEUE_SENTINEL  4       /* not an queue index, but mark for sentinel */
  385 
  386 /* Maximum number of buffer domains. */
  387 #define BUF_DOMAINS     8
  388 
  389 struct bufdomainset bdlodirty;          /* Domains > lodirty */
  390 struct bufdomainset bdhidirty;          /* Domains > hidirty */
  391 
  392 /* Configured number of clean queues. */
  393 static int __read_mostly buf_domains;
  394 
  395 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
  396 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
  397 struct bufqueue __exclusive_cache_line bqempty;
  398 
  399 /*
  400  * per-cpu empty buffer cache.
  401  */
  402 uma_zone_t buf_zone;
  403 
  404 static int
  405 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
  406 {
  407         long value;
  408         int error;
  409 
  410         value = *(long *)arg1;
  411         error = sysctl_handle_long(oidp, &value, 0, req);
  412         if (error != 0 || req->newptr == NULL)
  413                 return (error);
  414         mtx_lock(&rbreqlock);
  415         if (arg1 == &hirunningspace) {
  416                 if (value < lorunningspace)
  417                         error = EINVAL;
  418                 else
  419                         hirunningspace = value;
  420         } else {
  421                 KASSERT(arg1 == &lorunningspace,
  422                     ("%s: unknown arg1", __func__));
  423                 if (value > hirunningspace)
  424                         error = EINVAL;
  425                 else
  426                         lorunningspace = value;
  427         }
  428         mtx_unlock(&rbreqlock);
  429         return (error);
  430 }
  431 
  432 static int
  433 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
  434 {
  435         int error;
  436         int value;
  437         int i;
  438 
  439         value = *(int *)arg1;
  440         error = sysctl_handle_int(oidp, &value, 0, req);
  441         if (error != 0 || req->newptr == NULL)
  442                 return (error);
  443         *(int *)arg1 = value;
  444         for (i = 0; i < buf_domains; i++)
  445                 *(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
  446                     value / buf_domains;
  447 
  448         return (error);
  449 }
  450 
  451 static int
  452 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
  453 {
  454         long value;
  455         int error;
  456         int i;
  457 
  458         value = *(long *)arg1;
  459         error = sysctl_handle_long(oidp, &value, 0, req);
  460         if (error != 0 || req->newptr == NULL)
  461                 return (error);
  462         *(long *)arg1 = value;
  463         for (i = 0; i < buf_domains; i++)
  464                 *(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
  465                     value / buf_domains;
  466 
  467         return (error);
  468 }
  469 
  470 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  471     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  472 static int
  473 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
  474 {
  475         long lvalue;
  476         int ivalue;
  477         int i;
  478 
  479         lvalue = 0;
  480         for (i = 0; i < buf_domains; i++)
  481                 lvalue += bdomain[i].bd_bufspace;
  482         if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
  483                 return (sysctl_handle_long(oidp, &lvalue, 0, req));
  484         if (lvalue > INT_MAX)
  485                 /* On overflow, still write out a long to trigger ENOMEM. */
  486                 return (sysctl_handle_long(oidp, &lvalue, 0, req));
  487         ivalue = lvalue;
  488         return (sysctl_handle_int(oidp, &ivalue, 0, req));
  489 }
  490 #else
  491 static int
  492 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
  493 {
  494         long lvalue;
  495         int i;
  496 
  497         lvalue = 0;
  498         for (i = 0; i < buf_domains; i++)
  499                 lvalue += bdomain[i].bd_bufspace;
  500         return (sysctl_handle_long(oidp, &lvalue, 0, req));
  501 }
  502 #endif
  503 
  504 static int
  505 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
  506 {
  507         int value;
  508         int i;
  509 
  510         value = 0;
  511         for (i = 0; i < buf_domains; i++)
  512                 value += bdomain[i].bd_numdirtybuffers;
  513         return (sysctl_handle_int(oidp, &value, 0, req));
  514 }
  515 
  516 /*
  517  *      bdirtywakeup:
  518  *
  519  *      Wakeup any bwillwrite() waiters.
  520  */
  521 static void
  522 bdirtywakeup(void)
  523 {
  524         mtx_lock(&bdirtylock);
  525         if (bdirtywait) {
  526                 bdirtywait = 0;
  527                 wakeup(&bdirtywait);
  528         }
  529         mtx_unlock(&bdirtylock);
  530 }
  531 
  532 /*
  533  *      bd_clear:
  534  *
  535  *      Clear a domain from the appropriate bitsets when dirtybuffers
  536  *      is decremented.
  537  */
  538 static void
  539 bd_clear(struct bufdomain *bd)
  540 {
  541 
  542         mtx_lock(&bdirtylock);
  543         if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
  544                 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
  545         if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
  546                 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
  547         mtx_unlock(&bdirtylock);
  548 }
  549 
  550 /*
  551  *      bd_set:
  552  *
  553  *      Set a domain in the appropriate bitsets when dirtybuffers
  554  *      is incremented.
  555  */
  556 static void
  557 bd_set(struct bufdomain *bd)
  558 {
  559 
  560         mtx_lock(&bdirtylock);
  561         if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
  562                 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
  563         if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
  564                 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
  565         mtx_unlock(&bdirtylock);
  566 }
  567 
  568 /*
  569  *      bdirtysub:
  570  *
  571  *      Decrement the numdirtybuffers count by one and wakeup any
  572  *      threads blocked in bwillwrite().
  573  */
  574 static void
  575 bdirtysub(struct buf *bp)
  576 {
  577         struct bufdomain *bd;
  578         int num;
  579 
  580         bd = bufdomain(bp);
  581         num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
  582         if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
  583                 bdirtywakeup();
  584         if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
  585                 bd_clear(bd);
  586 }
  587 
  588 /*
  589  *      bdirtyadd:
  590  *
  591  *      Increment the numdirtybuffers count by one and wakeup the buf 
  592  *      daemon if needed.
  593  */
  594 static void
  595 bdirtyadd(struct buf *bp)
  596 {
  597         struct bufdomain *bd;
  598         int num;
  599 
  600         /*
  601          * Only do the wakeup once as we cross the boundary.  The
  602          * buf daemon will keep running until the condition clears.
  603          */
  604         bd = bufdomain(bp);
  605         num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
  606         if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
  607                 bd_wakeup();
  608         if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
  609                 bd_set(bd);
  610 }
  611 
  612 /*
  613  *      bufspace_daemon_wakeup:
  614  *
  615  *      Wakeup the daemons responsible for freeing clean bufs.
  616  */
  617 static void
  618 bufspace_daemon_wakeup(struct bufdomain *bd)
  619 {
  620 
  621         /*
  622          * avoid the lock if the daemon is running.
  623          */
  624         if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
  625                 BD_RUN_LOCK(bd);
  626                 atomic_store_int(&bd->bd_running, 1);
  627                 wakeup(&bd->bd_running);
  628                 BD_RUN_UNLOCK(bd);
  629         }
  630 }
  631 
  632 /*
  633  *      bufspace_adjust:
  634  *
  635  *      Adjust the reported bufspace for a KVA managed buffer, possibly
  636  *      waking any waiters.
  637  */
  638 static void
  639 bufspace_adjust(struct buf *bp, int bufsize)
  640 {
  641         struct bufdomain *bd;
  642         long space;
  643         int diff;
  644 
  645         KASSERT((bp->b_flags & B_MALLOC) == 0,
  646             ("bufspace_adjust: malloc buf %p", bp));
  647         bd = bufdomain(bp);
  648         diff = bufsize - bp->b_bufsize;
  649         if (diff < 0) {
  650                 atomic_subtract_long(&bd->bd_bufspace, -diff);
  651         } else if (diff > 0) {
  652                 space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
  653                 /* Wake up the daemon on the transition. */
  654                 if (space < bd->bd_bufspacethresh &&
  655                     space + diff >= bd->bd_bufspacethresh)
  656                         bufspace_daemon_wakeup(bd);
  657         }
  658         bp->b_bufsize = bufsize;
  659 }
  660 
  661 /*
  662  *      bufspace_reserve:
  663  *
  664  *      Reserve bufspace before calling allocbuf().  metadata has a
  665  *      different space limit than data.
  666  */
  667 static int
  668 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
  669 {
  670         long limit, new;
  671         long space;
  672 
  673         if (metadata)
  674                 limit = bd->bd_maxbufspace;
  675         else
  676                 limit = bd->bd_hibufspace;
  677         space = atomic_fetchadd_long(&bd->bd_bufspace, size);
  678         new = space + size;
  679         if (new > limit) {
  680                 atomic_subtract_long(&bd->bd_bufspace, size);
  681                 return (ENOSPC);
  682         }
  683 
  684         /* Wake up the daemon on the transition. */
  685         if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
  686                 bufspace_daemon_wakeup(bd);
  687 
  688         return (0);
  689 }
  690 
  691 /*
  692  *      bufspace_release:
  693  *
  694  *      Release reserved bufspace after bufspace_adjust() has consumed it.
  695  */
  696 static void
  697 bufspace_release(struct bufdomain *bd, int size)
  698 {
  699 
  700         atomic_subtract_long(&bd->bd_bufspace, size);
  701 }
  702 
  703 /*
  704  *      bufspace_wait:
  705  *
  706  *      Wait for bufspace, acting as the buf daemon if a locked vnode is
  707  *      supplied.  bd_wanted must be set prior to polling for space.  The
  708  *      operation must be re-tried on return.
  709  */
  710 static void
  711 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
  712     int slpflag, int slptimeo)
  713 {
  714         struct thread *td;
  715         int error, fl, norunbuf;
  716 
  717         if ((gbflags & GB_NOWAIT_BD) != 0)
  718                 return;
  719 
  720         td = curthread;
  721         BD_LOCK(bd);
  722         while (bd->bd_wanted) {
  723                 if (vp != NULL && vp->v_type != VCHR &&
  724                     (td->td_pflags & TDP_BUFNEED) == 0) {
  725                         BD_UNLOCK(bd);
  726                         /*
  727                          * getblk() is called with a vnode locked, and
  728                          * some majority of the dirty buffers may as
  729                          * well belong to the vnode.  Flushing the
  730                          * buffers there would make a progress that
  731                          * cannot be achieved by the buf_daemon, that
  732                          * cannot lock the vnode.
  733                          */
  734                         norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
  735                             (td->td_pflags & TDP_NORUNNINGBUF);
  736 
  737                         /*
  738                          * Play bufdaemon.  The getnewbuf() function
  739                          * may be called while the thread owns lock
  740                          * for another dirty buffer for the same
  741                          * vnode, which makes it impossible to use
  742                          * VOP_FSYNC() there, due to the buffer lock
  743                          * recursion.
  744                          */
  745                         td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
  746                         fl = buf_flush(vp, bd, flushbufqtarget);
  747                         td->td_pflags &= norunbuf;
  748                         BD_LOCK(bd);
  749                         if (fl != 0)
  750                                 continue;
  751                         if (bd->bd_wanted == 0)
  752                                 break;
  753                 }
  754                 error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
  755                     (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
  756                 if (error != 0)
  757                         break;
  758         }
  759         BD_UNLOCK(bd);
  760 }
  761 
  762 static void
  763 bufspace_daemon_shutdown(void *arg, int howto __unused)
  764 {
  765         struct bufdomain *bd = arg;
  766         int error;
  767 
  768         BD_RUN_LOCK(bd);
  769         bd->bd_shutdown = true;
  770         wakeup(&bd->bd_running);
  771         error = msleep(&bd->bd_shutdown, BD_RUN_LOCKPTR(bd), 0,
  772             "bufspace_shutdown", 60 * hz);
  773         BD_RUN_UNLOCK(bd);
  774         if (error != 0)
  775                 printf("bufspacedaemon wait error: %d\n", error);
  776 }
  777 
  778 /*
  779  *      bufspace_daemon:
  780  *
  781  *      buffer space management daemon.  Tries to maintain some marginal
  782  *      amount of free buffer space so that requesting processes neither
  783  *      block nor work to reclaim buffers.
  784  */
  785 static void
  786 bufspace_daemon(void *arg)
  787 {
  788         struct bufdomain *bd = arg;
  789 
  790         EVENTHANDLER_REGISTER(shutdown_pre_sync, bufspace_daemon_shutdown, bd,
  791             SHUTDOWN_PRI_LAST + 100);
  792 
  793         BD_RUN_LOCK(bd);
  794         while (!bd->bd_shutdown) {
  795                 BD_RUN_UNLOCK(bd);
  796 
  797                 /*
  798                  * Free buffers from the clean queue until we meet our
  799                  * targets.
  800                  *
  801                  * Theory of operation:  The buffer cache is most efficient
  802                  * when some free buffer headers and space are always
  803                  * available to getnewbuf().  This daemon attempts to prevent
  804                  * the excessive blocking and synchronization associated
  805                  * with shortfall.  It goes through three phases according
  806                  * demand:
  807                  *
  808                  * 1)   The daemon wakes up voluntarily once per-second
  809                  *      during idle periods when the counters are below
  810                  *      the wakeup thresholds (bufspacethresh, lofreebuffers).
  811                  *
  812                  * 2)   The daemon wakes up as we cross the thresholds
  813                  *      ahead of any potential blocking.  This may bounce
  814                  *      slightly according to the rate of consumption and
  815                  *      release.
  816                  *
  817                  * 3)   The daemon and consumers are starved for working
  818                  *      clean buffers.  This is the 'bufspace' sleep below
  819                  *      which will inefficiently trade bufs with bqrelse
  820                  *      until we return to condition 2.
  821                  */
  822                 while (bd->bd_bufspace > bd->bd_lobufspace ||
  823                     bd->bd_freebuffers < bd->bd_hifreebuffers) {
  824                         if (buf_recycle(bd, false) != 0) {
  825                                 if (bd_flushall(bd))
  826                                         continue;
  827                                 /*
  828                                  * Speedup dirty if we've run out of clean
  829                                  * buffers.  This is possible in particular
  830                                  * because softdep may held many bufs locked
  831                                  * pending writes to other bufs which are
  832                                  * marked for delayed write, exhausting
  833                                  * clean space until they are written.
  834                                  */
  835                                 bd_speedup();
  836                                 BD_LOCK(bd);
  837                                 if (bd->bd_wanted) {
  838                                         msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
  839                                             PRIBIO|PDROP, "bufspace", hz/10);
  840                                 } else
  841                                         BD_UNLOCK(bd);
  842                         }
  843                         maybe_yield();
  844                 }
  845 
  846                 /*
  847                  * Re-check our limits and sleep.  bd_running must be
  848                  * cleared prior to checking the limits to avoid missed
  849                  * wakeups.  The waker will adjust one of bufspace or
  850                  * freebuffers prior to checking bd_running.
  851                  */
  852                 BD_RUN_LOCK(bd);
  853                 if (bd->bd_shutdown)
  854                         break;
  855                 atomic_store_int(&bd->bd_running, 0);
  856                 if (bd->bd_bufspace < bd->bd_bufspacethresh &&
  857                     bd->bd_freebuffers > bd->bd_lofreebuffers) {
  858                         msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd),
  859                             PRIBIO, "-", hz);
  860                 } else {
  861                         /* Avoid spurious wakeups while running. */
  862                         atomic_store_int(&bd->bd_running, 1);
  863                 }
  864         }
  865         wakeup(&bd->bd_shutdown);
  866         BD_RUN_UNLOCK(bd);
  867         kthread_exit();
  868 }
  869 
  870 /*
  871  *      bufmallocadjust:
  872  *
  873  *      Adjust the reported bufspace for a malloc managed buffer, possibly
  874  *      waking any waiters.
  875  */
  876 static void
  877 bufmallocadjust(struct buf *bp, int bufsize)
  878 {
  879         int diff;
  880 
  881         KASSERT((bp->b_flags & B_MALLOC) != 0,
  882             ("bufmallocadjust: non-malloc buf %p", bp));
  883         diff = bufsize - bp->b_bufsize;
  884         if (diff < 0)
  885                 atomic_subtract_long(&bufmallocspace, -diff);
  886         else
  887                 atomic_add_long(&bufmallocspace, diff);
  888         bp->b_bufsize = bufsize;
  889 }
  890 
  891 /*
  892  *      runningwakeup:
  893  *
  894  *      Wake up processes that are waiting on asynchronous writes to fall
  895  *      below lorunningspace.
  896  */
  897 static void
  898 runningwakeup(void)
  899 {
  900 
  901         mtx_lock(&rbreqlock);
  902         if (runningbufreq) {
  903                 runningbufreq = 0;
  904                 wakeup(&runningbufreq);
  905         }
  906         mtx_unlock(&rbreqlock);
  907 }
  908 
  909 /*
  910  *      runningbufwakeup:
  911  *
  912  *      Decrement the outstanding write count according.
  913  */
  914 void
  915 runningbufwakeup(struct buf *bp)
  916 {
  917         long space, bspace;
  918 
  919         bspace = bp->b_runningbufspace;
  920         if (bspace == 0)
  921                 return;
  922         space = atomic_fetchadd_long(&runningbufspace, -bspace);
  923         KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
  924             space, bspace));
  925         bp->b_runningbufspace = 0;
  926         /*
  927          * Only acquire the lock and wakeup on the transition from exceeding
  928          * the threshold to falling below it.
  929          */
  930         if (space < lorunningspace)
  931                 return;
  932         if (space - bspace > lorunningspace)
  933                 return;
  934         runningwakeup();
  935 }
  936 
  937 /*
  938  *      waitrunningbufspace()
  939  *
  940  *      runningbufspace is a measure of the amount of I/O currently
  941  *      running.  This routine is used in async-write situations to
  942  *      prevent creating huge backups of pending writes to a device.
  943  *      Only asynchronous writes are governed by this function.
  944  *
  945  *      This does NOT turn an async write into a sync write.  It waits  
  946  *      for earlier writes to complete and generally returns before the
  947  *      caller's write has reached the device.
  948  */
  949 void
  950 waitrunningbufspace(void)
  951 {
  952 
  953         mtx_lock(&rbreqlock);
  954         while (runningbufspace > hirunningspace) {
  955                 runningbufreq = 1;
  956                 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
  957         }
  958         mtx_unlock(&rbreqlock);
  959 }
  960 
  961 /*
  962  *      vfs_buf_test_cache:
  963  *
  964  *      Called when a buffer is extended.  This function clears the B_CACHE
  965  *      bit if the newly extended portion of the buffer does not contain
  966  *      valid data.
  967  */
  968 static __inline void
  969 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
  970     vm_offset_t size, vm_page_t m)
  971 {
  972 
  973         /*
  974          * This function and its results are protected by higher level
  975          * synchronization requiring vnode and buf locks to page in and
  976          * validate pages.
  977          */
  978         if (bp->b_flags & B_CACHE) {
  979                 int base = (foff + off) & PAGE_MASK;
  980                 if (vm_page_is_valid(m, base, size) == 0)
  981                         bp->b_flags &= ~B_CACHE;
  982         }
  983 }
  984 
  985 /* Wake up the buffer daemon if necessary */
  986 static void
  987 bd_wakeup(void)
  988 {
  989 
  990         mtx_lock(&bdlock);
  991         if (bd_request == 0) {
  992                 bd_request = 1;
  993                 wakeup(&bd_request);
  994         }
  995         mtx_unlock(&bdlock);
  996 }
  997 
  998 /*
  999  * Adjust the maxbcachbuf tunable.
 1000  */
 1001 static void
 1002 maxbcachebuf_adjust(void)
 1003 {
 1004         int i;
 1005 
 1006         /*
 1007          * maxbcachebuf must be a power of 2 >= MAXBSIZE.
 1008          */
 1009         i = 2;
 1010         while (i * 2 <= maxbcachebuf)
 1011                 i *= 2;
 1012         maxbcachebuf = i;
 1013         if (maxbcachebuf < MAXBSIZE)
 1014                 maxbcachebuf = MAXBSIZE;
 1015         if (maxbcachebuf > maxphys)
 1016                 maxbcachebuf = maxphys;
 1017         if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
 1018                 printf("maxbcachebuf=%d\n", maxbcachebuf);
 1019 }
 1020 
 1021 /*
 1022  * bd_speedup - speedup the buffer cache flushing code
 1023  */
 1024 void
 1025 bd_speedup(void)
 1026 {
 1027         int needwake;
 1028 
 1029         mtx_lock(&bdlock);
 1030         needwake = 0;
 1031         if (bd_speedupreq == 0 || bd_request == 0)
 1032                 needwake = 1;
 1033         bd_speedupreq = 1;
 1034         bd_request = 1;
 1035         if (needwake)
 1036                 wakeup(&bd_request);
 1037         mtx_unlock(&bdlock);
 1038 }
 1039 
 1040 #ifdef __i386__
 1041 #define TRANSIENT_DENOM 5
 1042 #else
 1043 #define TRANSIENT_DENOM 10
 1044 #endif
 1045 
 1046 /*
 1047  * Calculating buffer cache scaling values and reserve space for buffer
 1048  * headers.  This is called during low level kernel initialization and
 1049  * may be called more then once.  We CANNOT write to the memory area
 1050  * being reserved at this time.
 1051  */
 1052 caddr_t
 1053 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
 1054 {
 1055         int tuned_nbuf;
 1056         long maxbuf, maxbuf_sz, buf_sz, biotmap_sz;
 1057 
 1058         /*
 1059          * With KASAN or KMSAN enabled, the kernel map is shadowed.  Account for
 1060          * this when sizing maps based on the amount of physical memory
 1061          * available.
 1062          */
 1063 #if defined(KASAN)
 1064         physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
 1065             (KASAN_SHADOW_SCALE + 1);
 1066 #elif defined(KMSAN)
 1067         physmem_est /= 3;
 1068 
 1069         /*
 1070          * KMSAN cannot reliably determine whether buffer data is initialized
 1071          * unless it is updated through a KVA mapping.
 1072          */
 1073         unmapped_buf_allowed = 0;
 1074 #endif
 1075 
 1076         /*
 1077          * physmem_est is in pages.  Convert it to kilobytes (assumes
 1078          * PAGE_SIZE is >= 1K)
 1079          */
 1080         physmem_est = physmem_est * (PAGE_SIZE / 1024);
 1081 
 1082         maxbcachebuf_adjust();
 1083         /*
 1084          * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
 1085          * For the first 64MB of ram nominally allocate sufficient buffers to
 1086          * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
 1087          * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
 1088          * the buffer cache we limit the eventual kva reservation to
 1089          * maxbcache bytes.
 1090          *
 1091          * factor represents the 1/4 x ram conversion.
 1092          */
 1093         if (nbuf == 0) {
 1094                 int factor = 4 * BKVASIZE / 1024;
 1095 
 1096                 nbuf = 50;
 1097                 if (physmem_est > 4096)
 1098                         nbuf += min((physmem_est - 4096) / factor,
 1099                             65536 / factor);
 1100                 if (physmem_est > 65536)
 1101                         nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
 1102                             32 * 1024 * 1024 / (factor * 5));
 1103 
 1104                 if (maxbcache && nbuf > maxbcache / BKVASIZE)
 1105                         nbuf = maxbcache / BKVASIZE;
 1106                 tuned_nbuf = 1;
 1107         } else
 1108                 tuned_nbuf = 0;
 1109 
 1110         /* XXX Avoid unsigned long overflows later on with maxbufspace. */
 1111         maxbuf = (LONG_MAX / 3) / BKVASIZE;
 1112         if (nbuf > maxbuf) {
 1113                 if (!tuned_nbuf)
 1114                         printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
 1115                             maxbuf);
 1116                 nbuf = maxbuf;
 1117         }
 1118 
 1119         /*
 1120          * Ideal allocation size for the transient bio submap is 10%
 1121          * of the maximal space buffer map.  This roughly corresponds
 1122          * to the amount of the buffer mapped for typical UFS load.
 1123          *
 1124          * Clip the buffer map to reserve space for the transient
 1125          * BIOs, if its extent is bigger than 90% (80% on i386) of the
 1126          * maximum buffer map extent on the platform.
 1127          *
 1128          * The fall-back to the maxbuf in case of maxbcache unset,
 1129          * allows to not trim the buffer KVA for the architectures
 1130          * with ample KVA space.
 1131          */
 1132         if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
 1133                 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
 1134                 buf_sz = (long)nbuf * BKVASIZE;
 1135                 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
 1136                     (TRANSIENT_DENOM - 1)) {
 1137                         /*
 1138                          * There is more KVA than memory.  Do not
 1139                          * adjust buffer map size, and assign the rest
 1140                          * of maxbuf to transient map.
 1141                          */
 1142                         biotmap_sz = maxbuf_sz - buf_sz;
 1143                 } else {
 1144                         /*
 1145                          * Buffer map spans all KVA we could afford on
 1146                          * this platform.  Give 10% (20% on i386) of
 1147                          * the buffer map to the transient bio map.
 1148                          */
 1149                         biotmap_sz = buf_sz / TRANSIENT_DENOM;
 1150                         buf_sz -= biotmap_sz;
 1151                 }
 1152                 if (biotmap_sz / INT_MAX > maxphys)
 1153                         bio_transient_maxcnt = INT_MAX;
 1154                 else
 1155                         bio_transient_maxcnt = biotmap_sz / maxphys;
 1156                 /*
 1157                  * Artificially limit to 1024 simultaneous in-flight I/Os
 1158                  * using the transient mapping.
 1159                  */
 1160                 if (bio_transient_maxcnt > 1024)
 1161                         bio_transient_maxcnt = 1024;
 1162                 if (tuned_nbuf)
 1163                         nbuf = buf_sz / BKVASIZE;
 1164         }
 1165 
 1166         if (nswbuf == 0) {
 1167                 nswbuf = min(nbuf / 4, 256);
 1168                 if (nswbuf < NSWBUF_MIN)
 1169                         nswbuf = NSWBUF_MIN;
 1170         }
 1171 
 1172         /*
 1173          * Reserve space for the buffer cache buffers
 1174          */
 1175         buf = (char *)v;
 1176         v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
 1177             atop(maxbcachebuf)) * nbuf;
 1178 
 1179         return (v);
 1180 }
 1181 
 1182 /*
 1183  * Single global constant for BUF_WMESG, to avoid getting multiple
 1184  * references.
 1185  */
 1186 static const char buf_wmesg[] = "bufwait";
 1187 
 1188 /* Initialize the buffer subsystem.  Called before use of any buffers. */
 1189 void
 1190 bufinit(void)
 1191 {
 1192         struct buf *bp;
 1193         int i;
 1194 
 1195         KASSERT(maxbcachebuf >= MAXBSIZE,
 1196             ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
 1197             MAXBSIZE));
 1198         bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
 1199         mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
 1200         mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
 1201         mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
 1202 
 1203         unmapped_buf = (caddr_t)kva_alloc(maxphys);
 1204 
 1205         /* finally, initialize each buffer header and stick on empty q */
 1206         for (i = 0; i < nbuf; i++) {
 1207                 bp = nbufp(i);
 1208                 bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
 1209                 bp->b_flags = B_INVAL;
 1210                 bp->b_rcred = NOCRED;
 1211                 bp->b_wcred = NOCRED;
 1212                 bp->b_qindex = QUEUE_NONE;
 1213                 bp->b_domain = -1;
 1214                 bp->b_subqueue = mp_maxid + 1;
 1215                 bp->b_xflags = 0;
 1216                 bp->b_data = bp->b_kvabase = unmapped_buf;
 1217                 LIST_INIT(&bp->b_dep);
 1218                 BUF_LOCKINIT(bp, buf_wmesg);
 1219                 bq_insert(&bqempty, bp, false);
 1220         }
 1221 
 1222         /*
 1223          * maxbufspace is the absolute maximum amount of buffer space we are 
 1224          * allowed to reserve in KVM and in real terms.  The absolute maximum
 1225          * is nominally used by metadata.  hibufspace is the nominal maximum
 1226          * used by most other requests.  The differential is required to 
 1227          * ensure that metadata deadlocks don't occur.
 1228          *
 1229          * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
 1230          * this may result in KVM fragmentation which is not handled optimally
 1231          * by the system. XXX This is less true with vmem.  We could use
 1232          * PAGE_SIZE.
 1233          */
 1234         maxbufspace = (long)nbuf * BKVASIZE;
 1235         hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
 1236         lobufspace = (hibufspace / 20) * 19; /* 95% */
 1237         bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
 1238 
 1239         /*
 1240          * Note: The 16 MiB upper limit for hirunningspace was chosen
 1241          * arbitrarily and may need further tuning. It corresponds to
 1242          * 128 outstanding write IO requests (if IO size is 128 KiB),
 1243          * which fits with many RAID controllers' tagged queuing limits.
 1244          * The lower 1 MiB limit is the historical upper limit for
 1245          * hirunningspace.
 1246          */
 1247         hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
 1248             16 * 1024 * 1024), 1024 * 1024);
 1249         lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
 1250 
 1251         /*
 1252          * Limit the amount of malloc memory since it is wired permanently into
 1253          * the kernel space.  Even though this is accounted for in the buffer
 1254          * allocation, we don't want the malloced region to grow uncontrolled.
 1255          * The malloc scheme improves memory utilization significantly on
 1256          * average (small) directories.
 1257          */
 1258         maxbufmallocspace = hibufspace / 20;
 1259 
 1260         /*
 1261          * Reduce the chance of a deadlock occurring by limiting the number
 1262          * of delayed-write dirty buffers we allow to stack up.
 1263          */
 1264         hidirtybuffers = nbuf / 4 + 20;
 1265         dirtybufthresh = hidirtybuffers * 9 / 10;
 1266         /*
 1267          * To support extreme low-memory systems, make sure hidirtybuffers
 1268          * cannot eat up all available buffer space.  This occurs when our
 1269          * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
 1270          * buffer space assuming BKVASIZE'd buffers.
 1271          */
 1272         while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
 1273                 hidirtybuffers >>= 1;
 1274         }
 1275         lodirtybuffers = hidirtybuffers / 2;
 1276 
 1277         /*
 1278          * lofreebuffers should be sufficient to avoid stalling waiting on
 1279          * buf headers under heavy utilization.  The bufs in per-cpu caches
 1280          * are counted as free but will be unavailable to threads executing
 1281          * on other cpus.
 1282          *
 1283          * hifreebuffers is the free target for the bufspace daemon.  This
 1284          * should be set appropriately to limit work per-iteration.
 1285          */
 1286         lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
 1287         hifreebuffers = (3 * lofreebuffers) / 2;
 1288         numfreebuffers = nbuf;
 1289 
 1290         /* Setup the kva and free list allocators. */
 1291         vmem_set_reclaim(buffer_arena, bufkva_reclaim);
 1292         buf_zone = uma_zcache_create("buf free cache",
 1293             sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
 1294             NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
 1295 
 1296         /*
 1297          * Size the clean queue according to the amount of buffer space.
 1298          * One queue per-256mb up to the max.  More queues gives better
 1299          * concurrency but less accurate LRU.
 1300          */
 1301         buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
 1302         for (i = 0 ; i < buf_domains; i++) {
 1303                 struct bufdomain *bd;
 1304 
 1305                 bd = &bdomain[i];
 1306                 bd_init(bd);
 1307                 bd->bd_freebuffers = nbuf / buf_domains;
 1308                 bd->bd_hifreebuffers = hifreebuffers / buf_domains;
 1309                 bd->bd_lofreebuffers = lofreebuffers / buf_domains;
 1310                 bd->bd_bufspace = 0;
 1311                 bd->bd_maxbufspace = maxbufspace / buf_domains;
 1312                 bd->bd_hibufspace = hibufspace / buf_domains;
 1313                 bd->bd_lobufspace = lobufspace / buf_domains;
 1314                 bd->bd_bufspacethresh = bufspacethresh / buf_domains;
 1315                 bd->bd_numdirtybuffers = 0;
 1316                 bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
 1317                 bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
 1318                 bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
 1319                 /* Don't allow more than 2% of bufs in the per-cpu caches. */
 1320                 bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
 1321         }
 1322         getnewbufcalls = counter_u64_alloc(M_WAITOK);
 1323         getnewbufrestarts = counter_u64_alloc(M_WAITOK);
 1324         mappingrestarts = counter_u64_alloc(M_WAITOK);
 1325         numbufallocfails = counter_u64_alloc(M_WAITOK);
 1326         notbufdflushes = counter_u64_alloc(M_WAITOK);
 1327         buffreekvacnt = counter_u64_alloc(M_WAITOK);
 1328         bufdefragcnt = counter_u64_alloc(M_WAITOK);
 1329         bufkvaspace = counter_u64_alloc(M_WAITOK);
 1330 }
 1331 
 1332 #ifdef INVARIANTS
 1333 static inline void
 1334 vfs_buf_check_mapped(struct buf *bp)
 1335 {
 1336 
 1337         KASSERT(bp->b_kvabase != unmapped_buf,
 1338             ("mapped buf: b_kvabase was not updated %p", bp));
 1339         KASSERT(bp->b_data != unmapped_buf,
 1340             ("mapped buf: b_data was not updated %p", bp));
 1341         KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
 1342             maxphys, ("b_data + b_offset unmapped %p", bp));
 1343 }
 1344 
 1345 static inline void
 1346 vfs_buf_check_unmapped(struct buf *bp)
 1347 {
 1348 
 1349         KASSERT(bp->b_data == unmapped_buf,
 1350             ("unmapped buf: corrupted b_data %p", bp));
 1351 }
 1352 
 1353 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
 1354 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
 1355 #else
 1356 #define BUF_CHECK_MAPPED(bp) do {} while (0)
 1357 #define BUF_CHECK_UNMAPPED(bp) do {} while (0)
 1358 #endif
 1359 
 1360 static int
 1361 isbufbusy(struct buf *bp)
 1362 {
 1363         if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
 1364             ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
 1365                 return (1);
 1366         return (0);
 1367 }
 1368 
 1369 /*
 1370  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
 1371  */
 1372 void
 1373 bufshutdown(int show_busybufs)
 1374 {
 1375         static int first_buf_printf = 1;
 1376         struct buf *bp;
 1377         int i, iter, nbusy, pbusy;
 1378 #ifndef PREEMPTION
 1379         int subiter;
 1380 #endif
 1381 
 1382         /*
 1383          * Sync filesystems for shutdown
 1384          */
 1385         wdog_kern_pat(WD_LASTVAL);
 1386         kern_sync(curthread);
 1387 
 1388         /*
 1389          * With soft updates, some buffers that are
 1390          * written will be remarked as dirty until other
 1391          * buffers are written.
 1392          */
 1393         for (iter = pbusy = 0; iter < 20; iter++) {
 1394                 nbusy = 0;
 1395                 for (i = nbuf - 1; i >= 0; i--) {
 1396                         bp = nbufp(i);
 1397                         if (isbufbusy(bp))
 1398                                 nbusy++;
 1399                 }
 1400                 if (nbusy == 0) {
 1401                         if (first_buf_printf)
 1402                                 printf("All buffers synced.");
 1403                         break;
 1404                 }
 1405                 if (first_buf_printf) {
 1406                         printf("Syncing disks, buffers remaining... ");
 1407                         first_buf_printf = 0;
 1408                 }
 1409                 printf("%d ", nbusy);
 1410                 if (nbusy < pbusy)
 1411                         iter = 0;
 1412                 pbusy = nbusy;
 1413 
 1414                 wdog_kern_pat(WD_LASTVAL);
 1415                 kern_sync(curthread);
 1416 
 1417 #ifdef PREEMPTION
 1418                 /*
 1419                  * Spin for a while to allow interrupt threads to run.
 1420                  */
 1421                 DELAY(50000 * iter);
 1422 #else
 1423                 /*
 1424                  * Context switch several times to allow interrupt
 1425                  * threads to run.
 1426                  */
 1427                 for (subiter = 0; subiter < 50 * iter; subiter++) {
 1428                         thread_lock(curthread);
 1429                         mi_switch(SW_VOL);
 1430                         DELAY(1000);
 1431                 }
 1432 #endif
 1433         }
 1434         printf("\n");
 1435         /*
 1436          * Count only busy local buffers to prevent forcing 
 1437          * a fsck if we're just a client of a wedged NFS server
 1438          */
 1439         nbusy = 0;
 1440         for (i = nbuf - 1; i >= 0; i--) {
 1441                 bp = nbufp(i);
 1442                 if (isbufbusy(bp)) {
 1443 #if 0
 1444 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
 1445                         if (bp->b_dev == NULL) {
 1446                                 TAILQ_REMOVE(&mountlist,
 1447                                     bp->b_vp->v_mount, mnt_list);
 1448                                 continue;
 1449                         }
 1450 #endif
 1451                         nbusy++;
 1452                         if (show_busybufs > 0) {
 1453                                 printf(
 1454             "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
 1455                                     nbusy, bp, bp->b_vp, bp->b_flags,
 1456                                     (intmax_t)bp->b_blkno,
 1457                                     (intmax_t)bp->b_lblkno);
 1458                                 BUF_LOCKPRINTINFO(bp);
 1459                                 if (show_busybufs > 1)
 1460                                         vn_printf(bp->b_vp,
 1461                                             "vnode content: ");
 1462                         }
 1463                 }
 1464         }
 1465         if (nbusy) {
 1466                 /*
 1467                  * Failed to sync all blocks. Indicate this and don't
 1468                  * unmount filesystems (thus forcing an fsck on reboot).
 1469                  */
 1470                 BOOTTRACE("shutdown failed to sync buffers");
 1471                 printf("Giving up on %d buffers\n", nbusy);
 1472                 DELAY(5000000); /* 5 seconds */
 1473                 swapoff_all();
 1474         } else {
 1475                 BOOTTRACE("shutdown sync complete");
 1476                 if (!first_buf_printf)
 1477                         printf("Final sync complete\n");
 1478 
 1479                 /*
 1480                  * Unmount filesystems and perform swapoff, to quiesce
 1481                  * the system as much as possible.  In particular, no
 1482                  * I/O should be initiated from top levels since it
 1483                  * might be abruptly terminated by reset, or otherwise
 1484                  * erronously handled because other parts of the
 1485                  * system are disabled.
 1486                  *
 1487                  * Swapoff before unmount, because file-backed swap is
 1488                  * non-operational after unmount of the underlying
 1489                  * filesystem.
 1490                  */
 1491                 if (!KERNEL_PANICKED()) {
 1492                         swapoff_all();
 1493                         vfs_unmountall();
 1494                 }
 1495                 BOOTTRACE("shutdown unmounted all filesystems");
 1496         }
 1497         DELAY(100000);          /* wait for console output to finish */
 1498 }
 1499 
 1500 static void
 1501 bpmap_qenter(struct buf *bp)
 1502 {
 1503 
 1504         BUF_CHECK_MAPPED(bp);
 1505 
 1506         /*
 1507          * bp->b_data is relative to bp->b_offset, but
 1508          * bp->b_offset may be offset into the first page.
 1509          */
 1510         bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
 1511         pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
 1512         bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
 1513             (vm_offset_t)(bp->b_offset & PAGE_MASK));
 1514 }
 1515 
 1516 static inline struct bufdomain *
 1517 bufdomain(struct buf *bp)
 1518 {
 1519 
 1520         return (&bdomain[bp->b_domain]);
 1521 }
 1522 
 1523 static struct bufqueue *
 1524 bufqueue(struct buf *bp)
 1525 {
 1526 
 1527         switch (bp->b_qindex) {
 1528         case QUEUE_NONE:
 1529                 /* FALLTHROUGH */
 1530         case QUEUE_SENTINEL:
 1531                 return (NULL);
 1532         case QUEUE_EMPTY:
 1533                 return (&bqempty);
 1534         case QUEUE_DIRTY:
 1535                 return (&bufdomain(bp)->bd_dirtyq);
 1536         case QUEUE_CLEAN:
 1537                 return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
 1538         default:
 1539                 break;
 1540         }
 1541         panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
 1542 }
 1543 
 1544 /*
 1545  * Return the locked bufqueue that bp is a member of.
 1546  */
 1547 static struct bufqueue *
 1548 bufqueue_acquire(struct buf *bp)
 1549 {
 1550         struct bufqueue *bq, *nbq;
 1551 
 1552         /*
 1553          * bp can be pushed from a per-cpu queue to the
 1554          * cleanq while we're waiting on the lock.  Retry
 1555          * if the queues don't match.
 1556          */
 1557         bq = bufqueue(bp);
 1558         BQ_LOCK(bq);
 1559         for (;;) {
 1560                 nbq = bufqueue(bp);
 1561                 if (bq == nbq)
 1562                         break;
 1563                 BQ_UNLOCK(bq);
 1564                 BQ_LOCK(nbq);
 1565                 bq = nbq;
 1566         }
 1567         return (bq);
 1568 }
 1569 
 1570 /*
 1571  *      binsfree:
 1572  *
 1573  *      Insert the buffer into the appropriate free list.  Requires a
 1574  *      locked buffer on entry and buffer is unlocked before return.
 1575  */
 1576 static void
 1577 binsfree(struct buf *bp, int qindex)
 1578 {
 1579         struct bufdomain *bd;
 1580         struct bufqueue *bq;
 1581 
 1582         KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
 1583             ("binsfree: Invalid qindex %d", qindex));
 1584         BUF_ASSERT_XLOCKED(bp);
 1585 
 1586         /*
 1587          * Handle delayed bremfree() processing.
 1588          */
 1589         if (bp->b_flags & B_REMFREE) {
 1590                 if (bp->b_qindex == qindex) {
 1591                         bp->b_flags |= B_REUSE;
 1592                         bp->b_flags &= ~B_REMFREE;
 1593                         BUF_UNLOCK(bp);
 1594                         return;
 1595                 }
 1596                 bq = bufqueue_acquire(bp);
 1597                 bq_remove(bq, bp);
 1598                 BQ_UNLOCK(bq);
 1599         }
 1600         bd = bufdomain(bp);
 1601         if (qindex == QUEUE_CLEAN) {
 1602                 if (bd->bd_lim != 0)
 1603                         bq = &bd->bd_subq[PCPU_GET(cpuid)];
 1604                 else
 1605                         bq = bd->bd_cleanq;
 1606         } else
 1607                 bq = &bd->bd_dirtyq;
 1608         bq_insert(bq, bp, true);
 1609 }
 1610 
 1611 /*
 1612  * buf_free:
 1613  *
 1614  *      Free a buffer to the buf zone once it no longer has valid contents.
 1615  */
 1616 static void
 1617 buf_free(struct buf *bp)
 1618 {
 1619 
 1620         if (bp->b_flags & B_REMFREE)
 1621                 bremfreef(bp);
 1622         if (bp->b_vflags & BV_BKGRDINPROG)
 1623                 panic("losing buffer 1");
 1624         if (bp->b_rcred != NOCRED) {
 1625                 crfree(bp->b_rcred);
 1626                 bp->b_rcred = NOCRED;
 1627         }
 1628         if (bp->b_wcred != NOCRED) {
 1629                 crfree(bp->b_wcred);
 1630                 bp->b_wcred = NOCRED;
 1631         }
 1632         if (!LIST_EMPTY(&bp->b_dep))
 1633                 buf_deallocate(bp);
 1634         bufkva_free(bp);
 1635         atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
 1636         MPASS((bp->b_flags & B_MAXPHYS) == 0);
 1637         BUF_UNLOCK(bp);
 1638         uma_zfree(buf_zone, bp);
 1639 }
 1640 
 1641 /*
 1642  * buf_import:
 1643  *
 1644  *      Import bufs into the uma cache from the buf list.  The system still
 1645  *      expects a static array of bufs and much of the synchronization
 1646  *      around bufs assumes type stable storage.  As a result, UMA is used
 1647  *      only as a per-cpu cache of bufs still maintained on a global list.
 1648  */
 1649 static int
 1650 buf_import(void *arg, void **store, int cnt, int domain, int flags)
 1651 {
 1652         struct buf *bp;
 1653         int i;
 1654 
 1655         BQ_LOCK(&bqempty);
 1656         for (i = 0; i < cnt; i++) {
 1657                 bp = TAILQ_FIRST(&bqempty.bq_queue);
 1658                 if (bp == NULL)
 1659                         break;
 1660                 bq_remove(&bqempty, bp);
 1661                 store[i] = bp;
 1662         }
 1663         BQ_UNLOCK(&bqempty);
 1664 
 1665         return (i);
 1666 }
 1667 
 1668 /*
 1669  * buf_release:
 1670  *
 1671  *      Release bufs from the uma cache back to the buffer queues.
 1672  */
 1673 static void
 1674 buf_release(void *arg, void **store, int cnt)
 1675 {
 1676         struct bufqueue *bq;
 1677         struct buf *bp;
 1678         int i;
 1679 
 1680         bq = &bqempty;
 1681         BQ_LOCK(bq);
 1682         for (i = 0; i < cnt; i++) {
 1683                 bp = store[i];
 1684                 /* Inline bq_insert() to batch locking. */
 1685                 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
 1686                 bp->b_flags &= ~(B_AGE | B_REUSE);
 1687                 bq->bq_len++;
 1688                 bp->b_qindex = bq->bq_index;
 1689         }
 1690         BQ_UNLOCK(bq);
 1691 }
 1692 
 1693 /*
 1694  * buf_alloc:
 1695  *
 1696  *      Allocate an empty buffer header.
 1697  */
 1698 static struct buf *
 1699 buf_alloc(struct bufdomain *bd)
 1700 {
 1701         struct buf *bp;
 1702         int freebufs, error;
 1703 
 1704         /*
 1705          * We can only run out of bufs in the buf zone if the average buf
 1706          * is less than BKVASIZE.  In this case the actual wait/block will
 1707          * come from buf_reycle() failing to flush one of these small bufs.
 1708          */
 1709         bp = NULL;
 1710         freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
 1711         if (freebufs > 0)
 1712                 bp = uma_zalloc(buf_zone, M_NOWAIT);
 1713         if (bp == NULL) {
 1714                 atomic_add_int(&bd->bd_freebuffers, 1);
 1715                 bufspace_daemon_wakeup(bd);
 1716                 counter_u64_add(numbufallocfails, 1);
 1717                 return (NULL);
 1718         }
 1719         /*
 1720          * Wake-up the bufspace daemon on transition below threshold.
 1721          */
 1722         if (freebufs == bd->bd_lofreebuffers)
 1723                 bufspace_daemon_wakeup(bd);
 1724 
 1725         error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
 1726         KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
 1727             error));
 1728         (void)error;
 1729 
 1730         KASSERT(bp->b_vp == NULL,
 1731             ("bp: %p still has vnode %p.", bp, bp->b_vp));
 1732         KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
 1733             ("invalid buffer %p flags %#x", bp, bp->b_flags));
 1734         KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
 1735             ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
 1736         KASSERT(bp->b_npages == 0,
 1737             ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
 1738         KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
 1739         KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
 1740         MPASS((bp->b_flags & B_MAXPHYS) == 0);
 1741 
 1742         bp->b_domain = BD_DOMAIN(bd);
 1743         bp->b_flags = 0;
 1744         bp->b_ioflags = 0;
 1745         bp->b_xflags = 0;
 1746         bp->b_vflags = 0;
 1747         bp->b_vp = NULL;
 1748         bp->b_blkno = bp->b_lblkno = 0;
 1749         bp->b_offset = NOOFFSET;
 1750         bp->b_iodone = 0;
 1751         bp->b_error = 0;
 1752         bp->b_resid = 0;
 1753         bp->b_bcount = 0;
 1754         bp->b_npages = 0;
 1755         bp->b_dirtyoff = bp->b_dirtyend = 0;
 1756         bp->b_bufobj = NULL;
 1757         bp->b_data = bp->b_kvabase = unmapped_buf;
 1758         bp->b_fsprivate1 = NULL;
 1759         bp->b_fsprivate2 = NULL;
 1760         bp->b_fsprivate3 = NULL;
 1761         LIST_INIT(&bp->b_dep);
 1762 
 1763         return (bp);
 1764 }
 1765 
 1766 /*
 1767  *      buf_recycle:
 1768  *
 1769  *      Free a buffer from the given bufqueue.  kva controls whether the
 1770  *      freed buf must own some kva resources.  This is used for
 1771  *      defragmenting.
 1772  */
 1773 static int
 1774 buf_recycle(struct bufdomain *bd, bool kva)
 1775 {
 1776         struct bufqueue *bq;
 1777         struct buf *bp, *nbp;
 1778 
 1779         if (kva)
 1780                 counter_u64_add(bufdefragcnt, 1);
 1781         nbp = NULL;
 1782         bq = bd->bd_cleanq;
 1783         BQ_LOCK(bq);
 1784         KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
 1785             ("buf_recycle: Locks don't match"));
 1786         nbp = TAILQ_FIRST(&bq->bq_queue);
 1787 
 1788         /*
 1789          * Run scan, possibly freeing data and/or kva mappings on the fly
 1790          * depending.
 1791          */
 1792         while ((bp = nbp) != NULL) {
 1793                 /*
 1794                  * Calculate next bp (we can only use it if we do not
 1795                  * release the bqlock).
 1796                  */
 1797                 nbp = TAILQ_NEXT(bp, b_freelist);
 1798 
 1799                 /*
 1800                  * If we are defragging then we need a buffer with 
 1801                  * some kva to reclaim.
 1802                  */
 1803                 if (kva && bp->b_kvasize == 0)
 1804                         continue;
 1805 
 1806                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1807                         continue;
 1808 
 1809                 /*
 1810                  * Implement a second chance algorithm for frequently
 1811                  * accessed buffers.
 1812                  */
 1813                 if ((bp->b_flags & B_REUSE) != 0) {
 1814                         TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
 1815                         TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
 1816                         bp->b_flags &= ~B_REUSE;
 1817                         BUF_UNLOCK(bp);
 1818                         continue;
 1819                 }
 1820 
 1821                 /*
 1822                  * Skip buffers with background writes in progress.
 1823                  */
 1824                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
 1825                         BUF_UNLOCK(bp);
 1826                         continue;
 1827                 }
 1828 
 1829                 KASSERT(bp->b_qindex == QUEUE_CLEAN,
 1830                     ("buf_recycle: inconsistent queue %d bp %p",
 1831                     bp->b_qindex, bp));
 1832                 KASSERT(bp->b_domain == BD_DOMAIN(bd),
 1833                     ("getnewbuf: queue domain %d doesn't match request %d",
 1834                     bp->b_domain, (int)BD_DOMAIN(bd)));
 1835                 /*
 1836                  * NOTE:  nbp is now entirely invalid.  We can only restart
 1837                  * the scan from this point on.
 1838                  */
 1839                 bq_remove(bq, bp);
 1840                 BQ_UNLOCK(bq);
 1841 
 1842                 /*
 1843                  * Requeue the background write buffer with error and
 1844                  * restart the scan.
 1845                  */
 1846                 if ((bp->b_vflags & BV_BKGRDERR) != 0) {
 1847                         bqrelse(bp);
 1848                         BQ_LOCK(bq);
 1849                         nbp = TAILQ_FIRST(&bq->bq_queue);
 1850                         continue;
 1851                 }
 1852                 bp->b_flags |= B_INVAL;
 1853                 brelse(bp);
 1854                 return (0);
 1855         }
 1856         bd->bd_wanted = 1;
 1857         BQ_UNLOCK(bq);
 1858 
 1859         return (ENOBUFS);
 1860 }
 1861 
 1862 /*
 1863  *      bremfree:
 1864  *
 1865  *      Mark the buffer for removal from the appropriate free list.
 1866  *
 1867  */
 1868 void
 1869 bremfree(struct buf *bp)
 1870 {
 1871 
 1872         CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1873         KASSERT((bp->b_flags & B_REMFREE) == 0,
 1874             ("bremfree: buffer %p already marked for delayed removal.", bp));
 1875         KASSERT(bp->b_qindex != QUEUE_NONE,
 1876             ("bremfree: buffer %p not on a queue.", bp));
 1877         BUF_ASSERT_XLOCKED(bp);
 1878 
 1879         bp->b_flags |= B_REMFREE;
 1880 }
 1881 
 1882 /*
 1883  *      bremfreef:
 1884  *
 1885  *      Force an immediate removal from a free list.  Used only in nfs when
 1886  *      it abuses the b_freelist pointer.
 1887  */
 1888 void
 1889 bremfreef(struct buf *bp)
 1890 {
 1891         struct bufqueue *bq;
 1892 
 1893         bq = bufqueue_acquire(bp);
 1894         bq_remove(bq, bp);
 1895         BQ_UNLOCK(bq);
 1896 }
 1897 
 1898 static void
 1899 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
 1900 {
 1901 
 1902         mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
 1903         TAILQ_INIT(&bq->bq_queue);
 1904         bq->bq_len = 0;
 1905         bq->bq_index = qindex;
 1906         bq->bq_subqueue = subqueue;
 1907 }
 1908 
 1909 static void
 1910 bd_init(struct bufdomain *bd)
 1911 {
 1912         int i;
 1913 
 1914         bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
 1915         bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
 1916         bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
 1917         for (i = 0; i <= mp_maxid; i++)
 1918                 bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
 1919                     "bufq clean subqueue lock");
 1920         mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
 1921 }
 1922 
 1923 /*
 1924  *      bq_remove:
 1925  *
 1926  *      Removes a buffer from the free list, must be called with the
 1927  *      correct qlock held.
 1928  */
 1929 static void
 1930 bq_remove(struct bufqueue *bq, struct buf *bp)
 1931 {
 1932 
 1933         CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
 1934             bp, bp->b_vp, bp->b_flags);
 1935         KASSERT(bp->b_qindex != QUEUE_NONE,
 1936             ("bq_remove: buffer %p not on a queue.", bp));
 1937         KASSERT(bufqueue(bp) == bq,
 1938             ("bq_remove: Remove buffer %p from wrong queue.", bp));
 1939 
 1940         BQ_ASSERT_LOCKED(bq);
 1941         if (bp->b_qindex != QUEUE_EMPTY) {
 1942                 BUF_ASSERT_XLOCKED(bp);
 1943         }
 1944         KASSERT(bq->bq_len >= 1,
 1945             ("queue %d underflow", bp->b_qindex));
 1946         TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
 1947         bq->bq_len--;
 1948         bp->b_qindex = QUEUE_NONE;
 1949         bp->b_flags &= ~(B_REMFREE | B_REUSE);
 1950 }
 1951 
 1952 static void
 1953 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
 1954 {
 1955         struct buf *bp;
 1956 
 1957         BQ_ASSERT_LOCKED(bq);
 1958         if (bq != bd->bd_cleanq) {
 1959                 BD_LOCK(bd);
 1960                 while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
 1961                         TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
 1962                         TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
 1963                             b_freelist);
 1964                         bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
 1965                 }
 1966                 bd->bd_cleanq->bq_len += bq->bq_len;
 1967                 bq->bq_len = 0;
 1968         }
 1969         if (bd->bd_wanted) {
 1970                 bd->bd_wanted = 0;
 1971                 wakeup(&bd->bd_wanted);
 1972         }
 1973         if (bq != bd->bd_cleanq)
 1974                 BD_UNLOCK(bd);
 1975 }
 1976 
 1977 static int
 1978 bd_flushall(struct bufdomain *bd)
 1979 {
 1980         struct bufqueue *bq;
 1981         int flushed;
 1982         int i;
 1983 
 1984         if (bd->bd_lim == 0)
 1985                 return (0);
 1986         flushed = 0;
 1987         for (i = 0; i <= mp_maxid; i++) {
 1988                 bq = &bd->bd_subq[i];
 1989                 if (bq->bq_len == 0)
 1990                         continue;
 1991                 BQ_LOCK(bq);
 1992                 bd_flush(bd, bq);
 1993                 BQ_UNLOCK(bq);
 1994                 flushed++;
 1995         }
 1996 
 1997         return (flushed);
 1998 }
 1999 
 2000 static void
 2001 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
 2002 {
 2003         struct bufdomain *bd;
 2004 
 2005         if (bp->b_qindex != QUEUE_NONE)
 2006                 panic("bq_insert: free buffer %p onto another queue?", bp);
 2007 
 2008         bd = bufdomain(bp);
 2009         if (bp->b_flags & B_AGE) {
 2010                 /* Place this buf directly on the real queue. */
 2011                 if (bq->bq_index == QUEUE_CLEAN)
 2012                         bq = bd->bd_cleanq;
 2013                 BQ_LOCK(bq);
 2014                 TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
 2015         } else {
 2016                 BQ_LOCK(bq);
 2017                 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
 2018         }
 2019         bp->b_flags &= ~(B_AGE | B_REUSE);
 2020         bq->bq_len++;
 2021         bp->b_qindex = bq->bq_index;
 2022         bp->b_subqueue = bq->bq_subqueue;
 2023 
 2024         /*
 2025          * Unlock before we notify so that we don't wakeup a waiter that
 2026          * fails a trylock on the buf and sleeps again.
 2027          */
 2028         if (unlock)
 2029                 BUF_UNLOCK(bp);
 2030 
 2031         if (bp->b_qindex == QUEUE_CLEAN) {
 2032                 /*
 2033                  * Flush the per-cpu queue and notify any waiters.
 2034                  */
 2035                 if (bd->bd_wanted || (bq != bd->bd_cleanq &&
 2036                     bq->bq_len >= bd->bd_lim))
 2037                         bd_flush(bd, bq);
 2038         }
 2039         BQ_UNLOCK(bq);
 2040 }
 2041 
 2042 /*
 2043  *      bufkva_free:
 2044  *
 2045  *      Free the kva allocation for a buffer.
 2046  *
 2047  */
 2048 static void
 2049 bufkva_free(struct buf *bp)
 2050 {
 2051 
 2052 #ifdef INVARIANTS
 2053         if (bp->b_kvasize == 0) {
 2054                 KASSERT(bp->b_kvabase == unmapped_buf &&
 2055                     bp->b_data == unmapped_buf,
 2056                     ("Leaked KVA space on %p", bp));
 2057         } else if (buf_mapped(bp))
 2058                 BUF_CHECK_MAPPED(bp);
 2059         else
 2060                 BUF_CHECK_UNMAPPED(bp);
 2061 #endif
 2062         if (bp->b_kvasize == 0)
 2063                 return;
 2064 
 2065         vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
 2066         counter_u64_add(bufkvaspace, -bp->b_kvasize);
 2067         counter_u64_add(buffreekvacnt, 1);
 2068         bp->b_data = bp->b_kvabase = unmapped_buf;
 2069         bp->b_kvasize = 0;
 2070 }
 2071 
 2072 /*
 2073  *      bufkva_alloc:
 2074  *
 2075  *      Allocate the buffer KVA and set b_kvasize and b_kvabase.
 2076  */
 2077 static int
 2078 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
 2079 {
 2080         vm_offset_t addr;
 2081         int error;
 2082 
 2083         KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
 2084             ("Invalid gbflags 0x%x in %s", gbflags, __func__));
 2085         MPASS((bp->b_flags & B_MAXPHYS) == 0);
 2086         KASSERT(maxsize <= maxbcachebuf,
 2087             ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
 2088 
 2089         bufkva_free(bp);
 2090 
 2091         addr = 0;
 2092         error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
 2093         if (error != 0) {
 2094                 /*
 2095                  * Buffer map is too fragmented.  Request the caller
 2096                  * to defragment the map.
 2097                  */
 2098                 return (error);
 2099         }
 2100         bp->b_kvabase = (caddr_t)addr;
 2101         bp->b_kvasize = maxsize;
 2102         counter_u64_add(bufkvaspace, bp->b_kvasize);
 2103         if ((gbflags & GB_UNMAPPED) != 0) {
 2104                 bp->b_data = unmapped_buf;
 2105                 BUF_CHECK_UNMAPPED(bp);
 2106         } else {
 2107                 bp->b_data = bp->b_kvabase;
 2108                 BUF_CHECK_MAPPED(bp);
 2109         }
 2110         return (0);
 2111 }
 2112 
 2113 /*
 2114  *      bufkva_reclaim:
 2115  *
 2116  *      Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
 2117  *      callback that fires to avoid returning failure.
 2118  */
 2119 static void
 2120 bufkva_reclaim(vmem_t *vmem, int flags)
 2121 {
 2122         bool done;
 2123         int q;
 2124         int i;
 2125 
 2126         done = false;
 2127         for (i = 0; i < 5; i++) {
 2128                 for (q = 0; q < buf_domains; q++)
 2129                         if (buf_recycle(&bdomain[q], true) != 0)
 2130                                 done = true;
 2131                 if (done)
 2132                         break;
 2133         }
 2134         return;
 2135 }
 2136 
 2137 /*
 2138  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
 2139  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
 2140  * the buffer is valid and we do not have to do anything.
 2141  */
 2142 static void
 2143 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
 2144     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
 2145 {
 2146         struct buf *rabp;
 2147         struct thread *td;
 2148         int i;
 2149 
 2150         td = curthread;
 2151 
 2152         for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
 2153                 if (inmem(vp, *rablkno))
 2154                         continue;
 2155                 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
 2156                 if ((rabp->b_flags & B_CACHE) != 0) {
 2157                         brelse(rabp);
 2158                         continue;
 2159                 }
 2160 #ifdef RACCT
 2161                 if (racct_enable) {
 2162                         PROC_LOCK(curproc);
 2163                         racct_add_buf(curproc, rabp, 0);
 2164                         PROC_UNLOCK(curproc);
 2165                 }
 2166 #endif /* RACCT */
 2167                 td->td_ru.ru_inblock++;
 2168                 rabp->b_flags |= B_ASYNC;
 2169                 rabp->b_flags &= ~B_INVAL;
 2170                 if ((flags & GB_CKHASH) != 0) {
 2171                         rabp->b_flags |= B_CKHASH;
 2172                         rabp->b_ckhashcalc = ckhashfunc;
 2173                 }
 2174                 rabp->b_ioflags &= ~BIO_ERROR;
 2175                 rabp->b_iocmd = BIO_READ;
 2176                 if (rabp->b_rcred == NOCRED && cred != NOCRED)
 2177                         rabp->b_rcred = crhold(cred);
 2178                 vfs_busy_pages(rabp, 0);
 2179                 BUF_KERNPROC(rabp);
 2180                 rabp->b_iooffset = dbtob(rabp->b_blkno);
 2181                 bstrategy(rabp);
 2182         }
 2183 }
 2184 
 2185 /*
 2186  * Entry point for bread() and breadn() via #defines in sys/buf.h.
 2187  *
 2188  * Get a buffer with the specified data.  Look in the cache first.  We
 2189  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
 2190  * is set, the buffer is valid and we do not have to do anything, see
 2191  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
 2192  *
 2193  * Always return a NULL buffer pointer (in bpp) when returning an error.
 2194  *
 2195  * The blkno parameter is the logical block being requested. Normally
 2196  * the mapping of logical block number to disk block address is done
 2197  * by calling VOP_BMAP(). However, if the mapping is already known, the
 2198  * disk block address can be passed using the dblkno parameter. If the
 2199  * disk block address is not known, then the same value should be passed
 2200  * for blkno and dblkno.
 2201  */
 2202 int
 2203 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
 2204     daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
 2205     void (*ckhashfunc)(struct buf *), struct buf **bpp)
 2206 {
 2207         struct buf *bp;
 2208         struct thread *td;
 2209         int error, readwait, rv;
 2210 
 2211         CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
 2212         td = curthread;
 2213         /*
 2214          * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
 2215          * are specified.
 2216          */
 2217         error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
 2218         if (error != 0) {
 2219                 *bpp = NULL;
 2220                 return (error);
 2221         }
 2222         KASSERT(blkno == bp->b_lblkno,
 2223             ("getblkx returned buffer for blkno %jd instead of blkno %jd",
 2224             (intmax_t)bp->b_lblkno, (intmax_t)blkno));
 2225         flags &= ~GB_NOSPARSE;
 2226         *bpp = bp;
 2227 
 2228         /*
 2229          * If not found in cache, do some I/O
 2230          */
 2231         readwait = 0;
 2232         if ((bp->b_flags & B_CACHE) == 0) {
 2233 #ifdef RACCT
 2234                 if (racct_enable) {
 2235                         PROC_LOCK(td->td_proc);
 2236                         racct_add_buf(td->td_proc, bp, 0);
 2237                         PROC_UNLOCK(td->td_proc);
 2238                 }
 2239 #endif /* RACCT */
 2240                 td->td_ru.ru_inblock++;
 2241                 bp->b_iocmd = BIO_READ;
 2242                 bp->b_flags &= ~B_INVAL;
 2243                 if ((flags & GB_CKHASH) != 0) {
 2244                         bp->b_flags |= B_CKHASH;
 2245                         bp->b_ckhashcalc = ckhashfunc;
 2246                 }
 2247                 if ((flags & GB_CVTENXIO) != 0)
 2248                         bp->b_xflags |= BX_CVTENXIO;
 2249                 bp->b_ioflags &= ~BIO_ERROR;
 2250                 if (bp->b_rcred == NOCRED && cred != NOCRED)
 2251                         bp->b_rcred = crhold(cred);
 2252                 vfs_busy_pages(bp, 0);
 2253                 bp->b_iooffset = dbtob(bp->b_blkno);
 2254                 bstrategy(bp);
 2255                 ++readwait;
 2256         }
 2257 
 2258         /*
 2259          * Attempt to initiate asynchronous I/O on read-ahead blocks.
 2260          */
 2261         breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
 2262 
 2263         rv = 0;
 2264         if (readwait) {
 2265                 rv = bufwait(bp);
 2266                 if (rv != 0) {
 2267                         brelse(bp);
 2268                         *bpp = NULL;
 2269                 }
 2270         }
 2271         return (rv);
 2272 }
 2273 
 2274 /*
 2275  * Write, release buffer on completion.  (Done by iodone
 2276  * if async).  Do not bother writing anything if the buffer
 2277  * is invalid.
 2278  *
 2279  * Note that we set B_CACHE here, indicating that buffer is
 2280  * fully valid and thus cacheable.  This is true even of NFS
 2281  * now so we set it generally.  This could be set either here 
 2282  * or in biodone() since the I/O is synchronous.  We put it
 2283  * here.
 2284  */
 2285 int
 2286 bufwrite(struct buf *bp)
 2287 {
 2288         int oldflags;
 2289         struct vnode *vp;
 2290         long space;
 2291         int vp_md;
 2292 
 2293         CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 2294         if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
 2295                 bp->b_flags |= B_INVAL | B_RELBUF;
 2296                 bp->b_flags &= ~B_CACHE;
 2297                 brelse(bp);
 2298                 return (ENXIO);
 2299         }
 2300         if (bp->b_flags & B_INVAL) {
 2301                 brelse(bp);
 2302                 return (0);
 2303         }
 2304 
 2305         if (bp->b_flags & B_BARRIER)
 2306                 atomic_add_long(&barrierwrites, 1);
 2307 
 2308         oldflags = bp->b_flags;
 2309 
 2310         KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
 2311             ("FFS background buffer should not get here %p", bp));
 2312 
 2313         vp = bp->b_vp;
 2314         if (vp)
 2315                 vp_md = vp->v_vflag & VV_MD;
 2316         else
 2317                 vp_md = 0;
 2318 
 2319         /*
 2320          * Mark the buffer clean.  Increment the bufobj write count
 2321          * before bundirty() call, to prevent other thread from seeing
 2322          * empty dirty list and zero counter for writes in progress,
 2323          * falsely indicating that the bufobj is clean.
 2324          */
 2325         bufobj_wref(bp->b_bufobj);
 2326         bundirty(bp);
 2327 
 2328         bp->b_flags &= ~B_DONE;
 2329         bp->b_ioflags &= ~BIO_ERROR;
 2330         bp->b_flags |= B_CACHE;
 2331         bp->b_iocmd = BIO_WRITE;
 2332 
 2333         vfs_busy_pages(bp, 1);
 2334 
 2335         /*
 2336          * Normal bwrites pipeline writes
 2337          */
 2338         bp->b_runningbufspace = bp->b_bufsize;
 2339         space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
 2340 
 2341 #ifdef RACCT
 2342         if (racct_enable) {
 2343                 PROC_LOCK(curproc);
 2344                 racct_add_buf(curproc, bp, 1);
 2345                 PROC_UNLOCK(curproc);
 2346         }
 2347 #endif /* RACCT */
 2348         curthread->td_ru.ru_oublock++;
 2349         if (oldflags & B_ASYNC)
 2350                 BUF_KERNPROC(bp);
 2351         bp->b_iooffset = dbtob(bp->b_blkno);
 2352         buf_track(bp, __func__);
 2353         bstrategy(bp);
 2354 
 2355         if ((oldflags & B_ASYNC) == 0) {
 2356                 int rtval = bufwait(bp);
 2357                 brelse(bp);
 2358                 return (rtval);
 2359         } else if (space > hirunningspace) {
 2360                 /*
 2361                  * don't allow the async write to saturate the I/O
 2362                  * system.  We will not deadlock here because
 2363                  * we are blocking waiting for I/O that is already in-progress
 2364                  * to complete. We do not block here if it is the update
 2365                  * or syncer daemon trying to clean up as that can lead
 2366                  * to deadlock.
 2367                  */
 2368                 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
 2369                         waitrunningbufspace();
 2370         }
 2371 
 2372         return (0);
 2373 }
 2374 
 2375 void
 2376 bufbdflush(struct bufobj *bo, struct buf *bp)
 2377 {
 2378         struct buf *nbp;
 2379         struct bufdomain *bd;
 2380 
 2381         bd = &bdomain[bo->bo_domain];
 2382         if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
 2383                 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
 2384                 altbufferflushes++;
 2385         } else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
 2386                 BO_LOCK(bo);
 2387                 /*
 2388                  * Try to find a buffer to flush.
 2389                  */
 2390                 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
 2391                         if ((nbp->b_vflags & BV_BKGRDINPROG) ||
 2392                             BUF_LOCK(nbp,
 2393                                      LK_EXCLUSIVE | LK_NOWAIT, NULL))
 2394                                 continue;
 2395                         if (bp == nbp)
 2396                                 panic("bdwrite: found ourselves");
 2397                         BO_UNLOCK(bo);
 2398                         /* Don't countdeps with the bo lock held. */
 2399                         if (buf_countdeps(nbp, 0)) {
 2400                                 BO_LOCK(bo);
 2401                                 BUF_UNLOCK(nbp);
 2402                                 continue;
 2403                         }
 2404                         if (nbp->b_flags & B_CLUSTEROK) {
 2405                                 vfs_bio_awrite(nbp);
 2406                         } else {
 2407                                 bremfree(nbp);
 2408                                 bawrite(nbp);
 2409                         }
 2410                         dirtybufferflushes++;
 2411                         break;
 2412                 }
 2413                 if (nbp == NULL)
 2414                         BO_UNLOCK(bo);
 2415         }
 2416 }
 2417 
 2418 /*
 2419  * Delayed write. (Buffer is marked dirty).  Do not bother writing
 2420  * anything if the buffer is marked invalid.
 2421  *
 2422  * Note that since the buffer must be completely valid, we can safely
 2423  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
 2424  * biodone() in order to prevent getblk from writing the buffer
 2425  * out synchronously.
 2426  */
 2427 void
 2428 bdwrite(struct buf *bp)
 2429 {
 2430         struct thread *td = curthread;
 2431         struct vnode *vp;
 2432         struct bufobj *bo;
 2433 
 2434         CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 2435         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 2436         KASSERT((bp->b_flags & B_BARRIER) == 0,
 2437             ("Barrier request in delayed write %p", bp));
 2438 
 2439         if (bp->b_flags & B_INVAL) {
 2440                 brelse(bp);
 2441                 return;
 2442         }
 2443 
 2444         /*
 2445          * If we have too many dirty buffers, don't create any more.
 2446          * If we are wildly over our limit, then force a complete
 2447          * cleanup. Otherwise, just keep the situation from getting
 2448          * out of control. Note that we have to avoid a recursive
 2449          * disaster and not try to clean up after our own cleanup!
 2450          */
 2451         vp = bp->b_vp;
 2452         bo = bp->b_bufobj;
 2453         if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
 2454                 td->td_pflags |= TDP_INBDFLUSH;
 2455                 BO_BDFLUSH(bo, bp);
 2456                 td->td_pflags &= ~TDP_INBDFLUSH;
 2457         } else
 2458                 recursiveflushes++;
 2459 
 2460         bdirty(bp);
 2461         /*
 2462          * Set B_CACHE, indicating that the buffer is fully valid.  This is
 2463          * true even of NFS now.
 2464          */
 2465         bp->b_flags |= B_CACHE;
 2466 
 2467         /*
 2468          * This bmap keeps the system from needing to do the bmap later,
 2469          * perhaps when the system is attempting to do a sync.  Since it
 2470          * is likely that the indirect block -- or whatever other datastructure
 2471          * that the filesystem needs is still in memory now, it is a good
 2472          * thing to do this.  Note also, that if the pageout daemon is
 2473          * requesting a sync -- there might not be enough memory to do
 2474          * the bmap then...  So, this is important to do.
 2475          */
 2476         if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
 2477                 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
 2478         }
 2479 
 2480         buf_track(bp, __func__);
 2481 
 2482         /*
 2483          * Set the *dirty* buffer range based upon the VM system dirty
 2484          * pages.
 2485          *
 2486          * Mark the buffer pages as clean.  We need to do this here to
 2487          * satisfy the vnode_pager and the pageout daemon, so that it
 2488          * thinks that the pages have been "cleaned".  Note that since
 2489          * the pages are in a delayed write buffer -- the VFS layer
 2490          * "will" see that the pages get written out on the next sync,
 2491          * or perhaps the cluster will be completed.
 2492          */
 2493         vfs_clean_pages_dirty_buf(bp);
 2494         bqrelse(bp);
 2495 
 2496         /*
 2497          * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 2498          * due to the softdep code.
 2499          */
 2500 }
 2501 
 2502 /*
 2503  *      bdirty:
 2504  *
 2505  *      Turn buffer into delayed write request.  We must clear BIO_READ and
 2506  *      B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
 2507  *      itself to properly update it in the dirty/clean lists.  We mark it
 2508  *      B_DONE to ensure that any asynchronization of the buffer properly
 2509  *      clears B_DONE ( else a panic will occur later ).  
 2510  *
 2511  *      bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
 2512  *      might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
 2513  *      should only be called if the buffer is known-good.
 2514  *
 2515  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 2516  *      count.
 2517  *
 2518  *      The buffer must be on QUEUE_NONE.
 2519  */
 2520 void
 2521 bdirty(struct buf *bp)
 2522 {
 2523 
 2524         CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
 2525             bp, bp->b_vp, bp->b_flags);
 2526         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 2527         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 2528             ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 2529         bp->b_flags &= ~(B_RELBUF);
 2530         bp->b_iocmd = BIO_WRITE;
 2531 
 2532         if ((bp->b_flags & B_DELWRI) == 0) {
 2533                 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
 2534                 reassignbuf(bp);
 2535                 bdirtyadd(bp);
 2536         }
 2537 }
 2538 
 2539 /*
 2540  *      bundirty:
 2541  *
 2542  *      Clear B_DELWRI for buffer.
 2543  *
 2544  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 2545  *      count.
 2546  *
 2547  *      The buffer must be on QUEUE_NONE.
 2548  */
 2549 
 2550 void
 2551 bundirty(struct buf *bp)
 2552 {
 2553 
 2554         CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 2555         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 2556         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 2557             ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 2558 
 2559         if (bp->b_flags & B_DELWRI) {
 2560                 bp->b_flags &= ~B_DELWRI;
 2561                 reassignbuf(bp);
 2562                 bdirtysub(bp);
 2563         }
 2564         /*
 2565          * Since it is now being written, we can clear its deferred write flag.
 2566          */
 2567         bp->b_flags &= ~B_DEFERRED;
 2568 }
 2569 
 2570 /*
 2571  *      bawrite:
 2572  *
 2573  *      Asynchronous write.  Start output on a buffer, but do not wait for
 2574  *      it to complete.  The buffer is released when the output completes.
 2575  *
 2576  *      bwrite() ( or the VOP routine anyway ) is responsible for handling 
 2577  *      B_INVAL buffers.  Not us.
 2578  */
 2579 void
 2580 bawrite(struct buf *bp)
 2581 {
 2582 
 2583         bp->b_flags |= B_ASYNC;
 2584         (void) bwrite(bp);
 2585 }
 2586 
 2587 /*
 2588  *      babarrierwrite:
 2589  *
 2590  *      Asynchronous barrier write.  Start output on a buffer, but do not
 2591  *      wait for it to complete.  Place a write barrier after this write so
 2592  *      that this buffer and all buffers written before it are committed to
 2593  *      the disk before any buffers written after this write are committed
 2594  *      to the disk.  The buffer is released when the output completes.
 2595  */
 2596 void
 2597 babarrierwrite(struct buf *bp)
 2598 {
 2599 
 2600         bp->b_flags |= B_ASYNC | B_BARRIER;
 2601         (void) bwrite(bp);
 2602 }
 2603 
 2604 /*
 2605  *      bbarrierwrite:
 2606  *
 2607  *      Synchronous barrier write.  Start output on a buffer and wait for
 2608  *      it to complete.  Place a write barrier after this write so that
 2609  *      this buffer and all buffers written before it are committed to 
 2610  *      the disk before any buffers written after this write are committed
 2611  *      to the disk.  The buffer is released when the output completes.
 2612  */
 2613 int
 2614 bbarrierwrite(struct buf *bp)
 2615 {
 2616 
 2617         bp->b_flags |= B_BARRIER;
 2618         return (bwrite(bp));
 2619 }
 2620 
 2621 /*
 2622  *      bwillwrite:
 2623  *
 2624  *      Called prior to the locking of any vnodes when we are expecting to
 2625  *      write.  We do not want to starve the buffer cache with too many
 2626  *      dirty buffers so we block here.  By blocking prior to the locking
 2627  *      of any vnodes we attempt to avoid the situation where a locked vnode
 2628  *      prevents the various system daemons from flushing related buffers.
 2629  */
 2630 void
 2631 bwillwrite(void)
 2632 {
 2633 
 2634         if (buf_dirty_count_severe()) {
 2635                 mtx_lock(&bdirtylock);
 2636                 while (buf_dirty_count_severe()) {
 2637                         bdirtywait = 1;
 2638                         msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
 2639                             "flswai", 0);
 2640                 }
 2641                 mtx_unlock(&bdirtylock);
 2642         }
 2643 }
 2644 
 2645 /*
 2646  * Return true if we have too many dirty buffers.
 2647  */
 2648 int
 2649 buf_dirty_count_severe(void)
 2650 {
 2651 
 2652         return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
 2653 }
 2654 
 2655 /*
 2656  *      brelse:
 2657  *
 2658  *      Release a busy buffer and, if requested, free its resources.  The
 2659  *      buffer will be stashed in the appropriate bufqueue[] allowing it
 2660  *      to be accessed later as a cache entity or reused for other purposes.
 2661  */
 2662 void
 2663 brelse(struct buf *bp)
 2664 {
 2665         struct mount *v_mnt;
 2666         int qindex;
 2667 
 2668         /*
 2669          * Many functions erroneously call brelse with a NULL bp under rare
 2670          * error conditions. Simply return when called with a NULL bp.
 2671          */
 2672         if (bp == NULL)
 2673                 return;
 2674         CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
 2675             bp, bp->b_vp, bp->b_flags);
 2676         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 2677             ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 2678         KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
 2679             ("brelse: non-VMIO buffer marked NOREUSE"));
 2680 
 2681         if (BUF_LOCKRECURSED(bp)) {
 2682                 /*
 2683                  * Do not process, in particular, do not handle the
 2684                  * B_INVAL/B_RELBUF and do not release to free list.
 2685                  */
 2686                 BUF_UNLOCK(bp);
 2687                 return;
 2688         }
 2689 
 2690         if (bp->b_flags & B_MANAGED) {
 2691                 bqrelse(bp);
 2692                 return;
 2693         }
 2694 
 2695         if (LIST_EMPTY(&bp->b_dep)) {
 2696                 bp->b_flags &= ~B_IOSTARTED;
 2697         } else {
 2698                 KASSERT((bp->b_flags & B_IOSTARTED) == 0,
 2699                     ("brelse: SU io not finished bp %p", bp));
 2700         }
 2701 
 2702         if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
 2703                 BO_LOCK(bp->b_bufobj);
 2704                 bp->b_vflags &= ~BV_BKGRDERR;
 2705                 BO_UNLOCK(bp->b_bufobj);
 2706                 bdirty(bp);
 2707         }
 2708 
 2709         if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
 2710             (bp->b_flags & B_INVALONERR)) {
 2711                 /*
 2712                  * Forced invalidation of dirty buffer contents, to be used
 2713                  * after a failed write in the rare case that the loss of the
 2714                  * contents is acceptable.  The buffer is invalidated and
 2715                  * freed.
 2716                  */
 2717                 bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
 2718                 bp->b_flags &= ~(B_ASYNC | B_CACHE);
 2719         }
 2720 
 2721         if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
 2722             (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
 2723             !(bp->b_flags & B_INVAL)) {
 2724                 /*
 2725                  * Failed write, redirty.  All errors except ENXIO (which
 2726                  * means the device is gone) are treated as being
 2727                  * transient.
 2728                  *
 2729                  * XXX Treating EIO as transient is not correct; the
 2730                  * contract with the local storage device drivers is that
 2731                  * they will only return EIO once the I/O is no longer
 2732                  * retriable.  Network I/O also respects this through the
 2733                  * guarantees of TCP and/or the internal retries of NFS.
 2734                  * ENOMEM might be transient, but we also have no way of
 2735                  * knowing when its ok to retry/reschedule.  In general,
 2736                  * this entire case should be made obsolete through better
 2737                  * error handling/recovery and resource scheduling.
 2738                  *
 2739                  * Do this also for buffers that failed with ENXIO, but have
 2740                  * non-empty dependencies - the soft updates code might need
 2741                  * to access the buffer to untangle them.
 2742                  *
 2743                  * Must clear BIO_ERROR to prevent pages from being scrapped.
 2744                  */
 2745                 bp->b_ioflags &= ~BIO_ERROR;
 2746                 bdirty(bp);
 2747         } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 2748             (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
 2749                 /*
 2750                  * Either a failed read I/O, or we were asked to free or not
 2751                  * cache the buffer, or we failed to write to a device that's
 2752                  * no longer present.
 2753                  */
 2754                 bp->b_flags |= B_INVAL;
 2755                 if (!LIST_EMPTY(&bp->b_dep))
 2756                         buf_deallocate(bp);
 2757                 if (bp->b_flags & B_DELWRI)
 2758                         bdirtysub(bp);
 2759                 bp->b_flags &= ~(B_DELWRI | B_CACHE);
 2760                 if ((bp->b_flags & B_VMIO) == 0) {
 2761                         allocbuf(bp, 0);
 2762                         if (bp->b_vp)
 2763                                 brelvp(bp);
 2764                 }
 2765         }
 2766 
 2767         /*
 2768          * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate() 
 2769          * is called with B_DELWRI set, the underlying pages may wind up
 2770          * getting freed causing a previous write (bdwrite()) to get 'lost'
 2771          * because pages associated with a B_DELWRI bp are marked clean.
 2772          * 
 2773          * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
 2774          * if B_DELWRI is set.
 2775          */
 2776         if (bp->b_flags & B_DELWRI)
 2777                 bp->b_flags &= ~B_RELBUF;
 2778 
 2779         /*
 2780          * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 2781          * constituted, not even NFS buffers now.  Two flags effect this.  If
 2782          * B_INVAL, the struct buf is invalidated but the VM object is kept
 2783          * around ( i.e. so it is trivial to reconstitute the buffer later ).
 2784          *
 2785          * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 2786          * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 2787          * buffer is also B_INVAL because it hits the re-dirtying code above.
 2788          *
 2789          * Normally we can do this whether a buffer is B_DELWRI or not.  If
 2790          * the buffer is an NFS buffer, it is tracking piecemeal writes or
 2791          * the commit state and we cannot afford to lose the buffer. If the
 2792          * buffer has a background write in progress, we need to keep it
 2793          * around to prevent it from being reconstituted and starting a second
 2794          * background write.
 2795          */
 2796 
 2797         v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
 2798 
 2799         if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
 2800             (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
 2801             (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
 2802             vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
 2803                 vfs_vmio_invalidate(bp);
 2804                 allocbuf(bp, 0);
 2805         }
 2806 
 2807         if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
 2808             (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
 2809                 allocbuf(bp, 0);
 2810                 bp->b_flags &= ~B_NOREUSE;
 2811                 if (bp->b_vp != NULL)
 2812                         brelvp(bp);
 2813         }
 2814 
 2815         /*
 2816          * If the buffer has junk contents signal it and eventually
 2817          * clean up B_DELWRI and diassociate the vnode so that gbincore()
 2818          * doesn't find it.
 2819          */
 2820         if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
 2821             (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
 2822                 bp->b_flags |= B_INVAL;
 2823         if (bp->b_flags & B_INVAL) {
 2824                 if (bp->b_flags & B_DELWRI)
 2825                         bundirty(bp);
 2826                 if (bp->b_vp)
 2827                         brelvp(bp);
 2828         }
 2829 
 2830         buf_track(bp, __func__);
 2831 
 2832         /* buffers with no memory */
 2833         if (bp->b_bufsize == 0) {
 2834                 buf_free(bp);
 2835                 return;
 2836         }
 2837         /* buffers with junk contents */
 2838         if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 2839             (bp->b_ioflags & BIO_ERROR)) {
 2840                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 2841                 if (bp->b_vflags & BV_BKGRDINPROG)
 2842                         panic("losing buffer 2");
 2843                 qindex = QUEUE_CLEAN;
 2844                 bp->b_flags |= B_AGE;
 2845         /* remaining buffers */
 2846         } else if (bp->b_flags & B_DELWRI)
 2847                 qindex = QUEUE_DIRTY;
 2848         else
 2849                 qindex = QUEUE_CLEAN;
 2850 
 2851         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 2852                 panic("brelse: not dirty");
 2853 
 2854         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
 2855         bp->b_xflags &= ~(BX_CVTENXIO);
 2856         /* binsfree unlocks bp. */
 2857         binsfree(bp, qindex);
 2858 }
 2859 
 2860 /*
 2861  * Release a buffer back to the appropriate queue but do not try to free
 2862  * it.  The buffer is expected to be used again soon.
 2863  *
 2864  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
 2865  * biodone() to requeue an async I/O on completion.  It is also used when
 2866  * known good buffers need to be requeued but we think we may need the data
 2867  * again soon.
 2868  *
 2869  * XXX we should be able to leave the B_RELBUF hint set on completion.
 2870  */
 2871 void
 2872 bqrelse(struct buf *bp)
 2873 {
 2874         int qindex;
 2875 
 2876         CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 2877         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 2878             ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 2879 
 2880         qindex = QUEUE_NONE;
 2881         if (BUF_LOCKRECURSED(bp)) {
 2882                 /* do not release to free list */
 2883                 BUF_UNLOCK(bp);
 2884                 return;
 2885         }
 2886         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 2887         bp->b_xflags &= ~(BX_CVTENXIO);
 2888 
 2889         if (LIST_EMPTY(&bp->b_dep)) {
 2890                 bp->b_flags &= ~B_IOSTARTED;
 2891         } else {
 2892                 KASSERT((bp->b_flags & B_IOSTARTED) == 0,
 2893                     ("bqrelse: SU io not finished bp %p", bp));
 2894         }
 2895 
 2896         if (bp->b_flags & B_MANAGED) {
 2897                 if (bp->b_flags & B_REMFREE)
 2898                         bremfreef(bp);
 2899                 goto out;
 2900         }
 2901 
 2902         /* buffers with stale but valid contents */
 2903         if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
 2904             BV_BKGRDERR)) == BV_BKGRDERR) {
 2905                 BO_LOCK(bp->b_bufobj);
 2906                 bp->b_vflags &= ~BV_BKGRDERR;
 2907                 BO_UNLOCK(bp->b_bufobj);
 2908                 qindex = QUEUE_DIRTY;
 2909         } else {
 2910                 if ((bp->b_flags & B_DELWRI) == 0 &&
 2911                     (bp->b_xflags & BX_VNDIRTY))
 2912                         panic("bqrelse: not dirty");
 2913                 if ((bp->b_flags & B_NOREUSE) != 0) {
 2914                         brelse(bp);
 2915                         return;
 2916                 }
 2917                 qindex = QUEUE_CLEAN;
 2918         }
 2919         buf_track(bp, __func__);
 2920         /* binsfree unlocks bp. */
 2921         binsfree(bp, qindex);
 2922         return;
 2923 
 2924 out:
 2925         buf_track(bp, __func__);
 2926         /* unlock */
 2927         BUF_UNLOCK(bp);
 2928 }
 2929 
 2930 /*
 2931  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
 2932  * restore bogus pages.
 2933  */
 2934 static void
 2935 vfs_vmio_iodone(struct buf *bp)
 2936 {
 2937         vm_ooffset_t foff;
 2938         vm_page_t m;
 2939         vm_object_t obj;
 2940         struct vnode *vp __unused;
 2941         int i, iosize, resid;
 2942         bool bogus;
 2943 
 2944         obj = bp->b_bufobj->bo_object;
 2945         KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
 2946             ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
 2947             blockcount_read(&obj->paging_in_progress), bp->b_npages));
 2948 
 2949         vp = bp->b_vp;
 2950         VNPASS(vp->v_holdcnt > 0, vp);
 2951         VNPASS(vp->v_object != NULL, vp);
 2952 
 2953         foff = bp->b_offset;
 2954         KASSERT(bp->b_offset != NOOFFSET,
 2955             ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
 2956 
 2957         bogus = false;
 2958         iosize = bp->b_bcount - bp->b_resid;
 2959         for (i = 0; i < bp->b_npages; i++) {
 2960                 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 2961                 if (resid > iosize)
 2962                         resid = iosize;
 2963 
 2964                 /*
 2965                  * cleanup bogus pages, restoring the originals
 2966                  */
 2967                 m = bp->b_pages[i];
 2968                 if (m == bogus_page) {
 2969                         bogus = true;
 2970                         m = vm_page_relookup(obj, OFF_TO_IDX(foff));
 2971                         if (m == NULL)
 2972                                 panic("biodone: page disappeared!");
 2973                         bp->b_pages[i] = m;
 2974                 } else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
 2975                         /*
 2976                          * In the write case, the valid and clean bits are
 2977                          * already changed correctly ( see bdwrite() ), so we 
 2978                          * only need to do this here in the read case.
 2979                          */
 2980                         KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
 2981                             resid)) == 0, ("vfs_vmio_iodone: page %p "
 2982                             "has unexpected dirty bits", m));
 2983                         vfs_page_set_valid(bp, foff, m);
 2984                 }
 2985                 KASSERT(OFF_TO_IDX(foff) == m->pindex,
 2986                     ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
 2987                     (intmax_t)foff, (uintmax_t)m->pindex));
 2988 
 2989                 vm_page_sunbusy(m);
 2990                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 2991                 iosize -= resid;
 2992         }
 2993         vm_object_pip_wakeupn(obj, bp->b_npages);
 2994         if (bogus && buf_mapped(bp)) {
 2995                 BUF_CHECK_MAPPED(bp);
 2996                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 2997                     bp->b_pages, bp->b_npages);
 2998         }
 2999 }
 3000 
 3001 /*
 3002  * Perform page invalidation when a buffer is released.  The fully invalid
 3003  * pages will be reclaimed later in vfs_vmio_truncate().
 3004  */
 3005 static void
 3006 vfs_vmio_invalidate(struct buf *bp)
 3007 {
 3008         vm_object_t obj;
 3009         vm_page_t m;
 3010         int flags, i, resid, poffset, presid;
 3011 
 3012         if (buf_mapped(bp)) {
 3013                 BUF_CHECK_MAPPED(bp);
 3014                 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
 3015         } else
 3016                 BUF_CHECK_UNMAPPED(bp);
 3017         /*
 3018          * Get the base offset and length of the buffer.  Note that 
 3019          * in the VMIO case if the buffer block size is not
 3020          * page-aligned then b_data pointer may not be page-aligned.
 3021          * But our b_pages[] array *IS* page aligned.
 3022          *
 3023          * block sizes less then DEV_BSIZE (usually 512) are not 
 3024          * supported due to the page granularity bits (m->valid,
 3025          * m->dirty, etc...). 
 3026          *
 3027          * See man buf(9) for more information
 3028          */
 3029         flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
 3030         obj = bp->b_bufobj->bo_object;
 3031         resid = bp->b_bufsize;
 3032         poffset = bp->b_offset & PAGE_MASK;
 3033         VM_OBJECT_WLOCK(obj);
 3034         for (i = 0; i < bp->b_npages; i++) {
 3035                 m = bp->b_pages[i];
 3036                 if (m == bogus_page)
 3037                         panic("vfs_vmio_invalidate: Unexpected bogus page.");
 3038                 bp->b_pages[i] = NULL;
 3039 
 3040                 presid = resid > (PAGE_SIZE - poffset) ?
 3041                     (PAGE_SIZE - poffset) : resid;
 3042                 KASSERT(presid >= 0, ("brelse: extra page"));
 3043                 vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
 3044                 if (pmap_page_wired_mappings(m) == 0)
 3045                         vm_page_set_invalid(m, poffset, presid);
 3046                 vm_page_sunbusy(m);
 3047                 vm_page_release_locked(m, flags);
 3048                 resid -= presid;
 3049                 poffset = 0;
 3050         }
 3051         VM_OBJECT_WUNLOCK(obj);
 3052         bp->b_npages = 0;
 3053 }
 3054 
 3055 /*
 3056  * Page-granular truncation of an existing VMIO buffer.
 3057  */
 3058 static void
 3059 vfs_vmio_truncate(struct buf *bp, int desiredpages)
 3060 {
 3061         vm_object_t obj;
 3062         vm_page_t m;
 3063         int flags, i;
 3064 
 3065         if (bp->b_npages == desiredpages)
 3066                 return;
 3067 
 3068         if (buf_mapped(bp)) {
 3069                 BUF_CHECK_MAPPED(bp);
 3070                 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
 3071                     (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
 3072         } else
 3073                 BUF_CHECK_UNMAPPED(bp);
 3074 
 3075         /*
 3076          * The object lock is needed only if we will attempt to free pages.
 3077          */
 3078         flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
 3079         if ((bp->b_flags & B_DIRECT) != 0) {
 3080                 flags |= VPR_TRYFREE;
 3081                 obj = bp->b_bufobj->bo_object;
 3082                 VM_OBJECT_WLOCK(obj);
 3083         } else {
 3084                 obj = NULL;
 3085         }
 3086         for (i = desiredpages; i < bp->b_npages; i++) {
 3087                 m = bp->b_pages[i];
 3088                 KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
 3089                 bp->b_pages[i] = NULL;
 3090                 if (obj != NULL)
 3091                         vm_page_release_locked(m, flags);
 3092                 else
 3093                         vm_page_release(m, flags);
 3094         }
 3095         if (obj != NULL)
 3096                 VM_OBJECT_WUNLOCK(obj);
 3097         bp->b_npages = desiredpages;
 3098 }
 3099 
 3100 /*
 3101  * Byte granular extension of VMIO buffers.
 3102  */
 3103 static void
 3104 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
 3105 {
 3106         /*
 3107          * We are growing the buffer, possibly in a 
 3108          * byte-granular fashion.
 3109          */
 3110         vm_object_t obj;
 3111         vm_offset_t toff;
 3112         vm_offset_t tinc;
 3113         vm_page_t m;
 3114 
 3115         /*
 3116          * Step 1, bring in the VM pages from the object, allocating
 3117          * them if necessary.  We must clear B_CACHE if these pages
 3118          * are not valid for the range covered by the buffer.
 3119          */
 3120         obj = bp->b_bufobj->bo_object;
 3121         if (bp->b_npages < desiredpages) {
 3122                 KASSERT(desiredpages <= atop(maxbcachebuf),
 3123                     ("vfs_vmio_extend past maxbcachebuf %p %d %u",
 3124                     bp, desiredpages, maxbcachebuf));
 3125 
 3126                 /*
 3127                  * We must allocate system pages since blocking
 3128                  * here could interfere with paging I/O, no
 3129                  * matter which process we are.
 3130                  *
 3131                  * Only exclusive busy can be tested here.
 3132                  * Blocking on shared busy might lead to
 3133                  * deadlocks once allocbuf() is called after
 3134                  * pages are vfs_busy_pages().
 3135                  */
 3136                 (void)vm_page_grab_pages_unlocked(obj,
 3137                     OFF_TO_IDX(bp->b_offset) + bp->b_npages,
 3138                     VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
 3139                     VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
 3140                     &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
 3141                 bp->b_npages = desiredpages;
 3142         }
 3143 
 3144         /*
 3145          * Step 2.  We've loaded the pages into the buffer,
 3146          * we have to figure out if we can still have B_CACHE
 3147          * set.  Note that B_CACHE is set according to the
 3148          * byte-granular range ( bcount and size ), not the
 3149          * aligned range ( newbsize ).
 3150          *
 3151          * The VM test is against m->valid, which is DEV_BSIZE
 3152          * aligned.  Needless to say, the validity of the data
 3153          * needs to also be DEV_BSIZE aligned.  Note that this
 3154          * fails with NFS if the server or some other client
 3155          * extends the file's EOF.  If our buffer is resized, 
 3156          * B_CACHE may remain set! XXX
 3157          */
 3158         toff = bp->b_bcount;
 3159         tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 3160         while ((bp->b_flags & B_CACHE) && toff < size) {
 3161                 vm_pindex_t pi;
 3162 
 3163                 if (tinc > (size - toff))
 3164                         tinc = size - toff;
 3165                 pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
 3166                 m = bp->b_pages[pi];
 3167                 vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
 3168                 toff += tinc;
 3169                 tinc = PAGE_SIZE;
 3170         }
 3171 
 3172         /*
 3173          * Step 3, fixup the KVA pmap.
 3174          */
 3175         if (buf_mapped(bp))
 3176                 bpmap_qenter(bp);
 3177         else
 3178                 BUF_CHECK_UNMAPPED(bp);
 3179 }
 3180 
 3181 /*
 3182  * Check to see if a block at a particular lbn is available for a clustered
 3183  * write.
 3184  */
 3185 static int
 3186 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 3187 {
 3188         struct buf *bpa;
 3189         int match;
 3190 
 3191         match = 0;
 3192 
 3193         /* If the buf isn't in core skip it */
 3194         if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
 3195                 return (0);
 3196 
 3197         /* If the buf is busy we don't want to wait for it */
 3198         if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 3199                 return (0);
 3200 
 3201         /* Only cluster with valid clusterable delayed write buffers */
 3202         if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 3203             (B_DELWRI | B_CLUSTEROK))
 3204                 goto done;
 3205 
 3206         if (bpa->b_bufsize != size)
 3207                 goto done;
 3208 
 3209         /*
 3210          * Check to see if it is in the expected place on disk and that the
 3211          * block has been mapped.
 3212          */
 3213         if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 3214                 match = 1;
 3215 done:
 3216         BUF_UNLOCK(bpa);
 3217         return (match);
 3218 }
 3219 
 3220 /*
 3221  *      vfs_bio_awrite:
 3222  *
 3223  *      Implement clustered async writes for clearing out B_DELWRI buffers.
 3224  *      This is much better then the old way of writing only one buffer at
 3225  *      a time.  Note that we may not be presented with the buffers in the 
 3226  *      correct order, so we search for the cluster in both directions.
 3227  */
 3228 int
 3229 vfs_bio_awrite(struct buf *bp)
 3230 {
 3231         struct bufobj *bo;
 3232         int i;
 3233         int j;
 3234         daddr_t lblkno = bp->b_lblkno;
 3235         struct vnode *vp = bp->b_vp;
 3236         int ncl;
 3237         int nwritten;
 3238         int size;
 3239         int maxcl;
 3240         int gbflags;
 3241 
 3242         bo = &vp->v_bufobj;
 3243         gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
 3244         /*
 3245          * right now we support clustered writing only to regular files.  If
 3246          * we find a clusterable block we could be in the middle of a cluster
 3247          * rather then at the beginning.
 3248          */
 3249         if ((vp->v_type == VREG) && 
 3250             (vp->v_mount != 0) && /* Only on nodes that have the size info */
 3251             (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 3252                 size = vp->v_mount->mnt_stat.f_iosize;
 3253                 maxcl = maxphys / size;
 3254 
 3255                 BO_RLOCK(bo);
 3256                 for (i = 1; i < maxcl; i++)
 3257                         if (vfs_bio_clcheck(vp, size, lblkno + i,
 3258                             bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 3259                                 break;
 3260 
 3261                 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 3262                         if (vfs_bio_clcheck(vp, size, lblkno - j,
 3263                             bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 3264                                 break;
 3265                 BO_RUNLOCK(bo);
 3266                 --j;
 3267                 ncl = i + j;
 3268                 /*
 3269                  * this is a possible cluster write
 3270                  */
 3271                 if (ncl != 1) {
 3272                         BUF_UNLOCK(bp);
 3273                         nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
 3274                             gbflags);
 3275                         return (nwritten);
 3276                 }
 3277         }
 3278         bremfree(bp);
 3279         bp->b_flags |= B_ASYNC;
 3280         /*
 3281          * default (old) behavior, writing out only one block
 3282          *
 3283          * XXX returns b_bufsize instead of b_bcount for nwritten?
 3284          */
 3285         nwritten = bp->b_bufsize;
 3286         (void) bwrite(bp);
 3287 
 3288         return (nwritten);
 3289 }
 3290 
 3291 /*
 3292  *      getnewbuf_kva:
 3293  *
 3294  *      Allocate KVA for an empty buf header according to gbflags.
 3295  */
 3296 static int
 3297 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
 3298 {
 3299 
 3300         if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
 3301                 /*
 3302                  * In order to keep fragmentation sane we only allocate kva
 3303                  * in BKVASIZE chunks.  XXX with vmem we can do page size.
 3304                  */
 3305                 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 3306 
 3307                 if (maxsize != bp->b_kvasize &&
 3308                     bufkva_alloc(bp, maxsize, gbflags))
 3309                         return (ENOSPC);
 3310         }
 3311         return (0);
 3312 }
 3313 
 3314 /*
 3315  *      getnewbuf:
 3316  *
 3317  *      Find and initialize a new buffer header, freeing up existing buffers
 3318  *      in the bufqueues as necessary.  The new buffer is returned locked.
 3319  *
 3320  *      We block if:
 3321  *              We have insufficient buffer headers
 3322  *              We have insufficient buffer space
 3323  *              buffer_arena is too fragmented ( space reservation fails )
 3324  *              If we have to flush dirty buffers ( but we try to avoid this )
 3325  *
 3326  *      The caller is responsible for releasing the reserved bufspace after
 3327  *      allocbuf() is called.
 3328  */
 3329 static struct buf *
 3330 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
 3331 {
 3332         struct bufdomain *bd;
 3333         struct buf *bp;
 3334         bool metadata, reserved;
 3335 
 3336         bp = NULL;
 3337         KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
 3338             ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
 3339         if (!unmapped_buf_allowed)
 3340                 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 3341 
 3342         if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
 3343             vp->v_type == VCHR)
 3344                 metadata = true;
 3345         else
 3346                 metadata = false;
 3347         if (vp == NULL)
 3348                 bd = &bdomain[0];
 3349         else
 3350                 bd = &bdomain[vp->v_bufobj.bo_domain];
 3351 
 3352         counter_u64_add(getnewbufcalls, 1);
 3353         reserved = false;
 3354         do {
 3355                 if (reserved == false &&
 3356                     bufspace_reserve(bd, maxsize, metadata) != 0) {
 3357                         counter_u64_add(getnewbufrestarts, 1);
 3358                         continue;
 3359                 }
 3360                 reserved = true;
 3361                 if ((bp = buf_alloc(bd)) == NULL) {
 3362                         counter_u64_add(getnewbufrestarts, 1);
 3363                         continue;
 3364                 }
 3365                 if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
 3366                         return (bp);
 3367                 break;
 3368         } while (buf_recycle(bd, false) == 0);
 3369 
 3370         if (reserved)
 3371                 bufspace_release(bd, maxsize);
 3372         if (bp != NULL) {
 3373                 bp->b_flags |= B_INVAL;
 3374                 brelse(bp);
 3375         }
 3376         bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
 3377 
 3378         return (NULL);
 3379 }
 3380 
 3381 /*
 3382  *      buf_daemon:
 3383  *
 3384  *      buffer flushing daemon.  Buffers are normally flushed by the
 3385  *      update daemon but if it cannot keep up this process starts to
 3386  *      take the load in an attempt to prevent getnewbuf() from blocking.
 3387  */
 3388 static struct kproc_desc buf_kp = {
 3389         "bufdaemon",
 3390         buf_daemon,
 3391         &bufdaemonproc
 3392 };
 3393 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
 3394 
 3395 static int
 3396 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
 3397 {
 3398         int flushed;
 3399 
 3400         flushed = flushbufqueues(vp, bd, target, 0);
 3401         if (flushed == 0) {
 3402                 /*
 3403                  * Could not find any buffers without rollback
 3404                  * dependencies, so just write the first one
 3405                  * in the hopes of eventually making progress.
 3406                  */
 3407                 if (vp != NULL && target > 2)
 3408                         target /= 2;
 3409                 flushbufqueues(vp, bd, target, 1);
 3410         }
 3411         return (flushed);
 3412 }
 3413 
 3414 static void
 3415 buf_daemon_shutdown(void *arg __unused, int howto __unused)
 3416 {
 3417         int error;
 3418 
 3419         mtx_lock(&bdlock);
 3420         bd_shutdown = true;
 3421         wakeup(&bd_request);
 3422         error = msleep(&bd_shutdown, &bdlock, 0, "buf_daemon_shutdown",
 3423             60 * hz);
 3424         mtx_unlock(&bdlock);
 3425         if (error != 0)
 3426                 printf("bufdaemon wait error: %d\n", error);
 3427 }
 3428 
 3429 static void
 3430 buf_daemon(void)
 3431 {
 3432         struct bufdomain *bd;
 3433         int speedupreq;
 3434         int lodirty;
 3435         int i;
 3436 
 3437         /*
 3438          * This process needs to be suspended prior to shutdown sync.
 3439          */
 3440         EVENTHANDLER_REGISTER(shutdown_pre_sync, buf_daemon_shutdown, NULL,
 3441             SHUTDOWN_PRI_LAST + 100);
 3442 
 3443         /*
 3444          * Start the buf clean daemons as children threads.
 3445          */
 3446         for (i = 0 ; i < buf_domains; i++) {
 3447                 int error;
 3448 
 3449                 error = kthread_add((void (*)(void *))bufspace_daemon,
 3450                     &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
 3451                 if (error)
 3452                         panic("error %d spawning bufspace daemon", error);
 3453         }
 3454 
 3455         /*
 3456          * This process is allowed to take the buffer cache to the limit
 3457          */
 3458         curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
 3459         mtx_lock(&bdlock);
 3460         while (!bd_shutdown) {
 3461                 bd_request = 0;
 3462                 mtx_unlock(&bdlock);
 3463 
 3464                 /*
 3465                  * Save speedupreq for this pass and reset to capture new
 3466                  * requests.
 3467                  */
 3468                 speedupreq = bd_speedupreq;
 3469                 bd_speedupreq = 0;
 3470 
 3471                 /*
 3472                  * Flush each domain sequentially according to its level and
 3473                  * the speedup request.
 3474                  */
 3475                 for (i = 0; i < buf_domains; i++) {
 3476                         bd = &bdomain[i];
 3477                         if (speedupreq)
 3478                                 lodirty = bd->bd_numdirtybuffers / 2;
 3479                         else
 3480                                 lodirty = bd->bd_lodirtybuffers;
 3481                         while (bd->bd_numdirtybuffers > lodirty) {
 3482                                 if (buf_flush(NULL, bd,
 3483                                     bd->bd_numdirtybuffers - lodirty) == 0)
 3484                                         break;
 3485                                 kern_yield(PRI_USER);
 3486                         }
 3487                 }
 3488 
 3489                 /*
 3490                  * Only clear bd_request if we have reached our low water
 3491                  * mark.  The buf_daemon normally waits 1 second and
 3492                  * then incrementally flushes any dirty buffers that have
 3493                  * built up, within reason.
 3494                  *
 3495                  * If we were unable to hit our low water mark and couldn't
 3496                  * find any flushable buffers, we sleep for a short period
 3497                  * to avoid endless loops on unlockable buffers.
 3498                  */
 3499                 mtx_lock(&bdlock);
 3500                 if (bd_shutdown)
 3501                         break;
 3502                 if (BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
 3503                         /*
 3504                          * We reached our low water mark, reset the
 3505                          * request and sleep until we are needed again.
 3506                          * The sleep is just so the suspend code works.
 3507                          */
 3508                         bd_request = 0;
 3509                         /*
 3510                          * Do an extra wakeup in case dirty threshold
 3511                          * changed via sysctl and the explicit transition
 3512                          * out of shortfall was missed.
 3513                          */
 3514                         bdirtywakeup();
 3515                         if (runningbufspace <= lorunningspace)
 3516                                 runningwakeup();
 3517                         msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 3518                 } else {
 3519                         /*
 3520                          * We couldn't find any flushable dirty buffers but
 3521                          * still have too many dirty buffers, we
 3522                          * have to sleep and try again.  (rare)
 3523                          */
 3524                         msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 3525                 }
 3526         }
 3527         wakeup(&bd_shutdown);
 3528         mtx_unlock(&bdlock);
 3529         kthread_exit();
 3530 }
 3531 
 3532 /*
 3533  *      flushbufqueues:
 3534  *
 3535  *      Try to flush a buffer in the dirty queue.  We must be careful to
 3536  *      free up B_INVAL buffers instead of write them, which NFS is 
 3537  *      particularly sensitive to.
 3538  */
 3539 static int flushwithdeps = 0;
 3540 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
 3541     &flushwithdeps, 0,
 3542     "Number of buffers flushed with dependencies that require rollbacks");
 3543 
 3544 static int
 3545 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
 3546     int flushdeps)
 3547 {
 3548         struct bufqueue *bq;
 3549         struct buf *sentinel;
 3550         struct vnode *vp;
 3551         struct mount *mp;
 3552         struct buf *bp;
 3553         int hasdeps;
 3554         int flushed;
 3555         int error;
 3556         bool unlock;
 3557 
 3558         flushed = 0;
 3559         bq = &bd->bd_dirtyq;
 3560         bp = NULL;
 3561         sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
 3562         sentinel->b_qindex = QUEUE_SENTINEL;
 3563         BQ_LOCK(bq);
 3564         TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
 3565         BQ_UNLOCK(bq);
 3566         while (flushed != target) {
 3567                 maybe_yield();
 3568                 BQ_LOCK(bq);
 3569                 bp = TAILQ_NEXT(sentinel, b_freelist);
 3570                 if (bp != NULL) {
 3571                         TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
 3572                         TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
 3573                             b_freelist);
 3574                 } else {
 3575                         BQ_UNLOCK(bq);
 3576                         break;
 3577                 }
 3578                 /*
 3579                  * Skip sentinels inserted by other invocations of the
 3580                  * flushbufqueues(), taking care to not reorder them.
 3581                  *
 3582                  * Only flush the buffers that belong to the
 3583                  * vnode locked by the curthread.
 3584                  */
 3585                 if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
 3586                     bp->b_vp != lvp)) {
 3587                         BQ_UNLOCK(bq);
 3588                         continue;
 3589                 }
 3590                 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
 3591                 BQ_UNLOCK(bq);
 3592                 if (error != 0)
 3593                         continue;
 3594 
 3595                 /*
 3596                  * BKGRDINPROG can only be set with the buf and bufobj
 3597                  * locks both held.  We tolerate a race to clear it here.
 3598                  */
 3599                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
 3600                     (bp->b_flags & B_DELWRI) == 0) {
 3601                         BUF_UNLOCK(bp);
 3602                         continue;
 3603                 }
 3604                 if (bp->b_flags & B_INVAL) {
 3605                         bremfreef(bp);
 3606                         brelse(bp);
 3607                         flushed++;
 3608                         continue;
 3609                 }
 3610 
 3611                 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
 3612                         if (flushdeps == 0) {
 3613                                 BUF_UNLOCK(bp);
 3614                                 continue;
 3615                         }
 3616                         hasdeps = 1;
 3617                 } else
 3618                         hasdeps = 0;
 3619                 /*
 3620                  * We must hold the lock on a vnode before writing
 3621                  * one of its buffers. Otherwise we may confuse, or
 3622                  * in the case of a snapshot vnode, deadlock the
 3623                  * system.
 3624                  *
 3625                  * The lock order here is the reverse of the normal
 3626                  * of vnode followed by buf lock.  This is ok because
 3627                  * the NOWAIT will prevent deadlock.
 3628                  */
 3629                 vp = bp->b_vp;
 3630                 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 3631                         BUF_UNLOCK(bp);
 3632                         continue;
 3633                 }
 3634                 if (lvp == NULL) {
 3635                         unlock = true;
 3636                         error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
 3637                 } else {
 3638                         ASSERT_VOP_LOCKED(vp, "getbuf");
 3639                         unlock = false;
 3640                         error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
 3641                             vn_lock(vp, LK_TRYUPGRADE);
 3642                 }
 3643                 if (error == 0) {
 3644                         CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
 3645                             bp, bp->b_vp, bp->b_flags);
 3646                         if (curproc == bufdaemonproc) {
 3647                                 vfs_bio_awrite(bp);
 3648                         } else {
 3649                                 bremfree(bp);
 3650                                 bwrite(bp);
 3651                                 counter_u64_add(notbufdflushes, 1);
 3652                         }
 3653                         vn_finished_write(mp);
 3654                         if (unlock)
 3655                                 VOP_UNLOCK(vp);
 3656                         flushwithdeps += hasdeps;
 3657                         flushed++;
 3658 
 3659                         /*
 3660                          * Sleeping on runningbufspace while holding
 3661                          * vnode lock leads to deadlock.
 3662                          */
 3663                         if (curproc == bufdaemonproc &&
 3664                             runningbufspace > hirunningspace)
 3665                                 waitrunningbufspace();
 3666                         continue;
 3667                 }
 3668                 vn_finished_write(mp);
 3669                 BUF_UNLOCK(bp);
 3670         }
 3671         BQ_LOCK(bq);
 3672         TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
 3673         BQ_UNLOCK(bq);
 3674         free(sentinel, M_TEMP);
 3675         return (flushed);
 3676 }
 3677 
 3678 /*
 3679  * Check to see if a block is currently memory resident.
 3680  */
 3681 struct buf *
 3682 incore(struct bufobj *bo, daddr_t blkno)
 3683 {
 3684         return (gbincore_unlocked(bo, blkno));
 3685 }
 3686 
 3687 /*
 3688  * Returns true if no I/O is needed to access the
 3689  * associated VM object.  This is like incore except
 3690  * it also hunts around in the VM system for the data.
 3691  */
 3692 bool
 3693 inmem(struct vnode * vp, daddr_t blkno)
 3694 {
 3695         vm_object_t obj;
 3696         vm_offset_t toff, tinc, size;
 3697         vm_page_t m, n;
 3698         vm_ooffset_t off;
 3699         int valid;
 3700 
 3701         ASSERT_VOP_LOCKED(vp, "inmem");
 3702 
 3703         if (incore(&vp->v_bufobj, blkno))
 3704                 return (true);
 3705         if (vp->v_mount == NULL)
 3706                 return (false);
 3707         obj = vp->v_object;
 3708         if (obj == NULL)
 3709                 return (false);
 3710 
 3711         size = PAGE_SIZE;
 3712         if (size > vp->v_mount->mnt_stat.f_iosize)
 3713                 size = vp->v_mount->mnt_stat.f_iosize;
 3714         off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 3715 
 3716         for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 3717                 m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
 3718 recheck:
 3719                 if (m == NULL)
 3720                         return (false);
 3721 
 3722                 tinc = size;
 3723                 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 3724                         tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 3725                 /*
 3726                  * Consider page validity only if page mapping didn't change
 3727                  * during the check.
 3728                  */
 3729                 valid = vm_page_is_valid(m,
 3730                     (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
 3731                 n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
 3732                 if (m != n) {
 3733                         m = n;
 3734                         goto recheck;
 3735                 }
 3736                 if (!valid)
 3737                         return (false);
 3738         }
 3739         return (true);
 3740 }
 3741 
 3742 /*
 3743  * Set the dirty range for a buffer based on the status of the dirty
 3744  * bits in the pages comprising the buffer.  The range is limited
 3745  * to the size of the buffer.
 3746  *
 3747  * Tell the VM system that the pages associated with this buffer
 3748  * are clean.  This is used for delayed writes where the data is
 3749  * going to go to disk eventually without additional VM intevention.
 3750  *
 3751  * Note that while we only really need to clean through to b_bcount, we
 3752  * just go ahead and clean through to b_bufsize.
 3753  */
 3754 static void
 3755 vfs_clean_pages_dirty_buf(struct buf *bp)
 3756 {
 3757         vm_ooffset_t foff, noff, eoff;
 3758         vm_page_t m;
 3759         int i;
 3760 
 3761         if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
 3762                 return;
 3763 
 3764         foff = bp->b_offset;
 3765         KASSERT(bp->b_offset != NOOFFSET,
 3766             ("vfs_clean_pages_dirty_buf: no buffer offset"));
 3767 
 3768         vfs_busy_pages_acquire(bp);
 3769         vfs_setdirty_range(bp);
 3770         for (i = 0; i < bp->b_npages; i++) {
 3771                 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3772                 eoff = noff;
 3773                 if (eoff > bp->b_offset + bp->b_bufsize)
 3774                         eoff = bp->b_offset + bp->b_bufsize;
 3775                 m = bp->b_pages[i];
 3776                 vfs_page_set_validclean(bp, foff, m);
 3777                 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 3778                 foff = noff;
 3779         }
 3780         vfs_busy_pages_release(bp);
 3781 }
 3782 
 3783 static void
 3784 vfs_setdirty_range(struct buf *bp)
 3785 {
 3786         vm_offset_t boffset;
 3787         vm_offset_t eoffset;
 3788         int i;
 3789 
 3790         /*
 3791          * test the pages to see if they have been modified directly
 3792          * by users through the VM system.
 3793          */
 3794         for (i = 0; i < bp->b_npages; i++)
 3795                 vm_page_test_dirty(bp->b_pages[i]);
 3796 
 3797         /*
 3798          * Calculate the encompassing dirty range, boffset and eoffset,
 3799          * (eoffset - boffset) bytes.
 3800          */
 3801 
 3802         for (i = 0; i < bp->b_npages; i++) {
 3803                 if (bp->b_pages[i]->dirty)
 3804                         break;
 3805         }
 3806         boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 3807 
 3808         for (i = bp->b_npages - 1; i >= 0; --i) {
 3809                 if (bp->b_pages[i]->dirty) {
 3810                         break;
 3811                 }
 3812         }
 3813         eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 3814 
 3815         /*
 3816          * Fit it to the buffer.
 3817          */
 3818 
 3819         if (eoffset > bp->b_bcount)
 3820                 eoffset = bp->b_bcount;
 3821 
 3822         /*
 3823          * If we have a good dirty range, merge with the existing
 3824          * dirty range.
 3825          */
 3826 
 3827         if (boffset < eoffset) {
 3828                 if (bp->b_dirtyoff > boffset)
 3829                         bp->b_dirtyoff = boffset;
 3830                 if (bp->b_dirtyend < eoffset)
 3831                         bp->b_dirtyend = eoffset;
 3832         }
 3833 }
 3834 
 3835 /*
 3836  * Allocate the KVA mapping for an existing buffer.
 3837  * If an unmapped buffer is provided but a mapped buffer is requested, take
 3838  * also care to properly setup mappings between pages and KVA.
 3839  */
 3840 static void
 3841 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
 3842 {
 3843         int bsize, maxsize, need_mapping, need_kva;
 3844         off_t offset;
 3845 
 3846         need_mapping = bp->b_data == unmapped_buf &&
 3847             (gbflags & GB_UNMAPPED) == 0;
 3848         need_kva = bp->b_kvabase == unmapped_buf &&
 3849             bp->b_data == unmapped_buf &&
 3850             (gbflags & GB_KVAALLOC) != 0;
 3851         if (!need_mapping && !need_kva)
 3852                 return;
 3853 
 3854         BUF_CHECK_UNMAPPED(bp);
 3855 
 3856         if (need_mapping && bp->b_kvabase != unmapped_buf) {
 3857                 /*
 3858                  * Buffer is not mapped, but the KVA was already
 3859                  * reserved at the time of the instantiation.  Use the
 3860                  * allocated space.
 3861                  */
 3862                 goto has_addr;
 3863         }
 3864 
 3865         /*
 3866          * Calculate the amount of the address space we would reserve
 3867          * if the buffer was mapped.
 3868          */
 3869         bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
 3870         KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
 3871         offset = blkno * bsize;
 3872         maxsize = size + (offset & PAGE_MASK);
 3873         maxsize = imax(maxsize, bsize);
 3874 
 3875         while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
 3876                 if ((gbflags & GB_NOWAIT_BD) != 0) {
 3877                         /*
 3878                          * XXXKIB: defragmentation cannot
 3879                          * succeed, not sure what else to do.
 3880                          */
 3881                         panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
 3882                 }
 3883                 counter_u64_add(mappingrestarts, 1);
 3884                 bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
 3885         }
 3886 has_addr:
 3887         if (need_mapping) {
 3888                 /* b_offset is handled by bpmap_qenter. */
 3889                 bp->b_data = bp->b_kvabase;
 3890                 BUF_CHECK_MAPPED(bp);
 3891                 bpmap_qenter(bp);
 3892         }
 3893 }
 3894 
 3895 struct buf *
 3896 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
 3897     int flags)
 3898 {
 3899         struct buf *bp;
 3900         int error;
 3901 
 3902         error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
 3903         if (error != 0)
 3904                 return (NULL);
 3905         return (bp);
 3906 }
 3907 
 3908 /*
 3909  *      getblkx:
 3910  *
 3911  *      Get a block given a specified block and offset into a file/device.
 3912  *      The buffers B_DONE bit will be cleared on return, making it almost
 3913  *      ready for an I/O initiation.  B_INVAL may or may not be set on 
 3914  *      return.  The caller should clear B_INVAL prior to initiating a
 3915  *      READ.
 3916  *
 3917  *      For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
 3918  *      an existing buffer.
 3919  *
 3920  *      For a VMIO buffer, B_CACHE is modified according to the backing VM.
 3921  *      If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
 3922  *      and then cleared based on the backing VM.  If the previous buffer is
 3923  *      non-0-sized but invalid, B_CACHE will be cleared.
 3924  *
 3925  *      If getblk() must create a new buffer, the new buffer is returned with
 3926  *      both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
 3927  *      case it is returned with B_INVAL clear and B_CACHE set based on the
 3928  *      backing VM.
 3929  *
 3930  *      getblk() also forces a bwrite() for any B_DELWRI buffer whose
 3931  *      B_CACHE bit is clear.
 3932  *
 3933  *      What this means, basically, is that the caller should use B_CACHE to
 3934  *      determine whether the buffer is fully valid or not and should clear
 3935  *      B_INVAL prior to issuing a read.  If the caller intends to validate
 3936  *      the buffer by loading its data area with something, the caller needs
 3937  *      to clear B_INVAL.  If the caller does this without issuing an I/O, 
 3938  *      the caller should set B_CACHE ( as an optimization ), else the caller
 3939  *      should issue the I/O and biodone() will set B_CACHE if the I/O was
 3940  *      a write attempt or if it was a successful read.  If the caller 
 3941  *      intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
 3942  *      prior to issuing the READ.  biodone() will *not* clear B_INVAL.
 3943  *
 3944  *      The blkno parameter is the logical block being requested. Normally
 3945  *      the mapping of logical block number to disk block address is done
 3946  *      by calling VOP_BMAP(). However, if the mapping is already known, the
 3947  *      disk block address can be passed using the dblkno parameter. If the
 3948  *      disk block address is not known, then the same value should be passed
 3949  *      for blkno and dblkno.
 3950  */
 3951 int
 3952 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
 3953     int slptimeo, int flags, struct buf **bpp)
 3954 {
 3955         struct buf *bp;
 3956         struct bufobj *bo;
 3957         daddr_t d_blkno;
 3958         int bsize, error, maxsize, vmio;
 3959         off_t offset;
 3960 
 3961         CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
 3962         KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
 3963             ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
 3964         if (vp->v_type != VCHR)
 3965                 ASSERT_VOP_LOCKED(vp, "getblk");
 3966         if (size > maxbcachebuf)
 3967                 panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
 3968                     maxbcachebuf);
 3969         if (!unmapped_buf_allowed)
 3970                 flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 3971 
 3972         bo = &vp->v_bufobj;
 3973         d_blkno = dblkno;
 3974 
 3975         /* Attempt lockless lookup first. */
 3976         bp = gbincore_unlocked(bo, blkno);
 3977         if (bp == NULL) {
 3978                 /*
 3979                  * With GB_NOCREAT we must be sure about not finding the buffer
 3980                  * as it may have been reassigned during unlocked lookup.
 3981                  */
 3982                 if ((flags & GB_NOCREAT) != 0)
 3983                         goto loop;
 3984                 goto newbuf_unlocked;
 3985         }
 3986 
 3987         error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
 3988             0);
 3989         if (error != 0)
 3990                 goto loop;
 3991 
 3992         /* Verify buf identify has not changed since lookup. */
 3993         if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
 3994                 goto foundbuf_fastpath;
 3995 
 3996         /* It changed, fallback to locked lookup. */
 3997         BUF_UNLOCK_RAW(bp);
 3998 
 3999 loop:
 4000         BO_RLOCK(bo);
 4001         bp = gbincore(bo, blkno);
 4002         if (bp != NULL) {
 4003                 int lockflags;
 4004 
 4005                 /*
 4006                  * Buffer is in-core.  If the buffer is not busy nor managed,
 4007                  * it must be on a queue.
 4008                  */
 4009                 lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
 4010                     ((flags & GB_LOCK_NOWAIT) != 0 ? LK_NOWAIT : LK_SLEEPFAIL);
 4011 #ifdef WITNESS
 4012                 lockflags |= (flags & GB_NOWITNESS) != 0 ? LK_NOWITNESS : 0;
 4013 #endif
 4014 
 4015                 error = BUF_TIMELOCK(bp, lockflags,
 4016                     BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
 4017 
 4018                 /*
 4019                  * If we slept and got the lock we have to restart in case
 4020                  * the buffer changed identities.
 4021                  */
 4022                 if (error == ENOLCK)
 4023                         goto loop;
 4024                 /* We timed out or were interrupted. */
 4025                 else if (error != 0)
 4026                         return (error);
 4027 
 4028 foundbuf_fastpath:
 4029                 /* If recursed, assume caller knows the rules. */
 4030                 if (BUF_LOCKRECURSED(bp))
 4031                         goto end;
 4032 
 4033                 /*
 4034                  * The buffer is locked.  B_CACHE is cleared if the buffer is 
 4035                  * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 4036                  * and for a VMIO buffer B_CACHE is adjusted according to the
 4037                  * backing VM cache.
 4038                  */
 4039                 if (bp->b_flags & B_INVAL)
 4040                         bp->b_flags &= ~B_CACHE;
 4041                 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 4042                         bp->b_flags |= B_CACHE;
 4043                 if (bp->b_flags & B_MANAGED)
 4044                         MPASS(bp->b_qindex == QUEUE_NONE);
 4045                 else
 4046                         bremfree(bp);
 4047 
 4048                 /*
 4049                  * check for size inconsistencies for non-VMIO case.
 4050                  */
 4051                 if (bp->b_bcount != size) {
 4052                         if ((bp->b_flags & B_VMIO) == 0 ||
 4053                             (size > bp->b_kvasize)) {
 4054                                 if (bp->b_flags & B_DELWRI) {
 4055                                         bp->b_flags |= B_NOCACHE;
 4056                                         bwrite(bp);
 4057                                 } else {
 4058                                         if (LIST_EMPTY(&bp->b_dep)) {
 4059                                                 bp->b_flags |= B_RELBUF;
 4060                                                 brelse(bp);
 4061                                         } else {
 4062                                                 bp->b_flags |= B_NOCACHE;
 4063                                                 bwrite(bp);
 4064                                         }
 4065                                 }
 4066                                 goto loop;
 4067                         }
 4068                 }
 4069 
 4070                 /*
 4071                  * Handle the case of unmapped buffer which should
 4072                  * become mapped, or the buffer for which KVA
 4073                  * reservation is requested.
 4074                  */
 4075                 bp_unmapped_get_kva(bp, blkno, size, flags);
 4076 
 4077                 /*
 4078                  * If the size is inconsistent in the VMIO case, we can resize
 4079                  * the buffer.  This might lead to B_CACHE getting set or
 4080                  * cleared.  If the size has not changed, B_CACHE remains
 4081                  * unchanged from its previous state.
 4082                  */
 4083                 allocbuf(bp, size);
 4084 
 4085                 KASSERT(bp->b_offset != NOOFFSET, 
 4086                     ("getblk: no buffer offset"));
 4087 
 4088                 /*
 4089                  * A buffer with B_DELWRI set and B_CACHE clear must
 4090                  * be committed before we can return the buffer in
 4091                  * order to prevent the caller from issuing a read
 4092                  * ( due to B_CACHE not being set ) and overwriting
 4093                  * it.
 4094                  *
 4095                  * Most callers, including NFS and FFS, need this to
 4096                  * operate properly either because they assume they
 4097                  * can issue a read if B_CACHE is not set, or because
 4098                  * ( for example ) an uncached B_DELWRI might loop due 
 4099                  * to softupdates re-dirtying the buffer.  In the latter
 4100                  * case, B_CACHE is set after the first write completes,
 4101                  * preventing further loops.
 4102                  * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 4103                  * above while extending the buffer, we cannot allow the
 4104                  * buffer to remain with B_CACHE set after the write
 4105                  * completes or it will represent a corrupt state.  To
 4106                  * deal with this we set B_NOCACHE to scrap the buffer
 4107                  * after the write.
 4108                  *
 4109                  * We might be able to do something fancy, like setting
 4110                  * B_CACHE in bwrite() except if B_DELWRI is already set,
 4111                  * so the below call doesn't set B_CACHE, but that gets real
 4112                  * confusing.  This is much easier.
 4113                  */
 4114 
 4115                 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 4116                         bp->b_flags |= B_NOCACHE;
 4117                         bwrite(bp);
 4118                         goto loop;
 4119                 }
 4120                 bp->b_flags &= ~B_DONE;
 4121         } else {
 4122                 /*
 4123                  * Buffer is not in-core, create new buffer.  The buffer
 4124                  * returned by getnewbuf() is locked.  Note that the returned
 4125                  * buffer is also considered valid (not marked B_INVAL).
 4126                  */
 4127                 BO_RUNLOCK(bo);
 4128 newbuf_unlocked:
 4129                 /*
 4130                  * If the user does not want us to create the buffer, bail out
 4131                  * here.
 4132                  */
 4133                 if (flags & GB_NOCREAT)
 4134                         return (EEXIST);
 4135 
 4136                 bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
 4137                 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
 4138                 offset = blkno * bsize;
 4139                 vmio = vp->v_object != NULL;
 4140                 if (vmio) {
 4141                         maxsize = size + (offset & PAGE_MASK);
 4142                 } else {
 4143                         maxsize = size;
 4144                         /* Do not allow non-VMIO notmapped buffers. */
 4145                         flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 4146                 }
 4147                 maxsize = imax(maxsize, bsize);
 4148                 if ((flags & GB_NOSPARSE) != 0 && vmio &&
 4149                     !vn_isdisk(vp)) {
 4150                         error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
 4151                         KASSERT(error != EOPNOTSUPP,
 4152                             ("GB_NOSPARSE from fs not supporting bmap, vp %p",
 4153                             vp));
 4154                         if (error != 0)
 4155                                 return (error);
 4156                         if (d_blkno == -1)
 4157                                 return (EJUSTRETURN);
 4158                 }
 4159 
 4160                 bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
 4161                 if (bp == NULL) {
 4162                         if (slpflag || slptimeo)
 4163                                 return (ETIMEDOUT);
 4164                         /*
 4165                          * XXX This is here until the sleep path is diagnosed
 4166                          * enough to work under very low memory conditions.
 4167                          *
 4168                          * There's an issue on low memory, 4BSD+non-preempt
 4169                          * systems (eg MIPS routers with 32MB RAM) where buffer
 4170                          * exhaustion occurs without sleeping for buffer
 4171                          * reclaimation.  This just sticks in a loop and
 4172                          * constantly attempts to allocate a buffer, which
 4173                          * hits exhaustion and tries to wakeup bufdaemon.
 4174                          * This never happens because we never yield.
 4175                          *
 4176                          * The real solution is to identify and fix these cases
 4177                          * so we aren't effectively busy-waiting in a loop
 4178                          * until the reclaimation path has cycles to run.
 4179                          */
 4180                         kern_yield(PRI_USER);
 4181                         goto loop;
 4182                 }
 4183 
 4184                 /*
 4185                  * This code is used to make sure that a buffer is not
 4186                  * created while the getnewbuf routine is blocked.
 4187                  * This can be a problem whether the vnode is locked or not.
 4188                  * If the buffer is created out from under us, we have to
 4189                  * throw away the one we just created.
 4190                  *
 4191                  * Note: this must occur before we associate the buffer
 4192                  * with the vp especially considering limitations in
 4193                  * the splay tree implementation when dealing with duplicate
 4194                  * lblkno's.
 4195                  */
 4196                 BO_LOCK(bo);
 4197                 if (gbincore(bo, blkno)) {
 4198                         BO_UNLOCK(bo);
 4199                         bp->b_flags |= B_INVAL;
 4200                         bufspace_release(bufdomain(bp), maxsize);
 4201                         brelse(bp);
 4202                         goto loop;
 4203                 }
 4204 
 4205                 /*
 4206                  * Insert the buffer into the hash, so that it can
 4207                  * be found by incore.
 4208                  */
 4209                 bp->b_lblkno = blkno;
 4210                 bp->b_blkno = d_blkno;
 4211                 bp->b_offset = offset;
 4212                 bgetvp(vp, bp);
 4213                 BO_UNLOCK(bo);
 4214 
 4215                 /*
 4216                  * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 4217                  * buffer size starts out as 0, B_CACHE will be set by
 4218                  * allocbuf() for the VMIO case prior to it testing the
 4219                  * backing store for validity.
 4220                  */
 4221 
 4222                 if (vmio) {
 4223                         bp->b_flags |= B_VMIO;
 4224                         KASSERT(vp->v_object == bp->b_bufobj->bo_object,
 4225                             ("ARGH! different b_bufobj->bo_object %p %p %p\n",
 4226                             bp, vp->v_object, bp->b_bufobj->bo_object));
 4227                 } else {
 4228                         bp->b_flags &= ~B_VMIO;
 4229                         KASSERT(bp->b_bufobj->bo_object == NULL,
 4230                             ("ARGH! has b_bufobj->bo_object %p %p\n",
 4231                             bp, bp->b_bufobj->bo_object));
 4232                         BUF_CHECK_MAPPED(bp);
 4233                 }
 4234 
 4235                 allocbuf(bp, size);
 4236                 bufspace_release(bufdomain(bp), maxsize);
 4237                 bp->b_flags &= ~B_DONE;
 4238         }
 4239         CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
 4240 end:
 4241         buf_track(bp, __func__);
 4242         KASSERT(bp->b_bufobj == bo,
 4243             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 4244         *bpp = bp;
 4245         return (0);
 4246 }
 4247 
 4248 /*
 4249  * Get an empty, disassociated buffer of given size.  The buffer is initially
 4250  * set to B_INVAL.
 4251  */
 4252 struct buf *
 4253 geteblk(int size, int flags)
 4254 {
 4255         struct buf *bp;
 4256         int maxsize;
 4257 
 4258         maxsize = (size + BKVAMASK) & ~BKVAMASK;
 4259         while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
 4260                 if ((flags & GB_NOWAIT_BD) &&
 4261                     (curthread->td_pflags & TDP_BUFNEED) != 0)
 4262                         return (NULL);
 4263         }
 4264         allocbuf(bp, size);
 4265         bufspace_release(bufdomain(bp), maxsize);
 4266         bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
 4267         return (bp);
 4268 }
 4269 
 4270 /*
 4271  * Truncate the backing store for a non-vmio buffer.
 4272  */
 4273 static void
 4274 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
 4275 {
 4276 
 4277         if (bp->b_flags & B_MALLOC) {
 4278                 /*
 4279                  * malloced buffers are not shrunk
 4280                  */
 4281                 if (newbsize == 0) {
 4282                         bufmallocadjust(bp, 0);
 4283                         free(bp->b_data, M_BIOBUF);
 4284                         bp->b_data = bp->b_kvabase;
 4285                         bp->b_flags &= ~B_MALLOC;
 4286                 }
 4287                 return;
 4288         }
 4289         vm_hold_free_pages(bp, newbsize);
 4290         bufspace_adjust(bp, newbsize);
 4291 }
 4292 
 4293 /*
 4294  * Extend the backing for a non-VMIO buffer.
 4295  */
 4296 static void
 4297 vfs_nonvmio_extend(struct buf *bp, int newbsize)
 4298 {
 4299         caddr_t origbuf;
 4300         int origbufsize;
 4301 
 4302         /*
 4303          * We only use malloced memory on the first allocation.
 4304          * and revert to page-allocated memory when the buffer
 4305          * grows.
 4306          *
 4307          * There is a potential smp race here that could lead
 4308          * to bufmallocspace slightly passing the max.  It
 4309          * is probably extremely rare and not worth worrying
 4310          * over.
 4311          */
 4312         if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
 4313             bufmallocspace < maxbufmallocspace) {
 4314                 bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
 4315                 bp->b_flags |= B_MALLOC;
 4316                 bufmallocadjust(bp, newbsize);
 4317                 return;
 4318         }
 4319 
 4320         /*
 4321          * If the buffer is growing on its other-than-first
 4322          * allocation then we revert to the page-allocation
 4323          * scheme.
 4324          */
 4325         origbuf = NULL;
 4326         origbufsize = 0;
 4327         if (bp->b_flags & B_MALLOC) {
 4328                 origbuf = bp->b_data;
 4329                 origbufsize = bp->b_bufsize;
 4330                 bp->b_data = bp->b_kvabase;
 4331                 bufmallocadjust(bp, 0);
 4332                 bp->b_flags &= ~B_MALLOC;
 4333                 newbsize = round_page(newbsize);
 4334         }
 4335         vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
 4336             (vm_offset_t) bp->b_data + newbsize);
 4337         if (origbuf != NULL) {
 4338                 bcopy(origbuf, bp->b_data, origbufsize);
 4339                 free(origbuf, M_BIOBUF);
 4340         }
 4341         bufspace_adjust(bp, newbsize);
 4342 }
 4343 
 4344 /*
 4345  * This code constitutes the buffer memory from either anonymous system
 4346  * memory (in the case of non-VMIO operations) or from an associated
 4347  * VM object (in the case of VMIO operations).  This code is able to
 4348  * resize a buffer up or down.
 4349  *
 4350  * Note that this code is tricky, and has many complications to resolve
 4351  * deadlock or inconsistent data situations.  Tread lightly!!! 
 4352  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
 4353  * the caller.  Calling this code willy nilly can result in the loss of data.
 4354  *
 4355  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
 4356  * B_CACHE for the non-VMIO case.
 4357  */
 4358 int
 4359 allocbuf(struct buf *bp, int size)
 4360 {
 4361         int newbsize;
 4362 
 4363         if (bp->b_bcount == size)
 4364                 return (1);
 4365 
 4366         if (bp->b_kvasize != 0 && bp->b_kvasize < size)
 4367                 panic("allocbuf: buffer too small");
 4368 
 4369         newbsize = roundup2(size, DEV_BSIZE);
 4370         if ((bp->b_flags & B_VMIO) == 0) {
 4371                 if ((bp->b_flags & B_MALLOC) == 0)
 4372                         newbsize = round_page(newbsize);
 4373                 /*
 4374                  * Just get anonymous memory from the kernel.  Don't
 4375                  * mess with B_CACHE.
 4376                  */
 4377                 if (newbsize < bp->b_bufsize)
 4378                         vfs_nonvmio_truncate(bp, newbsize);
 4379                 else if (newbsize > bp->b_bufsize)
 4380                         vfs_nonvmio_extend(bp, newbsize);
 4381         } else {
 4382                 int desiredpages;
 4383 
 4384                 desiredpages = (size == 0) ? 0 :
 4385                     num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 4386 
 4387                 if (bp->b_flags & B_MALLOC)
 4388                         panic("allocbuf: VMIO buffer can't be malloced");
 4389                 /*
 4390                  * Set B_CACHE initially if buffer is 0 length or will become
 4391                  * 0-length.
 4392                  */
 4393                 if (size == 0 || bp->b_bufsize == 0)
 4394                         bp->b_flags |= B_CACHE;
 4395 
 4396                 if (newbsize < bp->b_bufsize)
 4397                         vfs_vmio_truncate(bp, desiredpages);
 4398                 /* XXX This looks as if it should be newbsize > b_bufsize */
 4399                 else if (size > bp->b_bcount)
 4400                         vfs_vmio_extend(bp, desiredpages, size);
 4401                 bufspace_adjust(bp, newbsize);
 4402         }
 4403         bp->b_bcount = size;            /* requested buffer size. */
 4404         return (1);
 4405 }
 4406 
 4407 extern int inflight_transient_maps;
 4408 
 4409 static struct bio_queue nondump_bios;
 4410 
 4411 void
 4412 biodone(struct bio *bp)
 4413 {
 4414         struct mtx *mtxp;
 4415         void (*done)(struct bio *);
 4416         vm_offset_t start, end;
 4417 
 4418         biotrack(bp, __func__);
 4419 
 4420         /*
 4421          * Avoid completing I/O when dumping after a panic since that may
 4422          * result in a deadlock in the filesystem or pager code.  Note that
 4423          * this doesn't affect dumps that were started manually since we aim
 4424          * to keep the system usable after it has been resumed.
 4425          */
 4426         if (__predict_false(dumping && SCHEDULER_STOPPED())) {
 4427                 TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
 4428                 return;
 4429         }
 4430         if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
 4431                 bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
 4432                 bp->bio_flags |= BIO_UNMAPPED;
 4433                 start = trunc_page((vm_offset_t)bp->bio_data);
 4434                 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
 4435                 bp->bio_data = unmapped_buf;
 4436                 pmap_qremove(start, atop(end - start));
 4437                 vmem_free(transient_arena, start, end - start);
 4438                 atomic_add_int(&inflight_transient_maps, -1);
 4439         }
 4440         done = bp->bio_done;
 4441         /*
 4442          * The check for done == biodone is to allow biodone to be
 4443          * used as a bio_done routine.
 4444          */
 4445         if (done == NULL || done == biodone) {
 4446                 mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4447                 mtx_lock(mtxp);
 4448                 bp->bio_flags |= BIO_DONE;
 4449                 wakeup(bp);
 4450                 mtx_unlock(mtxp);
 4451         } else
 4452                 done(bp);
 4453 }
 4454 
 4455 /*
 4456  * Wait for a BIO to finish.
 4457  */
 4458 int
 4459 biowait(struct bio *bp, const char *wmesg)
 4460 {
 4461         struct mtx *mtxp;
 4462 
 4463         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4464         mtx_lock(mtxp);
 4465         while ((bp->bio_flags & BIO_DONE) == 0)
 4466                 msleep(bp, mtxp, PRIBIO, wmesg, 0);
 4467         mtx_unlock(mtxp);
 4468         if (bp->bio_error != 0)
 4469                 return (bp->bio_error);
 4470         if (!(bp->bio_flags & BIO_ERROR))
 4471                 return (0);
 4472         return (EIO);
 4473 }
 4474 
 4475 void
 4476 biofinish(struct bio *bp, struct devstat *stat, int error)
 4477 {
 4478 
 4479         if (error) {
 4480                 bp->bio_error = error;
 4481                 bp->bio_flags |= BIO_ERROR;
 4482         }
 4483         if (stat != NULL)
 4484                 devstat_end_transaction_bio(stat, bp);
 4485         biodone(bp);
 4486 }
 4487 
 4488 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
 4489 void
 4490 biotrack_buf(struct bio *bp, const char *location)
 4491 {
 4492 
 4493         buf_track(bp->bio_track_bp, location);
 4494 }
 4495 #endif
 4496 
 4497 /*
 4498  *      bufwait:
 4499  *
 4500  *      Wait for buffer I/O completion, returning error status.  The buffer
 4501  *      is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
 4502  *      error and cleared.
 4503  */
 4504 int
 4505 bufwait(struct buf *bp)
 4506 {
 4507         if (bp->b_iocmd == BIO_READ)
 4508                 bwait(bp, PRIBIO, "biord");
 4509         else
 4510                 bwait(bp, PRIBIO, "biowr");
 4511         if (bp->b_flags & B_EINTR) {
 4512                 bp->b_flags &= ~B_EINTR;
 4513                 return (EINTR);
 4514         }
 4515         if (bp->b_ioflags & BIO_ERROR) {
 4516                 return (bp->b_error ? bp->b_error : EIO);
 4517         } else {
 4518                 return (0);
 4519         }
 4520 }
 4521 
 4522 /*
 4523  *      bufdone:
 4524  *
 4525  *      Finish I/O on a buffer, optionally calling a completion function.
 4526  *      This is usually called from an interrupt so process blocking is
 4527  *      not allowed.
 4528  *
 4529  *      biodone is also responsible for setting B_CACHE in a B_VMIO bp.
 4530  *      In a non-VMIO bp, B_CACHE will be set on the next getblk() 
 4531  *      assuming B_INVAL is clear.
 4532  *
 4533  *      For the VMIO case, we set B_CACHE if the op was a read and no
 4534  *      read error occurred, or if the op was a write.  B_CACHE is never
 4535  *      set if the buffer is invalid or otherwise uncacheable.
 4536  *
 4537  *      bufdone does not mess with B_INVAL, allowing the I/O routine or the
 4538  *      initiator to leave B_INVAL set to brelse the buffer out of existence
 4539  *      in the biodone routine.
 4540  */
 4541 void
 4542 bufdone(struct buf *bp)
 4543 {
 4544         struct bufobj *dropobj;
 4545         void    (*biodone)(struct buf *);
 4546 
 4547         buf_track(bp, __func__);
 4548         CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 4549         dropobj = NULL;
 4550 
 4551         KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 4552 
 4553         runningbufwakeup(bp);
 4554         if (bp->b_iocmd == BIO_WRITE)
 4555                 dropobj = bp->b_bufobj;
 4556         /* call optional completion function if requested */
 4557         if (bp->b_iodone != NULL) {
 4558                 biodone = bp->b_iodone;
 4559                 bp->b_iodone = NULL;
 4560                 (*biodone) (bp);
 4561                 if (dropobj)
 4562                         bufobj_wdrop(dropobj);
 4563                 return;
 4564         }
 4565         if (bp->b_flags & B_VMIO) {
 4566                 /*
 4567                  * Set B_CACHE if the op was a normal read and no error
 4568                  * occurred.  B_CACHE is set for writes in the b*write()
 4569                  * routines.
 4570                  */
 4571                 if (bp->b_iocmd == BIO_READ &&
 4572                     !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 4573                     !(bp->b_ioflags & BIO_ERROR))
 4574                         bp->b_flags |= B_CACHE;
 4575                 vfs_vmio_iodone(bp);
 4576         }
 4577         if (!LIST_EMPTY(&bp->b_dep))
 4578                 buf_complete(bp);
 4579         if ((bp->b_flags & B_CKHASH) != 0) {
 4580                 KASSERT(bp->b_iocmd == BIO_READ,
 4581                     ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
 4582                 KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
 4583                 (*bp->b_ckhashcalc)(bp);
 4584         }
 4585         /*
 4586          * For asynchronous completions, release the buffer now. The brelse
 4587          * will do a wakeup there if necessary - so no need to do a wakeup
 4588          * here in the async case. The sync case always needs to do a wakeup.
 4589          */
 4590         if (bp->b_flags & B_ASYNC) {
 4591                 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
 4592                     (bp->b_ioflags & BIO_ERROR))
 4593                         brelse(bp);
 4594                 else
 4595                         bqrelse(bp);
 4596         } else
 4597                 bdone(bp);
 4598         if (dropobj)
 4599                 bufobj_wdrop(dropobj);
 4600 }
 4601 
 4602 /*
 4603  * This routine is called in lieu of iodone in the case of
 4604  * incomplete I/O.  This keeps the busy status for pages
 4605  * consistent.
 4606  */
 4607 void
 4608 vfs_unbusy_pages(struct buf *bp)
 4609 {
 4610         int i;
 4611         vm_object_t obj;
 4612         vm_page_t m;
 4613 
 4614         runningbufwakeup(bp);
 4615         if (!(bp->b_flags & B_VMIO))
 4616                 return;
 4617 
 4618         obj = bp->b_bufobj->bo_object;
 4619         for (i = 0; i < bp->b_npages; i++) {
 4620                 m = bp->b_pages[i];
 4621                 if (m == bogus_page) {
 4622                         m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 4623                         if (!m)
 4624                                 panic("vfs_unbusy_pages: page missing\n");
 4625                         bp->b_pages[i] = m;
 4626                         if (buf_mapped(bp)) {
 4627                                 BUF_CHECK_MAPPED(bp);
 4628                                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 4629                                     bp->b_pages, bp->b_npages);
 4630                         } else
 4631                                 BUF_CHECK_UNMAPPED(bp);
 4632                 }
 4633                 vm_page_sunbusy(m);
 4634         }
 4635         vm_object_pip_wakeupn(obj, bp->b_npages);
 4636 }
 4637 
 4638 /*
 4639  * vfs_page_set_valid:
 4640  *
 4641  *      Set the valid bits in a page based on the supplied offset.   The
 4642  *      range is restricted to the buffer's size.
 4643  *
 4644  *      This routine is typically called after a read completes.
 4645  */
 4646 static void
 4647 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 4648 {
 4649         vm_ooffset_t eoff;
 4650 
 4651         /*
 4652          * Compute the end offset, eoff, such that [off, eoff) does not span a
 4653          * page boundary and eoff is not greater than the end of the buffer.
 4654          * The end of the buffer, in this case, is our file EOF, not the
 4655          * allocation size of the buffer.
 4656          */
 4657         eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
 4658         if (eoff > bp->b_offset + bp->b_bcount)
 4659                 eoff = bp->b_offset + bp->b_bcount;
 4660 
 4661         /*
 4662          * Set valid range.  This is typically the entire buffer and thus the
 4663          * entire page.
 4664          */
 4665         if (eoff > off)
 4666                 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
 4667 }
 4668 
 4669 /*
 4670  * vfs_page_set_validclean:
 4671  *
 4672  *      Set the valid bits and clear the dirty bits in a page based on the
 4673  *      supplied offset.   The range is restricted to the buffer's size.
 4674  */
 4675 static void
 4676 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 4677 {
 4678         vm_ooffset_t soff, eoff;
 4679 
 4680         /*
 4681          * Start and end offsets in buffer.  eoff - soff may not cross a
 4682          * page boundary or cross the end of the buffer.  The end of the
 4683          * buffer, in this case, is our file EOF, not the allocation size
 4684          * of the buffer.
 4685          */
 4686         soff = off;
 4687         eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 4688         if (eoff > bp->b_offset + bp->b_bcount)
 4689                 eoff = bp->b_offset + bp->b_bcount;
 4690 
 4691         /*
 4692          * Set valid range.  This is typically the entire buffer and thus the
 4693          * entire page.
 4694          */
 4695         if (eoff > soff) {
 4696                 vm_page_set_validclean(
 4697                     m,
 4698                    (vm_offset_t) (soff & PAGE_MASK),
 4699                    (vm_offset_t) (eoff - soff)
 4700                 );
 4701         }
 4702 }
 4703 
 4704 /*
 4705  * Acquire a shared busy on all pages in the buf.
 4706  */
 4707 void
 4708 vfs_busy_pages_acquire(struct buf *bp)
 4709 {
 4710         int i;
 4711 
 4712         for (i = 0; i < bp->b_npages; i++)
 4713                 vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
 4714 }
 4715 
 4716 void
 4717 vfs_busy_pages_release(struct buf *bp)
 4718 {
 4719         int i;
 4720 
 4721         for (i = 0; i < bp->b_npages; i++)
 4722                 vm_page_sunbusy(bp->b_pages[i]);
 4723 }
 4724 
 4725 /*
 4726  * This routine is called before a device strategy routine.
 4727  * It is used to tell the VM system that paging I/O is in
 4728  * progress, and treat the pages associated with the buffer
 4729  * almost as being exclusive busy.  Also the object paging_in_progress
 4730  * flag is handled to make sure that the object doesn't become
 4731  * inconsistent.
 4732  *
 4733  * Since I/O has not been initiated yet, certain buffer flags
 4734  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
 4735  * and should be ignored.
 4736  */
 4737 void
 4738 vfs_busy_pages(struct buf *bp, int clear_modify)
 4739 {
 4740         vm_object_t obj;
 4741         vm_ooffset_t foff;
 4742         vm_page_t m;
 4743         int i;
 4744         bool bogus;
 4745 
 4746         if (!(bp->b_flags & B_VMIO))
 4747                 return;
 4748 
 4749         obj = bp->b_bufobj->bo_object;
 4750         foff = bp->b_offset;
 4751         KASSERT(bp->b_offset != NOOFFSET,
 4752             ("vfs_busy_pages: no buffer offset"));
 4753         if ((bp->b_flags & B_CLUSTER) == 0) {
 4754                 vm_object_pip_add(obj, bp->b_npages);
 4755                 vfs_busy_pages_acquire(bp);
 4756         }
 4757         if (bp->b_bufsize != 0)
 4758                 vfs_setdirty_range(bp);
 4759         bogus = false;
 4760         for (i = 0; i < bp->b_npages; i++) {
 4761                 m = bp->b_pages[i];
 4762                 vm_page_assert_sbusied(m);
 4763 
 4764                 /*
 4765                  * When readying a buffer for a read ( i.e
 4766                  * clear_modify == 0 ), it is important to do
 4767                  * bogus_page replacement for valid pages in 
 4768                  * partially instantiated buffers.  Partially 
 4769                  * instantiated buffers can, in turn, occur when
 4770                  * reconstituting a buffer from its VM backing store
 4771                  * base.  We only have to do this if B_CACHE is
 4772                  * clear ( which causes the I/O to occur in the
 4773                  * first place ).  The replacement prevents the read
 4774                  * I/O from overwriting potentially dirty VM-backed
 4775                  * pages.  XXX bogus page replacement is, uh, bogus.
 4776                  * It may not work properly with small-block devices.
 4777                  * We need to find a better way.
 4778                  */
 4779                 if (clear_modify) {
 4780                         pmap_remove_write(m);
 4781                         vfs_page_set_validclean(bp, foff, m);
 4782                 } else if (vm_page_all_valid(m) &&
 4783                     (bp->b_flags & B_CACHE) == 0) {
 4784                         bp->b_pages[i] = bogus_page;
 4785                         bogus = true;
 4786                 }
 4787                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 4788         }
 4789         if (bogus && buf_mapped(bp)) {
 4790                 BUF_CHECK_MAPPED(bp);
 4791                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 4792                     bp->b_pages, bp->b_npages);
 4793         }
 4794 }
 4795 
 4796 /*
 4797  *      vfs_bio_set_valid:
 4798  *
 4799  *      Set the range within the buffer to valid.  The range is
 4800  *      relative to the beginning of the buffer, b_offset.  Note that
 4801  *      b_offset itself may be offset from the beginning of the first
 4802  *      page.
 4803  */
 4804 void
 4805 vfs_bio_set_valid(struct buf *bp, int base, int size)
 4806 {
 4807         int i, n;
 4808         vm_page_t m;
 4809 
 4810         if (!(bp->b_flags & B_VMIO))
 4811                 return;
 4812 
 4813         /*
 4814          * Fixup base to be relative to beginning of first page.
 4815          * Set initial n to be the maximum number of bytes in the
 4816          * first page that can be validated.
 4817          */
 4818         base += (bp->b_offset & PAGE_MASK);
 4819         n = PAGE_SIZE - (base & PAGE_MASK);
 4820 
 4821         /*
 4822          * Busy may not be strictly necessary here because the pages are
 4823          * unlikely to be fully valid and the vnode lock will synchronize
 4824          * their access via getpages.  It is grabbed for consistency with
 4825          * other page validation.
 4826          */
 4827         vfs_busy_pages_acquire(bp);
 4828         for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 4829                 m = bp->b_pages[i];
 4830                 if (n > size)
 4831                         n = size;
 4832                 vm_page_set_valid_range(m, base & PAGE_MASK, n);
 4833                 base += n;
 4834                 size -= n;
 4835                 n = PAGE_SIZE;
 4836         }
 4837         vfs_busy_pages_release(bp);
 4838 }
 4839 
 4840 /*
 4841  *      vfs_bio_clrbuf:
 4842  *
 4843  *      If the specified buffer is a non-VMIO buffer, clear the entire
 4844  *      buffer.  If the specified buffer is a VMIO buffer, clear and
 4845  *      validate only the previously invalid portions of the buffer.
 4846  *      This routine essentially fakes an I/O, so we need to clear
 4847  *      BIO_ERROR and B_INVAL.
 4848  *
 4849  *      Note that while we only theoretically need to clear through b_bcount,
 4850  *      we go ahead and clear through b_bufsize.
 4851  */
 4852 void
 4853 vfs_bio_clrbuf(struct buf *bp) 
 4854 {
 4855         int i, j, sa, ea, slide, zbits;
 4856         vm_page_bits_t mask;
 4857 
 4858         if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
 4859                 clrbuf(bp);
 4860                 return;
 4861         }
 4862         bp->b_flags &= ~B_INVAL;
 4863         bp->b_ioflags &= ~BIO_ERROR;
 4864         vfs_busy_pages_acquire(bp);
 4865         sa = bp->b_offset & PAGE_MASK;
 4866         slide = 0;
 4867         for (i = 0; i < bp->b_npages; i++, sa = 0) {
 4868                 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
 4869                 ea = slide & PAGE_MASK;
 4870                 if (ea == 0)
 4871                         ea = PAGE_SIZE;
 4872                 if (bp->b_pages[i] == bogus_page)
 4873                         continue;
 4874                 j = sa / DEV_BSIZE;
 4875                 zbits = (sizeof(vm_page_bits_t) * NBBY) -
 4876                     (ea - sa) / DEV_BSIZE;
 4877                 mask = (VM_PAGE_BITS_ALL >> zbits) << j;
 4878                 if ((bp->b_pages[i]->valid & mask) == mask)
 4879                         continue;
 4880                 if ((bp->b_pages[i]->valid & mask) == 0)
 4881                         pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
 4882                 else {
 4883                         for (; sa < ea; sa += DEV_BSIZE, j++) {
 4884                                 if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
 4885                                         pmap_zero_page_area(bp->b_pages[i],
 4886                                             sa, DEV_BSIZE);
 4887                                 }
 4888                         }
 4889                 }
 4890                 vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
 4891                     roundup2(ea - sa, DEV_BSIZE));
 4892         }
 4893         vfs_busy_pages_release(bp);
 4894         bp->b_resid = 0;
 4895 }
 4896 
 4897 void
 4898 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
 4899 {
 4900         vm_page_t m;
 4901         int i, n;
 4902 
 4903         if (buf_mapped(bp)) {
 4904                 BUF_CHECK_MAPPED(bp);
 4905                 bzero(bp->b_data + base, size);
 4906         } else {
 4907                 BUF_CHECK_UNMAPPED(bp);
 4908                 n = PAGE_SIZE - (base & PAGE_MASK);
 4909                 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 4910                         m = bp->b_pages[i];
 4911                         if (n > size)
 4912                                 n = size;
 4913                         pmap_zero_page_area(m, base & PAGE_MASK, n);
 4914                         base += n;
 4915                         size -= n;
 4916                         n = PAGE_SIZE;
 4917                 }
 4918         }
 4919 }
 4920 
 4921 /*
 4922  * Update buffer flags based on I/O request parameters, optionally releasing the
 4923  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
 4924  * where they may be placed on a page queue (VMIO) or freed immediately (direct
 4925  * I/O).  Otherwise the buffer is released to the cache.
 4926  */
 4927 static void
 4928 b_io_dismiss(struct buf *bp, int ioflag, bool release)
 4929 {
 4930 
 4931         KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
 4932             ("buf %p non-VMIO noreuse", bp));
 4933 
 4934         if ((ioflag & IO_DIRECT) != 0)
 4935                 bp->b_flags |= B_DIRECT;
 4936         if ((ioflag & IO_EXT) != 0)
 4937                 bp->b_xflags |= BX_ALTDATA;
 4938         if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
 4939                 bp->b_flags |= B_RELBUF;
 4940                 if ((ioflag & IO_NOREUSE) != 0)
 4941                         bp->b_flags |= B_NOREUSE;
 4942                 if (release)
 4943                         brelse(bp);
 4944         } else if (release)
 4945                 bqrelse(bp);
 4946 }
 4947 
 4948 void
 4949 vfs_bio_brelse(struct buf *bp, int ioflag)
 4950 {
 4951 
 4952         b_io_dismiss(bp, ioflag, true);
 4953 }
 4954 
 4955 void
 4956 vfs_bio_set_flags(struct buf *bp, int ioflag)
 4957 {
 4958 
 4959         b_io_dismiss(bp, ioflag, false);
 4960 }
 4961 
 4962 /*
 4963  * vm_hold_load_pages and vm_hold_free_pages get pages into
 4964  * a buffers address space.  The pages are anonymous and are
 4965  * not associated with a file object.
 4966  */
 4967 static void
 4968 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 4969 {
 4970         vm_offset_t pg;
 4971         vm_page_t p;
 4972         int index;
 4973 
 4974         BUF_CHECK_MAPPED(bp);
 4975 
 4976         to = round_page(to);
 4977         from = round_page(from);
 4978         index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 4979         MPASS((bp->b_flags & B_MAXPHYS) == 0);
 4980         KASSERT(to - from <= maxbcachebuf,
 4981             ("vm_hold_load_pages too large %p %#jx %#jx %u",
 4982             bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
 4983 
 4984         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 4985                 /*
 4986                  * note: must allocate system pages since blocking here
 4987                  * could interfere with paging I/O, no matter which
 4988                  * process we are.
 4989                  */
 4990                 p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
 4991                     VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK);
 4992                 pmap_qenter(pg, &p, 1);
 4993                 bp->b_pages[index] = p;
 4994         }
 4995         bp->b_npages = index;
 4996 }
 4997 
 4998 /* Return pages associated with this buf to the vm system */
 4999 static void
 5000 vm_hold_free_pages(struct buf *bp, int newbsize)
 5001 {
 5002         vm_offset_t from;
 5003         vm_page_t p;
 5004         int index, newnpages;
 5005 
 5006         BUF_CHECK_MAPPED(bp);
 5007 
 5008         from = round_page((vm_offset_t)bp->b_data + newbsize);
 5009         newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 5010         if (bp->b_npages > newnpages)
 5011                 pmap_qremove(from, bp->b_npages - newnpages);
 5012         for (index = newnpages; index < bp->b_npages; index++) {
 5013                 p = bp->b_pages[index];
 5014                 bp->b_pages[index] = NULL;
 5015                 vm_page_unwire_noq(p);
 5016                 vm_page_free(p);
 5017         }
 5018         bp->b_npages = newnpages;
 5019 }
 5020 
 5021 /*
 5022  * Map an IO request into kernel virtual address space.
 5023  *
 5024  * All requests are (re)mapped into kernel VA space.
 5025  * Notice that we use b_bufsize for the size of the buffer
 5026  * to be mapped.  b_bcount might be modified by the driver.
 5027  *
 5028  * Note that even if the caller determines that the address space should
 5029  * be valid, a race or a smaller-file mapped into a larger space may
 5030  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
 5031  * check the return value.
 5032  *
 5033  * This function only works with pager buffers.
 5034  */
 5035 int
 5036 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
 5037 {
 5038         vm_prot_t prot;
 5039         int pidx;
 5040 
 5041         MPASS((bp->b_flags & B_MAXPHYS) != 0);
 5042         prot = VM_PROT_READ;
 5043         if (bp->b_iocmd == BIO_READ)
 5044                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 5045         pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 5046             (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
 5047         if (pidx < 0)
 5048                 return (-1);
 5049         bp->b_bufsize = len;
 5050         bp->b_npages = pidx;
 5051         bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
 5052         if (mapbuf || !unmapped_buf_allowed) {
 5053                 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
 5054                 bp->b_data = bp->b_kvabase + bp->b_offset;
 5055         } else
 5056                 bp->b_data = unmapped_buf;
 5057         return (0);
 5058 }
 5059 
 5060 /*
 5061  * Free the io map PTEs associated with this IO operation.
 5062  * We also invalidate the TLB entries and restore the original b_addr.
 5063  *
 5064  * This function only works with pager buffers.
 5065  */
 5066 void
 5067 vunmapbuf(struct buf *bp)
 5068 {
 5069         int npages;
 5070 
 5071         npages = bp->b_npages;
 5072         if (buf_mapped(bp))
 5073                 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
 5074         vm_page_unhold_pages(bp->b_pages, npages);
 5075 
 5076         bp->b_data = unmapped_buf;
 5077 }
 5078 
 5079 void
 5080 bdone(struct buf *bp)
 5081 {
 5082         struct mtx *mtxp;
 5083 
 5084         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 5085         mtx_lock(mtxp);
 5086         bp->b_flags |= B_DONE;
 5087         wakeup(bp);
 5088         mtx_unlock(mtxp);
 5089 }
 5090 
 5091 void
 5092 bwait(struct buf *bp, u_char pri, const char *wchan)
 5093 {
 5094         struct mtx *mtxp;
 5095 
 5096         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 5097         mtx_lock(mtxp);
 5098         while ((bp->b_flags & B_DONE) == 0)
 5099                 msleep(bp, mtxp, pri, wchan, 0);
 5100         mtx_unlock(mtxp);
 5101 }
 5102 
 5103 int
 5104 bufsync(struct bufobj *bo, int waitfor)
 5105 {
 5106 
 5107         return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
 5108 }
 5109 
 5110 void
 5111 bufstrategy(struct bufobj *bo, struct buf *bp)
 5112 {
 5113         int i __unused;
 5114         struct vnode *vp;
 5115 
 5116         vp = bp->b_vp;
 5117         KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
 5118         KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
 5119             ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
 5120         i = VOP_STRATEGY(vp, bp);
 5121         KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
 5122 }
 5123 
 5124 /*
 5125  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
 5126  */
 5127 void
 5128 bufobj_init(struct bufobj *bo, void *private)
 5129 {
 5130         static volatile int bufobj_cleanq;
 5131 
 5132         bo->bo_domain =
 5133             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
 5134         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
 5135         bo->bo_private = private;
 5136         TAILQ_INIT(&bo->bo_clean.bv_hd);
 5137         TAILQ_INIT(&bo->bo_dirty.bv_hd);
 5138 }
 5139 
 5140 void
 5141 bufobj_wrefl(struct bufobj *bo)
 5142 {
 5143 
 5144         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 5145         ASSERT_BO_WLOCKED(bo);
 5146         bo->bo_numoutput++;
 5147 }
 5148 
 5149 void
 5150 bufobj_wref(struct bufobj *bo)
 5151 {
 5152 
 5153         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 5154         BO_LOCK(bo);
 5155         bo->bo_numoutput++;
 5156         BO_UNLOCK(bo);
 5157 }
 5158 
 5159 void
 5160 bufobj_wdrop(struct bufobj *bo)
 5161 {
 5162 
 5163         KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
 5164         BO_LOCK(bo);
 5165         KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
 5166         if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
 5167                 bo->bo_flag &= ~BO_WWAIT;
 5168                 wakeup(&bo->bo_numoutput);
 5169         }
 5170         BO_UNLOCK(bo);
 5171 }
 5172 
 5173 int
 5174 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
 5175 {
 5176         int error;
 5177 
 5178         KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
 5179         ASSERT_BO_WLOCKED(bo);
 5180         error = 0;
 5181         while (bo->bo_numoutput) {
 5182                 bo->bo_flag |= BO_WWAIT;
 5183                 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
 5184                     slpflag | (PRIBIO + 1), "bo_wwait", timeo);
 5185                 if (error)
 5186                         break;
 5187         }
 5188         return (error);
 5189 }
 5190 
 5191 /*
 5192  * Set bio_data or bio_ma for struct bio from the struct buf.
 5193  */
 5194 void
 5195 bdata2bio(struct buf *bp, struct bio *bip)
 5196 {
 5197 
 5198         if (!buf_mapped(bp)) {
 5199                 KASSERT(unmapped_buf_allowed, ("unmapped"));
 5200                 bip->bio_ma = bp->b_pages;
 5201                 bip->bio_ma_n = bp->b_npages;
 5202                 bip->bio_data = unmapped_buf;
 5203                 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 5204                 bip->bio_flags |= BIO_UNMAPPED;
 5205                 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
 5206                     PAGE_SIZE == bp->b_npages,
 5207                     ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
 5208                     (long long)bip->bio_length, bip->bio_ma_n));
 5209         } else {
 5210                 bip->bio_data = bp->b_data;
 5211                 bip->bio_ma = NULL;
 5212         }
 5213 }
 5214 
 5215 static int buf_pager_relbuf;
 5216 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
 5217     &buf_pager_relbuf, 0,
 5218     "Make buffer pager release buffers after reading");
 5219 
 5220 /*
 5221  * The buffer pager.  It uses buffer reads to validate pages.
 5222  *
 5223  * In contrast to the generic local pager from vm/vnode_pager.c, this
 5224  * pager correctly and easily handles volumes where the underlying
 5225  * device block size is greater than the machine page size.  The
 5226  * buffer cache transparently extends the requested page run to be
 5227  * aligned at the block boundary, and does the necessary bogus page
 5228  * replacements in the addends to avoid obliterating already valid
 5229  * pages.
 5230  *
 5231  * The only non-trivial issue is that the exclusive busy state for
 5232  * pages, which is assumed by the vm_pager_getpages() interface, is
 5233  * incompatible with the VMIO buffer cache's desire to share-busy the
 5234  * pages.  This function performs a trivial downgrade of the pages'
 5235  * state before reading buffers, and a less trivial upgrade from the
 5236  * shared-busy to excl-busy state after the read.
 5237  */
 5238 int
 5239 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
 5240     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
 5241     vbg_get_blksize_t get_blksize)
 5242 {
 5243         vm_page_t m;
 5244         vm_object_t object;
 5245         struct buf *bp;
 5246         struct mount *mp;
 5247         daddr_t lbn, lbnp;
 5248         vm_ooffset_t la, lb, poff, poffe;
 5249         long bo_bs, bsize;
 5250         int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
 5251         bool redo, lpart;
 5252 
 5253         object = vp->v_object;
 5254         mp = vp->v_mount;
 5255         error = 0;
 5256         la = IDX_TO_OFF(ma[count - 1]->pindex);
 5257         if (la >= object->un_pager.vnp.vnp_size)
 5258                 return (VM_PAGER_BAD);
 5259 
 5260         /*
 5261          * Change the meaning of la from where the last requested page starts
 5262          * to where it ends, because that's the end of the requested region
 5263          * and the start of the potential read-ahead region.
 5264          */
 5265         la += PAGE_SIZE;
 5266         lpart = la > object->un_pager.vnp.vnp_size;
 5267         error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
 5268             &bo_bs);
 5269         if (error != 0)
 5270                 return (VM_PAGER_ERROR);
 5271 
 5272         /*
 5273          * Calculate read-ahead, behind and total pages.
 5274          */
 5275         pgsin = count;
 5276         lb = IDX_TO_OFF(ma[0]->pindex);
 5277         pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
 5278         pgsin += pgsin_b;
 5279         if (rbehind != NULL)
 5280                 *rbehind = pgsin_b;
 5281         pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
 5282         if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
 5283                 pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
 5284                     PAGE_SIZE) - la);
 5285         pgsin += pgsin_a;
 5286         if (rahead != NULL)
 5287                 *rahead = pgsin_a;
 5288         VM_CNT_INC(v_vnodein);
 5289         VM_CNT_ADD(v_vnodepgsin, pgsin);
 5290 
 5291         br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
 5292             != 0) ? GB_UNMAPPED : 0;
 5293 again:
 5294         for (i = 0; i < count; i++) {
 5295                 if (ma[i] != bogus_page)
 5296                         vm_page_busy_downgrade(ma[i]);
 5297         }
 5298 
 5299         lbnp = -1;
 5300         for (i = 0; i < count; i++) {
 5301                 m = ma[i];
 5302                 if (m == bogus_page)
 5303                         continue;
 5304 
 5305                 /*
 5306                  * Pages are shared busy and the object lock is not
 5307                  * owned, which together allow for the pages'
 5308                  * invalidation.  The racy test for validity avoids
 5309                  * useless creation of the buffer for the most typical
 5310                  * case when invalidation is not used in redo or for
 5311                  * parallel read.  The shared->excl upgrade loop at
 5312                  * the end of the function catches the race in a
 5313                  * reliable way (protected by the object lock).
 5314                  */
 5315                 if (vm_page_all_valid(m))
 5316                         continue;
 5317 
 5318                 poff = IDX_TO_OFF(m->pindex);
 5319                 poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
 5320                 for (; poff < poffe; poff += bsize) {
 5321                         lbn = get_lblkno(vp, poff);
 5322                         if (lbn == lbnp)
 5323                                 goto next_page;
 5324                         lbnp = lbn;
 5325 
 5326                         error = get_blksize(vp, lbn, &bsize);
 5327                         if (error == 0)
 5328                                 error = bread_gb(vp, lbn, bsize,
 5329                                     curthread->td_ucred, br_flags, &bp);
 5330                         if (error != 0)
 5331                                 goto end_pages;
 5332                         if (bp->b_rcred == curthread->td_ucred) {
 5333                                 crfree(bp->b_rcred);
 5334                                 bp->b_rcred = NOCRED;
 5335                         }
 5336                         if (LIST_EMPTY(&bp->b_dep)) {
 5337                                 /*
 5338                                  * Invalidation clears m->valid, but
 5339                                  * may leave B_CACHE flag if the
 5340                                  * buffer existed at the invalidation
 5341                                  * time.  In this case, recycle the
 5342                                  * buffer to do real read on next
 5343                                  * bread() after redo.
 5344                                  *
 5345                                  * Otherwise B_RELBUF is not strictly
 5346                                  * necessary, enable to reduce buf
 5347                                  * cache pressure.
 5348                                  */
 5349                                 if (buf_pager_relbuf ||
 5350                                     !vm_page_all_valid(m))
 5351                                         bp->b_flags |= B_RELBUF;
 5352 
 5353                                 bp->b_flags &= ~B_NOCACHE;
 5354                                 brelse(bp);
 5355                         } else {
 5356                                 bqrelse(bp);
 5357                         }
 5358                 }
 5359                 KASSERT(1 /* racy, enable for debugging */ ||
 5360                     vm_page_all_valid(m) || i == count - 1,
 5361                     ("buf %d %p invalid", i, m));
 5362                 if (i == count - 1 && lpart) {
 5363                         if (!vm_page_none_valid(m) &&
 5364                             !vm_page_all_valid(m))
 5365                                 vm_page_zero_invalid(m, TRUE);
 5366                 }
 5367 next_page:;
 5368         }
 5369 end_pages:
 5370 
 5371         redo = false;
 5372         for (i = 0; i < count; i++) {
 5373                 if (ma[i] == bogus_page)
 5374                         continue;
 5375                 if (vm_page_busy_tryupgrade(ma[i]) == 0) {
 5376                         vm_page_sunbusy(ma[i]);
 5377                         ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
 5378                             VM_ALLOC_NORMAL);
 5379                 }
 5380 
 5381                 /*
 5382                  * Since the pages were only sbusy while neither the
 5383                  * buffer nor the object lock was held by us, or
 5384                  * reallocated while vm_page_grab() slept for busy
 5385                  * relinguish, they could have been invalidated.
 5386                  * Recheck the valid bits and re-read as needed.
 5387                  *
 5388                  * Note that the last page is made fully valid in the
 5389                  * read loop, and partial validity for the page at
 5390                  * index count - 1 could mean that the page was
 5391                  * invalidated or removed, so we must restart for
 5392                  * safety as well.
 5393                  */
 5394                 if (!vm_page_all_valid(ma[i]))
 5395                         redo = true;
 5396         }
 5397         if (redo && error == 0)
 5398                 goto again;
 5399         return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
 5400 }
 5401 
 5402 #include "opt_ddb.h"
 5403 #ifdef DDB
 5404 #include <ddb/ddb.h>
 5405 
 5406 /* DDB command to show buffer data */
 5407 DB_SHOW_COMMAND(buffer, db_show_buffer)
 5408 {
 5409         /* get args */
 5410         struct buf *bp = (struct buf *)addr;
 5411 #ifdef FULL_BUF_TRACKING
 5412         uint32_t i, j;
 5413 #endif
 5414 
 5415         if (!have_addr) {
 5416                 db_printf("usage: show buffer <addr>\n");
 5417                 return;
 5418         }
 5419 
 5420         db_printf("buf at %p\n", bp);
 5421         db_printf("b_flags = 0x%b, b_xflags=0x%b\n",
 5422             (u_int)bp->b_flags, PRINT_BUF_FLAGS,
 5423             (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
 5424         db_printf("b_vflags=0x%b b_ioflags0x%b\n",
 5425             (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
 5426             (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
 5427         db_printf(
 5428             "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 5429             "b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, "
 5430             "b_vp = %p, b_dep = %p\n",
 5431             bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 5432             bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
 5433             (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
 5434         db_printf("b_kvabase = %p, b_kvasize = %d\n",
 5435             bp->b_kvabase, bp->b_kvasize);
 5436         if (bp->b_npages) {
 5437                 int i;
 5438                 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 5439                 for (i = 0; i < bp->b_npages; i++) {
 5440                         vm_page_t m;
 5441                         m = bp->b_pages[i];
 5442                         if (m != NULL)
 5443                                 db_printf("(%p, 0x%lx, 0x%lx)", m->object,
 5444                                     (u_long)m->pindex,
 5445                                     (u_long)VM_PAGE_TO_PHYS(m));
 5446                         else
 5447                                 db_printf("( ??? )");
 5448                         if ((i + 1) < bp->b_npages)
 5449                                 db_printf(",");
 5450                 }
 5451                 db_printf("\n");
 5452         }
 5453         BUF_LOCKPRINTINFO(bp);
 5454 #if defined(FULL_BUF_TRACKING)
 5455         db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
 5456 
 5457         i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
 5458         for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
 5459                 if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
 5460                         continue;
 5461                 db_printf(" %2u: %s\n", j,
 5462                     bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
 5463         }
 5464 #elif defined(BUF_TRACKING)
 5465         db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
 5466 #endif
 5467         db_printf(" ");
 5468 }
 5469 
 5470 DB_SHOW_COMMAND_FLAGS(bufqueues, bufqueues, DB_CMD_MEMSAFE)
 5471 {
 5472         struct bufdomain *bd;
 5473         struct buf *bp;
 5474         long total;
 5475         int i, j, cnt;
 5476 
 5477         db_printf("bqempty: %d\n", bqempty.bq_len);
 5478 
 5479         for (i = 0; i < buf_domains; i++) {
 5480                 bd = &bdomain[i];
 5481                 db_printf("Buf domain %d\n", i);
 5482                 db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
 5483                 db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
 5484                 db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
 5485                 db_printf("\n");
 5486                 db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
 5487                 db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
 5488                 db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
 5489                 db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
 5490                 db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
 5491                 db_printf("\n");
 5492                 db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
 5493                 db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
 5494                 db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
 5495                 db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
 5496                 db_printf("\n");
 5497                 total = 0;
 5498                 TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
 5499                         total += bp->b_bufsize;
 5500                 db_printf("\tcleanq count\t%d (%ld)\n",
 5501                     bd->bd_cleanq->bq_len, total);
 5502                 total = 0;
 5503                 TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
 5504                         total += bp->b_bufsize;
 5505                 db_printf("\tdirtyq count\t%d (%ld)\n",
 5506                     bd->bd_dirtyq.bq_len, total);
 5507                 db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
 5508                 db_printf("\tlim\t\t%d\n", bd->bd_lim);
 5509                 db_printf("\tCPU ");
 5510                 for (j = 0; j <= mp_maxid; j++)
 5511                         db_printf("%d, ", bd->bd_subq[j].bq_len);
 5512                 db_printf("\n");
 5513                 cnt = 0;
 5514                 total = 0;
 5515                 for (j = 0; j < nbuf; j++) {
 5516                         bp = nbufp(j);
 5517                         if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
 5518                                 cnt++;
 5519                                 total += bp->b_bufsize;
 5520                         }
 5521                 }
 5522                 db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
 5523                 cnt = 0;
 5524                 total = 0;
 5525                 for (j = 0; j < nbuf; j++) {
 5526                         bp = nbufp(j);
 5527                         if (bp->b_domain == i) {
 5528                                 cnt++;
 5529                                 total += bp->b_bufsize;
 5530                         }
 5531                 }
 5532                 db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
 5533         }
 5534 }
 5535 
 5536 DB_SHOW_COMMAND_FLAGS(lockedbufs, lockedbufs, DB_CMD_MEMSAFE)
 5537 {
 5538         struct buf *bp;
 5539         int i;
 5540 
 5541         for (i = 0; i < nbuf; i++) {
 5542                 bp = nbufp(i);
 5543                 if (BUF_ISLOCKED(bp)) {
 5544                         db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 5545                         db_printf("\n");
 5546                         if (db_pager_quit)
 5547                                 break;
 5548                 }
 5549         }
 5550 }
 5551 
 5552 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
 5553 {
 5554         struct vnode *vp;
 5555         struct buf *bp;
 5556 
 5557         if (!have_addr) {
 5558                 db_printf("usage: show vnodebufs <addr>\n");
 5559                 return;
 5560         }
 5561         vp = (struct vnode *)addr;
 5562         db_printf("Clean buffers:\n");
 5563         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
 5564                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 5565                 db_printf("\n");
 5566         }
 5567         db_printf("Dirty buffers:\n");
 5568         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
 5569                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 5570                 db_printf("\n");
 5571         }
 5572 }
 5573 
 5574 DB_COMMAND_FLAGS(countfreebufs, db_coundfreebufs, DB_CMD_MEMSAFE)
 5575 {
 5576         struct buf *bp;
 5577         int i, used = 0, nfree = 0;
 5578 
 5579         if (have_addr) {
 5580                 db_printf("usage: countfreebufs\n");
 5581                 return;
 5582         }
 5583 
 5584         for (i = 0; i < nbuf; i++) {
 5585                 bp = nbufp(i);
 5586                 if (bp->b_qindex == QUEUE_EMPTY)
 5587                         nfree++;
 5588                 else
 5589                         used++;
 5590         }
 5591 
 5592         db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
 5593             nfree + used);
 5594         db_printf("numfreebuffers is %d\n", numfreebuffers);
 5595 }
 5596 #endif /* DDB */

Cache object: 5916c49dfec5b838a83031b547dd01f8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.