FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c
1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2004 Poul-Henning Kamp
5 * Copyright (c) 1994,1997 John S. Dyson
6 * Copyright (c) 2013 The FreeBSD Foundation
7 * All rights reserved.
8 *
9 * Portions of this software were developed by Konstantin Belousov
10 * under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /*
35 * this file contains a new buffer I/O scheme implementing a coherent
36 * VM object and buffer cache scheme. Pains have been taken to make
37 * sure that the performance degradation associated with schemes such
38 * as this is not realized.
39 *
40 * Author: John S. Dyson
41 * Significant help during the development and debugging phases
42 * had been provided by David Greenman, also of the FreeBSD core team.
43 *
44 * see man buf(9) for more info.
45 */
46
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/asan.h>
53 #include <sys/bio.h>
54 #include <sys/bitset.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/buf.h>
58 #include <sys/devicestat.h>
59 #include <sys/eventhandler.h>
60 #include <sys/fail.h>
61 #include <sys/ktr.h>
62 #include <sys/limits.h>
63 #include <sys/lock.h>
64 #include <sys/malloc.h>
65 #include <sys/mount.h>
66 #include <sys/mutex.h>
67 #include <sys/kernel.h>
68 #include <sys/kthread.h>
69 #include <sys/proc.h>
70 #include <sys/racct.h>
71 #include <sys/refcount.h>
72 #include <sys/resourcevar.h>
73 #include <sys/rwlock.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/syscallsubr.h>
77 #include <sys/vmem.h>
78 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 #include <sys/watchdog.h>
81 #include <geom/geom.h>
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/vm_kern.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_map.h>
91 #include <vm/swap_pager.h>
92
93 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
94
95 struct bio_ops bioops; /* I/O operation notification */
96
97 struct buf_ops buf_ops_bio = {
98 .bop_name = "buf_ops_bio",
99 .bop_write = bufwrite,
100 .bop_strategy = bufstrategy,
101 .bop_sync = bufsync,
102 .bop_bdflush = bufbdflush,
103 };
104
105 struct bufqueue {
106 struct mtx_padalign bq_lock;
107 TAILQ_HEAD(, buf) bq_queue;
108 uint8_t bq_index;
109 uint16_t bq_subqueue;
110 int bq_len;
111 } __aligned(CACHE_LINE_SIZE);
112
113 #define BQ_LOCKPTR(bq) (&(bq)->bq_lock)
114 #define BQ_LOCK(bq) mtx_lock(BQ_LOCKPTR((bq)))
115 #define BQ_UNLOCK(bq) mtx_unlock(BQ_LOCKPTR((bq)))
116 #define BQ_ASSERT_LOCKED(bq) mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
117
118 struct bufdomain {
119 struct bufqueue bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
120 struct bufqueue bd_dirtyq;
121 struct bufqueue *bd_cleanq;
122 struct mtx_padalign bd_run_lock;
123 /* Constants */
124 long bd_maxbufspace;
125 long bd_hibufspace;
126 long bd_lobufspace;
127 long bd_bufspacethresh;
128 int bd_hifreebuffers;
129 int bd_lofreebuffers;
130 int bd_hidirtybuffers;
131 int bd_lodirtybuffers;
132 int bd_dirtybufthresh;
133 int bd_lim;
134 /* atomics */
135 int bd_wanted;
136 bool bd_shutdown;
137 int __aligned(CACHE_LINE_SIZE) bd_numdirtybuffers;
138 int __aligned(CACHE_LINE_SIZE) bd_running;
139 long __aligned(CACHE_LINE_SIZE) bd_bufspace;
140 int __aligned(CACHE_LINE_SIZE) bd_freebuffers;
141 } __aligned(CACHE_LINE_SIZE);
142
143 #define BD_LOCKPTR(bd) (&(bd)->bd_cleanq->bq_lock)
144 #define BD_LOCK(bd) mtx_lock(BD_LOCKPTR((bd)))
145 #define BD_UNLOCK(bd) mtx_unlock(BD_LOCKPTR((bd)))
146 #define BD_ASSERT_LOCKED(bd) mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
147 #define BD_RUN_LOCKPTR(bd) (&(bd)->bd_run_lock)
148 #define BD_RUN_LOCK(bd) mtx_lock(BD_RUN_LOCKPTR((bd)))
149 #define BD_RUN_UNLOCK(bd) mtx_unlock(BD_RUN_LOCKPTR((bd)))
150 #define BD_DOMAIN(bd) (bd - bdomain)
151
152 static char *buf; /* buffer header pool */
153 static struct buf *
154 nbufp(unsigned i)
155 {
156 return ((struct buf *)(buf + (sizeof(struct buf) +
157 sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
158 }
159
160 caddr_t __read_mostly unmapped_buf;
161
162 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
163 struct proc *bufdaemonproc;
164
165 static void vm_hold_free_pages(struct buf *bp, int newbsize);
166 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
167 vm_offset_t to);
168 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
169 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
170 vm_page_t m);
171 static void vfs_clean_pages_dirty_buf(struct buf *bp);
172 static void vfs_setdirty_range(struct buf *bp);
173 static void vfs_vmio_invalidate(struct buf *bp);
174 static void vfs_vmio_truncate(struct buf *bp, int npages);
175 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
176 static int vfs_bio_clcheck(struct vnode *vp, int size,
177 daddr_t lblkno, daddr_t blkno);
178 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
179 void (*)(struct buf *));
180 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
181 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
182 static void buf_daemon(void);
183 static __inline void bd_wakeup(void);
184 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
185 static void bufkva_reclaim(vmem_t *, int);
186 static void bufkva_free(struct buf *);
187 static int buf_import(void *, void **, int, int, int);
188 static void buf_release(void *, void **, int);
189 static void maxbcachebuf_adjust(void);
190 static inline struct bufdomain *bufdomain(struct buf *);
191 static void bq_remove(struct bufqueue *bq, struct buf *bp);
192 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
193 static int buf_recycle(struct bufdomain *, bool kva);
194 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
195 const char *lockname);
196 static void bd_init(struct bufdomain *bd);
197 static int bd_flushall(struct bufdomain *bd);
198 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
199 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
200
201 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
202 int vmiodirenable = TRUE;
203 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
204 "Use the VM system for directory writes");
205 long runningbufspace;
206 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
207 "Amount of presently outstanding async buffer io");
208 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
209 NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
210 static counter_u64_t bufkvaspace;
211 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
212 "Kernel virtual memory used for buffers");
213 static long maxbufspace;
214 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
215 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
216 __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
217 "Maximum allowed value of bufspace (including metadata)");
218 static long bufmallocspace;
219 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
220 "Amount of malloced memory for buffers");
221 static long maxbufmallocspace;
222 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
223 0, "Maximum amount of malloced memory for buffers");
224 static long lobufspace;
225 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
226 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
227 __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
228 "Minimum amount of buffers we want to have");
229 long hibufspace;
230 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
231 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
232 __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
233 "Maximum allowed value of bufspace (excluding metadata)");
234 long bufspacethresh;
235 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
236 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
237 __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
238 "Bufspace consumed before waking the daemon to free some");
239 static counter_u64_t buffreekvacnt;
240 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
241 "Number of times we have freed the KVA space from some buffer");
242 static counter_u64_t bufdefragcnt;
243 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
244 "Number of times we have had to repeat buffer allocation to defragment");
245 static long lorunningspace;
246 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
247 CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
248 "Minimum preferred space used for in-progress I/O");
249 static long hirunningspace;
250 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
251 CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
252 "Maximum amount of space to use for in-progress I/O");
253 int dirtybufferflushes;
254 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
255 0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
256 int bdwriteskip;
257 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
258 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
259 int altbufferflushes;
260 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
261 &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
262 static int recursiveflushes;
263 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
264 &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
265 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
266 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
267 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
268 "Number of buffers that are dirty (has unwritten changes) at the moment");
269 static int lodirtybuffers;
270 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
271 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
272 __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
273 "How many buffers we want to have free before bufdaemon can sleep");
274 static int hidirtybuffers;
275 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
276 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
277 __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
278 "When the number of dirty buffers is considered severe");
279 int dirtybufthresh;
280 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
281 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
282 __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
283 "Number of bdwrite to bawrite conversions to clear dirty buffers");
284 static int numfreebuffers;
285 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
286 "Number of free buffers");
287 static int lofreebuffers;
288 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
289 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
290 __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
291 "Target number of free buffers");
292 static int hifreebuffers;
293 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
294 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
295 __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
296 "Threshold for clean buffer recycling");
297 static counter_u64_t getnewbufcalls;
298 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
299 &getnewbufcalls, "Number of calls to getnewbuf");
300 static counter_u64_t getnewbufrestarts;
301 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
302 &getnewbufrestarts,
303 "Number of times getnewbuf has had to restart a buffer acquisition");
304 static counter_u64_t mappingrestarts;
305 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
306 &mappingrestarts,
307 "Number of times getblk has had to restart a buffer mapping for "
308 "unmapped buffer");
309 static counter_u64_t numbufallocfails;
310 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
311 &numbufallocfails, "Number of times buffer allocations failed");
312 static int flushbufqtarget = 100;
313 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
314 "Amount of work to do in flushbufqueues when helping bufdaemon");
315 static counter_u64_t notbufdflushes;
316 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, ¬bufdflushes,
317 "Number of dirty buffer flushes done by the bufdaemon helpers");
318 static long barrierwrites;
319 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
320 &barrierwrites, 0, "Number of barrier writes");
321 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
322 &unmapped_buf_allowed, 0,
323 "Permit the use of the unmapped i/o");
324 int maxbcachebuf = MAXBCACHEBUF;
325 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
326 "Maximum size of a buffer cache block");
327
328 /*
329 * This lock synchronizes access to bd_request.
330 */
331 static struct mtx_padalign __exclusive_cache_line bdlock;
332
333 /*
334 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
335 * waitrunningbufspace().
336 */
337 static struct mtx_padalign __exclusive_cache_line rbreqlock;
338
339 /*
340 * Lock that protects bdirtywait.
341 */
342 static struct mtx_padalign __exclusive_cache_line bdirtylock;
343
344 /*
345 * bufdaemon shutdown request and sleep channel.
346 */
347 static bool bd_shutdown;
348
349 /*
350 * Wakeup point for bufdaemon, as well as indicator of whether it is already
351 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it
352 * is idling.
353 */
354 static int bd_request;
355
356 /*
357 * Request for the buf daemon to write more buffers than is indicated by
358 * lodirtybuf. This may be necessary to push out excess dependencies or
359 * defragment the address space where a simple count of the number of dirty
360 * buffers is insufficient to characterize the demand for flushing them.
361 */
362 static int bd_speedupreq;
363
364 /*
365 * Synchronization (sleep/wakeup) variable for active buffer space requests.
366 * Set when wait starts, cleared prior to wakeup().
367 * Used in runningbufwakeup() and waitrunningbufspace().
368 */
369 static int runningbufreq;
370
371 /*
372 * Synchronization for bwillwrite() waiters.
373 */
374 static int bdirtywait;
375
376 /*
377 * Definitions for the buffer free lists.
378 */
379 #define QUEUE_NONE 0 /* on no queue */
380 #define QUEUE_EMPTY 1 /* empty buffer headers */
381 #define QUEUE_DIRTY 2 /* B_DELWRI buffers */
382 #define QUEUE_CLEAN 3 /* non-B_DELWRI buffers */
383 #define QUEUE_SENTINEL 4 /* not an queue index, but mark for sentinel */
384
385 /* Maximum number of buffer domains. */
386 #define BUF_DOMAINS 8
387
388 struct bufdomainset bdlodirty; /* Domains > lodirty */
389 struct bufdomainset bdhidirty; /* Domains > hidirty */
390
391 /* Configured number of clean queues. */
392 static int __read_mostly buf_domains;
393
394 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
395 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
396 struct bufqueue __exclusive_cache_line bqempty;
397
398 /*
399 * per-cpu empty buffer cache.
400 */
401 uma_zone_t buf_zone;
402
403 static int
404 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
405 {
406 long value;
407 int error;
408
409 value = *(long *)arg1;
410 error = sysctl_handle_long(oidp, &value, 0, req);
411 if (error != 0 || req->newptr == NULL)
412 return (error);
413 mtx_lock(&rbreqlock);
414 if (arg1 == &hirunningspace) {
415 if (value < lorunningspace)
416 error = EINVAL;
417 else
418 hirunningspace = value;
419 } else {
420 KASSERT(arg1 == &lorunningspace,
421 ("%s: unknown arg1", __func__));
422 if (value > hirunningspace)
423 error = EINVAL;
424 else
425 lorunningspace = value;
426 }
427 mtx_unlock(&rbreqlock);
428 return (error);
429 }
430
431 static int
432 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
433 {
434 int error;
435 int value;
436 int i;
437
438 value = *(int *)arg1;
439 error = sysctl_handle_int(oidp, &value, 0, req);
440 if (error != 0 || req->newptr == NULL)
441 return (error);
442 *(int *)arg1 = value;
443 for (i = 0; i < buf_domains; i++)
444 *(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
445 value / buf_domains;
446
447 return (error);
448 }
449
450 static int
451 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
452 {
453 long value;
454 int error;
455 int i;
456
457 value = *(long *)arg1;
458 error = sysctl_handle_long(oidp, &value, 0, req);
459 if (error != 0 || req->newptr == NULL)
460 return (error);
461 *(long *)arg1 = value;
462 for (i = 0; i < buf_domains; i++)
463 *(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
464 value / buf_domains;
465
466 return (error);
467 }
468
469 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
470 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
471 static int
472 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
473 {
474 long lvalue;
475 int ivalue;
476 int i;
477
478 lvalue = 0;
479 for (i = 0; i < buf_domains; i++)
480 lvalue += bdomain[i].bd_bufspace;
481 if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
482 return (sysctl_handle_long(oidp, &lvalue, 0, req));
483 if (lvalue > INT_MAX)
484 /* On overflow, still write out a long to trigger ENOMEM. */
485 return (sysctl_handle_long(oidp, &lvalue, 0, req));
486 ivalue = lvalue;
487 return (sysctl_handle_int(oidp, &ivalue, 0, req));
488 }
489 #else
490 static int
491 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
492 {
493 long lvalue;
494 int i;
495
496 lvalue = 0;
497 for (i = 0; i < buf_domains; i++)
498 lvalue += bdomain[i].bd_bufspace;
499 return (sysctl_handle_long(oidp, &lvalue, 0, req));
500 }
501 #endif
502
503 static int
504 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
505 {
506 int value;
507 int i;
508
509 value = 0;
510 for (i = 0; i < buf_domains; i++)
511 value += bdomain[i].bd_numdirtybuffers;
512 return (sysctl_handle_int(oidp, &value, 0, req));
513 }
514
515 /*
516 * bdirtywakeup:
517 *
518 * Wakeup any bwillwrite() waiters.
519 */
520 static void
521 bdirtywakeup(void)
522 {
523 mtx_lock(&bdirtylock);
524 if (bdirtywait) {
525 bdirtywait = 0;
526 wakeup(&bdirtywait);
527 }
528 mtx_unlock(&bdirtylock);
529 }
530
531 /*
532 * bd_clear:
533 *
534 * Clear a domain from the appropriate bitsets when dirtybuffers
535 * is decremented.
536 */
537 static void
538 bd_clear(struct bufdomain *bd)
539 {
540
541 mtx_lock(&bdirtylock);
542 if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
543 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
544 if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
545 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
546 mtx_unlock(&bdirtylock);
547 }
548
549 /*
550 * bd_set:
551 *
552 * Set a domain in the appropriate bitsets when dirtybuffers
553 * is incremented.
554 */
555 static void
556 bd_set(struct bufdomain *bd)
557 {
558
559 mtx_lock(&bdirtylock);
560 if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
561 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
562 if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
563 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
564 mtx_unlock(&bdirtylock);
565 }
566
567 /*
568 * bdirtysub:
569 *
570 * Decrement the numdirtybuffers count by one and wakeup any
571 * threads blocked in bwillwrite().
572 */
573 static void
574 bdirtysub(struct buf *bp)
575 {
576 struct bufdomain *bd;
577 int num;
578
579 bd = bufdomain(bp);
580 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
581 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
582 bdirtywakeup();
583 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
584 bd_clear(bd);
585 }
586
587 /*
588 * bdirtyadd:
589 *
590 * Increment the numdirtybuffers count by one and wakeup the buf
591 * daemon if needed.
592 */
593 static void
594 bdirtyadd(struct buf *bp)
595 {
596 struct bufdomain *bd;
597 int num;
598
599 /*
600 * Only do the wakeup once as we cross the boundary. The
601 * buf daemon will keep running until the condition clears.
602 */
603 bd = bufdomain(bp);
604 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
605 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
606 bd_wakeup();
607 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
608 bd_set(bd);
609 }
610
611 /*
612 * bufspace_daemon_wakeup:
613 *
614 * Wakeup the daemons responsible for freeing clean bufs.
615 */
616 static void
617 bufspace_daemon_wakeup(struct bufdomain *bd)
618 {
619
620 /*
621 * avoid the lock if the daemon is running.
622 */
623 if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
624 BD_RUN_LOCK(bd);
625 atomic_store_int(&bd->bd_running, 1);
626 wakeup(&bd->bd_running);
627 BD_RUN_UNLOCK(bd);
628 }
629 }
630
631 /*
632 * bufspace_adjust:
633 *
634 * Adjust the reported bufspace for a KVA managed buffer, possibly
635 * waking any waiters.
636 */
637 static void
638 bufspace_adjust(struct buf *bp, int bufsize)
639 {
640 struct bufdomain *bd;
641 long space;
642 int diff;
643
644 KASSERT((bp->b_flags & B_MALLOC) == 0,
645 ("bufspace_adjust: malloc buf %p", bp));
646 bd = bufdomain(bp);
647 diff = bufsize - bp->b_bufsize;
648 if (diff < 0) {
649 atomic_subtract_long(&bd->bd_bufspace, -diff);
650 } else if (diff > 0) {
651 space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
652 /* Wake up the daemon on the transition. */
653 if (space < bd->bd_bufspacethresh &&
654 space + diff >= bd->bd_bufspacethresh)
655 bufspace_daemon_wakeup(bd);
656 }
657 bp->b_bufsize = bufsize;
658 }
659
660 /*
661 * bufspace_reserve:
662 *
663 * Reserve bufspace before calling allocbuf(). metadata has a
664 * different space limit than data.
665 */
666 static int
667 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
668 {
669 long limit, new;
670 long space;
671
672 if (metadata)
673 limit = bd->bd_maxbufspace;
674 else
675 limit = bd->bd_hibufspace;
676 space = atomic_fetchadd_long(&bd->bd_bufspace, size);
677 new = space + size;
678 if (new > limit) {
679 atomic_subtract_long(&bd->bd_bufspace, size);
680 return (ENOSPC);
681 }
682
683 /* Wake up the daemon on the transition. */
684 if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
685 bufspace_daemon_wakeup(bd);
686
687 return (0);
688 }
689
690 /*
691 * bufspace_release:
692 *
693 * Release reserved bufspace after bufspace_adjust() has consumed it.
694 */
695 static void
696 bufspace_release(struct bufdomain *bd, int size)
697 {
698
699 atomic_subtract_long(&bd->bd_bufspace, size);
700 }
701
702 /*
703 * bufspace_wait:
704 *
705 * Wait for bufspace, acting as the buf daemon if a locked vnode is
706 * supplied. bd_wanted must be set prior to polling for space. The
707 * operation must be re-tried on return.
708 */
709 static void
710 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
711 int slpflag, int slptimeo)
712 {
713 struct thread *td;
714 int error, fl, norunbuf;
715
716 if ((gbflags & GB_NOWAIT_BD) != 0)
717 return;
718
719 td = curthread;
720 BD_LOCK(bd);
721 while (bd->bd_wanted) {
722 if (vp != NULL && vp->v_type != VCHR &&
723 (td->td_pflags & TDP_BUFNEED) == 0) {
724 BD_UNLOCK(bd);
725 /*
726 * getblk() is called with a vnode locked, and
727 * some majority of the dirty buffers may as
728 * well belong to the vnode. Flushing the
729 * buffers there would make a progress that
730 * cannot be achieved by the buf_daemon, that
731 * cannot lock the vnode.
732 */
733 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
734 (td->td_pflags & TDP_NORUNNINGBUF);
735
736 /*
737 * Play bufdaemon. The getnewbuf() function
738 * may be called while the thread owns lock
739 * for another dirty buffer for the same
740 * vnode, which makes it impossible to use
741 * VOP_FSYNC() there, due to the buffer lock
742 * recursion.
743 */
744 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
745 fl = buf_flush(vp, bd, flushbufqtarget);
746 td->td_pflags &= norunbuf;
747 BD_LOCK(bd);
748 if (fl != 0)
749 continue;
750 if (bd->bd_wanted == 0)
751 break;
752 }
753 error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
754 (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
755 if (error != 0)
756 break;
757 }
758 BD_UNLOCK(bd);
759 }
760
761 static void
762 bufspace_daemon_shutdown(void *arg, int howto __unused)
763 {
764 struct bufdomain *bd = arg;
765 int error;
766
767 BD_RUN_LOCK(bd);
768 bd->bd_shutdown = true;
769 wakeup(&bd->bd_running);
770 error = msleep(&bd->bd_shutdown, BD_RUN_LOCKPTR(bd), 0,
771 "bufspace_shutdown", 60 * hz);
772 BD_RUN_UNLOCK(bd);
773 if (error != 0)
774 printf("bufspacedaemon wait error: %d\n", error);
775 }
776
777 /*
778 * bufspace_daemon:
779 *
780 * buffer space management daemon. Tries to maintain some marginal
781 * amount of free buffer space so that requesting processes neither
782 * block nor work to reclaim buffers.
783 */
784 static void
785 bufspace_daemon(void *arg)
786 {
787 struct bufdomain *bd = arg;
788
789 EVENTHANDLER_REGISTER(shutdown_pre_sync, bufspace_daemon_shutdown, bd,
790 SHUTDOWN_PRI_LAST + 100);
791
792 BD_RUN_LOCK(bd);
793 while (!bd->bd_shutdown) {
794 BD_RUN_UNLOCK(bd);
795
796 /*
797 * Free buffers from the clean queue until we meet our
798 * targets.
799 *
800 * Theory of operation: The buffer cache is most efficient
801 * when some free buffer headers and space are always
802 * available to getnewbuf(). This daemon attempts to prevent
803 * the excessive blocking and synchronization associated
804 * with shortfall. It goes through three phases according
805 * demand:
806 *
807 * 1) The daemon wakes up voluntarily once per-second
808 * during idle periods when the counters are below
809 * the wakeup thresholds (bufspacethresh, lofreebuffers).
810 *
811 * 2) The daemon wakes up as we cross the thresholds
812 * ahead of any potential blocking. This may bounce
813 * slightly according to the rate of consumption and
814 * release.
815 *
816 * 3) The daemon and consumers are starved for working
817 * clean buffers. This is the 'bufspace' sleep below
818 * which will inefficiently trade bufs with bqrelse
819 * until we return to condition 2.
820 */
821 while (bd->bd_bufspace > bd->bd_lobufspace ||
822 bd->bd_freebuffers < bd->bd_hifreebuffers) {
823 if (buf_recycle(bd, false) != 0) {
824 if (bd_flushall(bd))
825 continue;
826 /*
827 * Speedup dirty if we've run out of clean
828 * buffers. This is possible in particular
829 * because softdep may held many bufs locked
830 * pending writes to other bufs which are
831 * marked for delayed write, exhausting
832 * clean space until they are written.
833 */
834 bd_speedup();
835 BD_LOCK(bd);
836 if (bd->bd_wanted) {
837 msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
838 PRIBIO|PDROP, "bufspace", hz/10);
839 } else
840 BD_UNLOCK(bd);
841 }
842 maybe_yield();
843 }
844
845 /*
846 * Re-check our limits and sleep. bd_running must be
847 * cleared prior to checking the limits to avoid missed
848 * wakeups. The waker will adjust one of bufspace or
849 * freebuffers prior to checking bd_running.
850 */
851 BD_RUN_LOCK(bd);
852 if (bd->bd_shutdown)
853 break;
854 atomic_store_int(&bd->bd_running, 0);
855 if (bd->bd_bufspace < bd->bd_bufspacethresh &&
856 bd->bd_freebuffers > bd->bd_lofreebuffers) {
857 msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd),
858 PRIBIO, "-", hz);
859 } else {
860 /* Avoid spurious wakeups while running. */
861 atomic_store_int(&bd->bd_running, 1);
862 }
863 }
864 wakeup(&bd->bd_shutdown);
865 BD_RUN_UNLOCK(bd);
866 kthread_exit();
867 }
868
869 /*
870 * bufmallocadjust:
871 *
872 * Adjust the reported bufspace for a malloc managed buffer, possibly
873 * waking any waiters.
874 */
875 static void
876 bufmallocadjust(struct buf *bp, int bufsize)
877 {
878 int diff;
879
880 KASSERT((bp->b_flags & B_MALLOC) != 0,
881 ("bufmallocadjust: non-malloc buf %p", bp));
882 diff = bufsize - bp->b_bufsize;
883 if (diff < 0)
884 atomic_subtract_long(&bufmallocspace, -diff);
885 else
886 atomic_add_long(&bufmallocspace, diff);
887 bp->b_bufsize = bufsize;
888 }
889
890 /*
891 * runningwakeup:
892 *
893 * Wake up processes that are waiting on asynchronous writes to fall
894 * below lorunningspace.
895 */
896 static void
897 runningwakeup(void)
898 {
899
900 mtx_lock(&rbreqlock);
901 if (runningbufreq) {
902 runningbufreq = 0;
903 wakeup(&runningbufreq);
904 }
905 mtx_unlock(&rbreqlock);
906 }
907
908 /*
909 * runningbufwakeup:
910 *
911 * Decrement the outstanding write count according.
912 */
913 void
914 runningbufwakeup(struct buf *bp)
915 {
916 long space, bspace;
917
918 bspace = bp->b_runningbufspace;
919 if (bspace == 0)
920 return;
921 space = atomic_fetchadd_long(&runningbufspace, -bspace);
922 KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
923 space, bspace));
924 bp->b_runningbufspace = 0;
925 /*
926 * Only acquire the lock and wakeup on the transition from exceeding
927 * the threshold to falling below it.
928 */
929 if (space < lorunningspace)
930 return;
931 if (space - bspace > lorunningspace)
932 return;
933 runningwakeup();
934 }
935
936 /*
937 * waitrunningbufspace()
938 *
939 * runningbufspace is a measure of the amount of I/O currently
940 * running. This routine is used in async-write situations to
941 * prevent creating huge backups of pending writes to a device.
942 * Only asynchronous writes are governed by this function.
943 *
944 * This does NOT turn an async write into a sync write. It waits
945 * for earlier writes to complete and generally returns before the
946 * caller's write has reached the device.
947 */
948 void
949 waitrunningbufspace(void)
950 {
951
952 mtx_lock(&rbreqlock);
953 while (runningbufspace > hirunningspace) {
954 runningbufreq = 1;
955 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
956 }
957 mtx_unlock(&rbreqlock);
958 }
959
960 /*
961 * vfs_buf_test_cache:
962 *
963 * Called when a buffer is extended. This function clears the B_CACHE
964 * bit if the newly extended portion of the buffer does not contain
965 * valid data.
966 */
967 static __inline void
968 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
969 vm_offset_t size, vm_page_t m)
970 {
971
972 /*
973 * This function and its results are protected by higher level
974 * synchronization requiring vnode and buf locks to page in and
975 * validate pages.
976 */
977 if (bp->b_flags & B_CACHE) {
978 int base = (foff + off) & PAGE_MASK;
979 if (vm_page_is_valid(m, base, size) == 0)
980 bp->b_flags &= ~B_CACHE;
981 }
982 }
983
984 /* Wake up the buffer daemon if necessary */
985 static void
986 bd_wakeup(void)
987 {
988
989 mtx_lock(&bdlock);
990 if (bd_request == 0) {
991 bd_request = 1;
992 wakeup(&bd_request);
993 }
994 mtx_unlock(&bdlock);
995 }
996
997 /*
998 * Adjust the maxbcachbuf tunable.
999 */
1000 static void
1001 maxbcachebuf_adjust(void)
1002 {
1003 int i;
1004
1005 /*
1006 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
1007 */
1008 i = 2;
1009 while (i * 2 <= maxbcachebuf)
1010 i *= 2;
1011 maxbcachebuf = i;
1012 if (maxbcachebuf < MAXBSIZE)
1013 maxbcachebuf = MAXBSIZE;
1014 if (maxbcachebuf > maxphys)
1015 maxbcachebuf = maxphys;
1016 if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
1017 printf("maxbcachebuf=%d\n", maxbcachebuf);
1018 }
1019
1020 /*
1021 * bd_speedup - speedup the buffer cache flushing code
1022 */
1023 void
1024 bd_speedup(void)
1025 {
1026 int needwake;
1027
1028 mtx_lock(&bdlock);
1029 needwake = 0;
1030 if (bd_speedupreq == 0 || bd_request == 0)
1031 needwake = 1;
1032 bd_speedupreq = 1;
1033 bd_request = 1;
1034 if (needwake)
1035 wakeup(&bd_request);
1036 mtx_unlock(&bdlock);
1037 }
1038
1039 #ifdef __i386__
1040 #define TRANSIENT_DENOM 5
1041 #else
1042 #define TRANSIENT_DENOM 10
1043 #endif
1044
1045 /*
1046 * Calculating buffer cache scaling values and reserve space for buffer
1047 * headers. This is called during low level kernel initialization and
1048 * may be called more then once. We CANNOT write to the memory area
1049 * being reserved at this time.
1050 */
1051 caddr_t
1052 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1053 {
1054 int tuned_nbuf;
1055 long maxbuf, maxbuf_sz, buf_sz, biotmap_sz;
1056
1057 #ifdef KASAN
1058 /*
1059 * With KASAN enabled, the kernel map is shadowed. Account for this
1060 * when sizing maps based on the amount of physical memory available.
1061 */
1062 physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
1063 (KASAN_SHADOW_SCALE + 1);
1064 #endif
1065
1066 /*
1067 * physmem_est is in pages. Convert it to kilobytes (assumes
1068 * PAGE_SIZE is >= 1K)
1069 */
1070 physmem_est = physmem_est * (PAGE_SIZE / 1024);
1071
1072 maxbcachebuf_adjust();
1073 /*
1074 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1075 * For the first 64MB of ram nominally allocate sufficient buffers to
1076 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
1077 * buffers to cover 1/10 of our ram over 64MB. When auto-sizing
1078 * the buffer cache we limit the eventual kva reservation to
1079 * maxbcache bytes.
1080 *
1081 * factor represents the 1/4 x ram conversion.
1082 */
1083 if (nbuf == 0) {
1084 int factor = 4 * BKVASIZE / 1024;
1085
1086 nbuf = 50;
1087 if (physmem_est > 4096)
1088 nbuf += min((physmem_est - 4096) / factor,
1089 65536 / factor);
1090 if (physmem_est > 65536)
1091 nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1092 32 * 1024 * 1024 / (factor * 5));
1093
1094 if (maxbcache && nbuf > maxbcache / BKVASIZE)
1095 nbuf = maxbcache / BKVASIZE;
1096 tuned_nbuf = 1;
1097 } else
1098 tuned_nbuf = 0;
1099
1100 /* XXX Avoid unsigned long overflows later on with maxbufspace. */
1101 maxbuf = (LONG_MAX / 3) / BKVASIZE;
1102 if (nbuf > maxbuf) {
1103 if (!tuned_nbuf)
1104 printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1105 maxbuf);
1106 nbuf = maxbuf;
1107 }
1108
1109 /*
1110 * Ideal allocation size for the transient bio submap is 10%
1111 * of the maximal space buffer map. This roughly corresponds
1112 * to the amount of the buffer mapped for typical UFS load.
1113 *
1114 * Clip the buffer map to reserve space for the transient
1115 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1116 * maximum buffer map extent on the platform.
1117 *
1118 * The fall-back to the maxbuf in case of maxbcache unset,
1119 * allows to not trim the buffer KVA for the architectures
1120 * with ample KVA space.
1121 */
1122 if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1123 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1124 buf_sz = (long)nbuf * BKVASIZE;
1125 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1126 (TRANSIENT_DENOM - 1)) {
1127 /*
1128 * There is more KVA than memory. Do not
1129 * adjust buffer map size, and assign the rest
1130 * of maxbuf to transient map.
1131 */
1132 biotmap_sz = maxbuf_sz - buf_sz;
1133 } else {
1134 /*
1135 * Buffer map spans all KVA we could afford on
1136 * this platform. Give 10% (20% on i386) of
1137 * the buffer map to the transient bio map.
1138 */
1139 biotmap_sz = buf_sz / TRANSIENT_DENOM;
1140 buf_sz -= biotmap_sz;
1141 }
1142 if (biotmap_sz / INT_MAX > maxphys)
1143 bio_transient_maxcnt = INT_MAX;
1144 else
1145 bio_transient_maxcnt = biotmap_sz / maxphys;
1146 /*
1147 * Artificially limit to 1024 simultaneous in-flight I/Os
1148 * using the transient mapping.
1149 */
1150 if (bio_transient_maxcnt > 1024)
1151 bio_transient_maxcnt = 1024;
1152 if (tuned_nbuf)
1153 nbuf = buf_sz / BKVASIZE;
1154 }
1155
1156 if (nswbuf == 0) {
1157 nswbuf = min(nbuf / 4, 256);
1158 if (nswbuf < NSWBUF_MIN)
1159 nswbuf = NSWBUF_MIN;
1160 }
1161
1162 /*
1163 * Reserve space for the buffer cache buffers
1164 */
1165 buf = (char *)v;
1166 v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
1167 atop(maxbcachebuf)) * nbuf;
1168
1169 return (v);
1170 }
1171
1172 /*
1173 * Single global constant for BUF_WMESG, to avoid getting multiple
1174 * references.
1175 */
1176 static const char buf_wmesg[] = "bufwait";
1177
1178 /* Initialize the buffer subsystem. Called before use of any buffers. */
1179 void
1180 bufinit(void)
1181 {
1182 struct buf *bp;
1183 int i;
1184
1185 KASSERT(maxbcachebuf >= MAXBSIZE,
1186 ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1187 MAXBSIZE));
1188 bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1189 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1190 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1191 mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1192
1193 unmapped_buf = (caddr_t)kva_alloc(maxphys);
1194
1195 /* finally, initialize each buffer header and stick on empty q */
1196 for (i = 0; i < nbuf; i++) {
1197 bp = nbufp(i);
1198 bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
1199 bp->b_flags = B_INVAL;
1200 bp->b_rcred = NOCRED;
1201 bp->b_wcred = NOCRED;
1202 bp->b_qindex = QUEUE_NONE;
1203 bp->b_domain = -1;
1204 bp->b_subqueue = mp_maxid + 1;
1205 bp->b_xflags = 0;
1206 bp->b_data = bp->b_kvabase = unmapped_buf;
1207 LIST_INIT(&bp->b_dep);
1208 BUF_LOCKINIT(bp, buf_wmesg);
1209 bq_insert(&bqempty, bp, false);
1210 }
1211
1212 /*
1213 * maxbufspace is the absolute maximum amount of buffer space we are
1214 * allowed to reserve in KVM and in real terms. The absolute maximum
1215 * is nominally used by metadata. hibufspace is the nominal maximum
1216 * used by most other requests. The differential is required to
1217 * ensure that metadata deadlocks don't occur.
1218 *
1219 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
1220 * this may result in KVM fragmentation which is not handled optimally
1221 * by the system. XXX This is less true with vmem. We could use
1222 * PAGE_SIZE.
1223 */
1224 maxbufspace = (long)nbuf * BKVASIZE;
1225 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1226 lobufspace = (hibufspace / 20) * 19; /* 95% */
1227 bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1228
1229 /*
1230 * Note: The 16 MiB upper limit for hirunningspace was chosen
1231 * arbitrarily and may need further tuning. It corresponds to
1232 * 128 outstanding write IO requests (if IO size is 128 KiB),
1233 * which fits with many RAID controllers' tagged queuing limits.
1234 * The lower 1 MiB limit is the historical upper limit for
1235 * hirunningspace.
1236 */
1237 hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1238 16 * 1024 * 1024), 1024 * 1024);
1239 lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1240
1241 /*
1242 * Limit the amount of malloc memory since it is wired permanently into
1243 * the kernel space. Even though this is accounted for in the buffer
1244 * allocation, we don't want the malloced region to grow uncontrolled.
1245 * The malloc scheme improves memory utilization significantly on
1246 * average (small) directories.
1247 */
1248 maxbufmallocspace = hibufspace / 20;
1249
1250 /*
1251 * Reduce the chance of a deadlock occurring by limiting the number
1252 * of delayed-write dirty buffers we allow to stack up.
1253 */
1254 hidirtybuffers = nbuf / 4 + 20;
1255 dirtybufthresh = hidirtybuffers * 9 / 10;
1256 /*
1257 * To support extreme low-memory systems, make sure hidirtybuffers
1258 * cannot eat up all available buffer space. This occurs when our
1259 * minimum cannot be met. We try to size hidirtybuffers to 3/4 our
1260 * buffer space assuming BKVASIZE'd buffers.
1261 */
1262 while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1263 hidirtybuffers >>= 1;
1264 }
1265 lodirtybuffers = hidirtybuffers / 2;
1266
1267 /*
1268 * lofreebuffers should be sufficient to avoid stalling waiting on
1269 * buf headers under heavy utilization. The bufs in per-cpu caches
1270 * are counted as free but will be unavailable to threads executing
1271 * on other cpus.
1272 *
1273 * hifreebuffers is the free target for the bufspace daemon. This
1274 * should be set appropriately to limit work per-iteration.
1275 */
1276 lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1277 hifreebuffers = (3 * lofreebuffers) / 2;
1278 numfreebuffers = nbuf;
1279
1280 /* Setup the kva and free list allocators. */
1281 vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1282 buf_zone = uma_zcache_create("buf free cache",
1283 sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
1284 NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1285
1286 /*
1287 * Size the clean queue according to the amount of buffer space.
1288 * One queue per-256mb up to the max. More queues gives better
1289 * concurrency but less accurate LRU.
1290 */
1291 buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1292 for (i = 0 ; i < buf_domains; i++) {
1293 struct bufdomain *bd;
1294
1295 bd = &bdomain[i];
1296 bd_init(bd);
1297 bd->bd_freebuffers = nbuf / buf_domains;
1298 bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1299 bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1300 bd->bd_bufspace = 0;
1301 bd->bd_maxbufspace = maxbufspace / buf_domains;
1302 bd->bd_hibufspace = hibufspace / buf_domains;
1303 bd->bd_lobufspace = lobufspace / buf_domains;
1304 bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1305 bd->bd_numdirtybuffers = 0;
1306 bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1307 bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1308 bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1309 /* Don't allow more than 2% of bufs in the per-cpu caches. */
1310 bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1311 }
1312 getnewbufcalls = counter_u64_alloc(M_WAITOK);
1313 getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1314 mappingrestarts = counter_u64_alloc(M_WAITOK);
1315 numbufallocfails = counter_u64_alloc(M_WAITOK);
1316 notbufdflushes = counter_u64_alloc(M_WAITOK);
1317 buffreekvacnt = counter_u64_alloc(M_WAITOK);
1318 bufdefragcnt = counter_u64_alloc(M_WAITOK);
1319 bufkvaspace = counter_u64_alloc(M_WAITOK);
1320 }
1321
1322 #ifdef INVARIANTS
1323 static inline void
1324 vfs_buf_check_mapped(struct buf *bp)
1325 {
1326
1327 KASSERT(bp->b_kvabase != unmapped_buf,
1328 ("mapped buf: b_kvabase was not updated %p", bp));
1329 KASSERT(bp->b_data != unmapped_buf,
1330 ("mapped buf: b_data was not updated %p", bp));
1331 KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1332 maxphys, ("b_data + b_offset unmapped %p", bp));
1333 }
1334
1335 static inline void
1336 vfs_buf_check_unmapped(struct buf *bp)
1337 {
1338
1339 KASSERT(bp->b_data == unmapped_buf,
1340 ("unmapped buf: corrupted b_data %p", bp));
1341 }
1342
1343 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1344 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1345 #else
1346 #define BUF_CHECK_MAPPED(bp) do {} while (0)
1347 #define BUF_CHECK_UNMAPPED(bp) do {} while (0)
1348 #endif
1349
1350 static int
1351 isbufbusy(struct buf *bp)
1352 {
1353 if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1354 ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1355 return (1);
1356 return (0);
1357 }
1358
1359 /*
1360 * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1361 */
1362 void
1363 bufshutdown(int show_busybufs)
1364 {
1365 static int first_buf_printf = 1;
1366 struct buf *bp;
1367 int i, iter, nbusy, pbusy;
1368 #ifndef PREEMPTION
1369 int subiter;
1370 #endif
1371
1372 /*
1373 * Sync filesystems for shutdown
1374 */
1375 wdog_kern_pat(WD_LASTVAL);
1376 kern_sync(curthread);
1377
1378 /*
1379 * With soft updates, some buffers that are
1380 * written will be remarked as dirty until other
1381 * buffers are written.
1382 */
1383 for (iter = pbusy = 0; iter < 20; iter++) {
1384 nbusy = 0;
1385 for (i = nbuf - 1; i >= 0; i--) {
1386 bp = nbufp(i);
1387 if (isbufbusy(bp))
1388 nbusy++;
1389 }
1390 if (nbusy == 0) {
1391 if (first_buf_printf)
1392 printf("All buffers synced.");
1393 break;
1394 }
1395 if (first_buf_printf) {
1396 printf("Syncing disks, buffers remaining... ");
1397 first_buf_printf = 0;
1398 }
1399 printf("%d ", nbusy);
1400 if (nbusy < pbusy)
1401 iter = 0;
1402 pbusy = nbusy;
1403
1404 wdog_kern_pat(WD_LASTVAL);
1405 kern_sync(curthread);
1406
1407 #ifdef PREEMPTION
1408 /*
1409 * Spin for a while to allow interrupt threads to run.
1410 */
1411 DELAY(50000 * iter);
1412 #else
1413 /*
1414 * Context switch several times to allow interrupt
1415 * threads to run.
1416 */
1417 for (subiter = 0; subiter < 50 * iter; subiter++) {
1418 thread_lock(curthread);
1419 mi_switch(SW_VOL);
1420 DELAY(1000);
1421 }
1422 #endif
1423 }
1424 printf("\n");
1425 /*
1426 * Count only busy local buffers to prevent forcing
1427 * a fsck if we're just a client of a wedged NFS server
1428 */
1429 nbusy = 0;
1430 for (i = nbuf - 1; i >= 0; i--) {
1431 bp = nbufp(i);
1432 if (isbufbusy(bp)) {
1433 #if 0
1434 /* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */
1435 if (bp->b_dev == NULL) {
1436 TAILQ_REMOVE(&mountlist,
1437 bp->b_vp->v_mount, mnt_list);
1438 continue;
1439 }
1440 #endif
1441 nbusy++;
1442 if (show_busybufs > 0) {
1443 printf(
1444 "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1445 nbusy, bp, bp->b_vp, bp->b_flags,
1446 (intmax_t)bp->b_blkno,
1447 (intmax_t)bp->b_lblkno);
1448 BUF_LOCKPRINTINFO(bp);
1449 if (show_busybufs > 1)
1450 vn_printf(bp->b_vp,
1451 "vnode content: ");
1452 }
1453 }
1454 }
1455 if (nbusy) {
1456 /*
1457 * Failed to sync all blocks. Indicate this and don't
1458 * unmount filesystems (thus forcing an fsck on reboot).
1459 */
1460 printf("Giving up on %d buffers\n", nbusy);
1461 DELAY(5000000); /* 5 seconds */
1462 swapoff_all();
1463 } else {
1464 if (!first_buf_printf)
1465 printf("Final sync complete\n");
1466
1467 /*
1468 * Unmount filesystems and perform swapoff, to quiesce
1469 * the system as much as possible. In particular, no
1470 * I/O should be initiated from top levels since it
1471 * might be abruptly terminated by reset, or otherwise
1472 * erronously handled because other parts of the
1473 * system are disabled.
1474 *
1475 * Swapoff before unmount, because file-backed swap is
1476 * non-operational after unmount of the underlying
1477 * filesystem.
1478 */
1479 if (!KERNEL_PANICKED()) {
1480 swapoff_all();
1481 vfs_unmountall();
1482 }
1483 }
1484 DELAY(100000); /* wait for console output to finish */
1485 }
1486
1487 static void
1488 bpmap_qenter(struct buf *bp)
1489 {
1490
1491 BUF_CHECK_MAPPED(bp);
1492
1493 /*
1494 * bp->b_data is relative to bp->b_offset, but
1495 * bp->b_offset may be offset into the first page.
1496 */
1497 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1498 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1499 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1500 (vm_offset_t)(bp->b_offset & PAGE_MASK));
1501 }
1502
1503 static inline struct bufdomain *
1504 bufdomain(struct buf *bp)
1505 {
1506
1507 return (&bdomain[bp->b_domain]);
1508 }
1509
1510 static struct bufqueue *
1511 bufqueue(struct buf *bp)
1512 {
1513
1514 switch (bp->b_qindex) {
1515 case QUEUE_NONE:
1516 /* FALLTHROUGH */
1517 case QUEUE_SENTINEL:
1518 return (NULL);
1519 case QUEUE_EMPTY:
1520 return (&bqempty);
1521 case QUEUE_DIRTY:
1522 return (&bufdomain(bp)->bd_dirtyq);
1523 case QUEUE_CLEAN:
1524 return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1525 default:
1526 break;
1527 }
1528 panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1529 }
1530
1531 /*
1532 * Return the locked bufqueue that bp is a member of.
1533 */
1534 static struct bufqueue *
1535 bufqueue_acquire(struct buf *bp)
1536 {
1537 struct bufqueue *bq, *nbq;
1538
1539 /*
1540 * bp can be pushed from a per-cpu queue to the
1541 * cleanq while we're waiting on the lock. Retry
1542 * if the queues don't match.
1543 */
1544 bq = bufqueue(bp);
1545 BQ_LOCK(bq);
1546 for (;;) {
1547 nbq = bufqueue(bp);
1548 if (bq == nbq)
1549 break;
1550 BQ_UNLOCK(bq);
1551 BQ_LOCK(nbq);
1552 bq = nbq;
1553 }
1554 return (bq);
1555 }
1556
1557 /*
1558 * binsfree:
1559 *
1560 * Insert the buffer into the appropriate free list. Requires a
1561 * locked buffer on entry and buffer is unlocked before return.
1562 */
1563 static void
1564 binsfree(struct buf *bp, int qindex)
1565 {
1566 struct bufdomain *bd;
1567 struct bufqueue *bq;
1568
1569 KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1570 ("binsfree: Invalid qindex %d", qindex));
1571 BUF_ASSERT_XLOCKED(bp);
1572
1573 /*
1574 * Handle delayed bremfree() processing.
1575 */
1576 if (bp->b_flags & B_REMFREE) {
1577 if (bp->b_qindex == qindex) {
1578 bp->b_flags |= B_REUSE;
1579 bp->b_flags &= ~B_REMFREE;
1580 BUF_UNLOCK(bp);
1581 return;
1582 }
1583 bq = bufqueue_acquire(bp);
1584 bq_remove(bq, bp);
1585 BQ_UNLOCK(bq);
1586 }
1587 bd = bufdomain(bp);
1588 if (qindex == QUEUE_CLEAN) {
1589 if (bd->bd_lim != 0)
1590 bq = &bd->bd_subq[PCPU_GET(cpuid)];
1591 else
1592 bq = bd->bd_cleanq;
1593 } else
1594 bq = &bd->bd_dirtyq;
1595 bq_insert(bq, bp, true);
1596 }
1597
1598 /*
1599 * buf_free:
1600 *
1601 * Free a buffer to the buf zone once it no longer has valid contents.
1602 */
1603 static void
1604 buf_free(struct buf *bp)
1605 {
1606
1607 if (bp->b_flags & B_REMFREE)
1608 bremfreef(bp);
1609 if (bp->b_vflags & BV_BKGRDINPROG)
1610 panic("losing buffer 1");
1611 if (bp->b_rcred != NOCRED) {
1612 crfree(bp->b_rcred);
1613 bp->b_rcred = NOCRED;
1614 }
1615 if (bp->b_wcred != NOCRED) {
1616 crfree(bp->b_wcred);
1617 bp->b_wcred = NOCRED;
1618 }
1619 if (!LIST_EMPTY(&bp->b_dep))
1620 buf_deallocate(bp);
1621 bufkva_free(bp);
1622 atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1623 MPASS((bp->b_flags & B_MAXPHYS) == 0);
1624 BUF_UNLOCK(bp);
1625 uma_zfree(buf_zone, bp);
1626 }
1627
1628 /*
1629 * buf_import:
1630 *
1631 * Import bufs into the uma cache from the buf list. The system still
1632 * expects a static array of bufs and much of the synchronization
1633 * around bufs assumes type stable storage. As a result, UMA is used
1634 * only as a per-cpu cache of bufs still maintained on a global list.
1635 */
1636 static int
1637 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1638 {
1639 struct buf *bp;
1640 int i;
1641
1642 BQ_LOCK(&bqempty);
1643 for (i = 0; i < cnt; i++) {
1644 bp = TAILQ_FIRST(&bqempty.bq_queue);
1645 if (bp == NULL)
1646 break;
1647 bq_remove(&bqempty, bp);
1648 store[i] = bp;
1649 }
1650 BQ_UNLOCK(&bqempty);
1651
1652 return (i);
1653 }
1654
1655 /*
1656 * buf_release:
1657 *
1658 * Release bufs from the uma cache back to the buffer queues.
1659 */
1660 static void
1661 buf_release(void *arg, void **store, int cnt)
1662 {
1663 struct bufqueue *bq;
1664 struct buf *bp;
1665 int i;
1666
1667 bq = &bqempty;
1668 BQ_LOCK(bq);
1669 for (i = 0; i < cnt; i++) {
1670 bp = store[i];
1671 /* Inline bq_insert() to batch locking. */
1672 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1673 bp->b_flags &= ~(B_AGE | B_REUSE);
1674 bq->bq_len++;
1675 bp->b_qindex = bq->bq_index;
1676 }
1677 BQ_UNLOCK(bq);
1678 }
1679
1680 /*
1681 * buf_alloc:
1682 *
1683 * Allocate an empty buffer header.
1684 */
1685 static struct buf *
1686 buf_alloc(struct bufdomain *bd)
1687 {
1688 struct buf *bp;
1689 int freebufs, error;
1690
1691 /*
1692 * We can only run out of bufs in the buf zone if the average buf
1693 * is less than BKVASIZE. In this case the actual wait/block will
1694 * come from buf_reycle() failing to flush one of these small bufs.
1695 */
1696 bp = NULL;
1697 freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1698 if (freebufs > 0)
1699 bp = uma_zalloc(buf_zone, M_NOWAIT);
1700 if (bp == NULL) {
1701 atomic_add_int(&bd->bd_freebuffers, 1);
1702 bufspace_daemon_wakeup(bd);
1703 counter_u64_add(numbufallocfails, 1);
1704 return (NULL);
1705 }
1706 /*
1707 * Wake-up the bufspace daemon on transition below threshold.
1708 */
1709 if (freebufs == bd->bd_lofreebuffers)
1710 bufspace_daemon_wakeup(bd);
1711
1712 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
1713 KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
1714 error));
1715 (void)error;
1716
1717 KASSERT(bp->b_vp == NULL,
1718 ("bp: %p still has vnode %p.", bp, bp->b_vp));
1719 KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1720 ("invalid buffer %p flags %#x", bp, bp->b_flags));
1721 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1722 ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1723 KASSERT(bp->b_npages == 0,
1724 ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1725 KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1726 KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1727 MPASS((bp->b_flags & B_MAXPHYS) == 0);
1728
1729 bp->b_domain = BD_DOMAIN(bd);
1730 bp->b_flags = 0;
1731 bp->b_ioflags = 0;
1732 bp->b_xflags = 0;
1733 bp->b_vflags = 0;
1734 bp->b_vp = NULL;
1735 bp->b_blkno = bp->b_lblkno = 0;
1736 bp->b_offset = NOOFFSET;
1737 bp->b_iodone = 0;
1738 bp->b_error = 0;
1739 bp->b_resid = 0;
1740 bp->b_bcount = 0;
1741 bp->b_npages = 0;
1742 bp->b_dirtyoff = bp->b_dirtyend = 0;
1743 bp->b_bufobj = NULL;
1744 bp->b_data = bp->b_kvabase = unmapped_buf;
1745 bp->b_fsprivate1 = NULL;
1746 bp->b_fsprivate2 = NULL;
1747 bp->b_fsprivate3 = NULL;
1748 LIST_INIT(&bp->b_dep);
1749
1750 return (bp);
1751 }
1752
1753 /*
1754 * buf_recycle:
1755 *
1756 * Free a buffer from the given bufqueue. kva controls whether the
1757 * freed buf must own some kva resources. This is used for
1758 * defragmenting.
1759 */
1760 static int
1761 buf_recycle(struct bufdomain *bd, bool kva)
1762 {
1763 struct bufqueue *bq;
1764 struct buf *bp, *nbp;
1765
1766 if (kva)
1767 counter_u64_add(bufdefragcnt, 1);
1768 nbp = NULL;
1769 bq = bd->bd_cleanq;
1770 BQ_LOCK(bq);
1771 KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1772 ("buf_recycle: Locks don't match"));
1773 nbp = TAILQ_FIRST(&bq->bq_queue);
1774
1775 /*
1776 * Run scan, possibly freeing data and/or kva mappings on the fly
1777 * depending.
1778 */
1779 while ((bp = nbp) != NULL) {
1780 /*
1781 * Calculate next bp (we can only use it if we do not
1782 * release the bqlock).
1783 */
1784 nbp = TAILQ_NEXT(bp, b_freelist);
1785
1786 /*
1787 * If we are defragging then we need a buffer with
1788 * some kva to reclaim.
1789 */
1790 if (kva && bp->b_kvasize == 0)
1791 continue;
1792
1793 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1794 continue;
1795
1796 /*
1797 * Implement a second chance algorithm for frequently
1798 * accessed buffers.
1799 */
1800 if ((bp->b_flags & B_REUSE) != 0) {
1801 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1802 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1803 bp->b_flags &= ~B_REUSE;
1804 BUF_UNLOCK(bp);
1805 continue;
1806 }
1807
1808 /*
1809 * Skip buffers with background writes in progress.
1810 */
1811 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1812 BUF_UNLOCK(bp);
1813 continue;
1814 }
1815
1816 KASSERT(bp->b_qindex == QUEUE_CLEAN,
1817 ("buf_recycle: inconsistent queue %d bp %p",
1818 bp->b_qindex, bp));
1819 KASSERT(bp->b_domain == BD_DOMAIN(bd),
1820 ("getnewbuf: queue domain %d doesn't match request %d",
1821 bp->b_domain, (int)BD_DOMAIN(bd)));
1822 /*
1823 * NOTE: nbp is now entirely invalid. We can only restart
1824 * the scan from this point on.
1825 */
1826 bq_remove(bq, bp);
1827 BQ_UNLOCK(bq);
1828
1829 /*
1830 * Requeue the background write buffer with error and
1831 * restart the scan.
1832 */
1833 if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1834 bqrelse(bp);
1835 BQ_LOCK(bq);
1836 nbp = TAILQ_FIRST(&bq->bq_queue);
1837 continue;
1838 }
1839 bp->b_flags |= B_INVAL;
1840 brelse(bp);
1841 return (0);
1842 }
1843 bd->bd_wanted = 1;
1844 BQ_UNLOCK(bq);
1845
1846 return (ENOBUFS);
1847 }
1848
1849 /*
1850 * bremfree:
1851 *
1852 * Mark the buffer for removal from the appropriate free list.
1853 *
1854 */
1855 void
1856 bremfree(struct buf *bp)
1857 {
1858
1859 CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1860 KASSERT((bp->b_flags & B_REMFREE) == 0,
1861 ("bremfree: buffer %p already marked for delayed removal.", bp));
1862 KASSERT(bp->b_qindex != QUEUE_NONE,
1863 ("bremfree: buffer %p not on a queue.", bp));
1864 BUF_ASSERT_XLOCKED(bp);
1865
1866 bp->b_flags |= B_REMFREE;
1867 }
1868
1869 /*
1870 * bremfreef:
1871 *
1872 * Force an immediate removal from a free list. Used only in nfs when
1873 * it abuses the b_freelist pointer.
1874 */
1875 void
1876 bremfreef(struct buf *bp)
1877 {
1878 struct bufqueue *bq;
1879
1880 bq = bufqueue_acquire(bp);
1881 bq_remove(bq, bp);
1882 BQ_UNLOCK(bq);
1883 }
1884
1885 static void
1886 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1887 {
1888
1889 mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1890 TAILQ_INIT(&bq->bq_queue);
1891 bq->bq_len = 0;
1892 bq->bq_index = qindex;
1893 bq->bq_subqueue = subqueue;
1894 }
1895
1896 static void
1897 bd_init(struct bufdomain *bd)
1898 {
1899 int i;
1900
1901 bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1902 bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1903 bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1904 for (i = 0; i <= mp_maxid; i++)
1905 bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1906 "bufq clean subqueue lock");
1907 mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1908 }
1909
1910 /*
1911 * bq_remove:
1912 *
1913 * Removes a buffer from the free list, must be called with the
1914 * correct qlock held.
1915 */
1916 static void
1917 bq_remove(struct bufqueue *bq, struct buf *bp)
1918 {
1919
1920 CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1921 bp, bp->b_vp, bp->b_flags);
1922 KASSERT(bp->b_qindex != QUEUE_NONE,
1923 ("bq_remove: buffer %p not on a queue.", bp));
1924 KASSERT(bufqueue(bp) == bq,
1925 ("bq_remove: Remove buffer %p from wrong queue.", bp));
1926
1927 BQ_ASSERT_LOCKED(bq);
1928 if (bp->b_qindex != QUEUE_EMPTY) {
1929 BUF_ASSERT_XLOCKED(bp);
1930 }
1931 KASSERT(bq->bq_len >= 1,
1932 ("queue %d underflow", bp->b_qindex));
1933 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1934 bq->bq_len--;
1935 bp->b_qindex = QUEUE_NONE;
1936 bp->b_flags &= ~(B_REMFREE | B_REUSE);
1937 }
1938
1939 static void
1940 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1941 {
1942 struct buf *bp;
1943
1944 BQ_ASSERT_LOCKED(bq);
1945 if (bq != bd->bd_cleanq) {
1946 BD_LOCK(bd);
1947 while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1948 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1949 TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1950 b_freelist);
1951 bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1952 }
1953 bd->bd_cleanq->bq_len += bq->bq_len;
1954 bq->bq_len = 0;
1955 }
1956 if (bd->bd_wanted) {
1957 bd->bd_wanted = 0;
1958 wakeup(&bd->bd_wanted);
1959 }
1960 if (bq != bd->bd_cleanq)
1961 BD_UNLOCK(bd);
1962 }
1963
1964 static int
1965 bd_flushall(struct bufdomain *bd)
1966 {
1967 struct bufqueue *bq;
1968 int flushed;
1969 int i;
1970
1971 if (bd->bd_lim == 0)
1972 return (0);
1973 flushed = 0;
1974 for (i = 0; i <= mp_maxid; i++) {
1975 bq = &bd->bd_subq[i];
1976 if (bq->bq_len == 0)
1977 continue;
1978 BQ_LOCK(bq);
1979 bd_flush(bd, bq);
1980 BQ_UNLOCK(bq);
1981 flushed++;
1982 }
1983
1984 return (flushed);
1985 }
1986
1987 static void
1988 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
1989 {
1990 struct bufdomain *bd;
1991
1992 if (bp->b_qindex != QUEUE_NONE)
1993 panic("bq_insert: free buffer %p onto another queue?", bp);
1994
1995 bd = bufdomain(bp);
1996 if (bp->b_flags & B_AGE) {
1997 /* Place this buf directly on the real queue. */
1998 if (bq->bq_index == QUEUE_CLEAN)
1999 bq = bd->bd_cleanq;
2000 BQ_LOCK(bq);
2001 TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
2002 } else {
2003 BQ_LOCK(bq);
2004 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
2005 }
2006 bp->b_flags &= ~(B_AGE | B_REUSE);
2007 bq->bq_len++;
2008 bp->b_qindex = bq->bq_index;
2009 bp->b_subqueue = bq->bq_subqueue;
2010
2011 /*
2012 * Unlock before we notify so that we don't wakeup a waiter that
2013 * fails a trylock on the buf and sleeps again.
2014 */
2015 if (unlock)
2016 BUF_UNLOCK(bp);
2017
2018 if (bp->b_qindex == QUEUE_CLEAN) {
2019 /*
2020 * Flush the per-cpu queue and notify any waiters.
2021 */
2022 if (bd->bd_wanted || (bq != bd->bd_cleanq &&
2023 bq->bq_len >= bd->bd_lim))
2024 bd_flush(bd, bq);
2025 }
2026 BQ_UNLOCK(bq);
2027 }
2028
2029 /*
2030 * bufkva_free:
2031 *
2032 * Free the kva allocation for a buffer.
2033 *
2034 */
2035 static void
2036 bufkva_free(struct buf *bp)
2037 {
2038
2039 #ifdef INVARIANTS
2040 if (bp->b_kvasize == 0) {
2041 KASSERT(bp->b_kvabase == unmapped_buf &&
2042 bp->b_data == unmapped_buf,
2043 ("Leaked KVA space on %p", bp));
2044 } else if (buf_mapped(bp))
2045 BUF_CHECK_MAPPED(bp);
2046 else
2047 BUF_CHECK_UNMAPPED(bp);
2048 #endif
2049 if (bp->b_kvasize == 0)
2050 return;
2051
2052 vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2053 counter_u64_add(bufkvaspace, -bp->b_kvasize);
2054 counter_u64_add(buffreekvacnt, 1);
2055 bp->b_data = bp->b_kvabase = unmapped_buf;
2056 bp->b_kvasize = 0;
2057 }
2058
2059 /*
2060 * bufkva_alloc:
2061 *
2062 * Allocate the buffer KVA and set b_kvasize and b_kvabase.
2063 */
2064 static int
2065 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2066 {
2067 vm_offset_t addr;
2068 int error;
2069
2070 KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2071 ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2072 MPASS((bp->b_flags & B_MAXPHYS) == 0);
2073 KASSERT(maxsize <= maxbcachebuf,
2074 ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
2075
2076 bufkva_free(bp);
2077
2078 addr = 0;
2079 error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2080 if (error != 0) {
2081 /*
2082 * Buffer map is too fragmented. Request the caller
2083 * to defragment the map.
2084 */
2085 return (error);
2086 }
2087 bp->b_kvabase = (caddr_t)addr;
2088 bp->b_kvasize = maxsize;
2089 counter_u64_add(bufkvaspace, bp->b_kvasize);
2090 if ((gbflags & GB_UNMAPPED) != 0) {
2091 bp->b_data = unmapped_buf;
2092 BUF_CHECK_UNMAPPED(bp);
2093 } else {
2094 bp->b_data = bp->b_kvabase;
2095 BUF_CHECK_MAPPED(bp);
2096 }
2097 return (0);
2098 }
2099
2100 /*
2101 * bufkva_reclaim:
2102 *
2103 * Reclaim buffer kva by freeing buffers holding kva. This is a vmem
2104 * callback that fires to avoid returning failure.
2105 */
2106 static void
2107 bufkva_reclaim(vmem_t *vmem, int flags)
2108 {
2109 bool done;
2110 int q;
2111 int i;
2112
2113 done = false;
2114 for (i = 0; i < 5; i++) {
2115 for (q = 0; q < buf_domains; q++)
2116 if (buf_recycle(&bdomain[q], true) != 0)
2117 done = true;
2118 if (done)
2119 break;
2120 }
2121 return;
2122 }
2123
2124 /*
2125 * Attempt to initiate asynchronous I/O on read-ahead blocks. We must
2126 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2127 * the buffer is valid and we do not have to do anything.
2128 */
2129 static void
2130 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2131 struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2132 {
2133 struct buf *rabp;
2134 struct thread *td;
2135 int i;
2136
2137 td = curthread;
2138
2139 for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2140 if (inmem(vp, *rablkno))
2141 continue;
2142 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2143 if ((rabp->b_flags & B_CACHE) != 0) {
2144 brelse(rabp);
2145 continue;
2146 }
2147 #ifdef RACCT
2148 if (racct_enable) {
2149 PROC_LOCK(curproc);
2150 racct_add_buf(curproc, rabp, 0);
2151 PROC_UNLOCK(curproc);
2152 }
2153 #endif /* RACCT */
2154 td->td_ru.ru_inblock++;
2155 rabp->b_flags |= B_ASYNC;
2156 rabp->b_flags &= ~B_INVAL;
2157 if ((flags & GB_CKHASH) != 0) {
2158 rabp->b_flags |= B_CKHASH;
2159 rabp->b_ckhashcalc = ckhashfunc;
2160 }
2161 rabp->b_ioflags &= ~BIO_ERROR;
2162 rabp->b_iocmd = BIO_READ;
2163 if (rabp->b_rcred == NOCRED && cred != NOCRED)
2164 rabp->b_rcred = crhold(cred);
2165 vfs_busy_pages(rabp, 0);
2166 BUF_KERNPROC(rabp);
2167 rabp->b_iooffset = dbtob(rabp->b_blkno);
2168 bstrategy(rabp);
2169 }
2170 }
2171
2172 /*
2173 * Entry point for bread() and breadn() via #defines in sys/buf.h.
2174 *
2175 * Get a buffer with the specified data. Look in the cache first. We
2176 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
2177 * is set, the buffer is valid and we do not have to do anything, see
2178 * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2179 *
2180 * Always return a NULL buffer pointer (in bpp) when returning an error.
2181 *
2182 * The blkno parameter is the logical block being requested. Normally
2183 * the mapping of logical block number to disk block address is done
2184 * by calling VOP_BMAP(). However, if the mapping is already known, the
2185 * disk block address can be passed using the dblkno parameter. If the
2186 * disk block address is not known, then the same value should be passed
2187 * for blkno and dblkno.
2188 */
2189 int
2190 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
2191 daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
2192 void (*ckhashfunc)(struct buf *), struct buf **bpp)
2193 {
2194 struct buf *bp;
2195 struct thread *td;
2196 int error, readwait, rv;
2197
2198 CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2199 td = curthread;
2200 /*
2201 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2202 * are specified.
2203 */
2204 error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
2205 if (error != 0) {
2206 *bpp = NULL;
2207 return (error);
2208 }
2209 KASSERT(blkno == bp->b_lblkno,
2210 ("getblkx returned buffer for blkno %jd instead of blkno %jd",
2211 (intmax_t)bp->b_lblkno, (intmax_t)blkno));
2212 flags &= ~GB_NOSPARSE;
2213 *bpp = bp;
2214
2215 /*
2216 * If not found in cache, do some I/O
2217 */
2218 readwait = 0;
2219 if ((bp->b_flags & B_CACHE) == 0) {
2220 #ifdef RACCT
2221 if (racct_enable) {
2222 PROC_LOCK(td->td_proc);
2223 racct_add_buf(td->td_proc, bp, 0);
2224 PROC_UNLOCK(td->td_proc);
2225 }
2226 #endif /* RACCT */
2227 td->td_ru.ru_inblock++;
2228 bp->b_iocmd = BIO_READ;
2229 bp->b_flags &= ~B_INVAL;
2230 if ((flags & GB_CKHASH) != 0) {
2231 bp->b_flags |= B_CKHASH;
2232 bp->b_ckhashcalc = ckhashfunc;
2233 }
2234 if ((flags & GB_CVTENXIO) != 0)
2235 bp->b_xflags |= BX_CVTENXIO;
2236 bp->b_ioflags &= ~BIO_ERROR;
2237 if (bp->b_rcred == NOCRED && cred != NOCRED)
2238 bp->b_rcred = crhold(cred);
2239 vfs_busy_pages(bp, 0);
2240 bp->b_iooffset = dbtob(bp->b_blkno);
2241 bstrategy(bp);
2242 ++readwait;
2243 }
2244
2245 /*
2246 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2247 */
2248 breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2249
2250 rv = 0;
2251 if (readwait) {
2252 rv = bufwait(bp);
2253 if (rv != 0) {
2254 brelse(bp);
2255 *bpp = NULL;
2256 }
2257 }
2258 return (rv);
2259 }
2260
2261 /*
2262 * Write, release buffer on completion. (Done by iodone
2263 * if async). Do not bother writing anything if the buffer
2264 * is invalid.
2265 *
2266 * Note that we set B_CACHE here, indicating that buffer is
2267 * fully valid and thus cacheable. This is true even of NFS
2268 * now so we set it generally. This could be set either here
2269 * or in biodone() since the I/O is synchronous. We put it
2270 * here.
2271 */
2272 int
2273 bufwrite(struct buf *bp)
2274 {
2275 int oldflags;
2276 struct vnode *vp;
2277 long space;
2278 int vp_md;
2279
2280 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2281 if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2282 bp->b_flags |= B_INVAL | B_RELBUF;
2283 bp->b_flags &= ~B_CACHE;
2284 brelse(bp);
2285 return (ENXIO);
2286 }
2287 if (bp->b_flags & B_INVAL) {
2288 brelse(bp);
2289 return (0);
2290 }
2291
2292 if (bp->b_flags & B_BARRIER)
2293 atomic_add_long(&barrierwrites, 1);
2294
2295 oldflags = bp->b_flags;
2296
2297 KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
2298 ("FFS background buffer should not get here %p", bp));
2299
2300 vp = bp->b_vp;
2301 if (vp)
2302 vp_md = vp->v_vflag & VV_MD;
2303 else
2304 vp_md = 0;
2305
2306 /*
2307 * Mark the buffer clean. Increment the bufobj write count
2308 * before bundirty() call, to prevent other thread from seeing
2309 * empty dirty list and zero counter for writes in progress,
2310 * falsely indicating that the bufobj is clean.
2311 */
2312 bufobj_wref(bp->b_bufobj);
2313 bundirty(bp);
2314
2315 bp->b_flags &= ~B_DONE;
2316 bp->b_ioflags &= ~BIO_ERROR;
2317 bp->b_flags |= B_CACHE;
2318 bp->b_iocmd = BIO_WRITE;
2319
2320 vfs_busy_pages(bp, 1);
2321
2322 /*
2323 * Normal bwrites pipeline writes
2324 */
2325 bp->b_runningbufspace = bp->b_bufsize;
2326 space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
2327
2328 #ifdef RACCT
2329 if (racct_enable) {
2330 PROC_LOCK(curproc);
2331 racct_add_buf(curproc, bp, 1);
2332 PROC_UNLOCK(curproc);
2333 }
2334 #endif /* RACCT */
2335 curthread->td_ru.ru_oublock++;
2336 if (oldflags & B_ASYNC)
2337 BUF_KERNPROC(bp);
2338 bp->b_iooffset = dbtob(bp->b_blkno);
2339 buf_track(bp, __func__);
2340 bstrategy(bp);
2341
2342 if ((oldflags & B_ASYNC) == 0) {
2343 int rtval = bufwait(bp);
2344 brelse(bp);
2345 return (rtval);
2346 } else if (space > hirunningspace) {
2347 /*
2348 * don't allow the async write to saturate the I/O
2349 * system. We will not deadlock here because
2350 * we are blocking waiting for I/O that is already in-progress
2351 * to complete. We do not block here if it is the update
2352 * or syncer daemon trying to clean up as that can lead
2353 * to deadlock.
2354 */
2355 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2356 waitrunningbufspace();
2357 }
2358
2359 return (0);
2360 }
2361
2362 void
2363 bufbdflush(struct bufobj *bo, struct buf *bp)
2364 {
2365 struct buf *nbp;
2366 struct bufdomain *bd;
2367
2368 bd = &bdomain[bo->bo_domain];
2369 if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
2370 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2371 altbufferflushes++;
2372 } else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
2373 BO_LOCK(bo);
2374 /*
2375 * Try to find a buffer to flush.
2376 */
2377 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2378 if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2379 BUF_LOCK(nbp,
2380 LK_EXCLUSIVE | LK_NOWAIT, NULL))
2381 continue;
2382 if (bp == nbp)
2383 panic("bdwrite: found ourselves");
2384 BO_UNLOCK(bo);
2385 /* Don't countdeps with the bo lock held. */
2386 if (buf_countdeps(nbp, 0)) {
2387 BO_LOCK(bo);
2388 BUF_UNLOCK(nbp);
2389 continue;
2390 }
2391 if (nbp->b_flags & B_CLUSTEROK) {
2392 vfs_bio_awrite(nbp);
2393 } else {
2394 bremfree(nbp);
2395 bawrite(nbp);
2396 }
2397 dirtybufferflushes++;
2398 break;
2399 }
2400 if (nbp == NULL)
2401 BO_UNLOCK(bo);
2402 }
2403 }
2404
2405 /*
2406 * Delayed write. (Buffer is marked dirty). Do not bother writing
2407 * anything if the buffer is marked invalid.
2408 *
2409 * Note that since the buffer must be completely valid, we can safely
2410 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
2411 * biodone() in order to prevent getblk from writing the buffer
2412 * out synchronously.
2413 */
2414 void
2415 bdwrite(struct buf *bp)
2416 {
2417 struct thread *td = curthread;
2418 struct vnode *vp;
2419 struct bufobj *bo;
2420
2421 CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2422 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2423 KASSERT((bp->b_flags & B_BARRIER) == 0,
2424 ("Barrier request in delayed write %p", bp));
2425
2426 if (bp->b_flags & B_INVAL) {
2427 brelse(bp);
2428 return;
2429 }
2430
2431 /*
2432 * If we have too many dirty buffers, don't create any more.
2433 * If we are wildly over our limit, then force a complete
2434 * cleanup. Otherwise, just keep the situation from getting
2435 * out of control. Note that we have to avoid a recursive
2436 * disaster and not try to clean up after our own cleanup!
2437 */
2438 vp = bp->b_vp;
2439 bo = bp->b_bufobj;
2440 if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2441 td->td_pflags |= TDP_INBDFLUSH;
2442 BO_BDFLUSH(bo, bp);
2443 td->td_pflags &= ~TDP_INBDFLUSH;
2444 } else
2445 recursiveflushes++;
2446
2447 bdirty(bp);
2448 /*
2449 * Set B_CACHE, indicating that the buffer is fully valid. This is
2450 * true even of NFS now.
2451 */
2452 bp->b_flags |= B_CACHE;
2453
2454 /*
2455 * This bmap keeps the system from needing to do the bmap later,
2456 * perhaps when the system is attempting to do a sync. Since it
2457 * is likely that the indirect block -- or whatever other datastructure
2458 * that the filesystem needs is still in memory now, it is a good
2459 * thing to do this. Note also, that if the pageout daemon is
2460 * requesting a sync -- there might not be enough memory to do
2461 * the bmap then... So, this is important to do.
2462 */
2463 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2464 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2465 }
2466
2467 buf_track(bp, __func__);
2468
2469 /*
2470 * Set the *dirty* buffer range based upon the VM system dirty
2471 * pages.
2472 *
2473 * Mark the buffer pages as clean. We need to do this here to
2474 * satisfy the vnode_pager and the pageout daemon, so that it
2475 * thinks that the pages have been "cleaned". Note that since
2476 * the pages are in a delayed write buffer -- the VFS layer
2477 * "will" see that the pages get written out on the next sync,
2478 * or perhaps the cluster will be completed.
2479 */
2480 vfs_clean_pages_dirty_buf(bp);
2481 bqrelse(bp);
2482
2483 /*
2484 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2485 * due to the softdep code.
2486 */
2487 }
2488
2489 /*
2490 * bdirty:
2491 *
2492 * Turn buffer into delayed write request. We must clear BIO_READ and
2493 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
2494 * itself to properly update it in the dirty/clean lists. We mark it
2495 * B_DONE to ensure that any asynchronization of the buffer properly
2496 * clears B_DONE ( else a panic will occur later ).
2497 *
2498 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2499 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty()
2500 * should only be called if the buffer is known-good.
2501 *
2502 * Since the buffer is not on a queue, we do not update the numfreebuffers
2503 * count.
2504 *
2505 * The buffer must be on QUEUE_NONE.
2506 */
2507 void
2508 bdirty(struct buf *bp)
2509 {
2510
2511 CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2512 bp, bp->b_vp, bp->b_flags);
2513 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2514 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2515 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2516 bp->b_flags &= ~(B_RELBUF);
2517 bp->b_iocmd = BIO_WRITE;
2518
2519 if ((bp->b_flags & B_DELWRI) == 0) {
2520 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2521 reassignbuf(bp);
2522 bdirtyadd(bp);
2523 }
2524 }
2525
2526 /*
2527 * bundirty:
2528 *
2529 * Clear B_DELWRI for buffer.
2530 *
2531 * Since the buffer is not on a queue, we do not update the numfreebuffers
2532 * count.
2533 *
2534 * The buffer must be on QUEUE_NONE.
2535 */
2536
2537 void
2538 bundirty(struct buf *bp)
2539 {
2540
2541 CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2542 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2543 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2544 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2545
2546 if (bp->b_flags & B_DELWRI) {
2547 bp->b_flags &= ~B_DELWRI;
2548 reassignbuf(bp);
2549 bdirtysub(bp);
2550 }
2551 /*
2552 * Since it is now being written, we can clear its deferred write flag.
2553 */
2554 bp->b_flags &= ~B_DEFERRED;
2555 }
2556
2557 /*
2558 * bawrite:
2559 *
2560 * Asynchronous write. Start output on a buffer, but do not wait for
2561 * it to complete. The buffer is released when the output completes.
2562 *
2563 * bwrite() ( or the VOP routine anyway ) is responsible for handling
2564 * B_INVAL buffers. Not us.
2565 */
2566 void
2567 bawrite(struct buf *bp)
2568 {
2569
2570 bp->b_flags |= B_ASYNC;
2571 (void) bwrite(bp);
2572 }
2573
2574 /*
2575 * babarrierwrite:
2576 *
2577 * Asynchronous barrier write. Start output on a buffer, but do not
2578 * wait for it to complete. Place a write barrier after this write so
2579 * that this buffer and all buffers written before it are committed to
2580 * the disk before any buffers written after this write are committed
2581 * to the disk. The buffer is released when the output completes.
2582 */
2583 void
2584 babarrierwrite(struct buf *bp)
2585 {
2586
2587 bp->b_flags |= B_ASYNC | B_BARRIER;
2588 (void) bwrite(bp);
2589 }
2590
2591 /*
2592 * bbarrierwrite:
2593 *
2594 * Synchronous barrier write. Start output on a buffer and wait for
2595 * it to complete. Place a write barrier after this write so that
2596 * this buffer and all buffers written before it are committed to
2597 * the disk before any buffers written after this write are committed
2598 * to the disk. The buffer is released when the output completes.
2599 */
2600 int
2601 bbarrierwrite(struct buf *bp)
2602 {
2603
2604 bp->b_flags |= B_BARRIER;
2605 return (bwrite(bp));
2606 }
2607
2608 /*
2609 * bwillwrite:
2610 *
2611 * Called prior to the locking of any vnodes when we are expecting to
2612 * write. We do not want to starve the buffer cache with too many
2613 * dirty buffers so we block here. By blocking prior to the locking
2614 * of any vnodes we attempt to avoid the situation where a locked vnode
2615 * prevents the various system daemons from flushing related buffers.
2616 */
2617 void
2618 bwillwrite(void)
2619 {
2620
2621 if (buf_dirty_count_severe()) {
2622 mtx_lock(&bdirtylock);
2623 while (buf_dirty_count_severe()) {
2624 bdirtywait = 1;
2625 msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2626 "flswai", 0);
2627 }
2628 mtx_unlock(&bdirtylock);
2629 }
2630 }
2631
2632 /*
2633 * Return true if we have too many dirty buffers.
2634 */
2635 int
2636 buf_dirty_count_severe(void)
2637 {
2638
2639 return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2640 }
2641
2642 /*
2643 * brelse:
2644 *
2645 * Release a busy buffer and, if requested, free its resources. The
2646 * buffer will be stashed in the appropriate bufqueue[] allowing it
2647 * to be accessed later as a cache entity or reused for other purposes.
2648 */
2649 void
2650 brelse(struct buf *bp)
2651 {
2652 struct mount *v_mnt;
2653 int qindex;
2654
2655 /*
2656 * Many functions erroneously call brelse with a NULL bp under rare
2657 * error conditions. Simply return when called with a NULL bp.
2658 */
2659 if (bp == NULL)
2660 return;
2661 CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2662 bp, bp->b_vp, bp->b_flags);
2663 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2664 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2665 KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2666 ("brelse: non-VMIO buffer marked NOREUSE"));
2667
2668 if (BUF_LOCKRECURSED(bp)) {
2669 /*
2670 * Do not process, in particular, do not handle the
2671 * B_INVAL/B_RELBUF and do not release to free list.
2672 */
2673 BUF_UNLOCK(bp);
2674 return;
2675 }
2676
2677 if (bp->b_flags & B_MANAGED) {
2678 bqrelse(bp);
2679 return;
2680 }
2681
2682 if (LIST_EMPTY(&bp->b_dep)) {
2683 bp->b_flags &= ~B_IOSTARTED;
2684 } else {
2685 KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2686 ("brelse: SU io not finished bp %p", bp));
2687 }
2688
2689 if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2690 BO_LOCK(bp->b_bufobj);
2691 bp->b_vflags &= ~BV_BKGRDERR;
2692 BO_UNLOCK(bp->b_bufobj);
2693 bdirty(bp);
2694 }
2695
2696 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2697 (bp->b_flags & B_INVALONERR)) {
2698 /*
2699 * Forced invalidation of dirty buffer contents, to be used
2700 * after a failed write in the rare case that the loss of the
2701 * contents is acceptable. The buffer is invalidated and
2702 * freed.
2703 */
2704 bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
2705 bp->b_flags &= ~(B_ASYNC | B_CACHE);
2706 }
2707
2708 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2709 (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2710 !(bp->b_flags & B_INVAL)) {
2711 /*
2712 * Failed write, redirty. All errors except ENXIO (which
2713 * means the device is gone) are treated as being
2714 * transient.
2715 *
2716 * XXX Treating EIO as transient is not correct; the
2717 * contract with the local storage device drivers is that
2718 * they will only return EIO once the I/O is no longer
2719 * retriable. Network I/O also respects this through the
2720 * guarantees of TCP and/or the internal retries of NFS.
2721 * ENOMEM might be transient, but we also have no way of
2722 * knowing when its ok to retry/reschedule. In general,
2723 * this entire case should be made obsolete through better
2724 * error handling/recovery and resource scheduling.
2725 *
2726 * Do this also for buffers that failed with ENXIO, but have
2727 * non-empty dependencies - the soft updates code might need
2728 * to access the buffer to untangle them.
2729 *
2730 * Must clear BIO_ERROR to prevent pages from being scrapped.
2731 */
2732 bp->b_ioflags &= ~BIO_ERROR;
2733 bdirty(bp);
2734 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2735 (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2736 /*
2737 * Either a failed read I/O, or we were asked to free or not
2738 * cache the buffer, or we failed to write to a device that's
2739 * no longer present.
2740 */
2741 bp->b_flags |= B_INVAL;
2742 if (!LIST_EMPTY(&bp->b_dep))
2743 buf_deallocate(bp);
2744 if (bp->b_flags & B_DELWRI)
2745 bdirtysub(bp);
2746 bp->b_flags &= ~(B_DELWRI | B_CACHE);
2747 if ((bp->b_flags & B_VMIO) == 0) {
2748 allocbuf(bp, 0);
2749 if (bp->b_vp)
2750 brelvp(bp);
2751 }
2752 }
2753
2754 /*
2755 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_truncate()
2756 * is called with B_DELWRI set, the underlying pages may wind up
2757 * getting freed causing a previous write (bdwrite()) to get 'lost'
2758 * because pages associated with a B_DELWRI bp are marked clean.
2759 *
2760 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2761 * if B_DELWRI is set.
2762 */
2763 if (bp->b_flags & B_DELWRI)
2764 bp->b_flags &= ~B_RELBUF;
2765
2766 /*
2767 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
2768 * constituted, not even NFS buffers now. Two flags effect this. If
2769 * B_INVAL, the struct buf is invalidated but the VM object is kept
2770 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2771 *
2772 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2773 * invalidated. BIO_ERROR cannot be set for a failed write unless the
2774 * buffer is also B_INVAL because it hits the re-dirtying code above.
2775 *
2776 * Normally we can do this whether a buffer is B_DELWRI or not. If
2777 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2778 * the commit state and we cannot afford to lose the buffer. If the
2779 * buffer has a background write in progress, we need to keep it
2780 * around to prevent it from being reconstituted and starting a second
2781 * background write.
2782 */
2783
2784 v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2785
2786 if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2787 (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2788 (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2789 vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
2790 vfs_vmio_invalidate(bp);
2791 allocbuf(bp, 0);
2792 }
2793
2794 if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2795 (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2796 allocbuf(bp, 0);
2797 bp->b_flags &= ~B_NOREUSE;
2798 if (bp->b_vp != NULL)
2799 brelvp(bp);
2800 }
2801
2802 /*
2803 * If the buffer has junk contents signal it and eventually
2804 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2805 * doesn't find it.
2806 */
2807 if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2808 (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2809 bp->b_flags |= B_INVAL;
2810 if (bp->b_flags & B_INVAL) {
2811 if (bp->b_flags & B_DELWRI)
2812 bundirty(bp);
2813 if (bp->b_vp)
2814 brelvp(bp);
2815 }
2816
2817 buf_track(bp, __func__);
2818
2819 /* buffers with no memory */
2820 if (bp->b_bufsize == 0) {
2821 buf_free(bp);
2822 return;
2823 }
2824 /* buffers with junk contents */
2825 if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2826 (bp->b_ioflags & BIO_ERROR)) {
2827 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2828 if (bp->b_vflags & BV_BKGRDINPROG)
2829 panic("losing buffer 2");
2830 qindex = QUEUE_CLEAN;
2831 bp->b_flags |= B_AGE;
2832 /* remaining buffers */
2833 } else if (bp->b_flags & B_DELWRI)
2834 qindex = QUEUE_DIRTY;
2835 else
2836 qindex = QUEUE_CLEAN;
2837
2838 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2839 panic("brelse: not dirty");
2840
2841 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2842 bp->b_xflags &= ~(BX_CVTENXIO);
2843 /* binsfree unlocks bp. */
2844 binsfree(bp, qindex);
2845 }
2846
2847 /*
2848 * Release a buffer back to the appropriate queue but do not try to free
2849 * it. The buffer is expected to be used again soon.
2850 *
2851 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2852 * biodone() to requeue an async I/O on completion. It is also used when
2853 * known good buffers need to be requeued but we think we may need the data
2854 * again soon.
2855 *
2856 * XXX we should be able to leave the B_RELBUF hint set on completion.
2857 */
2858 void
2859 bqrelse(struct buf *bp)
2860 {
2861 int qindex;
2862
2863 CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2864 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2865 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2866
2867 qindex = QUEUE_NONE;
2868 if (BUF_LOCKRECURSED(bp)) {
2869 /* do not release to free list */
2870 BUF_UNLOCK(bp);
2871 return;
2872 }
2873 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2874 bp->b_xflags &= ~(BX_CVTENXIO);
2875
2876 if (LIST_EMPTY(&bp->b_dep)) {
2877 bp->b_flags &= ~B_IOSTARTED;
2878 } else {
2879 KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2880 ("bqrelse: SU io not finished bp %p", bp));
2881 }
2882
2883 if (bp->b_flags & B_MANAGED) {
2884 if (bp->b_flags & B_REMFREE)
2885 bremfreef(bp);
2886 goto out;
2887 }
2888
2889 /* buffers with stale but valid contents */
2890 if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2891 BV_BKGRDERR)) == BV_BKGRDERR) {
2892 BO_LOCK(bp->b_bufobj);
2893 bp->b_vflags &= ~BV_BKGRDERR;
2894 BO_UNLOCK(bp->b_bufobj);
2895 qindex = QUEUE_DIRTY;
2896 } else {
2897 if ((bp->b_flags & B_DELWRI) == 0 &&
2898 (bp->b_xflags & BX_VNDIRTY))
2899 panic("bqrelse: not dirty");
2900 if ((bp->b_flags & B_NOREUSE) != 0) {
2901 brelse(bp);
2902 return;
2903 }
2904 qindex = QUEUE_CLEAN;
2905 }
2906 buf_track(bp, __func__);
2907 /* binsfree unlocks bp. */
2908 binsfree(bp, qindex);
2909 return;
2910
2911 out:
2912 buf_track(bp, __func__);
2913 /* unlock */
2914 BUF_UNLOCK(bp);
2915 }
2916
2917 /*
2918 * Complete I/O to a VMIO backed page. Validate the pages as appropriate,
2919 * restore bogus pages.
2920 */
2921 static void
2922 vfs_vmio_iodone(struct buf *bp)
2923 {
2924 vm_ooffset_t foff;
2925 vm_page_t m;
2926 vm_object_t obj;
2927 struct vnode *vp __unused;
2928 int i, iosize, resid;
2929 bool bogus;
2930
2931 obj = bp->b_bufobj->bo_object;
2932 KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
2933 ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2934 blockcount_read(&obj->paging_in_progress), bp->b_npages));
2935
2936 vp = bp->b_vp;
2937 VNPASS(vp->v_holdcnt > 0, vp);
2938 VNPASS(vp->v_object != NULL, vp);
2939
2940 foff = bp->b_offset;
2941 KASSERT(bp->b_offset != NOOFFSET,
2942 ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2943
2944 bogus = false;
2945 iosize = bp->b_bcount - bp->b_resid;
2946 for (i = 0; i < bp->b_npages; i++) {
2947 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2948 if (resid > iosize)
2949 resid = iosize;
2950
2951 /*
2952 * cleanup bogus pages, restoring the originals
2953 */
2954 m = bp->b_pages[i];
2955 if (m == bogus_page) {
2956 bogus = true;
2957 m = vm_page_relookup(obj, OFF_TO_IDX(foff));
2958 if (m == NULL)
2959 panic("biodone: page disappeared!");
2960 bp->b_pages[i] = m;
2961 } else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2962 /*
2963 * In the write case, the valid and clean bits are
2964 * already changed correctly ( see bdwrite() ), so we
2965 * only need to do this here in the read case.
2966 */
2967 KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
2968 resid)) == 0, ("vfs_vmio_iodone: page %p "
2969 "has unexpected dirty bits", m));
2970 vfs_page_set_valid(bp, foff, m);
2971 }
2972 KASSERT(OFF_TO_IDX(foff) == m->pindex,
2973 ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
2974 (intmax_t)foff, (uintmax_t)m->pindex));
2975
2976 vm_page_sunbusy(m);
2977 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2978 iosize -= resid;
2979 }
2980 vm_object_pip_wakeupn(obj, bp->b_npages);
2981 if (bogus && buf_mapped(bp)) {
2982 BUF_CHECK_MAPPED(bp);
2983 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
2984 bp->b_pages, bp->b_npages);
2985 }
2986 }
2987
2988 /*
2989 * Perform page invalidation when a buffer is released. The fully invalid
2990 * pages will be reclaimed later in vfs_vmio_truncate().
2991 */
2992 static void
2993 vfs_vmio_invalidate(struct buf *bp)
2994 {
2995 vm_object_t obj;
2996 vm_page_t m;
2997 int flags, i, resid, poffset, presid;
2998
2999 if (buf_mapped(bp)) {
3000 BUF_CHECK_MAPPED(bp);
3001 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
3002 } else
3003 BUF_CHECK_UNMAPPED(bp);
3004 /*
3005 * Get the base offset and length of the buffer. Note that
3006 * in the VMIO case if the buffer block size is not
3007 * page-aligned then b_data pointer may not be page-aligned.
3008 * But our b_pages[] array *IS* page aligned.
3009 *
3010 * block sizes less then DEV_BSIZE (usually 512) are not
3011 * supported due to the page granularity bits (m->valid,
3012 * m->dirty, etc...).
3013 *
3014 * See man buf(9) for more information
3015 */
3016 flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3017 obj = bp->b_bufobj->bo_object;
3018 resid = bp->b_bufsize;
3019 poffset = bp->b_offset & PAGE_MASK;
3020 VM_OBJECT_WLOCK(obj);
3021 for (i = 0; i < bp->b_npages; i++) {
3022 m = bp->b_pages[i];
3023 if (m == bogus_page)
3024 panic("vfs_vmio_invalidate: Unexpected bogus page.");
3025 bp->b_pages[i] = NULL;
3026
3027 presid = resid > (PAGE_SIZE - poffset) ?
3028 (PAGE_SIZE - poffset) : resid;
3029 KASSERT(presid >= 0, ("brelse: extra page"));
3030 vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
3031 if (pmap_page_wired_mappings(m) == 0)
3032 vm_page_set_invalid(m, poffset, presid);
3033 vm_page_sunbusy(m);
3034 vm_page_release_locked(m, flags);
3035 resid -= presid;
3036 poffset = 0;
3037 }
3038 VM_OBJECT_WUNLOCK(obj);
3039 bp->b_npages = 0;
3040 }
3041
3042 /*
3043 * Page-granular truncation of an existing VMIO buffer.
3044 */
3045 static void
3046 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3047 {
3048 vm_object_t obj;
3049 vm_page_t m;
3050 int flags, i;
3051
3052 if (bp->b_npages == desiredpages)
3053 return;
3054
3055 if (buf_mapped(bp)) {
3056 BUF_CHECK_MAPPED(bp);
3057 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3058 (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3059 } else
3060 BUF_CHECK_UNMAPPED(bp);
3061
3062 /*
3063 * The object lock is needed only if we will attempt to free pages.
3064 */
3065 flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3066 if ((bp->b_flags & B_DIRECT) != 0) {
3067 flags |= VPR_TRYFREE;
3068 obj = bp->b_bufobj->bo_object;
3069 VM_OBJECT_WLOCK(obj);
3070 } else {
3071 obj = NULL;
3072 }
3073 for (i = desiredpages; i < bp->b_npages; i++) {
3074 m = bp->b_pages[i];
3075 KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3076 bp->b_pages[i] = NULL;
3077 if (obj != NULL)
3078 vm_page_release_locked(m, flags);
3079 else
3080 vm_page_release(m, flags);
3081 }
3082 if (obj != NULL)
3083 VM_OBJECT_WUNLOCK(obj);
3084 bp->b_npages = desiredpages;
3085 }
3086
3087 /*
3088 * Byte granular extension of VMIO buffers.
3089 */
3090 static void
3091 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3092 {
3093 /*
3094 * We are growing the buffer, possibly in a
3095 * byte-granular fashion.
3096 */
3097 vm_object_t obj;
3098 vm_offset_t toff;
3099 vm_offset_t tinc;
3100 vm_page_t m;
3101
3102 /*
3103 * Step 1, bring in the VM pages from the object, allocating
3104 * them if necessary. We must clear B_CACHE if these pages
3105 * are not valid for the range covered by the buffer.
3106 */
3107 obj = bp->b_bufobj->bo_object;
3108 if (bp->b_npages < desiredpages) {
3109 KASSERT(desiredpages <= atop(maxbcachebuf),
3110 ("vfs_vmio_extend past maxbcachebuf %p %d %u",
3111 bp, desiredpages, maxbcachebuf));
3112
3113 /*
3114 * We must allocate system pages since blocking
3115 * here could interfere with paging I/O, no
3116 * matter which process we are.
3117 *
3118 * Only exclusive busy can be tested here.
3119 * Blocking on shared busy might lead to
3120 * deadlocks once allocbuf() is called after
3121 * pages are vfs_busy_pages().
3122 */
3123 (void)vm_page_grab_pages_unlocked(obj,
3124 OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3125 VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3126 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3127 &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3128 bp->b_npages = desiredpages;
3129 }
3130
3131 /*
3132 * Step 2. We've loaded the pages into the buffer,
3133 * we have to figure out if we can still have B_CACHE
3134 * set. Note that B_CACHE is set according to the
3135 * byte-granular range ( bcount and size ), not the
3136 * aligned range ( newbsize ).
3137 *
3138 * The VM test is against m->valid, which is DEV_BSIZE
3139 * aligned. Needless to say, the validity of the data
3140 * needs to also be DEV_BSIZE aligned. Note that this
3141 * fails with NFS if the server or some other client
3142 * extends the file's EOF. If our buffer is resized,
3143 * B_CACHE may remain set! XXX
3144 */
3145 toff = bp->b_bcount;
3146 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3147 while ((bp->b_flags & B_CACHE) && toff < size) {
3148 vm_pindex_t pi;
3149
3150 if (tinc > (size - toff))
3151 tinc = size - toff;
3152 pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3153 m = bp->b_pages[pi];
3154 vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3155 toff += tinc;
3156 tinc = PAGE_SIZE;
3157 }
3158
3159 /*
3160 * Step 3, fixup the KVA pmap.
3161 */
3162 if (buf_mapped(bp))
3163 bpmap_qenter(bp);
3164 else
3165 BUF_CHECK_UNMAPPED(bp);
3166 }
3167
3168 /*
3169 * Check to see if a block at a particular lbn is available for a clustered
3170 * write.
3171 */
3172 static int
3173 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3174 {
3175 struct buf *bpa;
3176 int match;
3177
3178 match = 0;
3179
3180 /* If the buf isn't in core skip it */
3181 if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3182 return (0);
3183
3184 /* If the buf is busy we don't want to wait for it */
3185 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3186 return (0);
3187
3188 /* Only cluster with valid clusterable delayed write buffers */
3189 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3190 (B_DELWRI | B_CLUSTEROK))
3191 goto done;
3192
3193 if (bpa->b_bufsize != size)
3194 goto done;
3195
3196 /*
3197 * Check to see if it is in the expected place on disk and that the
3198 * block has been mapped.
3199 */
3200 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3201 match = 1;
3202 done:
3203 BUF_UNLOCK(bpa);
3204 return (match);
3205 }
3206
3207 /*
3208 * vfs_bio_awrite:
3209 *
3210 * Implement clustered async writes for clearing out B_DELWRI buffers.
3211 * This is much better then the old way of writing only one buffer at
3212 * a time. Note that we may not be presented with the buffers in the
3213 * correct order, so we search for the cluster in both directions.
3214 */
3215 int
3216 vfs_bio_awrite(struct buf *bp)
3217 {
3218 struct bufobj *bo;
3219 int i;
3220 int j;
3221 daddr_t lblkno = bp->b_lblkno;
3222 struct vnode *vp = bp->b_vp;
3223 int ncl;
3224 int nwritten;
3225 int size;
3226 int maxcl;
3227 int gbflags;
3228
3229 bo = &vp->v_bufobj;
3230 gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3231 /*
3232 * right now we support clustered writing only to regular files. If
3233 * we find a clusterable block we could be in the middle of a cluster
3234 * rather then at the beginning.
3235 */
3236 if ((vp->v_type == VREG) &&
3237 (vp->v_mount != 0) && /* Only on nodes that have the size info */
3238 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3239 size = vp->v_mount->mnt_stat.f_iosize;
3240 maxcl = maxphys / size;
3241
3242 BO_RLOCK(bo);
3243 for (i = 1; i < maxcl; i++)
3244 if (vfs_bio_clcheck(vp, size, lblkno + i,
3245 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3246 break;
3247
3248 for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3249 if (vfs_bio_clcheck(vp, size, lblkno - j,
3250 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3251 break;
3252 BO_RUNLOCK(bo);
3253 --j;
3254 ncl = i + j;
3255 /*
3256 * this is a possible cluster write
3257 */
3258 if (ncl != 1) {
3259 BUF_UNLOCK(bp);
3260 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3261 gbflags);
3262 return (nwritten);
3263 }
3264 }
3265 bremfree(bp);
3266 bp->b_flags |= B_ASYNC;
3267 /*
3268 * default (old) behavior, writing out only one block
3269 *
3270 * XXX returns b_bufsize instead of b_bcount for nwritten?
3271 */
3272 nwritten = bp->b_bufsize;
3273 (void) bwrite(bp);
3274
3275 return (nwritten);
3276 }
3277
3278 /*
3279 * getnewbuf_kva:
3280 *
3281 * Allocate KVA for an empty buf header according to gbflags.
3282 */
3283 static int
3284 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3285 {
3286
3287 if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3288 /*
3289 * In order to keep fragmentation sane we only allocate kva
3290 * in BKVASIZE chunks. XXX with vmem we can do page size.
3291 */
3292 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3293
3294 if (maxsize != bp->b_kvasize &&
3295 bufkva_alloc(bp, maxsize, gbflags))
3296 return (ENOSPC);
3297 }
3298 return (0);
3299 }
3300
3301 /*
3302 * getnewbuf:
3303 *
3304 * Find and initialize a new buffer header, freeing up existing buffers
3305 * in the bufqueues as necessary. The new buffer is returned locked.
3306 *
3307 * We block if:
3308 * We have insufficient buffer headers
3309 * We have insufficient buffer space
3310 * buffer_arena is too fragmented ( space reservation fails )
3311 * If we have to flush dirty buffers ( but we try to avoid this )
3312 *
3313 * The caller is responsible for releasing the reserved bufspace after
3314 * allocbuf() is called.
3315 */
3316 static struct buf *
3317 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3318 {
3319 struct bufdomain *bd;
3320 struct buf *bp;
3321 bool metadata, reserved;
3322
3323 bp = NULL;
3324 KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3325 ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3326 if (!unmapped_buf_allowed)
3327 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3328
3329 if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3330 vp->v_type == VCHR)
3331 metadata = true;
3332 else
3333 metadata = false;
3334 if (vp == NULL)
3335 bd = &bdomain[0];
3336 else
3337 bd = &bdomain[vp->v_bufobj.bo_domain];
3338
3339 counter_u64_add(getnewbufcalls, 1);
3340 reserved = false;
3341 do {
3342 if (reserved == false &&
3343 bufspace_reserve(bd, maxsize, metadata) != 0) {
3344 counter_u64_add(getnewbufrestarts, 1);
3345 continue;
3346 }
3347 reserved = true;
3348 if ((bp = buf_alloc(bd)) == NULL) {
3349 counter_u64_add(getnewbufrestarts, 1);
3350 continue;
3351 }
3352 if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3353 return (bp);
3354 break;
3355 } while (buf_recycle(bd, false) == 0);
3356
3357 if (reserved)
3358 bufspace_release(bd, maxsize);
3359 if (bp != NULL) {
3360 bp->b_flags |= B_INVAL;
3361 brelse(bp);
3362 }
3363 bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3364
3365 return (NULL);
3366 }
3367
3368 /*
3369 * buf_daemon:
3370 *
3371 * buffer flushing daemon. Buffers are normally flushed by the
3372 * update daemon but if it cannot keep up this process starts to
3373 * take the load in an attempt to prevent getnewbuf() from blocking.
3374 */
3375 static struct kproc_desc buf_kp = {
3376 "bufdaemon",
3377 buf_daemon,
3378 &bufdaemonproc
3379 };
3380 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3381
3382 static int
3383 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3384 {
3385 int flushed;
3386
3387 flushed = flushbufqueues(vp, bd, target, 0);
3388 if (flushed == 0) {
3389 /*
3390 * Could not find any buffers without rollback
3391 * dependencies, so just write the first one
3392 * in the hopes of eventually making progress.
3393 */
3394 if (vp != NULL && target > 2)
3395 target /= 2;
3396 flushbufqueues(vp, bd, target, 1);
3397 }
3398 return (flushed);
3399 }
3400
3401 static void
3402 buf_daemon_shutdown(void *arg __unused, int howto __unused)
3403 {
3404 int error;
3405
3406 mtx_lock(&bdlock);
3407 bd_shutdown = true;
3408 wakeup(&bd_request);
3409 error = msleep(&bd_shutdown, &bdlock, 0, "buf_daemon_shutdown",
3410 60 * hz);
3411 mtx_unlock(&bdlock);
3412 if (error != 0)
3413 printf("bufdaemon wait error: %d\n", error);
3414 }
3415
3416 static void
3417 buf_daemon(void)
3418 {
3419 struct bufdomain *bd;
3420 int speedupreq;
3421 int lodirty;
3422 int i;
3423
3424 /*
3425 * This process needs to be suspended prior to shutdown sync.
3426 */
3427 EVENTHANDLER_REGISTER(shutdown_pre_sync, buf_daemon_shutdown, NULL,
3428 SHUTDOWN_PRI_LAST + 100);
3429
3430 /*
3431 * Start the buf clean daemons as children threads.
3432 */
3433 for (i = 0 ; i < buf_domains; i++) {
3434 int error;
3435
3436 error = kthread_add((void (*)(void *))bufspace_daemon,
3437 &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3438 if (error)
3439 panic("error %d spawning bufspace daemon", error);
3440 }
3441
3442 /*
3443 * This process is allowed to take the buffer cache to the limit
3444 */
3445 curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3446 mtx_lock(&bdlock);
3447 while (!bd_shutdown) {
3448 bd_request = 0;
3449 mtx_unlock(&bdlock);
3450
3451 /*
3452 * Save speedupreq for this pass and reset to capture new
3453 * requests.
3454 */
3455 speedupreq = bd_speedupreq;
3456 bd_speedupreq = 0;
3457
3458 /*
3459 * Flush each domain sequentially according to its level and
3460 * the speedup request.
3461 */
3462 for (i = 0; i < buf_domains; i++) {
3463 bd = &bdomain[i];
3464 if (speedupreq)
3465 lodirty = bd->bd_numdirtybuffers / 2;
3466 else
3467 lodirty = bd->bd_lodirtybuffers;
3468 while (bd->bd_numdirtybuffers > lodirty) {
3469 if (buf_flush(NULL, bd,
3470 bd->bd_numdirtybuffers - lodirty) == 0)
3471 break;
3472 kern_yield(PRI_USER);
3473 }
3474 }
3475
3476 /*
3477 * Only clear bd_request if we have reached our low water
3478 * mark. The buf_daemon normally waits 1 second and
3479 * then incrementally flushes any dirty buffers that have
3480 * built up, within reason.
3481 *
3482 * If we were unable to hit our low water mark and couldn't
3483 * find any flushable buffers, we sleep for a short period
3484 * to avoid endless loops on unlockable buffers.
3485 */
3486 mtx_lock(&bdlock);
3487 if (bd_shutdown)
3488 break;
3489 if (BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3490 /*
3491 * We reached our low water mark, reset the
3492 * request and sleep until we are needed again.
3493 * The sleep is just so the suspend code works.
3494 */
3495 bd_request = 0;
3496 /*
3497 * Do an extra wakeup in case dirty threshold
3498 * changed via sysctl and the explicit transition
3499 * out of shortfall was missed.
3500 */
3501 bdirtywakeup();
3502 if (runningbufspace <= lorunningspace)
3503 runningwakeup();
3504 msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3505 } else {
3506 /*
3507 * We couldn't find any flushable dirty buffers but
3508 * still have too many dirty buffers, we
3509 * have to sleep and try again. (rare)
3510 */
3511 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3512 }
3513 }
3514 wakeup(&bd_shutdown);
3515 mtx_unlock(&bdlock);
3516 kthread_exit();
3517 }
3518
3519 /*
3520 * flushbufqueues:
3521 *
3522 * Try to flush a buffer in the dirty queue. We must be careful to
3523 * free up B_INVAL buffers instead of write them, which NFS is
3524 * particularly sensitive to.
3525 */
3526 static int flushwithdeps = 0;
3527 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
3528 &flushwithdeps, 0,
3529 "Number of buffers flushed with dependencies that require rollbacks");
3530
3531 static int
3532 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3533 int flushdeps)
3534 {
3535 struct bufqueue *bq;
3536 struct buf *sentinel;
3537 struct vnode *vp;
3538 struct mount *mp;
3539 struct buf *bp;
3540 int hasdeps;
3541 int flushed;
3542 int error;
3543 bool unlock;
3544
3545 flushed = 0;
3546 bq = &bd->bd_dirtyq;
3547 bp = NULL;
3548 sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3549 sentinel->b_qindex = QUEUE_SENTINEL;
3550 BQ_LOCK(bq);
3551 TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3552 BQ_UNLOCK(bq);
3553 while (flushed != target) {
3554 maybe_yield();
3555 BQ_LOCK(bq);
3556 bp = TAILQ_NEXT(sentinel, b_freelist);
3557 if (bp != NULL) {
3558 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3559 TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3560 b_freelist);
3561 } else {
3562 BQ_UNLOCK(bq);
3563 break;
3564 }
3565 /*
3566 * Skip sentinels inserted by other invocations of the
3567 * flushbufqueues(), taking care to not reorder them.
3568 *
3569 * Only flush the buffers that belong to the
3570 * vnode locked by the curthread.
3571 */
3572 if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3573 bp->b_vp != lvp)) {
3574 BQ_UNLOCK(bq);
3575 continue;
3576 }
3577 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3578 BQ_UNLOCK(bq);
3579 if (error != 0)
3580 continue;
3581
3582 /*
3583 * BKGRDINPROG can only be set with the buf and bufobj
3584 * locks both held. We tolerate a race to clear it here.
3585 */
3586 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3587 (bp->b_flags & B_DELWRI) == 0) {
3588 BUF_UNLOCK(bp);
3589 continue;
3590 }
3591 if (bp->b_flags & B_INVAL) {
3592 bremfreef(bp);
3593 brelse(bp);
3594 flushed++;
3595 continue;
3596 }
3597
3598 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3599 if (flushdeps == 0) {
3600 BUF_UNLOCK(bp);
3601 continue;
3602 }
3603 hasdeps = 1;
3604 } else
3605 hasdeps = 0;
3606 /*
3607 * We must hold the lock on a vnode before writing
3608 * one of its buffers. Otherwise we may confuse, or
3609 * in the case of a snapshot vnode, deadlock the
3610 * system.
3611 *
3612 * The lock order here is the reverse of the normal
3613 * of vnode followed by buf lock. This is ok because
3614 * the NOWAIT will prevent deadlock.
3615 */
3616 vp = bp->b_vp;
3617 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3618 BUF_UNLOCK(bp);
3619 continue;
3620 }
3621 if (lvp == NULL) {
3622 unlock = true;
3623 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3624 } else {
3625 ASSERT_VOP_LOCKED(vp, "getbuf");
3626 unlock = false;
3627 error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3628 vn_lock(vp, LK_TRYUPGRADE);
3629 }
3630 if (error == 0) {
3631 CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3632 bp, bp->b_vp, bp->b_flags);
3633 if (curproc == bufdaemonproc) {
3634 vfs_bio_awrite(bp);
3635 } else {
3636 bremfree(bp);
3637 bwrite(bp);
3638 counter_u64_add(notbufdflushes, 1);
3639 }
3640 vn_finished_write(mp);
3641 if (unlock)
3642 VOP_UNLOCK(vp);
3643 flushwithdeps += hasdeps;
3644 flushed++;
3645
3646 /*
3647 * Sleeping on runningbufspace while holding
3648 * vnode lock leads to deadlock.
3649 */
3650 if (curproc == bufdaemonproc &&
3651 runningbufspace > hirunningspace)
3652 waitrunningbufspace();
3653 continue;
3654 }
3655 vn_finished_write(mp);
3656 BUF_UNLOCK(bp);
3657 }
3658 BQ_LOCK(bq);
3659 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3660 BQ_UNLOCK(bq);
3661 free(sentinel, M_TEMP);
3662 return (flushed);
3663 }
3664
3665 /*
3666 * Check to see if a block is currently memory resident.
3667 */
3668 struct buf *
3669 incore(struct bufobj *bo, daddr_t blkno)
3670 {
3671 return (gbincore_unlocked(bo, blkno));
3672 }
3673
3674 /*
3675 * Returns true if no I/O is needed to access the
3676 * associated VM object. This is like incore except
3677 * it also hunts around in the VM system for the data.
3678 */
3679 bool
3680 inmem(struct vnode * vp, daddr_t blkno)
3681 {
3682 vm_object_t obj;
3683 vm_offset_t toff, tinc, size;
3684 vm_page_t m, n;
3685 vm_ooffset_t off;
3686 int valid;
3687
3688 ASSERT_VOP_LOCKED(vp, "inmem");
3689
3690 if (incore(&vp->v_bufobj, blkno))
3691 return (true);
3692 if (vp->v_mount == NULL)
3693 return (false);
3694 obj = vp->v_object;
3695 if (obj == NULL)
3696 return (false);
3697
3698 size = PAGE_SIZE;
3699 if (size > vp->v_mount->mnt_stat.f_iosize)
3700 size = vp->v_mount->mnt_stat.f_iosize;
3701 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3702
3703 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3704 m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3705 recheck:
3706 if (m == NULL)
3707 return (false);
3708
3709 tinc = size;
3710 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3711 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3712 /*
3713 * Consider page validity only if page mapping didn't change
3714 * during the check.
3715 */
3716 valid = vm_page_is_valid(m,
3717 (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
3718 n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3719 if (m != n) {
3720 m = n;
3721 goto recheck;
3722 }
3723 if (!valid)
3724 return (false);
3725 }
3726 return (true);
3727 }
3728
3729 /*
3730 * Set the dirty range for a buffer based on the status of the dirty
3731 * bits in the pages comprising the buffer. The range is limited
3732 * to the size of the buffer.
3733 *
3734 * Tell the VM system that the pages associated with this buffer
3735 * are clean. This is used for delayed writes where the data is
3736 * going to go to disk eventually without additional VM intevention.
3737 *
3738 * Note that while we only really need to clean through to b_bcount, we
3739 * just go ahead and clean through to b_bufsize.
3740 */
3741 static void
3742 vfs_clean_pages_dirty_buf(struct buf *bp)
3743 {
3744 vm_ooffset_t foff, noff, eoff;
3745 vm_page_t m;
3746 int i;
3747
3748 if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3749 return;
3750
3751 foff = bp->b_offset;
3752 KASSERT(bp->b_offset != NOOFFSET,
3753 ("vfs_clean_pages_dirty_buf: no buffer offset"));
3754
3755 vfs_busy_pages_acquire(bp);
3756 vfs_setdirty_range(bp);
3757 for (i = 0; i < bp->b_npages; i++) {
3758 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3759 eoff = noff;
3760 if (eoff > bp->b_offset + bp->b_bufsize)
3761 eoff = bp->b_offset + bp->b_bufsize;
3762 m = bp->b_pages[i];
3763 vfs_page_set_validclean(bp, foff, m);
3764 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3765 foff = noff;
3766 }
3767 vfs_busy_pages_release(bp);
3768 }
3769
3770 static void
3771 vfs_setdirty_range(struct buf *bp)
3772 {
3773 vm_offset_t boffset;
3774 vm_offset_t eoffset;
3775 int i;
3776
3777 /*
3778 * test the pages to see if they have been modified directly
3779 * by users through the VM system.
3780 */
3781 for (i = 0; i < bp->b_npages; i++)
3782 vm_page_test_dirty(bp->b_pages[i]);
3783
3784 /*
3785 * Calculate the encompassing dirty range, boffset and eoffset,
3786 * (eoffset - boffset) bytes.
3787 */
3788
3789 for (i = 0; i < bp->b_npages; i++) {
3790 if (bp->b_pages[i]->dirty)
3791 break;
3792 }
3793 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3794
3795 for (i = bp->b_npages - 1; i >= 0; --i) {
3796 if (bp->b_pages[i]->dirty) {
3797 break;
3798 }
3799 }
3800 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3801
3802 /*
3803 * Fit it to the buffer.
3804 */
3805
3806 if (eoffset > bp->b_bcount)
3807 eoffset = bp->b_bcount;
3808
3809 /*
3810 * If we have a good dirty range, merge with the existing
3811 * dirty range.
3812 */
3813
3814 if (boffset < eoffset) {
3815 if (bp->b_dirtyoff > boffset)
3816 bp->b_dirtyoff = boffset;
3817 if (bp->b_dirtyend < eoffset)
3818 bp->b_dirtyend = eoffset;
3819 }
3820 }
3821
3822 /*
3823 * Allocate the KVA mapping for an existing buffer.
3824 * If an unmapped buffer is provided but a mapped buffer is requested, take
3825 * also care to properly setup mappings between pages and KVA.
3826 */
3827 static void
3828 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3829 {
3830 int bsize, maxsize, need_mapping, need_kva;
3831 off_t offset;
3832
3833 need_mapping = bp->b_data == unmapped_buf &&
3834 (gbflags & GB_UNMAPPED) == 0;
3835 need_kva = bp->b_kvabase == unmapped_buf &&
3836 bp->b_data == unmapped_buf &&
3837 (gbflags & GB_KVAALLOC) != 0;
3838 if (!need_mapping && !need_kva)
3839 return;
3840
3841 BUF_CHECK_UNMAPPED(bp);
3842
3843 if (need_mapping && bp->b_kvabase != unmapped_buf) {
3844 /*
3845 * Buffer is not mapped, but the KVA was already
3846 * reserved at the time of the instantiation. Use the
3847 * allocated space.
3848 */
3849 goto has_addr;
3850 }
3851
3852 /*
3853 * Calculate the amount of the address space we would reserve
3854 * if the buffer was mapped.
3855 */
3856 bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3857 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3858 offset = blkno * bsize;
3859 maxsize = size + (offset & PAGE_MASK);
3860 maxsize = imax(maxsize, bsize);
3861
3862 while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3863 if ((gbflags & GB_NOWAIT_BD) != 0) {
3864 /*
3865 * XXXKIB: defragmentation cannot
3866 * succeed, not sure what else to do.
3867 */
3868 panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3869 }
3870 counter_u64_add(mappingrestarts, 1);
3871 bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3872 }
3873 has_addr:
3874 if (need_mapping) {
3875 /* b_offset is handled by bpmap_qenter. */
3876 bp->b_data = bp->b_kvabase;
3877 BUF_CHECK_MAPPED(bp);
3878 bpmap_qenter(bp);
3879 }
3880 }
3881
3882 struct buf *
3883 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3884 int flags)
3885 {
3886 struct buf *bp;
3887 int error;
3888
3889 error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
3890 if (error != 0)
3891 return (NULL);
3892 return (bp);
3893 }
3894
3895 /*
3896 * getblkx:
3897 *
3898 * Get a block given a specified block and offset into a file/device.
3899 * The buffers B_DONE bit will be cleared on return, making it almost
3900 * ready for an I/O initiation. B_INVAL may or may not be set on
3901 * return. The caller should clear B_INVAL prior to initiating a
3902 * READ.
3903 *
3904 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3905 * an existing buffer.
3906 *
3907 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
3908 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3909 * and then cleared based on the backing VM. If the previous buffer is
3910 * non-0-sized but invalid, B_CACHE will be cleared.
3911 *
3912 * If getblk() must create a new buffer, the new buffer is returned with
3913 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3914 * case it is returned with B_INVAL clear and B_CACHE set based on the
3915 * backing VM.
3916 *
3917 * getblk() also forces a bwrite() for any B_DELWRI buffer whose
3918 * B_CACHE bit is clear.
3919 *
3920 * What this means, basically, is that the caller should use B_CACHE to
3921 * determine whether the buffer is fully valid or not and should clear
3922 * B_INVAL prior to issuing a read. If the caller intends to validate
3923 * the buffer by loading its data area with something, the caller needs
3924 * to clear B_INVAL. If the caller does this without issuing an I/O,
3925 * the caller should set B_CACHE ( as an optimization ), else the caller
3926 * should issue the I/O and biodone() will set B_CACHE if the I/O was
3927 * a write attempt or if it was a successful read. If the caller
3928 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3929 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
3930 *
3931 * The blkno parameter is the logical block being requested. Normally
3932 * the mapping of logical block number to disk block address is done
3933 * by calling VOP_BMAP(). However, if the mapping is already known, the
3934 * disk block address can be passed using the dblkno parameter. If the
3935 * disk block address is not known, then the same value should be passed
3936 * for blkno and dblkno.
3937 */
3938 int
3939 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
3940 int slptimeo, int flags, struct buf **bpp)
3941 {
3942 struct buf *bp;
3943 struct bufobj *bo;
3944 daddr_t d_blkno;
3945 int bsize, error, maxsize, vmio;
3946 off_t offset;
3947
3948 CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3949 KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3950 ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3951 if (vp->v_type != VCHR)
3952 ASSERT_VOP_LOCKED(vp, "getblk");
3953 if (size > maxbcachebuf)
3954 panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
3955 maxbcachebuf);
3956 if (!unmapped_buf_allowed)
3957 flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3958
3959 bo = &vp->v_bufobj;
3960 d_blkno = dblkno;
3961
3962 /* Attempt lockless lookup first. */
3963 bp = gbincore_unlocked(bo, blkno);
3964 if (bp == NULL)
3965 goto newbuf_unlocked;
3966
3967 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
3968 0);
3969 if (error != 0)
3970 goto loop;
3971
3972 /* Verify buf identify has not changed since lookup. */
3973 if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
3974 goto foundbuf_fastpath;
3975
3976 /* It changed, fallback to locked lookup. */
3977 BUF_UNLOCK_RAW(bp);
3978
3979 loop:
3980 BO_RLOCK(bo);
3981 bp = gbincore(bo, blkno);
3982 if (bp != NULL) {
3983 int lockflags;
3984
3985 /*
3986 * Buffer is in-core. If the buffer is not busy nor managed,
3987 * it must be on a queue.
3988 */
3989 lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
3990 ((flags & GB_LOCK_NOWAIT) != 0 ? LK_NOWAIT : LK_SLEEPFAIL);
3991 #ifdef WITNESS
3992 lockflags |= (flags & GB_NOWITNESS) != 0 ? LK_NOWITNESS : 0;
3993 #endif
3994
3995 error = BUF_TIMELOCK(bp, lockflags,
3996 BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3997
3998 /*
3999 * If we slept and got the lock we have to restart in case
4000 * the buffer changed identities.
4001 */
4002 if (error == ENOLCK)
4003 goto loop;
4004 /* We timed out or were interrupted. */
4005 else if (error != 0)
4006 return (error);
4007
4008 foundbuf_fastpath:
4009 /* If recursed, assume caller knows the rules. */
4010 if (BUF_LOCKRECURSED(bp))
4011 goto end;
4012
4013 /*
4014 * The buffer is locked. B_CACHE is cleared if the buffer is
4015 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set
4016 * and for a VMIO buffer B_CACHE is adjusted according to the
4017 * backing VM cache.
4018 */
4019 if (bp->b_flags & B_INVAL)
4020 bp->b_flags &= ~B_CACHE;
4021 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
4022 bp->b_flags |= B_CACHE;
4023 if (bp->b_flags & B_MANAGED)
4024 MPASS(bp->b_qindex == QUEUE_NONE);
4025 else
4026 bremfree(bp);
4027
4028 /*
4029 * check for size inconsistencies for non-VMIO case.
4030 */
4031 if (bp->b_bcount != size) {
4032 if ((bp->b_flags & B_VMIO) == 0 ||
4033 (size > bp->b_kvasize)) {
4034 if (bp->b_flags & B_DELWRI) {
4035 bp->b_flags |= B_NOCACHE;
4036 bwrite(bp);
4037 } else {
4038 if (LIST_EMPTY(&bp->b_dep)) {
4039 bp->b_flags |= B_RELBUF;
4040 brelse(bp);
4041 } else {
4042 bp->b_flags |= B_NOCACHE;
4043 bwrite(bp);
4044 }
4045 }
4046 goto loop;
4047 }
4048 }
4049
4050 /*
4051 * Handle the case of unmapped buffer which should
4052 * become mapped, or the buffer for which KVA
4053 * reservation is requested.
4054 */
4055 bp_unmapped_get_kva(bp, blkno, size, flags);
4056
4057 /*
4058 * If the size is inconsistent in the VMIO case, we can resize
4059 * the buffer. This might lead to B_CACHE getting set or
4060 * cleared. If the size has not changed, B_CACHE remains
4061 * unchanged from its previous state.
4062 */
4063 allocbuf(bp, size);
4064
4065 KASSERT(bp->b_offset != NOOFFSET,
4066 ("getblk: no buffer offset"));
4067
4068 /*
4069 * A buffer with B_DELWRI set and B_CACHE clear must
4070 * be committed before we can return the buffer in
4071 * order to prevent the caller from issuing a read
4072 * ( due to B_CACHE not being set ) and overwriting
4073 * it.
4074 *
4075 * Most callers, including NFS and FFS, need this to
4076 * operate properly either because they assume they
4077 * can issue a read if B_CACHE is not set, or because
4078 * ( for example ) an uncached B_DELWRI might loop due
4079 * to softupdates re-dirtying the buffer. In the latter
4080 * case, B_CACHE is set after the first write completes,
4081 * preventing further loops.
4082 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
4083 * above while extending the buffer, we cannot allow the
4084 * buffer to remain with B_CACHE set after the write
4085 * completes or it will represent a corrupt state. To
4086 * deal with this we set B_NOCACHE to scrap the buffer
4087 * after the write.
4088 *
4089 * We might be able to do something fancy, like setting
4090 * B_CACHE in bwrite() except if B_DELWRI is already set,
4091 * so the below call doesn't set B_CACHE, but that gets real
4092 * confusing. This is much easier.
4093 */
4094
4095 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
4096 bp->b_flags |= B_NOCACHE;
4097 bwrite(bp);
4098 goto loop;
4099 }
4100 bp->b_flags &= ~B_DONE;
4101 } else {
4102 /*
4103 * Buffer is not in-core, create new buffer. The buffer
4104 * returned by getnewbuf() is locked. Note that the returned
4105 * buffer is also considered valid (not marked B_INVAL).
4106 */
4107 BO_RUNLOCK(bo);
4108 newbuf_unlocked:
4109 /*
4110 * If the user does not want us to create the buffer, bail out
4111 * here.
4112 */
4113 if (flags & GB_NOCREAT)
4114 return (EEXIST);
4115
4116 bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
4117 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4118 offset = blkno * bsize;
4119 vmio = vp->v_object != NULL;
4120 if (vmio) {
4121 maxsize = size + (offset & PAGE_MASK);
4122 } else {
4123 maxsize = size;
4124 /* Do not allow non-VMIO notmapped buffers. */
4125 flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4126 }
4127 maxsize = imax(maxsize, bsize);
4128 if ((flags & GB_NOSPARSE) != 0 && vmio &&
4129 !vn_isdisk(vp)) {
4130 error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4131 KASSERT(error != EOPNOTSUPP,
4132 ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4133 vp));
4134 if (error != 0)
4135 return (error);
4136 if (d_blkno == -1)
4137 return (EJUSTRETURN);
4138 }
4139
4140 bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4141 if (bp == NULL) {
4142 if (slpflag || slptimeo)
4143 return (ETIMEDOUT);
4144 /*
4145 * XXX This is here until the sleep path is diagnosed
4146 * enough to work under very low memory conditions.
4147 *
4148 * There's an issue on low memory, 4BSD+non-preempt
4149 * systems (eg MIPS routers with 32MB RAM) where buffer
4150 * exhaustion occurs without sleeping for buffer
4151 * reclaimation. This just sticks in a loop and
4152 * constantly attempts to allocate a buffer, which
4153 * hits exhaustion and tries to wakeup bufdaemon.
4154 * This never happens because we never yield.
4155 *
4156 * The real solution is to identify and fix these cases
4157 * so we aren't effectively busy-waiting in a loop
4158 * until the reclaimation path has cycles to run.
4159 */
4160 kern_yield(PRI_USER);
4161 goto loop;
4162 }
4163
4164 /*
4165 * This code is used to make sure that a buffer is not
4166 * created while the getnewbuf routine is blocked.
4167 * This can be a problem whether the vnode is locked or not.
4168 * If the buffer is created out from under us, we have to
4169 * throw away the one we just created.
4170 *
4171 * Note: this must occur before we associate the buffer
4172 * with the vp especially considering limitations in
4173 * the splay tree implementation when dealing with duplicate
4174 * lblkno's.
4175 */
4176 BO_LOCK(bo);
4177 if (gbincore(bo, blkno)) {
4178 BO_UNLOCK(bo);
4179 bp->b_flags |= B_INVAL;
4180 bufspace_release(bufdomain(bp), maxsize);
4181 brelse(bp);
4182 goto loop;
4183 }
4184
4185 /*
4186 * Insert the buffer into the hash, so that it can
4187 * be found by incore.
4188 */
4189 bp->b_lblkno = blkno;
4190 bp->b_blkno = d_blkno;
4191 bp->b_offset = offset;
4192 bgetvp(vp, bp);
4193 BO_UNLOCK(bo);
4194
4195 /*
4196 * set B_VMIO bit. allocbuf() the buffer bigger. Since the
4197 * buffer size starts out as 0, B_CACHE will be set by
4198 * allocbuf() for the VMIO case prior to it testing the
4199 * backing store for validity.
4200 */
4201
4202 if (vmio) {
4203 bp->b_flags |= B_VMIO;
4204 KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4205 ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4206 bp, vp->v_object, bp->b_bufobj->bo_object));
4207 } else {
4208 bp->b_flags &= ~B_VMIO;
4209 KASSERT(bp->b_bufobj->bo_object == NULL,
4210 ("ARGH! has b_bufobj->bo_object %p %p\n",
4211 bp, bp->b_bufobj->bo_object));
4212 BUF_CHECK_MAPPED(bp);
4213 }
4214
4215 allocbuf(bp, size);
4216 bufspace_release(bufdomain(bp), maxsize);
4217 bp->b_flags &= ~B_DONE;
4218 }
4219 CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4220 end:
4221 buf_track(bp, __func__);
4222 KASSERT(bp->b_bufobj == bo,
4223 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4224 *bpp = bp;
4225 return (0);
4226 }
4227
4228 /*
4229 * Get an empty, disassociated buffer of given size. The buffer is initially
4230 * set to B_INVAL.
4231 */
4232 struct buf *
4233 geteblk(int size, int flags)
4234 {
4235 struct buf *bp;
4236 int maxsize;
4237
4238 maxsize = (size + BKVAMASK) & ~BKVAMASK;
4239 while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4240 if ((flags & GB_NOWAIT_BD) &&
4241 (curthread->td_pflags & TDP_BUFNEED) != 0)
4242 return (NULL);
4243 }
4244 allocbuf(bp, size);
4245 bufspace_release(bufdomain(bp), maxsize);
4246 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
4247 return (bp);
4248 }
4249
4250 /*
4251 * Truncate the backing store for a non-vmio buffer.
4252 */
4253 static void
4254 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4255 {
4256
4257 if (bp->b_flags & B_MALLOC) {
4258 /*
4259 * malloced buffers are not shrunk
4260 */
4261 if (newbsize == 0) {
4262 bufmallocadjust(bp, 0);
4263 free(bp->b_data, M_BIOBUF);
4264 bp->b_data = bp->b_kvabase;
4265 bp->b_flags &= ~B_MALLOC;
4266 }
4267 return;
4268 }
4269 vm_hold_free_pages(bp, newbsize);
4270 bufspace_adjust(bp, newbsize);
4271 }
4272
4273 /*
4274 * Extend the backing for a non-VMIO buffer.
4275 */
4276 static void
4277 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4278 {
4279 caddr_t origbuf;
4280 int origbufsize;
4281
4282 /*
4283 * We only use malloced memory on the first allocation.
4284 * and revert to page-allocated memory when the buffer
4285 * grows.
4286 *
4287 * There is a potential smp race here that could lead
4288 * to bufmallocspace slightly passing the max. It
4289 * is probably extremely rare and not worth worrying
4290 * over.
4291 */
4292 if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4293 bufmallocspace < maxbufmallocspace) {
4294 bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4295 bp->b_flags |= B_MALLOC;
4296 bufmallocadjust(bp, newbsize);
4297 return;
4298 }
4299
4300 /*
4301 * If the buffer is growing on its other-than-first
4302 * allocation then we revert to the page-allocation
4303 * scheme.
4304 */
4305 origbuf = NULL;
4306 origbufsize = 0;
4307 if (bp->b_flags & B_MALLOC) {
4308 origbuf = bp->b_data;
4309 origbufsize = bp->b_bufsize;
4310 bp->b_data = bp->b_kvabase;
4311 bufmallocadjust(bp, 0);
4312 bp->b_flags &= ~B_MALLOC;
4313 newbsize = round_page(newbsize);
4314 }
4315 vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4316 (vm_offset_t) bp->b_data + newbsize);
4317 if (origbuf != NULL) {
4318 bcopy(origbuf, bp->b_data, origbufsize);
4319 free(origbuf, M_BIOBUF);
4320 }
4321 bufspace_adjust(bp, newbsize);
4322 }
4323
4324 /*
4325 * This code constitutes the buffer memory from either anonymous system
4326 * memory (in the case of non-VMIO operations) or from an associated
4327 * VM object (in the case of VMIO operations). This code is able to
4328 * resize a buffer up or down.
4329 *
4330 * Note that this code is tricky, and has many complications to resolve
4331 * deadlock or inconsistent data situations. Tread lightly!!!
4332 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4333 * the caller. Calling this code willy nilly can result in the loss of data.
4334 *
4335 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
4336 * B_CACHE for the non-VMIO case.
4337 */
4338 int
4339 allocbuf(struct buf *bp, int size)
4340 {
4341 int newbsize;
4342
4343 if (bp->b_bcount == size)
4344 return (1);
4345
4346 if (bp->b_kvasize != 0 && bp->b_kvasize < size)
4347 panic("allocbuf: buffer too small");
4348
4349 newbsize = roundup2(size, DEV_BSIZE);
4350 if ((bp->b_flags & B_VMIO) == 0) {
4351 if ((bp->b_flags & B_MALLOC) == 0)
4352 newbsize = round_page(newbsize);
4353 /*
4354 * Just get anonymous memory from the kernel. Don't
4355 * mess with B_CACHE.
4356 */
4357 if (newbsize < bp->b_bufsize)
4358 vfs_nonvmio_truncate(bp, newbsize);
4359 else if (newbsize > bp->b_bufsize)
4360 vfs_nonvmio_extend(bp, newbsize);
4361 } else {
4362 int desiredpages;
4363
4364 desiredpages = (size == 0) ? 0 :
4365 num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4366
4367 if (bp->b_flags & B_MALLOC)
4368 panic("allocbuf: VMIO buffer can't be malloced");
4369 /*
4370 * Set B_CACHE initially if buffer is 0 length or will become
4371 * 0-length.
4372 */
4373 if (size == 0 || bp->b_bufsize == 0)
4374 bp->b_flags |= B_CACHE;
4375
4376 if (newbsize < bp->b_bufsize)
4377 vfs_vmio_truncate(bp, desiredpages);
4378 /* XXX This looks as if it should be newbsize > b_bufsize */
4379 else if (size > bp->b_bcount)
4380 vfs_vmio_extend(bp, desiredpages, size);
4381 bufspace_adjust(bp, newbsize);
4382 }
4383 bp->b_bcount = size; /* requested buffer size. */
4384 return (1);
4385 }
4386
4387 extern int inflight_transient_maps;
4388
4389 static struct bio_queue nondump_bios;
4390
4391 void
4392 biodone(struct bio *bp)
4393 {
4394 struct mtx *mtxp;
4395 void (*done)(struct bio *);
4396 vm_offset_t start, end;
4397
4398 biotrack(bp, __func__);
4399
4400 /*
4401 * Avoid completing I/O when dumping after a panic since that may
4402 * result in a deadlock in the filesystem or pager code. Note that
4403 * this doesn't affect dumps that were started manually since we aim
4404 * to keep the system usable after it has been resumed.
4405 */
4406 if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4407 TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4408 return;
4409 }
4410 if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4411 bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4412 bp->bio_flags |= BIO_UNMAPPED;
4413 start = trunc_page((vm_offset_t)bp->bio_data);
4414 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4415 bp->bio_data = unmapped_buf;
4416 pmap_qremove(start, atop(end - start));
4417 vmem_free(transient_arena, start, end - start);
4418 atomic_add_int(&inflight_transient_maps, -1);
4419 }
4420 done = bp->bio_done;
4421 if (done == NULL) {
4422 mtxp = mtx_pool_find(mtxpool_sleep, bp);
4423 mtx_lock(mtxp);
4424 bp->bio_flags |= BIO_DONE;
4425 wakeup(bp);
4426 mtx_unlock(mtxp);
4427 } else
4428 done(bp);
4429 }
4430
4431 /*
4432 * Wait for a BIO to finish.
4433 */
4434 int
4435 biowait(struct bio *bp, const char *wmesg)
4436 {
4437 struct mtx *mtxp;
4438
4439 mtxp = mtx_pool_find(mtxpool_sleep, bp);
4440 mtx_lock(mtxp);
4441 while ((bp->bio_flags & BIO_DONE) == 0)
4442 msleep(bp, mtxp, PRIBIO, wmesg, 0);
4443 mtx_unlock(mtxp);
4444 if (bp->bio_error != 0)
4445 return (bp->bio_error);
4446 if (!(bp->bio_flags & BIO_ERROR))
4447 return (0);
4448 return (EIO);
4449 }
4450
4451 void
4452 biofinish(struct bio *bp, struct devstat *stat, int error)
4453 {
4454
4455 if (error) {
4456 bp->bio_error = error;
4457 bp->bio_flags |= BIO_ERROR;
4458 }
4459 if (stat != NULL)
4460 devstat_end_transaction_bio(stat, bp);
4461 biodone(bp);
4462 }
4463
4464 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4465 void
4466 biotrack_buf(struct bio *bp, const char *location)
4467 {
4468
4469 buf_track(bp->bio_track_bp, location);
4470 }
4471 #endif
4472
4473 /*
4474 * bufwait:
4475 *
4476 * Wait for buffer I/O completion, returning error status. The buffer
4477 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR
4478 * error and cleared.
4479 */
4480 int
4481 bufwait(struct buf *bp)
4482 {
4483 if (bp->b_iocmd == BIO_READ)
4484 bwait(bp, PRIBIO, "biord");
4485 else
4486 bwait(bp, PRIBIO, "biowr");
4487 if (bp->b_flags & B_EINTR) {
4488 bp->b_flags &= ~B_EINTR;
4489 return (EINTR);
4490 }
4491 if (bp->b_ioflags & BIO_ERROR) {
4492 return (bp->b_error ? bp->b_error : EIO);
4493 } else {
4494 return (0);
4495 }
4496 }
4497
4498 /*
4499 * bufdone:
4500 *
4501 * Finish I/O on a buffer, optionally calling a completion function.
4502 * This is usually called from an interrupt so process blocking is
4503 * not allowed.
4504 *
4505 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4506 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
4507 * assuming B_INVAL is clear.
4508 *
4509 * For the VMIO case, we set B_CACHE if the op was a read and no
4510 * read error occurred, or if the op was a write. B_CACHE is never
4511 * set if the buffer is invalid or otherwise uncacheable.
4512 *
4513 * bufdone does not mess with B_INVAL, allowing the I/O routine or the
4514 * initiator to leave B_INVAL set to brelse the buffer out of existence
4515 * in the biodone routine.
4516 */
4517 void
4518 bufdone(struct buf *bp)
4519 {
4520 struct bufobj *dropobj;
4521 void (*biodone)(struct buf *);
4522
4523 buf_track(bp, __func__);
4524 CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4525 dropobj = NULL;
4526
4527 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4528
4529 runningbufwakeup(bp);
4530 if (bp->b_iocmd == BIO_WRITE)
4531 dropobj = bp->b_bufobj;
4532 /* call optional completion function if requested */
4533 if (bp->b_iodone != NULL) {
4534 biodone = bp->b_iodone;
4535 bp->b_iodone = NULL;
4536 (*biodone) (bp);
4537 if (dropobj)
4538 bufobj_wdrop(dropobj);
4539 return;
4540 }
4541 if (bp->b_flags & B_VMIO) {
4542 /*
4543 * Set B_CACHE if the op was a normal read and no error
4544 * occurred. B_CACHE is set for writes in the b*write()
4545 * routines.
4546 */
4547 if (bp->b_iocmd == BIO_READ &&
4548 !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4549 !(bp->b_ioflags & BIO_ERROR))
4550 bp->b_flags |= B_CACHE;
4551 vfs_vmio_iodone(bp);
4552 }
4553 if (!LIST_EMPTY(&bp->b_dep))
4554 buf_complete(bp);
4555 if ((bp->b_flags & B_CKHASH) != 0) {
4556 KASSERT(bp->b_iocmd == BIO_READ,
4557 ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4558 KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4559 (*bp->b_ckhashcalc)(bp);
4560 }
4561 /*
4562 * For asynchronous completions, release the buffer now. The brelse
4563 * will do a wakeup there if necessary - so no need to do a wakeup
4564 * here in the async case. The sync case always needs to do a wakeup.
4565 */
4566 if (bp->b_flags & B_ASYNC) {
4567 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4568 (bp->b_ioflags & BIO_ERROR))
4569 brelse(bp);
4570 else
4571 bqrelse(bp);
4572 } else
4573 bdone(bp);
4574 if (dropobj)
4575 bufobj_wdrop(dropobj);
4576 }
4577
4578 /*
4579 * This routine is called in lieu of iodone in the case of
4580 * incomplete I/O. This keeps the busy status for pages
4581 * consistent.
4582 */
4583 void
4584 vfs_unbusy_pages(struct buf *bp)
4585 {
4586 int i;
4587 vm_object_t obj;
4588 vm_page_t m;
4589
4590 runningbufwakeup(bp);
4591 if (!(bp->b_flags & B_VMIO))
4592 return;
4593
4594 obj = bp->b_bufobj->bo_object;
4595 for (i = 0; i < bp->b_npages; i++) {
4596 m = bp->b_pages[i];
4597 if (m == bogus_page) {
4598 m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4599 if (!m)
4600 panic("vfs_unbusy_pages: page missing\n");
4601 bp->b_pages[i] = m;
4602 if (buf_mapped(bp)) {
4603 BUF_CHECK_MAPPED(bp);
4604 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4605 bp->b_pages, bp->b_npages);
4606 } else
4607 BUF_CHECK_UNMAPPED(bp);
4608 }
4609 vm_page_sunbusy(m);
4610 }
4611 vm_object_pip_wakeupn(obj, bp->b_npages);
4612 }
4613
4614 /*
4615 * vfs_page_set_valid:
4616 *
4617 * Set the valid bits in a page based on the supplied offset. The
4618 * range is restricted to the buffer's size.
4619 *
4620 * This routine is typically called after a read completes.
4621 */
4622 static void
4623 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4624 {
4625 vm_ooffset_t eoff;
4626
4627 /*
4628 * Compute the end offset, eoff, such that [off, eoff) does not span a
4629 * page boundary and eoff is not greater than the end of the buffer.
4630 * The end of the buffer, in this case, is our file EOF, not the
4631 * allocation size of the buffer.
4632 */
4633 eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4634 if (eoff > bp->b_offset + bp->b_bcount)
4635 eoff = bp->b_offset + bp->b_bcount;
4636
4637 /*
4638 * Set valid range. This is typically the entire buffer and thus the
4639 * entire page.
4640 */
4641 if (eoff > off)
4642 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4643 }
4644
4645 /*
4646 * vfs_page_set_validclean:
4647 *
4648 * Set the valid bits and clear the dirty bits in a page based on the
4649 * supplied offset. The range is restricted to the buffer's size.
4650 */
4651 static void
4652 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4653 {
4654 vm_ooffset_t soff, eoff;
4655
4656 /*
4657 * Start and end offsets in buffer. eoff - soff may not cross a
4658 * page boundary or cross the end of the buffer. The end of the
4659 * buffer, in this case, is our file EOF, not the allocation size
4660 * of the buffer.
4661 */
4662 soff = off;
4663 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4664 if (eoff > bp->b_offset + bp->b_bcount)
4665 eoff = bp->b_offset + bp->b_bcount;
4666
4667 /*
4668 * Set valid range. This is typically the entire buffer and thus the
4669 * entire page.
4670 */
4671 if (eoff > soff) {
4672 vm_page_set_validclean(
4673 m,
4674 (vm_offset_t) (soff & PAGE_MASK),
4675 (vm_offset_t) (eoff - soff)
4676 );
4677 }
4678 }
4679
4680 /*
4681 * Acquire a shared busy on all pages in the buf.
4682 */
4683 void
4684 vfs_busy_pages_acquire(struct buf *bp)
4685 {
4686 int i;
4687
4688 for (i = 0; i < bp->b_npages; i++)
4689 vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
4690 }
4691
4692 void
4693 vfs_busy_pages_release(struct buf *bp)
4694 {
4695 int i;
4696
4697 for (i = 0; i < bp->b_npages; i++)
4698 vm_page_sunbusy(bp->b_pages[i]);
4699 }
4700
4701 /*
4702 * This routine is called before a device strategy routine.
4703 * It is used to tell the VM system that paging I/O is in
4704 * progress, and treat the pages associated with the buffer
4705 * almost as being exclusive busy. Also the object paging_in_progress
4706 * flag is handled to make sure that the object doesn't become
4707 * inconsistent.
4708 *
4709 * Since I/O has not been initiated yet, certain buffer flags
4710 * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4711 * and should be ignored.
4712 */
4713 void
4714 vfs_busy_pages(struct buf *bp, int clear_modify)
4715 {
4716 vm_object_t obj;
4717 vm_ooffset_t foff;
4718 vm_page_t m;
4719 int i;
4720 bool bogus;
4721
4722 if (!(bp->b_flags & B_VMIO))
4723 return;
4724
4725 obj = bp->b_bufobj->bo_object;
4726 foff = bp->b_offset;
4727 KASSERT(bp->b_offset != NOOFFSET,
4728 ("vfs_busy_pages: no buffer offset"));
4729 if ((bp->b_flags & B_CLUSTER) == 0) {
4730 vm_object_pip_add(obj, bp->b_npages);
4731 vfs_busy_pages_acquire(bp);
4732 }
4733 if (bp->b_bufsize != 0)
4734 vfs_setdirty_range(bp);
4735 bogus = false;
4736 for (i = 0; i < bp->b_npages; i++) {
4737 m = bp->b_pages[i];
4738 vm_page_assert_sbusied(m);
4739
4740 /*
4741 * When readying a buffer for a read ( i.e
4742 * clear_modify == 0 ), it is important to do
4743 * bogus_page replacement for valid pages in
4744 * partially instantiated buffers. Partially
4745 * instantiated buffers can, in turn, occur when
4746 * reconstituting a buffer from its VM backing store
4747 * base. We only have to do this if B_CACHE is
4748 * clear ( which causes the I/O to occur in the
4749 * first place ). The replacement prevents the read
4750 * I/O from overwriting potentially dirty VM-backed
4751 * pages. XXX bogus page replacement is, uh, bogus.
4752 * It may not work properly with small-block devices.
4753 * We need to find a better way.
4754 */
4755 if (clear_modify) {
4756 pmap_remove_write(m);
4757 vfs_page_set_validclean(bp, foff, m);
4758 } else if (vm_page_all_valid(m) &&
4759 (bp->b_flags & B_CACHE) == 0) {
4760 bp->b_pages[i] = bogus_page;
4761 bogus = true;
4762 }
4763 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4764 }
4765 if (bogus && buf_mapped(bp)) {
4766 BUF_CHECK_MAPPED(bp);
4767 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4768 bp->b_pages, bp->b_npages);
4769 }
4770 }
4771
4772 /*
4773 * vfs_bio_set_valid:
4774 *
4775 * Set the range within the buffer to valid. The range is
4776 * relative to the beginning of the buffer, b_offset. Note that
4777 * b_offset itself may be offset from the beginning of the first
4778 * page.
4779 */
4780 void
4781 vfs_bio_set_valid(struct buf *bp, int base, int size)
4782 {
4783 int i, n;
4784 vm_page_t m;
4785
4786 if (!(bp->b_flags & B_VMIO))
4787 return;
4788
4789 /*
4790 * Fixup base to be relative to beginning of first page.
4791 * Set initial n to be the maximum number of bytes in the
4792 * first page that can be validated.
4793 */
4794 base += (bp->b_offset & PAGE_MASK);
4795 n = PAGE_SIZE - (base & PAGE_MASK);
4796
4797 /*
4798 * Busy may not be strictly necessary here because the pages are
4799 * unlikely to be fully valid and the vnode lock will synchronize
4800 * their access via getpages. It is grabbed for consistency with
4801 * other page validation.
4802 */
4803 vfs_busy_pages_acquire(bp);
4804 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4805 m = bp->b_pages[i];
4806 if (n > size)
4807 n = size;
4808 vm_page_set_valid_range(m, base & PAGE_MASK, n);
4809 base += n;
4810 size -= n;
4811 n = PAGE_SIZE;
4812 }
4813 vfs_busy_pages_release(bp);
4814 }
4815
4816 /*
4817 * vfs_bio_clrbuf:
4818 *
4819 * If the specified buffer is a non-VMIO buffer, clear the entire
4820 * buffer. If the specified buffer is a VMIO buffer, clear and
4821 * validate only the previously invalid portions of the buffer.
4822 * This routine essentially fakes an I/O, so we need to clear
4823 * BIO_ERROR and B_INVAL.
4824 *
4825 * Note that while we only theoretically need to clear through b_bcount,
4826 * we go ahead and clear through b_bufsize.
4827 */
4828 void
4829 vfs_bio_clrbuf(struct buf *bp)
4830 {
4831 int i, j, mask, sa, ea, slide;
4832
4833 if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4834 clrbuf(bp);
4835 return;
4836 }
4837 bp->b_flags &= ~B_INVAL;
4838 bp->b_ioflags &= ~BIO_ERROR;
4839 vfs_busy_pages_acquire(bp);
4840 sa = bp->b_offset & PAGE_MASK;
4841 slide = 0;
4842 for (i = 0; i < bp->b_npages; i++, sa = 0) {
4843 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4844 ea = slide & PAGE_MASK;
4845 if (ea == 0)
4846 ea = PAGE_SIZE;
4847 if (bp->b_pages[i] == bogus_page)
4848 continue;
4849 j = sa / DEV_BSIZE;
4850 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4851 if ((bp->b_pages[i]->valid & mask) == mask)
4852 continue;
4853 if ((bp->b_pages[i]->valid & mask) == 0)
4854 pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4855 else {
4856 for (; sa < ea; sa += DEV_BSIZE, j++) {
4857 if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4858 pmap_zero_page_area(bp->b_pages[i],
4859 sa, DEV_BSIZE);
4860 }
4861 }
4862 }
4863 vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
4864 roundup2(ea - sa, DEV_BSIZE));
4865 }
4866 vfs_busy_pages_release(bp);
4867 bp->b_resid = 0;
4868 }
4869
4870 void
4871 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4872 {
4873 vm_page_t m;
4874 int i, n;
4875
4876 if (buf_mapped(bp)) {
4877 BUF_CHECK_MAPPED(bp);
4878 bzero(bp->b_data + base, size);
4879 } else {
4880 BUF_CHECK_UNMAPPED(bp);
4881 n = PAGE_SIZE - (base & PAGE_MASK);
4882 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4883 m = bp->b_pages[i];
4884 if (n > size)
4885 n = size;
4886 pmap_zero_page_area(m, base & PAGE_MASK, n);
4887 base += n;
4888 size -= n;
4889 n = PAGE_SIZE;
4890 }
4891 }
4892 }
4893
4894 /*
4895 * Update buffer flags based on I/O request parameters, optionally releasing the
4896 * buffer. If it's VMIO or direct I/O, the buffer pages are released to the VM,
4897 * where they may be placed on a page queue (VMIO) or freed immediately (direct
4898 * I/O). Otherwise the buffer is released to the cache.
4899 */
4900 static void
4901 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4902 {
4903
4904 KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4905 ("buf %p non-VMIO noreuse", bp));
4906
4907 if ((ioflag & IO_DIRECT) != 0)
4908 bp->b_flags |= B_DIRECT;
4909 if ((ioflag & IO_EXT) != 0)
4910 bp->b_xflags |= BX_ALTDATA;
4911 if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4912 bp->b_flags |= B_RELBUF;
4913 if ((ioflag & IO_NOREUSE) != 0)
4914 bp->b_flags |= B_NOREUSE;
4915 if (release)
4916 brelse(bp);
4917 } else if (release)
4918 bqrelse(bp);
4919 }
4920
4921 void
4922 vfs_bio_brelse(struct buf *bp, int ioflag)
4923 {
4924
4925 b_io_dismiss(bp, ioflag, true);
4926 }
4927
4928 void
4929 vfs_bio_set_flags(struct buf *bp, int ioflag)
4930 {
4931
4932 b_io_dismiss(bp, ioflag, false);
4933 }
4934
4935 /*
4936 * vm_hold_load_pages and vm_hold_free_pages get pages into
4937 * a buffers address space. The pages are anonymous and are
4938 * not associated with a file object.
4939 */
4940 static void
4941 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4942 {
4943 vm_offset_t pg;
4944 vm_page_t p;
4945 int index;
4946
4947 BUF_CHECK_MAPPED(bp);
4948
4949 to = round_page(to);
4950 from = round_page(from);
4951 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4952 MPASS((bp->b_flags & B_MAXPHYS) == 0);
4953 KASSERT(to - from <= maxbcachebuf,
4954 ("vm_hold_load_pages too large %p %#jx %#jx %u",
4955 bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
4956
4957 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4958 /*
4959 * note: must allocate system pages since blocking here
4960 * could interfere with paging I/O, no matter which
4961 * process we are.
4962 */
4963 p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
4964 VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK);
4965 pmap_qenter(pg, &p, 1);
4966 bp->b_pages[index] = p;
4967 }
4968 bp->b_npages = index;
4969 }
4970
4971 /* Return pages associated with this buf to the vm system */
4972 static void
4973 vm_hold_free_pages(struct buf *bp, int newbsize)
4974 {
4975 vm_offset_t from;
4976 vm_page_t p;
4977 int index, newnpages;
4978
4979 BUF_CHECK_MAPPED(bp);
4980
4981 from = round_page((vm_offset_t)bp->b_data + newbsize);
4982 newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4983 if (bp->b_npages > newnpages)
4984 pmap_qremove(from, bp->b_npages - newnpages);
4985 for (index = newnpages; index < bp->b_npages; index++) {
4986 p = bp->b_pages[index];
4987 bp->b_pages[index] = NULL;
4988 vm_page_unwire_noq(p);
4989 vm_page_free(p);
4990 }
4991 bp->b_npages = newnpages;
4992 }
4993
4994 /*
4995 * Map an IO request into kernel virtual address space.
4996 *
4997 * All requests are (re)mapped into kernel VA space.
4998 * Notice that we use b_bufsize for the size of the buffer
4999 * to be mapped. b_bcount might be modified by the driver.
5000 *
5001 * Note that even if the caller determines that the address space should
5002 * be valid, a race or a smaller-file mapped into a larger space may
5003 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
5004 * check the return value.
5005 *
5006 * This function only works with pager buffers.
5007 */
5008 int
5009 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
5010 {
5011 vm_prot_t prot;
5012 int pidx;
5013
5014 MPASS((bp->b_flags & B_MAXPHYS) != 0);
5015 prot = VM_PROT_READ;
5016 if (bp->b_iocmd == BIO_READ)
5017 prot |= VM_PROT_WRITE; /* Less backwards than it looks */
5018 pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
5019 (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
5020 if (pidx < 0)
5021 return (-1);
5022 bp->b_bufsize = len;
5023 bp->b_npages = pidx;
5024 bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
5025 if (mapbuf || !unmapped_buf_allowed) {
5026 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
5027 bp->b_data = bp->b_kvabase + bp->b_offset;
5028 } else
5029 bp->b_data = unmapped_buf;
5030 return (0);
5031 }
5032
5033 /*
5034 * Free the io map PTEs associated with this IO operation.
5035 * We also invalidate the TLB entries and restore the original b_addr.
5036 *
5037 * This function only works with pager buffers.
5038 */
5039 void
5040 vunmapbuf(struct buf *bp)
5041 {
5042 int npages;
5043
5044 npages = bp->b_npages;
5045 if (buf_mapped(bp))
5046 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
5047 vm_page_unhold_pages(bp->b_pages, npages);
5048
5049 bp->b_data = unmapped_buf;
5050 }
5051
5052 void
5053 bdone(struct buf *bp)
5054 {
5055 struct mtx *mtxp;
5056
5057 mtxp = mtx_pool_find(mtxpool_sleep, bp);
5058 mtx_lock(mtxp);
5059 bp->b_flags |= B_DONE;
5060 wakeup(bp);
5061 mtx_unlock(mtxp);
5062 }
5063
5064 void
5065 bwait(struct buf *bp, u_char pri, const char *wchan)
5066 {
5067 struct mtx *mtxp;
5068
5069 mtxp = mtx_pool_find(mtxpool_sleep, bp);
5070 mtx_lock(mtxp);
5071 while ((bp->b_flags & B_DONE) == 0)
5072 msleep(bp, mtxp, pri, wchan, 0);
5073 mtx_unlock(mtxp);
5074 }
5075
5076 int
5077 bufsync(struct bufobj *bo, int waitfor)
5078 {
5079
5080 return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
5081 }
5082
5083 void
5084 bufstrategy(struct bufobj *bo, struct buf *bp)
5085 {
5086 int i __unused;
5087 struct vnode *vp;
5088
5089 vp = bp->b_vp;
5090 KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
5091 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
5092 ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
5093 i = VOP_STRATEGY(vp, bp);
5094 KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
5095 }
5096
5097 /*
5098 * Initialize a struct bufobj before use. Memory is assumed zero filled.
5099 */
5100 void
5101 bufobj_init(struct bufobj *bo, void *private)
5102 {
5103 static volatile int bufobj_cleanq;
5104
5105 bo->bo_domain =
5106 atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5107 rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5108 bo->bo_private = private;
5109 TAILQ_INIT(&bo->bo_clean.bv_hd);
5110 TAILQ_INIT(&bo->bo_dirty.bv_hd);
5111 }
5112
5113 void
5114 bufobj_wrefl(struct bufobj *bo)
5115 {
5116
5117 KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5118 ASSERT_BO_WLOCKED(bo);
5119 bo->bo_numoutput++;
5120 }
5121
5122 void
5123 bufobj_wref(struct bufobj *bo)
5124 {
5125
5126 KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5127 BO_LOCK(bo);
5128 bo->bo_numoutput++;
5129 BO_UNLOCK(bo);
5130 }
5131
5132 void
5133 bufobj_wdrop(struct bufobj *bo)
5134 {
5135
5136 KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5137 BO_LOCK(bo);
5138 KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5139 if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5140 bo->bo_flag &= ~BO_WWAIT;
5141 wakeup(&bo->bo_numoutput);
5142 }
5143 BO_UNLOCK(bo);
5144 }
5145
5146 int
5147 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5148 {
5149 int error;
5150
5151 KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5152 ASSERT_BO_WLOCKED(bo);
5153 error = 0;
5154 while (bo->bo_numoutput) {
5155 bo->bo_flag |= BO_WWAIT;
5156 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5157 slpflag | (PRIBIO + 1), "bo_wwait", timeo);
5158 if (error)
5159 break;
5160 }
5161 return (error);
5162 }
5163
5164 /*
5165 * Set bio_data or bio_ma for struct bio from the struct buf.
5166 */
5167 void
5168 bdata2bio(struct buf *bp, struct bio *bip)
5169 {
5170
5171 if (!buf_mapped(bp)) {
5172 KASSERT(unmapped_buf_allowed, ("unmapped"));
5173 bip->bio_ma = bp->b_pages;
5174 bip->bio_ma_n = bp->b_npages;
5175 bip->bio_data = unmapped_buf;
5176 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5177 bip->bio_flags |= BIO_UNMAPPED;
5178 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5179 PAGE_SIZE == bp->b_npages,
5180 ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5181 (long long)bip->bio_length, bip->bio_ma_n));
5182 } else {
5183 bip->bio_data = bp->b_data;
5184 bip->bio_ma = NULL;
5185 }
5186 }
5187
5188 /*
5189 * The MIPS pmap code currently doesn't handle aliased pages.
5190 * The VIPT caches may not handle page aliasing themselves, leading
5191 * to data corruption.
5192 *
5193 * As such, this code makes a system extremely unhappy if said
5194 * system doesn't support unaliasing the above situation in hardware.
5195 * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
5196 * this feature at build time, so it has to be handled in software.
5197 *
5198 * Once the MIPS pmap/cache code grows to support this function on
5199 * earlier chips, it should be flipped back off.
5200 */
5201 #ifdef __mips__
5202 static int buf_pager_relbuf = 1;
5203 #else
5204 static int buf_pager_relbuf = 0;
5205 #endif
5206 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5207 &buf_pager_relbuf, 0,
5208 "Make buffer pager release buffers after reading");
5209
5210 /*
5211 * The buffer pager. It uses buffer reads to validate pages.
5212 *
5213 * In contrast to the generic local pager from vm/vnode_pager.c, this
5214 * pager correctly and easily handles volumes where the underlying
5215 * device block size is greater than the machine page size. The
5216 * buffer cache transparently extends the requested page run to be
5217 * aligned at the block boundary, and does the necessary bogus page
5218 * replacements in the addends to avoid obliterating already valid
5219 * pages.
5220 *
5221 * The only non-trivial issue is that the exclusive busy state for
5222 * pages, which is assumed by the vm_pager_getpages() interface, is
5223 * incompatible with the VMIO buffer cache's desire to share-busy the
5224 * pages. This function performs a trivial downgrade of the pages'
5225 * state before reading buffers, and a less trivial upgrade from the
5226 * shared-busy to excl-busy state after the read.
5227 */
5228 int
5229 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5230 int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5231 vbg_get_blksize_t get_blksize)
5232 {
5233 vm_page_t m;
5234 vm_object_t object;
5235 struct buf *bp;
5236 struct mount *mp;
5237 daddr_t lbn, lbnp;
5238 vm_ooffset_t la, lb, poff, poffe;
5239 long bo_bs, bsize;
5240 int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5241 bool redo, lpart;
5242
5243 object = vp->v_object;
5244 mp = vp->v_mount;
5245 error = 0;
5246 la = IDX_TO_OFF(ma[count - 1]->pindex);
5247 if (la >= object->un_pager.vnp.vnp_size)
5248 return (VM_PAGER_BAD);
5249
5250 /*
5251 * Change the meaning of la from where the last requested page starts
5252 * to where it ends, because that's the end of the requested region
5253 * and the start of the potential read-ahead region.
5254 */
5255 la += PAGE_SIZE;
5256 lpart = la > object->un_pager.vnp.vnp_size;
5257 error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
5258 &bo_bs);
5259 if (error != 0)
5260 return (VM_PAGER_ERROR);
5261
5262 /*
5263 * Calculate read-ahead, behind and total pages.
5264 */
5265 pgsin = count;
5266 lb = IDX_TO_OFF(ma[0]->pindex);
5267 pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5268 pgsin += pgsin_b;
5269 if (rbehind != NULL)
5270 *rbehind = pgsin_b;
5271 pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5272 if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5273 pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5274 PAGE_SIZE) - la);
5275 pgsin += pgsin_a;
5276 if (rahead != NULL)
5277 *rahead = pgsin_a;
5278 VM_CNT_INC(v_vnodein);
5279 VM_CNT_ADD(v_vnodepgsin, pgsin);
5280
5281 br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5282 != 0) ? GB_UNMAPPED : 0;
5283 again:
5284 for (i = 0; i < count; i++) {
5285 if (ma[i] != bogus_page)
5286 vm_page_busy_downgrade(ma[i]);
5287 }
5288
5289 lbnp = -1;
5290 for (i = 0; i < count; i++) {
5291 m = ma[i];
5292 if (m == bogus_page)
5293 continue;
5294
5295 /*
5296 * Pages are shared busy and the object lock is not
5297 * owned, which together allow for the pages'
5298 * invalidation. The racy test for validity avoids
5299 * useless creation of the buffer for the most typical
5300 * case when invalidation is not used in redo or for
5301 * parallel read. The shared->excl upgrade loop at
5302 * the end of the function catches the race in a
5303 * reliable way (protected by the object lock).
5304 */
5305 if (vm_page_all_valid(m))
5306 continue;
5307
5308 poff = IDX_TO_OFF(m->pindex);
5309 poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5310 for (; poff < poffe; poff += bsize) {
5311 lbn = get_lblkno(vp, poff);
5312 if (lbn == lbnp)
5313 goto next_page;
5314 lbnp = lbn;
5315
5316 error = get_blksize(vp, lbn, &bsize);
5317 if (error == 0)
5318 error = bread_gb(vp, lbn, bsize,
5319 curthread->td_ucred, br_flags, &bp);
5320 if (error != 0)
5321 goto end_pages;
5322 if (bp->b_rcred == curthread->td_ucred) {
5323 crfree(bp->b_rcred);
5324 bp->b_rcred = NOCRED;
5325 }
5326 if (LIST_EMPTY(&bp->b_dep)) {
5327 /*
5328 * Invalidation clears m->valid, but
5329 * may leave B_CACHE flag if the
5330 * buffer existed at the invalidation
5331 * time. In this case, recycle the
5332 * buffer to do real read on next
5333 * bread() after redo.
5334 *
5335 * Otherwise B_RELBUF is not strictly
5336 * necessary, enable to reduce buf
5337 * cache pressure.
5338 */
5339 if (buf_pager_relbuf ||
5340 !vm_page_all_valid(m))
5341 bp->b_flags |= B_RELBUF;
5342
5343 bp->b_flags &= ~B_NOCACHE;
5344 brelse(bp);
5345 } else {
5346 bqrelse(bp);
5347 }
5348 }
5349 KASSERT(1 /* racy, enable for debugging */ ||
5350 vm_page_all_valid(m) || i == count - 1,
5351 ("buf %d %p invalid", i, m));
5352 if (i == count - 1 && lpart) {
5353 if (!vm_page_none_valid(m) &&
5354 !vm_page_all_valid(m))
5355 vm_page_zero_invalid(m, TRUE);
5356 }
5357 next_page:;
5358 }
5359 end_pages:
5360
5361 redo = false;
5362 for (i = 0; i < count; i++) {
5363 if (ma[i] == bogus_page)
5364 continue;
5365 if (vm_page_busy_tryupgrade(ma[i]) == 0) {
5366 vm_page_sunbusy(ma[i]);
5367 ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
5368 VM_ALLOC_NORMAL);
5369 }
5370
5371 /*
5372 * Since the pages were only sbusy while neither the
5373 * buffer nor the object lock was held by us, or
5374 * reallocated while vm_page_grab() slept for busy
5375 * relinguish, they could have been invalidated.
5376 * Recheck the valid bits and re-read as needed.
5377 *
5378 * Note that the last page is made fully valid in the
5379 * read loop, and partial validity for the page at
5380 * index count - 1 could mean that the page was
5381 * invalidated or removed, so we must restart for
5382 * safety as well.
5383 */
5384 if (!vm_page_all_valid(ma[i]))
5385 redo = true;
5386 }
5387 if (redo && error == 0)
5388 goto again;
5389 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5390 }
5391
5392 #include "opt_ddb.h"
5393 #ifdef DDB
5394 #include <ddb/ddb.h>
5395
5396 /* DDB command to show buffer data */
5397 DB_SHOW_COMMAND(buffer, db_show_buffer)
5398 {
5399 /* get args */
5400 struct buf *bp = (struct buf *)addr;
5401 #ifdef FULL_BUF_TRACKING
5402 uint32_t i, j;
5403 #endif
5404
5405 if (!have_addr) {
5406 db_printf("usage: show buffer <addr>\n");
5407 return;
5408 }
5409
5410 db_printf("buf at %p\n", bp);
5411 db_printf("b_flags = 0x%b, b_xflags=0x%b\n",
5412 (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5413 (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5414 db_printf("b_vflags=0x%b b_ioflags0x%b\n",
5415 (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5416 (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5417 db_printf(
5418 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5419 "b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, "
5420 "b_vp = %p, b_dep = %p\n",
5421 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5422 bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5423 (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
5424 db_printf("b_kvabase = %p, b_kvasize = %d\n",
5425 bp->b_kvabase, bp->b_kvasize);
5426 if (bp->b_npages) {
5427 int i;
5428 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5429 for (i = 0; i < bp->b_npages; i++) {
5430 vm_page_t m;
5431 m = bp->b_pages[i];
5432 if (m != NULL)
5433 db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5434 (u_long)m->pindex,
5435 (u_long)VM_PAGE_TO_PHYS(m));
5436 else
5437 db_printf("( ??? )");
5438 if ((i + 1) < bp->b_npages)
5439 db_printf(",");
5440 }
5441 db_printf("\n");
5442 }
5443 BUF_LOCKPRINTINFO(bp);
5444 #if defined(FULL_BUF_TRACKING)
5445 db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5446
5447 i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5448 for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5449 if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5450 continue;
5451 db_printf(" %2u: %s\n", j,
5452 bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5453 }
5454 #elif defined(BUF_TRACKING)
5455 db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5456 #endif
5457 db_printf(" ");
5458 }
5459
5460 DB_SHOW_COMMAND(bufqueues, bufqueues)
5461 {
5462 struct bufdomain *bd;
5463 struct buf *bp;
5464 long total;
5465 int i, j, cnt;
5466
5467 db_printf("bqempty: %d\n", bqempty.bq_len);
5468
5469 for (i = 0; i < buf_domains; i++) {
5470 bd = &bdomain[i];
5471 db_printf("Buf domain %d\n", i);
5472 db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5473 db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5474 db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5475 db_printf("\n");
5476 db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5477 db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5478 db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5479 db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5480 db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5481 db_printf("\n");
5482 db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5483 db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5484 db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5485 db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5486 db_printf("\n");
5487 total = 0;
5488 TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5489 total += bp->b_bufsize;
5490 db_printf("\tcleanq count\t%d (%ld)\n",
5491 bd->bd_cleanq->bq_len, total);
5492 total = 0;
5493 TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5494 total += bp->b_bufsize;
5495 db_printf("\tdirtyq count\t%d (%ld)\n",
5496 bd->bd_dirtyq.bq_len, total);
5497 db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5498 db_printf("\tlim\t\t%d\n", bd->bd_lim);
5499 db_printf("\tCPU ");
5500 for (j = 0; j <= mp_maxid; j++)
5501 db_printf("%d, ", bd->bd_subq[j].bq_len);
5502 db_printf("\n");
5503 cnt = 0;
5504 total = 0;
5505 for (j = 0; j < nbuf; j++) {
5506 bp = nbufp(j);
5507 if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
5508 cnt++;
5509 total += bp->b_bufsize;
5510 }
5511 }
5512 db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5513 cnt = 0;
5514 total = 0;
5515 for (j = 0; j < nbuf; j++) {
5516 bp = nbufp(j);
5517 if (bp->b_domain == i) {
5518 cnt++;
5519 total += bp->b_bufsize;
5520 }
5521 }
5522 db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5523 }
5524 }
5525
5526 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
5527 {
5528 struct buf *bp;
5529 int i;
5530
5531 for (i = 0; i < nbuf; i++) {
5532 bp = nbufp(i);
5533 if (BUF_ISLOCKED(bp)) {
5534 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5535 db_printf("\n");
5536 if (db_pager_quit)
5537 break;
5538 }
5539 }
5540 }
5541
5542 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5543 {
5544 struct vnode *vp;
5545 struct buf *bp;
5546
5547 if (!have_addr) {
5548 db_printf("usage: show vnodebufs <addr>\n");
5549 return;
5550 }
5551 vp = (struct vnode *)addr;
5552 db_printf("Clean buffers:\n");
5553 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5554 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5555 db_printf("\n");
5556 }
5557 db_printf("Dirty buffers:\n");
5558 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5559 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5560 db_printf("\n");
5561 }
5562 }
5563
5564 DB_COMMAND(countfreebufs, db_coundfreebufs)
5565 {
5566 struct buf *bp;
5567 int i, used = 0, nfree = 0;
5568
5569 if (have_addr) {
5570 db_printf("usage: countfreebufs\n");
5571 return;
5572 }
5573
5574 for (i = 0; i < nbuf; i++) {
5575 bp = nbufp(i);
5576 if (bp->b_qindex == QUEUE_EMPTY)
5577 nfree++;
5578 else
5579 used++;
5580 }
5581
5582 db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5583 nfree + used);
5584 db_printf("numfreebuffers is %d\n", numfreebuffers);
5585 }
5586 #endif /* DDB */
Cache object: c581b0cf423446159a0464a11a790560
|