The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2004 Poul-Henning Kamp
    5  * Copyright (c) 1994,1997 John S. Dyson
    6  * Copyright (c) 2013 The FreeBSD Foundation
    7  * All rights reserved.
    8  *
    9  * Portions of this software were developed by Konstantin Belousov
   10  * under sponsorship from the FreeBSD Foundation.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  */
   33 
   34 /*
   35  * this file contains a new buffer I/O scheme implementing a coherent
   36  * VM object and buffer cache scheme.  Pains have been taken to make
   37  * sure that the performance degradation associated with schemes such
   38  * as this is not realized.
   39  *
   40  * Author:  John S. Dyson
   41  * Significant help during the development and debugging phases
   42  * had been provided by David Greenman, also of the FreeBSD core team.
   43  *
   44  * see man buf(9) for more info.
   45  */
   46 
   47 #include <sys/cdefs.h>
   48 __FBSDID("$FreeBSD$");
   49 
   50 #include <sys/param.h>
   51 #include <sys/systm.h>
   52 #include <sys/asan.h>
   53 #include <sys/bio.h>
   54 #include <sys/bitset.h>
   55 #include <sys/conf.h>
   56 #include <sys/counter.h>
   57 #include <sys/buf.h>
   58 #include <sys/devicestat.h>
   59 #include <sys/eventhandler.h>
   60 #include <sys/fail.h>
   61 #include <sys/ktr.h>
   62 #include <sys/limits.h>
   63 #include <sys/lock.h>
   64 #include <sys/malloc.h>
   65 #include <sys/mount.h>
   66 #include <sys/mutex.h>
   67 #include <sys/kernel.h>
   68 #include <sys/kthread.h>
   69 #include <sys/proc.h>
   70 #include <sys/racct.h>
   71 #include <sys/refcount.h>
   72 #include <sys/resourcevar.h>
   73 #include <sys/rwlock.h>
   74 #include <sys/smp.h>
   75 #include <sys/sysctl.h>
   76 #include <sys/syscallsubr.h>
   77 #include <sys/vmem.h>
   78 #include <sys/vmmeter.h>
   79 #include <sys/vnode.h>
   80 #include <sys/watchdog.h>
   81 #include <geom/geom.h>
   82 #include <vm/vm.h>
   83 #include <vm/vm_param.h>
   84 #include <vm/vm_kern.h>
   85 #include <vm/vm_object.h>
   86 #include <vm/vm_page.h>
   87 #include <vm/vm_pageout.h>
   88 #include <vm/vm_pager.h>
   89 #include <vm/vm_extern.h>
   90 #include <vm/vm_map.h>
   91 #include <vm/swap_pager.h>
   92 
   93 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
   94 
   95 struct  bio_ops bioops;         /* I/O operation notification */
   96 
   97 struct  buf_ops buf_ops_bio = {
   98         .bop_name       =       "buf_ops_bio",
   99         .bop_write      =       bufwrite,
  100         .bop_strategy   =       bufstrategy,
  101         .bop_sync       =       bufsync,
  102         .bop_bdflush    =       bufbdflush,
  103 };
  104 
  105 struct bufqueue {
  106         struct mtx_padalign     bq_lock;
  107         TAILQ_HEAD(, buf)       bq_queue;
  108         uint8_t                 bq_index;
  109         uint16_t                bq_subqueue;
  110         int                     bq_len;
  111 } __aligned(CACHE_LINE_SIZE);
  112 
  113 #define BQ_LOCKPTR(bq)          (&(bq)->bq_lock)
  114 #define BQ_LOCK(bq)             mtx_lock(BQ_LOCKPTR((bq)))
  115 #define BQ_UNLOCK(bq)           mtx_unlock(BQ_LOCKPTR((bq)))
  116 #define BQ_ASSERT_LOCKED(bq)    mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
  117 
  118 struct bufdomain {
  119         struct bufqueue bd_subq[MAXCPU + 1]; /* Per-cpu sub queues + global */
  120         struct bufqueue bd_dirtyq;
  121         struct bufqueue *bd_cleanq;
  122         struct mtx_padalign bd_run_lock;
  123         /* Constants */
  124         long            bd_maxbufspace;
  125         long            bd_hibufspace;
  126         long            bd_lobufspace;
  127         long            bd_bufspacethresh;
  128         int             bd_hifreebuffers;
  129         int             bd_lofreebuffers;
  130         int             bd_hidirtybuffers;
  131         int             bd_lodirtybuffers;
  132         int             bd_dirtybufthresh;
  133         int             bd_lim;
  134         /* atomics */
  135         int             bd_wanted;
  136         bool            bd_shutdown;
  137         int __aligned(CACHE_LINE_SIZE)  bd_numdirtybuffers;
  138         int __aligned(CACHE_LINE_SIZE)  bd_running;
  139         long __aligned(CACHE_LINE_SIZE) bd_bufspace;
  140         int __aligned(CACHE_LINE_SIZE)  bd_freebuffers;
  141 } __aligned(CACHE_LINE_SIZE);
  142 
  143 #define BD_LOCKPTR(bd)          (&(bd)->bd_cleanq->bq_lock)
  144 #define BD_LOCK(bd)             mtx_lock(BD_LOCKPTR((bd)))
  145 #define BD_UNLOCK(bd)           mtx_unlock(BD_LOCKPTR((bd)))
  146 #define BD_ASSERT_LOCKED(bd)    mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
  147 #define BD_RUN_LOCKPTR(bd)      (&(bd)->bd_run_lock)
  148 #define BD_RUN_LOCK(bd)         mtx_lock(BD_RUN_LOCKPTR((bd)))
  149 #define BD_RUN_UNLOCK(bd)       mtx_unlock(BD_RUN_LOCKPTR((bd)))
  150 #define BD_DOMAIN(bd)           (bd - bdomain)
  151 
  152 static char *buf;               /* buffer header pool */
  153 static struct buf *
  154 nbufp(unsigned i)
  155 {
  156         return ((struct buf *)(buf + (sizeof(struct buf) +
  157             sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
  158 }
  159 
  160 caddr_t __read_mostly unmapped_buf;
  161 
  162 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
  163 struct proc *bufdaemonproc;
  164 
  165 static void vm_hold_free_pages(struct buf *bp, int newbsize);
  166 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
  167                 vm_offset_t to);
  168 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
  169 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
  170                 vm_page_t m);
  171 static void vfs_clean_pages_dirty_buf(struct buf *bp);
  172 static void vfs_setdirty_range(struct buf *bp);
  173 static void vfs_vmio_invalidate(struct buf *bp);
  174 static void vfs_vmio_truncate(struct buf *bp, int npages);
  175 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
  176 static int vfs_bio_clcheck(struct vnode *vp, int size,
  177                 daddr_t lblkno, daddr_t blkno);
  178 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
  179                 void (*)(struct buf *));
  180 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
  181 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
  182 static void buf_daemon(void);
  183 static __inline void bd_wakeup(void);
  184 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
  185 static void bufkva_reclaim(vmem_t *, int);
  186 static void bufkva_free(struct buf *);
  187 static int buf_import(void *, void **, int, int, int);
  188 static void buf_release(void *, void **, int);
  189 static void maxbcachebuf_adjust(void);
  190 static inline struct bufdomain *bufdomain(struct buf *);
  191 static void bq_remove(struct bufqueue *bq, struct buf *bp);
  192 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
  193 static int buf_recycle(struct bufdomain *, bool kva);
  194 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
  195             const char *lockname);
  196 static void bd_init(struct bufdomain *bd);
  197 static int bd_flushall(struct bufdomain *bd);
  198 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
  199 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
  200 
  201 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
  202 int vmiodirenable = TRUE;
  203 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
  204     "Use the VM system for directory writes");
  205 long runningbufspace;
  206 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
  207     "Amount of presently outstanding async buffer io");
  208 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
  209     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
  210 static counter_u64_t bufkvaspace;
  211 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
  212     "Kernel virtual memory used for buffers");
  213 static long maxbufspace;
  214 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
  215     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
  216     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
  217     "Maximum allowed value of bufspace (including metadata)");
  218 static long bufmallocspace;
  219 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
  220     "Amount of malloced memory for buffers");
  221 static long maxbufmallocspace;
  222 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
  223     0, "Maximum amount of malloced memory for buffers");
  224 static long lobufspace;
  225 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
  226     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
  227     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
  228     "Minimum amount of buffers we want to have");
  229 long hibufspace;
  230 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
  231     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
  232     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
  233     "Maximum allowed value of bufspace (excluding metadata)");
  234 long bufspacethresh;
  235 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
  236     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
  237     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
  238     "Bufspace consumed before waking the daemon to free some");
  239 static counter_u64_t buffreekvacnt;
  240 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
  241     "Number of times we have freed the KVA space from some buffer");
  242 static counter_u64_t bufdefragcnt;
  243 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
  244     "Number of times we have had to repeat buffer allocation to defragment");
  245 static long lorunningspace;
  246 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
  247     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
  248     "Minimum preferred space used for in-progress I/O");
  249 static long hirunningspace;
  250 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
  251     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
  252     "Maximum amount of space to use for in-progress I/O");
  253 int dirtybufferflushes;
  254 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
  255     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
  256 int bdwriteskip;
  257 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
  258     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
  259 int altbufferflushes;
  260 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
  261     &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
  262 static int recursiveflushes;
  263 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
  264     &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
  265 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
  266 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
  267     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
  268     "Number of buffers that are dirty (has unwritten changes) at the moment");
  269 static int lodirtybuffers;
  270 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
  271     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
  272     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
  273     "How many buffers we want to have free before bufdaemon can sleep");
  274 static int hidirtybuffers;
  275 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
  276     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
  277     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
  278     "When the number of dirty buffers is considered severe");
  279 int dirtybufthresh;
  280 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
  281     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
  282     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
  283     "Number of bdwrite to bawrite conversions to clear dirty buffers");
  284 static int numfreebuffers;
  285 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
  286     "Number of free buffers");
  287 static int lofreebuffers;
  288 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
  289     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
  290     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
  291    "Target number of free buffers");
  292 static int hifreebuffers;
  293 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
  294     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
  295     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
  296    "Threshold for clean buffer recycling");
  297 static counter_u64_t getnewbufcalls;
  298 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
  299    &getnewbufcalls, "Number of calls to getnewbuf");
  300 static counter_u64_t getnewbufrestarts;
  301 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
  302     &getnewbufrestarts,
  303     "Number of times getnewbuf has had to restart a buffer acquisition");
  304 static counter_u64_t mappingrestarts;
  305 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
  306     &mappingrestarts,
  307     "Number of times getblk has had to restart a buffer mapping for "
  308     "unmapped buffer");
  309 static counter_u64_t numbufallocfails;
  310 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
  311     &numbufallocfails, "Number of times buffer allocations failed");
  312 static int flushbufqtarget = 100;
  313 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
  314     "Amount of work to do in flushbufqueues when helping bufdaemon");
  315 static counter_u64_t notbufdflushes;
  316 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
  317     "Number of dirty buffer flushes done by the bufdaemon helpers");
  318 static long barrierwrites;
  319 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
  320     &barrierwrites, 0, "Number of barrier writes");
  321 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
  322     &unmapped_buf_allowed, 0,
  323     "Permit the use of the unmapped i/o");
  324 int maxbcachebuf = MAXBCACHEBUF;
  325 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
  326     "Maximum size of a buffer cache block");
  327 
  328 /*
  329  * This lock synchronizes access to bd_request.
  330  */
  331 static struct mtx_padalign __exclusive_cache_line bdlock;
  332 
  333 /*
  334  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  335  * waitrunningbufspace().
  336  */
  337 static struct mtx_padalign __exclusive_cache_line rbreqlock;
  338 
  339 /*
  340  * Lock that protects bdirtywait.
  341  */
  342 static struct mtx_padalign __exclusive_cache_line bdirtylock;
  343 
  344 /*
  345  * bufdaemon shutdown request and sleep channel.
  346  */
  347 static bool bd_shutdown;
  348 
  349 /*
  350  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  351  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  352  * is idling.
  353  */
  354 static int bd_request;
  355 
  356 /*
  357  * Request for the buf daemon to write more buffers than is indicated by
  358  * lodirtybuf.  This may be necessary to push out excess dependencies or
  359  * defragment the address space where a simple count of the number of dirty
  360  * buffers is insufficient to characterize the demand for flushing them.
  361  */
  362 static int bd_speedupreq;
  363 
  364 /*
  365  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  366  * Set when wait starts, cleared prior to wakeup().
  367  * Used in runningbufwakeup() and waitrunningbufspace().
  368  */
  369 static int runningbufreq;
  370 
  371 /*
  372  * Synchronization for bwillwrite() waiters.
  373  */
  374 static int bdirtywait;
  375 
  376 /*
  377  * Definitions for the buffer free lists.
  378  */
  379 #define QUEUE_NONE      0       /* on no queue */
  380 #define QUEUE_EMPTY     1       /* empty buffer headers */
  381 #define QUEUE_DIRTY     2       /* B_DELWRI buffers */
  382 #define QUEUE_CLEAN     3       /* non-B_DELWRI buffers */
  383 #define QUEUE_SENTINEL  4       /* not an queue index, but mark for sentinel */
  384 
  385 /* Maximum number of buffer domains. */
  386 #define BUF_DOMAINS     8
  387 
  388 struct bufdomainset bdlodirty;          /* Domains > lodirty */
  389 struct bufdomainset bdhidirty;          /* Domains > hidirty */
  390 
  391 /* Configured number of clean queues. */
  392 static int __read_mostly buf_domains;
  393 
  394 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
  395 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
  396 struct bufqueue __exclusive_cache_line bqempty;
  397 
  398 /*
  399  * per-cpu empty buffer cache.
  400  */
  401 uma_zone_t buf_zone;
  402 
  403 static int
  404 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
  405 {
  406         long value;
  407         int error;
  408 
  409         value = *(long *)arg1;
  410         error = sysctl_handle_long(oidp, &value, 0, req);
  411         if (error != 0 || req->newptr == NULL)
  412                 return (error);
  413         mtx_lock(&rbreqlock);
  414         if (arg1 == &hirunningspace) {
  415                 if (value < lorunningspace)
  416                         error = EINVAL;
  417                 else
  418                         hirunningspace = value;
  419         } else {
  420                 KASSERT(arg1 == &lorunningspace,
  421                     ("%s: unknown arg1", __func__));
  422                 if (value > hirunningspace)
  423                         error = EINVAL;
  424                 else
  425                         lorunningspace = value;
  426         }
  427         mtx_unlock(&rbreqlock);
  428         return (error);
  429 }
  430 
  431 static int
  432 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
  433 {
  434         int error;
  435         int value;
  436         int i;
  437 
  438         value = *(int *)arg1;
  439         error = sysctl_handle_int(oidp, &value, 0, req);
  440         if (error != 0 || req->newptr == NULL)
  441                 return (error);
  442         *(int *)arg1 = value;
  443         for (i = 0; i < buf_domains; i++)
  444                 *(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
  445                     value / buf_domains;
  446 
  447         return (error);
  448 }
  449 
  450 static int
  451 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
  452 {
  453         long value;
  454         int error;
  455         int i;
  456 
  457         value = *(long *)arg1;
  458         error = sysctl_handle_long(oidp, &value, 0, req);
  459         if (error != 0 || req->newptr == NULL)
  460                 return (error);
  461         *(long *)arg1 = value;
  462         for (i = 0; i < buf_domains; i++)
  463                 *(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
  464                     value / buf_domains;
  465 
  466         return (error);
  467 }
  468 
  469 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  470     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  471 static int
  472 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
  473 {
  474         long lvalue;
  475         int ivalue;
  476         int i;
  477 
  478         lvalue = 0;
  479         for (i = 0; i < buf_domains; i++)
  480                 lvalue += bdomain[i].bd_bufspace;
  481         if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
  482                 return (sysctl_handle_long(oidp, &lvalue, 0, req));
  483         if (lvalue > INT_MAX)
  484                 /* On overflow, still write out a long to trigger ENOMEM. */
  485                 return (sysctl_handle_long(oidp, &lvalue, 0, req));
  486         ivalue = lvalue;
  487         return (sysctl_handle_int(oidp, &ivalue, 0, req));
  488 }
  489 #else
  490 static int
  491 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
  492 {
  493         long lvalue;
  494         int i;
  495 
  496         lvalue = 0;
  497         for (i = 0; i < buf_domains; i++)
  498                 lvalue += bdomain[i].bd_bufspace;
  499         return (sysctl_handle_long(oidp, &lvalue, 0, req));
  500 }
  501 #endif
  502 
  503 static int
  504 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
  505 {
  506         int value;
  507         int i;
  508 
  509         value = 0;
  510         for (i = 0; i < buf_domains; i++)
  511                 value += bdomain[i].bd_numdirtybuffers;
  512         return (sysctl_handle_int(oidp, &value, 0, req));
  513 }
  514 
  515 /*
  516  *      bdirtywakeup:
  517  *
  518  *      Wakeup any bwillwrite() waiters.
  519  */
  520 static void
  521 bdirtywakeup(void)
  522 {
  523         mtx_lock(&bdirtylock);
  524         if (bdirtywait) {
  525                 bdirtywait = 0;
  526                 wakeup(&bdirtywait);
  527         }
  528         mtx_unlock(&bdirtylock);
  529 }
  530 
  531 /*
  532  *      bd_clear:
  533  *
  534  *      Clear a domain from the appropriate bitsets when dirtybuffers
  535  *      is decremented.
  536  */
  537 static void
  538 bd_clear(struct bufdomain *bd)
  539 {
  540 
  541         mtx_lock(&bdirtylock);
  542         if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
  543                 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
  544         if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
  545                 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
  546         mtx_unlock(&bdirtylock);
  547 }
  548 
  549 /*
  550  *      bd_set:
  551  *
  552  *      Set a domain in the appropriate bitsets when dirtybuffers
  553  *      is incremented.
  554  */
  555 static void
  556 bd_set(struct bufdomain *bd)
  557 {
  558 
  559         mtx_lock(&bdirtylock);
  560         if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
  561                 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
  562         if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
  563                 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
  564         mtx_unlock(&bdirtylock);
  565 }
  566 
  567 /*
  568  *      bdirtysub:
  569  *
  570  *      Decrement the numdirtybuffers count by one and wakeup any
  571  *      threads blocked in bwillwrite().
  572  */
  573 static void
  574 bdirtysub(struct buf *bp)
  575 {
  576         struct bufdomain *bd;
  577         int num;
  578 
  579         bd = bufdomain(bp);
  580         num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
  581         if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
  582                 bdirtywakeup();
  583         if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
  584                 bd_clear(bd);
  585 }
  586 
  587 /*
  588  *      bdirtyadd:
  589  *
  590  *      Increment the numdirtybuffers count by one and wakeup the buf 
  591  *      daemon if needed.
  592  */
  593 static void
  594 bdirtyadd(struct buf *bp)
  595 {
  596         struct bufdomain *bd;
  597         int num;
  598 
  599         /*
  600          * Only do the wakeup once as we cross the boundary.  The
  601          * buf daemon will keep running until the condition clears.
  602          */
  603         bd = bufdomain(bp);
  604         num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
  605         if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
  606                 bd_wakeup();
  607         if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
  608                 bd_set(bd);
  609 }
  610 
  611 /*
  612  *      bufspace_daemon_wakeup:
  613  *
  614  *      Wakeup the daemons responsible for freeing clean bufs.
  615  */
  616 static void
  617 bufspace_daemon_wakeup(struct bufdomain *bd)
  618 {
  619 
  620         /*
  621          * avoid the lock if the daemon is running.
  622          */
  623         if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
  624                 BD_RUN_LOCK(bd);
  625                 atomic_store_int(&bd->bd_running, 1);
  626                 wakeup(&bd->bd_running);
  627                 BD_RUN_UNLOCK(bd);
  628         }
  629 }
  630 
  631 /*
  632  *      bufspace_adjust:
  633  *
  634  *      Adjust the reported bufspace for a KVA managed buffer, possibly
  635  *      waking any waiters.
  636  */
  637 static void
  638 bufspace_adjust(struct buf *bp, int bufsize)
  639 {
  640         struct bufdomain *bd;
  641         long space;
  642         int diff;
  643 
  644         KASSERT((bp->b_flags & B_MALLOC) == 0,
  645             ("bufspace_adjust: malloc buf %p", bp));
  646         bd = bufdomain(bp);
  647         diff = bufsize - bp->b_bufsize;
  648         if (diff < 0) {
  649                 atomic_subtract_long(&bd->bd_bufspace, -diff);
  650         } else if (diff > 0) {
  651                 space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
  652                 /* Wake up the daemon on the transition. */
  653                 if (space < bd->bd_bufspacethresh &&
  654                     space + diff >= bd->bd_bufspacethresh)
  655                         bufspace_daemon_wakeup(bd);
  656         }
  657         bp->b_bufsize = bufsize;
  658 }
  659 
  660 /*
  661  *      bufspace_reserve:
  662  *
  663  *      Reserve bufspace before calling allocbuf().  metadata has a
  664  *      different space limit than data.
  665  */
  666 static int
  667 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
  668 {
  669         long limit, new;
  670         long space;
  671 
  672         if (metadata)
  673                 limit = bd->bd_maxbufspace;
  674         else
  675                 limit = bd->bd_hibufspace;
  676         space = atomic_fetchadd_long(&bd->bd_bufspace, size);
  677         new = space + size;
  678         if (new > limit) {
  679                 atomic_subtract_long(&bd->bd_bufspace, size);
  680                 return (ENOSPC);
  681         }
  682 
  683         /* Wake up the daemon on the transition. */
  684         if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
  685                 bufspace_daemon_wakeup(bd);
  686 
  687         return (0);
  688 }
  689 
  690 /*
  691  *      bufspace_release:
  692  *
  693  *      Release reserved bufspace after bufspace_adjust() has consumed it.
  694  */
  695 static void
  696 bufspace_release(struct bufdomain *bd, int size)
  697 {
  698 
  699         atomic_subtract_long(&bd->bd_bufspace, size);
  700 }
  701 
  702 /*
  703  *      bufspace_wait:
  704  *
  705  *      Wait for bufspace, acting as the buf daemon if a locked vnode is
  706  *      supplied.  bd_wanted must be set prior to polling for space.  The
  707  *      operation must be re-tried on return.
  708  */
  709 static void
  710 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
  711     int slpflag, int slptimeo)
  712 {
  713         struct thread *td;
  714         int error, fl, norunbuf;
  715 
  716         if ((gbflags & GB_NOWAIT_BD) != 0)
  717                 return;
  718 
  719         td = curthread;
  720         BD_LOCK(bd);
  721         while (bd->bd_wanted) {
  722                 if (vp != NULL && vp->v_type != VCHR &&
  723                     (td->td_pflags & TDP_BUFNEED) == 0) {
  724                         BD_UNLOCK(bd);
  725                         /*
  726                          * getblk() is called with a vnode locked, and
  727                          * some majority of the dirty buffers may as
  728                          * well belong to the vnode.  Flushing the
  729                          * buffers there would make a progress that
  730                          * cannot be achieved by the buf_daemon, that
  731                          * cannot lock the vnode.
  732                          */
  733                         norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
  734                             (td->td_pflags & TDP_NORUNNINGBUF);
  735 
  736                         /*
  737                          * Play bufdaemon.  The getnewbuf() function
  738                          * may be called while the thread owns lock
  739                          * for another dirty buffer for the same
  740                          * vnode, which makes it impossible to use
  741                          * VOP_FSYNC() there, due to the buffer lock
  742                          * recursion.
  743                          */
  744                         td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
  745                         fl = buf_flush(vp, bd, flushbufqtarget);
  746                         td->td_pflags &= norunbuf;
  747                         BD_LOCK(bd);
  748                         if (fl != 0)
  749                                 continue;
  750                         if (bd->bd_wanted == 0)
  751                                 break;
  752                 }
  753                 error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
  754                     (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
  755                 if (error != 0)
  756                         break;
  757         }
  758         BD_UNLOCK(bd);
  759 }
  760 
  761 static void
  762 bufspace_daemon_shutdown(void *arg, int howto __unused)
  763 {
  764         struct bufdomain *bd = arg;
  765         int error;
  766 
  767         BD_RUN_LOCK(bd);
  768         bd->bd_shutdown = true;
  769         wakeup(&bd->bd_running);
  770         error = msleep(&bd->bd_shutdown, BD_RUN_LOCKPTR(bd), 0,
  771             "bufspace_shutdown", 60 * hz);
  772         BD_RUN_UNLOCK(bd);
  773         if (error != 0)
  774                 printf("bufspacedaemon wait error: %d\n", error);
  775 }
  776 
  777 /*
  778  *      bufspace_daemon:
  779  *
  780  *      buffer space management daemon.  Tries to maintain some marginal
  781  *      amount of free buffer space so that requesting processes neither
  782  *      block nor work to reclaim buffers.
  783  */
  784 static void
  785 bufspace_daemon(void *arg)
  786 {
  787         struct bufdomain *bd = arg;
  788 
  789         EVENTHANDLER_REGISTER(shutdown_pre_sync, bufspace_daemon_shutdown, bd,
  790             SHUTDOWN_PRI_LAST + 100);
  791 
  792         BD_RUN_LOCK(bd);
  793         while (!bd->bd_shutdown) {
  794                 BD_RUN_UNLOCK(bd);
  795 
  796                 /*
  797                  * Free buffers from the clean queue until we meet our
  798                  * targets.
  799                  *
  800                  * Theory of operation:  The buffer cache is most efficient
  801                  * when some free buffer headers and space are always
  802                  * available to getnewbuf().  This daemon attempts to prevent
  803                  * the excessive blocking and synchronization associated
  804                  * with shortfall.  It goes through three phases according
  805                  * demand:
  806                  *
  807                  * 1)   The daemon wakes up voluntarily once per-second
  808                  *      during idle periods when the counters are below
  809                  *      the wakeup thresholds (bufspacethresh, lofreebuffers).
  810                  *
  811                  * 2)   The daemon wakes up as we cross the thresholds
  812                  *      ahead of any potential blocking.  This may bounce
  813                  *      slightly according to the rate of consumption and
  814                  *      release.
  815                  *
  816                  * 3)   The daemon and consumers are starved for working
  817                  *      clean buffers.  This is the 'bufspace' sleep below
  818                  *      which will inefficiently trade bufs with bqrelse
  819                  *      until we return to condition 2.
  820                  */
  821                 while (bd->bd_bufspace > bd->bd_lobufspace ||
  822                     bd->bd_freebuffers < bd->bd_hifreebuffers) {
  823                         if (buf_recycle(bd, false) != 0) {
  824                                 if (bd_flushall(bd))
  825                                         continue;
  826                                 /*
  827                                  * Speedup dirty if we've run out of clean
  828                                  * buffers.  This is possible in particular
  829                                  * because softdep may held many bufs locked
  830                                  * pending writes to other bufs which are
  831                                  * marked for delayed write, exhausting
  832                                  * clean space until they are written.
  833                                  */
  834                                 bd_speedup();
  835                                 BD_LOCK(bd);
  836                                 if (bd->bd_wanted) {
  837                                         msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
  838                                             PRIBIO|PDROP, "bufspace", hz/10);
  839                                 } else
  840                                         BD_UNLOCK(bd);
  841                         }
  842                         maybe_yield();
  843                 }
  844 
  845                 /*
  846                  * Re-check our limits and sleep.  bd_running must be
  847                  * cleared prior to checking the limits to avoid missed
  848                  * wakeups.  The waker will adjust one of bufspace or
  849                  * freebuffers prior to checking bd_running.
  850                  */
  851                 BD_RUN_LOCK(bd);
  852                 if (bd->bd_shutdown)
  853                         break;
  854                 atomic_store_int(&bd->bd_running, 0);
  855                 if (bd->bd_bufspace < bd->bd_bufspacethresh &&
  856                     bd->bd_freebuffers > bd->bd_lofreebuffers) {
  857                         msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd),
  858                             PRIBIO, "-", hz);
  859                 } else {
  860                         /* Avoid spurious wakeups while running. */
  861                         atomic_store_int(&bd->bd_running, 1);
  862                 }
  863         }
  864         wakeup(&bd->bd_shutdown);
  865         BD_RUN_UNLOCK(bd);
  866         kthread_exit();
  867 }
  868 
  869 /*
  870  *      bufmallocadjust:
  871  *
  872  *      Adjust the reported bufspace for a malloc managed buffer, possibly
  873  *      waking any waiters.
  874  */
  875 static void
  876 bufmallocadjust(struct buf *bp, int bufsize)
  877 {
  878         int diff;
  879 
  880         KASSERT((bp->b_flags & B_MALLOC) != 0,
  881             ("bufmallocadjust: non-malloc buf %p", bp));
  882         diff = bufsize - bp->b_bufsize;
  883         if (diff < 0)
  884                 atomic_subtract_long(&bufmallocspace, -diff);
  885         else
  886                 atomic_add_long(&bufmallocspace, diff);
  887         bp->b_bufsize = bufsize;
  888 }
  889 
  890 /*
  891  *      runningwakeup:
  892  *
  893  *      Wake up processes that are waiting on asynchronous writes to fall
  894  *      below lorunningspace.
  895  */
  896 static void
  897 runningwakeup(void)
  898 {
  899 
  900         mtx_lock(&rbreqlock);
  901         if (runningbufreq) {
  902                 runningbufreq = 0;
  903                 wakeup(&runningbufreq);
  904         }
  905         mtx_unlock(&rbreqlock);
  906 }
  907 
  908 /*
  909  *      runningbufwakeup:
  910  *
  911  *      Decrement the outstanding write count according.
  912  */
  913 void
  914 runningbufwakeup(struct buf *bp)
  915 {
  916         long space, bspace;
  917 
  918         bspace = bp->b_runningbufspace;
  919         if (bspace == 0)
  920                 return;
  921         space = atomic_fetchadd_long(&runningbufspace, -bspace);
  922         KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
  923             space, bspace));
  924         bp->b_runningbufspace = 0;
  925         /*
  926          * Only acquire the lock and wakeup on the transition from exceeding
  927          * the threshold to falling below it.
  928          */
  929         if (space < lorunningspace)
  930                 return;
  931         if (space - bspace > lorunningspace)
  932                 return;
  933         runningwakeup();
  934 }
  935 
  936 /*
  937  *      waitrunningbufspace()
  938  *
  939  *      runningbufspace is a measure of the amount of I/O currently
  940  *      running.  This routine is used in async-write situations to
  941  *      prevent creating huge backups of pending writes to a device.
  942  *      Only asynchronous writes are governed by this function.
  943  *
  944  *      This does NOT turn an async write into a sync write.  It waits  
  945  *      for earlier writes to complete and generally returns before the
  946  *      caller's write has reached the device.
  947  */
  948 void
  949 waitrunningbufspace(void)
  950 {
  951 
  952         mtx_lock(&rbreqlock);
  953         while (runningbufspace > hirunningspace) {
  954                 runningbufreq = 1;
  955                 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
  956         }
  957         mtx_unlock(&rbreqlock);
  958 }
  959 
  960 /*
  961  *      vfs_buf_test_cache:
  962  *
  963  *      Called when a buffer is extended.  This function clears the B_CACHE
  964  *      bit if the newly extended portion of the buffer does not contain
  965  *      valid data.
  966  */
  967 static __inline void
  968 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
  969     vm_offset_t size, vm_page_t m)
  970 {
  971 
  972         /*
  973          * This function and its results are protected by higher level
  974          * synchronization requiring vnode and buf locks to page in and
  975          * validate pages.
  976          */
  977         if (bp->b_flags & B_CACHE) {
  978                 int base = (foff + off) & PAGE_MASK;
  979                 if (vm_page_is_valid(m, base, size) == 0)
  980                         bp->b_flags &= ~B_CACHE;
  981         }
  982 }
  983 
  984 /* Wake up the buffer daemon if necessary */
  985 static void
  986 bd_wakeup(void)
  987 {
  988 
  989         mtx_lock(&bdlock);
  990         if (bd_request == 0) {
  991                 bd_request = 1;
  992                 wakeup(&bd_request);
  993         }
  994         mtx_unlock(&bdlock);
  995 }
  996 
  997 /*
  998  * Adjust the maxbcachbuf tunable.
  999  */
 1000 static void
 1001 maxbcachebuf_adjust(void)
 1002 {
 1003         int i;
 1004 
 1005         /*
 1006          * maxbcachebuf must be a power of 2 >= MAXBSIZE.
 1007          */
 1008         i = 2;
 1009         while (i * 2 <= maxbcachebuf)
 1010                 i *= 2;
 1011         maxbcachebuf = i;
 1012         if (maxbcachebuf < MAXBSIZE)
 1013                 maxbcachebuf = MAXBSIZE;
 1014         if (maxbcachebuf > maxphys)
 1015                 maxbcachebuf = maxphys;
 1016         if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
 1017                 printf("maxbcachebuf=%d\n", maxbcachebuf);
 1018 }
 1019 
 1020 /*
 1021  * bd_speedup - speedup the buffer cache flushing code
 1022  */
 1023 void
 1024 bd_speedup(void)
 1025 {
 1026         int needwake;
 1027 
 1028         mtx_lock(&bdlock);
 1029         needwake = 0;
 1030         if (bd_speedupreq == 0 || bd_request == 0)
 1031                 needwake = 1;
 1032         bd_speedupreq = 1;
 1033         bd_request = 1;
 1034         if (needwake)
 1035                 wakeup(&bd_request);
 1036         mtx_unlock(&bdlock);
 1037 }
 1038 
 1039 #ifdef __i386__
 1040 #define TRANSIENT_DENOM 5
 1041 #else
 1042 #define TRANSIENT_DENOM 10
 1043 #endif
 1044 
 1045 /*
 1046  * Calculating buffer cache scaling values and reserve space for buffer
 1047  * headers.  This is called during low level kernel initialization and
 1048  * may be called more then once.  We CANNOT write to the memory area
 1049  * being reserved at this time.
 1050  */
 1051 caddr_t
 1052 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
 1053 {
 1054         int tuned_nbuf;
 1055         long maxbuf, maxbuf_sz, buf_sz, biotmap_sz;
 1056 
 1057 #ifdef KASAN
 1058         /*
 1059          * With KASAN enabled, the kernel map is shadowed.  Account for this
 1060          * when sizing maps based on the amount of physical memory available.
 1061          */
 1062         physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
 1063             (KASAN_SHADOW_SCALE + 1);
 1064 #endif
 1065 
 1066         /*
 1067          * physmem_est is in pages.  Convert it to kilobytes (assumes
 1068          * PAGE_SIZE is >= 1K)
 1069          */
 1070         physmem_est = physmem_est * (PAGE_SIZE / 1024);
 1071 
 1072         maxbcachebuf_adjust();
 1073         /*
 1074          * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
 1075          * For the first 64MB of ram nominally allocate sufficient buffers to
 1076          * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
 1077          * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
 1078          * the buffer cache we limit the eventual kva reservation to
 1079          * maxbcache bytes.
 1080          *
 1081          * factor represents the 1/4 x ram conversion.
 1082          */
 1083         if (nbuf == 0) {
 1084                 int factor = 4 * BKVASIZE / 1024;
 1085 
 1086                 nbuf = 50;
 1087                 if (physmem_est > 4096)
 1088                         nbuf += min((physmem_est - 4096) / factor,
 1089                             65536 / factor);
 1090                 if (physmem_est > 65536)
 1091                         nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
 1092                             32 * 1024 * 1024 / (factor * 5));
 1093 
 1094                 if (maxbcache && nbuf > maxbcache / BKVASIZE)
 1095                         nbuf = maxbcache / BKVASIZE;
 1096                 tuned_nbuf = 1;
 1097         } else
 1098                 tuned_nbuf = 0;
 1099 
 1100         /* XXX Avoid unsigned long overflows later on with maxbufspace. */
 1101         maxbuf = (LONG_MAX / 3) / BKVASIZE;
 1102         if (nbuf > maxbuf) {
 1103                 if (!tuned_nbuf)
 1104                         printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
 1105                             maxbuf);
 1106                 nbuf = maxbuf;
 1107         }
 1108 
 1109         /*
 1110          * Ideal allocation size for the transient bio submap is 10%
 1111          * of the maximal space buffer map.  This roughly corresponds
 1112          * to the amount of the buffer mapped for typical UFS load.
 1113          *
 1114          * Clip the buffer map to reserve space for the transient
 1115          * BIOs, if its extent is bigger than 90% (80% on i386) of the
 1116          * maximum buffer map extent on the platform.
 1117          *
 1118          * The fall-back to the maxbuf in case of maxbcache unset,
 1119          * allows to not trim the buffer KVA for the architectures
 1120          * with ample KVA space.
 1121          */
 1122         if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
 1123                 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
 1124                 buf_sz = (long)nbuf * BKVASIZE;
 1125                 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
 1126                     (TRANSIENT_DENOM - 1)) {
 1127                         /*
 1128                          * There is more KVA than memory.  Do not
 1129                          * adjust buffer map size, and assign the rest
 1130                          * of maxbuf to transient map.
 1131                          */
 1132                         biotmap_sz = maxbuf_sz - buf_sz;
 1133                 } else {
 1134                         /*
 1135                          * Buffer map spans all KVA we could afford on
 1136                          * this platform.  Give 10% (20% on i386) of
 1137                          * the buffer map to the transient bio map.
 1138                          */
 1139                         biotmap_sz = buf_sz / TRANSIENT_DENOM;
 1140                         buf_sz -= biotmap_sz;
 1141                 }
 1142                 if (biotmap_sz / INT_MAX > maxphys)
 1143                         bio_transient_maxcnt = INT_MAX;
 1144                 else
 1145                         bio_transient_maxcnt = biotmap_sz / maxphys;
 1146                 /*
 1147                  * Artificially limit to 1024 simultaneous in-flight I/Os
 1148                  * using the transient mapping.
 1149                  */
 1150                 if (bio_transient_maxcnt > 1024)
 1151                         bio_transient_maxcnt = 1024;
 1152                 if (tuned_nbuf)
 1153                         nbuf = buf_sz / BKVASIZE;
 1154         }
 1155 
 1156         if (nswbuf == 0) {
 1157                 nswbuf = min(nbuf / 4, 256);
 1158                 if (nswbuf < NSWBUF_MIN)
 1159                         nswbuf = NSWBUF_MIN;
 1160         }
 1161 
 1162         /*
 1163          * Reserve space for the buffer cache buffers
 1164          */
 1165         buf = (char *)v;
 1166         v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
 1167             atop(maxbcachebuf)) * nbuf;
 1168 
 1169         return (v);
 1170 }
 1171 
 1172 /*
 1173  * Single global constant for BUF_WMESG, to avoid getting multiple
 1174  * references.
 1175  */
 1176 static const char buf_wmesg[] = "bufwait";
 1177 
 1178 /* Initialize the buffer subsystem.  Called before use of any buffers. */
 1179 void
 1180 bufinit(void)
 1181 {
 1182         struct buf *bp;
 1183         int i;
 1184 
 1185         KASSERT(maxbcachebuf >= MAXBSIZE,
 1186             ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
 1187             MAXBSIZE));
 1188         bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
 1189         mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
 1190         mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
 1191         mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
 1192 
 1193         unmapped_buf = (caddr_t)kva_alloc(maxphys);
 1194 
 1195         /* finally, initialize each buffer header and stick on empty q */
 1196         for (i = 0; i < nbuf; i++) {
 1197                 bp = nbufp(i);
 1198                 bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
 1199                 bp->b_flags = B_INVAL;
 1200                 bp->b_rcred = NOCRED;
 1201                 bp->b_wcred = NOCRED;
 1202                 bp->b_qindex = QUEUE_NONE;
 1203                 bp->b_domain = -1;
 1204                 bp->b_subqueue = mp_maxid + 1;
 1205                 bp->b_xflags = 0;
 1206                 bp->b_data = bp->b_kvabase = unmapped_buf;
 1207                 LIST_INIT(&bp->b_dep);
 1208                 BUF_LOCKINIT(bp, buf_wmesg);
 1209                 bq_insert(&bqempty, bp, false);
 1210         }
 1211 
 1212         /*
 1213          * maxbufspace is the absolute maximum amount of buffer space we are 
 1214          * allowed to reserve in KVM and in real terms.  The absolute maximum
 1215          * is nominally used by metadata.  hibufspace is the nominal maximum
 1216          * used by most other requests.  The differential is required to 
 1217          * ensure that metadata deadlocks don't occur.
 1218          *
 1219          * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
 1220          * this may result in KVM fragmentation which is not handled optimally
 1221          * by the system. XXX This is less true with vmem.  We could use
 1222          * PAGE_SIZE.
 1223          */
 1224         maxbufspace = (long)nbuf * BKVASIZE;
 1225         hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
 1226         lobufspace = (hibufspace / 20) * 19; /* 95% */
 1227         bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
 1228 
 1229         /*
 1230          * Note: The 16 MiB upper limit for hirunningspace was chosen
 1231          * arbitrarily and may need further tuning. It corresponds to
 1232          * 128 outstanding write IO requests (if IO size is 128 KiB),
 1233          * which fits with many RAID controllers' tagged queuing limits.
 1234          * The lower 1 MiB limit is the historical upper limit for
 1235          * hirunningspace.
 1236          */
 1237         hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
 1238             16 * 1024 * 1024), 1024 * 1024);
 1239         lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
 1240 
 1241         /*
 1242          * Limit the amount of malloc memory since it is wired permanently into
 1243          * the kernel space.  Even though this is accounted for in the buffer
 1244          * allocation, we don't want the malloced region to grow uncontrolled.
 1245          * The malloc scheme improves memory utilization significantly on
 1246          * average (small) directories.
 1247          */
 1248         maxbufmallocspace = hibufspace / 20;
 1249 
 1250         /*
 1251          * Reduce the chance of a deadlock occurring by limiting the number
 1252          * of delayed-write dirty buffers we allow to stack up.
 1253          */
 1254         hidirtybuffers = nbuf / 4 + 20;
 1255         dirtybufthresh = hidirtybuffers * 9 / 10;
 1256         /*
 1257          * To support extreme low-memory systems, make sure hidirtybuffers
 1258          * cannot eat up all available buffer space.  This occurs when our
 1259          * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
 1260          * buffer space assuming BKVASIZE'd buffers.
 1261          */
 1262         while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
 1263                 hidirtybuffers >>= 1;
 1264         }
 1265         lodirtybuffers = hidirtybuffers / 2;
 1266 
 1267         /*
 1268          * lofreebuffers should be sufficient to avoid stalling waiting on
 1269          * buf headers under heavy utilization.  The bufs in per-cpu caches
 1270          * are counted as free but will be unavailable to threads executing
 1271          * on other cpus.
 1272          *
 1273          * hifreebuffers is the free target for the bufspace daemon.  This
 1274          * should be set appropriately to limit work per-iteration.
 1275          */
 1276         lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
 1277         hifreebuffers = (3 * lofreebuffers) / 2;
 1278         numfreebuffers = nbuf;
 1279 
 1280         /* Setup the kva and free list allocators. */
 1281         vmem_set_reclaim(buffer_arena, bufkva_reclaim);
 1282         buf_zone = uma_zcache_create("buf free cache",
 1283             sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
 1284             NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
 1285 
 1286         /*
 1287          * Size the clean queue according to the amount of buffer space.
 1288          * One queue per-256mb up to the max.  More queues gives better
 1289          * concurrency but less accurate LRU.
 1290          */
 1291         buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
 1292         for (i = 0 ; i < buf_domains; i++) {
 1293                 struct bufdomain *bd;
 1294 
 1295                 bd = &bdomain[i];
 1296                 bd_init(bd);
 1297                 bd->bd_freebuffers = nbuf / buf_domains;
 1298                 bd->bd_hifreebuffers = hifreebuffers / buf_domains;
 1299                 bd->bd_lofreebuffers = lofreebuffers / buf_domains;
 1300                 bd->bd_bufspace = 0;
 1301                 bd->bd_maxbufspace = maxbufspace / buf_domains;
 1302                 bd->bd_hibufspace = hibufspace / buf_domains;
 1303                 bd->bd_lobufspace = lobufspace / buf_domains;
 1304                 bd->bd_bufspacethresh = bufspacethresh / buf_domains;
 1305                 bd->bd_numdirtybuffers = 0;
 1306                 bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
 1307                 bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
 1308                 bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
 1309                 /* Don't allow more than 2% of bufs in the per-cpu caches. */
 1310                 bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
 1311         }
 1312         getnewbufcalls = counter_u64_alloc(M_WAITOK);
 1313         getnewbufrestarts = counter_u64_alloc(M_WAITOK);
 1314         mappingrestarts = counter_u64_alloc(M_WAITOK);
 1315         numbufallocfails = counter_u64_alloc(M_WAITOK);
 1316         notbufdflushes = counter_u64_alloc(M_WAITOK);
 1317         buffreekvacnt = counter_u64_alloc(M_WAITOK);
 1318         bufdefragcnt = counter_u64_alloc(M_WAITOK);
 1319         bufkvaspace = counter_u64_alloc(M_WAITOK);
 1320 }
 1321 
 1322 #ifdef INVARIANTS
 1323 static inline void
 1324 vfs_buf_check_mapped(struct buf *bp)
 1325 {
 1326 
 1327         KASSERT(bp->b_kvabase != unmapped_buf,
 1328             ("mapped buf: b_kvabase was not updated %p", bp));
 1329         KASSERT(bp->b_data != unmapped_buf,
 1330             ("mapped buf: b_data was not updated %p", bp));
 1331         KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
 1332             maxphys, ("b_data + b_offset unmapped %p", bp));
 1333 }
 1334 
 1335 static inline void
 1336 vfs_buf_check_unmapped(struct buf *bp)
 1337 {
 1338 
 1339         KASSERT(bp->b_data == unmapped_buf,
 1340             ("unmapped buf: corrupted b_data %p", bp));
 1341 }
 1342 
 1343 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
 1344 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
 1345 #else
 1346 #define BUF_CHECK_MAPPED(bp) do {} while (0)
 1347 #define BUF_CHECK_UNMAPPED(bp) do {} while (0)
 1348 #endif
 1349 
 1350 static int
 1351 isbufbusy(struct buf *bp)
 1352 {
 1353         if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
 1354             ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
 1355                 return (1);
 1356         return (0);
 1357 }
 1358 
 1359 /*
 1360  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
 1361  */
 1362 void
 1363 bufshutdown(int show_busybufs)
 1364 {
 1365         static int first_buf_printf = 1;
 1366         struct buf *bp;
 1367         int i, iter, nbusy, pbusy;
 1368 #ifndef PREEMPTION
 1369         int subiter;
 1370 #endif
 1371 
 1372         /*
 1373          * Sync filesystems for shutdown
 1374          */
 1375         wdog_kern_pat(WD_LASTVAL);
 1376         kern_sync(curthread);
 1377 
 1378         /*
 1379          * With soft updates, some buffers that are
 1380          * written will be remarked as dirty until other
 1381          * buffers are written.
 1382          */
 1383         for (iter = pbusy = 0; iter < 20; iter++) {
 1384                 nbusy = 0;
 1385                 for (i = nbuf - 1; i >= 0; i--) {
 1386                         bp = nbufp(i);
 1387                         if (isbufbusy(bp))
 1388                                 nbusy++;
 1389                 }
 1390                 if (nbusy == 0) {
 1391                         if (first_buf_printf)
 1392                                 printf("All buffers synced.");
 1393                         break;
 1394                 }
 1395                 if (first_buf_printf) {
 1396                         printf("Syncing disks, buffers remaining... ");
 1397                         first_buf_printf = 0;
 1398                 }
 1399                 printf("%d ", nbusy);
 1400                 if (nbusy < pbusy)
 1401                         iter = 0;
 1402                 pbusy = nbusy;
 1403 
 1404                 wdog_kern_pat(WD_LASTVAL);
 1405                 kern_sync(curthread);
 1406 
 1407 #ifdef PREEMPTION
 1408                 /*
 1409                  * Spin for a while to allow interrupt threads to run.
 1410                  */
 1411                 DELAY(50000 * iter);
 1412 #else
 1413                 /*
 1414                  * Context switch several times to allow interrupt
 1415                  * threads to run.
 1416                  */
 1417                 for (subiter = 0; subiter < 50 * iter; subiter++) {
 1418                         thread_lock(curthread);
 1419                         mi_switch(SW_VOL);
 1420                         DELAY(1000);
 1421                 }
 1422 #endif
 1423         }
 1424         printf("\n");
 1425         /*
 1426          * Count only busy local buffers to prevent forcing 
 1427          * a fsck if we're just a client of a wedged NFS server
 1428          */
 1429         nbusy = 0;
 1430         for (i = nbuf - 1; i >= 0; i--) {
 1431                 bp = nbufp(i);
 1432                 if (isbufbusy(bp)) {
 1433 #if 0
 1434 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
 1435                         if (bp->b_dev == NULL) {
 1436                                 TAILQ_REMOVE(&mountlist,
 1437                                     bp->b_vp->v_mount, mnt_list);
 1438                                 continue;
 1439                         }
 1440 #endif
 1441                         nbusy++;
 1442                         if (show_busybufs > 0) {
 1443                                 printf(
 1444             "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
 1445                                     nbusy, bp, bp->b_vp, bp->b_flags,
 1446                                     (intmax_t)bp->b_blkno,
 1447                                     (intmax_t)bp->b_lblkno);
 1448                                 BUF_LOCKPRINTINFO(bp);
 1449                                 if (show_busybufs > 1)
 1450                                         vn_printf(bp->b_vp,
 1451                                             "vnode content: ");
 1452                         }
 1453                 }
 1454         }
 1455         if (nbusy) {
 1456                 /*
 1457                  * Failed to sync all blocks. Indicate this and don't
 1458                  * unmount filesystems (thus forcing an fsck on reboot).
 1459                  */
 1460                 printf("Giving up on %d buffers\n", nbusy);
 1461                 DELAY(5000000); /* 5 seconds */
 1462                 swapoff_all();
 1463         } else {
 1464                 if (!first_buf_printf)
 1465                         printf("Final sync complete\n");
 1466 
 1467                 /*
 1468                  * Unmount filesystems and perform swapoff, to quiesce
 1469                  * the system as much as possible.  In particular, no
 1470                  * I/O should be initiated from top levels since it
 1471                  * might be abruptly terminated by reset, or otherwise
 1472                  * erronously handled because other parts of the
 1473                  * system are disabled.
 1474                  *
 1475                  * Swapoff before unmount, because file-backed swap is
 1476                  * non-operational after unmount of the underlying
 1477                  * filesystem.
 1478                  */
 1479                 if (!KERNEL_PANICKED()) {
 1480                         swapoff_all();
 1481                         vfs_unmountall();
 1482                 }
 1483         }
 1484         DELAY(100000);          /* wait for console output to finish */
 1485 }
 1486 
 1487 static void
 1488 bpmap_qenter(struct buf *bp)
 1489 {
 1490 
 1491         BUF_CHECK_MAPPED(bp);
 1492 
 1493         /*
 1494          * bp->b_data is relative to bp->b_offset, but
 1495          * bp->b_offset may be offset into the first page.
 1496          */
 1497         bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
 1498         pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
 1499         bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
 1500             (vm_offset_t)(bp->b_offset & PAGE_MASK));
 1501 }
 1502 
 1503 static inline struct bufdomain *
 1504 bufdomain(struct buf *bp)
 1505 {
 1506 
 1507         return (&bdomain[bp->b_domain]);
 1508 }
 1509 
 1510 static struct bufqueue *
 1511 bufqueue(struct buf *bp)
 1512 {
 1513 
 1514         switch (bp->b_qindex) {
 1515         case QUEUE_NONE:
 1516                 /* FALLTHROUGH */
 1517         case QUEUE_SENTINEL:
 1518                 return (NULL);
 1519         case QUEUE_EMPTY:
 1520                 return (&bqempty);
 1521         case QUEUE_DIRTY:
 1522                 return (&bufdomain(bp)->bd_dirtyq);
 1523         case QUEUE_CLEAN:
 1524                 return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
 1525         default:
 1526                 break;
 1527         }
 1528         panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
 1529 }
 1530 
 1531 /*
 1532  * Return the locked bufqueue that bp is a member of.
 1533  */
 1534 static struct bufqueue *
 1535 bufqueue_acquire(struct buf *bp)
 1536 {
 1537         struct bufqueue *bq, *nbq;
 1538 
 1539         /*
 1540          * bp can be pushed from a per-cpu queue to the
 1541          * cleanq while we're waiting on the lock.  Retry
 1542          * if the queues don't match.
 1543          */
 1544         bq = bufqueue(bp);
 1545         BQ_LOCK(bq);
 1546         for (;;) {
 1547                 nbq = bufqueue(bp);
 1548                 if (bq == nbq)
 1549                         break;
 1550                 BQ_UNLOCK(bq);
 1551                 BQ_LOCK(nbq);
 1552                 bq = nbq;
 1553         }
 1554         return (bq);
 1555 }
 1556 
 1557 /*
 1558  *      binsfree:
 1559  *
 1560  *      Insert the buffer into the appropriate free list.  Requires a
 1561  *      locked buffer on entry and buffer is unlocked before return.
 1562  */
 1563 static void
 1564 binsfree(struct buf *bp, int qindex)
 1565 {
 1566         struct bufdomain *bd;
 1567         struct bufqueue *bq;
 1568 
 1569         KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
 1570             ("binsfree: Invalid qindex %d", qindex));
 1571         BUF_ASSERT_XLOCKED(bp);
 1572 
 1573         /*
 1574          * Handle delayed bremfree() processing.
 1575          */
 1576         if (bp->b_flags & B_REMFREE) {
 1577                 if (bp->b_qindex == qindex) {
 1578                         bp->b_flags |= B_REUSE;
 1579                         bp->b_flags &= ~B_REMFREE;
 1580                         BUF_UNLOCK(bp);
 1581                         return;
 1582                 }
 1583                 bq = bufqueue_acquire(bp);
 1584                 bq_remove(bq, bp);
 1585                 BQ_UNLOCK(bq);
 1586         }
 1587         bd = bufdomain(bp);
 1588         if (qindex == QUEUE_CLEAN) {
 1589                 if (bd->bd_lim != 0)
 1590                         bq = &bd->bd_subq[PCPU_GET(cpuid)];
 1591                 else
 1592                         bq = bd->bd_cleanq;
 1593         } else
 1594                 bq = &bd->bd_dirtyq;
 1595         bq_insert(bq, bp, true);
 1596 }
 1597 
 1598 /*
 1599  * buf_free:
 1600  *
 1601  *      Free a buffer to the buf zone once it no longer has valid contents.
 1602  */
 1603 static void
 1604 buf_free(struct buf *bp)
 1605 {
 1606 
 1607         if (bp->b_flags & B_REMFREE)
 1608                 bremfreef(bp);
 1609         if (bp->b_vflags & BV_BKGRDINPROG)
 1610                 panic("losing buffer 1");
 1611         if (bp->b_rcred != NOCRED) {
 1612                 crfree(bp->b_rcred);
 1613                 bp->b_rcred = NOCRED;
 1614         }
 1615         if (bp->b_wcred != NOCRED) {
 1616                 crfree(bp->b_wcred);
 1617                 bp->b_wcred = NOCRED;
 1618         }
 1619         if (!LIST_EMPTY(&bp->b_dep))
 1620                 buf_deallocate(bp);
 1621         bufkva_free(bp);
 1622         atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
 1623         MPASS((bp->b_flags & B_MAXPHYS) == 0);
 1624         BUF_UNLOCK(bp);
 1625         uma_zfree(buf_zone, bp);
 1626 }
 1627 
 1628 /*
 1629  * buf_import:
 1630  *
 1631  *      Import bufs into the uma cache from the buf list.  The system still
 1632  *      expects a static array of bufs and much of the synchronization
 1633  *      around bufs assumes type stable storage.  As a result, UMA is used
 1634  *      only as a per-cpu cache of bufs still maintained on a global list.
 1635  */
 1636 static int
 1637 buf_import(void *arg, void **store, int cnt, int domain, int flags)
 1638 {
 1639         struct buf *bp;
 1640         int i;
 1641 
 1642         BQ_LOCK(&bqempty);
 1643         for (i = 0; i < cnt; i++) {
 1644                 bp = TAILQ_FIRST(&bqempty.bq_queue);
 1645                 if (bp == NULL)
 1646                         break;
 1647                 bq_remove(&bqempty, bp);
 1648                 store[i] = bp;
 1649         }
 1650         BQ_UNLOCK(&bqempty);
 1651 
 1652         return (i);
 1653 }
 1654 
 1655 /*
 1656  * buf_release:
 1657  *
 1658  *      Release bufs from the uma cache back to the buffer queues.
 1659  */
 1660 static void
 1661 buf_release(void *arg, void **store, int cnt)
 1662 {
 1663         struct bufqueue *bq;
 1664         struct buf *bp;
 1665         int i;
 1666 
 1667         bq = &bqempty;
 1668         BQ_LOCK(bq);
 1669         for (i = 0; i < cnt; i++) {
 1670                 bp = store[i];
 1671                 /* Inline bq_insert() to batch locking. */
 1672                 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
 1673                 bp->b_flags &= ~(B_AGE | B_REUSE);
 1674                 bq->bq_len++;
 1675                 bp->b_qindex = bq->bq_index;
 1676         }
 1677         BQ_UNLOCK(bq);
 1678 }
 1679 
 1680 /*
 1681  * buf_alloc:
 1682  *
 1683  *      Allocate an empty buffer header.
 1684  */
 1685 static struct buf *
 1686 buf_alloc(struct bufdomain *bd)
 1687 {
 1688         struct buf *bp;
 1689         int freebufs, error;
 1690 
 1691         /*
 1692          * We can only run out of bufs in the buf zone if the average buf
 1693          * is less than BKVASIZE.  In this case the actual wait/block will
 1694          * come from buf_reycle() failing to flush one of these small bufs.
 1695          */
 1696         bp = NULL;
 1697         freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
 1698         if (freebufs > 0)
 1699                 bp = uma_zalloc(buf_zone, M_NOWAIT);
 1700         if (bp == NULL) {
 1701                 atomic_add_int(&bd->bd_freebuffers, 1);
 1702                 bufspace_daemon_wakeup(bd);
 1703                 counter_u64_add(numbufallocfails, 1);
 1704                 return (NULL);
 1705         }
 1706         /*
 1707          * Wake-up the bufspace daemon on transition below threshold.
 1708          */
 1709         if (freebufs == bd->bd_lofreebuffers)
 1710                 bufspace_daemon_wakeup(bd);
 1711 
 1712         error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
 1713         KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
 1714             error));
 1715         (void)error;
 1716 
 1717         KASSERT(bp->b_vp == NULL,
 1718             ("bp: %p still has vnode %p.", bp, bp->b_vp));
 1719         KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
 1720             ("invalid buffer %p flags %#x", bp, bp->b_flags));
 1721         KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
 1722             ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
 1723         KASSERT(bp->b_npages == 0,
 1724             ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
 1725         KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
 1726         KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
 1727         MPASS((bp->b_flags & B_MAXPHYS) == 0);
 1728 
 1729         bp->b_domain = BD_DOMAIN(bd);
 1730         bp->b_flags = 0;
 1731         bp->b_ioflags = 0;
 1732         bp->b_xflags = 0;
 1733         bp->b_vflags = 0;
 1734         bp->b_vp = NULL;
 1735         bp->b_blkno = bp->b_lblkno = 0;
 1736         bp->b_offset = NOOFFSET;
 1737         bp->b_iodone = 0;
 1738         bp->b_error = 0;
 1739         bp->b_resid = 0;
 1740         bp->b_bcount = 0;
 1741         bp->b_npages = 0;
 1742         bp->b_dirtyoff = bp->b_dirtyend = 0;
 1743         bp->b_bufobj = NULL;
 1744         bp->b_data = bp->b_kvabase = unmapped_buf;
 1745         bp->b_fsprivate1 = NULL;
 1746         bp->b_fsprivate2 = NULL;
 1747         bp->b_fsprivate3 = NULL;
 1748         LIST_INIT(&bp->b_dep);
 1749 
 1750         return (bp);
 1751 }
 1752 
 1753 /*
 1754  *      buf_recycle:
 1755  *
 1756  *      Free a buffer from the given bufqueue.  kva controls whether the
 1757  *      freed buf must own some kva resources.  This is used for
 1758  *      defragmenting.
 1759  */
 1760 static int
 1761 buf_recycle(struct bufdomain *bd, bool kva)
 1762 {
 1763         struct bufqueue *bq;
 1764         struct buf *bp, *nbp;
 1765 
 1766         if (kva)
 1767                 counter_u64_add(bufdefragcnt, 1);
 1768         nbp = NULL;
 1769         bq = bd->bd_cleanq;
 1770         BQ_LOCK(bq);
 1771         KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
 1772             ("buf_recycle: Locks don't match"));
 1773         nbp = TAILQ_FIRST(&bq->bq_queue);
 1774 
 1775         /*
 1776          * Run scan, possibly freeing data and/or kva mappings on the fly
 1777          * depending.
 1778          */
 1779         while ((bp = nbp) != NULL) {
 1780                 /*
 1781                  * Calculate next bp (we can only use it if we do not
 1782                  * release the bqlock).
 1783                  */
 1784                 nbp = TAILQ_NEXT(bp, b_freelist);
 1785 
 1786                 /*
 1787                  * If we are defragging then we need a buffer with 
 1788                  * some kva to reclaim.
 1789                  */
 1790                 if (kva && bp->b_kvasize == 0)
 1791                         continue;
 1792 
 1793                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1794                         continue;
 1795 
 1796                 /*
 1797                  * Implement a second chance algorithm for frequently
 1798                  * accessed buffers.
 1799                  */
 1800                 if ((bp->b_flags & B_REUSE) != 0) {
 1801                         TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
 1802                         TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
 1803                         bp->b_flags &= ~B_REUSE;
 1804                         BUF_UNLOCK(bp);
 1805                         continue;
 1806                 }
 1807 
 1808                 /*
 1809                  * Skip buffers with background writes in progress.
 1810                  */
 1811                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
 1812                         BUF_UNLOCK(bp);
 1813                         continue;
 1814                 }
 1815 
 1816                 KASSERT(bp->b_qindex == QUEUE_CLEAN,
 1817                     ("buf_recycle: inconsistent queue %d bp %p",
 1818                     bp->b_qindex, bp));
 1819                 KASSERT(bp->b_domain == BD_DOMAIN(bd),
 1820                     ("getnewbuf: queue domain %d doesn't match request %d",
 1821                     bp->b_domain, (int)BD_DOMAIN(bd)));
 1822                 /*
 1823                  * NOTE:  nbp is now entirely invalid.  We can only restart
 1824                  * the scan from this point on.
 1825                  */
 1826                 bq_remove(bq, bp);
 1827                 BQ_UNLOCK(bq);
 1828 
 1829                 /*
 1830                  * Requeue the background write buffer with error and
 1831                  * restart the scan.
 1832                  */
 1833                 if ((bp->b_vflags & BV_BKGRDERR) != 0) {
 1834                         bqrelse(bp);
 1835                         BQ_LOCK(bq);
 1836                         nbp = TAILQ_FIRST(&bq->bq_queue);
 1837                         continue;
 1838                 }
 1839                 bp->b_flags |= B_INVAL;
 1840                 brelse(bp);
 1841                 return (0);
 1842         }
 1843         bd->bd_wanted = 1;
 1844         BQ_UNLOCK(bq);
 1845 
 1846         return (ENOBUFS);
 1847 }
 1848 
 1849 /*
 1850  *      bremfree:
 1851  *
 1852  *      Mark the buffer for removal from the appropriate free list.
 1853  *
 1854  */
 1855 void
 1856 bremfree(struct buf *bp)
 1857 {
 1858 
 1859         CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1860         KASSERT((bp->b_flags & B_REMFREE) == 0,
 1861             ("bremfree: buffer %p already marked for delayed removal.", bp));
 1862         KASSERT(bp->b_qindex != QUEUE_NONE,
 1863             ("bremfree: buffer %p not on a queue.", bp));
 1864         BUF_ASSERT_XLOCKED(bp);
 1865 
 1866         bp->b_flags |= B_REMFREE;
 1867 }
 1868 
 1869 /*
 1870  *      bremfreef:
 1871  *
 1872  *      Force an immediate removal from a free list.  Used only in nfs when
 1873  *      it abuses the b_freelist pointer.
 1874  */
 1875 void
 1876 bremfreef(struct buf *bp)
 1877 {
 1878         struct bufqueue *bq;
 1879 
 1880         bq = bufqueue_acquire(bp);
 1881         bq_remove(bq, bp);
 1882         BQ_UNLOCK(bq);
 1883 }
 1884 
 1885 static void
 1886 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
 1887 {
 1888 
 1889         mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
 1890         TAILQ_INIT(&bq->bq_queue);
 1891         bq->bq_len = 0;
 1892         bq->bq_index = qindex;
 1893         bq->bq_subqueue = subqueue;
 1894 }
 1895 
 1896 static void
 1897 bd_init(struct bufdomain *bd)
 1898 {
 1899         int i;
 1900 
 1901         bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
 1902         bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
 1903         bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
 1904         for (i = 0; i <= mp_maxid; i++)
 1905                 bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
 1906                     "bufq clean subqueue lock");
 1907         mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
 1908 }
 1909 
 1910 /*
 1911  *      bq_remove:
 1912  *
 1913  *      Removes a buffer from the free list, must be called with the
 1914  *      correct qlock held.
 1915  */
 1916 static void
 1917 bq_remove(struct bufqueue *bq, struct buf *bp)
 1918 {
 1919 
 1920         CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
 1921             bp, bp->b_vp, bp->b_flags);
 1922         KASSERT(bp->b_qindex != QUEUE_NONE,
 1923             ("bq_remove: buffer %p not on a queue.", bp));
 1924         KASSERT(bufqueue(bp) == bq,
 1925             ("bq_remove: Remove buffer %p from wrong queue.", bp));
 1926 
 1927         BQ_ASSERT_LOCKED(bq);
 1928         if (bp->b_qindex != QUEUE_EMPTY) {
 1929                 BUF_ASSERT_XLOCKED(bp);
 1930         }
 1931         KASSERT(bq->bq_len >= 1,
 1932             ("queue %d underflow", bp->b_qindex));
 1933         TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
 1934         bq->bq_len--;
 1935         bp->b_qindex = QUEUE_NONE;
 1936         bp->b_flags &= ~(B_REMFREE | B_REUSE);
 1937 }
 1938 
 1939 static void
 1940 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
 1941 {
 1942         struct buf *bp;
 1943 
 1944         BQ_ASSERT_LOCKED(bq);
 1945         if (bq != bd->bd_cleanq) {
 1946                 BD_LOCK(bd);
 1947                 while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
 1948                         TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
 1949                         TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
 1950                             b_freelist);
 1951                         bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
 1952                 }
 1953                 bd->bd_cleanq->bq_len += bq->bq_len;
 1954                 bq->bq_len = 0;
 1955         }
 1956         if (bd->bd_wanted) {
 1957                 bd->bd_wanted = 0;
 1958                 wakeup(&bd->bd_wanted);
 1959         }
 1960         if (bq != bd->bd_cleanq)
 1961                 BD_UNLOCK(bd);
 1962 }
 1963 
 1964 static int
 1965 bd_flushall(struct bufdomain *bd)
 1966 {
 1967         struct bufqueue *bq;
 1968         int flushed;
 1969         int i;
 1970 
 1971         if (bd->bd_lim == 0)
 1972                 return (0);
 1973         flushed = 0;
 1974         for (i = 0; i <= mp_maxid; i++) {
 1975                 bq = &bd->bd_subq[i];
 1976                 if (bq->bq_len == 0)
 1977                         continue;
 1978                 BQ_LOCK(bq);
 1979                 bd_flush(bd, bq);
 1980                 BQ_UNLOCK(bq);
 1981                 flushed++;
 1982         }
 1983 
 1984         return (flushed);
 1985 }
 1986 
 1987 static void
 1988 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
 1989 {
 1990         struct bufdomain *bd;
 1991 
 1992         if (bp->b_qindex != QUEUE_NONE)
 1993                 panic("bq_insert: free buffer %p onto another queue?", bp);
 1994 
 1995         bd = bufdomain(bp);
 1996         if (bp->b_flags & B_AGE) {
 1997                 /* Place this buf directly on the real queue. */
 1998                 if (bq->bq_index == QUEUE_CLEAN)
 1999                         bq = bd->bd_cleanq;
 2000                 BQ_LOCK(bq);
 2001                 TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
 2002         } else {
 2003                 BQ_LOCK(bq);
 2004                 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
 2005         }
 2006         bp->b_flags &= ~(B_AGE | B_REUSE);
 2007         bq->bq_len++;
 2008         bp->b_qindex = bq->bq_index;
 2009         bp->b_subqueue = bq->bq_subqueue;
 2010 
 2011         /*
 2012          * Unlock before we notify so that we don't wakeup a waiter that
 2013          * fails a trylock on the buf and sleeps again.
 2014          */
 2015         if (unlock)
 2016                 BUF_UNLOCK(bp);
 2017 
 2018         if (bp->b_qindex == QUEUE_CLEAN) {
 2019                 /*
 2020                  * Flush the per-cpu queue and notify any waiters.
 2021                  */
 2022                 if (bd->bd_wanted || (bq != bd->bd_cleanq &&
 2023                     bq->bq_len >= bd->bd_lim))
 2024                         bd_flush(bd, bq);
 2025         }
 2026         BQ_UNLOCK(bq);
 2027 }
 2028 
 2029 /*
 2030  *      bufkva_free:
 2031  *
 2032  *      Free the kva allocation for a buffer.
 2033  *
 2034  */
 2035 static void
 2036 bufkva_free(struct buf *bp)
 2037 {
 2038 
 2039 #ifdef INVARIANTS
 2040         if (bp->b_kvasize == 0) {
 2041                 KASSERT(bp->b_kvabase == unmapped_buf &&
 2042                     bp->b_data == unmapped_buf,
 2043                     ("Leaked KVA space on %p", bp));
 2044         } else if (buf_mapped(bp))
 2045                 BUF_CHECK_MAPPED(bp);
 2046         else
 2047                 BUF_CHECK_UNMAPPED(bp);
 2048 #endif
 2049         if (bp->b_kvasize == 0)
 2050                 return;
 2051 
 2052         vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
 2053         counter_u64_add(bufkvaspace, -bp->b_kvasize);
 2054         counter_u64_add(buffreekvacnt, 1);
 2055         bp->b_data = bp->b_kvabase = unmapped_buf;
 2056         bp->b_kvasize = 0;
 2057 }
 2058 
 2059 /*
 2060  *      bufkva_alloc:
 2061  *
 2062  *      Allocate the buffer KVA and set b_kvasize and b_kvabase.
 2063  */
 2064 static int
 2065 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
 2066 {
 2067         vm_offset_t addr;
 2068         int error;
 2069 
 2070         KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
 2071             ("Invalid gbflags 0x%x in %s", gbflags, __func__));
 2072         MPASS((bp->b_flags & B_MAXPHYS) == 0);
 2073         KASSERT(maxsize <= maxbcachebuf,
 2074             ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
 2075 
 2076         bufkva_free(bp);
 2077 
 2078         addr = 0;
 2079         error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
 2080         if (error != 0) {
 2081                 /*
 2082                  * Buffer map is too fragmented.  Request the caller
 2083                  * to defragment the map.
 2084                  */
 2085                 return (error);
 2086         }
 2087         bp->b_kvabase = (caddr_t)addr;
 2088         bp->b_kvasize = maxsize;
 2089         counter_u64_add(bufkvaspace, bp->b_kvasize);
 2090         if ((gbflags & GB_UNMAPPED) != 0) {
 2091                 bp->b_data = unmapped_buf;
 2092                 BUF_CHECK_UNMAPPED(bp);
 2093         } else {
 2094                 bp->b_data = bp->b_kvabase;
 2095                 BUF_CHECK_MAPPED(bp);
 2096         }
 2097         return (0);
 2098 }
 2099 
 2100 /*
 2101  *      bufkva_reclaim:
 2102  *
 2103  *      Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
 2104  *      callback that fires to avoid returning failure.
 2105  */
 2106 static void
 2107 bufkva_reclaim(vmem_t *vmem, int flags)
 2108 {
 2109         bool done;
 2110         int q;
 2111         int i;
 2112 
 2113         done = false;
 2114         for (i = 0; i < 5; i++) {
 2115                 for (q = 0; q < buf_domains; q++)
 2116                         if (buf_recycle(&bdomain[q], true) != 0)
 2117                                 done = true;
 2118                 if (done)
 2119                         break;
 2120         }
 2121         return;
 2122 }
 2123 
 2124 /*
 2125  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
 2126  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
 2127  * the buffer is valid and we do not have to do anything.
 2128  */
 2129 static void
 2130 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
 2131     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
 2132 {
 2133         struct buf *rabp;
 2134         struct thread *td;
 2135         int i;
 2136 
 2137         td = curthread;
 2138 
 2139         for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
 2140                 if (inmem(vp, *rablkno))
 2141                         continue;
 2142                 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
 2143                 if ((rabp->b_flags & B_CACHE) != 0) {
 2144                         brelse(rabp);
 2145                         continue;
 2146                 }
 2147 #ifdef RACCT
 2148                 if (racct_enable) {
 2149                         PROC_LOCK(curproc);
 2150                         racct_add_buf(curproc, rabp, 0);
 2151                         PROC_UNLOCK(curproc);
 2152                 }
 2153 #endif /* RACCT */
 2154                 td->td_ru.ru_inblock++;
 2155                 rabp->b_flags |= B_ASYNC;
 2156                 rabp->b_flags &= ~B_INVAL;
 2157                 if ((flags & GB_CKHASH) != 0) {
 2158                         rabp->b_flags |= B_CKHASH;
 2159                         rabp->b_ckhashcalc = ckhashfunc;
 2160                 }
 2161                 rabp->b_ioflags &= ~BIO_ERROR;
 2162                 rabp->b_iocmd = BIO_READ;
 2163                 if (rabp->b_rcred == NOCRED && cred != NOCRED)
 2164                         rabp->b_rcred = crhold(cred);
 2165                 vfs_busy_pages(rabp, 0);
 2166                 BUF_KERNPROC(rabp);
 2167                 rabp->b_iooffset = dbtob(rabp->b_blkno);
 2168                 bstrategy(rabp);
 2169         }
 2170 }
 2171 
 2172 /*
 2173  * Entry point for bread() and breadn() via #defines in sys/buf.h.
 2174  *
 2175  * Get a buffer with the specified data.  Look in the cache first.  We
 2176  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
 2177  * is set, the buffer is valid and we do not have to do anything, see
 2178  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
 2179  *
 2180  * Always return a NULL buffer pointer (in bpp) when returning an error.
 2181  *
 2182  * The blkno parameter is the logical block being requested. Normally
 2183  * the mapping of logical block number to disk block address is done
 2184  * by calling VOP_BMAP(). However, if the mapping is already known, the
 2185  * disk block address can be passed using the dblkno parameter. If the
 2186  * disk block address is not known, then the same value should be passed
 2187  * for blkno and dblkno.
 2188  */
 2189 int
 2190 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
 2191     daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
 2192     void (*ckhashfunc)(struct buf *), struct buf **bpp)
 2193 {
 2194         struct buf *bp;
 2195         struct thread *td;
 2196         int error, readwait, rv;
 2197 
 2198         CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
 2199         td = curthread;
 2200         /*
 2201          * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
 2202          * are specified.
 2203          */
 2204         error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
 2205         if (error != 0) {
 2206                 *bpp = NULL;
 2207                 return (error);
 2208         }
 2209         KASSERT(blkno == bp->b_lblkno,
 2210             ("getblkx returned buffer for blkno %jd instead of blkno %jd",
 2211             (intmax_t)bp->b_lblkno, (intmax_t)blkno));
 2212         flags &= ~GB_NOSPARSE;
 2213         *bpp = bp;
 2214 
 2215         /*
 2216          * If not found in cache, do some I/O
 2217          */
 2218         readwait = 0;
 2219         if ((bp->b_flags & B_CACHE) == 0) {
 2220 #ifdef RACCT
 2221                 if (racct_enable) {
 2222                         PROC_LOCK(td->td_proc);
 2223                         racct_add_buf(td->td_proc, bp, 0);
 2224                         PROC_UNLOCK(td->td_proc);
 2225                 }
 2226 #endif /* RACCT */
 2227                 td->td_ru.ru_inblock++;
 2228                 bp->b_iocmd = BIO_READ;
 2229                 bp->b_flags &= ~B_INVAL;
 2230                 if ((flags & GB_CKHASH) != 0) {
 2231                         bp->b_flags |= B_CKHASH;
 2232                         bp->b_ckhashcalc = ckhashfunc;
 2233                 }
 2234                 if ((flags & GB_CVTENXIO) != 0)
 2235                         bp->b_xflags |= BX_CVTENXIO;
 2236                 bp->b_ioflags &= ~BIO_ERROR;
 2237                 if (bp->b_rcred == NOCRED && cred != NOCRED)
 2238                         bp->b_rcred = crhold(cred);
 2239                 vfs_busy_pages(bp, 0);
 2240                 bp->b_iooffset = dbtob(bp->b_blkno);
 2241                 bstrategy(bp);
 2242                 ++readwait;
 2243         }
 2244 
 2245         /*
 2246          * Attempt to initiate asynchronous I/O on read-ahead blocks.
 2247          */
 2248         breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
 2249 
 2250         rv = 0;
 2251         if (readwait) {
 2252                 rv = bufwait(bp);
 2253                 if (rv != 0) {
 2254                         brelse(bp);
 2255                         *bpp = NULL;
 2256                 }
 2257         }
 2258         return (rv);
 2259 }
 2260 
 2261 /*
 2262  * Write, release buffer on completion.  (Done by iodone
 2263  * if async).  Do not bother writing anything if the buffer
 2264  * is invalid.
 2265  *
 2266  * Note that we set B_CACHE here, indicating that buffer is
 2267  * fully valid and thus cacheable.  This is true even of NFS
 2268  * now so we set it generally.  This could be set either here 
 2269  * or in biodone() since the I/O is synchronous.  We put it
 2270  * here.
 2271  */
 2272 int
 2273 bufwrite(struct buf *bp)
 2274 {
 2275         int oldflags;
 2276         struct vnode *vp;
 2277         long space;
 2278         int vp_md;
 2279 
 2280         CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 2281         if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
 2282                 bp->b_flags |= B_INVAL | B_RELBUF;
 2283                 bp->b_flags &= ~B_CACHE;
 2284                 brelse(bp);
 2285                 return (ENXIO);
 2286         }
 2287         if (bp->b_flags & B_INVAL) {
 2288                 brelse(bp);
 2289                 return (0);
 2290         }
 2291 
 2292         if (bp->b_flags & B_BARRIER)
 2293                 atomic_add_long(&barrierwrites, 1);
 2294 
 2295         oldflags = bp->b_flags;
 2296 
 2297         KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
 2298             ("FFS background buffer should not get here %p", bp));
 2299 
 2300         vp = bp->b_vp;
 2301         if (vp)
 2302                 vp_md = vp->v_vflag & VV_MD;
 2303         else
 2304                 vp_md = 0;
 2305 
 2306         /*
 2307          * Mark the buffer clean.  Increment the bufobj write count
 2308          * before bundirty() call, to prevent other thread from seeing
 2309          * empty dirty list and zero counter for writes in progress,
 2310          * falsely indicating that the bufobj is clean.
 2311          */
 2312         bufobj_wref(bp->b_bufobj);
 2313         bundirty(bp);
 2314 
 2315         bp->b_flags &= ~B_DONE;
 2316         bp->b_ioflags &= ~BIO_ERROR;
 2317         bp->b_flags |= B_CACHE;
 2318         bp->b_iocmd = BIO_WRITE;
 2319 
 2320         vfs_busy_pages(bp, 1);
 2321 
 2322         /*
 2323          * Normal bwrites pipeline writes
 2324          */
 2325         bp->b_runningbufspace = bp->b_bufsize;
 2326         space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
 2327 
 2328 #ifdef RACCT
 2329         if (racct_enable) {
 2330                 PROC_LOCK(curproc);
 2331                 racct_add_buf(curproc, bp, 1);
 2332                 PROC_UNLOCK(curproc);
 2333         }
 2334 #endif /* RACCT */
 2335         curthread->td_ru.ru_oublock++;
 2336         if (oldflags & B_ASYNC)
 2337                 BUF_KERNPROC(bp);
 2338         bp->b_iooffset = dbtob(bp->b_blkno);
 2339         buf_track(bp, __func__);
 2340         bstrategy(bp);
 2341 
 2342         if ((oldflags & B_ASYNC) == 0) {
 2343                 int rtval = bufwait(bp);
 2344                 brelse(bp);
 2345                 return (rtval);
 2346         } else if (space > hirunningspace) {
 2347                 /*
 2348                  * don't allow the async write to saturate the I/O
 2349                  * system.  We will not deadlock here because
 2350                  * we are blocking waiting for I/O that is already in-progress
 2351                  * to complete. We do not block here if it is the update
 2352                  * or syncer daemon trying to clean up as that can lead
 2353                  * to deadlock.
 2354                  */
 2355                 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
 2356                         waitrunningbufspace();
 2357         }
 2358 
 2359         return (0);
 2360 }
 2361 
 2362 void
 2363 bufbdflush(struct bufobj *bo, struct buf *bp)
 2364 {
 2365         struct buf *nbp;
 2366         struct bufdomain *bd;
 2367 
 2368         bd = &bdomain[bo->bo_domain];
 2369         if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
 2370                 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
 2371                 altbufferflushes++;
 2372         } else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
 2373                 BO_LOCK(bo);
 2374                 /*
 2375                  * Try to find a buffer to flush.
 2376                  */
 2377                 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
 2378                         if ((nbp->b_vflags & BV_BKGRDINPROG) ||
 2379                             BUF_LOCK(nbp,
 2380                                      LK_EXCLUSIVE | LK_NOWAIT, NULL))
 2381                                 continue;
 2382                         if (bp == nbp)
 2383                                 panic("bdwrite: found ourselves");
 2384                         BO_UNLOCK(bo);
 2385                         /* Don't countdeps with the bo lock held. */
 2386                         if (buf_countdeps(nbp, 0)) {
 2387                                 BO_LOCK(bo);
 2388                                 BUF_UNLOCK(nbp);
 2389                                 continue;
 2390                         }
 2391                         if (nbp->b_flags & B_CLUSTEROK) {
 2392                                 vfs_bio_awrite(nbp);
 2393                         } else {
 2394                                 bremfree(nbp);
 2395                                 bawrite(nbp);
 2396                         }
 2397                         dirtybufferflushes++;
 2398                         break;
 2399                 }
 2400                 if (nbp == NULL)
 2401                         BO_UNLOCK(bo);
 2402         }
 2403 }
 2404 
 2405 /*
 2406  * Delayed write. (Buffer is marked dirty).  Do not bother writing
 2407  * anything if the buffer is marked invalid.
 2408  *
 2409  * Note that since the buffer must be completely valid, we can safely
 2410  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
 2411  * biodone() in order to prevent getblk from writing the buffer
 2412  * out synchronously.
 2413  */
 2414 void
 2415 bdwrite(struct buf *bp)
 2416 {
 2417         struct thread *td = curthread;
 2418         struct vnode *vp;
 2419         struct bufobj *bo;
 2420 
 2421         CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 2422         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 2423         KASSERT((bp->b_flags & B_BARRIER) == 0,
 2424             ("Barrier request in delayed write %p", bp));
 2425 
 2426         if (bp->b_flags & B_INVAL) {
 2427                 brelse(bp);
 2428                 return;
 2429         }
 2430 
 2431         /*
 2432          * If we have too many dirty buffers, don't create any more.
 2433          * If we are wildly over our limit, then force a complete
 2434          * cleanup. Otherwise, just keep the situation from getting
 2435          * out of control. Note that we have to avoid a recursive
 2436          * disaster and not try to clean up after our own cleanup!
 2437          */
 2438         vp = bp->b_vp;
 2439         bo = bp->b_bufobj;
 2440         if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
 2441                 td->td_pflags |= TDP_INBDFLUSH;
 2442                 BO_BDFLUSH(bo, bp);
 2443                 td->td_pflags &= ~TDP_INBDFLUSH;
 2444         } else
 2445                 recursiveflushes++;
 2446 
 2447         bdirty(bp);
 2448         /*
 2449          * Set B_CACHE, indicating that the buffer is fully valid.  This is
 2450          * true even of NFS now.
 2451          */
 2452         bp->b_flags |= B_CACHE;
 2453 
 2454         /*
 2455          * This bmap keeps the system from needing to do the bmap later,
 2456          * perhaps when the system is attempting to do a sync.  Since it
 2457          * is likely that the indirect block -- or whatever other datastructure
 2458          * that the filesystem needs is still in memory now, it is a good
 2459          * thing to do this.  Note also, that if the pageout daemon is
 2460          * requesting a sync -- there might not be enough memory to do
 2461          * the bmap then...  So, this is important to do.
 2462          */
 2463         if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
 2464                 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
 2465         }
 2466 
 2467         buf_track(bp, __func__);
 2468 
 2469         /*
 2470          * Set the *dirty* buffer range based upon the VM system dirty
 2471          * pages.
 2472          *
 2473          * Mark the buffer pages as clean.  We need to do this here to
 2474          * satisfy the vnode_pager and the pageout daemon, so that it
 2475          * thinks that the pages have been "cleaned".  Note that since
 2476          * the pages are in a delayed write buffer -- the VFS layer
 2477          * "will" see that the pages get written out on the next sync,
 2478          * or perhaps the cluster will be completed.
 2479          */
 2480         vfs_clean_pages_dirty_buf(bp);
 2481         bqrelse(bp);
 2482 
 2483         /*
 2484          * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 2485          * due to the softdep code.
 2486          */
 2487 }
 2488 
 2489 /*
 2490  *      bdirty:
 2491  *
 2492  *      Turn buffer into delayed write request.  We must clear BIO_READ and
 2493  *      B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
 2494  *      itself to properly update it in the dirty/clean lists.  We mark it
 2495  *      B_DONE to ensure that any asynchronization of the buffer properly
 2496  *      clears B_DONE ( else a panic will occur later ).  
 2497  *
 2498  *      bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
 2499  *      might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
 2500  *      should only be called if the buffer is known-good.
 2501  *
 2502  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 2503  *      count.
 2504  *
 2505  *      The buffer must be on QUEUE_NONE.
 2506  */
 2507 void
 2508 bdirty(struct buf *bp)
 2509 {
 2510 
 2511         CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
 2512             bp, bp->b_vp, bp->b_flags);
 2513         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 2514         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 2515             ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 2516         bp->b_flags &= ~(B_RELBUF);
 2517         bp->b_iocmd = BIO_WRITE;
 2518 
 2519         if ((bp->b_flags & B_DELWRI) == 0) {
 2520                 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
 2521                 reassignbuf(bp);
 2522                 bdirtyadd(bp);
 2523         }
 2524 }
 2525 
 2526 /*
 2527  *      bundirty:
 2528  *
 2529  *      Clear B_DELWRI for buffer.
 2530  *
 2531  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 2532  *      count.
 2533  *
 2534  *      The buffer must be on QUEUE_NONE.
 2535  */
 2536 
 2537 void
 2538 bundirty(struct buf *bp)
 2539 {
 2540 
 2541         CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 2542         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 2543         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 2544             ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 2545 
 2546         if (bp->b_flags & B_DELWRI) {
 2547                 bp->b_flags &= ~B_DELWRI;
 2548                 reassignbuf(bp);
 2549                 bdirtysub(bp);
 2550         }
 2551         /*
 2552          * Since it is now being written, we can clear its deferred write flag.
 2553          */
 2554         bp->b_flags &= ~B_DEFERRED;
 2555 }
 2556 
 2557 /*
 2558  *      bawrite:
 2559  *
 2560  *      Asynchronous write.  Start output on a buffer, but do not wait for
 2561  *      it to complete.  The buffer is released when the output completes.
 2562  *
 2563  *      bwrite() ( or the VOP routine anyway ) is responsible for handling 
 2564  *      B_INVAL buffers.  Not us.
 2565  */
 2566 void
 2567 bawrite(struct buf *bp)
 2568 {
 2569 
 2570         bp->b_flags |= B_ASYNC;
 2571         (void) bwrite(bp);
 2572 }
 2573 
 2574 /*
 2575  *      babarrierwrite:
 2576  *
 2577  *      Asynchronous barrier write.  Start output on a buffer, but do not
 2578  *      wait for it to complete.  Place a write barrier after this write so
 2579  *      that this buffer and all buffers written before it are committed to
 2580  *      the disk before any buffers written after this write are committed
 2581  *      to the disk.  The buffer is released when the output completes.
 2582  */
 2583 void
 2584 babarrierwrite(struct buf *bp)
 2585 {
 2586 
 2587         bp->b_flags |= B_ASYNC | B_BARRIER;
 2588         (void) bwrite(bp);
 2589 }
 2590 
 2591 /*
 2592  *      bbarrierwrite:
 2593  *
 2594  *      Synchronous barrier write.  Start output on a buffer and wait for
 2595  *      it to complete.  Place a write barrier after this write so that
 2596  *      this buffer and all buffers written before it are committed to 
 2597  *      the disk before any buffers written after this write are committed
 2598  *      to the disk.  The buffer is released when the output completes.
 2599  */
 2600 int
 2601 bbarrierwrite(struct buf *bp)
 2602 {
 2603 
 2604         bp->b_flags |= B_BARRIER;
 2605         return (bwrite(bp));
 2606 }
 2607 
 2608 /*
 2609  *      bwillwrite:
 2610  *
 2611  *      Called prior to the locking of any vnodes when we are expecting to
 2612  *      write.  We do not want to starve the buffer cache with too many
 2613  *      dirty buffers so we block here.  By blocking prior to the locking
 2614  *      of any vnodes we attempt to avoid the situation where a locked vnode
 2615  *      prevents the various system daemons from flushing related buffers.
 2616  */
 2617 void
 2618 bwillwrite(void)
 2619 {
 2620 
 2621         if (buf_dirty_count_severe()) {
 2622                 mtx_lock(&bdirtylock);
 2623                 while (buf_dirty_count_severe()) {
 2624                         bdirtywait = 1;
 2625                         msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
 2626                             "flswai", 0);
 2627                 }
 2628                 mtx_unlock(&bdirtylock);
 2629         }
 2630 }
 2631 
 2632 /*
 2633  * Return true if we have too many dirty buffers.
 2634  */
 2635 int
 2636 buf_dirty_count_severe(void)
 2637 {
 2638 
 2639         return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
 2640 }
 2641 
 2642 /*
 2643  *      brelse:
 2644  *
 2645  *      Release a busy buffer and, if requested, free its resources.  The
 2646  *      buffer will be stashed in the appropriate bufqueue[] allowing it
 2647  *      to be accessed later as a cache entity or reused for other purposes.
 2648  */
 2649 void
 2650 brelse(struct buf *bp)
 2651 {
 2652         struct mount *v_mnt;
 2653         int qindex;
 2654 
 2655         /*
 2656          * Many functions erroneously call brelse with a NULL bp under rare
 2657          * error conditions. Simply return when called with a NULL bp.
 2658          */
 2659         if (bp == NULL)
 2660                 return;
 2661         CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
 2662             bp, bp->b_vp, bp->b_flags);
 2663         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 2664             ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 2665         KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
 2666             ("brelse: non-VMIO buffer marked NOREUSE"));
 2667 
 2668         if (BUF_LOCKRECURSED(bp)) {
 2669                 /*
 2670                  * Do not process, in particular, do not handle the
 2671                  * B_INVAL/B_RELBUF and do not release to free list.
 2672                  */
 2673                 BUF_UNLOCK(bp);
 2674                 return;
 2675         }
 2676 
 2677         if (bp->b_flags & B_MANAGED) {
 2678                 bqrelse(bp);
 2679                 return;
 2680         }
 2681 
 2682         if (LIST_EMPTY(&bp->b_dep)) {
 2683                 bp->b_flags &= ~B_IOSTARTED;
 2684         } else {
 2685                 KASSERT((bp->b_flags & B_IOSTARTED) == 0,
 2686                     ("brelse: SU io not finished bp %p", bp));
 2687         }
 2688 
 2689         if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
 2690                 BO_LOCK(bp->b_bufobj);
 2691                 bp->b_vflags &= ~BV_BKGRDERR;
 2692                 BO_UNLOCK(bp->b_bufobj);
 2693                 bdirty(bp);
 2694         }
 2695 
 2696         if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
 2697             (bp->b_flags & B_INVALONERR)) {
 2698                 /*
 2699                  * Forced invalidation of dirty buffer contents, to be used
 2700                  * after a failed write in the rare case that the loss of the
 2701                  * contents is acceptable.  The buffer is invalidated and
 2702                  * freed.
 2703                  */
 2704                 bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
 2705                 bp->b_flags &= ~(B_ASYNC | B_CACHE);
 2706         }
 2707 
 2708         if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
 2709             (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
 2710             !(bp->b_flags & B_INVAL)) {
 2711                 /*
 2712                  * Failed write, redirty.  All errors except ENXIO (which
 2713                  * means the device is gone) are treated as being
 2714                  * transient.
 2715                  *
 2716                  * XXX Treating EIO as transient is not correct; the
 2717                  * contract with the local storage device drivers is that
 2718                  * they will only return EIO once the I/O is no longer
 2719                  * retriable.  Network I/O also respects this through the
 2720                  * guarantees of TCP and/or the internal retries of NFS.
 2721                  * ENOMEM might be transient, but we also have no way of
 2722                  * knowing when its ok to retry/reschedule.  In general,
 2723                  * this entire case should be made obsolete through better
 2724                  * error handling/recovery and resource scheduling.
 2725                  *
 2726                  * Do this also for buffers that failed with ENXIO, but have
 2727                  * non-empty dependencies - the soft updates code might need
 2728                  * to access the buffer to untangle them.
 2729                  *
 2730                  * Must clear BIO_ERROR to prevent pages from being scrapped.
 2731                  */
 2732                 bp->b_ioflags &= ~BIO_ERROR;
 2733                 bdirty(bp);
 2734         } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 2735             (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
 2736                 /*
 2737                  * Either a failed read I/O, or we were asked to free or not
 2738                  * cache the buffer, or we failed to write to a device that's
 2739                  * no longer present.
 2740                  */
 2741                 bp->b_flags |= B_INVAL;
 2742                 if (!LIST_EMPTY(&bp->b_dep))
 2743                         buf_deallocate(bp);
 2744                 if (bp->b_flags & B_DELWRI)
 2745                         bdirtysub(bp);
 2746                 bp->b_flags &= ~(B_DELWRI | B_CACHE);
 2747                 if ((bp->b_flags & B_VMIO) == 0) {
 2748                         allocbuf(bp, 0);
 2749                         if (bp->b_vp)
 2750                                 brelvp(bp);
 2751                 }
 2752         }
 2753 
 2754         /*
 2755          * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate() 
 2756          * is called with B_DELWRI set, the underlying pages may wind up
 2757          * getting freed causing a previous write (bdwrite()) to get 'lost'
 2758          * because pages associated with a B_DELWRI bp are marked clean.
 2759          * 
 2760          * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
 2761          * if B_DELWRI is set.
 2762          */
 2763         if (bp->b_flags & B_DELWRI)
 2764                 bp->b_flags &= ~B_RELBUF;
 2765 
 2766         /*
 2767          * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 2768          * constituted, not even NFS buffers now.  Two flags effect this.  If
 2769          * B_INVAL, the struct buf is invalidated but the VM object is kept
 2770          * around ( i.e. so it is trivial to reconstitute the buffer later ).
 2771          *
 2772          * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 2773          * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 2774          * buffer is also B_INVAL because it hits the re-dirtying code above.
 2775          *
 2776          * Normally we can do this whether a buffer is B_DELWRI or not.  If
 2777          * the buffer is an NFS buffer, it is tracking piecemeal writes or
 2778          * the commit state and we cannot afford to lose the buffer. If the
 2779          * buffer has a background write in progress, we need to keep it
 2780          * around to prevent it from being reconstituted and starting a second
 2781          * background write.
 2782          */
 2783 
 2784         v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
 2785 
 2786         if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
 2787             (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
 2788             (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
 2789             vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
 2790                 vfs_vmio_invalidate(bp);
 2791                 allocbuf(bp, 0);
 2792         }
 2793 
 2794         if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
 2795             (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
 2796                 allocbuf(bp, 0);
 2797                 bp->b_flags &= ~B_NOREUSE;
 2798                 if (bp->b_vp != NULL)
 2799                         brelvp(bp);
 2800         }
 2801 
 2802         /*
 2803          * If the buffer has junk contents signal it and eventually
 2804          * clean up B_DELWRI and diassociate the vnode so that gbincore()
 2805          * doesn't find it.
 2806          */
 2807         if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
 2808             (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
 2809                 bp->b_flags |= B_INVAL;
 2810         if (bp->b_flags & B_INVAL) {
 2811                 if (bp->b_flags & B_DELWRI)
 2812                         bundirty(bp);
 2813                 if (bp->b_vp)
 2814                         brelvp(bp);
 2815         }
 2816 
 2817         buf_track(bp, __func__);
 2818 
 2819         /* buffers with no memory */
 2820         if (bp->b_bufsize == 0) {
 2821                 buf_free(bp);
 2822                 return;
 2823         }
 2824         /* buffers with junk contents */
 2825         if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 2826             (bp->b_ioflags & BIO_ERROR)) {
 2827                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 2828                 if (bp->b_vflags & BV_BKGRDINPROG)
 2829                         panic("losing buffer 2");
 2830                 qindex = QUEUE_CLEAN;
 2831                 bp->b_flags |= B_AGE;
 2832         /* remaining buffers */
 2833         } else if (bp->b_flags & B_DELWRI)
 2834                 qindex = QUEUE_DIRTY;
 2835         else
 2836                 qindex = QUEUE_CLEAN;
 2837 
 2838         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 2839                 panic("brelse: not dirty");
 2840 
 2841         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
 2842         bp->b_xflags &= ~(BX_CVTENXIO);
 2843         /* binsfree unlocks bp. */
 2844         binsfree(bp, qindex);
 2845 }
 2846 
 2847 /*
 2848  * Release a buffer back to the appropriate queue but do not try to free
 2849  * it.  The buffer is expected to be used again soon.
 2850  *
 2851  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
 2852  * biodone() to requeue an async I/O on completion.  It is also used when
 2853  * known good buffers need to be requeued but we think we may need the data
 2854  * again soon.
 2855  *
 2856  * XXX we should be able to leave the B_RELBUF hint set on completion.
 2857  */
 2858 void
 2859 bqrelse(struct buf *bp)
 2860 {
 2861         int qindex;
 2862 
 2863         CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 2864         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 2865             ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 2866 
 2867         qindex = QUEUE_NONE;
 2868         if (BUF_LOCKRECURSED(bp)) {
 2869                 /* do not release to free list */
 2870                 BUF_UNLOCK(bp);
 2871                 return;
 2872         }
 2873         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 2874         bp->b_xflags &= ~(BX_CVTENXIO);
 2875 
 2876         if (LIST_EMPTY(&bp->b_dep)) {
 2877                 bp->b_flags &= ~B_IOSTARTED;
 2878         } else {
 2879                 KASSERT((bp->b_flags & B_IOSTARTED) == 0,
 2880                     ("bqrelse: SU io not finished bp %p", bp));
 2881         }
 2882 
 2883         if (bp->b_flags & B_MANAGED) {
 2884                 if (bp->b_flags & B_REMFREE)
 2885                         bremfreef(bp);
 2886                 goto out;
 2887         }
 2888 
 2889         /* buffers with stale but valid contents */
 2890         if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
 2891             BV_BKGRDERR)) == BV_BKGRDERR) {
 2892                 BO_LOCK(bp->b_bufobj);
 2893                 bp->b_vflags &= ~BV_BKGRDERR;
 2894                 BO_UNLOCK(bp->b_bufobj);
 2895                 qindex = QUEUE_DIRTY;
 2896         } else {
 2897                 if ((bp->b_flags & B_DELWRI) == 0 &&
 2898                     (bp->b_xflags & BX_VNDIRTY))
 2899                         panic("bqrelse: not dirty");
 2900                 if ((bp->b_flags & B_NOREUSE) != 0) {
 2901                         brelse(bp);
 2902                         return;
 2903                 }
 2904                 qindex = QUEUE_CLEAN;
 2905         }
 2906         buf_track(bp, __func__);
 2907         /* binsfree unlocks bp. */
 2908         binsfree(bp, qindex);
 2909         return;
 2910 
 2911 out:
 2912         buf_track(bp, __func__);
 2913         /* unlock */
 2914         BUF_UNLOCK(bp);
 2915 }
 2916 
 2917 /*
 2918  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
 2919  * restore bogus pages.
 2920  */
 2921 static void
 2922 vfs_vmio_iodone(struct buf *bp)
 2923 {
 2924         vm_ooffset_t foff;
 2925         vm_page_t m;
 2926         vm_object_t obj;
 2927         struct vnode *vp __unused;
 2928         int i, iosize, resid;
 2929         bool bogus;
 2930 
 2931         obj = bp->b_bufobj->bo_object;
 2932         KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
 2933             ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
 2934             blockcount_read(&obj->paging_in_progress), bp->b_npages));
 2935 
 2936         vp = bp->b_vp;
 2937         VNPASS(vp->v_holdcnt > 0, vp);
 2938         VNPASS(vp->v_object != NULL, vp);
 2939 
 2940         foff = bp->b_offset;
 2941         KASSERT(bp->b_offset != NOOFFSET,
 2942             ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
 2943 
 2944         bogus = false;
 2945         iosize = bp->b_bcount - bp->b_resid;
 2946         for (i = 0; i < bp->b_npages; i++) {
 2947                 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 2948                 if (resid > iosize)
 2949                         resid = iosize;
 2950 
 2951                 /*
 2952                  * cleanup bogus pages, restoring the originals
 2953                  */
 2954                 m = bp->b_pages[i];
 2955                 if (m == bogus_page) {
 2956                         bogus = true;
 2957                         m = vm_page_relookup(obj, OFF_TO_IDX(foff));
 2958                         if (m == NULL)
 2959                                 panic("biodone: page disappeared!");
 2960                         bp->b_pages[i] = m;
 2961                 } else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
 2962                         /*
 2963                          * In the write case, the valid and clean bits are
 2964                          * already changed correctly ( see bdwrite() ), so we 
 2965                          * only need to do this here in the read case.
 2966                          */
 2967                         KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
 2968                             resid)) == 0, ("vfs_vmio_iodone: page %p "
 2969                             "has unexpected dirty bits", m));
 2970                         vfs_page_set_valid(bp, foff, m);
 2971                 }
 2972                 KASSERT(OFF_TO_IDX(foff) == m->pindex,
 2973                     ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
 2974                     (intmax_t)foff, (uintmax_t)m->pindex));
 2975 
 2976                 vm_page_sunbusy(m);
 2977                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 2978                 iosize -= resid;
 2979         }
 2980         vm_object_pip_wakeupn(obj, bp->b_npages);
 2981         if (bogus && buf_mapped(bp)) {
 2982                 BUF_CHECK_MAPPED(bp);
 2983                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 2984                     bp->b_pages, bp->b_npages);
 2985         }
 2986 }
 2987 
 2988 /*
 2989  * Perform page invalidation when a buffer is released.  The fully invalid
 2990  * pages will be reclaimed later in vfs_vmio_truncate().
 2991  */
 2992 static void
 2993 vfs_vmio_invalidate(struct buf *bp)
 2994 {
 2995         vm_object_t obj;
 2996         vm_page_t m;
 2997         int flags, i, resid, poffset, presid;
 2998 
 2999         if (buf_mapped(bp)) {
 3000                 BUF_CHECK_MAPPED(bp);
 3001                 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
 3002         } else
 3003                 BUF_CHECK_UNMAPPED(bp);
 3004         /*
 3005          * Get the base offset and length of the buffer.  Note that 
 3006          * in the VMIO case if the buffer block size is not
 3007          * page-aligned then b_data pointer may not be page-aligned.
 3008          * But our b_pages[] array *IS* page aligned.
 3009          *
 3010          * block sizes less then DEV_BSIZE (usually 512) are not 
 3011          * supported due to the page granularity bits (m->valid,
 3012          * m->dirty, etc...). 
 3013          *
 3014          * See man buf(9) for more information
 3015          */
 3016         flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
 3017         obj = bp->b_bufobj->bo_object;
 3018         resid = bp->b_bufsize;
 3019         poffset = bp->b_offset & PAGE_MASK;
 3020         VM_OBJECT_WLOCK(obj);
 3021         for (i = 0; i < bp->b_npages; i++) {
 3022                 m = bp->b_pages[i];
 3023                 if (m == bogus_page)
 3024                         panic("vfs_vmio_invalidate: Unexpected bogus page.");
 3025                 bp->b_pages[i] = NULL;
 3026 
 3027                 presid = resid > (PAGE_SIZE - poffset) ?
 3028                     (PAGE_SIZE - poffset) : resid;
 3029                 KASSERT(presid >= 0, ("brelse: extra page"));
 3030                 vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
 3031                 if (pmap_page_wired_mappings(m) == 0)
 3032                         vm_page_set_invalid(m, poffset, presid);
 3033                 vm_page_sunbusy(m);
 3034                 vm_page_release_locked(m, flags);
 3035                 resid -= presid;
 3036                 poffset = 0;
 3037         }
 3038         VM_OBJECT_WUNLOCK(obj);
 3039         bp->b_npages = 0;
 3040 }
 3041 
 3042 /*
 3043  * Page-granular truncation of an existing VMIO buffer.
 3044  */
 3045 static void
 3046 vfs_vmio_truncate(struct buf *bp, int desiredpages)
 3047 {
 3048         vm_object_t obj;
 3049         vm_page_t m;
 3050         int flags, i;
 3051 
 3052         if (bp->b_npages == desiredpages)
 3053                 return;
 3054 
 3055         if (buf_mapped(bp)) {
 3056                 BUF_CHECK_MAPPED(bp);
 3057                 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
 3058                     (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
 3059         } else
 3060                 BUF_CHECK_UNMAPPED(bp);
 3061 
 3062         /*
 3063          * The object lock is needed only if we will attempt to free pages.
 3064          */
 3065         flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
 3066         if ((bp->b_flags & B_DIRECT) != 0) {
 3067                 flags |= VPR_TRYFREE;
 3068                 obj = bp->b_bufobj->bo_object;
 3069                 VM_OBJECT_WLOCK(obj);
 3070         } else {
 3071                 obj = NULL;
 3072         }
 3073         for (i = desiredpages; i < bp->b_npages; i++) {
 3074                 m = bp->b_pages[i];
 3075                 KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
 3076                 bp->b_pages[i] = NULL;
 3077                 if (obj != NULL)
 3078                         vm_page_release_locked(m, flags);
 3079                 else
 3080                         vm_page_release(m, flags);
 3081         }
 3082         if (obj != NULL)
 3083                 VM_OBJECT_WUNLOCK(obj);
 3084         bp->b_npages = desiredpages;
 3085 }
 3086 
 3087 /*
 3088  * Byte granular extension of VMIO buffers.
 3089  */
 3090 static void
 3091 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
 3092 {
 3093         /*
 3094          * We are growing the buffer, possibly in a 
 3095          * byte-granular fashion.
 3096          */
 3097         vm_object_t obj;
 3098         vm_offset_t toff;
 3099         vm_offset_t tinc;
 3100         vm_page_t m;
 3101 
 3102         /*
 3103          * Step 1, bring in the VM pages from the object, allocating
 3104          * them if necessary.  We must clear B_CACHE if these pages
 3105          * are not valid for the range covered by the buffer.
 3106          */
 3107         obj = bp->b_bufobj->bo_object;
 3108         if (bp->b_npages < desiredpages) {
 3109                 KASSERT(desiredpages <= atop(maxbcachebuf),
 3110                     ("vfs_vmio_extend past maxbcachebuf %p %d %u",
 3111                     bp, desiredpages, maxbcachebuf));
 3112 
 3113                 /*
 3114                  * We must allocate system pages since blocking
 3115                  * here could interfere with paging I/O, no
 3116                  * matter which process we are.
 3117                  *
 3118                  * Only exclusive busy can be tested here.
 3119                  * Blocking on shared busy might lead to
 3120                  * deadlocks once allocbuf() is called after
 3121                  * pages are vfs_busy_pages().
 3122                  */
 3123                 (void)vm_page_grab_pages_unlocked(obj,
 3124                     OFF_TO_IDX(bp->b_offset) + bp->b_npages,
 3125                     VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
 3126                     VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
 3127                     &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
 3128                 bp->b_npages = desiredpages;
 3129         }
 3130 
 3131         /*
 3132          * Step 2.  We've loaded the pages into the buffer,
 3133          * we have to figure out if we can still have B_CACHE
 3134          * set.  Note that B_CACHE is set according to the
 3135          * byte-granular range ( bcount and size ), not the
 3136          * aligned range ( newbsize ).
 3137          *
 3138          * The VM test is against m->valid, which is DEV_BSIZE
 3139          * aligned.  Needless to say, the validity of the data
 3140          * needs to also be DEV_BSIZE aligned.  Note that this
 3141          * fails with NFS if the server or some other client
 3142          * extends the file's EOF.  If our buffer is resized, 
 3143          * B_CACHE may remain set! XXX
 3144          */
 3145         toff = bp->b_bcount;
 3146         tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 3147         while ((bp->b_flags & B_CACHE) && toff < size) {
 3148                 vm_pindex_t pi;
 3149 
 3150                 if (tinc > (size - toff))
 3151                         tinc = size - toff;
 3152                 pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
 3153                 m = bp->b_pages[pi];
 3154                 vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
 3155                 toff += tinc;
 3156                 tinc = PAGE_SIZE;
 3157         }
 3158 
 3159         /*
 3160          * Step 3, fixup the KVA pmap.
 3161          */
 3162         if (buf_mapped(bp))
 3163                 bpmap_qenter(bp);
 3164         else
 3165                 BUF_CHECK_UNMAPPED(bp);
 3166 }
 3167 
 3168 /*
 3169  * Check to see if a block at a particular lbn is available for a clustered
 3170  * write.
 3171  */
 3172 static int
 3173 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 3174 {
 3175         struct buf *bpa;
 3176         int match;
 3177 
 3178         match = 0;
 3179 
 3180         /* If the buf isn't in core skip it */
 3181         if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
 3182                 return (0);
 3183 
 3184         /* If the buf is busy we don't want to wait for it */
 3185         if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 3186                 return (0);
 3187 
 3188         /* Only cluster with valid clusterable delayed write buffers */
 3189         if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 3190             (B_DELWRI | B_CLUSTEROK))
 3191                 goto done;
 3192 
 3193         if (bpa->b_bufsize != size)
 3194                 goto done;
 3195 
 3196         /*
 3197          * Check to see if it is in the expected place on disk and that the
 3198          * block has been mapped.
 3199          */
 3200         if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 3201                 match = 1;
 3202 done:
 3203         BUF_UNLOCK(bpa);
 3204         return (match);
 3205 }
 3206 
 3207 /*
 3208  *      vfs_bio_awrite:
 3209  *
 3210  *      Implement clustered async writes for clearing out B_DELWRI buffers.
 3211  *      This is much better then the old way of writing only one buffer at
 3212  *      a time.  Note that we may not be presented with the buffers in the 
 3213  *      correct order, so we search for the cluster in both directions.
 3214  */
 3215 int
 3216 vfs_bio_awrite(struct buf *bp)
 3217 {
 3218         struct bufobj *bo;
 3219         int i;
 3220         int j;
 3221         daddr_t lblkno = bp->b_lblkno;
 3222         struct vnode *vp = bp->b_vp;
 3223         int ncl;
 3224         int nwritten;
 3225         int size;
 3226         int maxcl;
 3227         int gbflags;
 3228 
 3229         bo = &vp->v_bufobj;
 3230         gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
 3231         /*
 3232          * right now we support clustered writing only to regular files.  If
 3233          * we find a clusterable block we could be in the middle of a cluster
 3234          * rather then at the beginning.
 3235          */
 3236         if ((vp->v_type == VREG) && 
 3237             (vp->v_mount != 0) && /* Only on nodes that have the size info */
 3238             (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 3239                 size = vp->v_mount->mnt_stat.f_iosize;
 3240                 maxcl = maxphys / size;
 3241 
 3242                 BO_RLOCK(bo);
 3243                 for (i = 1; i < maxcl; i++)
 3244                         if (vfs_bio_clcheck(vp, size, lblkno + i,
 3245                             bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 3246                                 break;
 3247 
 3248                 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 3249                         if (vfs_bio_clcheck(vp, size, lblkno - j,
 3250                             bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 3251                                 break;
 3252                 BO_RUNLOCK(bo);
 3253                 --j;
 3254                 ncl = i + j;
 3255                 /*
 3256                  * this is a possible cluster write
 3257                  */
 3258                 if (ncl != 1) {
 3259                         BUF_UNLOCK(bp);
 3260                         nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
 3261                             gbflags);
 3262                         return (nwritten);
 3263                 }
 3264         }
 3265         bremfree(bp);
 3266         bp->b_flags |= B_ASYNC;
 3267         /*
 3268          * default (old) behavior, writing out only one block
 3269          *
 3270          * XXX returns b_bufsize instead of b_bcount for nwritten?
 3271          */
 3272         nwritten = bp->b_bufsize;
 3273         (void) bwrite(bp);
 3274 
 3275         return (nwritten);
 3276 }
 3277 
 3278 /*
 3279  *      getnewbuf_kva:
 3280  *
 3281  *      Allocate KVA for an empty buf header according to gbflags.
 3282  */
 3283 static int
 3284 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
 3285 {
 3286 
 3287         if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
 3288                 /*
 3289                  * In order to keep fragmentation sane we only allocate kva
 3290                  * in BKVASIZE chunks.  XXX with vmem we can do page size.
 3291                  */
 3292                 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 3293 
 3294                 if (maxsize != bp->b_kvasize &&
 3295                     bufkva_alloc(bp, maxsize, gbflags))
 3296                         return (ENOSPC);
 3297         }
 3298         return (0);
 3299 }
 3300 
 3301 /*
 3302  *      getnewbuf:
 3303  *
 3304  *      Find and initialize a new buffer header, freeing up existing buffers
 3305  *      in the bufqueues as necessary.  The new buffer is returned locked.
 3306  *
 3307  *      We block if:
 3308  *              We have insufficient buffer headers
 3309  *              We have insufficient buffer space
 3310  *              buffer_arena is too fragmented ( space reservation fails )
 3311  *              If we have to flush dirty buffers ( but we try to avoid this )
 3312  *
 3313  *      The caller is responsible for releasing the reserved bufspace after
 3314  *      allocbuf() is called.
 3315  */
 3316 static struct buf *
 3317 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
 3318 {
 3319         struct bufdomain *bd;
 3320         struct buf *bp;
 3321         bool metadata, reserved;
 3322 
 3323         bp = NULL;
 3324         KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
 3325             ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
 3326         if (!unmapped_buf_allowed)
 3327                 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 3328 
 3329         if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
 3330             vp->v_type == VCHR)
 3331                 metadata = true;
 3332         else
 3333                 metadata = false;
 3334         if (vp == NULL)
 3335                 bd = &bdomain[0];
 3336         else
 3337                 bd = &bdomain[vp->v_bufobj.bo_domain];
 3338 
 3339         counter_u64_add(getnewbufcalls, 1);
 3340         reserved = false;
 3341         do {
 3342                 if (reserved == false &&
 3343                     bufspace_reserve(bd, maxsize, metadata) != 0) {
 3344                         counter_u64_add(getnewbufrestarts, 1);
 3345                         continue;
 3346                 }
 3347                 reserved = true;
 3348                 if ((bp = buf_alloc(bd)) == NULL) {
 3349                         counter_u64_add(getnewbufrestarts, 1);
 3350                         continue;
 3351                 }
 3352                 if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
 3353                         return (bp);
 3354                 break;
 3355         } while (buf_recycle(bd, false) == 0);
 3356 
 3357         if (reserved)
 3358                 bufspace_release(bd, maxsize);
 3359         if (bp != NULL) {
 3360                 bp->b_flags |= B_INVAL;
 3361                 brelse(bp);
 3362         }
 3363         bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
 3364 
 3365         return (NULL);
 3366 }
 3367 
 3368 /*
 3369  *      buf_daemon:
 3370  *
 3371  *      buffer flushing daemon.  Buffers are normally flushed by the
 3372  *      update daemon but if it cannot keep up this process starts to
 3373  *      take the load in an attempt to prevent getnewbuf() from blocking.
 3374  */
 3375 static struct kproc_desc buf_kp = {
 3376         "bufdaemon",
 3377         buf_daemon,
 3378         &bufdaemonproc
 3379 };
 3380 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
 3381 
 3382 static int
 3383 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
 3384 {
 3385         int flushed;
 3386 
 3387         flushed = flushbufqueues(vp, bd, target, 0);
 3388         if (flushed == 0) {
 3389                 /*
 3390                  * Could not find any buffers without rollback
 3391                  * dependencies, so just write the first one
 3392                  * in the hopes of eventually making progress.
 3393                  */
 3394                 if (vp != NULL && target > 2)
 3395                         target /= 2;
 3396                 flushbufqueues(vp, bd, target, 1);
 3397         }
 3398         return (flushed);
 3399 }
 3400 
 3401 static void
 3402 buf_daemon_shutdown(void *arg __unused, int howto __unused)
 3403 {
 3404         int error;
 3405 
 3406         mtx_lock(&bdlock);
 3407         bd_shutdown = true;
 3408         wakeup(&bd_request);
 3409         error = msleep(&bd_shutdown, &bdlock, 0, "buf_daemon_shutdown",
 3410             60 * hz);
 3411         mtx_unlock(&bdlock);
 3412         if (error != 0)
 3413                 printf("bufdaemon wait error: %d\n", error);
 3414 }
 3415 
 3416 static void
 3417 buf_daemon(void)
 3418 {
 3419         struct bufdomain *bd;
 3420         int speedupreq;
 3421         int lodirty;
 3422         int i;
 3423 
 3424         /*
 3425          * This process needs to be suspended prior to shutdown sync.
 3426          */
 3427         EVENTHANDLER_REGISTER(shutdown_pre_sync, buf_daemon_shutdown, NULL,
 3428             SHUTDOWN_PRI_LAST + 100);
 3429 
 3430         /*
 3431          * Start the buf clean daemons as children threads.
 3432          */
 3433         for (i = 0 ; i < buf_domains; i++) {
 3434                 int error;
 3435 
 3436                 error = kthread_add((void (*)(void *))bufspace_daemon,
 3437                     &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
 3438                 if (error)
 3439                         panic("error %d spawning bufspace daemon", error);
 3440         }
 3441 
 3442         /*
 3443          * This process is allowed to take the buffer cache to the limit
 3444          */
 3445         curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
 3446         mtx_lock(&bdlock);
 3447         while (!bd_shutdown) {
 3448                 bd_request = 0;
 3449                 mtx_unlock(&bdlock);
 3450 
 3451                 /*
 3452                  * Save speedupreq for this pass and reset to capture new
 3453                  * requests.
 3454                  */
 3455                 speedupreq = bd_speedupreq;
 3456                 bd_speedupreq = 0;
 3457 
 3458                 /*
 3459                  * Flush each domain sequentially according to its level and
 3460                  * the speedup request.
 3461                  */
 3462                 for (i = 0; i < buf_domains; i++) {
 3463                         bd = &bdomain[i];
 3464                         if (speedupreq)
 3465                                 lodirty = bd->bd_numdirtybuffers / 2;
 3466                         else
 3467                                 lodirty = bd->bd_lodirtybuffers;
 3468                         while (bd->bd_numdirtybuffers > lodirty) {
 3469                                 if (buf_flush(NULL, bd,
 3470                                     bd->bd_numdirtybuffers - lodirty) == 0)
 3471                                         break;
 3472                                 kern_yield(PRI_USER);
 3473                         }
 3474                 }
 3475 
 3476                 /*
 3477                  * Only clear bd_request if we have reached our low water
 3478                  * mark.  The buf_daemon normally waits 1 second and
 3479                  * then incrementally flushes any dirty buffers that have
 3480                  * built up, within reason.
 3481                  *
 3482                  * If we were unable to hit our low water mark and couldn't
 3483                  * find any flushable buffers, we sleep for a short period
 3484                  * to avoid endless loops on unlockable buffers.
 3485                  */
 3486                 mtx_lock(&bdlock);
 3487                 if (bd_shutdown)
 3488                         break;
 3489                 if (BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
 3490                         /*
 3491                          * We reached our low water mark, reset the
 3492                          * request and sleep until we are needed again.
 3493                          * The sleep is just so the suspend code works.
 3494                          */
 3495                         bd_request = 0;
 3496                         /*
 3497                          * Do an extra wakeup in case dirty threshold
 3498                          * changed via sysctl and the explicit transition
 3499                          * out of shortfall was missed.
 3500                          */
 3501                         bdirtywakeup();
 3502                         if (runningbufspace <= lorunningspace)
 3503                                 runningwakeup();
 3504                         msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 3505                 } else {
 3506                         /*
 3507                          * We couldn't find any flushable dirty buffers but
 3508                          * still have too many dirty buffers, we
 3509                          * have to sleep and try again.  (rare)
 3510                          */
 3511                         msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 3512                 }
 3513         }
 3514         wakeup(&bd_shutdown);
 3515         mtx_unlock(&bdlock);
 3516         kthread_exit();
 3517 }
 3518 
 3519 /*
 3520  *      flushbufqueues:
 3521  *
 3522  *      Try to flush a buffer in the dirty queue.  We must be careful to
 3523  *      free up B_INVAL buffers instead of write them, which NFS is 
 3524  *      particularly sensitive to.
 3525  */
 3526 static int flushwithdeps = 0;
 3527 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
 3528     &flushwithdeps, 0,
 3529     "Number of buffers flushed with dependencies that require rollbacks");
 3530 
 3531 static int
 3532 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
 3533     int flushdeps)
 3534 {
 3535         struct bufqueue *bq;
 3536         struct buf *sentinel;
 3537         struct vnode *vp;
 3538         struct mount *mp;
 3539         struct buf *bp;
 3540         int hasdeps;
 3541         int flushed;
 3542         int error;
 3543         bool unlock;
 3544 
 3545         flushed = 0;
 3546         bq = &bd->bd_dirtyq;
 3547         bp = NULL;
 3548         sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
 3549         sentinel->b_qindex = QUEUE_SENTINEL;
 3550         BQ_LOCK(bq);
 3551         TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
 3552         BQ_UNLOCK(bq);
 3553         while (flushed != target) {
 3554                 maybe_yield();
 3555                 BQ_LOCK(bq);
 3556                 bp = TAILQ_NEXT(sentinel, b_freelist);
 3557                 if (bp != NULL) {
 3558                         TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
 3559                         TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
 3560                             b_freelist);
 3561                 } else {
 3562                         BQ_UNLOCK(bq);
 3563                         break;
 3564                 }
 3565                 /*
 3566                  * Skip sentinels inserted by other invocations of the
 3567                  * flushbufqueues(), taking care to not reorder them.
 3568                  *
 3569                  * Only flush the buffers that belong to the
 3570                  * vnode locked by the curthread.
 3571                  */
 3572                 if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
 3573                     bp->b_vp != lvp)) {
 3574                         BQ_UNLOCK(bq);
 3575                         continue;
 3576                 }
 3577                 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
 3578                 BQ_UNLOCK(bq);
 3579                 if (error != 0)
 3580                         continue;
 3581 
 3582                 /*
 3583                  * BKGRDINPROG can only be set with the buf and bufobj
 3584                  * locks both held.  We tolerate a race to clear it here.
 3585                  */
 3586                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
 3587                     (bp->b_flags & B_DELWRI) == 0) {
 3588                         BUF_UNLOCK(bp);
 3589                         continue;
 3590                 }
 3591                 if (bp->b_flags & B_INVAL) {
 3592                         bremfreef(bp);
 3593                         brelse(bp);
 3594                         flushed++;
 3595                         continue;
 3596                 }
 3597 
 3598                 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
 3599                         if (flushdeps == 0) {
 3600                                 BUF_UNLOCK(bp);
 3601                                 continue;
 3602                         }
 3603                         hasdeps = 1;
 3604                 } else
 3605                         hasdeps = 0;
 3606                 /*
 3607                  * We must hold the lock on a vnode before writing
 3608                  * one of its buffers. Otherwise we may confuse, or
 3609                  * in the case of a snapshot vnode, deadlock the
 3610                  * system.
 3611                  *
 3612                  * The lock order here is the reverse of the normal
 3613                  * of vnode followed by buf lock.  This is ok because
 3614                  * the NOWAIT will prevent deadlock.
 3615                  */
 3616                 vp = bp->b_vp;
 3617                 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 3618                         BUF_UNLOCK(bp);
 3619                         continue;
 3620                 }
 3621                 if (lvp == NULL) {
 3622                         unlock = true;
 3623                         error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
 3624                 } else {
 3625                         ASSERT_VOP_LOCKED(vp, "getbuf");
 3626                         unlock = false;
 3627                         error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
 3628                             vn_lock(vp, LK_TRYUPGRADE);
 3629                 }
 3630                 if (error == 0) {
 3631                         CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
 3632                             bp, bp->b_vp, bp->b_flags);
 3633                         if (curproc == bufdaemonproc) {
 3634                                 vfs_bio_awrite(bp);
 3635                         } else {
 3636                                 bremfree(bp);
 3637                                 bwrite(bp);
 3638                                 counter_u64_add(notbufdflushes, 1);
 3639                         }
 3640                         vn_finished_write(mp);
 3641                         if (unlock)
 3642                                 VOP_UNLOCK(vp);
 3643                         flushwithdeps += hasdeps;
 3644                         flushed++;
 3645 
 3646                         /*
 3647                          * Sleeping on runningbufspace while holding
 3648                          * vnode lock leads to deadlock.
 3649                          */
 3650                         if (curproc == bufdaemonproc &&
 3651                             runningbufspace > hirunningspace)
 3652                                 waitrunningbufspace();
 3653                         continue;
 3654                 }
 3655                 vn_finished_write(mp);
 3656                 BUF_UNLOCK(bp);
 3657         }
 3658         BQ_LOCK(bq);
 3659         TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
 3660         BQ_UNLOCK(bq);
 3661         free(sentinel, M_TEMP);
 3662         return (flushed);
 3663 }
 3664 
 3665 /*
 3666  * Check to see if a block is currently memory resident.
 3667  */
 3668 struct buf *
 3669 incore(struct bufobj *bo, daddr_t blkno)
 3670 {
 3671         return (gbincore_unlocked(bo, blkno));
 3672 }
 3673 
 3674 /*
 3675  * Returns true if no I/O is needed to access the
 3676  * associated VM object.  This is like incore except
 3677  * it also hunts around in the VM system for the data.
 3678  */
 3679 bool
 3680 inmem(struct vnode * vp, daddr_t blkno)
 3681 {
 3682         vm_object_t obj;
 3683         vm_offset_t toff, tinc, size;
 3684         vm_page_t m, n;
 3685         vm_ooffset_t off;
 3686         int valid;
 3687 
 3688         ASSERT_VOP_LOCKED(vp, "inmem");
 3689 
 3690         if (incore(&vp->v_bufobj, blkno))
 3691                 return (true);
 3692         if (vp->v_mount == NULL)
 3693                 return (false);
 3694         obj = vp->v_object;
 3695         if (obj == NULL)
 3696                 return (false);
 3697 
 3698         size = PAGE_SIZE;
 3699         if (size > vp->v_mount->mnt_stat.f_iosize)
 3700                 size = vp->v_mount->mnt_stat.f_iosize;
 3701         off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 3702 
 3703         for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 3704                 m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
 3705 recheck:
 3706                 if (m == NULL)
 3707                         return (false);
 3708 
 3709                 tinc = size;
 3710                 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 3711                         tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 3712                 /*
 3713                  * Consider page validity only if page mapping didn't change
 3714                  * during the check.
 3715                  */
 3716                 valid = vm_page_is_valid(m,
 3717                     (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
 3718                 n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
 3719                 if (m != n) {
 3720                         m = n;
 3721                         goto recheck;
 3722                 }
 3723                 if (!valid)
 3724                         return (false);
 3725         }
 3726         return (true);
 3727 }
 3728 
 3729 /*
 3730  * Set the dirty range for a buffer based on the status of the dirty
 3731  * bits in the pages comprising the buffer.  The range is limited
 3732  * to the size of the buffer.
 3733  *
 3734  * Tell the VM system that the pages associated with this buffer
 3735  * are clean.  This is used for delayed writes where the data is
 3736  * going to go to disk eventually without additional VM intevention.
 3737  *
 3738  * Note that while we only really need to clean through to b_bcount, we
 3739  * just go ahead and clean through to b_bufsize.
 3740  */
 3741 static void
 3742 vfs_clean_pages_dirty_buf(struct buf *bp)
 3743 {
 3744         vm_ooffset_t foff, noff, eoff;
 3745         vm_page_t m;
 3746         int i;
 3747 
 3748         if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
 3749                 return;
 3750 
 3751         foff = bp->b_offset;
 3752         KASSERT(bp->b_offset != NOOFFSET,
 3753             ("vfs_clean_pages_dirty_buf: no buffer offset"));
 3754 
 3755         vfs_busy_pages_acquire(bp);
 3756         vfs_setdirty_range(bp);
 3757         for (i = 0; i < bp->b_npages; i++) {
 3758                 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3759                 eoff = noff;
 3760                 if (eoff > bp->b_offset + bp->b_bufsize)
 3761                         eoff = bp->b_offset + bp->b_bufsize;
 3762                 m = bp->b_pages[i];
 3763                 vfs_page_set_validclean(bp, foff, m);
 3764                 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 3765                 foff = noff;
 3766         }
 3767         vfs_busy_pages_release(bp);
 3768 }
 3769 
 3770 static void
 3771 vfs_setdirty_range(struct buf *bp)
 3772 {
 3773         vm_offset_t boffset;
 3774         vm_offset_t eoffset;
 3775         int i;
 3776 
 3777         /*
 3778          * test the pages to see if they have been modified directly
 3779          * by users through the VM system.
 3780          */
 3781         for (i = 0; i < bp->b_npages; i++)
 3782                 vm_page_test_dirty(bp->b_pages[i]);
 3783 
 3784         /*
 3785          * Calculate the encompassing dirty range, boffset and eoffset,
 3786          * (eoffset - boffset) bytes.
 3787          */
 3788 
 3789         for (i = 0; i < bp->b_npages; i++) {
 3790                 if (bp->b_pages[i]->dirty)
 3791                         break;
 3792         }
 3793         boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 3794 
 3795         for (i = bp->b_npages - 1; i >= 0; --i) {
 3796                 if (bp->b_pages[i]->dirty) {
 3797                         break;
 3798                 }
 3799         }
 3800         eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 3801 
 3802         /*
 3803          * Fit it to the buffer.
 3804          */
 3805 
 3806         if (eoffset > bp->b_bcount)
 3807                 eoffset = bp->b_bcount;
 3808 
 3809         /*
 3810          * If we have a good dirty range, merge with the existing
 3811          * dirty range.
 3812          */
 3813 
 3814         if (boffset < eoffset) {
 3815                 if (bp->b_dirtyoff > boffset)
 3816                         bp->b_dirtyoff = boffset;
 3817                 if (bp->b_dirtyend < eoffset)
 3818                         bp->b_dirtyend = eoffset;
 3819         }
 3820 }
 3821 
 3822 /*
 3823  * Allocate the KVA mapping for an existing buffer.
 3824  * If an unmapped buffer is provided but a mapped buffer is requested, take
 3825  * also care to properly setup mappings between pages and KVA.
 3826  */
 3827 static void
 3828 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
 3829 {
 3830         int bsize, maxsize, need_mapping, need_kva;
 3831         off_t offset;
 3832 
 3833         need_mapping = bp->b_data == unmapped_buf &&
 3834             (gbflags & GB_UNMAPPED) == 0;
 3835         need_kva = bp->b_kvabase == unmapped_buf &&
 3836             bp->b_data == unmapped_buf &&
 3837             (gbflags & GB_KVAALLOC) != 0;
 3838         if (!need_mapping && !need_kva)
 3839                 return;
 3840 
 3841         BUF_CHECK_UNMAPPED(bp);
 3842 
 3843         if (need_mapping && bp->b_kvabase != unmapped_buf) {
 3844                 /*
 3845                  * Buffer is not mapped, but the KVA was already
 3846                  * reserved at the time of the instantiation.  Use the
 3847                  * allocated space.
 3848                  */
 3849                 goto has_addr;
 3850         }
 3851 
 3852         /*
 3853          * Calculate the amount of the address space we would reserve
 3854          * if the buffer was mapped.
 3855          */
 3856         bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
 3857         KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
 3858         offset = blkno * bsize;
 3859         maxsize = size + (offset & PAGE_MASK);
 3860         maxsize = imax(maxsize, bsize);
 3861 
 3862         while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
 3863                 if ((gbflags & GB_NOWAIT_BD) != 0) {
 3864                         /*
 3865                          * XXXKIB: defragmentation cannot
 3866                          * succeed, not sure what else to do.
 3867                          */
 3868                         panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
 3869                 }
 3870                 counter_u64_add(mappingrestarts, 1);
 3871                 bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
 3872         }
 3873 has_addr:
 3874         if (need_mapping) {
 3875                 /* b_offset is handled by bpmap_qenter. */
 3876                 bp->b_data = bp->b_kvabase;
 3877                 BUF_CHECK_MAPPED(bp);
 3878                 bpmap_qenter(bp);
 3879         }
 3880 }
 3881 
 3882 struct buf *
 3883 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
 3884     int flags)
 3885 {
 3886         struct buf *bp;
 3887         int error;
 3888 
 3889         error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
 3890         if (error != 0)
 3891                 return (NULL);
 3892         return (bp);
 3893 }
 3894 
 3895 /*
 3896  *      getblkx:
 3897  *
 3898  *      Get a block given a specified block and offset into a file/device.
 3899  *      The buffers B_DONE bit will be cleared on return, making it almost
 3900  *      ready for an I/O initiation.  B_INVAL may or may not be set on 
 3901  *      return.  The caller should clear B_INVAL prior to initiating a
 3902  *      READ.
 3903  *
 3904  *      For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
 3905  *      an existing buffer.
 3906  *
 3907  *      For a VMIO buffer, B_CACHE is modified according to the backing VM.
 3908  *      If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
 3909  *      and then cleared based on the backing VM.  If the previous buffer is
 3910  *      non-0-sized but invalid, B_CACHE will be cleared.
 3911  *
 3912  *      If getblk() must create a new buffer, the new buffer is returned with
 3913  *      both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
 3914  *      case it is returned with B_INVAL clear and B_CACHE set based on the
 3915  *      backing VM.
 3916  *
 3917  *      getblk() also forces a bwrite() for any B_DELWRI buffer whose
 3918  *      B_CACHE bit is clear.
 3919  *
 3920  *      What this means, basically, is that the caller should use B_CACHE to
 3921  *      determine whether the buffer is fully valid or not and should clear
 3922  *      B_INVAL prior to issuing a read.  If the caller intends to validate
 3923  *      the buffer by loading its data area with something, the caller needs
 3924  *      to clear B_INVAL.  If the caller does this without issuing an I/O, 
 3925  *      the caller should set B_CACHE ( as an optimization ), else the caller
 3926  *      should issue the I/O and biodone() will set B_CACHE if the I/O was
 3927  *      a write attempt or if it was a successful read.  If the caller 
 3928  *      intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
 3929  *      prior to issuing the READ.  biodone() will *not* clear B_INVAL.
 3930  *
 3931  *      The blkno parameter is the logical block being requested. Normally
 3932  *      the mapping of logical block number to disk block address is done
 3933  *      by calling VOP_BMAP(). However, if the mapping is already known, the
 3934  *      disk block address can be passed using the dblkno parameter. If the
 3935  *      disk block address is not known, then the same value should be passed
 3936  *      for blkno and dblkno.
 3937  */
 3938 int
 3939 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
 3940     int slptimeo, int flags, struct buf **bpp)
 3941 {
 3942         struct buf *bp;
 3943         struct bufobj *bo;
 3944         daddr_t d_blkno;
 3945         int bsize, error, maxsize, vmio;
 3946         off_t offset;
 3947 
 3948         CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
 3949         KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
 3950             ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
 3951         if (vp->v_type != VCHR)
 3952                 ASSERT_VOP_LOCKED(vp, "getblk");
 3953         if (size > maxbcachebuf)
 3954                 panic("getblk: size(%d) > maxbcachebuf(%d)\n", size,
 3955                     maxbcachebuf);
 3956         if (!unmapped_buf_allowed)
 3957                 flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 3958 
 3959         bo = &vp->v_bufobj;
 3960         d_blkno = dblkno;
 3961 
 3962         /* Attempt lockless lookup first. */
 3963         bp = gbincore_unlocked(bo, blkno);
 3964         if (bp == NULL)
 3965                 goto newbuf_unlocked;
 3966 
 3967         error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
 3968             0);
 3969         if (error != 0)
 3970                 goto loop;
 3971 
 3972         /* Verify buf identify has not changed since lookup. */
 3973         if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
 3974                 goto foundbuf_fastpath;
 3975 
 3976         /* It changed, fallback to locked lookup. */
 3977         BUF_UNLOCK_RAW(bp);
 3978 
 3979 loop:
 3980         BO_RLOCK(bo);
 3981         bp = gbincore(bo, blkno);
 3982         if (bp != NULL) {
 3983                 int lockflags;
 3984 
 3985                 /*
 3986                  * Buffer is in-core.  If the buffer is not busy nor managed,
 3987                  * it must be on a queue.
 3988                  */
 3989                 lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
 3990                     ((flags & GB_LOCK_NOWAIT) != 0 ? LK_NOWAIT : LK_SLEEPFAIL);
 3991 #ifdef WITNESS
 3992                 lockflags |= (flags & GB_NOWITNESS) != 0 ? LK_NOWITNESS : 0;
 3993 #endif
 3994 
 3995                 error = BUF_TIMELOCK(bp, lockflags,
 3996                     BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
 3997 
 3998                 /*
 3999                  * If we slept and got the lock we have to restart in case
 4000                  * the buffer changed identities.
 4001                  */
 4002                 if (error == ENOLCK)
 4003                         goto loop;
 4004                 /* We timed out or were interrupted. */
 4005                 else if (error != 0)
 4006                         return (error);
 4007 
 4008 foundbuf_fastpath:
 4009                 /* If recursed, assume caller knows the rules. */
 4010                 if (BUF_LOCKRECURSED(bp))
 4011                         goto end;
 4012 
 4013                 /*
 4014                  * The buffer is locked.  B_CACHE is cleared if the buffer is 
 4015                  * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 4016                  * and for a VMIO buffer B_CACHE is adjusted according to the
 4017                  * backing VM cache.
 4018                  */
 4019                 if (bp->b_flags & B_INVAL)
 4020                         bp->b_flags &= ~B_CACHE;
 4021                 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 4022                         bp->b_flags |= B_CACHE;
 4023                 if (bp->b_flags & B_MANAGED)
 4024                         MPASS(bp->b_qindex == QUEUE_NONE);
 4025                 else
 4026                         bremfree(bp);
 4027 
 4028                 /*
 4029                  * check for size inconsistencies for non-VMIO case.
 4030                  */
 4031                 if (bp->b_bcount != size) {
 4032                         if ((bp->b_flags & B_VMIO) == 0 ||
 4033                             (size > bp->b_kvasize)) {
 4034                                 if (bp->b_flags & B_DELWRI) {
 4035                                         bp->b_flags |= B_NOCACHE;
 4036                                         bwrite(bp);
 4037                                 } else {
 4038                                         if (LIST_EMPTY(&bp->b_dep)) {
 4039                                                 bp->b_flags |= B_RELBUF;
 4040                                                 brelse(bp);
 4041                                         } else {
 4042                                                 bp->b_flags |= B_NOCACHE;
 4043                                                 bwrite(bp);
 4044                                         }
 4045                                 }
 4046                                 goto loop;
 4047                         }
 4048                 }
 4049 
 4050                 /*
 4051                  * Handle the case of unmapped buffer which should
 4052                  * become mapped, or the buffer for which KVA
 4053                  * reservation is requested.
 4054                  */
 4055                 bp_unmapped_get_kva(bp, blkno, size, flags);
 4056 
 4057                 /*
 4058                  * If the size is inconsistent in the VMIO case, we can resize
 4059                  * the buffer.  This might lead to B_CACHE getting set or
 4060                  * cleared.  If the size has not changed, B_CACHE remains
 4061                  * unchanged from its previous state.
 4062                  */
 4063                 allocbuf(bp, size);
 4064 
 4065                 KASSERT(bp->b_offset != NOOFFSET, 
 4066                     ("getblk: no buffer offset"));
 4067 
 4068                 /*
 4069                  * A buffer with B_DELWRI set and B_CACHE clear must
 4070                  * be committed before we can return the buffer in
 4071                  * order to prevent the caller from issuing a read
 4072                  * ( due to B_CACHE not being set ) and overwriting
 4073                  * it.
 4074                  *
 4075                  * Most callers, including NFS and FFS, need this to
 4076                  * operate properly either because they assume they
 4077                  * can issue a read if B_CACHE is not set, or because
 4078                  * ( for example ) an uncached B_DELWRI might loop due 
 4079                  * to softupdates re-dirtying the buffer.  In the latter
 4080                  * case, B_CACHE is set after the first write completes,
 4081                  * preventing further loops.
 4082                  * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 4083                  * above while extending the buffer, we cannot allow the
 4084                  * buffer to remain with B_CACHE set after the write
 4085                  * completes or it will represent a corrupt state.  To
 4086                  * deal with this we set B_NOCACHE to scrap the buffer
 4087                  * after the write.
 4088                  *
 4089                  * We might be able to do something fancy, like setting
 4090                  * B_CACHE in bwrite() except if B_DELWRI is already set,
 4091                  * so the below call doesn't set B_CACHE, but that gets real
 4092                  * confusing.  This is much easier.
 4093                  */
 4094 
 4095                 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 4096                         bp->b_flags |= B_NOCACHE;
 4097                         bwrite(bp);
 4098                         goto loop;
 4099                 }
 4100                 bp->b_flags &= ~B_DONE;
 4101         } else {
 4102                 /*
 4103                  * Buffer is not in-core, create new buffer.  The buffer
 4104                  * returned by getnewbuf() is locked.  Note that the returned
 4105                  * buffer is also considered valid (not marked B_INVAL).
 4106                  */
 4107                 BO_RUNLOCK(bo);
 4108 newbuf_unlocked:
 4109                 /*
 4110                  * If the user does not want us to create the buffer, bail out
 4111                  * here.
 4112                  */
 4113                 if (flags & GB_NOCREAT)
 4114                         return (EEXIST);
 4115 
 4116                 bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
 4117                 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
 4118                 offset = blkno * bsize;
 4119                 vmio = vp->v_object != NULL;
 4120                 if (vmio) {
 4121                         maxsize = size + (offset & PAGE_MASK);
 4122                 } else {
 4123                         maxsize = size;
 4124                         /* Do not allow non-VMIO notmapped buffers. */
 4125                         flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 4126                 }
 4127                 maxsize = imax(maxsize, bsize);
 4128                 if ((flags & GB_NOSPARSE) != 0 && vmio &&
 4129                     !vn_isdisk(vp)) {
 4130                         error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
 4131                         KASSERT(error != EOPNOTSUPP,
 4132                             ("GB_NOSPARSE from fs not supporting bmap, vp %p",
 4133                             vp));
 4134                         if (error != 0)
 4135                                 return (error);
 4136                         if (d_blkno == -1)
 4137                                 return (EJUSTRETURN);
 4138                 }
 4139 
 4140                 bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
 4141                 if (bp == NULL) {
 4142                         if (slpflag || slptimeo)
 4143                                 return (ETIMEDOUT);
 4144                         /*
 4145                          * XXX This is here until the sleep path is diagnosed
 4146                          * enough to work under very low memory conditions.
 4147                          *
 4148                          * There's an issue on low memory, 4BSD+non-preempt
 4149                          * systems (eg MIPS routers with 32MB RAM) where buffer
 4150                          * exhaustion occurs without sleeping for buffer
 4151                          * reclaimation.  This just sticks in a loop and
 4152                          * constantly attempts to allocate a buffer, which
 4153                          * hits exhaustion and tries to wakeup bufdaemon.
 4154                          * This never happens because we never yield.
 4155                          *
 4156                          * The real solution is to identify and fix these cases
 4157                          * so we aren't effectively busy-waiting in a loop
 4158                          * until the reclaimation path has cycles to run.
 4159                          */
 4160                         kern_yield(PRI_USER);
 4161                         goto loop;
 4162                 }
 4163 
 4164                 /*
 4165                  * This code is used to make sure that a buffer is not
 4166                  * created while the getnewbuf routine is blocked.
 4167                  * This can be a problem whether the vnode is locked or not.
 4168                  * If the buffer is created out from under us, we have to
 4169                  * throw away the one we just created.
 4170                  *
 4171                  * Note: this must occur before we associate the buffer
 4172                  * with the vp especially considering limitations in
 4173                  * the splay tree implementation when dealing with duplicate
 4174                  * lblkno's.
 4175                  */
 4176                 BO_LOCK(bo);
 4177                 if (gbincore(bo, blkno)) {
 4178                         BO_UNLOCK(bo);
 4179                         bp->b_flags |= B_INVAL;
 4180                         bufspace_release(bufdomain(bp), maxsize);
 4181                         brelse(bp);
 4182                         goto loop;
 4183                 }
 4184 
 4185                 /*
 4186                  * Insert the buffer into the hash, so that it can
 4187                  * be found by incore.
 4188                  */
 4189                 bp->b_lblkno = blkno;
 4190                 bp->b_blkno = d_blkno;
 4191                 bp->b_offset = offset;
 4192                 bgetvp(vp, bp);
 4193                 BO_UNLOCK(bo);
 4194 
 4195                 /*
 4196                  * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 4197                  * buffer size starts out as 0, B_CACHE will be set by
 4198                  * allocbuf() for the VMIO case prior to it testing the
 4199                  * backing store for validity.
 4200                  */
 4201 
 4202                 if (vmio) {
 4203                         bp->b_flags |= B_VMIO;
 4204                         KASSERT(vp->v_object == bp->b_bufobj->bo_object,
 4205                             ("ARGH! different b_bufobj->bo_object %p %p %p\n",
 4206                             bp, vp->v_object, bp->b_bufobj->bo_object));
 4207                 } else {
 4208                         bp->b_flags &= ~B_VMIO;
 4209                         KASSERT(bp->b_bufobj->bo_object == NULL,
 4210                             ("ARGH! has b_bufobj->bo_object %p %p\n",
 4211                             bp, bp->b_bufobj->bo_object));
 4212                         BUF_CHECK_MAPPED(bp);
 4213                 }
 4214 
 4215                 allocbuf(bp, size);
 4216                 bufspace_release(bufdomain(bp), maxsize);
 4217                 bp->b_flags &= ~B_DONE;
 4218         }
 4219         CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
 4220 end:
 4221         buf_track(bp, __func__);
 4222         KASSERT(bp->b_bufobj == bo,
 4223             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 4224         *bpp = bp;
 4225         return (0);
 4226 }
 4227 
 4228 /*
 4229  * Get an empty, disassociated buffer of given size.  The buffer is initially
 4230  * set to B_INVAL.
 4231  */
 4232 struct buf *
 4233 geteblk(int size, int flags)
 4234 {
 4235         struct buf *bp;
 4236         int maxsize;
 4237 
 4238         maxsize = (size + BKVAMASK) & ~BKVAMASK;
 4239         while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
 4240                 if ((flags & GB_NOWAIT_BD) &&
 4241                     (curthread->td_pflags & TDP_BUFNEED) != 0)
 4242                         return (NULL);
 4243         }
 4244         allocbuf(bp, size);
 4245         bufspace_release(bufdomain(bp), maxsize);
 4246         bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
 4247         return (bp);
 4248 }
 4249 
 4250 /*
 4251  * Truncate the backing store for a non-vmio buffer.
 4252  */
 4253 static void
 4254 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
 4255 {
 4256 
 4257         if (bp->b_flags & B_MALLOC) {
 4258                 /*
 4259                  * malloced buffers are not shrunk
 4260                  */
 4261                 if (newbsize == 0) {
 4262                         bufmallocadjust(bp, 0);
 4263                         free(bp->b_data, M_BIOBUF);
 4264                         bp->b_data = bp->b_kvabase;
 4265                         bp->b_flags &= ~B_MALLOC;
 4266                 }
 4267                 return;
 4268         }
 4269         vm_hold_free_pages(bp, newbsize);
 4270         bufspace_adjust(bp, newbsize);
 4271 }
 4272 
 4273 /*
 4274  * Extend the backing for a non-VMIO buffer.
 4275  */
 4276 static void
 4277 vfs_nonvmio_extend(struct buf *bp, int newbsize)
 4278 {
 4279         caddr_t origbuf;
 4280         int origbufsize;
 4281 
 4282         /*
 4283          * We only use malloced memory on the first allocation.
 4284          * and revert to page-allocated memory when the buffer
 4285          * grows.
 4286          *
 4287          * There is a potential smp race here that could lead
 4288          * to bufmallocspace slightly passing the max.  It
 4289          * is probably extremely rare and not worth worrying
 4290          * over.
 4291          */
 4292         if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
 4293             bufmallocspace < maxbufmallocspace) {
 4294                 bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
 4295                 bp->b_flags |= B_MALLOC;
 4296                 bufmallocadjust(bp, newbsize);
 4297                 return;
 4298         }
 4299 
 4300         /*
 4301          * If the buffer is growing on its other-than-first
 4302          * allocation then we revert to the page-allocation
 4303          * scheme.
 4304          */
 4305         origbuf = NULL;
 4306         origbufsize = 0;
 4307         if (bp->b_flags & B_MALLOC) {
 4308                 origbuf = bp->b_data;
 4309                 origbufsize = bp->b_bufsize;
 4310                 bp->b_data = bp->b_kvabase;
 4311                 bufmallocadjust(bp, 0);
 4312                 bp->b_flags &= ~B_MALLOC;
 4313                 newbsize = round_page(newbsize);
 4314         }
 4315         vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
 4316             (vm_offset_t) bp->b_data + newbsize);
 4317         if (origbuf != NULL) {
 4318                 bcopy(origbuf, bp->b_data, origbufsize);
 4319                 free(origbuf, M_BIOBUF);
 4320         }
 4321         bufspace_adjust(bp, newbsize);
 4322 }
 4323 
 4324 /*
 4325  * This code constitutes the buffer memory from either anonymous system
 4326  * memory (in the case of non-VMIO operations) or from an associated
 4327  * VM object (in the case of VMIO operations).  This code is able to
 4328  * resize a buffer up or down.
 4329  *
 4330  * Note that this code is tricky, and has many complications to resolve
 4331  * deadlock or inconsistent data situations.  Tread lightly!!! 
 4332  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
 4333  * the caller.  Calling this code willy nilly can result in the loss of data.
 4334  *
 4335  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
 4336  * B_CACHE for the non-VMIO case.
 4337  */
 4338 int
 4339 allocbuf(struct buf *bp, int size)
 4340 {
 4341         int newbsize;
 4342 
 4343         if (bp->b_bcount == size)
 4344                 return (1);
 4345 
 4346         if (bp->b_kvasize != 0 && bp->b_kvasize < size)
 4347                 panic("allocbuf: buffer too small");
 4348 
 4349         newbsize = roundup2(size, DEV_BSIZE);
 4350         if ((bp->b_flags & B_VMIO) == 0) {
 4351                 if ((bp->b_flags & B_MALLOC) == 0)
 4352                         newbsize = round_page(newbsize);
 4353                 /*
 4354                  * Just get anonymous memory from the kernel.  Don't
 4355                  * mess with B_CACHE.
 4356                  */
 4357                 if (newbsize < bp->b_bufsize)
 4358                         vfs_nonvmio_truncate(bp, newbsize);
 4359                 else if (newbsize > bp->b_bufsize)
 4360                         vfs_nonvmio_extend(bp, newbsize);
 4361         } else {
 4362                 int desiredpages;
 4363 
 4364                 desiredpages = (size == 0) ? 0 :
 4365                     num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 4366 
 4367                 if (bp->b_flags & B_MALLOC)
 4368                         panic("allocbuf: VMIO buffer can't be malloced");
 4369                 /*
 4370                  * Set B_CACHE initially if buffer is 0 length or will become
 4371                  * 0-length.
 4372                  */
 4373                 if (size == 0 || bp->b_bufsize == 0)
 4374                         bp->b_flags |= B_CACHE;
 4375 
 4376                 if (newbsize < bp->b_bufsize)
 4377                         vfs_vmio_truncate(bp, desiredpages);
 4378                 /* XXX This looks as if it should be newbsize > b_bufsize */
 4379                 else if (size > bp->b_bcount)
 4380                         vfs_vmio_extend(bp, desiredpages, size);
 4381                 bufspace_adjust(bp, newbsize);
 4382         }
 4383         bp->b_bcount = size;            /* requested buffer size. */
 4384         return (1);
 4385 }
 4386 
 4387 extern int inflight_transient_maps;
 4388 
 4389 static struct bio_queue nondump_bios;
 4390 
 4391 void
 4392 biodone(struct bio *bp)
 4393 {
 4394         struct mtx *mtxp;
 4395         void (*done)(struct bio *);
 4396         vm_offset_t start, end;
 4397 
 4398         biotrack(bp, __func__);
 4399 
 4400         /*
 4401          * Avoid completing I/O when dumping after a panic since that may
 4402          * result in a deadlock in the filesystem or pager code.  Note that
 4403          * this doesn't affect dumps that were started manually since we aim
 4404          * to keep the system usable after it has been resumed.
 4405          */
 4406         if (__predict_false(dumping && SCHEDULER_STOPPED())) {
 4407                 TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
 4408                 return;
 4409         }
 4410         if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
 4411                 bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
 4412                 bp->bio_flags |= BIO_UNMAPPED;
 4413                 start = trunc_page((vm_offset_t)bp->bio_data);
 4414                 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
 4415                 bp->bio_data = unmapped_buf;
 4416                 pmap_qremove(start, atop(end - start));
 4417                 vmem_free(transient_arena, start, end - start);
 4418                 atomic_add_int(&inflight_transient_maps, -1);
 4419         }
 4420         done = bp->bio_done;
 4421         if (done == NULL) {
 4422                 mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4423                 mtx_lock(mtxp);
 4424                 bp->bio_flags |= BIO_DONE;
 4425                 wakeup(bp);
 4426                 mtx_unlock(mtxp);
 4427         } else
 4428                 done(bp);
 4429 }
 4430 
 4431 /*
 4432  * Wait for a BIO to finish.
 4433  */
 4434 int
 4435 biowait(struct bio *bp, const char *wmesg)
 4436 {
 4437         struct mtx *mtxp;
 4438 
 4439         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4440         mtx_lock(mtxp);
 4441         while ((bp->bio_flags & BIO_DONE) == 0)
 4442                 msleep(bp, mtxp, PRIBIO, wmesg, 0);
 4443         mtx_unlock(mtxp);
 4444         if (bp->bio_error != 0)
 4445                 return (bp->bio_error);
 4446         if (!(bp->bio_flags & BIO_ERROR))
 4447                 return (0);
 4448         return (EIO);
 4449 }
 4450 
 4451 void
 4452 biofinish(struct bio *bp, struct devstat *stat, int error)
 4453 {
 4454 
 4455         if (error) {
 4456                 bp->bio_error = error;
 4457                 bp->bio_flags |= BIO_ERROR;
 4458         }
 4459         if (stat != NULL)
 4460                 devstat_end_transaction_bio(stat, bp);
 4461         biodone(bp);
 4462 }
 4463 
 4464 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
 4465 void
 4466 biotrack_buf(struct bio *bp, const char *location)
 4467 {
 4468 
 4469         buf_track(bp->bio_track_bp, location);
 4470 }
 4471 #endif
 4472 
 4473 /*
 4474  *      bufwait:
 4475  *
 4476  *      Wait for buffer I/O completion, returning error status.  The buffer
 4477  *      is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
 4478  *      error and cleared.
 4479  */
 4480 int
 4481 bufwait(struct buf *bp)
 4482 {
 4483         if (bp->b_iocmd == BIO_READ)
 4484                 bwait(bp, PRIBIO, "biord");
 4485         else
 4486                 bwait(bp, PRIBIO, "biowr");
 4487         if (bp->b_flags & B_EINTR) {
 4488                 bp->b_flags &= ~B_EINTR;
 4489                 return (EINTR);
 4490         }
 4491         if (bp->b_ioflags & BIO_ERROR) {
 4492                 return (bp->b_error ? bp->b_error : EIO);
 4493         } else {
 4494                 return (0);
 4495         }
 4496 }
 4497 
 4498 /*
 4499  *      bufdone:
 4500  *
 4501  *      Finish I/O on a buffer, optionally calling a completion function.
 4502  *      This is usually called from an interrupt so process blocking is
 4503  *      not allowed.
 4504  *
 4505  *      biodone is also responsible for setting B_CACHE in a B_VMIO bp.
 4506  *      In a non-VMIO bp, B_CACHE will be set on the next getblk() 
 4507  *      assuming B_INVAL is clear.
 4508  *
 4509  *      For the VMIO case, we set B_CACHE if the op was a read and no
 4510  *      read error occurred, or if the op was a write.  B_CACHE is never
 4511  *      set if the buffer is invalid or otherwise uncacheable.
 4512  *
 4513  *      bufdone does not mess with B_INVAL, allowing the I/O routine or the
 4514  *      initiator to leave B_INVAL set to brelse the buffer out of existence
 4515  *      in the biodone routine.
 4516  */
 4517 void
 4518 bufdone(struct buf *bp)
 4519 {
 4520         struct bufobj *dropobj;
 4521         void    (*biodone)(struct buf *);
 4522 
 4523         buf_track(bp, __func__);
 4524         CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 4525         dropobj = NULL;
 4526 
 4527         KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 4528 
 4529         runningbufwakeup(bp);
 4530         if (bp->b_iocmd == BIO_WRITE)
 4531                 dropobj = bp->b_bufobj;
 4532         /* call optional completion function if requested */
 4533         if (bp->b_iodone != NULL) {
 4534                 biodone = bp->b_iodone;
 4535                 bp->b_iodone = NULL;
 4536                 (*biodone) (bp);
 4537                 if (dropobj)
 4538                         bufobj_wdrop(dropobj);
 4539                 return;
 4540         }
 4541         if (bp->b_flags & B_VMIO) {
 4542                 /*
 4543                  * Set B_CACHE if the op was a normal read and no error
 4544                  * occurred.  B_CACHE is set for writes in the b*write()
 4545                  * routines.
 4546                  */
 4547                 if (bp->b_iocmd == BIO_READ &&
 4548                     !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 4549                     !(bp->b_ioflags & BIO_ERROR))
 4550                         bp->b_flags |= B_CACHE;
 4551                 vfs_vmio_iodone(bp);
 4552         }
 4553         if (!LIST_EMPTY(&bp->b_dep))
 4554                 buf_complete(bp);
 4555         if ((bp->b_flags & B_CKHASH) != 0) {
 4556                 KASSERT(bp->b_iocmd == BIO_READ,
 4557                     ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
 4558                 KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
 4559                 (*bp->b_ckhashcalc)(bp);
 4560         }
 4561         /*
 4562          * For asynchronous completions, release the buffer now. The brelse
 4563          * will do a wakeup there if necessary - so no need to do a wakeup
 4564          * here in the async case. The sync case always needs to do a wakeup.
 4565          */
 4566         if (bp->b_flags & B_ASYNC) {
 4567                 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
 4568                     (bp->b_ioflags & BIO_ERROR))
 4569                         brelse(bp);
 4570                 else
 4571                         bqrelse(bp);
 4572         } else
 4573                 bdone(bp);
 4574         if (dropobj)
 4575                 bufobj_wdrop(dropobj);
 4576 }
 4577 
 4578 /*
 4579  * This routine is called in lieu of iodone in the case of
 4580  * incomplete I/O.  This keeps the busy status for pages
 4581  * consistent.
 4582  */
 4583 void
 4584 vfs_unbusy_pages(struct buf *bp)
 4585 {
 4586         int i;
 4587         vm_object_t obj;
 4588         vm_page_t m;
 4589 
 4590         runningbufwakeup(bp);
 4591         if (!(bp->b_flags & B_VMIO))
 4592                 return;
 4593 
 4594         obj = bp->b_bufobj->bo_object;
 4595         for (i = 0; i < bp->b_npages; i++) {
 4596                 m = bp->b_pages[i];
 4597                 if (m == bogus_page) {
 4598                         m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 4599                         if (!m)
 4600                                 panic("vfs_unbusy_pages: page missing\n");
 4601                         bp->b_pages[i] = m;
 4602                         if (buf_mapped(bp)) {
 4603                                 BUF_CHECK_MAPPED(bp);
 4604                                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 4605                                     bp->b_pages, bp->b_npages);
 4606                         } else
 4607                                 BUF_CHECK_UNMAPPED(bp);
 4608                 }
 4609                 vm_page_sunbusy(m);
 4610         }
 4611         vm_object_pip_wakeupn(obj, bp->b_npages);
 4612 }
 4613 
 4614 /*
 4615  * vfs_page_set_valid:
 4616  *
 4617  *      Set the valid bits in a page based on the supplied offset.   The
 4618  *      range is restricted to the buffer's size.
 4619  *
 4620  *      This routine is typically called after a read completes.
 4621  */
 4622 static void
 4623 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 4624 {
 4625         vm_ooffset_t eoff;
 4626 
 4627         /*
 4628          * Compute the end offset, eoff, such that [off, eoff) does not span a
 4629          * page boundary and eoff is not greater than the end of the buffer.
 4630          * The end of the buffer, in this case, is our file EOF, not the
 4631          * allocation size of the buffer.
 4632          */
 4633         eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
 4634         if (eoff > bp->b_offset + bp->b_bcount)
 4635                 eoff = bp->b_offset + bp->b_bcount;
 4636 
 4637         /*
 4638          * Set valid range.  This is typically the entire buffer and thus the
 4639          * entire page.
 4640          */
 4641         if (eoff > off)
 4642                 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
 4643 }
 4644 
 4645 /*
 4646  * vfs_page_set_validclean:
 4647  *
 4648  *      Set the valid bits and clear the dirty bits in a page based on the
 4649  *      supplied offset.   The range is restricted to the buffer's size.
 4650  */
 4651 static void
 4652 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 4653 {
 4654         vm_ooffset_t soff, eoff;
 4655 
 4656         /*
 4657          * Start and end offsets in buffer.  eoff - soff may not cross a
 4658          * page boundary or cross the end of the buffer.  The end of the
 4659          * buffer, in this case, is our file EOF, not the allocation size
 4660          * of the buffer.
 4661          */
 4662         soff = off;
 4663         eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 4664         if (eoff > bp->b_offset + bp->b_bcount)
 4665                 eoff = bp->b_offset + bp->b_bcount;
 4666 
 4667         /*
 4668          * Set valid range.  This is typically the entire buffer and thus the
 4669          * entire page.
 4670          */
 4671         if (eoff > soff) {
 4672                 vm_page_set_validclean(
 4673                     m,
 4674                    (vm_offset_t) (soff & PAGE_MASK),
 4675                    (vm_offset_t) (eoff - soff)
 4676                 );
 4677         }
 4678 }
 4679 
 4680 /*
 4681  * Acquire a shared busy on all pages in the buf.
 4682  */
 4683 void
 4684 vfs_busy_pages_acquire(struct buf *bp)
 4685 {
 4686         int i;
 4687 
 4688         for (i = 0; i < bp->b_npages; i++)
 4689                 vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
 4690 }
 4691 
 4692 void
 4693 vfs_busy_pages_release(struct buf *bp)
 4694 {
 4695         int i;
 4696 
 4697         for (i = 0; i < bp->b_npages; i++)
 4698                 vm_page_sunbusy(bp->b_pages[i]);
 4699 }
 4700 
 4701 /*
 4702  * This routine is called before a device strategy routine.
 4703  * It is used to tell the VM system that paging I/O is in
 4704  * progress, and treat the pages associated with the buffer
 4705  * almost as being exclusive busy.  Also the object paging_in_progress
 4706  * flag is handled to make sure that the object doesn't become
 4707  * inconsistent.
 4708  *
 4709  * Since I/O has not been initiated yet, certain buffer flags
 4710  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
 4711  * and should be ignored.
 4712  */
 4713 void
 4714 vfs_busy_pages(struct buf *bp, int clear_modify)
 4715 {
 4716         vm_object_t obj;
 4717         vm_ooffset_t foff;
 4718         vm_page_t m;
 4719         int i;
 4720         bool bogus;
 4721 
 4722         if (!(bp->b_flags & B_VMIO))
 4723                 return;
 4724 
 4725         obj = bp->b_bufobj->bo_object;
 4726         foff = bp->b_offset;
 4727         KASSERT(bp->b_offset != NOOFFSET,
 4728             ("vfs_busy_pages: no buffer offset"));
 4729         if ((bp->b_flags & B_CLUSTER) == 0) {
 4730                 vm_object_pip_add(obj, bp->b_npages);
 4731                 vfs_busy_pages_acquire(bp);
 4732         }
 4733         if (bp->b_bufsize != 0)
 4734                 vfs_setdirty_range(bp);
 4735         bogus = false;
 4736         for (i = 0; i < bp->b_npages; i++) {
 4737                 m = bp->b_pages[i];
 4738                 vm_page_assert_sbusied(m);
 4739 
 4740                 /*
 4741                  * When readying a buffer for a read ( i.e
 4742                  * clear_modify == 0 ), it is important to do
 4743                  * bogus_page replacement for valid pages in 
 4744                  * partially instantiated buffers.  Partially 
 4745                  * instantiated buffers can, in turn, occur when
 4746                  * reconstituting a buffer from its VM backing store
 4747                  * base.  We only have to do this if B_CACHE is
 4748                  * clear ( which causes the I/O to occur in the
 4749                  * first place ).  The replacement prevents the read
 4750                  * I/O from overwriting potentially dirty VM-backed
 4751                  * pages.  XXX bogus page replacement is, uh, bogus.
 4752                  * It may not work properly with small-block devices.
 4753                  * We need to find a better way.
 4754                  */
 4755                 if (clear_modify) {
 4756                         pmap_remove_write(m);
 4757                         vfs_page_set_validclean(bp, foff, m);
 4758                 } else if (vm_page_all_valid(m) &&
 4759                     (bp->b_flags & B_CACHE) == 0) {
 4760                         bp->b_pages[i] = bogus_page;
 4761                         bogus = true;
 4762                 }
 4763                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 4764         }
 4765         if (bogus && buf_mapped(bp)) {
 4766                 BUF_CHECK_MAPPED(bp);
 4767                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 4768                     bp->b_pages, bp->b_npages);
 4769         }
 4770 }
 4771 
 4772 /*
 4773  *      vfs_bio_set_valid:
 4774  *
 4775  *      Set the range within the buffer to valid.  The range is
 4776  *      relative to the beginning of the buffer, b_offset.  Note that
 4777  *      b_offset itself may be offset from the beginning of the first
 4778  *      page.
 4779  */
 4780 void
 4781 vfs_bio_set_valid(struct buf *bp, int base, int size)
 4782 {
 4783         int i, n;
 4784         vm_page_t m;
 4785 
 4786         if (!(bp->b_flags & B_VMIO))
 4787                 return;
 4788 
 4789         /*
 4790          * Fixup base to be relative to beginning of first page.
 4791          * Set initial n to be the maximum number of bytes in the
 4792          * first page that can be validated.
 4793          */
 4794         base += (bp->b_offset & PAGE_MASK);
 4795         n = PAGE_SIZE - (base & PAGE_MASK);
 4796 
 4797         /*
 4798          * Busy may not be strictly necessary here because the pages are
 4799          * unlikely to be fully valid and the vnode lock will synchronize
 4800          * their access via getpages.  It is grabbed for consistency with
 4801          * other page validation.
 4802          */
 4803         vfs_busy_pages_acquire(bp);
 4804         for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 4805                 m = bp->b_pages[i];
 4806                 if (n > size)
 4807                         n = size;
 4808                 vm_page_set_valid_range(m, base & PAGE_MASK, n);
 4809                 base += n;
 4810                 size -= n;
 4811                 n = PAGE_SIZE;
 4812         }
 4813         vfs_busy_pages_release(bp);
 4814 }
 4815 
 4816 /*
 4817  *      vfs_bio_clrbuf:
 4818  *
 4819  *      If the specified buffer is a non-VMIO buffer, clear the entire
 4820  *      buffer.  If the specified buffer is a VMIO buffer, clear and
 4821  *      validate only the previously invalid portions of the buffer.
 4822  *      This routine essentially fakes an I/O, so we need to clear
 4823  *      BIO_ERROR and B_INVAL.
 4824  *
 4825  *      Note that while we only theoretically need to clear through b_bcount,
 4826  *      we go ahead and clear through b_bufsize.
 4827  */
 4828 void
 4829 vfs_bio_clrbuf(struct buf *bp) 
 4830 {
 4831         int i, j, mask, sa, ea, slide;
 4832 
 4833         if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
 4834                 clrbuf(bp);
 4835                 return;
 4836         }
 4837         bp->b_flags &= ~B_INVAL;
 4838         bp->b_ioflags &= ~BIO_ERROR;
 4839         vfs_busy_pages_acquire(bp);
 4840         sa = bp->b_offset & PAGE_MASK;
 4841         slide = 0;
 4842         for (i = 0; i < bp->b_npages; i++, sa = 0) {
 4843                 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
 4844                 ea = slide & PAGE_MASK;
 4845                 if (ea == 0)
 4846                         ea = PAGE_SIZE;
 4847                 if (bp->b_pages[i] == bogus_page)
 4848                         continue;
 4849                 j = sa / DEV_BSIZE;
 4850                 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
 4851                 if ((bp->b_pages[i]->valid & mask) == mask)
 4852                         continue;
 4853                 if ((bp->b_pages[i]->valid & mask) == 0)
 4854                         pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
 4855                 else {
 4856                         for (; sa < ea; sa += DEV_BSIZE, j++) {
 4857                                 if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
 4858                                         pmap_zero_page_area(bp->b_pages[i],
 4859                                             sa, DEV_BSIZE);
 4860                                 }
 4861                         }
 4862                 }
 4863                 vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
 4864                     roundup2(ea - sa, DEV_BSIZE));
 4865         }
 4866         vfs_busy_pages_release(bp);
 4867         bp->b_resid = 0;
 4868 }
 4869 
 4870 void
 4871 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
 4872 {
 4873         vm_page_t m;
 4874         int i, n;
 4875 
 4876         if (buf_mapped(bp)) {
 4877                 BUF_CHECK_MAPPED(bp);
 4878                 bzero(bp->b_data + base, size);
 4879         } else {
 4880                 BUF_CHECK_UNMAPPED(bp);
 4881                 n = PAGE_SIZE - (base & PAGE_MASK);
 4882                 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 4883                         m = bp->b_pages[i];
 4884                         if (n > size)
 4885                                 n = size;
 4886                         pmap_zero_page_area(m, base & PAGE_MASK, n);
 4887                         base += n;
 4888                         size -= n;
 4889                         n = PAGE_SIZE;
 4890                 }
 4891         }
 4892 }
 4893 
 4894 /*
 4895  * Update buffer flags based on I/O request parameters, optionally releasing the
 4896  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
 4897  * where they may be placed on a page queue (VMIO) or freed immediately (direct
 4898  * I/O).  Otherwise the buffer is released to the cache.
 4899  */
 4900 static void
 4901 b_io_dismiss(struct buf *bp, int ioflag, bool release)
 4902 {
 4903 
 4904         KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
 4905             ("buf %p non-VMIO noreuse", bp));
 4906 
 4907         if ((ioflag & IO_DIRECT) != 0)
 4908                 bp->b_flags |= B_DIRECT;
 4909         if ((ioflag & IO_EXT) != 0)
 4910                 bp->b_xflags |= BX_ALTDATA;
 4911         if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
 4912                 bp->b_flags |= B_RELBUF;
 4913                 if ((ioflag & IO_NOREUSE) != 0)
 4914                         bp->b_flags |= B_NOREUSE;
 4915                 if (release)
 4916                         brelse(bp);
 4917         } else if (release)
 4918                 bqrelse(bp);
 4919 }
 4920 
 4921 void
 4922 vfs_bio_brelse(struct buf *bp, int ioflag)
 4923 {
 4924 
 4925         b_io_dismiss(bp, ioflag, true);
 4926 }
 4927 
 4928 void
 4929 vfs_bio_set_flags(struct buf *bp, int ioflag)
 4930 {
 4931 
 4932         b_io_dismiss(bp, ioflag, false);
 4933 }
 4934 
 4935 /*
 4936  * vm_hold_load_pages and vm_hold_free_pages get pages into
 4937  * a buffers address space.  The pages are anonymous and are
 4938  * not associated with a file object.
 4939  */
 4940 static void
 4941 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 4942 {
 4943         vm_offset_t pg;
 4944         vm_page_t p;
 4945         int index;
 4946 
 4947         BUF_CHECK_MAPPED(bp);
 4948 
 4949         to = round_page(to);
 4950         from = round_page(from);
 4951         index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 4952         MPASS((bp->b_flags & B_MAXPHYS) == 0);
 4953         KASSERT(to - from <= maxbcachebuf,
 4954             ("vm_hold_load_pages too large %p %#jx %#jx %u",
 4955             bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
 4956 
 4957         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 4958                 /*
 4959                  * note: must allocate system pages since blocking here
 4960                  * could interfere with paging I/O, no matter which
 4961                  * process we are.
 4962                  */
 4963                 p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
 4964                     VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK);
 4965                 pmap_qenter(pg, &p, 1);
 4966                 bp->b_pages[index] = p;
 4967         }
 4968         bp->b_npages = index;
 4969 }
 4970 
 4971 /* Return pages associated with this buf to the vm system */
 4972 static void
 4973 vm_hold_free_pages(struct buf *bp, int newbsize)
 4974 {
 4975         vm_offset_t from;
 4976         vm_page_t p;
 4977         int index, newnpages;
 4978 
 4979         BUF_CHECK_MAPPED(bp);
 4980 
 4981         from = round_page((vm_offset_t)bp->b_data + newbsize);
 4982         newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 4983         if (bp->b_npages > newnpages)
 4984                 pmap_qremove(from, bp->b_npages - newnpages);
 4985         for (index = newnpages; index < bp->b_npages; index++) {
 4986                 p = bp->b_pages[index];
 4987                 bp->b_pages[index] = NULL;
 4988                 vm_page_unwire_noq(p);
 4989                 vm_page_free(p);
 4990         }
 4991         bp->b_npages = newnpages;
 4992 }
 4993 
 4994 /*
 4995  * Map an IO request into kernel virtual address space.
 4996  *
 4997  * All requests are (re)mapped into kernel VA space.
 4998  * Notice that we use b_bufsize for the size of the buffer
 4999  * to be mapped.  b_bcount might be modified by the driver.
 5000  *
 5001  * Note that even if the caller determines that the address space should
 5002  * be valid, a race or a smaller-file mapped into a larger space may
 5003  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
 5004  * check the return value.
 5005  *
 5006  * This function only works with pager buffers.
 5007  */
 5008 int
 5009 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
 5010 {
 5011         vm_prot_t prot;
 5012         int pidx;
 5013 
 5014         MPASS((bp->b_flags & B_MAXPHYS) != 0);
 5015         prot = VM_PROT_READ;
 5016         if (bp->b_iocmd == BIO_READ)
 5017                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 5018         pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 5019             (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
 5020         if (pidx < 0)
 5021                 return (-1);
 5022         bp->b_bufsize = len;
 5023         bp->b_npages = pidx;
 5024         bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
 5025         if (mapbuf || !unmapped_buf_allowed) {
 5026                 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
 5027                 bp->b_data = bp->b_kvabase + bp->b_offset;
 5028         } else
 5029                 bp->b_data = unmapped_buf;
 5030         return (0);
 5031 }
 5032 
 5033 /*
 5034  * Free the io map PTEs associated with this IO operation.
 5035  * We also invalidate the TLB entries and restore the original b_addr.
 5036  *
 5037  * This function only works with pager buffers.
 5038  */
 5039 void
 5040 vunmapbuf(struct buf *bp)
 5041 {
 5042         int npages;
 5043 
 5044         npages = bp->b_npages;
 5045         if (buf_mapped(bp))
 5046                 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
 5047         vm_page_unhold_pages(bp->b_pages, npages);
 5048 
 5049         bp->b_data = unmapped_buf;
 5050 }
 5051 
 5052 void
 5053 bdone(struct buf *bp)
 5054 {
 5055         struct mtx *mtxp;
 5056 
 5057         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 5058         mtx_lock(mtxp);
 5059         bp->b_flags |= B_DONE;
 5060         wakeup(bp);
 5061         mtx_unlock(mtxp);
 5062 }
 5063 
 5064 void
 5065 bwait(struct buf *bp, u_char pri, const char *wchan)
 5066 {
 5067         struct mtx *mtxp;
 5068 
 5069         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 5070         mtx_lock(mtxp);
 5071         while ((bp->b_flags & B_DONE) == 0)
 5072                 msleep(bp, mtxp, pri, wchan, 0);
 5073         mtx_unlock(mtxp);
 5074 }
 5075 
 5076 int
 5077 bufsync(struct bufobj *bo, int waitfor)
 5078 {
 5079 
 5080         return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
 5081 }
 5082 
 5083 void
 5084 bufstrategy(struct bufobj *bo, struct buf *bp)
 5085 {
 5086         int i __unused;
 5087         struct vnode *vp;
 5088 
 5089         vp = bp->b_vp;
 5090         KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
 5091         KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
 5092             ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
 5093         i = VOP_STRATEGY(vp, bp);
 5094         KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
 5095 }
 5096 
 5097 /*
 5098  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
 5099  */
 5100 void
 5101 bufobj_init(struct bufobj *bo, void *private)
 5102 {
 5103         static volatile int bufobj_cleanq;
 5104 
 5105         bo->bo_domain =
 5106             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
 5107         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
 5108         bo->bo_private = private;
 5109         TAILQ_INIT(&bo->bo_clean.bv_hd);
 5110         TAILQ_INIT(&bo->bo_dirty.bv_hd);
 5111 }
 5112 
 5113 void
 5114 bufobj_wrefl(struct bufobj *bo)
 5115 {
 5116 
 5117         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 5118         ASSERT_BO_WLOCKED(bo);
 5119         bo->bo_numoutput++;
 5120 }
 5121 
 5122 void
 5123 bufobj_wref(struct bufobj *bo)
 5124 {
 5125 
 5126         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 5127         BO_LOCK(bo);
 5128         bo->bo_numoutput++;
 5129         BO_UNLOCK(bo);
 5130 }
 5131 
 5132 void
 5133 bufobj_wdrop(struct bufobj *bo)
 5134 {
 5135 
 5136         KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
 5137         BO_LOCK(bo);
 5138         KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
 5139         if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
 5140                 bo->bo_flag &= ~BO_WWAIT;
 5141                 wakeup(&bo->bo_numoutput);
 5142         }
 5143         BO_UNLOCK(bo);
 5144 }
 5145 
 5146 int
 5147 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
 5148 {
 5149         int error;
 5150 
 5151         KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
 5152         ASSERT_BO_WLOCKED(bo);
 5153         error = 0;
 5154         while (bo->bo_numoutput) {
 5155                 bo->bo_flag |= BO_WWAIT;
 5156                 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
 5157                     slpflag | (PRIBIO + 1), "bo_wwait", timeo);
 5158                 if (error)
 5159                         break;
 5160         }
 5161         return (error);
 5162 }
 5163 
 5164 /*
 5165  * Set bio_data or bio_ma for struct bio from the struct buf.
 5166  */
 5167 void
 5168 bdata2bio(struct buf *bp, struct bio *bip)
 5169 {
 5170 
 5171         if (!buf_mapped(bp)) {
 5172                 KASSERT(unmapped_buf_allowed, ("unmapped"));
 5173                 bip->bio_ma = bp->b_pages;
 5174                 bip->bio_ma_n = bp->b_npages;
 5175                 bip->bio_data = unmapped_buf;
 5176                 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 5177                 bip->bio_flags |= BIO_UNMAPPED;
 5178                 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
 5179                     PAGE_SIZE == bp->b_npages,
 5180                     ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
 5181                     (long long)bip->bio_length, bip->bio_ma_n));
 5182         } else {
 5183                 bip->bio_data = bp->b_data;
 5184                 bip->bio_ma = NULL;
 5185         }
 5186 }
 5187 
 5188 /*
 5189  * The MIPS pmap code currently doesn't handle aliased pages.
 5190  * The VIPT caches may not handle page aliasing themselves, leading
 5191  * to data corruption.
 5192  *
 5193  * As such, this code makes a system extremely unhappy if said
 5194  * system doesn't support unaliasing the above situation in hardware.
 5195  * Some "recent" systems (eg some mips24k/mips74k cores) don't enable
 5196  * this feature at build time, so it has to be handled in software.
 5197  *
 5198  * Once the MIPS pmap/cache code grows to support this function on
 5199  * earlier chips, it should be flipped back off.
 5200  */
 5201 #ifdef  __mips__
 5202 static int buf_pager_relbuf = 1;
 5203 #else
 5204 static int buf_pager_relbuf = 0;
 5205 #endif
 5206 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
 5207     &buf_pager_relbuf, 0,
 5208     "Make buffer pager release buffers after reading");
 5209 
 5210 /*
 5211  * The buffer pager.  It uses buffer reads to validate pages.
 5212  *
 5213  * In contrast to the generic local pager from vm/vnode_pager.c, this
 5214  * pager correctly and easily handles volumes where the underlying
 5215  * device block size is greater than the machine page size.  The
 5216  * buffer cache transparently extends the requested page run to be
 5217  * aligned at the block boundary, and does the necessary bogus page
 5218  * replacements in the addends to avoid obliterating already valid
 5219  * pages.
 5220  *
 5221  * The only non-trivial issue is that the exclusive busy state for
 5222  * pages, which is assumed by the vm_pager_getpages() interface, is
 5223  * incompatible with the VMIO buffer cache's desire to share-busy the
 5224  * pages.  This function performs a trivial downgrade of the pages'
 5225  * state before reading buffers, and a less trivial upgrade from the
 5226  * shared-busy to excl-busy state after the read.
 5227  */
 5228 int
 5229 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
 5230     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
 5231     vbg_get_blksize_t get_blksize)
 5232 {
 5233         vm_page_t m;
 5234         vm_object_t object;
 5235         struct buf *bp;
 5236         struct mount *mp;
 5237         daddr_t lbn, lbnp;
 5238         vm_ooffset_t la, lb, poff, poffe;
 5239         long bo_bs, bsize;
 5240         int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
 5241         bool redo, lpart;
 5242 
 5243         object = vp->v_object;
 5244         mp = vp->v_mount;
 5245         error = 0;
 5246         la = IDX_TO_OFF(ma[count - 1]->pindex);
 5247         if (la >= object->un_pager.vnp.vnp_size)
 5248                 return (VM_PAGER_BAD);
 5249 
 5250         /*
 5251          * Change the meaning of la from where the last requested page starts
 5252          * to where it ends, because that's the end of the requested region
 5253          * and the start of the potential read-ahead region.
 5254          */
 5255         la += PAGE_SIZE;
 5256         lpart = la > object->un_pager.vnp.vnp_size;
 5257         error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
 5258             &bo_bs);
 5259         if (error != 0)
 5260                 return (VM_PAGER_ERROR);
 5261 
 5262         /*
 5263          * Calculate read-ahead, behind and total pages.
 5264          */
 5265         pgsin = count;
 5266         lb = IDX_TO_OFF(ma[0]->pindex);
 5267         pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
 5268         pgsin += pgsin_b;
 5269         if (rbehind != NULL)
 5270                 *rbehind = pgsin_b;
 5271         pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
 5272         if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
 5273                 pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
 5274                     PAGE_SIZE) - la);
 5275         pgsin += pgsin_a;
 5276         if (rahead != NULL)
 5277                 *rahead = pgsin_a;
 5278         VM_CNT_INC(v_vnodein);
 5279         VM_CNT_ADD(v_vnodepgsin, pgsin);
 5280 
 5281         br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
 5282             != 0) ? GB_UNMAPPED : 0;
 5283 again:
 5284         for (i = 0; i < count; i++) {
 5285                 if (ma[i] != bogus_page)
 5286                         vm_page_busy_downgrade(ma[i]);
 5287         }
 5288 
 5289         lbnp = -1;
 5290         for (i = 0; i < count; i++) {
 5291                 m = ma[i];
 5292                 if (m == bogus_page)
 5293                         continue;
 5294 
 5295                 /*
 5296                  * Pages are shared busy and the object lock is not
 5297                  * owned, which together allow for the pages'
 5298                  * invalidation.  The racy test for validity avoids
 5299                  * useless creation of the buffer for the most typical
 5300                  * case when invalidation is not used in redo or for
 5301                  * parallel read.  The shared->excl upgrade loop at
 5302                  * the end of the function catches the race in a
 5303                  * reliable way (protected by the object lock).
 5304                  */
 5305                 if (vm_page_all_valid(m))
 5306                         continue;
 5307 
 5308                 poff = IDX_TO_OFF(m->pindex);
 5309                 poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
 5310                 for (; poff < poffe; poff += bsize) {
 5311                         lbn = get_lblkno(vp, poff);
 5312                         if (lbn == lbnp)
 5313                                 goto next_page;
 5314                         lbnp = lbn;
 5315 
 5316                         error = get_blksize(vp, lbn, &bsize);
 5317                         if (error == 0)
 5318                                 error = bread_gb(vp, lbn, bsize,
 5319                                     curthread->td_ucred, br_flags, &bp);
 5320                         if (error != 0)
 5321                                 goto end_pages;
 5322                         if (bp->b_rcred == curthread->td_ucred) {
 5323                                 crfree(bp->b_rcred);
 5324                                 bp->b_rcred = NOCRED;
 5325                         }
 5326                         if (LIST_EMPTY(&bp->b_dep)) {
 5327                                 /*
 5328                                  * Invalidation clears m->valid, but
 5329                                  * may leave B_CACHE flag if the
 5330                                  * buffer existed at the invalidation
 5331                                  * time.  In this case, recycle the
 5332                                  * buffer to do real read on next
 5333                                  * bread() after redo.
 5334                                  *
 5335                                  * Otherwise B_RELBUF is not strictly
 5336                                  * necessary, enable to reduce buf
 5337                                  * cache pressure.
 5338                                  */
 5339                                 if (buf_pager_relbuf ||
 5340                                     !vm_page_all_valid(m))
 5341                                         bp->b_flags |= B_RELBUF;
 5342 
 5343                                 bp->b_flags &= ~B_NOCACHE;
 5344                                 brelse(bp);
 5345                         } else {
 5346                                 bqrelse(bp);
 5347                         }
 5348                 }
 5349                 KASSERT(1 /* racy, enable for debugging */ ||
 5350                     vm_page_all_valid(m) || i == count - 1,
 5351                     ("buf %d %p invalid", i, m));
 5352                 if (i == count - 1 && lpart) {
 5353                         if (!vm_page_none_valid(m) &&
 5354                             !vm_page_all_valid(m))
 5355                                 vm_page_zero_invalid(m, TRUE);
 5356                 }
 5357 next_page:;
 5358         }
 5359 end_pages:
 5360 
 5361         redo = false;
 5362         for (i = 0; i < count; i++) {
 5363                 if (ma[i] == bogus_page)
 5364                         continue;
 5365                 if (vm_page_busy_tryupgrade(ma[i]) == 0) {
 5366                         vm_page_sunbusy(ma[i]);
 5367                         ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
 5368                             VM_ALLOC_NORMAL);
 5369                 }
 5370 
 5371                 /*
 5372                  * Since the pages were only sbusy while neither the
 5373                  * buffer nor the object lock was held by us, or
 5374                  * reallocated while vm_page_grab() slept for busy
 5375                  * relinguish, they could have been invalidated.
 5376                  * Recheck the valid bits and re-read as needed.
 5377                  *
 5378                  * Note that the last page is made fully valid in the
 5379                  * read loop, and partial validity for the page at
 5380                  * index count - 1 could mean that the page was
 5381                  * invalidated or removed, so we must restart for
 5382                  * safety as well.
 5383                  */
 5384                 if (!vm_page_all_valid(ma[i]))
 5385                         redo = true;
 5386         }
 5387         if (redo && error == 0)
 5388                 goto again;
 5389         return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
 5390 }
 5391 
 5392 #include "opt_ddb.h"
 5393 #ifdef DDB
 5394 #include <ddb/ddb.h>
 5395 
 5396 /* DDB command to show buffer data */
 5397 DB_SHOW_COMMAND(buffer, db_show_buffer)
 5398 {
 5399         /* get args */
 5400         struct buf *bp = (struct buf *)addr;
 5401 #ifdef FULL_BUF_TRACKING
 5402         uint32_t i, j;
 5403 #endif
 5404 
 5405         if (!have_addr) {
 5406                 db_printf("usage: show buffer <addr>\n");
 5407                 return;
 5408         }
 5409 
 5410         db_printf("buf at %p\n", bp);
 5411         db_printf("b_flags = 0x%b, b_xflags=0x%b\n",
 5412             (u_int)bp->b_flags, PRINT_BUF_FLAGS,
 5413             (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
 5414         db_printf("b_vflags=0x%b b_ioflags0x%b\n",
 5415             (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
 5416             (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
 5417         db_printf(
 5418             "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 5419             "b_bufobj = (%p), b_data = %p\n, b_blkno = %jd, b_lblkno = %jd, "
 5420             "b_vp = %p, b_dep = %p\n",
 5421             bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 5422             bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
 5423             (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
 5424         db_printf("b_kvabase = %p, b_kvasize = %d\n",
 5425             bp->b_kvabase, bp->b_kvasize);
 5426         if (bp->b_npages) {
 5427                 int i;
 5428                 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 5429                 for (i = 0; i < bp->b_npages; i++) {
 5430                         vm_page_t m;
 5431                         m = bp->b_pages[i];
 5432                         if (m != NULL)
 5433                                 db_printf("(%p, 0x%lx, 0x%lx)", m->object,
 5434                                     (u_long)m->pindex,
 5435                                     (u_long)VM_PAGE_TO_PHYS(m));
 5436                         else
 5437                                 db_printf("( ??? )");
 5438                         if ((i + 1) < bp->b_npages)
 5439                                 db_printf(",");
 5440                 }
 5441                 db_printf("\n");
 5442         }
 5443         BUF_LOCKPRINTINFO(bp);
 5444 #if defined(FULL_BUF_TRACKING)
 5445         db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
 5446 
 5447         i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
 5448         for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
 5449                 if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
 5450                         continue;
 5451                 db_printf(" %2u: %s\n", j,
 5452                     bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
 5453         }
 5454 #elif defined(BUF_TRACKING)
 5455         db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
 5456 #endif
 5457         db_printf(" ");
 5458 }
 5459 
 5460 DB_SHOW_COMMAND(bufqueues, bufqueues)
 5461 {
 5462         struct bufdomain *bd;
 5463         struct buf *bp;
 5464         long total;
 5465         int i, j, cnt;
 5466 
 5467         db_printf("bqempty: %d\n", bqempty.bq_len);
 5468 
 5469         for (i = 0; i < buf_domains; i++) {
 5470                 bd = &bdomain[i];
 5471                 db_printf("Buf domain %d\n", i);
 5472                 db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
 5473                 db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
 5474                 db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
 5475                 db_printf("\n");
 5476                 db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
 5477                 db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
 5478                 db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
 5479                 db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
 5480                 db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
 5481                 db_printf("\n");
 5482                 db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
 5483                 db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
 5484                 db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
 5485                 db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
 5486                 db_printf("\n");
 5487                 total = 0;
 5488                 TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
 5489                         total += bp->b_bufsize;
 5490                 db_printf("\tcleanq count\t%d (%ld)\n",
 5491                     bd->bd_cleanq->bq_len, total);
 5492                 total = 0;
 5493                 TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
 5494                         total += bp->b_bufsize;
 5495                 db_printf("\tdirtyq count\t%d (%ld)\n",
 5496                     bd->bd_dirtyq.bq_len, total);
 5497                 db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
 5498                 db_printf("\tlim\t\t%d\n", bd->bd_lim);
 5499                 db_printf("\tCPU ");
 5500                 for (j = 0; j <= mp_maxid; j++)
 5501                         db_printf("%d, ", bd->bd_subq[j].bq_len);
 5502                 db_printf("\n");
 5503                 cnt = 0;
 5504                 total = 0;
 5505                 for (j = 0; j < nbuf; j++) {
 5506                         bp = nbufp(j);
 5507                         if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
 5508                                 cnt++;
 5509                                 total += bp->b_bufsize;
 5510                         }
 5511                 }
 5512                 db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
 5513                 cnt = 0;
 5514                 total = 0;
 5515                 for (j = 0; j < nbuf; j++) {
 5516                         bp = nbufp(j);
 5517                         if (bp->b_domain == i) {
 5518                                 cnt++;
 5519                                 total += bp->b_bufsize;
 5520                         }
 5521                 }
 5522                 db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
 5523         }
 5524 }
 5525 
 5526 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
 5527 {
 5528         struct buf *bp;
 5529         int i;
 5530 
 5531         for (i = 0; i < nbuf; i++) {
 5532                 bp = nbufp(i);
 5533                 if (BUF_ISLOCKED(bp)) {
 5534                         db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 5535                         db_printf("\n");
 5536                         if (db_pager_quit)
 5537                                 break;
 5538                 }
 5539         }
 5540 }
 5541 
 5542 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
 5543 {
 5544         struct vnode *vp;
 5545         struct buf *bp;
 5546 
 5547         if (!have_addr) {
 5548                 db_printf("usage: show vnodebufs <addr>\n");
 5549                 return;
 5550         }
 5551         vp = (struct vnode *)addr;
 5552         db_printf("Clean buffers:\n");
 5553         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
 5554                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 5555                 db_printf("\n");
 5556         }
 5557         db_printf("Dirty buffers:\n");
 5558         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
 5559                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 5560                 db_printf("\n");
 5561         }
 5562 }
 5563 
 5564 DB_COMMAND(countfreebufs, db_coundfreebufs)
 5565 {
 5566         struct buf *bp;
 5567         int i, used = 0, nfree = 0;
 5568 
 5569         if (have_addr) {
 5570                 db_printf("usage: countfreebufs\n");
 5571                 return;
 5572         }
 5573 
 5574         for (i = 0; i < nbuf; i++) {
 5575                 bp = nbufp(i);
 5576                 if (bp->b_qindex == QUEUE_EMPTY)
 5577                         nfree++;
 5578                 else
 5579                         used++;
 5580         }
 5581 
 5582         db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
 5583             nfree + used);
 5584         db_printf("numfreebuffers is %d\n", numfreebuffers);
 5585 }
 5586 #endif /* DDB */

Cache object: c581b0cf423446159a0464a11a790560


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.