The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Poul-Henning Kamp
    3  * Copyright (c) 1994,1997 John S. Dyson
    4  * Copyright (c) 2013 The FreeBSD Foundation
    5  * All rights reserved.
    6  *
    7  * Portions of this software were developed by Konstantin Belousov
    8  * under sponsorship from the FreeBSD Foundation.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  */
   31 
   32 /*
   33  * this file contains a new buffer I/O scheme implementing a coherent
   34  * VM object and buffer cache scheme.  Pains have been taken to make
   35  * sure that the performance degradation associated with schemes such
   36  * as this is not realized.
   37  *
   38  * Author:  John S. Dyson
   39  * Significant help during the development and debugging phases
   40  * had been provided by David Greenman, also of the FreeBSD core team.
   41  *
   42  * see man buf(9) for more info.
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD$");
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/bio.h>
   51 #include <sys/conf.h>
   52 #include <sys/buf.h>
   53 #include <sys/devicestat.h>
   54 #include <sys/eventhandler.h>
   55 #include <sys/fail.h>
   56 #include <sys/limits.h>
   57 #include <sys/lock.h>
   58 #include <sys/malloc.h>
   59 #include <sys/mount.h>
   60 #include <sys/mutex.h>
   61 #include <sys/kernel.h>
   62 #include <sys/kthread.h>
   63 #include <sys/proc.h>
   64 #include <sys/racct.h>
   65 #include <sys/resourcevar.h>
   66 #include <sys/rwlock.h>
   67 #include <sys/smp.h>
   68 #include <sys/sysctl.h>
   69 #include <sys/sysproto.h>
   70 #include <sys/vmem.h>
   71 #include <sys/vmmeter.h>
   72 #include <sys/vnode.h>
   73 #include <sys/watchdog.h>
   74 #include <geom/geom.h>
   75 #include <vm/vm.h>
   76 #include <vm/vm_param.h>
   77 #include <vm/vm_kern.h>
   78 #include <vm/vm_object.h>
   79 #include <vm/vm_page.h>
   80 #include <vm/vm_pageout.h>
   81 #include <vm/vm_pager.h>
   82 #include <vm/vm_extern.h>
   83 #include <vm/vm_map.h>
   84 #include <vm/swap_pager.h>
   85 #include "opt_compat.h"
   86 #include "opt_swap.h"
   87 
   88 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
   89 
   90 struct  bio_ops bioops;         /* I/O operation notification */
   91 
   92 struct  buf_ops buf_ops_bio = {
   93         .bop_name       =       "buf_ops_bio",
   94         .bop_write      =       bufwrite,
   95         .bop_strategy   =       bufstrategy,
   96         .bop_sync       =       bufsync,
   97         .bop_bdflush    =       bufbdflush,
   98 };
   99 
  100 static struct buf *buf;         /* buffer header pool */
  101 extern struct buf *swbuf;       /* Swap buffer header pool. */
  102 caddr_t unmapped_buf;
  103 
  104 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
  105 struct proc *bufdaemonproc;
  106 struct proc *bufspacedaemonproc;
  107 
  108 static int inmem(struct vnode *vp, daddr_t blkno);
  109 static void vm_hold_free_pages(struct buf *bp, int newbsize);
  110 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
  111                 vm_offset_t to);
  112 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
  113 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
  114                 vm_page_t m);
  115 static void vfs_clean_pages_dirty_buf(struct buf *bp);
  116 static void vfs_setdirty_locked_object(struct buf *bp);
  117 static void vfs_vmio_invalidate(struct buf *bp);
  118 static void vfs_vmio_truncate(struct buf *bp, int npages);
  119 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
  120 static int vfs_bio_clcheck(struct vnode *vp, int size,
  121                 daddr_t lblkno, daddr_t blkno);
  122 static int buf_flush(struct vnode *vp, int);
  123 static int buf_recycle(bool);
  124 static int buf_scan(bool);
  125 static int flushbufqueues(struct vnode *, int, int);
  126 static void buf_daemon(void);
  127 static void bremfreel(struct buf *bp);
  128 static __inline void bd_wakeup(void);
  129 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
  130 static void bufkva_reclaim(vmem_t *, int);
  131 static void bufkva_free(struct buf *);
  132 static int buf_import(void *, void **, int, int);
  133 static void buf_release(void *, void **, int);
  134 static void maxbcachebuf_adjust(void);
  135 
  136 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  137     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  138 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
  139 #endif
  140 
  141 int vmiodirenable = TRUE;
  142 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
  143     "Use the VM system for directory writes");
  144 long runningbufspace;
  145 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
  146     "Amount of presently outstanding async buffer io");
  147 static long bufspace;
  148 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  149     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  150 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
  151     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
  152 #else
  153 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
  154     "Physical memory used for buffers");
  155 #endif
  156 static long bufkvaspace;
  157 SYSCTL_LONG(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace, 0,
  158     "Kernel virtual memory used for buffers");
  159 static long maxbufspace;
  160 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW, &maxbufspace, 0,
  161     "Maximum allowed value of bufspace (including metadata)");
  162 static long bufmallocspace;
  163 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
  164     "Amount of malloced memory for buffers");
  165 static long maxbufmallocspace;
  166 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
  167     0, "Maximum amount of malloced memory for buffers");
  168 static long lobufspace;
  169 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RW, &lobufspace, 0,
  170     "Minimum amount of buffers we want to have");
  171 long hibufspace;
  172 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RW, &hibufspace, 0,
  173     "Maximum allowed value of bufspace (excluding metadata)");
  174 long bufspacethresh;
  175 SYSCTL_LONG(_vfs, OID_AUTO, bufspacethresh, CTLFLAG_RW, &bufspacethresh,
  176     0, "Bufspace consumed before waking the daemon to free some");
  177 static int buffreekvacnt;
  178 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
  179     "Number of times we have freed the KVA space from some buffer");
  180 static int bufdefragcnt;
  181 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
  182     "Number of times we have had to repeat buffer allocation to defragment");
  183 static long lorunningspace;
  184 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
  185     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
  186     "Minimum preferred space used for in-progress I/O");
  187 static long hirunningspace;
  188 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
  189     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
  190     "Maximum amount of space to use for in-progress I/O");
  191 int dirtybufferflushes;
  192 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
  193     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
  194 int bdwriteskip;
  195 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
  196     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
  197 int altbufferflushes;
  198 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
  199     0, "Number of fsync flushes to limit dirty buffers");
  200 static int recursiveflushes;
  201 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
  202     0, "Number of flushes skipped due to being recursive");
  203 static int numdirtybuffers;
  204 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
  205     "Number of buffers that are dirty (has unwritten changes) at the moment");
  206 static int lodirtybuffers;
  207 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
  208     "How many buffers we want to have free before bufdaemon can sleep");
  209 static int hidirtybuffers;
  210 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
  211     "When the number of dirty buffers is considered severe");
  212 int dirtybufthresh;
  213 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
  214     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
  215 static int numfreebuffers;
  216 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
  217     "Number of free buffers");
  218 static int lofreebuffers;
  219 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
  220    "Target number of free buffers");
  221 static int hifreebuffers;
  222 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
  223    "Threshold for clean buffer recycling");
  224 static int getnewbufcalls;
  225 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
  226    "Number of calls to getnewbuf");
  227 static int getnewbufrestarts;
  228 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
  229     "Number of times getnewbuf has had to restart a buffer acquisition");
  230 static int mappingrestarts;
  231 SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
  232     "Number of times getblk has had to restart a buffer mapping for "
  233     "unmapped buffer");
  234 static int numbufallocfails;
  235 SYSCTL_INT(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW, &numbufallocfails, 0,
  236     "Number of times buffer allocations failed");
  237 static int flushbufqtarget = 100;
  238 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
  239     "Amount of work to do in flushbufqueues when helping bufdaemon");
  240 static long notbufdflushes;
  241 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes, 0,
  242     "Number of dirty buffer flushes done by the bufdaemon helpers");
  243 static long barrierwrites;
  244 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
  245     "Number of barrier writes");
  246 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
  247     &unmapped_buf_allowed, 0,
  248     "Permit the use of the unmapped i/o");
  249 int maxbcachebuf = MAXBCACHEBUF;
  250 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
  251     "Maximum size of a buffer cache block");
  252 
  253 /*
  254  * This lock synchronizes access to bd_request.
  255  */
  256 static struct mtx_padalign __exclusive_cache_line bdlock;
  257 
  258 /*
  259  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  260  * waitrunningbufspace().
  261  */
  262 static struct mtx_padalign __exclusive_cache_line rbreqlock;
  263 
  264 /*
  265  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
  266  */
  267 static struct rwlock_padalign __exclusive_cache_line nblock;
  268 
  269 /*
  270  * Lock that protects bdirtywait.
  271  */
  272 static struct mtx_padalign __exclusive_cache_line bdirtylock;
  273 
  274 /*
  275  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  276  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  277  * is idling.
  278  */
  279 static int bd_request;
  280 
  281 /*
  282  * Request/wakeup point for the bufspace daemon.
  283  */
  284 static int bufspace_request;
  285 
  286 /*
  287  * Request for the buf daemon to write more buffers than is indicated by
  288  * lodirtybuf.  This may be necessary to push out excess dependencies or
  289  * defragment the address space where a simple count of the number of dirty
  290  * buffers is insufficient to characterize the demand for flushing them.
  291  */
  292 static int bd_speedupreq;
  293 
  294 /*
  295  * bogus page -- for I/O to/from partially complete buffers
  296  * this is a temporary solution to the problem, but it is not
  297  * really that bad.  it would be better to split the buffer
  298  * for input in the case of buffers partially already in memory,
  299  * but the code is intricate enough already.
  300  */
  301 vm_page_t bogus_page;
  302 
  303 /*
  304  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  305  * Set when wait starts, cleared prior to wakeup().
  306  * Used in runningbufwakeup() and waitrunningbufspace().
  307  */
  308 static int runningbufreq;
  309 
  310 /* 
  311  * Synchronization (sleep/wakeup) variable for buffer requests.
  312  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
  313  * by and/or.
  314  * Used in numdirtywakeup(), bufspace_wakeup(), bwillwrite(),
  315  * getnewbuf(), and getblk().
  316  */
  317 static volatile int needsbuffer;
  318 
  319 /*
  320  * Synchronization for bwillwrite() waiters.
  321  */
  322 static int bdirtywait;
  323 
  324 /*
  325  * Definitions for the buffer free lists.
  326  */
  327 #define QUEUE_NONE      0       /* on no queue */
  328 #define QUEUE_EMPTY     1       /* empty buffer headers */
  329 #define QUEUE_DIRTY     2       /* B_DELWRI buffers */
  330 #define QUEUE_CLEAN     3       /* non-B_DELWRI buffers */
  331 #define QUEUE_SENTINEL  1024    /* not an queue index, but mark for sentinel */
  332 
  333 /* Maximum number of clean buffer queues. */
  334 #define CLEAN_QUEUES    16
  335 
  336 /* Configured number of clean queues. */
  337 static int clean_queues;
  338 
  339 /* Maximum number of buffer queues. */
  340 #define BUFFER_QUEUES   (QUEUE_CLEAN + CLEAN_QUEUES)
  341 
  342 /* Queues for free buffers with various properties */
  343 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
  344 #ifdef INVARIANTS
  345 static int bq_len[BUFFER_QUEUES];
  346 #endif
  347 
  348 /*
  349  * Lock for each bufqueue
  350  */
  351 static struct mtx_padalign __exclusive_cache_line bqlocks[BUFFER_QUEUES];
  352 
  353 /*
  354  * per-cpu empty buffer cache.
  355  */
  356 uma_zone_t buf_zone;
  357 
  358 /*
  359  * Single global constant for BUF_WMESG, to avoid getting multiple references.
  360  * buf_wmesg is referred from macros.
  361  */
  362 const char *buf_wmesg = BUF_WMESG;
  363 
  364 static int
  365 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
  366 {
  367         long value;
  368         int error;
  369 
  370         value = *(long *)arg1;
  371         error = sysctl_handle_long(oidp, &value, 0, req);
  372         if (error != 0 || req->newptr == NULL)
  373                 return (error);
  374         mtx_lock(&rbreqlock);
  375         if (arg1 == &hirunningspace) {
  376                 if (value < lorunningspace)
  377                         error = EINVAL;
  378                 else
  379                         hirunningspace = value;
  380         } else {
  381                 KASSERT(arg1 == &lorunningspace,
  382                     ("%s: unknown arg1", __func__));
  383                 if (value > hirunningspace)
  384                         error = EINVAL;
  385                 else
  386                         lorunningspace = value;
  387         }
  388         mtx_unlock(&rbreqlock);
  389         return (error);
  390 }
  391 
  392 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  393     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  394 static int
  395 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
  396 {
  397         long lvalue;
  398         int ivalue;
  399 
  400         if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
  401                 return (sysctl_handle_long(oidp, arg1, arg2, req));
  402         lvalue = *(long *)arg1;
  403         if (lvalue > INT_MAX)
  404                 /* On overflow, still write out a long to trigger ENOMEM. */
  405                 return (sysctl_handle_long(oidp, &lvalue, 0, req));
  406         ivalue = lvalue;
  407         return (sysctl_handle_int(oidp, &ivalue, 0, req));
  408 }
  409 #endif
  410 
  411 static int
  412 bqcleanq(void)
  413 {
  414         static int nextq;
  415 
  416         return ((atomic_fetchadd_int(&nextq, 1) % clean_queues) + QUEUE_CLEAN);
  417 }
  418 
  419 static int
  420 bqisclean(int qindex)
  421 {
  422 
  423         return (qindex >= QUEUE_CLEAN && qindex < QUEUE_CLEAN + CLEAN_QUEUES);
  424 }
  425 
  426 /*
  427  *      bqlock:
  428  *
  429  *      Return the appropriate queue lock based on the index.
  430  */
  431 static inline struct mtx *
  432 bqlock(int qindex)
  433 {
  434 
  435         return (struct mtx *)&bqlocks[qindex];
  436 }
  437 
  438 /*
  439  *      bdirtywakeup:
  440  *
  441  *      Wakeup any bwillwrite() waiters.
  442  */
  443 static void
  444 bdirtywakeup(void)
  445 {
  446         mtx_lock(&bdirtylock);
  447         if (bdirtywait) {
  448                 bdirtywait = 0;
  449                 wakeup(&bdirtywait);
  450         }
  451         mtx_unlock(&bdirtylock);
  452 }
  453 
  454 /*
  455  *      bdirtysub:
  456  *
  457  *      Decrement the numdirtybuffers count by one and wakeup any
  458  *      threads blocked in bwillwrite().
  459  */
  460 static void
  461 bdirtysub(void)
  462 {
  463 
  464         if (atomic_fetchadd_int(&numdirtybuffers, -1) ==
  465             (lodirtybuffers + hidirtybuffers) / 2)
  466                 bdirtywakeup();
  467 }
  468 
  469 /*
  470  *      bdirtyadd:
  471  *
  472  *      Increment the numdirtybuffers count by one and wakeup the buf 
  473  *      daemon if needed.
  474  */
  475 static void
  476 bdirtyadd(void)
  477 {
  478 
  479         /*
  480          * Only do the wakeup once as we cross the boundary.  The
  481          * buf daemon will keep running until the condition clears.
  482          */
  483         if (atomic_fetchadd_int(&numdirtybuffers, 1) ==
  484             (lodirtybuffers + hidirtybuffers) / 2)
  485                 bd_wakeup();
  486 }
  487 
  488 /*
  489  *      bufspace_wakeup:
  490  *
  491  *      Called when buffer space is potentially available for recovery.
  492  *      getnewbuf() will block on this flag when it is unable to free 
  493  *      sufficient buffer space.  Buffer space becomes recoverable when 
  494  *      bp's get placed back in the queues.
  495  */
  496 static void
  497 bufspace_wakeup(void)
  498 {
  499 
  500         /*
  501          * If someone is waiting for bufspace, wake them up.
  502          *
  503          * Since needsbuffer is set prior to doing an additional queue
  504          * scan it is safe to check for the flag prior to acquiring the
  505          * lock.  The thread that is preparing to scan again before
  506          * blocking would discover the buf we released.
  507          */
  508         if (needsbuffer) {
  509                 rw_rlock(&nblock);
  510                 if (atomic_cmpset_int(&needsbuffer, 1, 0) == 1)
  511                         wakeup(__DEVOLATILE(void *, &needsbuffer));
  512                 rw_runlock(&nblock);
  513         }
  514 }
  515 
  516 /*
  517  *      bufspace_daemonwakeup:
  518  *
  519  *      Wakeup the daemon responsible for freeing clean bufs.
  520  */
  521 static void
  522 bufspace_daemonwakeup(void)
  523 {
  524         rw_rlock(&nblock);
  525         if (bufspace_request == 0) {
  526                 bufspace_request = 1;
  527                 wakeup(&bufspace_request);
  528         }
  529         rw_runlock(&nblock);
  530 }
  531 
  532 /*
  533  *      bufspace_adjust:
  534  *
  535  *      Adjust the reported bufspace for a KVA managed buffer, possibly
  536  *      waking any waiters.
  537  */
  538 static void
  539 bufspace_adjust(struct buf *bp, int bufsize)
  540 {
  541         long space;
  542         int diff;
  543 
  544         KASSERT((bp->b_flags & B_MALLOC) == 0,
  545             ("bufspace_adjust: malloc buf %p", bp));
  546         diff = bufsize - bp->b_bufsize;
  547         if (diff < 0) {
  548                 atomic_subtract_long(&bufspace, -diff);
  549                 bufspace_wakeup();
  550         } else {
  551                 space = atomic_fetchadd_long(&bufspace, diff);
  552                 /* Wake up the daemon on the transition. */
  553                 if (space < bufspacethresh && space + diff >= bufspacethresh)
  554                         bufspace_daemonwakeup();
  555         }
  556         bp->b_bufsize = bufsize;
  557 }
  558 
  559 /*
  560  *      bufspace_reserve:
  561  *
  562  *      Reserve bufspace before calling allocbuf().  metadata has a
  563  *      different space limit than data.
  564  */
  565 static int
  566 bufspace_reserve(int size, bool metadata)
  567 {
  568         long limit;
  569         long space;
  570 
  571         if (metadata)
  572                 limit = maxbufspace;
  573         else
  574                 limit = hibufspace;
  575         do {
  576                 space = bufspace;
  577                 if (space + size > limit)
  578                         return (ENOSPC);
  579         } while (atomic_cmpset_long(&bufspace, space, space + size) == 0);
  580 
  581         /* Wake up the daemon on the transition. */
  582         if (space < bufspacethresh && space + size >= bufspacethresh)
  583                 bufspace_daemonwakeup();
  584 
  585         return (0);
  586 }
  587 
  588 /*
  589  *      bufspace_release:
  590  *
  591  *      Release reserved bufspace after bufspace_adjust() has consumed it.
  592  */
  593 static void
  594 bufspace_release(int size)
  595 {
  596         atomic_subtract_long(&bufspace, size);
  597         bufspace_wakeup();
  598 }
  599 
  600 /*
  601  *      bufspace_wait:
  602  *
  603  *      Wait for bufspace, acting as the buf daemon if a locked vnode is
  604  *      supplied.  needsbuffer must be set in a safe fashion prior to
  605  *      polling for space.  The operation must be re-tried on return.
  606  */
  607 static void
  608 bufspace_wait(struct vnode *vp, int gbflags, int slpflag, int slptimeo)
  609 {
  610         struct thread *td;
  611         int error, fl, norunbuf;
  612 
  613         if ((gbflags & GB_NOWAIT_BD) != 0)
  614                 return;
  615 
  616         td = curthread;
  617         rw_wlock(&nblock);
  618         while (needsbuffer != 0) {
  619                 if (vp != NULL && vp->v_type != VCHR &&
  620                     (td->td_pflags & TDP_BUFNEED) == 0) {
  621                         rw_wunlock(&nblock);
  622                         /*
  623                          * getblk() is called with a vnode locked, and
  624                          * some majority of the dirty buffers may as
  625                          * well belong to the vnode.  Flushing the
  626                          * buffers there would make a progress that
  627                          * cannot be achieved by the buf_daemon, that
  628                          * cannot lock the vnode.
  629                          */
  630                         norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
  631                             (td->td_pflags & TDP_NORUNNINGBUF);
  632 
  633                         /*
  634                          * Play bufdaemon.  The getnewbuf() function
  635                          * may be called while the thread owns lock
  636                          * for another dirty buffer for the same
  637                          * vnode, which makes it impossible to use
  638                          * VOP_FSYNC() there, due to the buffer lock
  639                          * recursion.
  640                          */
  641                         td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
  642                         fl = buf_flush(vp, flushbufqtarget);
  643                         td->td_pflags &= norunbuf;
  644                         rw_wlock(&nblock);
  645                         if (fl != 0)
  646                                 continue;
  647                         if (needsbuffer == 0)
  648                                 break;
  649                 }
  650                 error = rw_sleep(__DEVOLATILE(void *, &needsbuffer), &nblock,
  651                     (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
  652                 if (error != 0)
  653                         break;
  654         }
  655         rw_wunlock(&nblock);
  656 }
  657 
  658 
  659 /*
  660  *      bufspace_daemon:
  661  *
  662  *      buffer space management daemon.  Tries to maintain some marginal
  663  *      amount of free buffer space so that requesting processes neither
  664  *      block nor work to reclaim buffers.
  665  */
  666 static void
  667 bufspace_daemon(void)
  668 {
  669         for (;;) {
  670                 kproc_suspend_check(bufspacedaemonproc);
  671 
  672                 /*
  673                  * Free buffers from the clean queue until we meet our
  674                  * targets.
  675                  *
  676                  * Theory of operation:  The buffer cache is most efficient
  677                  * when some free buffer headers and space are always
  678                  * available to getnewbuf().  This daemon attempts to prevent
  679                  * the excessive blocking and synchronization associated
  680                  * with shortfall.  It goes through three phases according
  681                  * demand:
  682                  *
  683                  * 1)   The daemon wakes up voluntarily once per-second
  684                  *      during idle periods when the counters are below
  685                  *      the wakeup thresholds (bufspacethresh, lofreebuffers).
  686                  *
  687                  * 2)   The daemon wakes up as we cross the thresholds
  688                  *      ahead of any potential blocking.  This may bounce
  689                  *      slightly according to the rate of consumption and
  690                  *      release.
  691                  *
  692                  * 3)   The daemon and consumers are starved for working
  693                  *      clean buffers.  This is the 'bufspace' sleep below
  694                  *      which will inefficiently trade bufs with bqrelse
  695                  *      until we return to condition 2.
  696                  */
  697                 while (bufspace > lobufspace ||
  698                     numfreebuffers < hifreebuffers) {
  699                         if (buf_recycle(false) != 0) {
  700                                 atomic_set_int(&needsbuffer, 1);
  701                                 if (buf_recycle(false) != 0) {
  702                                         rw_wlock(&nblock);
  703                                         if (needsbuffer)
  704                                                 rw_sleep(__DEVOLATILE(void *,
  705                                                     &needsbuffer), &nblock,
  706                                                     PRIBIO|PDROP, "bufspace",
  707                                                     hz/10);
  708                                         else
  709                                                 rw_wunlock(&nblock);
  710                                 }
  711                         }
  712                         maybe_yield();
  713                 }
  714 
  715                 /*
  716                  * Re-check our limits under the exclusive nblock.
  717                  */
  718                 rw_wlock(&nblock);
  719                 if (bufspace < bufspacethresh &&
  720                     numfreebuffers > lofreebuffers) {
  721                         bufspace_request = 0;
  722                         rw_sleep(&bufspace_request, &nblock, PRIBIO|PDROP,
  723                             "-", hz);
  724                 } else
  725                         rw_wunlock(&nblock);
  726         }
  727 }
  728 
  729 static struct kproc_desc bufspace_kp = {
  730         "bufspacedaemon",
  731         bufspace_daemon,
  732         &bufspacedaemonproc
  733 };
  734 SYSINIT(bufspacedaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start,
  735     &bufspace_kp);
  736 
  737 /*
  738  *      bufmallocadjust:
  739  *
  740  *      Adjust the reported bufspace for a malloc managed buffer, possibly
  741  *      waking any waiters.
  742  */
  743 static void
  744 bufmallocadjust(struct buf *bp, int bufsize)
  745 {
  746         int diff;
  747 
  748         KASSERT((bp->b_flags & B_MALLOC) != 0,
  749             ("bufmallocadjust: non-malloc buf %p", bp));
  750         diff = bufsize - bp->b_bufsize;
  751         if (diff < 0)
  752                 atomic_subtract_long(&bufmallocspace, -diff);
  753         else
  754                 atomic_add_long(&bufmallocspace, diff);
  755         bp->b_bufsize = bufsize;
  756 }
  757 
  758 /*
  759  *      runningwakeup:
  760  *
  761  *      Wake up processes that are waiting on asynchronous writes to fall
  762  *      below lorunningspace.
  763  */
  764 static void
  765 runningwakeup(void)
  766 {
  767 
  768         mtx_lock(&rbreqlock);
  769         if (runningbufreq) {
  770                 runningbufreq = 0;
  771                 wakeup(&runningbufreq);
  772         }
  773         mtx_unlock(&rbreqlock);
  774 }
  775 
  776 /*
  777  *      runningbufwakeup:
  778  *
  779  *      Decrement the outstanding write count according.
  780  */
  781 void
  782 runningbufwakeup(struct buf *bp)
  783 {
  784         long space, bspace;
  785 
  786         bspace = bp->b_runningbufspace;
  787         if (bspace == 0)
  788                 return;
  789         space = atomic_fetchadd_long(&runningbufspace, -bspace);
  790         KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
  791             space, bspace));
  792         bp->b_runningbufspace = 0;
  793         /*
  794          * Only acquire the lock and wakeup on the transition from exceeding
  795          * the threshold to falling below it.
  796          */
  797         if (space < lorunningspace)
  798                 return;
  799         if (space - bspace > lorunningspace)
  800                 return;
  801         runningwakeup();
  802 }
  803 
  804 /*
  805  *      waitrunningbufspace()
  806  *
  807  *      runningbufspace is a measure of the amount of I/O currently
  808  *      running.  This routine is used in async-write situations to
  809  *      prevent creating huge backups of pending writes to a device.
  810  *      Only asynchronous writes are governed by this function.
  811  *
  812  *      This does NOT turn an async write into a sync write.  It waits  
  813  *      for earlier writes to complete and generally returns before the
  814  *      caller's write has reached the device.
  815  */
  816 void
  817 waitrunningbufspace(void)
  818 {
  819 
  820         mtx_lock(&rbreqlock);
  821         while (runningbufspace > hirunningspace) {
  822                 runningbufreq = 1;
  823                 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
  824         }
  825         mtx_unlock(&rbreqlock);
  826 }
  827 
  828 
  829 /*
  830  *      vfs_buf_test_cache:
  831  *
  832  *      Called when a buffer is extended.  This function clears the B_CACHE
  833  *      bit if the newly extended portion of the buffer does not contain
  834  *      valid data.
  835  */
  836 static __inline void
  837 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
  838     vm_offset_t size, vm_page_t m)
  839 {
  840 
  841         VM_OBJECT_ASSERT_LOCKED(m->object);
  842         if (bp->b_flags & B_CACHE) {
  843                 int base = (foff + off) & PAGE_MASK;
  844                 if (vm_page_is_valid(m, base, size) == 0)
  845                         bp->b_flags &= ~B_CACHE;
  846         }
  847 }
  848 
  849 /* Wake up the buffer daemon if necessary */
  850 static __inline void
  851 bd_wakeup(void)
  852 {
  853 
  854         mtx_lock(&bdlock);
  855         if (bd_request == 0) {
  856                 bd_request = 1;
  857                 wakeup(&bd_request);
  858         }
  859         mtx_unlock(&bdlock);
  860 }
  861 
  862 /*
  863  * Adjust the maxbcachbuf tunable.
  864  */
  865 static void
  866 maxbcachebuf_adjust(void)
  867 {
  868         int i;
  869 
  870         /*
  871          * maxbcachebuf must be a power of 2 >= MAXBSIZE.
  872          */
  873         i = 2;
  874         while (i * 2 <= maxbcachebuf)
  875                 i *= 2;
  876         maxbcachebuf = i;
  877         if (maxbcachebuf < MAXBSIZE)
  878                 maxbcachebuf = MAXBSIZE;
  879         if (maxbcachebuf > MAXPHYS)
  880                 maxbcachebuf = MAXPHYS;
  881         if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
  882                 printf("maxbcachebuf=%d\n", maxbcachebuf);
  883 }
  884 
  885 /*
  886  * bd_speedup - speedup the buffer cache flushing code
  887  */
  888 void
  889 bd_speedup(void)
  890 {
  891         int needwake;
  892 
  893         mtx_lock(&bdlock);
  894         needwake = 0;
  895         if (bd_speedupreq == 0 || bd_request == 0)
  896                 needwake = 1;
  897         bd_speedupreq = 1;
  898         bd_request = 1;
  899         if (needwake)
  900                 wakeup(&bd_request);
  901         mtx_unlock(&bdlock);
  902 }
  903 
  904 #ifndef NSWBUF_MIN
  905 #define NSWBUF_MIN      16
  906 #endif
  907 
  908 #ifdef __i386__
  909 #define TRANSIENT_DENOM 5
  910 #else
  911 #define TRANSIENT_DENOM 10
  912 #endif
  913 
  914 /*
  915  * Calculating buffer cache scaling values and reserve space for buffer
  916  * headers.  This is called during low level kernel initialization and
  917  * may be called more then once.  We CANNOT write to the memory area
  918  * being reserved at this time.
  919  */
  920 caddr_t
  921 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
  922 {
  923         int tuned_nbuf;
  924         long maxbuf, maxbuf_sz, buf_sz, biotmap_sz;
  925 
  926         /*
  927          * physmem_est is in pages.  Convert it to kilobytes (assumes
  928          * PAGE_SIZE is >= 1K)
  929          */
  930         physmem_est = physmem_est * (PAGE_SIZE / 1024);
  931 
  932         maxbcachebuf_adjust();
  933         /*
  934          * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
  935          * For the first 64MB of ram nominally allocate sufficient buffers to
  936          * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
  937          * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
  938          * the buffer cache we limit the eventual kva reservation to
  939          * maxbcache bytes.
  940          *
  941          * factor represents the 1/4 x ram conversion.
  942          */
  943         if (nbuf == 0) {
  944                 int factor = 4 * BKVASIZE / 1024;
  945 
  946                 nbuf = 50;
  947                 if (physmem_est > 4096)
  948                         nbuf += min((physmem_est - 4096) / factor,
  949                             65536 / factor);
  950                 if (physmem_est > 65536)
  951                         nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
  952                             32 * 1024 * 1024 / (factor * 5));
  953 
  954                 if (maxbcache && nbuf > maxbcache / BKVASIZE)
  955                         nbuf = maxbcache / BKVASIZE;
  956                 tuned_nbuf = 1;
  957         } else
  958                 tuned_nbuf = 0;
  959 
  960         /* XXX Avoid unsigned long overflows later on with maxbufspace. */
  961         maxbuf = (LONG_MAX / 3) / BKVASIZE;
  962         if (nbuf > maxbuf) {
  963                 if (!tuned_nbuf)
  964                         printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
  965                             maxbuf);
  966                 nbuf = maxbuf;
  967         }
  968 
  969         /*
  970          * Ideal allocation size for the transient bio submap is 10%
  971          * of the maximal space buffer map.  This roughly corresponds
  972          * to the amount of the buffer mapped for typical UFS load.
  973          *
  974          * Clip the buffer map to reserve space for the transient
  975          * BIOs, if its extent is bigger than 90% (80% on i386) of the
  976          * maximum buffer map extent on the platform.
  977          *
  978          * The fall-back to the maxbuf in case of maxbcache unset,
  979          * allows to not trim the buffer KVA for the architectures
  980          * with ample KVA space.
  981          */
  982         if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
  983                 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
  984                 buf_sz = (long)nbuf * BKVASIZE;
  985                 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
  986                     (TRANSIENT_DENOM - 1)) {
  987                         /*
  988                          * There is more KVA than memory.  Do not
  989                          * adjust buffer map size, and assign the rest
  990                          * of maxbuf to transient map.
  991                          */
  992                         biotmap_sz = maxbuf_sz - buf_sz;
  993                 } else {
  994                         /*
  995                          * Buffer map spans all KVA we could afford on
  996                          * this platform.  Give 10% (20% on i386) of
  997                          * the buffer map to the transient bio map.
  998                          */
  999                         biotmap_sz = buf_sz / TRANSIENT_DENOM;
 1000                         buf_sz -= biotmap_sz;
 1001                 }
 1002                 if (biotmap_sz / INT_MAX > MAXPHYS)
 1003                         bio_transient_maxcnt = INT_MAX;
 1004                 else
 1005                         bio_transient_maxcnt = biotmap_sz / MAXPHYS;
 1006                 /*
 1007                  * Artificially limit to 1024 simultaneous in-flight I/Os
 1008                  * using the transient mapping.
 1009                  */
 1010                 if (bio_transient_maxcnt > 1024)
 1011                         bio_transient_maxcnt = 1024;
 1012                 if (tuned_nbuf)
 1013                         nbuf = buf_sz / BKVASIZE;
 1014         }
 1015 
 1016         /*
 1017          * swbufs are used as temporary holders for I/O, such as paging I/O.
 1018          * We have no less then 16 and no more then 256.
 1019          */
 1020         nswbuf = min(nbuf / 4, 256);
 1021         TUNABLE_INT_FETCH("kern.nswbuf", &nswbuf);
 1022         if (nswbuf < NSWBUF_MIN)
 1023                 nswbuf = NSWBUF_MIN;
 1024 
 1025         /*
 1026          * Reserve space for the buffer cache buffers
 1027          */
 1028         swbuf = (void *)v;
 1029         v = (caddr_t)(swbuf + nswbuf);
 1030         buf = (void *)v;
 1031         v = (caddr_t)(buf + nbuf);
 1032 
 1033         return(v);
 1034 }
 1035 
 1036 /* Initialize the buffer subsystem.  Called before use of any buffers. */
 1037 void
 1038 bufinit(void)
 1039 {
 1040         struct buf *bp;
 1041         int i;
 1042 
 1043         KASSERT(maxbcachebuf >= MAXBSIZE,
 1044             ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
 1045             MAXBSIZE));
 1046         mtx_init(&bqlocks[QUEUE_DIRTY], "bufq dirty lock", NULL, MTX_DEF);
 1047         mtx_init(&bqlocks[QUEUE_EMPTY], "bufq empty lock", NULL, MTX_DEF);
 1048         for (i = QUEUE_CLEAN; i < QUEUE_CLEAN + CLEAN_QUEUES; i++)
 1049                 mtx_init(&bqlocks[i], "bufq clean lock", NULL, MTX_DEF);
 1050         mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
 1051         rw_init(&nblock, "needsbuffer lock");
 1052         mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
 1053         mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
 1054 
 1055         /* next, make a null set of free lists */
 1056         for (i = 0; i < BUFFER_QUEUES; i++)
 1057                 TAILQ_INIT(&bufqueues[i]);
 1058 
 1059         unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
 1060 
 1061         /* finally, initialize each buffer header and stick on empty q */
 1062         for (i = 0; i < nbuf; i++) {
 1063                 bp = &buf[i];
 1064                 bzero(bp, sizeof *bp);
 1065                 bp->b_flags = B_INVAL;
 1066                 bp->b_rcred = NOCRED;
 1067                 bp->b_wcred = NOCRED;
 1068                 bp->b_qindex = QUEUE_EMPTY;
 1069                 bp->b_xflags = 0;
 1070                 bp->b_data = bp->b_kvabase = unmapped_buf;
 1071                 LIST_INIT(&bp->b_dep);
 1072                 BUF_LOCKINIT(bp);
 1073                 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
 1074 #ifdef INVARIANTS
 1075                 bq_len[QUEUE_EMPTY]++;
 1076 #endif
 1077         }
 1078 
 1079         /*
 1080          * maxbufspace is the absolute maximum amount of buffer space we are 
 1081          * allowed to reserve in KVM and in real terms.  The absolute maximum
 1082          * is nominally used by metadata.  hibufspace is the nominal maximum
 1083          * used by most other requests.  The differential is required to 
 1084          * ensure that metadata deadlocks don't occur.
 1085          *
 1086          * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
 1087          * this may result in KVM fragmentation which is not handled optimally
 1088          * by the system. XXX This is less true with vmem.  We could use
 1089          * PAGE_SIZE.
 1090          */
 1091         maxbufspace = (long)nbuf * BKVASIZE;
 1092         hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
 1093         lobufspace = (hibufspace / 20) * 19; /* 95% */
 1094         bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
 1095 
 1096         /*
 1097          * Note: The 16 MiB upper limit for hirunningspace was chosen
 1098          * arbitrarily and may need further tuning. It corresponds to
 1099          * 128 outstanding write IO requests (if IO size is 128 KiB),
 1100          * which fits with many RAID controllers' tagged queuing limits.
 1101          * The lower 1 MiB limit is the historical upper limit for
 1102          * hirunningspace.
 1103          */
 1104         hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
 1105             16 * 1024 * 1024), 1024 * 1024);
 1106         lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
 1107 
 1108         /*
 1109          * Limit the amount of malloc memory since it is wired permanently into
 1110          * the kernel space.  Even though this is accounted for in the buffer
 1111          * allocation, we don't want the malloced region to grow uncontrolled.
 1112          * The malloc scheme improves memory utilization significantly on
 1113          * average (small) directories.
 1114          */
 1115         maxbufmallocspace = hibufspace / 20;
 1116 
 1117         /*
 1118          * Reduce the chance of a deadlock occurring by limiting the number
 1119          * of delayed-write dirty buffers we allow to stack up.
 1120          */
 1121         hidirtybuffers = nbuf / 4 + 20;
 1122         dirtybufthresh = hidirtybuffers * 9 / 10;
 1123         numdirtybuffers = 0;
 1124         /*
 1125          * To support extreme low-memory systems, make sure hidirtybuffers
 1126          * cannot eat up all available buffer space.  This occurs when our
 1127          * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
 1128          * buffer space assuming BKVASIZE'd buffers.
 1129          */
 1130         while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
 1131                 hidirtybuffers >>= 1;
 1132         }
 1133         lodirtybuffers = hidirtybuffers / 2;
 1134 
 1135         /*
 1136          * lofreebuffers should be sufficient to avoid stalling waiting on
 1137          * buf headers under heavy utilization.  The bufs in per-cpu caches
 1138          * are counted as free but will be unavailable to threads executing
 1139          * on other cpus.
 1140          *
 1141          * hifreebuffers is the free target for the bufspace daemon.  This
 1142          * should be set appropriately to limit work per-iteration.
 1143          */
 1144         lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
 1145         hifreebuffers = (3 * lofreebuffers) / 2;
 1146         numfreebuffers = nbuf;
 1147 
 1148         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
 1149             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
 1150 
 1151         /* Setup the kva and free list allocators. */
 1152         vmem_set_reclaim(buffer_arena, bufkva_reclaim);
 1153         buf_zone = uma_zcache_create("buf free cache", sizeof(struct buf),
 1154             NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
 1155 
 1156         /*
 1157          * Size the clean queue according to the amount of buffer space.
 1158          * One queue per-256mb up to the max.  More queues gives better
 1159          * concurrency but less accurate LRU.
 1160          */
 1161         clean_queues = MIN(howmany(maxbufspace, 256*1024*1024), CLEAN_QUEUES);
 1162 
 1163 }
 1164 
 1165 #ifdef INVARIANTS
 1166 static inline void
 1167 vfs_buf_check_mapped(struct buf *bp)
 1168 {
 1169 
 1170         KASSERT(bp->b_kvabase != unmapped_buf,
 1171             ("mapped buf: b_kvabase was not updated %p", bp));
 1172         KASSERT(bp->b_data != unmapped_buf,
 1173             ("mapped buf: b_data was not updated %p", bp));
 1174         KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
 1175             MAXPHYS, ("b_data + b_offset unmapped %p", bp));
 1176 }
 1177 
 1178 static inline void
 1179 vfs_buf_check_unmapped(struct buf *bp)
 1180 {
 1181 
 1182         KASSERT(bp->b_data == unmapped_buf,
 1183             ("unmapped buf: corrupted b_data %p", bp));
 1184 }
 1185 
 1186 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
 1187 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
 1188 #else
 1189 #define BUF_CHECK_MAPPED(bp) do {} while (0)
 1190 #define BUF_CHECK_UNMAPPED(bp) do {} while (0)
 1191 #endif
 1192 
 1193 static int
 1194 isbufbusy(struct buf *bp)
 1195 {
 1196         if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
 1197             ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
 1198                 return (1);
 1199         return (0);
 1200 }
 1201 
 1202 /*
 1203  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
 1204  */
 1205 void
 1206 bufshutdown(int show_busybufs)
 1207 {
 1208         static int first_buf_printf = 1;
 1209         struct buf *bp;
 1210         int iter, nbusy, pbusy;
 1211 #ifndef PREEMPTION
 1212         int subiter;
 1213 #endif
 1214 
 1215         /* 
 1216          * Sync filesystems for shutdown
 1217          */
 1218         wdog_kern_pat(WD_LASTVAL);
 1219         sys_sync(curthread, NULL);
 1220 
 1221         /*
 1222          * With soft updates, some buffers that are
 1223          * written will be remarked as dirty until other
 1224          * buffers are written.
 1225          */
 1226         for (iter = pbusy = 0; iter < 20; iter++) {
 1227                 nbusy = 0;
 1228                 for (bp = &buf[nbuf]; --bp >= buf; )
 1229                         if (isbufbusy(bp))
 1230                                 nbusy++;
 1231                 if (nbusy == 0) {
 1232                         if (first_buf_printf)
 1233                                 printf("All buffers synced.");
 1234                         break;
 1235                 }
 1236                 if (first_buf_printf) {
 1237                         printf("Syncing disks, buffers remaining... ");
 1238                         first_buf_printf = 0;
 1239                 }
 1240                 printf("%d ", nbusy);
 1241                 if (nbusy < pbusy)
 1242                         iter = 0;
 1243                 pbusy = nbusy;
 1244 
 1245                 wdog_kern_pat(WD_LASTVAL);
 1246                 sys_sync(curthread, NULL);
 1247 
 1248 #ifdef PREEMPTION
 1249                 /*
 1250                  * Drop Giant and spin for a while to allow
 1251                  * interrupt threads to run.
 1252                  */
 1253                 DROP_GIANT();
 1254                 DELAY(50000 * iter);
 1255                 PICKUP_GIANT();
 1256 #else
 1257                 /*
 1258                  * Drop Giant and context switch several times to
 1259                  * allow interrupt threads to run.
 1260                  */
 1261                 DROP_GIANT();
 1262                 for (subiter = 0; subiter < 50 * iter; subiter++) {
 1263                         thread_lock(curthread);
 1264                         mi_switch(SW_VOL, NULL);
 1265                         thread_unlock(curthread);
 1266                         DELAY(1000);
 1267                 }
 1268                 PICKUP_GIANT();
 1269 #endif
 1270         }
 1271         printf("\n");
 1272         /*
 1273          * Count only busy local buffers to prevent forcing 
 1274          * a fsck if we're just a client of a wedged NFS server
 1275          */
 1276         nbusy = 0;
 1277         for (bp = &buf[nbuf]; --bp >= buf; ) {
 1278                 if (isbufbusy(bp)) {
 1279 #if 0
 1280 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
 1281                         if (bp->b_dev == NULL) {
 1282                                 TAILQ_REMOVE(&mountlist,
 1283                                     bp->b_vp->v_mount, mnt_list);
 1284                                 continue;
 1285                         }
 1286 #endif
 1287                         nbusy++;
 1288                         if (show_busybufs > 0) {
 1289                                 printf(
 1290             "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
 1291                                     nbusy, bp, bp->b_vp, bp->b_flags,
 1292                                     (intmax_t)bp->b_blkno,
 1293                                     (intmax_t)bp->b_lblkno);
 1294                                 BUF_LOCKPRINTINFO(bp);
 1295                                 if (show_busybufs > 1)
 1296                                         vn_printf(bp->b_vp,
 1297                                             "vnode content: ");
 1298                         }
 1299                 }
 1300         }
 1301         if (nbusy) {
 1302                 /*
 1303                  * Failed to sync all blocks. Indicate this and don't
 1304                  * unmount filesystems (thus forcing an fsck on reboot).
 1305                  */
 1306                 printf("Giving up on %d buffers\n", nbusy);
 1307                 DELAY(5000000); /* 5 seconds */
 1308         } else {
 1309                 if (!first_buf_printf)
 1310                         printf("Final sync complete\n");
 1311                 /*
 1312                  * Unmount filesystems
 1313                  */
 1314                 if (panicstr == NULL)
 1315                         vfs_unmountall();
 1316         }
 1317         swapoff_all();
 1318         DELAY(100000);          /* wait for console output to finish */
 1319 }
 1320 
 1321 static void
 1322 bpmap_qenter(struct buf *bp)
 1323 {
 1324 
 1325         BUF_CHECK_MAPPED(bp);
 1326 
 1327         /*
 1328          * bp->b_data is relative to bp->b_offset, but
 1329          * bp->b_offset may be offset into the first page.
 1330          */
 1331         bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
 1332         pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
 1333         bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
 1334             (vm_offset_t)(bp->b_offset & PAGE_MASK));
 1335 }
 1336 
 1337 /*
 1338  *      binsfree:
 1339  *
 1340  *      Insert the buffer into the appropriate free list.
 1341  */
 1342 static void
 1343 binsfree(struct buf *bp, int qindex)
 1344 {
 1345         struct mtx *olock, *nlock;
 1346 
 1347         if (qindex != QUEUE_EMPTY) {
 1348                 BUF_ASSERT_XLOCKED(bp);
 1349         }
 1350 
 1351         /*
 1352          * Stick to the same clean queue for the lifetime of the buf to
 1353          * limit locking below.  Otherwise pick ont sequentially.
 1354          */
 1355         if (qindex == QUEUE_CLEAN) {
 1356                 if (bqisclean(bp->b_qindex))
 1357                         qindex = bp->b_qindex;
 1358                 else
 1359                         qindex = bqcleanq();
 1360         }
 1361 
 1362         /*
 1363          * Handle delayed bremfree() processing.
 1364          */
 1365         nlock = bqlock(qindex);
 1366         if (bp->b_flags & B_REMFREE) {
 1367                 olock = bqlock(bp->b_qindex);
 1368                 mtx_lock(olock);
 1369                 bremfreel(bp);
 1370                 if (olock != nlock) {
 1371                         mtx_unlock(olock);
 1372                         mtx_lock(nlock);
 1373                 }
 1374         } else
 1375                 mtx_lock(nlock);
 1376 
 1377         if (bp->b_qindex != QUEUE_NONE)
 1378                 panic("binsfree: free buffer onto another queue???");
 1379 
 1380         bp->b_qindex = qindex;
 1381         if (bp->b_flags & B_AGE)
 1382                 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1383         else
 1384                 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1385 #ifdef INVARIANTS
 1386         bq_len[bp->b_qindex]++;
 1387 #endif
 1388         mtx_unlock(nlock);
 1389 }
 1390 
 1391 /*
 1392  * buf_free:
 1393  *
 1394  *      Free a buffer to the buf zone once it no longer has valid contents.
 1395  */
 1396 static void
 1397 buf_free(struct buf *bp)
 1398 {
 1399 
 1400         if (bp->b_flags & B_REMFREE)
 1401                 bremfreef(bp);
 1402         if (bp->b_vflags & BV_BKGRDINPROG)
 1403                 panic("losing buffer 1");
 1404         if (bp->b_rcred != NOCRED) {
 1405                 crfree(bp->b_rcred);
 1406                 bp->b_rcred = NOCRED;
 1407         }
 1408         if (bp->b_wcred != NOCRED) {
 1409                 crfree(bp->b_wcred);
 1410                 bp->b_wcred = NOCRED;
 1411         }
 1412         if (!LIST_EMPTY(&bp->b_dep))
 1413                 buf_deallocate(bp);
 1414         bufkva_free(bp);
 1415         BUF_UNLOCK(bp);
 1416         uma_zfree(buf_zone, bp);
 1417         atomic_add_int(&numfreebuffers, 1);
 1418         bufspace_wakeup();
 1419 }
 1420 
 1421 /*
 1422  * buf_import:
 1423  *
 1424  *      Import bufs into the uma cache from the buf list.  The system still
 1425  *      expects a static array of bufs and much of the synchronization
 1426  *      around bufs assumes type stable storage.  As a result, UMA is used
 1427  *      only as a per-cpu cache of bufs still maintained on a global list.
 1428  */
 1429 static int
 1430 buf_import(void *arg, void **store, int cnt, int flags)
 1431 {
 1432         struct buf *bp;
 1433         int i;
 1434 
 1435         mtx_lock(&bqlocks[QUEUE_EMPTY]);
 1436         for (i = 0; i < cnt; i++) {
 1437                 bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
 1438                 if (bp == NULL)
 1439                         break;
 1440                 bremfreel(bp);
 1441                 store[i] = bp;
 1442         }
 1443         mtx_unlock(&bqlocks[QUEUE_EMPTY]);
 1444 
 1445         return (i);
 1446 }
 1447 
 1448 /*
 1449  * buf_release:
 1450  *
 1451  *      Release bufs from the uma cache back to the buffer queues.
 1452  */
 1453 static void
 1454 buf_release(void *arg, void **store, int cnt)
 1455 {
 1456         int i;
 1457 
 1458         for (i = 0; i < cnt; i++)
 1459                 binsfree(store[i], QUEUE_EMPTY);
 1460 }
 1461 
 1462 /*
 1463  * buf_alloc:
 1464  *
 1465  *      Allocate an empty buffer header.
 1466  */
 1467 static struct buf *
 1468 buf_alloc(void)
 1469 {
 1470         struct buf *bp;
 1471 
 1472         bp = uma_zalloc(buf_zone, M_NOWAIT);
 1473         if (bp == NULL) {
 1474                 bufspace_daemonwakeup();
 1475                 atomic_add_int(&numbufallocfails, 1);
 1476                 return (NULL);
 1477         }
 1478 
 1479         /*
 1480          * Wake-up the bufspace daemon on transition.
 1481          */
 1482         if (atomic_fetchadd_int(&numfreebuffers, -1) == lofreebuffers)
 1483                 bufspace_daemonwakeup();
 1484 
 1485         if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1486                 panic("getnewbuf_empty: Locked buf %p on free queue.", bp);
 1487         
 1488         KASSERT(bp->b_vp == NULL,
 1489             ("bp: %p still has vnode %p.", bp, bp->b_vp));
 1490         KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
 1491             ("invalid buffer %p flags %#x", bp, bp->b_flags));
 1492         KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
 1493             ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
 1494         KASSERT(bp->b_npages == 0,
 1495             ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
 1496         KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
 1497         KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
 1498 
 1499         bp->b_flags = 0;
 1500         bp->b_ioflags = 0;
 1501         bp->b_xflags = 0;
 1502         bp->b_vflags = 0;
 1503         bp->b_vp = NULL;
 1504         bp->b_blkno = bp->b_lblkno = 0;
 1505         bp->b_offset = NOOFFSET;
 1506         bp->b_iodone = 0;
 1507         bp->b_error = 0;
 1508         bp->b_resid = 0;
 1509         bp->b_bcount = 0;
 1510         bp->b_npages = 0;
 1511         bp->b_dirtyoff = bp->b_dirtyend = 0;
 1512         bp->b_bufobj = NULL;
 1513         bp->b_pin_count = 0;
 1514         bp->b_data = bp->b_kvabase = unmapped_buf;
 1515         bp->b_fsprivate1 = NULL;
 1516         bp->b_fsprivate2 = NULL;
 1517         bp->b_fsprivate3 = NULL;
 1518         LIST_INIT(&bp->b_dep);
 1519 
 1520         return (bp);
 1521 }
 1522 
 1523 /*
 1524  *      buf_qrecycle:
 1525  *
 1526  *      Free a buffer from the given bufqueue.  kva controls whether the
 1527  *      freed buf must own some kva resources.  This is used for
 1528  *      defragmenting.
 1529  */
 1530 static int
 1531 buf_qrecycle(int qindex, bool kva)
 1532 {
 1533         struct buf *bp, *nbp;
 1534 
 1535         if (kva)
 1536                 atomic_add_int(&bufdefragcnt, 1);
 1537         nbp = NULL;
 1538         mtx_lock(&bqlocks[qindex]);
 1539         nbp = TAILQ_FIRST(&bufqueues[qindex]);
 1540 
 1541         /*
 1542          * Run scan, possibly freeing data and/or kva mappings on the fly
 1543          * depending.
 1544          */
 1545         while ((bp = nbp) != NULL) {
 1546                 /*
 1547                  * Calculate next bp (we can only use it if we do not
 1548                  * release the bqlock).
 1549                  */
 1550                 nbp = TAILQ_NEXT(bp, b_freelist);
 1551 
 1552                 /*
 1553                  * If we are defragging then we need a buffer with 
 1554                  * some kva to reclaim.
 1555                  */
 1556                 if (kva && bp->b_kvasize == 0)
 1557                         continue;
 1558 
 1559                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1560                         continue;
 1561 
 1562                 /*
 1563                  * Skip buffers with background writes in progress.
 1564                  */
 1565                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
 1566                         BUF_UNLOCK(bp);
 1567                         continue;
 1568                 }
 1569 
 1570                 KASSERT(bp->b_qindex == qindex,
 1571                     ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
 1572                 /*
 1573                  * NOTE:  nbp is now entirely invalid.  We can only restart
 1574                  * the scan from this point on.
 1575                  */
 1576                 bremfreel(bp);
 1577                 mtx_unlock(&bqlocks[qindex]);
 1578 
 1579                 /*
 1580                  * Requeue the background write buffer with error and
 1581                  * restart the scan.
 1582                  */
 1583                 if ((bp->b_vflags & BV_BKGRDERR) != 0) {
 1584                         bqrelse(bp);
 1585                         mtx_lock(&bqlocks[qindex]);
 1586                         nbp = TAILQ_FIRST(&bufqueues[qindex]);
 1587                         continue;
 1588                 }
 1589                 bp->b_flags |= B_INVAL;
 1590                 brelse(bp);
 1591                 return (0);
 1592         }
 1593         mtx_unlock(&bqlocks[qindex]);
 1594 
 1595         return (ENOBUFS);
 1596 }
 1597 
 1598 /*
 1599  *      buf_recycle:
 1600  *
 1601  *      Iterate through all clean queues until we find a buf to recycle or
 1602  *      exhaust the search.
 1603  */
 1604 static int
 1605 buf_recycle(bool kva)
 1606 {
 1607         int qindex, first_qindex;
 1608 
 1609         qindex = first_qindex = bqcleanq();
 1610         do {
 1611                 if (buf_qrecycle(qindex, kva) == 0)
 1612                         return (0);
 1613                 if (++qindex == QUEUE_CLEAN + clean_queues)
 1614                         qindex = QUEUE_CLEAN;
 1615         } while (qindex != first_qindex);
 1616 
 1617         return (ENOBUFS);
 1618 }
 1619 
 1620 /*
 1621  *      buf_scan:
 1622  *
 1623  *      Scan the clean queues looking for a buffer to recycle.  needsbuffer
 1624  *      is set on failure so that the caller may optionally bufspace_wait()
 1625  *      in a race-free fashion.
 1626  */
 1627 static int
 1628 buf_scan(bool defrag)
 1629 {
 1630         int error;
 1631 
 1632         /*
 1633          * To avoid heavy synchronization and wakeup races we set
 1634          * needsbuffer and re-poll before failing.  This ensures that
 1635          * no frees can be missed between an unsuccessful poll and
 1636          * going to sleep in a synchronized fashion.
 1637          */
 1638         if ((error = buf_recycle(defrag)) != 0) {
 1639                 atomic_set_int(&needsbuffer, 1);
 1640                 bufspace_daemonwakeup();
 1641                 error = buf_recycle(defrag);
 1642         }
 1643         if (error == 0)
 1644                 atomic_add_int(&getnewbufrestarts, 1);
 1645         return (error);
 1646 }
 1647 
 1648 /*
 1649  *      bremfree:
 1650  *
 1651  *      Mark the buffer for removal from the appropriate free list.
 1652  *      
 1653  */
 1654 void
 1655 bremfree(struct buf *bp)
 1656 {
 1657 
 1658         CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1659         KASSERT((bp->b_flags & B_REMFREE) == 0,
 1660             ("bremfree: buffer %p already marked for delayed removal.", bp));
 1661         KASSERT(bp->b_qindex != QUEUE_NONE,
 1662             ("bremfree: buffer %p not on a queue.", bp));
 1663         BUF_ASSERT_XLOCKED(bp);
 1664 
 1665         bp->b_flags |= B_REMFREE;
 1666 }
 1667 
 1668 /*
 1669  *      bremfreef:
 1670  *
 1671  *      Force an immediate removal from a free list.  Used only in nfs when
 1672  *      it abuses the b_freelist pointer.
 1673  */
 1674 void
 1675 bremfreef(struct buf *bp)
 1676 {
 1677         struct mtx *qlock;
 1678 
 1679         qlock = bqlock(bp->b_qindex);
 1680         mtx_lock(qlock);
 1681         bremfreel(bp);
 1682         mtx_unlock(qlock);
 1683 }
 1684 
 1685 /*
 1686  *      bremfreel:
 1687  *
 1688  *      Removes a buffer from the free list, must be called with the
 1689  *      correct qlock held.
 1690  */
 1691 static void
 1692 bremfreel(struct buf *bp)
 1693 {
 1694 
 1695         CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
 1696             bp, bp->b_vp, bp->b_flags);
 1697         KASSERT(bp->b_qindex != QUEUE_NONE,
 1698             ("bremfreel: buffer %p not on a queue.", bp));
 1699         if (bp->b_qindex != QUEUE_EMPTY) {
 1700                 BUF_ASSERT_XLOCKED(bp);
 1701         }
 1702         mtx_assert(bqlock(bp->b_qindex), MA_OWNED);
 1703 
 1704         TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
 1705 #ifdef INVARIANTS
 1706         KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
 1707             bp->b_qindex));
 1708         bq_len[bp->b_qindex]--;
 1709 #endif
 1710         bp->b_qindex = QUEUE_NONE;
 1711         bp->b_flags &= ~B_REMFREE;
 1712 }
 1713 
 1714 /*
 1715  *      bufkva_free:
 1716  *
 1717  *      Free the kva allocation for a buffer.
 1718  *
 1719  */
 1720 static void
 1721 bufkva_free(struct buf *bp)
 1722 {
 1723 
 1724 #ifdef INVARIANTS
 1725         if (bp->b_kvasize == 0) {
 1726                 KASSERT(bp->b_kvabase == unmapped_buf &&
 1727                     bp->b_data == unmapped_buf,
 1728                     ("Leaked KVA space on %p", bp));
 1729         } else if (buf_mapped(bp))
 1730                 BUF_CHECK_MAPPED(bp);
 1731         else
 1732                 BUF_CHECK_UNMAPPED(bp);
 1733 #endif
 1734         if (bp->b_kvasize == 0)
 1735                 return;
 1736 
 1737         vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
 1738         atomic_subtract_long(&bufkvaspace, bp->b_kvasize);
 1739         atomic_add_int(&buffreekvacnt, 1);
 1740         bp->b_data = bp->b_kvabase = unmapped_buf;
 1741         bp->b_kvasize = 0;
 1742 }
 1743 
 1744 /*
 1745  *      bufkva_alloc:
 1746  *
 1747  *      Allocate the buffer KVA and set b_kvasize and b_kvabase.
 1748  */
 1749 static int
 1750 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
 1751 {
 1752         vm_offset_t addr;
 1753         int error;
 1754 
 1755         KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
 1756             ("Invalid gbflags 0x%x in %s", gbflags, __func__));
 1757 
 1758         bufkva_free(bp);
 1759 
 1760         addr = 0;
 1761         error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
 1762         if (error != 0) {
 1763                 /*
 1764                  * Buffer map is too fragmented.  Request the caller
 1765                  * to defragment the map.
 1766                  */
 1767                 return (error);
 1768         }
 1769         bp->b_kvabase = (caddr_t)addr;
 1770         bp->b_kvasize = maxsize;
 1771         atomic_add_long(&bufkvaspace, bp->b_kvasize);
 1772         if ((gbflags & GB_UNMAPPED) != 0) {
 1773                 bp->b_data = unmapped_buf;
 1774                 BUF_CHECK_UNMAPPED(bp);
 1775         } else {
 1776                 bp->b_data = bp->b_kvabase;
 1777                 BUF_CHECK_MAPPED(bp);
 1778         }
 1779         return (0);
 1780 }
 1781 
 1782 /*
 1783  *      bufkva_reclaim:
 1784  *
 1785  *      Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
 1786  *      callback that fires to avoid returning failure.
 1787  */
 1788 static void
 1789 bufkva_reclaim(vmem_t *vmem, int flags)
 1790 {
 1791         int i;
 1792 
 1793         for (i = 0; i < 5; i++)
 1794                 if (buf_scan(true) != 0)
 1795                         break;
 1796         return;
 1797 }
 1798 
 1799 
 1800 /*
 1801  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
 1802  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
 1803  * the buffer is valid and we do not have to do anything.
 1804  */
 1805 void
 1806 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
 1807     int cnt, struct ucred * cred)
 1808 {
 1809         struct buf *rabp;
 1810         int i;
 1811 
 1812         for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
 1813                 if (inmem(vp, *rablkno))
 1814                         continue;
 1815                 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
 1816 
 1817                 if ((rabp->b_flags & B_CACHE) == 0) {
 1818                         if (!TD_IS_IDLETHREAD(curthread)) {
 1819 #ifdef RACCT
 1820                                 if (racct_enable) {
 1821                                         PROC_LOCK(curproc);
 1822                                         racct_add_buf(curproc, rabp, 0);
 1823                                         PROC_UNLOCK(curproc);
 1824                                 }
 1825 #endif /* RACCT */
 1826                                 curthread->td_ru.ru_inblock++;
 1827                         }
 1828                         rabp->b_flags |= B_ASYNC;
 1829                         rabp->b_flags &= ~B_INVAL;
 1830                         rabp->b_ioflags &= ~BIO_ERROR;
 1831                         rabp->b_iocmd = BIO_READ;
 1832                         if (rabp->b_rcred == NOCRED && cred != NOCRED)
 1833                                 rabp->b_rcred = crhold(cred);
 1834                         vfs_busy_pages(rabp, 0);
 1835                         BUF_KERNPROC(rabp);
 1836                         rabp->b_iooffset = dbtob(rabp->b_blkno);
 1837                         bstrategy(rabp);
 1838                 } else {
 1839                         brelse(rabp);
 1840                 }
 1841         }
 1842 }
 1843 
 1844 /*
 1845  * Entry point for bread() and breadn() via #defines in sys/buf.h.
 1846  *
 1847  * Get a buffer with the specified data.  Look in the cache first.  We
 1848  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
 1849  * is set, the buffer is valid and we do not have to do anything, see
 1850  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
 1851  *
 1852  * Always return a NULL buffer pointer (in bpp) when returning an error.
 1853  */
 1854 int
 1855 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
 1856     int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
 1857 {
 1858         struct buf *bp;
 1859         int rv = 0, readwait = 0;
 1860 
 1861         CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
 1862         /*
 1863          * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
 1864          */
 1865         *bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
 1866         if (bp == NULL)
 1867                 return (EBUSY);
 1868 
 1869         /* if not found in cache, do some I/O */
 1870         if ((bp->b_flags & B_CACHE) == 0) {
 1871                 if (!TD_IS_IDLETHREAD(curthread)) {
 1872 #ifdef RACCT
 1873                         if (racct_enable) {
 1874                                 PROC_LOCK(curproc);
 1875                                 racct_add_buf(curproc, bp, 0);
 1876                                 PROC_UNLOCK(curproc);
 1877                         }
 1878 #endif /* RACCT */
 1879                         curthread->td_ru.ru_inblock++;
 1880                 }
 1881                 bp->b_iocmd = BIO_READ;
 1882                 bp->b_flags &= ~B_INVAL;
 1883                 bp->b_ioflags &= ~BIO_ERROR;
 1884                 if (bp->b_rcred == NOCRED && cred != NOCRED)
 1885                         bp->b_rcred = crhold(cred);
 1886                 vfs_busy_pages(bp, 0);
 1887                 bp->b_iooffset = dbtob(bp->b_blkno);
 1888                 bstrategy(bp);
 1889                 ++readwait;
 1890         }
 1891 
 1892         breada(vp, rablkno, rabsize, cnt, cred);
 1893 
 1894         if (readwait) {
 1895                 rv = bufwait(bp);
 1896                 if (rv != 0) {
 1897                         brelse(bp);
 1898                         *bpp = NULL;
 1899                 }
 1900         }
 1901         return (rv);
 1902 }
 1903 
 1904 /*
 1905  * Write, release buffer on completion.  (Done by iodone
 1906  * if async).  Do not bother writing anything if the buffer
 1907  * is invalid.
 1908  *
 1909  * Note that we set B_CACHE here, indicating that buffer is
 1910  * fully valid and thus cacheable.  This is true even of NFS
 1911  * now so we set it generally.  This could be set either here 
 1912  * or in biodone() since the I/O is synchronous.  We put it
 1913  * here.
 1914  */
 1915 int
 1916 bufwrite(struct buf *bp)
 1917 {
 1918         int oldflags;
 1919         struct vnode *vp;
 1920         long space;
 1921         int vp_md;
 1922 
 1923         CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1924         if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
 1925                 bp->b_flags |= B_INVAL | B_RELBUF;
 1926                 bp->b_flags &= ~B_CACHE;
 1927                 brelse(bp);
 1928                 return (ENXIO);
 1929         }
 1930         if (bp->b_flags & B_INVAL) {
 1931                 brelse(bp);
 1932                 return (0);
 1933         }
 1934 
 1935         if (bp->b_flags & B_BARRIER)
 1936                 atomic_add_long(&barrierwrites, 1);
 1937 
 1938         oldflags = bp->b_flags;
 1939 
 1940         BUF_ASSERT_HELD(bp);
 1941 
 1942         if (bp->b_pin_count > 0)
 1943                 bunpin_wait(bp);
 1944 
 1945         KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
 1946             ("FFS background buffer should not get here %p", bp));
 1947 
 1948         vp = bp->b_vp;
 1949         if (vp)
 1950                 vp_md = vp->v_vflag & VV_MD;
 1951         else
 1952                 vp_md = 0;
 1953 
 1954         /*
 1955          * Mark the buffer clean.  Increment the bufobj write count
 1956          * before bundirty() call, to prevent other thread from seeing
 1957          * empty dirty list and zero counter for writes in progress,
 1958          * falsely indicating that the bufobj is clean.
 1959          */
 1960         bufobj_wref(bp->b_bufobj);
 1961         bundirty(bp);
 1962 
 1963         bp->b_flags &= ~B_DONE;
 1964         bp->b_ioflags &= ~BIO_ERROR;
 1965         bp->b_flags |= B_CACHE;
 1966         bp->b_iocmd = BIO_WRITE;
 1967 
 1968         vfs_busy_pages(bp, 1);
 1969 
 1970         /*
 1971          * Normal bwrites pipeline writes
 1972          */
 1973         bp->b_runningbufspace = bp->b_bufsize;
 1974         space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
 1975 
 1976         if (!TD_IS_IDLETHREAD(curthread)) {
 1977 #ifdef RACCT
 1978                 if (racct_enable) {
 1979                         PROC_LOCK(curproc);
 1980                         racct_add_buf(curproc, bp, 1);
 1981                         PROC_UNLOCK(curproc);
 1982                 }
 1983 #endif /* RACCT */
 1984                 curthread->td_ru.ru_oublock++;
 1985         }
 1986         if (oldflags & B_ASYNC)
 1987                 BUF_KERNPROC(bp);
 1988         bp->b_iooffset = dbtob(bp->b_blkno);
 1989         bstrategy(bp);
 1990 
 1991         if ((oldflags & B_ASYNC) == 0) {
 1992                 int rtval = bufwait(bp);
 1993                 brelse(bp);
 1994                 return (rtval);
 1995         } else if (space > hirunningspace) {
 1996                 /*
 1997                  * don't allow the async write to saturate the I/O
 1998                  * system.  We will not deadlock here because
 1999                  * we are blocking waiting for I/O that is already in-progress
 2000                  * to complete. We do not block here if it is the update
 2001                  * or syncer daemon trying to clean up as that can lead
 2002                  * to deadlock.
 2003                  */
 2004                 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
 2005                         waitrunningbufspace();
 2006         }
 2007 
 2008         return (0);
 2009 }
 2010 
 2011 void
 2012 bufbdflush(struct bufobj *bo, struct buf *bp)
 2013 {
 2014         struct buf *nbp;
 2015 
 2016         if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
 2017                 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
 2018                 altbufferflushes++;
 2019         } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
 2020                 BO_LOCK(bo);
 2021                 /*
 2022                  * Try to find a buffer to flush.
 2023                  */
 2024                 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
 2025                         if ((nbp->b_vflags & BV_BKGRDINPROG) ||
 2026                             BUF_LOCK(nbp,
 2027                                      LK_EXCLUSIVE | LK_NOWAIT, NULL))
 2028                                 continue;
 2029                         if (bp == nbp)
 2030                                 panic("bdwrite: found ourselves");
 2031                         BO_UNLOCK(bo);
 2032                         /* Don't countdeps with the bo lock held. */
 2033                         if (buf_countdeps(nbp, 0)) {
 2034                                 BO_LOCK(bo);
 2035                                 BUF_UNLOCK(nbp);
 2036                                 continue;
 2037                         }
 2038                         if (nbp->b_flags & B_CLUSTEROK) {
 2039                                 vfs_bio_awrite(nbp);
 2040                         } else {
 2041                                 bremfree(nbp);
 2042                                 bawrite(nbp);
 2043                         }
 2044                         dirtybufferflushes++;
 2045                         break;
 2046                 }
 2047                 if (nbp == NULL)
 2048                         BO_UNLOCK(bo);
 2049         }
 2050 }
 2051 
 2052 /*
 2053  * Delayed write. (Buffer is marked dirty).  Do not bother writing
 2054  * anything if the buffer is marked invalid.
 2055  *
 2056  * Note that since the buffer must be completely valid, we can safely
 2057  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
 2058  * biodone() in order to prevent getblk from writing the buffer
 2059  * out synchronously.
 2060  */
 2061 void
 2062 bdwrite(struct buf *bp)
 2063 {
 2064         struct thread *td = curthread;
 2065         struct vnode *vp;
 2066         struct bufobj *bo;
 2067 
 2068         CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 2069         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 2070         KASSERT((bp->b_flags & B_BARRIER) == 0,
 2071             ("Barrier request in delayed write %p", bp));
 2072         BUF_ASSERT_HELD(bp);
 2073 
 2074         if (bp->b_flags & B_INVAL) {
 2075                 brelse(bp);
 2076                 return;
 2077         }
 2078 
 2079         /*
 2080          * If we have too many dirty buffers, don't create any more.
 2081          * If we are wildly over our limit, then force a complete
 2082          * cleanup. Otherwise, just keep the situation from getting
 2083          * out of control. Note that we have to avoid a recursive
 2084          * disaster and not try to clean up after our own cleanup!
 2085          */
 2086         vp = bp->b_vp;
 2087         bo = bp->b_bufobj;
 2088         if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
 2089                 td->td_pflags |= TDP_INBDFLUSH;
 2090                 BO_BDFLUSH(bo, bp);
 2091                 td->td_pflags &= ~TDP_INBDFLUSH;
 2092         } else
 2093                 recursiveflushes++;
 2094 
 2095         bdirty(bp);
 2096         /*
 2097          * Set B_CACHE, indicating that the buffer is fully valid.  This is
 2098          * true even of NFS now.
 2099          */
 2100         bp->b_flags |= B_CACHE;
 2101 
 2102         /*
 2103          * This bmap keeps the system from needing to do the bmap later,
 2104          * perhaps when the system is attempting to do a sync.  Since it
 2105          * is likely that the indirect block -- or whatever other datastructure
 2106          * that the filesystem needs is still in memory now, it is a good
 2107          * thing to do this.  Note also, that if the pageout daemon is
 2108          * requesting a sync -- there might not be enough memory to do
 2109          * the bmap then...  So, this is important to do.
 2110          */
 2111         if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
 2112                 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
 2113         }
 2114 
 2115         /*
 2116          * Set the *dirty* buffer range based upon the VM system dirty
 2117          * pages.
 2118          *
 2119          * Mark the buffer pages as clean.  We need to do this here to
 2120          * satisfy the vnode_pager and the pageout daemon, so that it
 2121          * thinks that the pages have been "cleaned".  Note that since
 2122          * the pages are in a delayed write buffer -- the VFS layer
 2123          * "will" see that the pages get written out on the next sync,
 2124          * or perhaps the cluster will be completed.
 2125          */
 2126         vfs_clean_pages_dirty_buf(bp);
 2127         bqrelse(bp);
 2128 
 2129         /*
 2130          * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 2131          * due to the softdep code.
 2132          */
 2133 }
 2134 
 2135 /*
 2136  *      bdirty:
 2137  *
 2138  *      Turn buffer into delayed write request.  We must clear BIO_READ and
 2139  *      B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
 2140  *      itself to properly update it in the dirty/clean lists.  We mark it
 2141  *      B_DONE to ensure that any asynchronization of the buffer properly
 2142  *      clears B_DONE ( else a panic will occur later ).  
 2143  *
 2144  *      bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
 2145  *      might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
 2146  *      should only be called if the buffer is known-good.
 2147  *
 2148  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 2149  *      count.
 2150  *
 2151  *      The buffer must be on QUEUE_NONE.
 2152  */
 2153 void
 2154 bdirty(struct buf *bp)
 2155 {
 2156 
 2157         CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
 2158             bp, bp->b_vp, bp->b_flags);
 2159         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 2160         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 2161             ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 2162         BUF_ASSERT_HELD(bp);
 2163         bp->b_flags &= ~(B_RELBUF);
 2164         bp->b_iocmd = BIO_WRITE;
 2165 
 2166         if ((bp->b_flags & B_DELWRI) == 0) {
 2167                 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
 2168                 reassignbuf(bp);
 2169                 bdirtyadd();
 2170         }
 2171 }
 2172 
 2173 /*
 2174  *      bundirty:
 2175  *
 2176  *      Clear B_DELWRI for buffer.
 2177  *
 2178  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 2179  *      count.
 2180  *      
 2181  *      The buffer must be on QUEUE_NONE.
 2182  */
 2183 
 2184 void
 2185 bundirty(struct buf *bp)
 2186 {
 2187 
 2188         CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 2189         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 2190         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 2191             ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 2192         BUF_ASSERT_HELD(bp);
 2193 
 2194         if (bp->b_flags & B_DELWRI) {
 2195                 bp->b_flags &= ~B_DELWRI;
 2196                 reassignbuf(bp);
 2197                 bdirtysub();
 2198         }
 2199         /*
 2200          * Since it is now being written, we can clear its deferred write flag.
 2201          */
 2202         bp->b_flags &= ~B_DEFERRED;
 2203 }
 2204 
 2205 /*
 2206  *      bawrite:
 2207  *
 2208  *      Asynchronous write.  Start output on a buffer, but do not wait for
 2209  *      it to complete.  The buffer is released when the output completes.
 2210  *
 2211  *      bwrite() ( or the VOP routine anyway ) is responsible for handling 
 2212  *      B_INVAL buffers.  Not us.
 2213  */
 2214 void
 2215 bawrite(struct buf *bp)
 2216 {
 2217 
 2218         bp->b_flags |= B_ASYNC;
 2219         (void) bwrite(bp);
 2220 }
 2221 
 2222 /*
 2223  *      babarrierwrite:
 2224  *
 2225  *      Asynchronous barrier write.  Start output on a buffer, but do not
 2226  *      wait for it to complete.  Place a write barrier after this write so
 2227  *      that this buffer and all buffers written before it are committed to
 2228  *      the disk before any buffers written after this write are committed
 2229  *      to the disk.  The buffer is released when the output completes.
 2230  */
 2231 void
 2232 babarrierwrite(struct buf *bp)
 2233 {
 2234 
 2235         bp->b_flags |= B_ASYNC | B_BARRIER;
 2236         (void) bwrite(bp);
 2237 }
 2238 
 2239 /*
 2240  *      bbarrierwrite:
 2241  *
 2242  *      Synchronous barrier write.  Start output on a buffer and wait for
 2243  *      it to complete.  Place a write barrier after this write so that
 2244  *      this buffer and all buffers written before it are committed to 
 2245  *      the disk before any buffers written after this write are committed
 2246  *      to the disk.  The buffer is released when the output completes.
 2247  */
 2248 int
 2249 bbarrierwrite(struct buf *bp)
 2250 {
 2251 
 2252         bp->b_flags |= B_BARRIER;
 2253         return (bwrite(bp));
 2254 }
 2255 
 2256 /*
 2257  *      bwillwrite:
 2258  *
 2259  *      Called prior to the locking of any vnodes when we are expecting to
 2260  *      write.  We do not want to starve the buffer cache with too many
 2261  *      dirty buffers so we block here.  By blocking prior to the locking
 2262  *      of any vnodes we attempt to avoid the situation where a locked vnode
 2263  *      prevents the various system daemons from flushing related buffers.
 2264  */
 2265 void
 2266 bwillwrite(void)
 2267 {
 2268 
 2269         if (numdirtybuffers >= hidirtybuffers) {
 2270                 mtx_lock(&bdirtylock);
 2271                 while (numdirtybuffers >= hidirtybuffers) {
 2272                         bdirtywait = 1;
 2273                         msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
 2274                             "flswai", 0);
 2275                 }
 2276                 mtx_unlock(&bdirtylock);
 2277         }
 2278 }
 2279 
 2280 /*
 2281  * Return true if we have too many dirty buffers.
 2282  */
 2283 int
 2284 buf_dirty_count_severe(void)
 2285 {
 2286 
 2287         return(numdirtybuffers >= hidirtybuffers);
 2288 }
 2289 
 2290 /*
 2291  *      brelse:
 2292  *
 2293  *      Release a busy buffer and, if requested, free its resources.  The
 2294  *      buffer will be stashed in the appropriate bufqueue[] allowing it
 2295  *      to be accessed later as a cache entity or reused for other purposes.
 2296  */
 2297 void
 2298 brelse(struct buf *bp)
 2299 {
 2300         int qindex;
 2301 
 2302         /*
 2303          * Many functions erroneously call brelse with a NULL bp under rare
 2304          * error conditions. Simply return when called with a NULL bp.
 2305          */
 2306         if (bp == NULL)
 2307                 return;
 2308         CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
 2309             bp, bp->b_vp, bp->b_flags);
 2310         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 2311             ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 2312         KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
 2313             ("brelse: non-VMIO buffer marked NOREUSE"));
 2314 
 2315         if (BUF_LOCKRECURSED(bp)) {
 2316                 /*
 2317                  * Do not process, in particular, do not handle the
 2318                  * B_INVAL/B_RELBUF and do not release to free list.
 2319                  */
 2320                 BUF_UNLOCK(bp);
 2321                 return;
 2322         }
 2323 
 2324         if (bp->b_flags & B_MANAGED) {
 2325                 bqrelse(bp);
 2326                 return;
 2327         }
 2328 
 2329         if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
 2330                 BO_LOCK(bp->b_bufobj);
 2331                 bp->b_vflags &= ~BV_BKGRDERR;
 2332                 BO_UNLOCK(bp->b_bufobj);
 2333                 bdirty(bp);
 2334         }
 2335         if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
 2336             (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
 2337             !(bp->b_flags & B_INVAL)) {
 2338                 /*
 2339                  * Failed write, redirty.  All errors except ENXIO (which
 2340                  * means the device is gone) are expected to be potentially
 2341                  * transient - underlying media might work if tried again
 2342                  * after EIO, and memory might be available after an ENOMEM.
 2343                  *
 2344                  * Do this also for buffers that failed with ENXIO, but have
 2345                  * non-empty dependencies - the soft updates code might need
 2346                  * to access the buffer to untangle them.
 2347                  *
 2348                  * Must clear BIO_ERROR to prevent pages from being scrapped.
 2349                  */
 2350                 bp->b_ioflags &= ~BIO_ERROR;
 2351                 bdirty(bp);
 2352         } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 2353             (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
 2354                 /*
 2355                  * Either a failed read I/O, or we were asked to free or not
 2356                  * cache the buffer, or we failed to write to a device that's
 2357                  * no longer present.
 2358                  */
 2359                 bp->b_flags |= B_INVAL;
 2360                 if (!LIST_EMPTY(&bp->b_dep))
 2361                         buf_deallocate(bp);
 2362                 if (bp->b_flags & B_DELWRI)
 2363                         bdirtysub();
 2364                 bp->b_flags &= ~(B_DELWRI | B_CACHE);
 2365                 if ((bp->b_flags & B_VMIO) == 0) {
 2366                         allocbuf(bp, 0);
 2367                         if (bp->b_vp)
 2368                                 brelvp(bp);
 2369                 }
 2370         }
 2371 
 2372         /*
 2373          * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate() 
 2374          * is called with B_DELWRI set, the underlying pages may wind up
 2375          * getting freed causing a previous write (bdwrite()) to get 'lost'
 2376          * because pages associated with a B_DELWRI bp are marked clean.
 2377          * 
 2378          * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
 2379          * if B_DELWRI is set.
 2380          */
 2381         if (bp->b_flags & B_DELWRI)
 2382                 bp->b_flags &= ~B_RELBUF;
 2383 
 2384         /*
 2385          * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 2386          * constituted, not even NFS buffers now.  Two flags effect this.  If
 2387          * B_INVAL, the struct buf is invalidated but the VM object is kept
 2388          * around ( i.e. so it is trivial to reconstitute the buffer later ).
 2389          *
 2390          * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 2391          * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 2392          * buffer is also B_INVAL because it hits the re-dirtying code above.
 2393          *
 2394          * Normally we can do this whether a buffer is B_DELWRI or not.  If
 2395          * the buffer is an NFS buffer, it is tracking piecemeal writes or
 2396          * the commit state and we cannot afford to lose the buffer. If the
 2397          * buffer has a background write in progress, we need to keep it
 2398          * around to prevent it from being reconstituted and starting a second
 2399          * background write.
 2400          */
 2401         if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
 2402             (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
 2403             !(bp->b_vp->v_mount != NULL &&
 2404             (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 2405             !vn_isdisk(bp->b_vp, NULL) && (bp->b_flags & B_DELWRI))) {
 2406                 vfs_vmio_invalidate(bp);
 2407                 allocbuf(bp, 0);
 2408         }
 2409 
 2410         if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
 2411             (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
 2412                 allocbuf(bp, 0);
 2413                 bp->b_flags &= ~B_NOREUSE;
 2414                 if (bp->b_vp != NULL)
 2415                         brelvp(bp);
 2416         }
 2417                         
 2418         /*
 2419          * If the buffer has junk contents signal it and eventually
 2420          * clean up B_DELWRI and diassociate the vnode so that gbincore()
 2421          * doesn't find it.
 2422          */
 2423         if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
 2424             (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
 2425                 bp->b_flags |= B_INVAL;
 2426         if (bp->b_flags & B_INVAL) {
 2427                 if (bp->b_flags & B_DELWRI)
 2428                         bundirty(bp);
 2429                 if (bp->b_vp)
 2430                         brelvp(bp);
 2431         }
 2432 
 2433         /* buffers with no memory */
 2434         if (bp->b_bufsize == 0) {
 2435                 buf_free(bp);
 2436                 return;
 2437         }
 2438         /* buffers with junk contents */
 2439         if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 2440             (bp->b_ioflags & BIO_ERROR)) {
 2441                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 2442                 if (bp->b_vflags & BV_BKGRDINPROG)
 2443                         panic("losing buffer 2");
 2444                 qindex = QUEUE_CLEAN;
 2445                 bp->b_flags |= B_AGE;
 2446         /* remaining buffers */
 2447         } else if (bp->b_flags & B_DELWRI)
 2448                 qindex = QUEUE_DIRTY;
 2449         else
 2450                 qindex = QUEUE_CLEAN;
 2451 
 2452         binsfree(bp, qindex);
 2453 
 2454         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
 2455         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 2456                 panic("brelse: not dirty");
 2457         /* unlock */
 2458         BUF_UNLOCK(bp);
 2459         if (qindex == QUEUE_CLEAN)
 2460                 bufspace_wakeup();
 2461 }
 2462 
 2463 /*
 2464  * Release a buffer back to the appropriate queue but do not try to free
 2465  * it.  The buffer is expected to be used again soon.
 2466  *
 2467  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
 2468  * biodone() to requeue an async I/O on completion.  It is also used when
 2469  * known good buffers need to be requeued but we think we may need the data
 2470  * again soon.
 2471  *
 2472  * XXX we should be able to leave the B_RELBUF hint set on completion.
 2473  */
 2474 void
 2475 bqrelse(struct buf *bp)
 2476 {
 2477         int qindex;
 2478 
 2479         CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 2480         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 2481             ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 2482 
 2483         qindex = QUEUE_NONE;
 2484         if (BUF_LOCKRECURSED(bp)) {
 2485                 /* do not release to free list */
 2486                 BUF_UNLOCK(bp);
 2487                 return;
 2488         }
 2489         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 2490 
 2491         if (bp->b_flags & B_MANAGED) {
 2492                 if (bp->b_flags & B_REMFREE)
 2493                         bremfreef(bp);
 2494                 goto out;
 2495         }
 2496 
 2497         /* buffers with stale but valid contents */
 2498         if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
 2499             BV_BKGRDERR)) == BV_BKGRDERR) {
 2500                 BO_LOCK(bp->b_bufobj);
 2501                 bp->b_vflags &= ~BV_BKGRDERR;
 2502                 BO_UNLOCK(bp->b_bufobj);
 2503                 qindex = QUEUE_DIRTY;
 2504         } else {
 2505                 if ((bp->b_flags & B_DELWRI) == 0 &&
 2506                     (bp->b_xflags & BX_VNDIRTY))
 2507                         panic("bqrelse: not dirty");
 2508                 if ((bp->b_flags & B_NOREUSE) != 0) {
 2509                         brelse(bp);
 2510                         return;
 2511                 }
 2512                 qindex = QUEUE_CLEAN;
 2513         }
 2514         binsfree(bp, qindex);
 2515 
 2516 out:
 2517         /* unlock */
 2518         BUF_UNLOCK(bp);
 2519         if (qindex == QUEUE_CLEAN)
 2520                 bufspace_wakeup();
 2521 }
 2522 
 2523 /*
 2524  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
 2525  * restore bogus pages.
 2526  */
 2527 static void
 2528 vfs_vmio_iodone(struct buf *bp)
 2529 {
 2530         vm_ooffset_t foff;
 2531         vm_page_t m;
 2532         vm_object_t obj;
 2533         struct vnode *vp;
 2534         int i, iosize, resid;
 2535         bool bogus;
 2536 
 2537         obj = bp->b_bufobj->bo_object;
 2538         KASSERT(obj->paging_in_progress >= bp->b_npages,
 2539             ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
 2540             obj->paging_in_progress, bp->b_npages));
 2541 
 2542         vp = bp->b_vp;
 2543         KASSERT(vp->v_holdcnt > 0,
 2544             ("vfs_vmio_iodone: vnode %p has zero hold count", vp));
 2545         KASSERT(vp->v_object != NULL,
 2546             ("vfs_vmio_iodone: vnode %p has no vm_object", vp));
 2547 
 2548         foff = bp->b_offset;
 2549         KASSERT(bp->b_offset != NOOFFSET,
 2550             ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
 2551 
 2552         bogus = false;
 2553         iosize = bp->b_bcount - bp->b_resid;
 2554         VM_OBJECT_WLOCK(obj);
 2555         for (i = 0; i < bp->b_npages; i++) {
 2556                 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 2557                 if (resid > iosize)
 2558                         resid = iosize;
 2559 
 2560                 /*
 2561                  * cleanup bogus pages, restoring the originals
 2562                  */
 2563                 m = bp->b_pages[i];
 2564                 if (m == bogus_page) {
 2565                         bogus = true;
 2566                         m = vm_page_lookup(obj, OFF_TO_IDX(foff));
 2567                         if (m == NULL)
 2568                                 panic("biodone: page disappeared!");
 2569                         bp->b_pages[i] = m;
 2570                 } else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
 2571                         /*
 2572                          * In the write case, the valid and clean bits are
 2573                          * already changed correctly ( see bdwrite() ), so we 
 2574                          * only need to do this here in the read case.
 2575                          */
 2576                         KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
 2577                             resid)) == 0, ("vfs_vmio_iodone: page %p "
 2578                             "has unexpected dirty bits", m));
 2579                         vfs_page_set_valid(bp, foff, m);
 2580                 }
 2581                 KASSERT(OFF_TO_IDX(foff) == m->pindex,
 2582                     ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
 2583                     (intmax_t)foff, (uintmax_t)m->pindex));
 2584 
 2585                 vm_page_sunbusy(m);
 2586                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 2587                 iosize -= resid;
 2588         }
 2589         vm_object_pip_wakeupn(obj, bp->b_npages);
 2590         VM_OBJECT_WUNLOCK(obj);
 2591         if (bogus && buf_mapped(bp)) {
 2592                 BUF_CHECK_MAPPED(bp);
 2593                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 2594                     bp->b_pages, bp->b_npages);
 2595         }
 2596 }
 2597 
 2598 /*
 2599  * Unwire a page held by a buf and place it on the appropriate vm queue.
 2600  */
 2601 static void
 2602 vfs_vmio_unwire(struct buf *bp, vm_page_t m)
 2603 {
 2604         bool freed;
 2605 
 2606         vm_page_lock(m);
 2607         if (vm_page_unwire(m, PQ_NONE)) {
 2608                 /*
 2609                  * Determine if the page should be freed before adding
 2610                  * it to the inactive queue.
 2611                  */
 2612                 if (m->valid == 0) {
 2613                         freed = !vm_page_busied(m);
 2614                         if (freed)
 2615                                 vm_page_free(m);
 2616                 } else if ((bp->b_flags & B_DIRECT) != 0)
 2617                         freed = vm_page_try_to_free(m);
 2618                 else
 2619                         freed = false;
 2620                 if (!freed) {
 2621                         /*
 2622                          * If the page is unlikely to be reused, let the
 2623                          * VM know.  Otherwise, maintain LRU page
 2624                          * ordering and put the page at the tail of the
 2625                          * inactive queue.
 2626                          */
 2627                         if ((bp->b_flags & B_NOREUSE) != 0)
 2628                                 vm_page_deactivate_noreuse(m);
 2629                         else
 2630                                 vm_page_deactivate(m);
 2631                 }
 2632         }
 2633         vm_page_unlock(m);
 2634 }
 2635 
 2636 /*
 2637  * Perform page invalidation when a buffer is released.  The fully invalid
 2638  * pages will be reclaimed later in vfs_vmio_truncate().
 2639  */
 2640 static void
 2641 vfs_vmio_invalidate(struct buf *bp)
 2642 {
 2643         vm_object_t obj;
 2644         vm_page_t m;
 2645         int i, resid, poffset, presid;
 2646 
 2647         if (buf_mapped(bp)) {
 2648                 BUF_CHECK_MAPPED(bp);
 2649                 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
 2650         } else
 2651                 BUF_CHECK_UNMAPPED(bp);
 2652         /*
 2653          * Get the base offset and length of the buffer.  Note that 
 2654          * in the VMIO case if the buffer block size is not
 2655          * page-aligned then b_data pointer may not be page-aligned.
 2656          * But our b_pages[] array *IS* page aligned.
 2657          *
 2658          * block sizes less then DEV_BSIZE (usually 512) are not 
 2659          * supported due to the page granularity bits (m->valid,
 2660          * m->dirty, etc...). 
 2661          *
 2662          * See man buf(9) for more information
 2663          */
 2664         obj = bp->b_bufobj->bo_object;
 2665         resid = bp->b_bufsize;
 2666         poffset = bp->b_offset & PAGE_MASK;
 2667         VM_OBJECT_WLOCK(obj);
 2668         for (i = 0; i < bp->b_npages; i++) {
 2669                 m = bp->b_pages[i];
 2670                 if (m == bogus_page)
 2671                         panic("vfs_vmio_invalidate: Unexpected bogus page.");
 2672                 bp->b_pages[i] = NULL;
 2673 
 2674                 presid = resid > (PAGE_SIZE - poffset) ?
 2675                     (PAGE_SIZE - poffset) : resid;
 2676                 KASSERT(presid >= 0, ("brelse: extra page"));
 2677                 while (vm_page_xbusied(m)) {
 2678                         vm_page_lock(m);
 2679                         VM_OBJECT_WUNLOCK(obj);
 2680                         vm_page_busy_sleep(m, "mbncsh", true);
 2681                         VM_OBJECT_WLOCK(obj);
 2682                 }
 2683                 if (pmap_page_wired_mappings(m) == 0)
 2684                         vm_page_set_invalid(m, poffset, presid);
 2685                 vfs_vmio_unwire(bp, m);
 2686                 resid -= presid;
 2687                 poffset = 0;
 2688         }
 2689         VM_OBJECT_WUNLOCK(obj);
 2690         bp->b_npages = 0;
 2691 }
 2692 
 2693 /*
 2694  * Page-granular truncation of an existing VMIO buffer.
 2695  */
 2696 static void
 2697 vfs_vmio_truncate(struct buf *bp, int desiredpages)
 2698 {
 2699         vm_object_t obj;
 2700         vm_page_t m;
 2701         int i;
 2702 
 2703         if (bp->b_npages == desiredpages)
 2704                 return;
 2705 
 2706         if (buf_mapped(bp)) {
 2707                 BUF_CHECK_MAPPED(bp);
 2708                 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
 2709                     (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
 2710         } else
 2711                 BUF_CHECK_UNMAPPED(bp);
 2712         obj = bp->b_bufobj->bo_object;
 2713         if (obj != NULL)
 2714                 VM_OBJECT_WLOCK(obj);
 2715         for (i = desiredpages; i < bp->b_npages; i++) {
 2716                 m = bp->b_pages[i];
 2717                 KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
 2718                 bp->b_pages[i] = NULL;
 2719                 vfs_vmio_unwire(bp, m);
 2720         }
 2721         if (obj != NULL)
 2722                 VM_OBJECT_WUNLOCK(obj);
 2723         bp->b_npages = desiredpages;
 2724 }
 2725 
 2726 /*
 2727  * Byte granular extension of VMIO buffers.
 2728  */
 2729 static void
 2730 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
 2731 {
 2732         /*
 2733          * We are growing the buffer, possibly in a 
 2734          * byte-granular fashion.
 2735          */
 2736         vm_object_t obj;
 2737         vm_offset_t toff;
 2738         vm_offset_t tinc;
 2739         vm_page_t m;
 2740 
 2741         /*
 2742          * Step 1, bring in the VM pages from the object, allocating
 2743          * them if necessary.  We must clear B_CACHE if these pages
 2744          * are not valid for the range covered by the buffer.
 2745          */
 2746         obj = bp->b_bufobj->bo_object;
 2747         VM_OBJECT_WLOCK(obj);
 2748         if (bp->b_npages < desiredpages) {
 2749                 /*
 2750                  * We must allocate system pages since blocking
 2751                  * here could interfere with paging I/O, no
 2752                  * matter which process we are.
 2753                  *
 2754                  * Only exclusive busy can be tested here.
 2755                  * Blocking on shared busy might lead to
 2756                  * deadlocks once allocbuf() is called after
 2757                  * pages are vfs_busy_pages().
 2758                  */
 2759                 (void)vm_page_grab_pages(obj,
 2760                     OFF_TO_IDX(bp->b_offset) + bp->b_npages,
 2761                     VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
 2762                     VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
 2763                     &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
 2764                 bp->b_npages = desiredpages;
 2765         }
 2766 
 2767         /*
 2768          * Step 2.  We've loaded the pages into the buffer,
 2769          * we have to figure out if we can still have B_CACHE
 2770          * set.  Note that B_CACHE is set according to the
 2771          * byte-granular range ( bcount and size ), not the
 2772          * aligned range ( newbsize ).
 2773          *
 2774          * The VM test is against m->valid, which is DEV_BSIZE
 2775          * aligned.  Needless to say, the validity of the data
 2776          * needs to also be DEV_BSIZE aligned.  Note that this
 2777          * fails with NFS if the server or some other client
 2778          * extends the file's EOF.  If our buffer is resized, 
 2779          * B_CACHE may remain set! XXX
 2780          */
 2781         toff = bp->b_bcount;
 2782         tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 2783         while ((bp->b_flags & B_CACHE) && toff < size) {
 2784                 vm_pindex_t pi;
 2785 
 2786                 if (tinc > (size - toff))
 2787                         tinc = size - toff;
 2788                 pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
 2789                 m = bp->b_pages[pi];
 2790                 vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
 2791                 toff += tinc;
 2792                 tinc = PAGE_SIZE;
 2793         }
 2794         VM_OBJECT_WUNLOCK(obj);
 2795 
 2796         /*
 2797          * Step 3, fixup the KVA pmap.
 2798          */
 2799         if (buf_mapped(bp))
 2800                 bpmap_qenter(bp);
 2801         else
 2802                 BUF_CHECK_UNMAPPED(bp);
 2803 }
 2804 
 2805 /*
 2806  * Check to see if a block at a particular lbn is available for a clustered
 2807  * write.
 2808  */
 2809 static int
 2810 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 2811 {
 2812         struct buf *bpa;
 2813         int match;
 2814 
 2815         match = 0;
 2816 
 2817         /* If the buf isn't in core skip it */
 2818         if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
 2819                 return (0);
 2820 
 2821         /* If the buf is busy we don't want to wait for it */
 2822         if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 2823                 return (0);
 2824 
 2825         /* Only cluster with valid clusterable delayed write buffers */
 2826         if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 2827             (B_DELWRI | B_CLUSTEROK))
 2828                 goto done;
 2829 
 2830         if (bpa->b_bufsize != size)
 2831                 goto done;
 2832 
 2833         /*
 2834          * Check to see if it is in the expected place on disk and that the
 2835          * block has been mapped.
 2836          */
 2837         if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 2838                 match = 1;
 2839 done:
 2840         BUF_UNLOCK(bpa);
 2841         return (match);
 2842 }
 2843 
 2844 /*
 2845  *      vfs_bio_awrite:
 2846  *
 2847  *      Implement clustered async writes for clearing out B_DELWRI buffers.
 2848  *      This is much better then the old way of writing only one buffer at
 2849  *      a time.  Note that we may not be presented with the buffers in the 
 2850  *      correct order, so we search for the cluster in both directions.
 2851  */
 2852 int
 2853 vfs_bio_awrite(struct buf *bp)
 2854 {
 2855         struct bufobj *bo;
 2856         int i;
 2857         int j;
 2858         daddr_t lblkno = bp->b_lblkno;
 2859         struct vnode *vp = bp->b_vp;
 2860         int ncl;
 2861         int nwritten;
 2862         int size;
 2863         int maxcl;
 2864         int gbflags;
 2865 
 2866         bo = &vp->v_bufobj;
 2867         gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
 2868         /*
 2869          * right now we support clustered writing only to regular files.  If
 2870          * we find a clusterable block we could be in the middle of a cluster
 2871          * rather then at the beginning.
 2872          */
 2873         if ((vp->v_type == VREG) && 
 2874             (vp->v_mount != 0) && /* Only on nodes that have the size info */
 2875             (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 2876 
 2877                 size = vp->v_mount->mnt_stat.f_iosize;
 2878                 maxcl = MAXPHYS / size;
 2879 
 2880                 BO_RLOCK(bo);
 2881                 for (i = 1; i < maxcl; i++)
 2882                         if (vfs_bio_clcheck(vp, size, lblkno + i,
 2883                             bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 2884                                 break;
 2885 
 2886                 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 2887                         if (vfs_bio_clcheck(vp, size, lblkno - j,
 2888                             bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 2889                                 break;
 2890                 BO_RUNLOCK(bo);
 2891                 --j;
 2892                 ncl = i + j;
 2893                 /*
 2894                  * this is a possible cluster write
 2895                  */
 2896                 if (ncl != 1) {
 2897                         BUF_UNLOCK(bp);
 2898                         nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
 2899                             gbflags);
 2900                         return (nwritten);
 2901                 }
 2902         }
 2903         bremfree(bp);
 2904         bp->b_flags |= B_ASYNC;
 2905         /*
 2906          * default (old) behavior, writing out only one block
 2907          *
 2908          * XXX returns b_bufsize instead of b_bcount for nwritten?
 2909          */
 2910         nwritten = bp->b_bufsize;
 2911         (void) bwrite(bp);
 2912 
 2913         return (nwritten);
 2914 }
 2915 
 2916 /*
 2917  *      getnewbuf_kva:
 2918  *
 2919  *      Allocate KVA for an empty buf header according to gbflags.
 2920  */
 2921 static int
 2922 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
 2923 {
 2924 
 2925         if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
 2926                 /*
 2927                  * In order to keep fragmentation sane we only allocate kva
 2928                  * in BKVASIZE chunks.  XXX with vmem we can do page size.
 2929                  */
 2930                 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 2931 
 2932                 if (maxsize != bp->b_kvasize &&
 2933                     bufkva_alloc(bp, maxsize, gbflags))
 2934                         return (ENOSPC);
 2935         }
 2936         return (0);
 2937 }
 2938 
 2939 /*
 2940  *      getnewbuf:
 2941  *
 2942  *      Find and initialize a new buffer header, freeing up existing buffers
 2943  *      in the bufqueues as necessary.  The new buffer is returned locked.
 2944  *
 2945  *      We block if:
 2946  *              We have insufficient buffer headers
 2947  *              We have insufficient buffer space
 2948  *              buffer_arena is too fragmented ( space reservation fails )
 2949  *              If we have to flush dirty buffers ( but we try to avoid this )
 2950  *
 2951  *      The caller is responsible for releasing the reserved bufspace after
 2952  *      allocbuf() is called.
 2953  */
 2954 static struct buf *
 2955 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
 2956 {
 2957         struct buf *bp;
 2958         bool metadata, reserved;
 2959 
 2960         bp = NULL;
 2961         KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
 2962             ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
 2963         if (!unmapped_buf_allowed)
 2964                 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 2965 
 2966         if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
 2967             vp->v_type == VCHR)
 2968                 metadata = true;
 2969         else
 2970                 metadata = false;
 2971         atomic_add_int(&getnewbufcalls, 1);
 2972         reserved = false;
 2973         do {
 2974                 if (reserved == false &&
 2975                     bufspace_reserve(maxsize, metadata) != 0)
 2976                         continue;
 2977                 reserved = true;
 2978                 if ((bp = buf_alloc()) == NULL)
 2979                         continue;
 2980                 if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
 2981                         return (bp);
 2982                 break;
 2983         } while(buf_scan(false) == 0);
 2984 
 2985         if (reserved)
 2986                 atomic_subtract_long(&bufspace, maxsize);
 2987         if (bp != NULL) {
 2988                 bp->b_flags |= B_INVAL;
 2989                 brelse(bp);
 2990         }
 2991         bufspace_wait(vp, gbflags, slpflag, slptimeo);
 2992 
 2993         return (NULL);
 2994 }
 2995 
 2996 /*
 2997  *      buf_daemon:
 2998  *
 2999  *      buffer flushing daemon.  Buffers are normally flushed by the
 3000  *      update daemon but if it cannot keep up this process starts to
 3001  *      take the load in an attempt to prevent getnewbuf() from blocking.
 3002  */
 3003 static struct kproc_desc buf_kp = {
 3004         "bufdaemon",
 3005         buf_daemon,
 3006         &bufdaemonproc
 3007 };
 3008 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
 3009 
 3010 static int
 3011 buf_flush(struct vnode *vp, int target)
 3012 {
 3013         int flushed;
 3014 
 3015         flushed = flushbufqueues(vp, target, 0);
 3016         if (flushed == 0) {
 3017                 /*
 3018                  * Could not find any buffers without rollback
 3019                  * dependencies, so just write the first one
 3020                  * in the hopes of eventually making progress.
 3021                  */
 3022                 if (vp != NULL && target > 2)
 3023                         target /= 2;
 3024                 flushbufqueues(vp, target, 1);
 3025         }
 3026         return (flushed);
 3027 }
 3028 
 3029 static void
 3030 buf_daemon()
 3031 {
 3032         int lodirty;
 3033 
 3034         /*
 3035          * This process needs to be suspended prior to shutdown sync.
 3036          */
 3037         EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
 3038             SHUTDOWN_PRI_LAST);
 3039 
 3040         /*
 3041          * This process is allowed to take the buffer cache to the limit
 3042          */
 3043         curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
 3044         mtx_lock(&bdlock);
 3045         for (;;) {
 3046                 bd_request = 0;
 3047                 mtx_unlock(&bdlock);
 3048 
 3049                 kproc_suspend_check(bufdaemonproc);
 3050                 lodirty = lodirtybuffers;
 3051                 if (bd_speedupreq) {
 3052                         lodirty = numdirtybuffers / 2;
 3053                         bd_speedupreq = 0;
 3054                 }
 3055                 /*
 3056                  * Do the flush.  Limit the amount of in-transit I/O we
 3057                  * allow to build up, otherwise we would completely saturate
 3058                  * the I/O system.
 3059                  */
 3060                 while (numdirtybuffers > lodirty) {
 3061                         if (buf_flush(NULL, numdirtybuffers - lodirty) == 0)
 3062                                 break;
 3063                         kern_yield(PRI_USER);
 3064                 }
 3065 
 3066                 /*
 3067                  * Only clear bd_request if we have reached our low water
 3068                  * mark.  The buf_daemon normally waits 1 second and
 3069                  * then incrementally flushes any dirty buffers that have
 3070                  * built up, within reason.
 3071                  *
 3072                  * If we were unable to hit our low water mark and couldn't
 3073                  * find any flushable buffers, we sleep for a short period
 3074                  * to avoid endless loops on unlockable buffers.
 3075                  */
 3076                 mtx_lock(&bdlock);
 3077                 if (numdirtybuffers <= lodirtybuffers) {
 3078                         /*
 3079                          * We reached our low water mark, reset the
 3080                          * request and sleep until we are needed again.
 3081                          * The sleep is just so the suspend code works.
 3082                          */
 3083                         bd_request = 0;
 3084                         /*
 3085                          * Do an extra wakeup in case dirty threshold
 3086                          * changed via sysctl and the explicit transition
 3087                          * out of shortfall was missed.
 3088                          */
 3089                         bdirtywakeup();
 3090                         if (runningbufspace <= lorunningspace)
 3091                                 runningwakeup();
 3092                         msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 3093                 } else {
 3094                         /*
 3095                          * We couldn't find any flushable dirty buffers but
 3096                          * still have too many dirty buffers, we
 3097                          * have to sleep and try again.  (rare)
 3098                          */
 3099                         msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 3100                 }
 3101         }
 3102 }
 3103 
 3104 /*
 3105  *      flushbufqueues:
 3106  *
 3107  *      Try to flush a buffer in the dirty queue.  We must be careful to
 3108  *      free up B_INVAL buffers instead of write them, which NFS is 
 3109  *      particularly sensitive to.
 3110  */
 3111 static int flushwithdeps = 0;
 3112 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
 3113     0, "Number of buffers flushed with dependecies that require rollbacks");
 3114 
 3115 static int
 3116 flushbufqueues(struct vnode *lvp, int target, int flushdeps)
 3117 {
 3118         struct buf *sentinel;
 3119         struct vnode *vp;
 3120         struct mount *mp;
 3121         struct buf *bp;
 3122         int hasdeps;
 3123         int flushed;
 3124         int queue;
 3125         int error;
 3126         bool unlock;
 3127 
 3128         flushed = 0;
 3129         queue = QUEUE_DIRTY;
 3130         bp = NULL;
 3131         sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
 3132         sentinel->b_qindex = QUEUE_SENTINEL;
 3133         mtx_lock(&bqlocks[queue]);
 3134         TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
 3135         mtx_unlock(&bqlocks[queue]);
 3136         while (flushed != target) {
 3137                 maybe_yield();
 3138                 mtx_lock(&bqlocks[queue]);
 3139                 bp = TAILQ_NEXT(sentinel, b_freelist);
 3140                 if (bp != NULL) {
 3141                         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 3142                         TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
 3143                             b_freelist);
 3144                 } else {
 3145                         mtx_unlock(&bqlocks[queue]);
 3146                         break;
 3147                 }
 3148                 /*
 3149                  * Skip sentinels inserted by other invocations of the
 3150                  * flushbufqueues(), taking care to not reorder them.
 3151                  *
 3152                  * Only flush the buffers that belong to the
 3153                  * vnode locked by the curthread.
 3154                  */
 3155                 if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
 3156                     bp->b_vp != lvp)) {
 3157                         mtx_unlock(&bqlocks[queue]);
 3158                         continue;
 3159                 }
 3160                 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
 3161                 mtx_unlock(&bqlocks[queue]);
 3162                 if (error != 0)
 3163                         continue;
 3164                 if (bp->b_pin_count > 0) {
 3165                         BUF_UNLOCK(bp);
 3166                         continue;
 3167                 }
 3168                 /*
 3169                  * BKGRDINPROG can only be set with the buf and bufobj
 3170                  * locks both held.  We tolerate a race to clear it here.
 3171                  */
 3172                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
 3173                     (bp->b_flags & B_DELWRI) == 0) {
 3174                         BUF_UNLOCK(bp);
 3175                         continue;
 3176                 }
 3177                 if (bp->b_flags & B_INVAL) {
 3178                         bremfreef(bp);
 3179                         brelse(bp);
 3180                         flushed++;
 3181                         continue;
 3182                 }
 3183 
 3184                 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
 3185                         if (flushdeps == 0) {
 3186                                 BUF_UNLOCK(bp);
 3187                                 continue;
 3188                         }
 3189                         hasdeps = 1;
 3190                 } else
 3191                         hasdeps = 0;
 3192                 /*
 3193                  * We must hold the lock on a vnode before writing
 3194                  * one of its buffers. Otherwise we may confuse, or
 3195                  * in the case of a snapshot vnode, deadlock the
 3196                  * system.
 3197                  *
 3198                  * The lock order here is the reverse of the normal
 3199                  * of vnode followed by buf lock.  This is ok because
 3200                  * the NOWAIT will prevent deadlock.
 3201                  */
 3202                 vp = bp->b_vp;
 3203                 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 3204                         BUF_UNLOCK(bp);
 3205                         continue;
 3206                 }
 3207                 if (lvp == NULL) {
 3208                         unlock = true;
 3209                         error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
 3210                 } else {
 3211                         ASSERT_VOP_LOCKED(vp, "getbuf");
 3212                         unlock = false;
 3213                         error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
 3214                             vn_lock(vp, LK_TRYUPGRADE);
 3215                 }
 3216                 if (error == 0) {
 3217                         CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
 3218                             bp, bp->b_vp, bp->b_flags);
 3219                         if (curproc == bufdaemonproc) {
 3220                                 vfs_bio_awrite(bp);
 3221                         } else {
 3222                                 bremfree(bp);
 3223                                 bwrite(bp);
 3224                                 notbufdflushes++;
 3225                         }
 3226                         vn_finished_write(mp);
 3227                         if (unlock)
 3228                                 VOP_UNLOCK(vp, 0);
 3229                         flushwithdeps += hasdeps;
 3230                         flushed++;
 3231 
 3232                         /*
 3233                          * Sleeping on runningbufspace while holding
 3234                          * vnode lock leads to deadlock.
 3235                          */
 3236                         if (curproc == bufdaemonproc &&
 3237                             runningbufspace > hirunningspace)
 3238                                 waitrunningbufspace();
 3239                         continue;
 3240                 }
 3241                 vn_finished_write(mp);
 3242                 BUF_UNLOCK(bp);
 3243         }
 3244         mtx_lock(&bqlocks[queue]);
 3245         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 3246         mtx_unlock(&bqlocks[queue]);
 3247         free(sentinel, M_TEMP);
 3248         return (flushed);
 3249 }
 3250 
 3251 /*
 3252  * Check to see if a block is currently memory resident.
 3253  */
 3254 struct buf *
 3255 incore(struct bufobj *bo, daddr_t blkno)
 3256 {
 3257         struct buf *bp;
 3258 
 3259         BO_RLOCK(bo);
 3260         bp = gbincore(bo, blkno);
 3261         BO_RUNLOCK(bo);
 3262         return (bp);
 3263 }
 3264 
 3265 /*
 3266  * Returns true if no I/O is needed to access the
 3267  * associated VM object.  This is like incore except
 3268  * it also hunts around in the VM system for the data.
 3269  */
 3270 
 3271 static int
 3272 inmem(struct vnode * vp, daddr_t blkno)
 3273 {
 3274         vm_object_t obj;
 3275         vm_offset_t toff, tinc, size;
 3276         vm_page_t m;
 3277         vm_ooffset_t off;
 3278 
 3279         ASSERT_VOP_LOCKED(vp, "inmem");
 3280 
 3281         if (incore(&vp->v_bufobj, blkno))
 3282                 return 1;
 3283         if (vp->v_mount == NULL)
 3284                 return 0;
 3285         obj = vp->v_object;
 3286         if (obj == NULL)
 3287                 return (0);
 3288 
 3289         size = PAGE_SIZE;
 3290         if (size > vp->v_mount->mnt_stat.f_iosize)
 3291                 size = vp->v_mount->mnt_stat.f_iosize;
 3292         off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 3293 
 3294         VM_OBJECT_RLOCK(obj);
 3295         for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 3296                 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
 3297                 if (!m)
 3298                         goto notinmem;
 3299                 tinc = size;
 3300                 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 3301                         tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 3302                 if (vm_page_is_valid(m,
 3303                     (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
 3304                         goto notinmem;
 3305         }
 3306         VM_OBJECT_RUNLOCK(obj);
 3307         return 1;
 3308 
 3309 notinmem:
 3310         VM_OBJECT_RUNLOCK(obj);
 3311         return (0);
 3312 }
 3313 
 3314 /*
 3315  * Set the dirty range for a buffer based on the status of the dirty
 3316  * bits in the pages comprising the buffer.  The range is limited
 3317  * to the size of the buffer.
 3318  *
 3319  * Tell the VM system that the pages associated with this buffer
 3320  * are clean.  This is used for delayed writes where the data is
 3321  * going to go to disk eventually without additional VM intevention.
 3322  *
 3323  * Note that while we only really need to clean through to b_bcount, we
 3324  * just go ahead and clean through to b_bufsize.
 3325  */
 3326 static void
 3327 vfs_clean_pages_dirty_buf(struct buf *bp)
 3328 {
 3329         vm_ooffset_t foff, noff, eoff;
 3330         vm_page_t m;
 3331         int i;
 3332 
 3333         if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
 3334                 return;
 3335 
 3336         foff = bp->b_offset;
 3337         KASSERT(bp->b_offset != NOOFFSET,
 3338             ("vfs_clean_pages_dirty_buf: no buffer offset"));
 3339 
 3340         VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
 3341         vfs_drain_busy_pages(bp);
 3342         vfs_setdirty_locked_object(bp);
 3343         for (i = 0; i < bp->b_npages; i++) {
 3344                 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3345                 eoff = noff;
 3346                 if (eoff > bp->b_offset + bp->b_bufsize)
 3347                         eoff = bp->b_offset + bp->b_bufsize;
 3348                 m = bp->b_pages[i];
 3349                 vfs_page_set_validclean(bp, foff, m);
 3350                 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 3351                 foff = noff;
 3352         }
 3353         VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
 3354 }
 3355 
 3356 static void
 3357 vfs_setdirty_locked_object(struct buf *bp)
 3358 {
 3359         vm_object_t object;
 3360         int i;
 3361 
 3362         object = bp->b_bufobj->bo_object;
 3363         VM_OBJECT_ASSERT_WLOCKED(object);
 3364 
 3365         /*
 3366          * We qualify the scan for modified pages on whether the
 3367          * object has been flushed yet.
 3368          */
 3369         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
 3370                 vm_offset_t boffset;
 3371                 vm_offset_t eoffset;
 3372 
 3373                 /*
 3374                  * test the pages to see if they have been modified directly
 3375                  * by users through the VM system.
 3376                  */
 3377                 for (i = 0; i < bp->b_npages; i++)
 3378                         vm_page_test_dirty(bp->b_pages[i]);
 3379 
 3380                 /*
 3381                  * Calculate the encompassing dirty range, boffset and eoffset,
 3382                  * (eoffset - boffset) bytes.
 3383                  */
 3384 
 3385                 for (i = 0; i < bp->b_npages; i++) {
 3386                         if (bp->b_pages[i]->dirty)
 3387                                 break;
 3388                 }
 3389                 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 3390 
 3391                 for (i = bp->b_npages - 1; i >= 0; --i) {
 3392                         if (bp->b_pages[i]->dirty) {
 3393                                 break;
 3394                         }
 3395                 }
 3396                 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 3397 
 3398                 /*
 3399                  * Fit it to the buffer.
 3400                  */
 3401 
 3402                 if (eoffset > bp->b_bcount)
 3403                         eoffset = bp->b_bcount;
 3404 
 3405                 /*
 3406                  * If we have a good dirty range, merge with the existing
 3407                  * dirty range.
 3408                  */
 3409 
 3410                 if (boffset < eoffset) {
 3411                         if (bp->b_dirtyoff > boffset)
 3412                                 bp->b_dirtyoff = boffset;
 3413                         if (bp->b_dirtyend < eoffset)
 3414                                 bp->b_dirtyend = eoffset;
 3415                 }
 3416         }
 3417 }
 3418 
 3419 /*
 3420  * Allocate the KVA mapping for an existing buffer.
 3421  * If an unmapped buffer is provided but a mapped buffer is requested, take
 3422  * also care to properly setup mappings between pages and KVA.
 3423  */
 3424 static void
 3425 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
 3426 {
 3427         int bsize, maxsize, need_mapping, need_kva;
 3428         off_t offset;
 3429 
 3430         need_mapping = bp->b_data == unmapped_buf &&
 3431             (gbflags & GB_UNMAPPED) == 0;
 3432         need_kva = bp->b_kvabase == unmapped_buf &&
 3433             bp->b_data == unmapped_buf &&
 3434             (gbflags & GB_KVAALLOC) != 0;
 3435         if (!need_mapping && !need_kva)
 3436                 return;
 3437 
 3438         BUF_CHECK_UNMAPPED(bp);
 3439 
 3440         if (need_mapping && bp->b_kvabase != unmapped_buf) {
 3441                 /*
 3442                  * Buffer is not mapped, but the KVA was already
 3443                  * reserved at the time of the instantiation.  Use the
 3444                  * allocated space.
 3445                  */
 3446                 goto has_addr;
 3447         }
 3448 
 3449         /*
 3450          * Calculate the amount of the address space we would reserve
 3451          * if the buffer was mapped.
 3452          */
 3453         bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
 3454         KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
 3455         offset = blkno * bsize;
 3456         maxsize = size + (offset & PAGE_MASK);
 3457         maxsize = imax(maxsize, bsize);
 3458 
 3459         while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
 3460                 if ((gbflags & GB_NOWAIT_BD) != 0) {
 3461                         /*
 3462                          * XXXKIB: defragmentation cannot
 3463                          * succeed, not sure what else to do.
 3464                          */
 3465                         panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
 3466                 }
 3467                 atomic_add_int(&mappingrestarts, 1);
 3468                 bufspace_wait(bp->b_vp, gbflags, 0, 0);
 3469         }
 3470 has_addr:
 3471         if (need_mapping) {
 3472                 /* b_offset is handled by bpmap_qenter. */
 3473                 bp->b_data = bp->b_kvabase;
 3474                 BUF_CHECK_MAPPED(bp);
 3475                 bpmap_qenter(bp);
 3476         }
 3477 }
 3478 
 3479 /*
 3480  *      getblk:
 3481  *
 3482  *      Get a block given a specified block and offset into a file/device.
 3483  *      The buffers B_DONE bit will be cleared on return, making it almost
 3484  *      ready for an I/O initiation.  B_INVAL may or may not be set on 
 3485  *      return.  The caller should clear B_INVAL prior to initiating a
 3486  *      READ.
 3487  *
 3488  *      For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
 3489  *      an existing buffer.
 3490  *
 3491  *      For a VMIO buffer, B_CACHE is modified according to the backing VM.
 3492  *      If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
 3493  *      and then cleared based on the backing VM.  If the previous buffer is
 3494  *      non-0-sized but invalid, B_CACHE will be cleared.
 3495  *
 3496  *      If getblk() must create a new buffer, the new buffer is returned with
 3497  *      both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
 3498  *      case it is returned with B_INVAL clear and B_CACHE set based on the
 3499  *      backing VM.
 3500  *
 3501  *      getblk() also forces a bwrite() for any B_DELWRI buffer whos
 3502  *      B_CACHE bit is clear.
 3503  *      
 3504  *      What this means, basically, is that the caller should use B_CACHE to
 3505  *      determine whether the buffer is fully valid or not and should clear
 3506  *      B_INVAL prior to issuing a read.  If the caller intends to validate
 3507  *      the buffer by loading its data area with something, the caller needs
 3508  *      to clear B_INVAL.  If the caller does this without issuing an I/O, 
 3509  *      the caller should set B_CACHE ( as an optimization ), else the caller
 3510  *      should issue the I/O and biodone() will set B_CACHE if the I/O was
 3511  *      a write attempt or if it was a successful read.  If the caller 
 3512  *      intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
 3513  *      prior to issuing the READ.  biodone() will *not* clear B_INVAL.
 3514  */
 3515 struct buf *
 3516 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
 3517     int flags)
 3518 {
 3519         struct buf *bp;
 3520         struct bufobj *bo;
 3521         int bsize, error, maxsize, vmio;
 3522         off_t offset;
 3523 
 3524         CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
 3525         KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
 3526             ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
 3527         ASSERT_VOP_LOCKED(vp, "getblk");
 3528         if (size > maxbcachebuf)
 3529                 panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
 3530                     maxbcachebuf);
 3531         if (!unmapped_buf_allowed)
 3532                 flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 3533 
 3534         bo = &vp->v_bufobj;
 3535 loop:
 3536         BO_RLOCK(bo);
 3537         bp = gbincore(bo, blkno);
 3538         if (bp != NULL) {
 3539                 int lockflags;
 3540                 /*
 3541                  * Buffer is in-core.  If the buffer is not busy nor managed,
 3542                  * it must be on a queue.
 3543                  */
 3544                 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
 3545 
 3546                 if (flags & GB_LOCK_NOWAIT)
 3547                         lockflags |= LK_NOWAIT;
 3548 
 3549                 error = BUF_TIMELOCK(bp, lockflags,
 3550                     BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
 3551 
 3552                 /*
 3553                  * If we slept and got the lock we have to restart in case
 3554                  * the buffer changed identities.
 3555                  */
 3556                 if (error == ENOLCK)
 3557                         goto loop;
 3558                 /* We timed out or were interrupted. */
 3559                 else if (error)
 3560                         return (NULL);
 3561                 /* If recursed, assume caller knows the rules. */
 3562                 else if (BUF_LOCKRECURSED(bp))
 3563                         goto end;
 3564 
 3565                 /*
 3566                  * The buffer is locked.  B_CACHE is cleared if the buffer is 
 3567                  * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 3568                  * and for a VMIO buffer B_CACHE is adjusted according to the
 3569                  * backing VM cache.
 3570                  */
 3571                 if (bp->b_flags & B_INVAL)
 3572                         bp->b_flags &= ~B_CACHE;
 3573                 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 3574                         bp->b_flags |= B_CACHE;
 3575                 if (bp->b_flags & B_MANAGED)
 3576                         MPASS(bp->b_qindex == QUEUE_NONE);
 3577                 else
 3578                         bremfree(bp);
 3579 
 3580                 /*
 3581                  * check for size inconsistencies for non-VMIO case.
 3582                  */
 3583                 if (bp->b_bcount != size) {
 3584                         if ((bp->b_flags & B_VMIO) == 0 ||
 3585                             (size > bp->b_kvasize)) {
 3586                                 if (bp->b_flags & B_DELWRI) {
 3587                                         /*
 3588                                          * If buffer is pinned and caller does
 3589                                          * not want sleep  waiting for it to be
 3590                                          * unpinned, bail out
 3591                                          * */
 3592                                         if (bp->b_pin_count > 0) {
 3593                                                 if (flags & GB_LOCK_NOWAIT) {
 3594                                                         bqrelse(bp);
 3595                                                         return (NULL);
 3596                                                 } else {
 3597                                                         bunpin_wait(bp);
 3598                                                 }
 3599                                         }
 3600                                         bp->b_flags |= B_NOCACHE;
 3601                                         bwrite(bp);
 3602                                 } else {
 3603                                         if (LIST_EMPTY(&bp->b_dep)) {
 3604                                                 bp->b_flags |= B_RELBUF;
 3605                                                 brelse(bp);
 3606                                         } else {
 3607                                                 bp->b_flags |= B_NOCACHE;
 3608                                                 bwrite(bp);
 3609                                         }
 3610                                 }
 3611                                 goto loop;
 3612                         }
 3613                 }
 3614 
 3615                 /*
 3616                  * Handle the case of unmapped buffer which should
 3617                  * become mapped, or the buffer for which KVA
 3618                  * reservation is requested.
 3619                  */
 3620                 bp_unmapped_get_kva(bp, blkno, size, flags);
 3621 
 3622                 /*
 3623                  * If the size is inconsistent in the VMIO case, we can resize
 3624                  * the buffer.  This might lead to B_CACHE getting set or
 3625                  * cleared.  If the size has not changed, B_CACHE remains
 3626                  * unchanged from its previous state.
 3627                  */
 3628                 allocbuf(bp, size);
 3629 
 3630                 KASSERT(bp->b_offset != NOOFFSET, 
 3631                     ("getblk: no buffer offset"));
 3632 
 3633                 /*
 3634                  * A buffer with B_DELWRI set and B_CACHE clear must
 3635                  * be committed before we can return the buffer in
 3636                  * order to prevent the caller from issuing a read
 3637                  * ( due to B_CACHE not being set ) and overwriting
 3638                  * it.
 3639                  *
 3640                  * Most callers, including NFS and FFS, need this to
 3641                  * operate properly either because they assume they
 3642                  * can issue a read if B_CACHE is not set, or because
 3643                  * ( for example ) an uncached B_DELWRI might loop due 
 3644                  * to softupdates re-dirtying the buffer.  In the latter
 3645                  * case, B_CACHE is set after the first write completes,
 3646                  * preventing further loops.
 3647                  * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 3648                  * above while extending the buffer, we cannot allow the
 3649                  * buffer to remain with B_CACHE set after the write
 3650                  * completes or it will represent a corrupt state.  To
 3651                  * deal with this we set B_NOCACHE to scrap the buffer
 3652                  * after the write.
 3653                  *
 3654                  * We might be able to do something fancy, like setting
 3655                  * B_CACHE in bwrite() except if B_DELWRI is already set,
 3656                  * so the below call doesn't set B_CACHE, but that gets real
 3657                  * confusing.  This is much easier.
 3658                  */
 3659 
 3660                 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 3661                         bp->b_flags |= B_NOCACHE;
 3662                         bwrite(bp);
 3663                         goto loop;
 3664                 }
 3665                 bp->b_flags &= ~B_DONE;
 3666         } else {
 3667                 /*
 3668                  * Buffer is not in-core, create new buffer.  The buffer
 3669                  * returned by getnewbuf() is locked.  Note that the returned
 3670                  * buffer is also considered valid (not marked B_INVAL).
 3671                  */
 3672                 BO_RUNLOCK(bo);
 3673                 /*
 3674                  * If the user does not want us to create the buffer, bail out
 3675                  * here.
 3676                  */
 3677                 if (flags & GB_NOCREAT)
 3678                         return NULL;
 3679                 if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread))
 3680                         return NULL;
 3681 
 3682                 bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
 3683                 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
 3684                 offset = blkno * bsize;
 3685                 vmio = vp->v_object != NULL;
 3686                 if (vmio) {
 3687                         maxsize = size + (offset & PAGE_MASK);
 3688                 } else {
 3689                         maxsize = size;
 3690                         /* Do not allow non-VMIO notmapped buffers. */
 3691                         flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 3692                 }
 3693                 maxsize = imax(maxsize, bsize);
 3694 
 3695                 bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
 3696                 if (bp == NULL) {
 3697                         if (slpflag || slptimeo)
 3698                                 return NULL;
 3699                         /*
 3700                          * XXX This is here until the sleep path is diagnosed
 3701                          * enough to work under very low memory conditions.
 3702                          *
 3703                          * There's an issue on low memory, 4BSD+non-preempt
 3704                          * systems (eg MIPS routers with 32MB RAM) where buffer
 3705                          * exhaustion occurs without sleeping for buffer
 3706                          * reclaimation.  This just sticks in a loop and
 3707                          * constantly attempts to allocate a buffer, which
 3708                          * hits exhaustion and tries to wakeup bufdaemon.
 3709                          * This never happens because we never yield.
 3710                          *
 3711                          * The real solution is to identify and fix these cases
 3712                          * so we aren't effectively busy-waiting in a loop
 3713                          * until the reclaimation path has cycles to run.
 3714                          */
 3715                         kern_yield(PRI_USER);
 3716                         goto loop;
 3717                 }
 3718 
 3719                 /*
 3720                  * This code is used to make sure that a buffer is not
 3721                  * created while the getnewbuf routine is blocked.
 3722                  * This can be a problem whether the vnode is locked or not.
 3723                  * If the buffer is created out from under us, we have to
 3724                  * throw away the one we just created.
 3725                  *
 3726                  * Note: this must occur before we associate the buffer
 3727                  * with the vp especially considering limitations in
 3728                  * the splay tree implementation when dealing with duplicate
 3729                  * lblkno's.
 3730                  */
 3731                 BO_LOCK(bo);
 3732                 if (gbincore(bo, blkno)) {
 3733                         BO_UNLOCK(bo);
 3734                         bp->b_flags |= B_INVAL;
 3735                         brelse(bp);
 3736                         bufspace_release(maxsize);
 3737                         goto loop;
 3738                 }
 3739 
 3740                 /*
 3741                  * Insert the buffer into the hash, so that it can
 3742                  * be found by incore.
 3743                  */
 3744                 bp->b_blkno = bp->b_lblkno = blkno;
 3745                 bp->b_offset = offset;
 3746                 bgetvp(vp, bp);
 3747                 BO_UNLOCK(bo);
 3748 
 3749                 /*
 3750                  * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 3751                  * buffer size starts out as 0, B_CACHE will be set by
 3752                  * allocbuf() for the VMIO case prior to it testing the
 3753                  * backing store for validity.
 3754                  */
 3755 
 3756                 if (vmio) {
 3757                         bp->b_flags |= B_VMIO;
 3758                         KASSERT(vp->v_object == bp->b_bufobj->bo_object,
 3759                             ("ARGH! different b_bufobj->bo_object %p %p %p\n",
 3760                             bp, vp->v_object, bp->b_bufobj->bo_object));
 3761                 } else {
 3762                         bp->b_flags &= ~B_VMIO;
 3763                         KASSERT(bp->b_bufobj->bo_object == NULL,
 3764                             ("ARGH! has b_bufobj->bo_object %p %p\n",
 3765                             bp, bp->b_bufobj->bo_object));
 3766                         BUF_CHECK_MAPPED(bp);
 3767                 }
 3768 
 3769                 allocbuf(bp, size);
 3770                 bufspace_release(maxsize);
 3771                 bp->b_flags &= ~B_DONE;
 3772         }
 3773         CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
 3774         BUF_ASSERT_HELD(bp);
 3775 end:
 3776         KASSERT(bp->b_bufobj == bo,
 3777             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 3778         return (bp);
 3779 }
 3780 
 3781 /*
 3782  * Get an empty, disassociated buffer of given size.  The buffer is initially
 3783  * set to B_INVAL.
 3784  */
 3785 struct buf *
 3786 geteblk(int size, int flags)
 3787 {
 3788         struct buf *bp;
 3789         int maxsize;
 3790 
 3791         maxsize = (size + BKVAMASK) & ~BKVAMASK;
 3792         while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
 3793                 if ((flags & GB_NOWAIT_BD) &&
 3794                     (curthread->td_pflags & TDP_BUFNEED) != 0)
 3795                         return (NULL);
 3796         }
 3797         allocbuf(bp, size);
 3798         bufspace_release(maxsize);
 3799         bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
 3800         BUF_ASSERT_HELD(bp);
 3801         return (bp);
 3802 }
 3803 
 3804 /*
 3805  * Truncate the backing store for a non-vmio buffer.
 3806  */
 3807 static void
 3808 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
 3809 {
 3810 
 3811         if (bp->b_flags & B_MALLOC) {
 3812                 /*
 3813                  * malloced buffers are not shrunk
 3814                  */
 3815                 if (newbsize == 0) {
 3816                         bufmallocadjust(bp, 0);
 3817                         free(bp->b_data, M_BIOBUF);
 3818                         bp->b_data = bp->b_kvabase;
 3819                         bp->b_flags &= ~B_MALLOC;
 3820                 }
 3821                 return;
 3822         }
 3823         vm_hold_free_pages(bp, newbsize);
 3824         bufspace_adjust(bp, newbsize);
 3825 }
 3826 
 3827 /*
 3828  * Extend the backing for a non-VMIO buffer.
 3829  */
 3830 static void
 3831 vfs_nonvmio_extend(struct buf *bp, int newbsize)
 3832 {
 3833         caddr_t origbuf;
 3834         int origbufsize;
 3835 
 3836         /*
 3837          * We only use malloced memory on the first allocation.
 3838          * and revert to page-allocated memory when the buffer
 3839          * grows.
 3840          *
 3841          * There is a potential smp race here that could lead
 3842          * to bufmallocspace slightly passing the max.  It
 3843          * is probably extremely rare and not worth worrying
 3844          * over.
 3845          */
 3846         if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
 3847             bufmallocspace < maxbufmallocspace) {
 3848                 bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
 3849                 bp->b_flags |= B_MALLOC;
 3850                 bufmallocadjust(bp, newbsize);
 3851                 return;
 3852         }
 3853 
 3854         /*
 3855          * If the buffer is growing on its other-than-first
 3856          * allocation then we revert to the page-allocation
 3857          * scheme.
 3858          */
 3859         origbuf = NULL;
 3860         origbufsize = 0;
 3861         if (bp->b_flags & B_MALLOC) {
 3862                 origbuf = bp->b_data;
 3863                 origbufsize = bp->b_bufsize;
 3864                 bp->b_data = bp->b_kvabase;
 3865                 bufmallocadjust(bp, 0);
 3866                 bp->b_flags &= ~B_MALLOC;
 3867                 newbsize = round_page(newbsize);
 3868         }
 3869         vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
 3870             (vm_offset_t) bp->b_data + newbsize);
 3871         if (origbuf != NULL) {
 3872                 bcopy(origbuf, bp->b_data, origbufsize);
 3873                 free(origbuf, M_BIOBUF);
 3874         }
 3875         bufspace_adjust(bp, newbsize);
 3876 }
 3877 
 3878 /*
 3879  * This code constitutes the buffer memory from either anonymous system
 3880  * memory (in the case of non-VMIO operations) or from an associated
 3881  * VM object (in the case of VMIO operations).  This code is able to
 3882  * resize a buffer up or down.
 3883  *
 3884  * Note that this code is tricky, and has many complications to resolve
 3885  * deadlock or inconsistent data situations.  Tread lightly!!! 
 3886  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
 3887  * the caller.  Calling this code willy nilly can result in the loss of data.
 3888  *
 3889  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
 3890  * B_CACHE for the non-VMIO case.
 3891  */
 3892 int
 3893 allocbuf(struct buf *bp, int size)
 3894 {
 3895         int newbsize;
 3896 
 3897         BUF_ASSERT_HELD(bp);
 3898 
 3899         if (bp->b_bcount == size)
 3900                 return (1);
 3901 
 3902         if (bp->b_kvasize != 0 && bp->b_kvasize < size)
 3903                 panic("allocbuf: buffer too small");
 3904 
 3905         newbsize = roundup2(size, DEV_BSIZE);
 3906         if ((bp->b_flags & B_VMIO) == 0) {
 3907                 if ((bp->b_flags & B_MALLOC) == 0)
 3908                         newbsize = round_page(newbsize);
 3909                 /*
 3910                  * Just get anonymous memory from the kernel.  Don't
 3911                  * mess with B_CACHE.
 3912                  */
 3913                 if (newbsize < bp->b_bufsize)
 3914                         vfs_nonvmio_truncate(bp, newbsize);
 3915                 else if (newbsize > bp->b_bufsize)
 3916                         vfs_nonvmio_extend(bp, newbsize);
 3917         } else {
 3918                 int desiredpages;
 3919 
 3920                 desiredpages = (size == 0) ? 0 :
 3921                     num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 3922 
 3923                 if (bp->b_flags & B_MALLOC)
 3924                         panic("allocbuf: VMIO buffer can't be malloced");
 3925                 /*
 3926                  * Set B_CACHE initially if buffer is 0 length or will become
 3927                  * 0-length.
 3928                  */
 3929                 if (size == 0 || bp->b_bufsize == 0)
 3930                         bp->b_flags |= B_CACHE;
 3931 
 3932                 if (newbsize < bp->b_bufsize)
 3933                         vfs_vmio_truncate(bp, desiredpages);
 3934                 /* XXX This looks as if it should be newbsize > b_bufsize */
 3935                 else if (size > bp->b_bcount)
 3936                         vfs_vmio_extend(bp, desiredpages, size);
 3937                 bufspace_adjust(bp, newbsize);
 3938         }
 3939         bp->b_bcount = size;            /* requested buffer size. */
 3940         return (1);
 3941 }
 3942 
 3943 extern int inflight_transient_maps;
 3944 
 3945 static struct bio_queue nondump_bios;
 3946 
 3947 void
 3948 biodone(struct bio *bp)
 3949 {
 3950         struct mtx *mtxp;
 3951         void (*done)(struct bio *);
 3952         vm_offset_t start, end;
 3953 
 3954 
 3955         /*
 3956          * Avoid completing I/O when dumping after a panic since that may
 3957          * result in a deadlock in the filesystem or pager code.  Note that
 3958          * this doesn't affect dumps that were started manually since we aim
 3959          * to keep the system usable after it has been resumed.
 3960          */
 3961         if (__predict_false(dumping && SCHEDULER_STOPPED())) {
 3962                 TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
 3963                 return;
 3964         }
 3965         if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
 3966                 bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
 3967                 bp->bio_flags |= BIO_UNMAPPED;
 3968                 start = trunc_page((vm_offset_t)bp->bio_data);
 3969                 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
 3970                 bp->bio_data = unmapped_buf;
 3971                 pmap_qremove(start, atop(end - start));
 3972                 vmem_free(transient_arena, start, end - start);
 3973                 atomic_add_int(&inflight_transient_maps, -1);
 3974         }
 3975         done = bp->bio_done;
 3976         if (done == NULL) {
 3977                 mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3978                 mtx_lock(mtxp);
 3979                 bp->bio_flags |= BIO_DONE;
 3980                 wakeup(bp);
 3981                 mtx_unlock(mtxp);
 3982         } else
 3983                 done(bp);
 3984 }
 3985 
 3986 /*
 3987  * Wait for a BIO to finish.
 3988  */
 3989 int
 3990 biowait(struct bio *bp, const char *wchan)
 3991 {
 3992         struct mtx *mtxp;
 3993 
 3994         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3995         mtx_lock(mtxp);
 3996         while ((bp->bio_flags & BIO_DONE) == 0)
 3997                 msleep(bp, mtxp, PRIBIO, wchan, 0);
 3998         mtx_unlock(mtxp);
 3999         if (bp->bio_error != 0)
 4000                 return (bp->bio_error);
 4001         if (!(bp->bio_flags & BIO_ERROR))
 4002                 return (0);
 4003         return (EIO);
 4004 }
 4005 
 4006 void
 4007 biofinish(struct bio *bp, struct devstat *stat, int error)
 4008 {
 4009         
 4010         if (error) {
 4011                 bp->bio_error = error;
 4012                 bp->bio_flags |= BIO_ERROR;
 4013         }
 4014         if (stat != NULL)
 4015                 devstat_end_transaction_bio(stat, bp);
 4016         biodone(bp);
 4017 }
 4018 
 4019 /*
 4020  *      bufwait:
 4021  *
 4022  *      Wait for buffer I/O completion, returning error status.  The buffer
 4023  *      is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
 4024  *      error and cleared.
 4025  */
 4026 int
 4027 bufwait(struct buf *bp)
 4028 {
 4029         if (bp->b_iocmd == BIO_READ)
 4030                 bwait(bp, PRIBIO, "biord");
 4031         else
 4032                 bwait(bp, PRIBIO, "biowr");
 4033         if (bp->b_flags & B_EINTR) {
 4034                 bp->b_flags &= ~B_EINTR;
 4035                 return (EINTR);
 4036         }
 4037         if (bp->b_ioflags & BIO_ERROR) {
 4038                 return (bp->b_error ? bp->b_error : EIO);
 4039         } else {
 4040                 return (0);
 4041         }
 4042 }
 4043 
 4044 /*
 4045  *      bufdone:
 4046  *
 4047  *      Finish I/O on a buffer, optionally calling a completion function.
 4048  *      This is usually called from an interrupt so process blocking is
 4049  *      not allowed.
 4050  *
 4051  *      biodone is also responsible for setting B_CACHE in a B_VMIO bp.
 4052  *      In a non-VMIO bp, B_CACHE will be set on the next getblk() 
 4053  *      assuming B_INVAL is clear.
 4054  *
 4055  *      For the VMIO case, we set B_CACHE if the op was a read and no
 4056  *      read error occurred, or if the op was a write.  B_CACHE is never
 4057  *      set if the buffer is invalid or otherwise uncacheable.
 4058  *
 4059  *      bufdone does not mess with B_INVAL, allowing the I/O routine or the
 4060  *      initiator to leave B_INVAL set to brelse the buffer out of existence
 4061  *      in the biodone routine.
 4062  */
 4063 void
 4064 bufdone(struct buf *bp)
 4065 {
 4066         struct bufobj *dropobj;
 4067         void    (*biodone)(struct buf *);
 4068 
 4069         CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 4070         dropobj = NULL;
 4071 
 4072         KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 4073         BUF_ASSERT_HELD(bp);
 4074 
 4075         runningbufwakeup(bp);
 4076         if (bp->b_iocmd == BIO_WRITE)
 4077                 dropobj = bp->b_bufobj;
 4078         /* call optional completion function if requested */
 4079         if (bp->b_iodone != NULL) {
 4080                 biodone = bp->b_iodone;
 4081                 bp->b_iodone = NULL;
 4082                 (*biodone) (bp);
 4083                 if (dropobj)
 4084                         bufobj_wdrop(dropobj);
 4085                 return;
 4086         }
 4087 
 4088         bufdone_finish(bp);
 4089 
 4090         if (dropobj)
 4091                 bufobj_wdrop(dropobj);
 4092 }
 4093 
 4094 void
 4095 bufdone_finish(struct buf *bp)
 4096 {
 4097         BUF_ASSERT_HELD(bp);
 4098 
 4099         if (!LIST_EMPTY(&bp->b_dep))
 4100                 buf_complete(bp);
 4101 
 4102         if (bp->b_flags & B_VMIO) {
 4103                 /*
 4104                  * Set B_CACHE if the op was a normal read and no error
 4105                  * occurred.  B_CACHE is set for writes in the b*write()
 4106                  * routines.
 4107                  */
 4108                 if (bp->b_iocmd == BIO_READ &&
 4109                     !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 4110                     !(bp->b_ioflags & BIO_ERROR))
 4111                         bp->b_flags |= B_CACHE;
 4112                 vfs_vmio_iodone(bp);
 4113         }
 4114 
 4115         /*
 4116          * For asynchronous completions, release the buffer now. The brelse
 4117          * will do a wakeup there if necessary - so no need to do a wakeup
 4118          * here in the async case. The sync case always needs to do a wakeup.
 4119          */
 4120         if (bp->b_flags & B_ASYNC) {
 4121                 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
 4122                     (bp->b_ioflags & BIO_ERROR))
 4123                         brelse(bp);
 4124                 else
 4125                         bqrelse(bp);
 4126         } else
 4127                 bdone(bp);
 4128 }
 4129 
 4130 /*
 4131  * This routine is called in lieu of iodone in the case of
 4132  * incomplete I/O.  This keeps the busy status for pages
 4133  * consistent.
 4134  */
 4135 void
 4136 vfs_unbusy_pages(struct buf *bp)
 4137 {
 4138         int i;
 4139         vm_object_t obj;
 4140         vm_page_t m;
 4141 
 4142         runningbufwakeup(bp);
 4143         if (!(bp->b_flags & B_VMIO))
 4144                 return;
 4145 
 4146         obj = bp->b_bufobj->bo_object;
 4147         VM_OBJECT_WLOCK(obj);
 4148         for (i = 0; i < bp->b_npages; i++) {
 4149                 m = bp->b_pages[i];
 4150                 if (m == bogus_page) {
 4151                         m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 4152                         if (!m)
 4153                                 panic("vfs_unbusy_pages: page missing\n");
 4154                         bp->b_pages[i] = m;
 4155                         if (buf_mapped(bp)) {
 4156                                 BUF_CHECK_MAPPED(bp);
 4157                                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 4158                                     bp->b_pages, bp->b_npages);
 4159                         } else
 4160                                 BUF_CHECK_UNMAPPED(bp);
 4161                 }
 4162                 vm_page_sunbusy(m);
 4163         }
 4164         vm_object_pip_wakeupn(obj, bp->b_npages);
 4165         VM_OBJECT_WUNLOCK(obj);
 4166 }
 4167 
 4168 /*
 4169  * vfs_page_set_valid:
 4170  *
 4171  *      Set the valid bits in a page based on the supplied offset.   The
 4172  *      range is restricted to the buffer's size.
 4173  *
 4174  *      This routine is typically called after a read completes.
 4175  */
 4176 static void
 4177 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 4178 {
 4179         vm_ooffset_t eoff;
 4180 
 4181         /*
 4182          * Compute the end offset, eoff, such that [off, eoff) does not span a
 4183          * page boundary and eoff is not greater than the end of the buffer.
 4184          * The end of the buffer, in this case, is our file EOF, not the
 4185          * allocation size of the buffer.
 4186          */
 4187         eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
 4188         if (eoff > bp->b_offset + bp->b_bcount)
 4189                 eoff = bp->b_offset + bp->b_bcount;
 4190 
 4191         /*
 4192          * Set valid range.  This is typically the entire buffer and thus the
 4193          * entire page.
 4194          */
 4195         if (eoff > off)
 4196                 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
 4197 }
 4198 
 4199 /*
 4200  * vfs_page_set_validclean:
 4201  *
 4202  *      Set the valid bits and clear the dirty bits in a page based on the
 4203  *      supplied offset.   The range is restricted to the buffer's size.
 4204  */
 4205 static void
 4206 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 4207 {
 4208         vm_ooffset_t soff, eoff;
 4209 
 4210         /*
 4211          * Start and end offsets in buffer.  eoff - soff may not cross a
 4212          * page boundary or cross the end of the buffer.  The end of the
 4213          * buffer, in this case, is our file EOF, not the allocation size
 4214          * of the buffer.
 4215          */
 4216         soff = off;
 4217         eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 4218         if (eoff > bp->b_offset + bp->b_bcount)
 4219                 eoff = bp->b_offset + bp->b_bcount;
 4220 
 4221         /*
 4222          * Set valid range.  This is typically the entire buffer and thus the
 4223          * entire page.
 4224          */
 4225         if (eoff > soff) {
 4226                 vm_page_set_validclean(
 4227                     m,
 4228                    (vm_offset_t) (soff & PAGE_MASK),
 4229                    (vm_offset_t) (eoff - soff)
 4230                 );
 4231         }
 4232 }
 4233 
 4234 /*
 4235  * Ensure that all buffer pages are not exclusive busied.  If any page is
 4236  * exclusive busy, drain it.
 4237  */
 4238 void
 4239 vfs_drain_busy_pages(struct buf *bp)
 4240 {
 4241         vm_page_t m;
 4242         int i, last_busied;
 4243 
 4244         VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
 4245         last_busied = 0;
 4246         for (i = 0; i < bp->b_npages; i++) {
 4247                 m = bp->b_pages[i];
 4248                 if (vm_page_xbusied(m)) {
 4249                         for (; last_busied < i; last_busied++)
 4250                                 vm_page_sbusy(bp->b_pages[last_busied]);
 4251                         while (vm_page_xbusied(m)) {
 4252                                 vm_page_lock(m);
 4253                                 VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
 4254                                 vm_page_busy_sleep(m, "vbpage", true);
 4255                                 VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
 4256                         }
 4257                 }
 4258         }
 4259         for (i = 0; i < last_busied; i++)
 4260                 vm_page_sunbusy(bp->b_pages[i]);
 4261 }
 4262 
 4263 /*
 4264  * This routine is called before a device strategy routine.
 4265  * It is used to tell the VM system that paging I/O is in
 4266  * progress, and treat the pages associated with the buffer
 4267  * almost as being exclusive busy.  Also the object paging_in_progress
 4268  * flag is handled to make sure that the object doesn't become
 4269  * inconsistent.
 4270  *
 4271  * Since I/O has not been initiated yet, certain buffer flags
 4272  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
 4273  * and should be ignored.
 4274  */
 4275 void
 4276 vfs_busy_pages(struct buf *bp, int clear_modify)
 4277 {
 4278         vm_object_t obj;
 4279         vm_ooffset_t foff;
 4280         vm_page_t m;
 4281         int i;
 4282         bool bogus;
 4283 
 4284         if (!(bp->b_flags & B_VMIO))
 4285                 return;
 4286 
 4287         obj = bp->b_bufobj->bo_object;
 4288         foff = bp->b_offset;
 4289         KASSERT(bp->b_offset != NOOFFSET,
 4290             ("vfs_busy_pages: no buffer offset"));
 4291         VM_OBJECT_WLOCK(obj);
 4292         vfs_drain_busy_pages(bp);
 4293         if (bp->b_bufsize != 0)
 4294                 vfs_setdirty_locked_object(bp);
 4295         bogus = false;
 4296         for (i = 0; i < bp->b_npages; i++) {
 4297                 m = bp->b_pages[i];
 4298 
 4299                 if ((bp->b_flags & B_CLUSTER) == 0) {
 4300                         vm_object_pip_add(obj, 1);
 4301                         vm_page_sbusy(m);
 4302                 }
 4303                 /*
 4304                  * When readying a buffer for a read ( i.e
 4305                  * clear_modify == 0 ), it is important to do
 4306                  * bogus_page replacement for valid pages in 
 4307                  * partially instantiated buffers.  Partially 
 4308                  * instantiated buffers can, in turn, occur when
 4309                  * reconstituting a buffer from its VM backing store
 4310                  * base.  We only have to do this if B_CACHE is
 4311                  * clear ( which causes the I/O to occur in the
 4312                  * first place ).  The replacement prevents the read
 4313                  * I/O from overwriting potentially dirty VM-backed
 4314                  * pages.  XXX bogus page replacement is, uh, bogus.
 4315                  * It may not work properly with small-block devices.
 4316                  * We need to find a better way.
 4317                  */
 4318                 if (clear_modify) {
 4319                         pmap_remove_write(m);
 4320                         vfs_page_set_validclean(bp, foff, m);
 4321                 } else if (m->valid == VM_PAGE_BITS_ALL &&
 4322                     (bp->b_flags & B_CACHE) == 0) {
 4323                         bp->b_pages[i] = bogus_page;
 4324                         bogus = true;
 4325                 }
 4326                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 4327         }
 4328         VM_OBJECT_WUNLOCK(obj);
 4329         if (bogus && buf_mapped(bp)) {
 4330                 BUF_CHECK_MAPPED(bp);
 4331                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 4332                     bp->b_pages, bp->b_npages);
 4333         }
 4334 }
 4335 
 4336 /*
 4337  *      vfs_bio_set_valid:
 4338  *
 4339  *      Set the range within the buffer to valid.  The range is
 4340  *      relative to the beginning of the buffer, b_offset.  Note that
 4341  *      b_offset itself may be offset from the beginning of the first
 4342  *      page.
 4343  */
 4344 void   
 4345 vfs_bio_set_valid(struct buf *bp, int base, int size)
 4346 {
 4347         int i, n;
 4348         vm_page_t m;
 4349 
 4350         if (!(bp->b_flags & B_VMIO))
 4351                 return;
 4352 
 4353         /*
 4354          * Fixup base to be relative to beginning of first page.
 4355          * Set initial n to be the maximum number of bytes in the
 4356          * first page that can be validated.
 4357          */
 4358         base += (bp->b_offset & PAGE_MASK);
 4359         n = PAGE_SIZE - (base & PAGE_MASK);
 4360 
 4361         VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
 4362         for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 4363                 m = bp->b_pages[i];
 4364                 if (n > size)
 4365                         n = size;
 4366                 vm_page_set_valid_range(m, base & PAGE_MASK, n);
 4367                 base += n;
 4368                 size -= n;
 4369                 n = PAGE_SIZE;
 4370         }
 4371         VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
 4372 }
 4373 
 4374 /*
 4375  *      vfs_bio_clrbuf:
 4376  *
 4377  *      If the specified buffer is a non-VMIO buffer, clear the entire
 4378  *      buffer.  If the specified buffer is a VMIO buffer, clear and
 4379  *      validate only the previously invalid portions of the buffer.
 4380  *      This routine essentially fakes an I/O, so we need to clear
 4381  *      BIO_ERROR and B_INVAL.
 4382  *
 4383  *      Note that while we only theoretically need to clear through b_bcount,
 4384  *      we go ahead and clear through b_bufsize.
 4385  */
 4386 void
 4387 vfs_bio_clrbuf(struct buf *bp) 
 4388 {
 4389         int i, j, mask, sa, ea, slide;
 4390 
 4391         if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
 4392                 clrbuf(bp);
 4393                 return;
 4394         }
 4395         bp->b_flags &= ~B_INVAL;
 4396         bp->b_ioflags &= ~BIO_ERROR;
 4397         VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
 4398         if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
 4399             (bp->b_offset & PAGE_MASK) == 0) {
 4400                 if (bp->b_pages[0] == bogus_page)
 4401                         goto unlock;
 4402                 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
 4403                 VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
 4404                 if ((bp->b_pages[0]->valid & mask) == mask)
 4405                         goto unlock;
 4406                 if ((bp->b_pages[0]->valid & mask) == 0) {
 4407                         pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
 4408                         bp->b_pages[0]->valid |= mask;
 4409                         goto unlock;
 4410                 }
 4411         }
 4412         sa = bp->b_offset & PAGE_MASK;
 4413         slide = 0;
 4414         for (i = 0; i < bp->b_npages; i++, sa = 0) {
 4415                 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
 4416                 ea = slide & PAGE_MASK;
 4417                 if (ea == 0)
 4418                         ea = PAGE_SIZE;
 4419                 if (bp->b_pages[i] == bogus_page)
 4420                         continue;
 4421                 j = sa / DEV_BSIZE;
 4422                 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
 4423                 VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
 4424                 if ((bp->b_pages[i]->valid & mask) == mask)
 4425                         continue;
 4426                 if ((bp->b_pages[i]->valid & mask) == 0)
 4427                         pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
 4428                 else {
 4429                         for (; sa < ea; sa += DEV_BSIZE, j++) {
 4430                                 if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
 4431                                         pmap_zero_page_area(bp->b_pages[i],
 4432                                             sa, DEV_BSIZE);
 4433                                 }
 4434                         }
 4435                 }
 4436                 bp->b_pages[i]->valid |= mask;
 4437         }
 4438 unlock:
 4439         VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
 4440         bp->b_resid = 0;
 4441 }
 4442 
 4443 void
 4444 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
 4445 {
 4446         vm_page_t m;
 4447         int i, n;
 4448 
 4449         if (buf_mapped(bp)) {
 4450                 BUF_CHECK_MAPPED(bp);
 4451                 bzero(bp->b_data + base, size);
 4452         } else {
 4453                 BUF_CHECK_UNMAPPED(bp);
 4454                 n = PAGE_SIZE - (base & PAGE_MASK);
 4455                 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 4456                         m = bp->b_pages[i];
 4457                         if (n > size)
 4458                                 n = size;
 4459                         pmap_zero_page_area(m, base & PAGE_MASK, n);
 4460                         base += n;
 4461                         size -= n;
 4462                         n = PAGE_SIZE;
 4463                 }
 4464         }
 4465 }
 4466 
 4467 /*
 4468  * Update buffer flags based on I/O request parameters, optionally releasing the
 4469  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
 4470  * where they may be placed on a page queue (VMIO) or freed immediately (direct
 4471  * I/O).  Otherwise the buffer is released to the cache.
 4472  */
 4473 static void
 4474 b_io_dismiss(struct buf *bp, int ioflag, bool release)
 4475 {
 4476 
 4477         KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
 4478             ("buf %p non-VMIO noreuse", bp));
 4479 
 4480         if ((ioflag & IO_DIRECT) != 0)
 4481                 bp->b_flags |= B_DIRECT;
 4482         if ((ioflag & IO_EXT) != 0)
 4483                 bp->b_xflags |= BX_ALTDATA;
 4484         if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
 4485                 bp->b_flags |= B_RELBUF;
 4486                 if ((ioflag & IO_NOREUSE) != 0)
 4487                         bp->b_flags |= B_NOREUSE;
 4488                 if (release)
 4489                         brelse(bp);
 4490         } else if (release)
 4491                 bqrelse(bp);
 4492 }
 4493 
 4494 void
 4495 vfs_bio_brelse(struct buf *bp, int ioflag)
 4496 {
 4497 
 4498         b_io_dismiss(bp, ioflag, true);
 4499 }
 4500 
 4501 void
 4502 vfs_bio_set_flags(struct buf *bp, int ioflag)
 4503 {
 4504 
 4505         b_io_dismiss(bp, ioflag, false);
 4506 }
 4507 
 4508 /*
 4509  * vm_hold_load_pages and vm_hold_free_pages get pages into
 4510  * a buffers address space.  The pages are anonymous and are
 4511  * not associated with a file object.
 4512  */
 4513 static void
 4514 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 4515 {
 4516         vm_offset_t pg;
 4517         vm_page_t p;
 4518         int index;
 4519 
 4520         BUF_CHECK_MAPPED(bp);
 4521 
 4522         to = round_page(to);
 4523         from = round_page(from);
 4524         index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 4525 
 4526         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 4527                 /*
 4528                  * note: must allocate system pages since blocking here
 4529                  * could interfere with paging I/O, no matter which
 4530                  * process we are.
 4531                  */
 4532                 p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
 4533                     VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) |
 4534                     VM_ALLOC_WAITOK);
 4535                 pmap_qenter(pg, &p, 1);
 4536                 bp->b_pages[index] = p;
 4537         }
 4538         bp->b_npages = index;
 4539 }
 4540 
 4541 /* Return pages associated with this buf to the vm system */
 4542 static void
 4543 vm_hold_free_pages(struct buf *bp, int newbsize)
 4544 {
 4545         vm_offset_t from;
 4546         vm_page_t p;
 4547         int index, newnpages;
 4548 
 4549         BUF_CHECK_MAPPED(bp);
 4550 
 4551         from = round_page((vm_offset_t)bp->b_data + newbsize);
 4552         newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 4553         if (bp->b_npages > newnpages)
 4554                 pmap_qremove(from, bp->b_npages - newnpages);
 4555         for (index = newnpages; index < bp->b_npages; index++) {
 4556                 p = bp->b_pages[index];
 4557                 bp->b_pages[index] = NULL;
 4558                 p->wire_count--;
 4559                 vm_page_free(p);
 4560         }
 4561         atomic_subtract_int(&vm_cnt.v_wire_count, bp->b_npages - newnpages);
 4562         bp->b_npages = newnpages;
 4563 }
 4564 
 4565 /*
 4566  * Map an IO request into kernel virtual address space.
 4567  *
 4568  * All requests are (re)mapped into kernel VA space.
 4569  * Notice that we use b_bufsize for the size of the buffer
 4570  * to be mapped.  b_bcount might be modified by the driver.
 4571  *
 4572  * Note that even if the caller determines that the address space should
 4573  * be valid, a race or a smaller-file mapped into a larger space may
 4574  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
 4575  * check the return value.
 4576  *
 4577  * This function only works with pager buffers.
 4578  */
 4579 int
 4580 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
 4581 {
 4582         vm_prot_t prot;
 4583         int pidx;
 4584 
 4585         prot = VM_PROT_READ;
 4586         if (bp->b_iocmd == BIO_READ)
 4587                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 4588         if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 4589             (vm_offset_t)uaddr, len, prot, bp->b_pages,
 4590             btoc(MAXPHYS))) < 0)
 4591                 return (-1);
 4592         bp->b_bufsize = len;
 4593         bp->b_npages = pidx;
 4594         bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
 4595         if (mapbuf || !unmapped_buf_allowed) {
 4596                 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
 4597                 bp->b_data = bp->b_kvabase + bp->b_offset;
 4598         } else
 4599                 bp->b_data = unmapped_buf;
 4600         return(0);
 4601 }
 4602 
 4603 /*
 4604  * Free the io map PTEs associated with this IO operation.
 4605  * We also invalidate the TLB entries and restore the original b_addr.
 4606  *
 4607  * This function only works with pager buffers.
 4608  */
 4609 void
 4610 vunmapbuf(struct buf *bp)
 4611 {
 4612         int npages;
 4613 
 4614         npages = bp->b_npages;
 4615         if (buf_mapped(bp))
 4616                 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
 4617         vm_page_unhold_pages(bp->b_pages, npages);
 4618 
 4619         bp->b_data = unmapped_buf;
 4620 }
 4621 
 4622 void
 4623 bdone(struct buf *bp)
 4624 {
 4625         struct mtx *mtxp;
 4626 
 4627         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4628         mtx_lock(mtxp);
 4629         bp->b_flags |= B_DONE;
 4630         wakeup(bp);
 4631         mtx_unlock(mtxp);
 4632 }
 4633 
 4634 void
 4635 bwait(struct buf *bp, u_char pri, const char *wchan)
 4636 {
 4637         struct mtx *mtxp;
 4638 
 4639         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4640         mtx_lock(mtxp);
 4641         while ((bp->b_flags & B_DONE) == 0)
 4642                 msleep(bp, mtxp, pri, wchan, 0);
 4643         mtx_unlock(mtxp);
 4644 }
 4645 
 4646 int
 4647 bufsync(struct bufobj *bo, int waitfor)
 4648 {
 4649 
 4650         return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
 4651 }
 4652 
 4653 void
 4654 bufstrategy(struct bufobj *bo, struct buf *bp)
 4655 {
 4656         int i = 0;
 4657         struct vnode *vp;
 4658 
 4659         vp = bp->b_vp;
 4660         KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
 4661         KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
 4662             ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
 4663         i = VOP_STRATEGY(vp, bp);
 4664         KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
 4665 }
 4666 
 4667 void
 4668 bufobj_wrefl(struct bufobj *bo)
 4669 {
 4670 
 4671         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 4672         ASSERT_BO_WLOCKED(bo);
 4673         bo->bo_numoutput++;
 4674 }
 4675 
 4676 void
 4677 bufobj_wref(struct bufobj *bo)
 4678 {
 4679 
 4680         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 4681         BO_LOCK(bo);
 4682         bo->bo_numoutput++;
 4683         BO_UNLOCK(bo);
 4684 }
 4685 
 4686 void
 4687 bufobj_wdrop(struct bufobj *bo)
 4688 {
 4689 
 4690         KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
 4691         BO_LOCK(bo);
 4692         KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
 4693         if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
 4694                 bo->bo_flag &= ~BO_WWAIT;
 4695                 wakeup(&bo->bo_numoutput);
 4696         }
 4697         BO_UNLOCK(bo);
 4698 }
 4699 
 4700 int
 4701 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
 4702 {
 4703         int error;
 4704 
 4705         KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
 4706         ASSERT_BO_WLOCKED(bo);
 4707         error = 0;
 4708         while (bo->bo_numoutput) {
 4709                 bo->bo_flag |= BO_WWAIT;
 4710                 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
 4711                     slpflag | (PRIBIO + 1), "bo_wwait", timeo);
 4712                 if (error)
 4713                         break;
 4714         }
 4715         return (error);
 4716 }
 4717 
 4718 void
 4719 bpin(struct buf *bp)
 4720 {
 4721         struct mtx *mtxp;
 4722 
 4723         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4724         mtx_lock(mtxp);
 4725         bp->b_pin_count++;
 4726         mtx_unlock(mtxp);
 4727 }
 4728 
 4729 void
 4730 bunpin(struct buf *bp)
 4731 {
 4732         struct mtx *mtxp;
 4733 
 4734         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4735         mtx_lock(mtxp);
 4736         if (--bp->b_pin_count == 0)
 4737                 wakeup(bp);
 4738         mtx_unlock(mtxp);
 4739 }
 4740 
 4741 void
 4742 bunpin_wait(struct buf *bp)
 4743 {
 4744         struct mtx *mtxp;
 4745 
 4746         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4747         mtx_lock(mtxp);
 4748         while (bp->b_pin_count > 0)
 4749                 msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
 4750         mtx_unlock(mtxp);
 4751 }
 4752 
 4753 /*
 4754  * Set bio_data or bio_ma for struct bio from the struct buf.
 4755  */
 4756 void
 4757 bdata2bio(struct buf *bp, struct bio *bip)
 4758 {
 4759 
 4760         if (!buf_mapped(bp)) {
 4761                 KASSERT(unmapped_buf_allowed, ("unmapped"));
 4762                 bip->bio_ma = bp->b_pages;
 4763                 bip->bio_ma_n = bp->b_npages;
 4764                 bip->bio_data = unmapped_buf;
 4765                 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 4766                 bip->bio_flags |= BIO_UNMAPPED;
 4767                 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
 4768                     PAGE_SIZE == bp->b_npages,
 4769                     ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
 4770                     (long long)bip->bio_length, bip->bio_ma_n));
 4771         } else {
 4772                 bip->bio_data = bp->b_data;
 4773                 bip->bio_ma = NULL;
 4774         }
 4775 }
 4776 
 4777 static int buf_pager_relbuf;
 4778 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
 4779     &buf_pager_relbuf, 0,
 4780     "Make buffer pager release buffers after reading");
 4781 
 4782 /*
 4783  * The buffer pager.  It uses buffer reads to validate pages.
 4784  *
 4785  * In contrast to the generic local pager from vm/vnode_pager.c, this
 4786  * pager correctly and easily handles volumes where the underlying
 4787  * device block size is greater than the machine page size.  The
 4788  * buffer cache transparently extends the requested page run to be
 4789  * aligned at the block boundary, and does the necessary bogus page
 4790  * replacements in the addends to avoid obliterating already valid
 4791  * pages.
 4792  *
 4793  * The only non-trivial issue is that the exclusive busy state for
 4794  * pages, which is assumed by the vm_pager_getpages() interface, is
 4795  * incompatible with the VMIO buffer cache's desire to share-busy the
 4796  * pages.  This function performs a trivial downgrade of the pages'
 4797  * state before reading buffers, and a less trivial upgrade from the
 4798  * shared-busy to excl-busy state after the read.
 4799  */
 4800 int
 4801 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
 4802     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
 4803     vbg_get_blksize_t get_blksize)
 4804 {
 4805         vm_page_t m;
 4806         vm_object_t object;
 4807         struct buf *bp;
 4808         struct mount *mp;
 4809         daddr_t lbn, lbnp;
 4810         vm_ooffset_t la, lb, poff, poffe;
 4811         long bsize;
 4812         int bo_bs, br_flags, error, i, pgsin, pgsin_a, pgsin_b;
 4813         bool redo, lpart;
 4814 
 4815         object = vp->v_object;
 4816         mp = vp->v_mount;
 4817         la = IDX_TO_OFF(ma[count - 1]->pindex);
 4818         if (la >= object->un_pager.vnp.vnp_size)
 4819                 return (VM_PAGER_BAD);
 4820 
 4821         /*
 4822          * Change the meaning of la from where the last requested page starts
 4823          * to where it ends, because that's the end of the requested region
 4824          * and the start of the potential read-ahead region.
 4825          */
 4826         la += PAGE_SIZE;
 4827         lpart = la > object->un_pager.vnp.vnp_size;
 4828         bo_bs = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)));
 4829 
 4830         /*
 4831          * Calculate read-ahead, behind and total pages.
 4832          */
 4833         pgsin = count;
 4834         lb = IDX_TO_OFF(ma[0]->pindex);
 4835         pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
 4836         pgsin += pgsin_b;
 4837         if (rbehind != NULL)
 4838                 *rbehind = pgsin_b;
 4839         pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
 4840         if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
 4841                 pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
 4842                     PAGE_SIZE) - la);
 4843         pgsin += pgsin_a;
 4844         if (rahead != NULL)
 4845                 *rahead = pgsin_a;
 4846         PCPU_INC(cnt.v_vnodein);
 4847         PCPU_ADD(cnt.v_vnodepgsin, pgsin);
 4848 
 4849         br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
 4850             != 0) ? GB_UNMAPPED : 0;
 4851         VM_OBJECT_WLOCK(object);
 4852 again:
 4853         for (i = 0; i < count; i++)
 4854                 vm_page_busy_downgrade(ma[i]);
 4855         VM_OBJECT_WUNLOCK(object);
 4856 
 4857         lbnp = -1;
 4858         for (i = 0; i < count; i++) {
 4859                 m = ma[i];
 4860 
 4861                 /*
 4862                  * Pages are shared busy and the object lock is not
 4863                  * owned, which together allow for the pages'
 4864                  * invalidation.  The racy test for validity avoids
 4865                  * useless creation of the buffer for the most typical
 4866                  * case when invalidation is not used in redo or for
 4867                  * parallel read.  The shared->excl upgrade loop at
 4868                  * the end of the function catches the race in a
 4869                  * reliable way (protected by the object lock).
 4870                  */
 4871                 if (m->valid == VM_PAGE_BITS_ALL)
 4872                         continue;
 4873 
 4874                 poff = IDX_TO_OFF(m->pindex);
 4875                 poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
 4876                 for (; poff < poffe; poff += bsize) {
 4877                         lbn = get_lblkno(vp, poff);
 4878                         if (lbn == lbnp)
 4879                                 goto next_page;
 4880                         lbnp = lbn;
 4881 
 4882                         bsize = get_blksize(vp, lbn);
 4883                         error = bread_gb(vp, lbn, bsize, curthread->td_ucred,
 4884                             br_flags, &bp);
 4885                         if (error != 0)
 4886                                 goto end_pages;
 4887                         if (LIST_EMPTY(&bp->b_dep)) {
 4888                                 /*
 4889                                  * Invalidation clears m->valid, but
 4890                                  * may leave B_CACHE flag if the
 4891                                  * buffer existed at the invalidation
 4892                                  * time.  In this case, recycle the
 4893                                  * buffer to do real read on next
 4894                                  * bread() after redo.
 4895                                  *
 4896                                  * Otherwise B_RELBUF is not strictly
 4897                                  * necessary, enable to reduce buf
 4898                                  * cache pressure.
 4899                                  */
 4900                                 if (buf_pager_relbuf ||
 4901                                     m->valid != VM_PAGE_BITS_ALL)
 4902                                         bp->b_flags |= B_RELBUF;
 4903 
 4904                                 bp->b_flags &= ~B_NOCACHE;
 4905                                 brelse(bp);
 4906                         } else {
 4907                                 bqrelse(bp);
 4908                         }
 4909                 }
 4910                 KASSERT(1 /* racy, enable for debugging */ ||
 4911                     m->valid == VM_PAGE_BITS_ALL || i == count - 1,
 4912                     ("buf %d %p invalid", i, m));
 4913                 if (i == count - 1 && lpart) {
 4914                         VM_OBJECT_WLOCK(object);
 4915                         if (m->valid != 0 &&
 4916                             m->valid != VM_PAGE_BITS_ALL)
 4917                                 vm_page_zero_invalid(m, TRUE);
 4918                         VM_OBJECT_WUNLOCK(object);
 4919                 }
 4920 next_page:;
 4921         }
 4922 end_pages:
 4923 
 4924         VM_OBJECT_WLOCK(object);
 4925         redo = false;
 4926         for (i = 0; i < count; i++) {
 4927                 vm_page_sunbusy(ma[i]);
 4928                 ma[i] = vm_page_grab(object, ma[i]->pindex, VM_ALLOC_NORMAL);
 4929 
 4930                 /*
 4931                  * Since the pages were only sbusy while neither the
 4932                  * buffer nor the object lock was held by us, or
 4933                  * reallocated while vm_page_grab() slept for busy
 4934                  * relinguish, they could have been invalidated.
 4935                  * Recheck the valid bits and re-read as needed.
 4936                  *
 4937                  * Note that the last page is made fully valid in the
 4938                  * read loop, and partial validity for the page at
 4939                  * index count - 1 could mean that the page was
 4940                  * invalidated or removed, so we must restart for
 4941                  * safety as well.
 4942                  */
 4943                 if (ma[i]->valid != VM_PAGE_BITS_ALL)
 4944                         redo = true;
 4945         }
 4946         if (redo && error == 0)
 4947                 goto again;
 4948         VM_OBJECT_WUNLOCK(object);
 4949         return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
 4950 }
 4951 
 4952 #include "opt_ddb.h"
 4953 #ifdef DDB
 4954 #include <ddb/ddb.h>
 4955 
 4956 /* DDB command to show buffer data */
 4957 DB_SHOW_COMMAND(buffer, db_show_buffer)
 4958 {
 4959         /* get args */
 4960         struct buf *bp = (struct buf *)addr;
 4961 
 4962         if (!have_addr) {
 4963                 db_printf("usage: show buffer <addr>\n");
 4964                 return;
 4965         }
 4966 
 4967         db_printf("buf at %p\n", bp);
 4968         db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
 4969             (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
 4970             PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
 4971         db_printf(
 4972             "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 4973             "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
 4974             "b_dep = %p\n",
 4975             bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 4976             bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
 4977             (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
 4978         db_printf("b_kvabase = %p, b_kvasize = %d\n",
 4979             bp->b_kvabase, bp->b_kvasize);
 4980         if (bp->b_npages) {
 4981                 int i;
 4982                 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 4983                 for (i = 0; i < bp->b_npages; i++) {
 4984                         vm_page_t m;
 4985                         m = bp->b_pages[i];
 4986                         db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
 4987                             (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
 4988                         if ((i + 1) < bp->b_npages)
 4989                                 db_printf(",");
 4990                 }
 4991                 db_printf("\n");
 4992         }
 4993         db_printf(" ");
 4994         BUF_LOCKPRINTINFO(bp);
 4995 }
 4996 
 4997 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
 4998 {
 4999         struct buf *bp;
 5000         int i;
 5001 
 5002         for (i = 0; i < nbuf; i++) {
 5003                 bp = &buf[i];
 5004                 if (BUF_ISLOCKED(bp)) {
 5005                         db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 5006                         db_printf("\n");
 5007                         if (db_pager_quit)
 5008                                 break;
 5009                 }
 5010         }
 5011 }
 5012 
 5013 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
 5014 {
 5015         struct vnode *vp;
 5016         struct buf *bp;
 5017 
 5018         if (!have_addr) {
 5019                 db_printf("usage: show vnodebufs <addr>\n");
 5020                 return;
 5021         }
 5022         vp = (struct vnode *)addr;
 5023         db_printf("Clean buffers:\n");
 5024         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
 5025                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 5026                 db_printf("\n");
 5027         }
 5028         db_printf("Dirty buffers:\n");
 5029         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
 5030                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 5031                 db_printf("\n");
 5032         }
 5033 }
 5034 
 5035 DB_COMMAND(countfreebufs, db_coundfreebufs)
 5036 {
 5037         struct buf *bp;
 5038         int i, used = 0, nfree = 0;
 5039 
 5040         if (have_addr) {
 5041                 db_printf("usage: countfreebufs\n");
 5042                 return;
 5043         }
 5044 
 5045         for (i = 0; i < nbuf; i++) {
 5046                 bp = &buf[i];
 5047                 if (bp->b_qindex == QUEUE_EMPTY)
 5048                         nfree++;
 5049                 else
 5050                         used++;
 5051         }
 5052 
 5053         db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
 5054             nfree + used);
 5055         db_printf("numfreebuffers is %d\n", numfreebuffers);
 5056 }
 5057 #endif /* DDB */

Cache object: 9f82f5ab7725026c047e2bf8ed05cb8e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.