The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1994,1997 John S. Dyson
    3  * All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice immediately at the beginning of the file, without modification,
   10  *    this list of conditions, and the following disclaimer.
   11  * 2. Absolutely no warranty of function or purpose is made by the author
   12  *              John S. Dyson.
   13  */
   14 
   15 /*
   16  * this file contains a new buffer I/O scheme implementing a coherent
   17  * VM object and buffer cache scheme.  Pains have been taken to make
   18  * sure that the performance degradation associated with schemes such
   19  * as this is not realized.
   20  *
   21  * Author:  John S. Dyson
   22  * Significant help during the development and debugging phases
   23  * had been provided by David Greenman, also of the FreeBSD core team.
   24  *
   25  * see man buf(9) for more info.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD: releng/5.3/sys/kern/vfs_bio.c 136588 2004-10-16 08:43:07Z cvs2svn $");
   30 
   31 #include <sys/param.h>
   32 #include <sys/systm.h>
   33 #include <sys/bio.h>
   34 #include <sys/conf.h>
   35 #include <sys/buf.h>
   36 #include <sys/devicestat.h>
   37 #include <sys/eventhandler.h>
   38 #include <sys/lock.h>
   39 #include <sys/malloc.h>
   40 #include <sys/mount.h>
   41 #include <sys/mutex.h>
   42 #include <sys/kernel.h>
   43 #include <sys/kthread.h>
   44 #include <sys/proc.h>
   45 #include <sys/resourcevar.h>
   46 #include <sys/sysctl.h>
   47 #include <sys/vmmeter.h>
   48 #include <sys/vnode.h>
   49 #include <vm/vm.h>
   50 #include <vm/vm_param.h>
   51 #include <vm/vm_kern.h>
   52 #include <vm/vm_pageout.h>
   53 #include <vm/vm_page.h>
   54 #include <vm/vm_object.h>
   55 #include <vm/vm_extern.h>
   56 #include <vm/vm_map.h>
   57 #include "opt_directio.h"
   58 #include "opt_swap.h"
   59 
   60 static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
   61 
   62 struct  bio_ops bioops;         /* I/O operation notification */
   63 
   64 static int ibwrite(struct buf *);
   65 
   66 struct  buf_ops buf_ops_bio = {
   67         "buf_ops_bio",
   68         ibwrite
   69 };
   70 
   71 /*
   72  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
   73  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
   74  */
   75 struct buf *buf;                /* buffer header pool */
   76 
   77 static struct proc *bufdaemonproc;
   78 
   79 static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
   80                 vm_offset_t to);
   81 static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
   82                 vm_offset_t to);
   83 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
   84                                int pageno, vm_page_t m);
   85 static void vfs_clean_pages(struct buf * bp);
   86 static void vfs_setdirty(struct buf *bp);
   87 static void vfs_vmio_release(struct buf *bp);
   88 static void vfs_backgroundwritedone(struct buf *bp);
   89 static int vfs_bio_clcheck(struct vnode *vp, int size,
   90                 daddr_t lblkno, daddr_t blkno);
   91 static int flushbufqueues(int flushdeps);
   92 static void buf_daemon(void);
   93 void bremfreel(struct buf * bp);
   94 
   95 int vmiodirenable = TRUE;
   96 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
   97     "Use the VM system for directory writes");
   98 int runningbufspace;
   99 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
  100     "Amount of presently outstanding async buffer io");
  101 static int bufspace;
  102 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
  103     "KVA memory used for bufs");
  104 static int maxbufspace;
  105 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
  106     "Maximum allowed value of bufspace (including buf_daemon)");
  107 static int bufmallocspace;
  108 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
  109     "Amount of malloced memory for buffers");
  110 static int maxbufmallocspace;
  111 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
  112     "Maximum amount of malloced memory for buffers");
  113 static int lobufspace;
  114 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
  115     "Minimum amount of buffers we want to have");
  116 static int hibufspace;
  117 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
  118     "Maximum allowed value of bufspace (excluding buf_daemon)");
  119 static int bufreusecnt;
  120 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
  121     "Number of times we have reused a buffer");
  122 static int buffreekvacnt;
  123 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
  124     "Number of times we have freed the KVA space from some buffer");
  125 static int bufdefragcnt;
  126 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
  127     "Number of times we have had to repeat buffer allocation to defragment");
  128 static int lorunningspace;
  129 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
  130     "Minimum preferred space used for in-progress I/O");
  131 static int hirunningspace;
  132 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
  133     "Maximum amount of space to use for in-progress I/O");
  134 static int dirtybufferflushes;
  135 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
  136     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
  137 static int altbufferflushes;
  138 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
  139     0, "Number of fsync flushes to limit dirty buffers");
  140 static int recursiveflushes;
  141 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
  142     0, "Number of flushes skipped due to being recursive");
  143 static int numdirtybuffers;
  144 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
  145     "Number of buffers that are dirty (has unwritten changes) at the moment");
  146 static int lodirtybuffers;
  147 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
  148     "How many buffers we want to have free before bufdaemon can sleep");
  149 static int hidirtybuffers;
  150 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
  151     "When the number of dirty buffers is considered severe");
  152 static int dirtybufthresh;
  153 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
  154     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
  155 static int numfreebuffers;
  156 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
  157     "Number of free buffers");
  158 static int lofreebuffers;
  159 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
  160    "XXX Unused");
  161 static int hifreebuffers;
  162 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
  163    "XXX Complicatedly unused");
  164 static int getnewbufcalls;
  165 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
  166    "Number of calls to getnewbuf");
  167 static int getnewbufrestarts;
  168 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
  169     "Number of times getnewbuf has had to restart a buffer aquisition");
  170 static int dobkgrdwrite = 1;
  171 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
  172     "Do background writes (honoring the BV_BKGRDWRITE flag)?");
  173 
  174 /*
  175  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  176  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  177  * is idling.
  178  */
  179 static int bd_request;
  180 
  181 /*
  182  * This lock synchronizes access to bd_request.
  183  */
  184 static struct mtx bdlock;
  185 
  186 /*
  187  * bogus page -- for I/O to/from partially complete buffers
  188  * this is a temporary solution to the problem, but it is not
  189  * really that bad.  it would be better to split the buffer
  190  * for input in the case of buffers partially already in memory,
  191  * but the code is intricate enough already.
  192  */
  193 vm_page_t bogus_page;
  194 
  195 /*
  196  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  197  * Set when wait starts, cleared prior to wakeup().
  198  * Used in runningbufwakeup() and waitrunningbufspace().
  199  */
  200 static int runningbufreq;
  201 
  202 /*
  203  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  204  * waitrunningbufspace().
  205  */
  206 static struct mtx rbreqlock;
  207 
  208 /* 
  209  * Synchronization (sleep/wakeup) variable for buffer requests.
  210  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
  211  * by and/or.
  212  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
  213  * getnewbuf(), and getblk().
  214  */
  215 static int needsbuffer;
  216 
  217 /*
  218  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
  219  */
  220 static struct mtx nblock;
  221 
  222 /*
  223  * Lock that protects against bwait()/bdone()/B_DONE races.
  224  */
  225 
  226 static struct mtx bdonelock;
  227 
  228 /*
  229  * Definitions for the buffer free lists.
  230  */
  231 #define BUFFER_QUEUES   5       /* number of free buffer queues */
  232 
  233 #define QUEUE_NONE      0       /* on no queue */
  234 #define QUEUE_CLEAN     1       /* non-B_DELWRI buffers */
  235 #define QUEUE_DIRTY     2       /* B_DELWRI buffers */
  236 #define QUEUE_EMPTYKVA  3       /* empty buffer headers w/KVA assignment */
  237 #define QUEUE_EMPTY     4       /* empty buffer headers */
  238 
  239 /* Queues for free buffers with various properties */
  240 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
  241 
  242 /* Lock for the bufqueues */
  243 static struct mtx bqlock;
  244 
  245 /*
  246  * Single global constant for BUF_WMESG, to avoid getting multiple references.
  247  * buf_wmesg is referred from macros.
  248  */
  249 const char *buf_wmesg = BUF_WMESG;
  250 
  251 #define VFS_BIO_NEED_ANY        0x01    /* any freeable buffer */
  252 #define VFS_BIO_NEED_DIRTYFLUSH 0x02    /* waiting for dirty buffer flush */
  253 #define VFS_BIO_NEED_FREE       0x04    /* wait for free bufs, hi hysteresis */
  254 #define VFS_BIO_NEED_BUFSPACE   0x08    /* wait for buf space, lo hysteresis */
  255 
  256 #ifdef DIRECTIO
  257 extern void ffs_rawread_setup(void);
  258 #endif /* DIRECTIO */
  259 /*
  260  *      numdirtywakeup:
  261  *
  262  *      If someone is blocked due to there being too many dirty buffers,
  263  *      and numdirtybuffers is now reasonable, wake them up.
  264  */
  265 
  266 static __inline void
  267 numdirtywakeup(int level)
  268 {
  269         if (numdirtybuffers <= level) {
  270                 mtx_lock(&nblock);
  271                 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
  272                         needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
  273                         wakeup(&needsbuffer);
  274                 }
  275                 mtx_unlock(&nblock);
  276         }
  277 }
  278 
  279 /*
  280  *      bufspacewakeup:
  281  *
  282  *      Called when buffer space is potentially available for recovery.
  283  *      getnewbuf() will block on this flag when it is unable to free 
  284  *      sufficient buffer space.  Buffer space becomes recoverable when 
  285  *      bp's get placed back in the queues.
  286  */
  287 
  288 static __inline void
  289 bufspacewakeup(void)
  290 {
  291         /*
  292          * If someone is waiting for BUF space, wake them up.  Even
  293          * though we haven't freed the kva space yet, the waiting
  294          * process will be able to now.
  295          */
  296         mtx_lock(&nblock);
  297         if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
  298                 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
  299                 wakeup(&needsbuffer);
  300         }
  301         mtx_unlock(&nblock);
  302 }
  303 
  304 /*
  305  * runningbufwakeup() - in-progress I/O accounting.
  306  *
  307  */
  308 static __inline void
  309 runningbufwakeup(struct buf *bp)
  310 {
  311         if (bp->b_runningbufspace) {
  312                 atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
  313                 bp->b_runningbufspace = 0;
  314                 mtx_lock(&rbreqlock);
  315                 if (runningbufreq && runningbufspace <= lorunningspace) {
  316                         runningbufreq = 0;
  317                         wakeup(&runningbufreq);
  318                 }
  319                 mtx_unlock(&rbreqlock);
  320         }
  321 }
  322 
  323 /*
  324  *      bufcountwakeup:
  325  *
  326  *      Called when a buffer has been added to one of the free queues to
  327  *      account for the buffer and to wakeup anyone waiting for free buffers.
  328  *      This typically occurs when large amounts of metadata are being handled
  329  *      by the buffer cache ( else buffer space runs out first, usually ).
  330  */
  331 
  332 static __inline void
  333 bufcountwakeup(void) 
  334 {
  335         atomic_add_int(&numfreebuffers, 1);
  336         mtx_lock(&nblock);
  337         if (needsbuffer) {
  338                 needsbuffer &= ~VFS_BIO_NEED_ANY;
  339                 if (numfreebuffers >= hifreebuffers)
  340                         needsbuffer &= ~VFS_BIO_NEED_FREE;
  341                 wakeup(&needsbuffer);
  342         }
  343         mtx_unlock(&nblock);
  344 }
  345 
  346 /*
  347  *      waitrunningbufspace()
  348  *
  349  *      runningbufspace is a measure of the amount of I/O currently
  350  *      running.  This routine is used in async-write situations to
  351  *      prevent creating huge backups of pending writes to a device.
  352  *      Only asynchronous writes are governed by this function.
  353  *
  354  *      Reads will adjust runningbufspace, but will not block based on it.
  355  *      The read load has a side effect of reducing the allowed write load.
  356  *
  357  *      This does NOT turn an async write into a sync write.  It waits  
  358  *      for earlier writes to complete and generally returns before the
  359  *      caller's write has reached the device.
  360  */
  361 static __inline void
  362 waitrunningbufspace(void)
  363 {
  364         mtx_lock(&rbreqlock);
  365         while (runningbufspace > hirunningspace) {
  366                 ++runningbufreq;
  367                 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
  368         }
  369         mtx_unlock(&rbreqlock);
  370 }
  371 
  372 
  373 /*
  374  *      vfs_buf_test_cache:
  375  *
  376  *      Called when a buffer is extended.  This function clears the B_CACHE
  377  *      bit if the newly extended portion of the buffer does not contain
  378  *      valid data.
  379  */
  380 static __inline
  381 void
  382 vfs_buf_test_cache(struct buf *bp,
  383                   vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
  384                   vm_page_t m)
  385 {
  386         GIANT_REQUIRED;
  387 
  388         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  389         if (bp->b_flags & B_CACHE) {
  390                 int base = (foff + off) & PAGE_MASK;
  391                 if (vm_page_is_valid(m, base, size) == 0)
  392                         bp->b_flags &= ~B_CACHE;
  393         }
  394 }
  395 
  396 /* Wake up the buffer deamon if necessary */
  397 static __inline
  398 void
  399 bd_wakeup(int dirtybuflevel)
  400 {
  401         mtx_lock(&bdlock);
  402         if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
  403                 bd_request = 1;
  404                 wakeup(&bd_request);
  405         }
  406         mtx_unlock(&bdlock);
  407 }
  408 
  409 /*
  410  * bd_speedup - speedup the buffer cache flushing code
  411  */
  412 
  413 static __inline
  414 void
  415 bd_speedup(void)
  416 {
  417         bd_wakeup(1);
  418 }
  419 
  420 /*
  421  * Calculating buffer cache scaling values and reserve space for buffer
  422  * headers.  This is called during low level kernel initialization and
  423  * may be called more then once.  We CANNOT write to the memory area
  424  * being reserved at this time.
  425  */
  426 caddr_t
  427 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
  428 {
  429         /*
  430          * physmem_est is in pages.  Convert it to kilobytes (assumes
  431          * PAGE_SIZE is >= 1K)
  432          */
  433         physmem_est = physmem_est * (PAGE_SIZE / 1024);
  434 
  435         /*
  436          * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
  437          * For the first 64MB of ram nominally allocate sufficient buffers to
  438          * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
  439          * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
  440          * the buffer cache we limit the eventual kva reservation to
  441          * maxbcache bytes.
  442          *
  443          * factor represents the 1/4 x ram conversion.
  444          */
  445         if (nbuf == 0) {
  446                 int factor = 4 * BKVASIZE / 1024;
  447 
  448                 nbuf = 50;
  449                 if (physmem_est > 4096)
  450                         nbuf += min((physmem_est - 4096) / factor,
  451                             65536 / factor);
  452                 if (physmem_est > 65536)
  453                         nbuf += (physmem_est - 65536) * 2 / (factor * 5);
  454 
  455                 if (maxbcache && nbuf > maxbcache / BKVASIZE)
  456                         nbuf = maxbcache / BKVASIZE;
  457         }
  458 
  459 #if 0
  460         /*
  461          * Do not allow the buffer_map to be more then 1/2 the size of the
  462          * kernel_map.
  463          */
  464         if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) / 
  465             (BKVASIZE * 2)) {
  466                 nbuf = (kernel_map->max_offset - kernel_map->min_offset) / 
  467                     (BKVASIZE * 2);
  468                 printf("Warning: nbufs capped at %d\n", nbuf);
  469         }
  470 #endif
  471 
  472         /*
  473          * swbufs are used as temporary holders for I/O, such as paging I/O.
  474          * We have no less then 16 and no more then 256.
  475          */
  476         nswbuf = max(min(nbuf/4, 256), 16);
  477 #ifdef NSWBUF_MIN
  478         if (nswbuf < NSWBUF_MIN)
  479                 nswbuf = NSWBUF_MIN;
  480 #endif
  481 #ifdef DIRECTIO
  482         ffs_rawread_setup();
  483 #endif
  484 
  485         /*
  486          * Reserve space for the buffer cache buffers
  487          */
  488         swbuf = (void *)v;
  489         v = (caddr_t)(swbuf + nswbuf);
  490         buf = (void *)v;
  491         v = (caddr_t)(buf + nbuf);
  492 
  493         return(v);
  494 }
  495 
  496 /* Initialize the buffer subsystem.  Called before use of any buffers. */
  497 void
  498 bufinit(void)
  499 {
  500         struct buf *bp;
  501         int i;
  502 
  503         GIANT_REQUIRED;
  504 
  505         mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
  506         mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
  507         mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
  508         mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
  509         mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
  510 
  511         /* next, make a null set of free lists */
  512         for (i = 0; i < BUFFER_QUEUES; i++)
  513                 TAILQ_INIT(&bufqueues[i]);
  514 
  515         /* finally, initialize each buffer header and stick on empty q */
  516         for (i = 0; i < nbuf; i++) {
  517                 bp = &buf[i];
  518                 bzero(bp, sizeof *bp);
  519                 bp->b_flags = B_INVAL;  /* we're just an empty header */
  520                 bp->b_dev = NULL;
  521                 bp->b_rcred = NOCRED;
  522                 bp->b_wcred = NOCRED;
  523                 bp->b_qindex = QUEUE_EMPTY;
  524                 bp->b_vflags = 0;
  525                 bp->b_xflags = 0;
  526                 LIST_INIT(&bp->b_dep);
  527                 BUF_LOCKINIT(bp);
  528                 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
  529         }
  530 
  531         /*
  532          * maxbufspace is the absolute maximum amount of buffer space we are 
  533          * allowed to reserve in KVM and in real terms.  The absolute maximum
  534          * is nominally used by buf_daemon.  hibufspace is the nominal maximum
  535          * used by most other processes.  The differential is required to 
  536          * ensure that buf_daemon is able to run when other processes might 
  537          * be blocked waiting for buffer space.
  538          *
  539          * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
  540          * this may result in KVM fragmentation which is not handled optimally
  541          * by the system.
  542          */
  543         maxbufspace = nbuf * BKVASIZE;
  544         hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
  545         lobufspace = hibufspace - MAXBSIZE;
  546 
  547         lorunningspace = 512 * 1024;
  548         hirunningspace = 1024 * 1024;
  549 
  550 /*
  551  * Limit the amount of malloc memory since it is wired permanently into
  552  * the kernel space.  Even though this is accounted for in the buffer
  553  * allocation, we don't want the malloced region to grow uncontrolled.
  554  * The malloc scheme improves memory utilization significantly on average
  555  * (small) directories.
  556  */
  557         maxbufmallocspace = hibufspace / 20;
  558 
  559 /*
  560  * Reduce the chance of a deadlock occuring by limiting the number
  561  * of delayed-write dirty buffers we allow to stack up.
  562  */
  563         hidirtybuffers = nbuf / 4 + 20;
  564         dirtybufthresh = hidirtybuffers * 9 / 10;
  565         numdirtybuffers = 0;
  566 /*
  567  * To support extreme low-memory systems, make sure hidirtybuffers cannot
  568  * eat up all available buffer space.  This occurs when our minimum cannot
  569  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
  570  * BKVASIZE'd (8K) buffers.
  571  */
  572         while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
  573                 hidirtybuffers >>= 1;
  574         }
  575         lodirtybuffers = hidirtybuffers / 2;
  576 
  577 /*
  578  * Try to keep the number of free buffers in the specified range,
  579  * and give special processes (e.g. like buf_daemon) access to an 
  580  * emergency reserve.
  581  */
  582         lofreebuffers = nbuf / 18 + 5;
  583         hifreebuffers = 2 * lofreebuffers;
  584         numfreebuffers = nbuf;
  585 
  586 /*
  587  * Maximum number of async ops initiated per buf_daemon loop.  This is
  588  * somewhat of a hack at the moment, we really need to limit ourselves
  589  * based on the number of bytes of I/O in-transit that were initiated
  590  * from buf_daemon.
  591  */
  592 
  593         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
  594             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
  595 }
  596 
  597 /*
  598  * bfreekva() - free the kva allocation for a buffer.
  599  *
  600  *      Must be called at splbio() or higher as this is the only locking for
  601  *      buffer_map.
  602  *
  603  *      Since this call frees up buffer space, we call bufspacewakeup().
  604  */
  605 static void
  606 bfreekva(struct buf * bp)
  607 {
  608         GIANT_REQUIRED;
  609 
  610         if (bp->b_kvasize) {
  611                 atomic_add_int(&buffreekvacnt, 1);
  612                 atomic_subtract_int(&bufspace, bp->b_kvasize);
  613                 vm_map_delete(buffer_map,
  614                     (vm_offset_t) bp->b_kvabase,
  615                     (vm_offset_t) bp->b_kvabase + bp->b_kvasize
  616                 );
  617                 bp->b_kvasize = 0;
  618                 bufspacewakeup();
  619         }
  620 }
  621 
  622 /*
  623  *      bremfree:
  624  *
  625  *      Remove the buffer from the appropriate free list.
  626  */
  627 void
  628 bremfree(struct buf * bp)
  629 {
  630         mtx_lock(&bqlock);
  631         bremfreel(bp);
  632         mtx_unlock(&bqlock);
  633 }
  634 
  635 void
  636 bremfreel(struct buf * bp)
  637 {
  638         int s = splbio();
  639         int old_qindex = bp->b_qindex;
  640 
  641         GIANT_REQUIRED;
  642 
  643         if (bp->b_qindex != QUEUE_NONE) {
  644                 KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
  645                 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
  646                 bp->b_qindex = QUEUE_NONE;
  647         } else {
  648                 if (BUF_REFCNT(bp) <= 1)
  649                         panic("bremfree: removing a buffer not on a queue");
  650         }
  651 
  652         /*
  653          * Fixup numfreebuffers count.  If the buffer is invalid or not
  654          * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
  655          * the buffer was free and we must decrement numfreebuffers.
  656          */
  657         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
  658                 switch(old_qindex) {
  659                 case QUEUE_DIRTY:
  660                 case QUEUE_CLEAN:
  661                 case QUEUE_EMPTY:
  662                 case QUEUE_EMPTYKVA:
  663                         atomic_subtract_int(&numfreebuffers, 1);
  664                         break;
  665                 default:
  666                         break;
  667                 }
  668         }
  669         splx(s);
  670 }
  671 
  672 
  673 /*
  674  * Get a buffer with the specified data.  Look in the cache first.  We
  675  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
  676  * is set, the buffer is valid and we do not have to do anything ( see
  677  * getblk() ).  This is really just a special case of breadn().
  678  */
  679 int
  680 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
  681     struct buf ** bpp)
  682 {
  683 
  684         return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
  685 }
  686 
  687 /*
  688  * Operates like bread, but also starts asynchronous I/O on
  689  * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
  690  * to initiating I/O . If B_CACHE is set, the buffer is valid 
  691  * and we do not have to do anything.
  692  */
  693 int
  694 breadn(struct vnode * vp, daddr_t blkno, int size,
  695     daddr_t * rablkno, int *rabsize,
  696     int cnt, struct ucred * cred, struct buf ** bpp)
  697 {
  698         struct buf *bp, *rabp;
  699         int i;
  700         int rv = 0, readwait = 0;
  701 
  702         *bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
  703 
  704         /* if not found in cache, do some I/O */
  705         if ((bp->b_flags & B_CACHE) == 0) {
  706                 if (curthread != PCPU_GET(idlethread))
  707                         curthread->td_proc->p_stats->p_ru.ru_inblock++;
  708                 bp->b_iocmd = BIO_READ;
  709                 bp->b_flags &= ~B_INVAL;
  710                 bp->b_ioflags &= ~BIO_ERROR;
  711                 if (bp->b_rcred == NOCRED && cred != NOCRED)
  712                         bp->b_rcred = crhold(cred);
  713                 vfs_busy_pages(bp, 0);
  714                 bp->b_iooffset = dbtob(bp->b_blkno);
  715                 if (vp->v_type == VCHR)
  716                         VOP_SPECSTRATEGY(vp, bp);
  717                 else
  718                         VOP_STRATEGY(vp, bp);
  719                 ++readwait;
  720         }
  721 
  722         for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
  723                 if (inmem(vp, *rablkno))
  724                         continue;
  725                 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
  726 
  727                 if ((rabp->b_flags & B_CACHE) == 0) {
  728                         if (curthread != PCPU_GET(idlethread))
  729                                 curthread->td_proc->p_stats->p_ru.ru_inblock++;
  730                         rabp->b_flags |= B_ASYNC;
  731                         rabp->b_flags &= ~B_INVAL;
  732                         rabp->b_ioflags &= ~BIO_ERROR;
  733                         rabp->b_iocmd = BIO_READ;
  734                         if (rabp->b_rcred == NOCRED && cred != NOCRED)
  735                                 rabp->b_rcred = crhold(cred);
  736                         vfs_busy_pages(rabp, 0);
  737                         BUF_KERNPROC(rabp);
  738                         rabp->b_iooffset = dbtob(rabp->b_blkno);
  739                         if (vp->v_type == VCHR)
  740                                 VOP_SPECSTRATEGY(vp, rabp);
  741                         else
  742                                 VOP_STRATEGY(vp, rabp);
  743                 } else {
  744                         brelse(rabp);
  745                 }
  746         }
  747 
  748         if (readwait) {
  749                 rv = bufwait(bp);
  750         }
  751         return (rv);
  752 }
  753 
  754 /*
  755  * Write, release buffer on completion.  (Done by iodone
  756  * if async).  Do not bother writing anything if the buffer
  757  * is invalid.
  758  *
  759  * Note that we set B_CACHE here, indicating that buffer is
  760  * fully valid and thus cacheable.  This is true even of NFS
  761  * now so we set it generally.  This could be set either here 
  762  * or in biodone() since the I/O is synchronous.  We put it
  763  * here.
  764  */
  765 int
  766 bwrite(struct buf * bp)
  767 {
  768 
  769         KASSERT(bp->b_op != NULL && bp->b_op->bop_write != NULL,
  770             ("Martian buffer %p in bwrite: nobody to write it.", bp));
  771         return (bp->b_op->bop_write(bp));
  772 }
  773 
  774 static int
  775 ibwrite(struct buf * bp)
  776 {
  777         int oldflags, s;
  778         struct buf *newbp;
  779 
  780         if (bp->b_flags & B_INVAL) {
  781                 brelse(bp);
  782                 return (0);
  783         }
  784 
  785         oldflags = bp->b_flags;
  786 
  787         if (BUF_REFCNT(bp) == 0)
  788                 panic("ibwrite: buffer is not busy???");
  789         s = splbio();
  790         /*
  791          * If a background write is already in progress, delay
  792          * writing this block if it is asynchronous. Otherwise
  793          * wait for the background write to complete.
  794          */
  795         VI_LOCK(bp->b_vp);
  796         if (bp->b_vflags & BV_BKGRDINPROG) {
  797                 if (bp->b_flags & B_ASYNC) {
  798                         VI_UNLOCK(bp->b_vp);
  799                         splx(s);
  800                         bdwrite(bp);
  801                         return (0);
  802                 }
  803                 bp->b_vflags |= BV_BKGRDWAIT;
  804                 msleep(&bp->b_xflags, VI_MTX(bp->b_vp), PRIBIO, "bwrbg", 0);
  805                 if (bp->b_vflags & BV_BKGRDINPROG)
  806                         panic("ibwrite: still writing");
  807         }
  808         VI_UNLOCK(bp->b_vp);
  809 
  810         /* Mark the buffer clean */
  811         bundirty(bp);
  812 
  813         /*
  814          * If this buffer is marked for background writing and we
  815          * do not have to wait for it, make a copy and write the
  816          * copy so as to leave this buffer ready for further use.
  817          *
  818          * This optimization eats a lot of memory.  If we have a page
  819          * or buffer shortfall we can't do it.
  820          */
  821         if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 
  822             (bp->b_flags & B_ASYNC) &&
  823             !vm_page_count_severe() &&
  824             !buf_dirty_count_severe()) {
  825                 if (bp->b_iodone != NULL) {
  826                         printf("bp->b_iodone = %p\n", bp->b_iodone);
  827                         panic("ibwrite: need chained iodone");
  828                 }
  829 
  830                 /* get a new block */
  831                 newbp = geteblk(bp->b_bufsize);
  832 
  833                 /*
  834                  * set it to be identical to the old block.  We have to
  835                  * set b_lblkno and BKGRDMARKER before calling bgetvp()
  836                  * to avoid confusing the splay tree and gbincore().
  837                  */
  838                 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
  839                 newbp->b_lblkno = bp->b_lblkno;
  840                 newbp->b_xflags |= BX_BKGRDMARKER;
  841                 VI_LOCK(bp->b_vp);
  842                 bp->b_vflags |= BV_BKGRDINPROG;
  843                 bgetvp(bp->b_vp, newbp);
  844                 VI_UNLOCK(bp->b_vp);
  845                 newbp->b_blkno = bp->b_blkno;
  846                 newbp->b_offset = bp->b_offset;
  847                 newbp->b_iodone = vfs_backgroundwritedone;
  848                 newbp->b_flags |= B_ASYNC;
  849                 newbp->b_flags &= ~B_INVAL;
  850 
  851                 /* move over the dependencies */
  852                 if (LIST_FIRST(&bp->b_dep) != NULL)
  853                         buf_movedeps(bp, newbp);
  854 
  855                 /*
  856                  * Initiate write on the copy, release the original to
  857                  * the B_LOCKED queue so that it cannot go away until
  858                  * the background write completes. If not locked it could go
  859                  * away and then be reconstituted while it was being written.
  860                  * If the reconstituted buffer were written, we could end up
  861                  * with two background copies being written at the same time.
  862                  */
  863                 bqrelse(bp);
  864                 bp = newbp;
  865         }
  866 
  867         bp->b_flags &= ~B_DONE;
  868         bp->b_ioflags &= ~BIO_ERROR;
  869         bp->b_flags |= B_WRITEINPROG | B_CACHE;
  870         bp->b_iocmd = BIO_WRITE;
  871 
  872         VI_LOCK(bp->b_vp);
  873         bp->b_vp->v_numoutput++;
  874         VI_UNLOCK(bp->b_vp);
  875         vfs_busy_pages(bp, 1);
  876 
  877         /*
  878          * Normal bwrites pipeline writes
  879          */
  880         bp->b_runningbufspace = bp->b_bufsize;
  881         atomic_add_int(&runningbufspace, bp->b_runningbufspace);
  882 
  883         if (curthread != PCPU_GET(idlethread))
  884                 curthread->td_proc->p_stats->p_ru.ru_oublock++;
  885         splx(s);
  886         if (oldflags & B_ASYNC)
  887                 BUF_KERNPROC(bp);
  888         bp->b_iooffset = dbtob(bp->b_blkno);
  889         if (bp->b_vp->v_type == VCHR) {
  890                 if (!buf_prewrite(bp->b_vp, bp))
  891                         VOP_SPECSTRATEGY(bp->b_vp, bp);
  892         } else {
  893                 VOP_STRATEGY(bp->b_vp, bp);
  894         }
  895 
  896         if ((oldflags & B_ASYNC) == 0) {
  897                 int rtval = bufwait(bp);
  898                 brelse(bp);
  899                 return (rtval);
  900         } else {
  901                 /*
  902                  * don't allow the async write to saturate the I/O
  903                  * system.  We will not deadlock here because
  904                  * we are blocking waiting for I/O that is already in-progress
  905                  * to complete. We do not block here if it is the update
  906                  * or syncer daemon trying to clean up as that can lead
  907                  * to deadlock.
  908                  */
  909                 if (curthread->td_proc != bufdaemonproc &&
  910                     curthread->td_proc != updateproc)
  911                         waitrunningbufspace();
  912         }
  913 
  914         return (0);
  915 }
  916 
  917 /*
  918  * Complete a background write started from bwrite.
  919  */
  920 static void
  921 vfs_backgroundwritedone(bp)
  922         struct buf *bp;
  923 {
  924         struct buf *origbp;
  925 
  926         /*
  927          * Find the original buffer that we are writing.
  928          */
  929         VI_LOCK(bp->b_vp);
  930         if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
  931                 panic("backgroundwritedone: lost buffer");
  932 
  933         /*
  934          * Clear the BV_BKGRDINPROG flag in the original buffer
  935          * and awaken it if it is waiting for the write to complete.
  936          * If BV_BKGRDINPROG is not set in the original buffer it must
  937          * have been released and re-instantiated - which is not legal.
  938          */
  939         KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
  940             ("backgroundwritedone: lost buffer2"));
  941         origbp->b_vflags &= ~BV_BKGRDINPROG;
  942         if (origbp->b_vflags & BV_BKGRDWAIT) {
  943                 origbp->b_vflags &= ~BV_BKGRDWAIT;
  944                 wakeup(&origbp->b_xflags);
  945         }
  946         VI_UNLOCK(bp->b_vp);
  947         /*
  948          * Process dependencies then return any unfinished ones.
  949          */
  950         if (LIST_FIRST(&bp->b_dep) != NULL)
  951                 buf_complete(bp);
  952         if (LIST_FIRST(&bp->b_dep) != NULL)
  953                 buf_movedeps(bp, origbp);
  954 
  955         /*
  956          * This buffer is marked B_NOCACHE, so when it is released
  957          * by biodone, it will be tossed. We mark it with BIO_READ
  958          * to avoid biodone doing a second vwakeup.
  959          */
  960         bp->b_flags |= B_NOCACHE;
  961         bp->b_iocmd = BIO_READ;
  962         bp->b_flags &= ~(B_CACHE | B_DONE);
  963         bp->b_iodone = 0;
  964         bufdone(bp);
  965 }
  966 
  967 /*
  968  * Delayed write. (Buffer is marked dirty).  Do not bother writing
  969  * anything if the buffer is marked invalid.
  970  *
  971  * Note that since the buffer must be completely valid, we can safely
  972  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
  973  * biodone() in order to prevent getblk from writing the buffer
  974  * out synchronously.
  975  */
  976 void
  977 bdwrite(struct buf * bp)
  978 {
  979         struct thread *td = curthread;
  980         struct vnode *vp;
  981         struct buf *nbp;
  982 
  983         GIANT_REQUIRED;
  984 
  985         if (BUF_REFCNT(bp) == 0)
  986                 panic("bdwrite: buffer is not busy");
  987 
  988         if (bp->b_flags & B_INVAL) {
  989                 brelse(bp);
  990                 return;
  991         }
  992 
  993         /*
  994          * If we have too many dirty buffers, don't create any more.
  995          * If we are wildly over our limit, then force a complete
  996          * cleanup. Otherwise, just keep the situation from getting
  997          * out of control. Note that we have to avoid a recursive
  998          * disaster and not try to clean up after our own cleanup!
  999          */
 1000         vp = bp->b_vp;
 1001         VI_LOCK(vp);
 1002         if (td->td_pflags & TDP_COWINPROGRESS) {
 1003                 recursiveflushes++;
 1004         } else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) {
 1005                 VI_UNLOCK(vp);
 1006                 (void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
 1007                 VI_LOCK(vp);
 1008                 altbufferflushes++;
 1009         } else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) {
 1010                 /*
 1011                  * Try to find a buffer to flush.
 1012                  */
 1013                 TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) {
 1014                         if ((nbp->b_vflags & BV_BKGRDINPROG) ||
 1015                             buf_countdeps(nbp, 0) ||
 1016                             BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
 1017                                 continue;
 1018                         if (bp == nbp)
 1019                                 panic("bdwrite: found ourselves");
 1020                         VI_UNLOCK(vp);
 1021                         if (nbp->b_flags & B_CLUSTEROK) {
 1022                                 vfs_bio_awrite(nbp);
 1023                         } else {
 1024                                 bremfree(nbp);
 1025                                 bawrite(nbp);
 1026                         }
 1027                         VI_LOCK(vp);
 1028                         dirtybufferflushes++;
 1029                         break;
 1030                 }
 1031         }
 1032         VI_UNLOCK(vp);
 1033 
 1034         bdirty(bp);
 1035         /*
 1036          * Set B_CACHE, indicating that the buffer is fully valid.  This is
 1037          * true even of NFS now.
 1038          */
 1039         bp->b_flags |= B_CACHE;
 1040 
 1041         /*
 1042          * This bmap keeps the system from needing to do the bmap later,
 1043          * perhaps when the system is attempting to do a sync.  Since it
 1044          * is likely that the indirect block -- or whatever other datastructure
 1045          * that the filesystem needs is still in memory now, it is a good
 1046          * thing to do this.  Note also, that if the pageout daemon is
 1047          * requesting a sync -- there might not be enough memory to do
 1048          * the bmap then...  So, this is important to do.
 1049          */
 1050         if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
 1051                 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
 1052         }
 1053 
 1054         /*
 1055          * Set the *dirty* buffer range based upon the VM system dirty pages.
 1056          */
 1057         vfs_setdirty(bp);
 1058 
 1059         /*
 1060          * We need to do this here to satisfy the vnode_pager and the
 1061          * pageout daemon, so that it thinks that the pages have been
 1062          * "cleaned".  Note that since the pages are in a delayed write
 1063          * buffer -- the VFS layer "will" see that the pages get written
 1064          * out on the next sync, or perhaps the cluster will be completed.
 1065          */
 1066         vfs_clean_pages(bp);
 1067         bqrelse(bp);
 1068 
 1069         /*
 1070          * Wakeup the buffer flushing daemon if we have a lot of dirty
 1071          * buffers (midpoint between our recovery point and our stall
 1072          * point).
 1073          */
 1074         bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1075 
 1076         /*
 1077          * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 1078          * due to the softdep code.
 1079          */
 1080 }
 1081 
 1082 /*
 1083  *      bdirty:
 1084  *
 1085  *      Turn buffer into delayed write request.  We must clear BIO_READ and
 1086  *      B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
 1087  *      itself to properly update it in the dirty/clean lists.  We mark it
 1088  *      B_DONE to ensure that any asynchronization of the buffer properly
 1089  *      clears B_DONE ( else a panic will occur later ).  
 1090  *
 1091  *      bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
 1092  *      might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
 1093  *      should only be called if the buffer is known-good.
 1094  *
 1095  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1096  *      count.
 1097  *
 1098  *      Must be called at splbio().
 1099  *      The buffer must be on QUEUE_NONE.
 1100  */
 1101 void
 1102 bdirty(bp)
 1103         struct buf *bp;
 1104 {
 1105         KASSERT(bp->b_qindex == QUEUE_NONE,
 1106             ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1107         bp->b_flags &= ~(B_RELBUF);
 1108         bp->b_iocmd = BIO_WRITE;
 1109 
 1110         if ((bp->b_flags & B_DELWRI) == 0) {
 1111                 bp->b_flags |= B_DONE | B_DELWRI;
 1112                 reassignbuf(bp);
 1113                 atomic_add_int(&numdirtybuffers, 1);
 1114                 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1115         }
 1116 }
 1117 
 1118 /*
 1119  *      bundirty:
 1120  *
 1121  *      Clear B_DELWRI for buffer.
 1122  *
 1123  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1124  *      count.
 1125  *      
 1126  *      Must be called at splbio().
 1127  *      The buffer must be on QUEUE_NONE.
 1128  */
 1129 
 1130 void
 1131 bundirty(bp)
 1132         struct buf *bp;
 1133 {
 1134         KASSERT(bp->b_qindex == QUEUE_NONE,
 1135             ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1136 
 1137         if (bp->b_flags & B_DELWRI) {
 1138                 bp->b_flags &= ~B_DELWRI;
 1139                 reassignbuf(bp);
 1140                 atomic_subtract_int(&numdirtybuffers, 1);
 1141                 numdirtywakeup(lodirtybuffers);
 1142         }
 1143         /*
 1144          * Since it is now being written, we can clear its deferred write flag.
 1145          */
 1146         bp->b_flags &= ~B_DEFERRED;
 1147 }
 1148 
 1149 /*
 1150  *      bawrite:
 1151  *
 1152  *      Asynchronous write.  Start output on a buffer, but do not wait for
 1153  *      it to complete.  The buffer is released when the output completes.
 1154  *
 1155  *      bwrite() ( or the VOP routine anyway ) is responsible for handling 
 1156  *      B_INVAL buffers.  Not us.
 1157  */
 1158 void
 1159 bawrite(struct buf * bp)
 1160 {
 1161         bp->b_flags |= B_ASYNC;
 1162         (void) bwrite(bp);
 1163 }
 1164 
 1165 /*
 1166  *      bwillwrite:
 1167  *
 1168  *      Called prior to the locking of any vnodes when we are expecting to
 1169  *      write.  We do not want to starve the buffer cache with too many
 1170  *      dirty buffers so we block here.  By blocking prior to the locking
 1171  *      of any vnodes we attempt to avoid the situation where a locked vnode
 1172  *      prevents the various system daemons from flushing related buffers.
 1173  */
 1174 
 1175 void
 1176 bwillwrite(void)
 1177 {
 1178         if (numdirtybuffers >= hidirtybuffers) {
 1179                 int s;
 1180 
 1181                 mtx_lock(&Giant);
 1182                 s = splbio();
 1183                 mtx_lock(&nblock);
 1184                 while (numdirtybuffers >= hidirtybuffers) {
 1185                         bd_wakeup(1);
 1186                         needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
 1187                         msleep(&needsbuffer, &nblock,
 1188                             (PRIBIO + 4), "flswai", 0);
 1189                 }
 1190                 splx(s);
 1191                 mtx_unlock(&nblock);
 1192                 mtx_unlock(&Giant);
 1193         }
 1194 }
 1195 
 1196 /*
 1197  * Return true if we have too many dirty buffers.
 1198  */
 1199 int
 1200 buf_dirty_count_severe(void)
 1201 {
 1202         return(numdirtybuffers >= hidirtybuffers);
 1203 }
 1204 
 1205 /*
 1206  *      brelse:
 1207  *
 1208  *      Release a busy buffer and, if requested, free its resources.  The
 1209  *      buffer will be stashed in the appropriate bufqueue[] allowing it
 1210  *      to be accessed later as a cache entity or reused for other purposes.
 1211  */
 1212 void
 1213 brelse(struct buf * bp)
 1214 {
 1215         int s;
 1216 
 1217         GIANT_REQUIRED;
 1218 
 1219         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1220             ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1221 
 1222         s = splbio();
 1223 
 1224         if (bp->b_iocmd == BIO_WRITE &&
 1225             (bp->b_ioflags & BIO_ERROR) &&
 1226             !(bp->b_flags & B_INVAL)) {
 1227                 /*
 1228                  * Failed write, redirty.  Must clear BIO_ERROR to prevent
 1229                  * pages from being scrapped.  If B_INVAL is set then
 1230                  * this case is not run and the next case is run to 
 1231                  * destroy the buffer.  B_INVAL can occur if the buffer
 1232                  * is outside the range supported by the underlying device.
 1233                  */
 1234                 bp->b_ioflags &= ~BIO_ERROR;
 1235                 bdirty(bp);
 1236         } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 1237             (bp->b_ioflags & BIO_ERROR) ||
 1238             bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
 1239                 /*
 1240                  * Either a failed I/O or we were asked to free or not
 1241                  * cache the buffer.
 1242                  */
 1243                 bp->b_flags |= B_INVAL;
 1244                 if (LIST_FIRST(&bp->b_dep) != NULL)
 1245                         buf_deallocate(bp);
 1246                 if (bp->b_flags & B_DELWRI) {
 1247                         atomic_subtract_int(&numdirtybuffers, 1);
 1248                         numdirtywakeup(lodirtybuffers);
 1249                 }
 1250                 bp->b_flags &= ~(B_DELWRI | B_CACHE);
 1251                 if ((bp->b_flags & B_VMIO) == 0) {
 1252                         if (bp->b_bufsize)
 1253                                 allocbuf(bp, 0);
 1254                         if (bp->b_vp)
 1255                                 brelvp(bp);
 1256                 }
 1257         }
 1258 
 1259         /*
 1260          * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release() 
 1261          * is called with B_DELWRI set, the underlying pages may wind up
 1262          * getting freed causing a previous write (bdwrite()) to get 'lost'
 1263          * because pages associated with a B_DELWRI bp are marked clean.
 1264          * 
 1265          * We still allow the B_INVAL case to call vfs_vmio_release(), even
 1266          * if B_DELWRI is set.
 1267          *
 1268          * If B_DELWRI is not set we may have to set B_RELBUF if we are low
 1269          * on pages to return pages to the VM page queues.
 1270          */
 1271         if (bp->b_flags & B_DELWRI)
 1272                 bp->b_flags &= ~B_RELBUF;
 1273         else if (vm_page_count_severe()) {
 1274                 /*
 1275                  * XXX This lock may not be necessary since BKGRDINPROG
 1276                  * cannot be set while we hold the buf lock, it can only be
 1277                  * cleared if it is already pending.
 1278                  */
 1279                 if (bp->b_vp) {
 1280                         VI_LOCK(bp->b_vp);
 1281                         if (!(bp->b_vflags & BV_BKGRDINPROG))
 1282                                 bp->b_flags |= B_RELBUF;
 1283                         VI_UNLOCK(bp->b_vp);
 1284                 } else
 1285                         bp->b_flags |= B_RELBUF;
 1286         }
 1287 
 1288         /*
 1289          * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 1290          * constituted, not even NFS buffers now.  Two flags effect this.  If
 1291          * B_INVAL, the struct buf is invalidated but the VM object is kept
 1292          * around ( i.e. so it is trivial to reconstitute the buffer later ).
 1293          *
 1294          * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 1295          * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 1296          * buffer is also B_INVAL because it hits the re-dirtying code above.
 1297          *
 1298          * Normally we can do this whether a buffer is B_DELWRI or not.  If
 1299          * the buffer is an NFS buffer, it is tracking piecemeal writes or
 1300          * the commit state and we cannot afford to lose the buffer. If the
 1301          * buffer has a background write in progress, we need to keep it
 1302          * around to prevent it from being reconstituted and starting a second
 1303          * background write.
 1304          */
 1305         if ((bp->b_flags & B_VMIO)
 1306             && !(bp->b_vp->v_mount != NULL &&
 1307                  (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 1308                  !vn_isdisk(bp->b_vp, NULL) &&
 1309                  (bp->b_flags & B_DELWRI))
 1310             ) {
 1311 
 1312                 int i, j, resid;
 1313                 vm_page_t m;
 1314                 off_t foff;
 1315                 vm_pindex_t poff;
 1316                 vm_object_t obj;
 1317 
 1318                 obj = bp->b_object;
 1319 
 1320                 /*
 1321                  * Get the base offset and length of the buffer.  Note that 
 1322                  * in the VMIO case if the buffer block size is not
 1323                  * page-aligned then b_data pointer may not be page-aligned.
 1324                  * But our b_pages[] array *IS* page aligned.
 1325                  *
 1326                  * block sizes less then DEV_BSIZE (usually 512) are not 
 1327                  * supported due to the page granularity bits (m->valid,
 1328                  * m->dirty, etc...). 
 1329                  *
 1330                  * See man buf(9) for more information
 1331                  */
 1332                 resid = bp->b_bufsize;
 1333                 foff = bp->b_offset;
 1334                 VM_OBJECT_LOCK(obj);
 1335                 for (i = 0; i < bp->b_npages; i++) {
 1336                         int had_bogus = 0;
 1337 
 1338                         m = bp->b_pages[i];
 1339 
 1340                         /*
 1341                          * If we hit a bogus page, fixup *all* the bogus pages
 1342                          * now.
 1343                          */
 1344                         if (m == bogus_page) {
 1345                                 poff = OFF_TO_IDX(bp->b_offset);
 1346                                 had_bogus = 1;
 1347 
 1348                                 for (j = i; j < bp->b_npages; j++) {
 1349                                         vm_page_t mtmp;
 1350                                         mtmp = bp->b_pages[j];
 1351                                         if (mtmp == bogus_page) {
 1352                                                 mtmp = vm_page_lookup(obj, poff + j);
 1353                                                 if (!mtmp) {
 1354                                                         panic("brelse: page missing\n");
 1355                                                 }
 1356                                                 bp->b_pages[j] = mtmp;
 1357                                         }
 1358                                 }
 1359 
 1360                                 if ((bp->b_flags & B_INVAL) == 0) {
 1361                                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
 1362                                 }
 1363                                 m = bp->b_pages[i];
 1364                         }
 1365                         if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
 1366                                 int poffset = foff & PAGE_MASK;
 1367                                 int presid = resid > (PAGE_SIZE - poffset) ?
 1368                                         (PAGE_SIZE - poffset) : resid;
 1369 
 1370                                 KASSERT(presid >= 0, ("brelse: extra page"));
 1371                                 vm_page_lock_queues();
 1372                                 vm_page_set_invalid(m, poffset, presid);
 1373                                 vm_page_unlock_queues();
 1374                                 if (had_bogus)
 1375                                         printf("avoided corruption bug in bogus_page/brelse code\n");
 1376                         }
 1377                         resid -= PAGE_SIZE - (foff & PAGE_MASK);
 1378                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 1379                 }
 1380                 VM_OBJECT_UNLOCK(obj);
 1381                 if (bp->b_flags & (B_INVAL | B_RELBUF))
 1382                         vfs_vmio_release(bp);
 1383 
 1384         } else if (bp->b_flags & B_VMIO) {
 1385 
 1386                 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
 1387                         vfs_vmio_release(bp);
 1388                 }
 1389 
 1390         }
 1391                         
 1392         if (bp->b_qindex != QUEUE_NONE)
 1393                 panic("brelse: free buffer onto another queue???");
 1394         if (BUF_REFCNT(bp) > 1) {
 1395                 /* do not release to free list */
 1396                 BUF_UNLOCK(bp);
 1397                 splx(s);
 1398                 return;
 1399         }
 1400 
 1401         /* enqueue */
 1402         mtx_lock(&bqlock);
 1403 
 1404         /* buffers with no memory */
 1405         if (bp->b_bufsize == 0) {
 1406                 bp->b_flags |= B_INVAL;
 1407                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1408                 if (bp->b_vflags & BV_BKGRDINPROG)
 1409                         panic("losing buffer 1");
 1410                 if (bp->b_kvasize) {
 1411                         bp->b_qindex = QUEUE_EMPTYKVA;
 1412                 } else {
 1413                         bp->b_qindex = QUEUE_EMPTY;
 1414                 }
 1415                 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1416                 bp->b_dev = NULL;
 1417         /* buffers with junk contents */
 1418         } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 1419             (bp->b_ioflags & BIO_ERROR)) {
 1420                 bp->b_flags |= B_INVAL;
 1421                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1422                 if (bp->b_vflags & BV_BKGRDINPROG)
 1423                         panic("losing buffer 2");
 1424                 bp->b_qindex = QUEUE_CLEAN;
 1425                 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
 1426                 bp->b_dev = NULL;
 1427         /* remaining buffers */
 1428         } else {
 1429                 if (bp->b_flags & B_DELWRI)
 1430                         bp->b_qindex = QUEUE_DIRTY;
 1431                 else
 1432                         bp->b_qindex = QUEUE_CLEAN;
 1433                 if (bp->b_flags & B_AGE)
 1434                         TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1435                 else
 1436                         TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1437         }
 1438         mtx_unlock(&bqlock);
 1439 
 1440         /*
 1441          * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
 1442          * placed the buffer on the correct queue.  We must also disassociate
 1443          * the device and vnode for a B_INVAL buffer so gbincore() doesn't
 1444          * find it.
 1445          */
 1446         if (bp->b_flags & B_INVAL) {
 1447                 if (bp->b_flags & B_DELWRI)
 1448                         bundirty(bp);
 1449                 if (bp->b_vp)
 1450                         brelvp(bp);
 1451         }
 1452 
 1453         /*
 1454          * Fixup numfreebuffers count.  The bp is on an appropriate queue
 1455          * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
 1456          * We've already handled the B_INVAL case ( B_DELWRI will be clear
 1457          * if B_INVAL is set ).
 1458          */
 1459 
 1460         if (!(bp->b_flags & B_DELWRI))
 1461                 bufcountwakeup();
 1462 
 1463         /*
 1464          * Something we can maybe free or reuse
 1465          */
 1466         if (bp->b_bufsize || bp->b_kvasize)
 1467                 bufspacewakeup();
 1468 
 1469         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
 1470         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1471                 panic("brelse: not dirty");
 1472         /* unlock */
 1473         BUF_UNLOCK(bp);
 1474         splx(s);
 1475 }
 1476 
 1477 /*
 1478  * Release a buffer back to the appropriate queue but do not try to free
 1479  * it.  The buffer is expected to be used again soon.
 1480  *
 1481  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
 1482  * biodone() to requeue an async I/O on completion.  It is also used when
 1483  * known good buffers need to be requeued but we think we may need the data
 1484  * again soon.
 1485  *
 1486  * XXX we should be able to leave the B_RELBUF hint set on completion.
 1487  */
 1488 void
 1489 bqrelse(struct buf * bp)
 1490 {
 1491         int s;
 1492 
 1493         s = splbio();
 1494 
 1495         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1496 
 1497         if (bp->b_qindex != QUEUE_NONE)
 1498                 panic("bqrelse: free buffer onto another queue???");
 1499         if (BUF_REFCNT(bp) > 1) {
 1500                 /* do not release to free list */
 1501                 BUF_UNLOCK(bp);
 1502                 splx(s);
 1503                 return;
 1504         }
 1505         mtx_lock(&bqlock);
 1506         /* buffers with stale but valid contents */
 1507         if (bp->b_flags & B_DELWRI) {
 1508                 bp->b_qindex = QUEUE_DIRTY;
 1509                 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
 1510         } else {
 1511                 /*
 1512                  * XXX This lock may not be necessary since BKGRDINPROG
 1513                  * cannot be set while we hold the buf lock, it can only be
 1514                  * cleared if it is already pending.
 1515                  */
 1516                 VI_LOCK(bp->b_vp);
 1517                 if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
 1518                         VI_UNLOCK(bp->b_vp);
 1519                         bp->b_qindex = QUEUE_CLEAN;
 1520                         TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
 1521                             b_freelist);
 1522                 } else {
 1523                         /*
 1524                          * We are too low on memory, we have to try to free
 1525                          * the buffer (most importantly: the wired pages
 1526                          * making up its backing store) *now*.
 1527                          */
 1528                         VI_UNLOCK(bp->b_vp);
 1529                         mtx_unlock(&bqlock);
 1530                         splx(s);
 1531                         brelse(bp);
 1532                         return;
 1533                 }
 1534         }
 1535         mtx_unlock(&bqlock);
 1536 
 1537         if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
 1538                 bufcountwakeup();
 1539 
 1540         /*
 1541          * Something we can maybe free or reuse.
 1542          */
 1543         if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
 1544                 bufspacewakeup();
 1545 
 1546         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1547         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1548                 panic("bqrelse: not dirty");
 1549         /* unlock */
 1550         BUF_UNLOCK(bp);
 1551         splx(s);
 1552 }
 1553 
 1554 /* Give pages used by the bp back to the VM system (where possible) */
 1555 static void
 1556 vfs_vmio_release(bp)
 1557         struct buf *bp;
 1558 {
 1559         int i;
 1560         vm_page_t m;
 1561 
 1562         GIANT_REQUIRED;
 1563         VM_OBJECT_LOCK(bp->b_object);
 1564         vm_page_lock_queues();
 1565         for (i = 0; i < bp->b_npages; i++) {
 1566                 m = bp->b_pages[i];
 1567                 bp->b_pages[i] = NULL;
 1568                 /*
 1569                  * In order to keep page LRU ordering consistent, put
 1570                  * everything on the inactive queue.
 1571                  */
 1572                 vm_page_unwire(m, 0);
 1573                 /*
 1574                  * We don't mess with busy pages, it is
 1575                  * the responsibility of the process that
 1576                  * busied the pages to deal with them.
 1577                  */
 1578                 if ((m->flags & PG_BUSY) || (m->busy != 0))
 1579                         continue;
 1580                         
 1581                 if (m->wire_count == 0) {
 1582                         /*
 1583                          * Might as well free the page if we can and it has
 1584                          * no valid data.  We also free the page if the
 1585                          * buffer was used for direct I/O
 1586                          */
 1587                         if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
 1588                             m->hold_count == 0) {
 1589                                 vm_page_busy(m);
 1590                                 pmap_remove_all(m);
 1591                                 vm_page_free(m);
 1592                         } else if (bp->b_flags & B_DIRECT) {
 1593                                 vm_page_try_to_free(m);
 1594                         } else if (vm_page_count_severe()) {
 1595                                 vm_page_try_to_cache(m);
 1596                         }
 1597                 }
 1598         }
 1599         vm_page_unlock_queues();
 1600         VM_OBJECT_UNLOCK(bp->b_object);
 1601         pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
 1602         
 1603         if (bp->b_bufsize) {
 1604                 bufspacewakeup();
 1605                 bp->b_bufsize = 0;
 1606         }
 1607         bp->b_npages = 0;
 1608         bp->b_flags &= ~B_VMIO;
 1609         if (bp->b_vp)
 1610                 brelvp(bp);
 1611 }
 1612 
 1613 /*
 1614  * Check to see if a block at a particular lbn is available for a clustered
 1615  * write.
 1616  */
 1617 static int
 1618 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 1619 {
 1620         struct buf *bpa;
 1621         int match;
 1622 
 1623         match = 0;
 1624 
 1625         /* If the buf isn't in core skip it */
 1626         if ((bpa = gbincore(vp, lblkno)) == NULL)
 1627                 return (0);
 1628 
 1629         /* If the buf is busy we don't want to wait for it */
 1630         if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1631                 return (0);
 1632 
 1633         /* Only cluster with valid clusterable delayed write buffers */
 1634         if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 1635             (B_DELWRI | B_CLUSTEROK))
 1636                 goto done;
 1637 
 1638         if (bpa->b_bufsize != size)
 1639                 goto done;
 1640 
 1641         /*
 1642          * Check to see if it is in the expected place on disk and that the
 1643          * block has been mapped.
 1644          */
 1645         if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 1646                 match = 1;
 1647 done:
 1648         BUF_UNLOCK(bpa);
 1649         return (match);
 1650 }
 1651 
 1652 /*
 1653  *      vfs_bio_awrite:
 1654  *
 1655  *      Implement clustered async writes for clearing out B_DELWRI buffers.
 1656  *      This is much better then the old way of writing only one buffer at
 1657  *      a time.  Note that we may not be presented with the buffers in the 
 1658  *      correct order, so we search for the cluster in both directions.
 1659  */
 1660 int
 1661 vfs_bio_awrite(struct buf * bp)
 1662 {
 1663         int i;
 1664         int j;
 1665         daddr_t lblkno = bp->b_lblkno;
 1666         struct vnode *vp = bp->b_vp;
 1667         int s;
 1668         int ncl;
 1669         int nwritten;
 1670         int size;
 1671         int maxcl;
 1672 
 1673         s = splbio();
 1674         /*
 1675          * right now we support clustered writing only to regular files.  If
 1676          * we find a clusterable block we could be in the middle of a cluster
 1677          * rather then at the beginning.
 1678          */
 1679         if ((vp->v_type == VREG) && 
 1680             (vp->v_mount != 0) && /* Only on nodes that have the size info */
 1681             (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 1682 
 1683                 size = vp->v_mount->mnt_stat.f_iosize;
 1684                 maxcl = MAXPHYS / size;
 1685 
 1686                 VI_LOCK(vp);
 1687                 for (i = 1; i < maxcl; i++)
 1688                         if (vfs_bio_clcheck(vp, size, lblkno + i,
 1689                             bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 1690                                 break;
 1691 
 1692                 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 1693                         if (vfs_bio_clcheck(vp, size, lblkno - j,
 1694                             bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 1695                                 break;
 1696 
 1697                 VI_UNLOCK(vp);
 1698                 --j;
 1699                 ncl = i + j;
 1700                 /*
 1701                  * this is a possible cluster write
 1702                  */
 1703                 if (ncl != 1) {
 1704                         BUF_UNLOCK(bp);
 1705                         nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
 1706                         splx(s);
 1707                         return nwritten;
 1708                 }
 1709         }
 1710 
 1711         bremfree(bp);
 1712         bp->b_flags |= B_ASYNC;
 1713 
 1714         splx(s);
 1715         /*
 1716          * default (old) behavior, writing out only one block
 1717          *
 1718          * XXX returns b_bufsize instead of b_bcount for nwritten?
 1719          */
 1720         nwritten = bp->b_bufsize;
 1721         (void) bwrite(bp);
 1722 
 1723         return nwritten;
 1724 }
 1725 
 1726 /*
 1727  *      getnewbuf:
 1728  *
 1729  *      Find and initialize a new buffer header, freeing up existing buffers 
 1730  *      in the bufqueues as necessary.  The new buffer is returned locked.
 1731  *
 1732  *      Important:  B_INVAL is not set.  If the caller wishes to throw the
 1733  *      buffer away, the caller must set B_INVAL prior to calling brelse().
 1734  *
 1735  *      We block if:
 1736  *              We have insufficient buffer headers
 1737  *              We have insufficient buffer space
 1738  *              buffer_map is too fragmented ( space reservation fails )
 1739  *              If we have to flush dirty buffers ( but we try to avoid this )
 1740  *
 1741  *      To avoid VFS layer recursion we do not flush dirty buffers ourselves.
 1742  *      Instead we ask the buf daemon to do it for us.  We attempt to
 1743  *      avoid piecemeal wakeups of the pageout daemon.
 1744  */
 1745 
 1746 static struct buf *
 1747 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
 1748 {
 1749         struct buf *bp;
 1750         struct buf *nbp;
 1751         int defrag = 0;
 1752         int nqindex;
 1753         static int flushingbufs;
 1754 
 1755         GIANT_REQUIRED;
 1756 
 1757         /*
 1758          * We can't afford to block since we might be holding a vnode lock,
 1759          * which may prevent system daemons from running.  We deal with
 1760          * low-memory situations by proactively returning memory and running
 1761          * async I/O rather then sync I/O.
 1762          */
 1763 
 1764         atomic_add_int(&getnewbufcalls, 1);
 1765         atomic_subtract_int(&getnewbufrestarts, 1);
 1766 restart:
 1767         atomic_add_int(&getnewbufrestarts, 1);
 1768 
 1769         /*
 1770          * Setup for scan.  If we do not have enough free buffers,
 1771          * we setup a degenerate case that immediately fails.  Note
 1772          * that if we are specially marked process, we are allowed to
 1773          * dip into our reserves.
 1774          *
 1775          * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
 1776          *
 1777          * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
 1778          * However, there are a number of cases (defragging, reusing, ...)
 1779          * where we cannot backup.
 1780          */
 1781         mtx_lock(&bqlock);
 1782         nqindex = QUEUE_EMPTYKVA;
 1783         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
 1784 
 1785         if (nbp == NULL) {
 1786                 /*
 1787                  * If no EMPTYKVA buffers and we are either
 1788                  * defragging or reusing, locate a CLEAN buffer
 1789                  * to free or reuse.  If bufspace useage is low
 1790                  * skip this step so we can allocate a new buffer.
 1791                  */
 1792                 if (defrag || bufspace >= lobufspace) {
 1793                         nqindex = QUEUE_CLEAN;
 1794                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
 1795                 }
 1796 
 1797                 /*
 1798                  * If we could not find or were not allowed to reuse a
 1799                  * CLEAN buffer, check to see if it is ok to use an EMPTY
 1800                  * buffer.  We can only use an EMPTY buffer if allocating
 1801                  * its KVA would not otherwise run us out of buffer space.
 1802                  */
 1803                 if (nbp == NULL && defrag == 0 &&
 1804                     bufspace + maxsize < hibufspace) {
 1805                         nqindex = QUEUE_EMPTY;
 1806                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
 1807                 }
 1808         }
 1809 
 1810         /*
 1811          * Run scan, possibly freeing data and/or kva mappings on the fly
 1812          * depending.
 1813          */
 1814 
 1815         while ((bp = nbp) != NULL) {
 1816                 int qindex = nqindex;
 1817 
 1818                 /*
 1819                  * Calculate next bp ( we can only use it if we do not block
 1820                  * or do other fancy things ).
 1821                  */
 1822                 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
 1823                         switch(qindex) {
 1824                         case QUEUE_EMPTY:
 1825                                 nqindex = QUEUE_EMPTYKVA;
 1826                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
 1827                                         break;
 1828                                 /* FALLTHROUGH */
 1829                         case QUEUE_EMPTYKVA:
 1830                                 nqindex = QUEUE_CLEAN;
 1831                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
 1832                                         break;
 1833                                 /* FALLTHROUGH */
 1834                         case QUEUE_CLEAN:
 1835                                 /*
 1836                                  * nbp is NULL. 
 1837                                  */
 1838                                 break;
 1839                         }
 1840                 }
 1841                 if (bp->b_vp) {
 1842                         VI_LOCK(bp->b_vp);
 1843                         if (bp->b_vflags & BV_BKGRDINPROG) {
 1844                                 VI_UNLOCK(bp->b_vp);
 1845                                 continue;
 1846                         }
 1847                         VI_UNLOCK(bp->b_vp);
 1848                 }
 1849 
 1850                 /*
 1851                  * Sanity Checks
 1852                  */
 1853                 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
 1854 
 1855                 /*
 1856                  * Note: we no longer distinguish between VMIO and non-VMIO
 1857                  * buffers.
 1858                  */
 1859 
 1860                 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
 1861 
 1862                 /*
 1863                  * If we are defragging then we need a buffer with 
 1864                  * b_kvasize != 0.  XXX this situation should no longer
 1865                  * occur, if defrag is non-zero the buffer's b_kvasize
 1866                  * should also be non-zero at this point.  XXX
 1867                  */
 1868                 if (defrag && bp->b_kvasize == 0) {
 1869                         printf("Warning: defrag empty buffer %p\n", bp);
 1870                         continue;
 1871                 }
 1872 
 1873                 /*
 1874                  * Start freeing the bp.  This is somewhat involved.  nbp
 1875                  * remains valid only for QUEUE_EMPTY[KVA] bp's.
 1876                  */
 1877 
 1878                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1879                         panic("getnewbuf: locked buf");
 1880                 bremfreel(bp);
 1881                 mtx_unlock(&bqlock);
 1882 
 1883                 if (qindex == QUEUE_CLEAN) {
 1884                         if (bp->b_flags & B_VMIO) {
 1885                                 bp->b_flags &= ~B_ASYNC;
 1886                                 vfs_vmio_release(bp);
 1887                         }
 1888                         if (bp->b_vp)
 1889                                 brelvp(bp);
 1890                 }
 1891 
 1892                 /*
 1893                  * NOTE:  nbp is now entirely invalid.  We can only restart
 1894                  * the scan from this point on.
 1895                  *
 1896                  * Get the rest of the buffer freed up.  b_kva* is still
 1897                  * valid after this operation.
 1898                  */
 1899 
 1900                 if (bp->b_rcred != NOCRED) {
 1901                         crfree(bp->b_rcred);
 1902                         bp->b_rcred = NOCRED;
 1903                 }
 1904                 if (bp->b_wcred != NOCRED) {
 1905                         crfree(bp->b_wcred);
 1906                         bp->b_wcred = NOCRED;
 1907                 }
 1908                 if (LIST_FIRST(&bp->b_dep) != NULL)
 1909                         buf_deallocate(bp);
 1910                 if (bp->b_vflags & BV_BKGRDINPROG)
 1911                         panic("losing buffer 3");
 1912 
 1913                 if (bp->b_bufsize)
 1914                         allocbuf(bp, 0);
 1915 
 1916                 bp->b_flags = 0;
 1917                 bp->b_ioflags = 0;
 1918                 bp->b_xflags = 0;
 1919                 bp->b_vflags = 0;
 1920                 bp->b_dev = NULL;
 1921                 bp->b_vp = NULL;
 1922                 bp->b_blkno = bp->b_lblkno = 0;
 1923                 bp->b_offset = NOOFFSET;
 1924                 bp->b_iodone = 0;
 1925                 bp->b_error = 0;
 1926                 bp->b_resid = 0;
 1927                 bp->b_bcount = 0;
 1928                 bp->b_npages = 0;
 1929                 bp->b_dirtyoff = bp->b_dirtyend = 0;
 1930                 bp->b_magic = B_MAGIC_BIO;
 1931                 bp->b_op = &buf_ops_bio;
 1932                 bp->b_object = NULL;
 1933 
 1934                 LIST_INIT(&bp->b_dep);
 1935 
 1936                 /*
 1937                  * If we are defragging then free the buffer.
 1938                  */
 1939                 if (defrag) {
 1940                         bp->b_flags |= B_INVAL;
 1941                         bfreekva(bp);
 1942                         brelse(bp);
 1943                         defrag = 0;
 1944                         goto restart;
 1945                 }
 1946 
 1947                 /*
 1948                  * If we are overcomitted then recover the buffer and its
 1949                  * KVM space.  This occurs in rare situations when multiple
 1950                  * processes are blocked in getnewbuf() or allocbuf().
 1951                  */
 1952                 if (bufspace >= hibufspace)
 1953                         flushingbufs = 1;
 1954                 if (flushingbufs && bp->b_kvasize != 0) {
 1955                         bp->b_flags |= B_INVAL;
 1956                         bfreekva(bp);
 1957                         brelse(bp);
 1958                         goto restart;
 1959                 }
 1960                 if (bufspace < lobufspace)
 1961                         flushingbufs = 0;
 1962                 break;
 1963         }
 1964 
 1965         /*
 1966          * If we exhausted our list, sleep as appropriate.  We may have to
 1967          * wakeup various daemons and write out some dirty buffers.
 1968          *
 1969          * Generally we are sleeping due to insufficient buffer space.
 1970          */
 1971 
 1972         if (bp == NULL) {
 1973                 int flags;
 1974                 char *waitmsg;
 1975 
 1976                 mtx_unlock(&bqlock);
 1977                 if (defrag) {
 1978                         flags = VFS_BIO_NEED_BUFSPACE;
 1979                         waitmsg = "nbufkv";
 1980                 } else if (bufspace >= hibufspace) {
 1981                         waitmsg = "nbufbs";
 1982                         flags = VFS_BIO_NEED_BUFSPACE;
 1983                 } else {
 1984                         waitmsg = "newbuf";
 1985                         flags = VFS_BIO_NEED_ANY;
 1986                 }
 1987 
 1988                 bd_speedup();   /* heeeelp */
 1989 
 1990                 mtx_lock(&nblock);
 1991                 needsbuffer |= flags;
 1992                 while (needsbuffer & flags) {
 1993                         if (msleep(&needsbuffer, &nblock,
 1994                             (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
 1995                                 mtx_unlock(&nblock);
 1996                                 return (NULL);
 1997                         }
 1998                 }
 1999                 mtx_unlock(&nblock);
 2000         } else {
 2001                 /*
 2002                  * We finally have a valid bp.  We aren't quite out of the
 2003                  * woods, we still have to reserve kva space.  In order
 2004                  * to keep fragmentation sane we only allocate kva in
 2005                  * BKVASIZE chunks.
 2006                  */
 2007                 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 2008 
 2009                 if (maxsize != bp->b_kvasize) {
 2010                         vm_offset_t addr = 0;
 2011 
 2012                         bfreekva(bp);
 2013 
 2014                         if (vm_map_findspace(buffer_map,
 2015                                 vm_map_min(buffer_map), maxsize, &addr)) {
 2016                                 /*
 2017                                  * Uh oh.  Buffer map is to fragmented.  We
 2018                                  * must defragment the map.
 2019                                  */
 2020                                 atomic_add_int(&bufdefragcnt, 1);
 2021                                 defrag = 1;
 2022                                 bp->b_flags |= B_INVAL;
 2023                                 brelse(bp);
 2024                                 goto restart;
 2025                         }
 2026                         if (addr) {
 2027                                 vm_map_insert(buffer_map, NULL, 0,
 2028                                         addr, addr + maxsize,
 2029                                         VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
 2030 
 2031                                 bp->b_kvabase = (caddr_t) addr;
 2032                                 bp->b_kvasize = maxsize;
 2033                                 atomic_add_int(&bufspace, bp->b_kvasize);
 2034                                 atomic_add_int(&bufreusecnt, 1);
 2035                         }
 2036                 }
 2037                 bp->b_saveaddr = bp->b_kvabase;
 2038                 bp->b_data = bp->b_saveaddr;
 2039         }
 2040         return(bp);
 2041 }
 2042 
 2043 /*
 2044  *      buf_daemon:
 2045  *
 2046  *      buffer flushing daemon.  Buffers are normally flushed by the
 2047  *      update daemon but if it cannot keep up this process starts to
 2048  *      take the load in an attempt to prevent getnewbuf() from blocking.
 2049  */
 2050 
 2051 static struct kproc_desc buf_kp = {
 2052         "bufdaemon",
 2053         buf_daemon,
 2054         &bufdaemonproc
 2055 };
 2056 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
 2057 
 2058 static void
 2059 buf_daemon()
 2060 {
 2061         int s;
 2062 
 2063         mtx_lock(&Giant);
 2064 
 2065         /*
 2066          * This process needs to be suspended prior to shutdown sync.
 2067          */
 2068         EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
 2069             SHUTDOWN_PRI_LAST);
 2070 
 2071         /*
 2072          * This process is allowed to take the buffer cache to the limit
 2073          */
 2074         s = splbio();
 2075         mtx_lock(&bdlock);
 2076 
 2077         for (;;) {
 2078                 bd_request = 0;
 2079                 mtx_unlock(&bdlock);
 2080 
 2081                 kthread_suspend_check(bufdaemonproc);
 2082 
 2083                 /*
 2084                  * Do the flush.  Limit the amount of in-transit I/O we
 2085                  * allow to build up, otherwise we would completely saturate
 2086                  * the I/O system.  Wakeup any waiting processes before we
 2087                  * normally would so they can run in parallel with our drain.
 2088                  */
 2089                 while (numdirtybuffers > lodirtybuffers) {
 2090                         if (flushbufqueues(0) == 0) {
 2091                                 /*
 2092                                  * Could not find any buffers without rollback
 2093                                  * dependencies, so just write the first one
 2094                                  * in the hopes of eventually making progress.
 2095                                  */
 2096                                 flushbufqueues(1);
 2097                                 break;
 2098                         }
 2099                         waitrunningbufspace();
 2100                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2101                 }
 2102 
 2103                 /*
 2104                  * Only clear bd_request if we have reached our low water
 2105                  * mark.  The buf_daemon normally waits 1 second and
 2106                  * then incrementally flushes any dirty buffers that have
 2107                  * built up, within reason.
 2108                  *
 2109                  * If we were unable to hit our low water mark and couldn't
 2110                  * find any flushable buffers, we sleep half a second.
 2111                  * Otherwise we loop immediately.
 2112                  */
 2113                 mtx_lock(&bdlock);
 2114                 if (numdirtybuffers <= lodirtybuffers) {
 2115                         /*
 2116                          * We reached our low water mark, reset the
 2117                          * request and sleep until we are needed again.
 2118                          * The sleep is just so the suspend code works.
 2119                          */
 2120                         bd_request = 0;
 2121                         msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 2122                 } else {
 2123                         /*
 2124                          * We couldn't find any flushable dirty buffers but
 2125                          * still have too many dirty buffers, we
 2126                          * have to sleep and try again.  (rare)
 2127                          */
 2128                         msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 2129                 }
 2130         }
 2131 }
 2132 
 2133 /*
 2134  *      flushbufqueues:
 2135  *
 2136  *      Try to flush a buffer in the dirty queue.  We must be careful to
 2137  *      free up B_INVAL buffers instead of write them, which NFS is 
 2138  *      particularly sensitive to.
 2139  */
 2140 int flushwithdeps = 0;
 2141 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
 2142     0, "Number of buffers flushed with dependecies that require rollbacks");
 2143 static int
 2144 flushbufqueues(int flushdeps)
 2145 {
 2146         struct thread *td = curthread;
 2147         struct vnode *vp;
 2148         struct mount *mp;
 2149         struct buf *bp;
 2150         int hasdeps;
 2151 
 2152         mtx_lock(&bqlock);
 2153         TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
 2154                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 2155                         continue;
 2156                 KASSERT((bp->b_flags & B_DELWRI),
 2157                     ("unexpected clean buffer %p", bp));
 2158                 VI_LOCK(bp->b_vp);
 2159                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
 2160                         VI_UNLOCK(bp->b_vp);
 2161                         BUF_UNLOCK(bp);
 2162                         continue;
 2163                 }
 2164                 VI_UNLOCK(bp->b_vp);
 2165                 if (bp->b_flags & B_INVAL) {
 2166                         bremfreel(bp);
 2167                         mtx_unlock(&bqlock);
 2168                         brelse(bp);
 2169                         return (1);
 2170                 }
 2171 
 2172                 if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
 2173                         if (flushdeps == 0) {
 2174                                 BUF_UNLOCK(bp);
 2175                                 continue;
 2176                         }
 2177                         hasdeps = 1;
 2178                 } else
 2179                         hasdeps = 0;
 2180                 /*
 2181                  * We must hold the lock on a vnode before writing
 2182                  * one of its buffers. Otherwise we may confuse, or
 2183                  * in the case of a snapshot vnode, deadlock the
 2184                  * system.
 2185                  *
 2186                  * The lock order here is the reverse of the normal
 2187                  * of vnode followed by buf lock.  This is ok because
 2188                  * the NOWAIT will prevent deadlock.
 2189                  */
 2190                 vp = bp->b_vp;
 2191                 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 2192                         BUF_UNLOCK(bp);
 2193                         continue;
 2194                 }
 2195                 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
 2196                         mtx_unlock(&bqlock);
 2197                         vfs_bio_awrite(bp);
 2198                         vn_finished_write(mp);
 2199                         VOP_UNLOCK(vp, 0, td);
 2200                         flushwithdeps += hasdeps;
 2201                         return (1);
 2202                 }
 2203                 vn_finished_write(mp);
 2204                 BUF_UNLOCK(bp);
 2205         }
 2206         mtx_unlock(&bqlock);
 2207         return (0);
 2208 }
 2209 
 2210 /*
 2211  * Check to see if a block is currently memory resident.
 2212  */
 2213 struct buf *
 2214 incore(struct vnode * vp, daddr_t blkno)
 2215 {
 2216         struct buf *bp;
 2217 
 2218         int s = splbio();
 2219         VI_LOCK(vp);
 2220         bp = gbincore(vp, blkno);
 2221         VI_UNLOCK(vp);
 2222         splx(s);
 2223         return (bp);
 2224 }
 2225 
 2226 /*
 2227  * Returns true if no I/O is needed to access the
 2228  * associated VM object.  This is like incore except
 2229  * it also hunts around in the VM system for the data.
 2230  */
 2231 
 2232 int
 2233 inmem(struct vnode * vp, daddr_t blkno)
 2234 {
 2235         vm_object_t obj;
 2236         vm_offset_t toff, tinc, size;
 2237         vm_page_t m;
 2238         vm_ooffset_t off;
 2239 
 2240         GIANT_REQUIRED;
 2241         ASSERT_VOP_LOCKED(vp, "inmem");
 2242 
 2243         if (incore(vp, blkno))
 2244                 return 1;
 2245         if (vp->v_mount == NULL)
 2246                 return 0;
 2247         if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
 2248                 return 0;
 2249 
 2250         size = PAGE_SIZE;
 2251         if (size > vp->v_mount->mnt_stat.f_iosize)
 2252                 size = vp->v_mount->mnt_stat.f_iosize;
 2253         off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 2254 
 2255         VM_OBJECT_LOCK(obj);
 2256         for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 2257                 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
 2258                 if (!m)
 2259                         goto notinmem;
 2260                 tinc = size;
 2261                 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 2262                         tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 2263                 if (vm_page_is_valid(m,
 2264                     (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
 2265                         goto notinmem;
 2266         }
 2267         VM_OBJECT_UNLOCK(obj);
 2268         return 1;
 2269 
 2270 notinmem:
 2271         VM_OBJECT_UNLOCK(obj);
 2272         return (0);
 2273 }
 2274 
 2275 /*
 2276  *      vfs_setdirty:
 2277  *
 2278  *      Sets the dirty range for a buffer based on the status of the dirty
 2279  *      bits in the pages comprising the buffer.
 2280  *
 2281  *      The range is limited to the size of the buffer.
 2282  *
 2283  *      This routine is primarily used by NFS, but is generalized for the
 2284  *      B_VMIO case.
 2285  */
 2286 static void
 2287 vfs_setdirty(struct buf *bp) 
 2288 {
 2289         int i;
 2290         vm_object_t object;
 2291 
 2292         GIANT_REQUIRED;
 2293         /*
 2294          * Degenerate case - empty buffer
 2295          */
 2296 
 2297         if (bp->b_bufsize == 0)
 2298                 return;
 2299 
 2300         /*
 2301          * We qualify the scan for modified pages on whether the
 2302          * object has been flushed yet.  The OBJ_WRITEABLE flag
 2303          * is not cleared simply by protecting pages off.
 2304          */
 2305 
 2306         if ((bp->b_flags & B_VMIO) == 0)
 2307                 return;
 2308 
 2309         object = bp->b_pages[0]->object;
 2310         VM_OBJECT_LOCK(object);
 2311         if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
 2312                 printf("Warning: object %p writeable but not mightbedirty\n", object);
 2313         if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
 2314                 printf("Warning: object %p mightbedirty but not writeable\n", object);
 2315 
 2316         if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
 2317                 vm_offset_t boffset;
 2318                 vm_offset_t eoffset;
 2319 
 2320                 vm_page_lock_queues();
 2321                 /*
 2322                  * test the pages to see if they have been modified directly
 2323                  * by users through the VM system.
 2324                  */
 2325                 for (i = 0; i < bp->b_npages; i++)
 2326                         vm_page_test_dirty(bp->b_pages[i]);
 2327 
 2328                 /*
 2329                  * Calculate the encompassing dirty range, boffset and eoffset,
 2330                  * (eoffset - boffset) bytes.
 2331                  */
 2332 
 2333                 for (i = 0; i < bp->b_npages; i++) {
 2334                         if (bp->b_pages[i]->dirty)
 2335                                 break;
 2336                 }
 2337                 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2338 
 2339                 for (i = bp->b_npages - 1; i >= 0; --i) {
 2340                         if (bp->b_pages[i]->dirty) {
 2341                                 break;
 2342                         }
 2343                 }
 2344                 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2345 
 2346                 vm_page_unlock_queues();
 2347                 /*
 2348                  * Fit it to the buffer.
 2349                  */
 2350 
 2351                 if (eoffset > bp->b_bcount)
 2352                         eoffset = bp->b_bcount;
 2353 
 2354                 /*
 2355                  * If we have a good dirty range, merge with the existing
 2356                  * dirty range.
 2357                  */
 2358 
 2359                 if (boffset < eoffset) {
 2360                         if (bp->b_dirtyoff > boffset)
 2361                                 bp->b_dirtyoff = boffset;
 2362                         if (bp->b_dirtyend < eoffset)
 2363                                 bp->b_dirtyend = eoffset;
 2364                 }
 2365         }
 2366         VM_OBJECT_UNLOCK(object);
 2367 }
 2368 
 2369 /*
 2370  *      getblk:
 2371  *
 2372  *      Get a block given a specified block and offset into a file/device.
 2373  *      The buffers B_DONE bit will be cleared on return, making it almost
 2374  *      ready for an I/O initiation.  B_INVAL may or may not be set on 
 2375  *      return.  The caller should clear B_INVAL prior to initiating a
 2376  *      READ.
 2377  *
 2378  *      For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
 2379  *      an existing buffer.
 2380  *
 2381  *      For a VMIO buffer, B_CACHE is modified according to the backing VM.
 2382  *      If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
 2383  *      and then cleared based on the backing VM.  If the previous buffer is
 2384  *      non-0-sized but invalid, B_CACHE will be cleared.
 2385  *
 2386  *      If getblk() must create a new buffer, the new buffer is returned with
 2387  *      both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
 2388  *      case it is returned with B_INVAL clear and B_CACHE set based on the
 2389  *      backing VM.
 2390  *
 2391  *      getblk() also forces a bwrite() for any B_DELWRI buffer whos
 2392  *      B_CACHE bit is clear.
 2393  *      
 2394  *      What this means, basically, is that the caller should use B_CACHE to
 2395  *      determine whether the buffer is fully valid or not and should clear
 2396  *      B_INVAL prior to issuing a read.  If the caller intends to validate
 2397  *      the buffer by loading its data area with something, the caller needs
 2398  *      to clear B_INVAL.  If the caller does this without issuing an I/O, 
 2399  *      the caller should set B_CACHE ( as an optimization ), else the caller
 2400  *      should issue the I/O and biodone() will set B_CACHE if the I/O was
 2401  *      a write attempt or if it was a successfull read.  If the caller 
 2402  *      intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
 2403  *      prior to issuing the READ.  biodone() will *not* clear B_INVAL.
 2404  */
 2405 struct buf *
 2406 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
 2407     int flags)
 2408 {
 2409         struct buf *bp;
 2410         int s;
 2411         int error;
 2412         ASSERT_VOP_LOCKED(vp, "getblk");
 2413 
 2414         if (size > MAXBSIZE)
 2415                 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
 2416 
 2417         s = splbio();
 2418 loop:
 2419         /*
 2420          * Block if we are low on buffers.   Certain processes are allowed
 2421          * to completely exhaust the buffer cache.
 2422          *
 2423          * If this check ever becomes a bottleneck it may be better to
 2424          * move it into the else, when gbincore() fails.  At the moment
 2425          * it isn't a problem.
 2426          *
 2427          * XXX remove if 0 sections (clean this up after its proven)
 2428          */
 2429         if (numfreebuffers == 0) {
 2430                 if (curthread == PCPU_GET(idlethread))
 2431                         return NULL;
 2432                 mtx_lock(&nblock);
 2433                 needsbuffer |= VFS_BIO_NEED_ANY;
 2434                 mtx_unlock(&nblock);
 2435         }
 2436 
 2437         VI_LOCK(vp);
 2438         if ((bp = gbincore(vp, blkno))) {
 2439                 int lockflags;
 2440                 /*
 2441                  * Buffer is in-core.  If the buffer is not busy, it must
 2442                  * be on a queue.
 2443                  */
 2444                 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
 2445 
 2446                 if (flags & GB_LOCK_NOWAIT)
 2447                         lockflags |= LK_NOWAIT;
 2448 
 2449                 error = BUF_TIMELOCK(bp, lockflags,
 2450                     VI_MTX(vp), "getblk", slpflag, slptimeo);
 2451 
 2452                 /*
 2453                  * If we slept and got the lock we have to restart in case
 2454                  * the buffer changed identities.
 2455                  */
 2456                 if (error == ENOLCK)
 2457                         goto loop;
 2458                 /* We timed out or were interrupted. */
 2459                 else if (error)
 2460                         return (NULL);
 2461 
 2462                 /*
 2463                  * The buffer is locked.  B_CACHE is cleared if the buffer is 
 2464                  * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 2465                  * and for a VMIO buffer B_CACHE is adjusted according to the
 2466                  * backing VM cache.
 2467                  */
 2468                 if (bp->b_flags & B_INVAL)
 2469                         bp->b_flags &= ~B_CACHE;
 2470                 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 2471                         bp->b_flags |= B_CACHE;
 2472                 bremfree(bp);
 2473 
 2474                 /*
 2475                  * check for size inconsistancies for non-VMIO case.
 2476                  */
 2477 
 2478                 if (bp->b_bcount != size) {
 2479                         if ((bp->b_flags & B_VMIO) == 0 ||
 2480                             (size > bp->b_kvasize)) {
 2481                                 if (bp->b_flags & B_DELWRI) {
 2482                                         bp->b_flags |= B_NOCACHE;
 2483                                         bwrite(bp);
 2484                                 } else {
 2485                                         if ((bp->b_flags & B_VMIO) &&
 2486                                            (LIST_FIRST(&bp->b_dep) == NULL)) {
 2487                                                 bp->b_flags |= B_RELBUF;
 2488                                                 brelse(bp);
 2489                                         } else {
 2490                                                 bp->b_flags |= B_NOCACHE;
 2491                                                 bwrite(bp);
 2492                                         }
 2493                                 }
 2494                                 goto loop;
 2495                         }
 2496                 }
 2497 
 2498                 /*
 2499                  * If the size is inconsistant in the VMIO case, we can resize
 2500                  * the buffer.  This might lead to B_CACHE getting set or
 2501                  * cleared.  If the size has not changed, B_CACHE remains
 2502                  * unchanged from its previous state.
 2503                  */
 2504 
 2505                 if (bp->b_bcount != size)
 2506                         allocbuf(bp, size);
 2507 
 2508                 KASSERT(bp->b_offset != NOOFFSET, 
 2509                     ("getblk: no buffer offset"));
 2510 
 2511                 /*
 2512                  * A buffer with B_DELWRI set and B_CACHE clear must
 2513                  * be committed before we can return the buffer in
 2514                  * order to prevent the caller from issuing a read
 2515                  * ( due to B_CACHE not being set ) and overwriting
 2516                  * it.
 2517                  *
 2518                  * Most callers, including NFS and FFS, need this to
 2519                  * operate properly either because they assume they
 2520                  * can issue a read if B_CACHE is not set, or because
 2521                  * ( for example ) an uncached B_DELWRI might loop due 
 2522                  * to softupdates re-dirtying the buffer.  In the latter
 2523                  * case, B_CACHE is set after the first write completes,
 2524                  * preventing further loops.
 2525                  * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 2526                  * above while extending the buffer, we cannot allow the
 2527                  * buffer to remain with B_CACHE set after the write
 2528                  * completes or it will represent a corrupt state.  To
 2529                  * deal with this we set B_NOCACHE to scrap the buffer
 2530                  * after the write.
 2531                  *
 2532                  * We might be able to do something fancy, like setting
 2533                  * B_CACHE in bwrite() except if B_DELWRI is already set,
 2534                  * so the below call doesn't set B_CACHE, but that gets real
 2535                  * confusing.  This is much easier.
 2536                  */
 2537 
 2538                 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 2539                         bp->b_flags |= B_NOCACHE;
 2540                         bwrite(bp);
 2541                         goto loop;
 2542                 }
 2543 
 2544                 splx(s);
 2545                 bp->b_flags &= ~B_DONE;
 2546         } else {
 2547                 int bsize, maxsize, vmio;
 2548                 off_t offset;
 2549 
 2550                 /*
 2551                  * Buffer is not in-core, create new buffer.  The buffer
 2552                  * returned by getnewbuf() is locked.  Note that the returned
 2553                  * buffer is also considered valid (not marked B_INVAL).
 2554                  */
 2555                 VI_UNLOCK(vp);
 2556                 /*
 2557                  * If the user does not want us to create the buffer, bail out
 2558                  * here.
 2559                  */
 2560                 if (flags & GB_NOCREAT) {
 2561                         splx(s);
 2562                         return NULL;
 2563                 }
 2564                 if (vn_isdisk(vp, NULL))
 2565                         bsize = DEV_BSIZE;
 2566                 else if (vp->v_mountedhere)
 2567                         bsize = vp->v_mountedhere->mnt_stat.f_iosize;
 2568                 else if (vp->v_mount)
 2569                         bsize = vp->v_mount->mnt_stat.f_iosize;
 2570                 else
 2571                         bsize = size;
 2572 
 2573                 if (vp->v_bsize != bsize) {
 2574 #if 0
 2575                         printf("WARNING: Wrong block size on vnode: %d should be %d\n", vp->v_bsize, bsize);
 2576 #endif
 2577                         vp->v_bsize = bsize;
 2578                 }
 2579 
 2580                 offset = blkno * bsize;
 2581                 vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
 2582                     (vp->v_vflag & VV_OBJBUF);
 2583                 maxsize = vmio ? size + (offset & PAGE_MASK) : size;
 2584                 maxsize = imax(maxsize, bsize);
 2585 
 2586                 if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
 2587                         if (slpflag || slptimeo) {
 2588                                 splx(s);
 2589                                 return NULL;
 2590                         }
 2591                         goto loop;
 2592                 }
 2593 
 2594                 /*
 2595                  * This code is used to make sure that a buffer is not
 2596                  * created while the getnewbuf routine is blocked.
 2597                  * This can be a problem whether the vnode is locked or not.
 2598                  * If the buffer is created out from under us, we have to
 2599                  * throw away the one we just created.  There is now window
 2600                  * race because we are safely running at splbio() from the
 2601                  * point of the duplicate buffer creation through to here,
 2602                  * and we've locked the buffer.
 2603                  *
 2604                  * Note: this must occur before we associate the buffer
 2605                  * with the vp especially considering limitations in
 2606                  * the splay tree implementation when dealing with duplicate
 2607                  * lblkno's.
 2608                  */
 2609                 VI_LOCK(vp);
 2610                 if (gbincore(vp, blkno)) {
 2611                         VI_UNLOCK(vp);
 2612                         bp->b_flags |= B_INVAL;
 2613                         brelse(bp);
 2614                         goto loop;
 2615                 }
 2616 
 2617                 /*
 2618                  * Insert the buffer into the hash, so that it can
 2619                  * be found by incore.
 2620                  */
 2621                 bp->b_blkno = bp->b_lblkno = blkno;
 2622                 bp->b_offset = offset;
 2623 
 2624                 bgetvp(vp, bp);
 2625                 VI_UNLOCK(vp);
 2626 
 2627                 /*
 2628                  * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 2629                  * buffer size starts out as 0, B_CACHE will be set by
 2630                  * allocbuf() for the VMIO case prior to it testing the
 2631                  * backing store for validity.
 2632                  */
 2633 
 2634                 if (vmio) {
 2635                         bp->b_flags |= B_VMIO;
 2636 #if defined(VFS_BIO_DEBUG)
 2637                         if (vn_canvmio(vp) != TRUE)
 2638                                 printf("getblk: VMIO on vnode type %d\n",
 2639                                         vp->v_type);
 2640 #endif
 2641                         VOP_GETVOBJECT(vp, &bp->b_object);
 2642                 } else {
 2643                         bp->b_flags &= ~B_VMIO;
 2644                         bp->b_object = NULL;
 2645                 }
 2646 
 2647                 allocbuf(bp, size);
 2648 
 2649                 splx(s);
 2650                 bp->b_flags &= ~B_DONE;
 2651         }
 2652         KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
 2653         return (bp);
 2654 }
 2655 
 2656 /*
 2657  * Get an empty, disassociated buffer of given size.  The buffer is initially
 2658  * set to B_INVAL.
 2659  */
 2660 struct buf *
 2661 geteblk(int size)
 2662 {
 2663         struct buf *bp;
 2664         int s;
 2665         int maxsize;
 2666 
 2667         maxsize = (size + BKVAMASK) & ~BKVAMASK;
 2668 
 2669         s = splbio();
 2670         while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
 2671                 continue;
 2672         splx(s);
 2673         allocbuf(bp, size);
 2674         bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
 2675         KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
 2676         return (bp);
 2677 }
 2678 
 2679 
 2680 /*
 2681  * This code constitutes the buffer memory from either anonymous system
 2682  * memory (in the case of non-VMIO operations) or from an associated
 2683  * VM object (in the case of VMIO operations).  This code is able to
 2684  * resize a buffer up or down.
 2685  *
 2686  * Note that this code is tricky, and has many complications to resolve
 2687  * deadlock or inconsistant data situations.  Tread lightly!!! 
 2688  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
 2689  * the caller.  Calling this code willy nilly can result in the loss of data.
 2690  *
 2691  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
 2692  * B_CACHE for the non-VMIO case.
 2693  */
 2694 
 2695 int
 2696 allocbuf(struct buf *bp, int size)
 2697 {
 2698         int newbsize, mbsize;
 2699         int i;
 2700 
 2701         GIANT_REQUIRED;
 2702 
 2703         if (BUF_REFCNT(bp) == 0)
 2704                 panic("allocbuf: buffer not busy");
 2705 
 2706         if (bp->b_kvasize < size)
 2707                 panic("allocbuf: buffer too small");
 2708 
 2709         if ((bp->b_flags & B_VMIO) == 0) {
 2710                 caddr_t origbuf;
 2711                 int origbufsize;
 2712                 /*
 2713                  * Just get anonymous memory from the kernel.  Don't
 2714                  * mess with B_CACHE.
 2715                  */
 2716                 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2717                 if (bp->b_flags & B_MALLOC)
 2718                         newbsize = mbsize;
 2719                 else
 2720                         newbsize = round_page(size);
 2721 
 2722                 if (newbsize < bp->b_bufsize) {
 2723                         /*
 2724                          * malloced buffers are not shrunk
 2725                          */
 2726                         if (bp->b_flags & B_MALLOC) {
 2727                                 if (newbsize) {
 2728                                         bp->b_bcount = size;
 2729                                 } else {
 2730                                         free(bp->b_data, M_BIOBUF);
 2731                                         if (bp->b_bufsize) {
 2732                                                 atomic_subtract_int(
 2733                                                     &bufmallocspace,
 2734                                                     bp->b_bufsize);
 2735                                                 bufspacewakeup();
 2736                                                 bp->b_bufsize = 0;
 2737                                         }
 2738                                         bp->b_saveaddr = bp->b_kvabase;
 2739                                         bp->b_data = bp->b_saveaddr;
 2740                                         bp->b_bcount = 0;
 2741                                         bp->b_flags &= ~B_MALLOC;
 2742                                 }
 2743                                 return 1;
 2744                         }               
 2745                         vm_hold_free_pages(
 2746                             bp,
 2747                             (vm_offset_t) bp->b_data + newbsize,
 2748                             (vm_offset_t) bp->b_data + bp->b_bufsize);
 2749                 } else if (newbsize > bp->b_bufsize) {
 2750                         /*
 2751                          * We only use malloced memory on the first allocation.
 2752                          * and revert to page-allocated memory when the buffer
 2753                          * grows.
 2754                          */
 2755                         /*
 2756                          * There is a potential smp race here that could lead
 2757                          * to bufmallocspace slightly passing the max.  It
 2758                          * is probably extremely rare and not worth worrying
 2759                          * over.
 2760                          */
 2761                         if ( (bufmallocspace < maxbufmallocspace) &&
 2762                                 (bp->b_bufsize == 0) &&
 2763                                 (mbsize <= PAGE_SIZE/2)) {
 2764 
 2765                                 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
 2766                                 bp->b_bufsize = mbsize;
 2767                                 bp->b_bcount = size;
 2768                                 bp->b_flags |= B_MALLOC;
 2769                                 atomic_add_int(&bufmallocspace, mbsize);
 2770                                 return 1;
 2771                         }
 2772                         origbuf = NULL;
 2773                         origbufsize = 0;
 2774                         /*
 2775                          * If the buffer is growing on its other-than-first allocation,
 2776                          * then we revert to the page-allocation scheme.
 2777                          */
 2778                         if (bp->b_flags & B_MALLOC) {
 2779                                 origbuf = bp->b_data;
 2780                                 origbufsize = bp->b_bufsize;
 2781                                 bp->b_data = bp->b_kvabase;
 2782                                 if (bp->b_bufsize) {
 2783                                         atomic_subtract_int(&bufmallocspace,
 2784                                             bp->b_bufsize);
 2785                                         bufspacewakeup();
 2786                                         bp->b_bufsize = 0;
 2787                                 }
 2788                                 bp->b_flags &= ~B_MALLOC;
 2789                                 newbsize = round_page(newbsize);
 2790                         }
 2791                         vm_hold_load_pages(
 2792                             bp,
 2793                             (vm_offset_t) bp->b_data + bp->b_bufsize,
 2794                             (vm_offset_t) bp->b_data + newbsize);
 2795                         if (origbuf) {
 2796                                 bcopy(origbuf, bp->b_data, origbufsize);
 2797                                 free(origbuf, M_BIOBUF);
 2798                         }
 2799                 }
 2800         } else {
 2801                 int desiredpages;
 2802 
 2803                 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2804                 desiredpages = (size == 0) ? 0 :
 2805                         num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 2806 
 2807                 if (bp->b_flags & B_MALLOC)
 2808                         panic("allocbuf: VMIO buffer can't be malloced");
 2809                 /*
 2810                  * Set B_CACHE initially if buffer is 0 length or will become
 2811                  * 0-length.
 2812                  */
 2813                 if (size == 0 || bp->b_bufsize == 0)
 2814                         bp->b_flags |= B_CACHE;
 2815 
 2816                 if (newbsize < bp->b_bufsize) {
 2817                         /*
 2818                          * DEV_BSIZE aligned new buffer size is less then the
 2819                          * DEV_BSIZE aligned existing buffer size.  Figure out
 2820                          * if we have to remove any pages.
 2821                          */
 2822                         if (desiredpages < bp->b_npages) {
 2823                                 vm_page_t m;
 2824 
 2825                                 vm_page_lock_queues();
 2826                                 for (i = desiredpages; i < bp->b_npages; i++) {
 2827                                         /*
 2828                                          * the page is not freed here -- it
 2829                                          * is the responsibility of 
 2830                                          * vnode_pager_setsize
 2831                                          */
 2832                                         m = bp->b_pages[i];
 2833                                         KASSERT(m != bogus_page,
 2834                                             ("allocbuf: bogus page found"));
 2835                                         while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
 2836                                                 vm_page_lock_queues();
 2837 
 2838                                         bp->b_pages[i] = NULL;
 2839                                         vm_page_unwire(m, 0);
 2840                                 }
 2841                                 vm_page_unlock_queues();
 2842                                 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
 2843                                     (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
 2844                                 bp->b_npages = desiredpages;
 2845                         }
 2846                 } else if (size > bp->b_bcount) {
 2847                         /*
 2848                          * We are growing the buffer, possibly in a 
 2849                          * byte-granular fashion.
 2850                          */
 2851                         struct vnode *vp;
 2852                         vm_object_t obj;
 2853                         vm_offset_t toff;
 2854                         vm_offset_t tinc;
 2855 
 2856                         /*
 2857                          * Step 1, bring in the VM pages from the object, 
 2858                          * allocating them if necessary.  We must clear
 2859                          * B_CACHE if these pages are not valid for the 
 2860                          * range covered by the buffer.
 2861                          */
 2862 
 2863                         vp = bp->b_vp;
 2864                         obj = bp->b_object;
 2865 
 2866                         VM_OBJECT_LOCK(obj);
 2867                         while (bp->b_npages < desiredpages) {
 2868                                 vm_page_t m;
 2869                                 vm_pindex_t pi;
 2870 
 2871                                 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
 2872                                 if ((m = vm_page_lookup(obj, pi)) == NULL) {
 2873                                         /*
 2874                                          * note: must allocate system pages
 2875                                          * since blocking here could intefere
 2876                                          * with paging I/O, no matter which
 2877                                          * process we are.
 2878                                          */
 2879                                         m = vm_page_alloc(obj, pi,
 2880                                             VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 2881                                         if (m == NULL) {
 2882                                                 atomic_add_int(&vm_pageout_deficit,
 2883                                                     desiredpages - bp->b_npages);
 2884                                                 VM_OBJECT_UNLOCK(obj);
 2885                                                 VM_WAIT;
 2886                                                 VM_OBJECT_LOCK(obj);
 2887                                         } else {
 2888                                                 vm_page_lock_queues();
 2889                                                 vm_page_wakeup(m);
 2890                                                 vm_page_unlock_queues();
 2891                                                 bp->b_flags &= ~B_CACHE;
 2892                                                 bp->b_pages[bp->b_npages] = m;
 2893                                                 ++bp->b_npages;
 2894                                         }
 2895                                         continue;
 2896                                 }
 2897 
 2898                                 /*
 2899                                  * We found a page.  If we have to sleep on it,
 2900                                  * retry because it might have gotten freed out
 2901                                  * from under us.
 2902                                  *
 2903                                  * We can only test PG_BUSY here.  Blocking on
 2904                                  * m->busy might lead to a deadlock:
 2905                                  *
 2906                                  *  vm_fault->getpages->cluster_read->allocbuf
 2907                                  *
 2908                                  */
 2909                                 vm_page_lock_queues();
 2910                                 if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
 2911                                         continue;
 2912 
 2913                                 /*
 2914                                  * We have a good page.  Should we wakeup the
 2915                                  * page daemon?
 2916                                  */
 2917                                 if ((curproc != pageproc) &&
 2918                                     ((m->queue - m->pc) == PQ_CACHE) &&
 2919                                     ((cnt.v_free_count + cnt.v_cache_count) <
 2920                                         (cnt.v_free_min + cnt.v_cache_min))) {
 2921                                         pagedaemon_wakeup();
 2922                                 }
 2923                                 vm_page_wire(m);
 2924                                 vm_page_unlock_queues();
 2925                                 bp->b_pages[bp->b_npages] = m;
 2926                                 ++bp->b_npages;
 2927                         }
 2928 
 2929                         /*
 2930                          * Step 2.  We've loaded the pages into the buffer,
 2931                          * we have to figure out if we can still have B_CACHE
 2932                          * set.  Note that B_CACHE is set according to the
 2933                          * byte-granular range ( bcount and size ), new the
 2934                          * aligned range ( newbsize ).
 2935                          *
 2936                          * The VM test is against m->valid, which is DEV_BSIZE
 2937                          * aligned.  Needless to say, the validity of the data
 2938                          * needs to also be DEV_BSIZE aligned.  Note that this
 2939                          * fails with NFS if the server or some other client
 2940                          * extends the file's EOF.  If our buffer is resized, 
 2941                          * B_CACHE may remain set! XXX
 2942                          */
 2943 
 2944                         toff = bp->b_bcount;
 2945                         tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 2946 
 2947                         while ((bp->b_flags & B_CACHE) && toff < size) {
 2948                                 vm_pindex_t pi;
 2949 
 2950                                 if (tinc > (size - toff))
 2951                                         tinc = size - toff;
 2952 
 2953                                 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 
 2954                                     PAGE_SHIFT;
 2955 
 2956                                 vfs_buf_test_cache(
 2957                                     bp, 
 2958                                     bp->b_offset,
 2959                                     toff, 
 2960                                     tinc, 
 2961                                     bp->b_pages[pi]
 2962                                 );
 2963                                 toff += tinc;
 2964                                 tinc = PAGE_SIZE;
 2965                         }
 2966                         VM_OBJECT_UNLOCK(obj);
 2967 
 2968                         /*
 2969                          * Step 3, fixup the KVM pmap.  Remember that
 2970                          * bp->b_data is relative to bp->b_offset, but 
 2971                          * bp->b_offset may be offset into the first page.
 2972                          */
 2973 
 2974                         bp->b_data = (caddr_t)
 2975                             trunc_page((vm_offset_t)bp->b_data);
 2976                         pmap_qenter(
 2977                             (vm_offset_t)bp->b_data,
 2978                             bp->b_pages, 
 2979                             bp->b_npages
 2980                         );
 2981                         
 2982                         bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 
 2983                             (vm_offset_t)(bp->b_offset & PAGE_MASK));
 2984                 }
 2985         }
 2986         if (newbsize < bp->b_bufsize)
 2987                 bufspacewakeup();
 2988         bp->b_bufsize = newbsize;       /* actual buffer allocation     */
 2989         bp->b_bcount = size;            /* requested buffer size        */
 2990         return 1;
 2991 }
 2992 
 2993 void
 2994 biodone(struct bio *bp)
 2995 {
 2996         mtx_lock(&bdonelock);
 2997         bp->bio_flags |= BIO_DONE;
 2998         if (bp->bio_done == NULL)
 2999                 wakeup(bp);
 3000         mtx_unlock(&bdonelock);
 3001         if (bp->bio_done != NULL)
 3002                 bp->bio_done(bp);
 3003 }
 3004 
 3005 /*
 3006  * Wait for a BIO to finish.
 3007  *
 3008  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
 3009  * case is not yet clear.
 3010  */
 3011 int
 3012 biowait(struct bio *bp, const char *wchan)
 3013 {
 3014 
 3015         mtx_lock(&bdonelock);
 3016         while ((bp->bio_flags & BIO_DONE) == 0)
 3017                 msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
 3018         mtx_unlock(&bdonelock);
 3019         if (bp->bio_error != 0)
 3020                 return (bp->bio_error);
 3021         if (!(bp->bio_flags & BIO_ERROR))
 3022                 return (0);
 3023         return (EIO);
 3024 }
 3025 
 3026 void
 3027 biofinish(struct bio *bp, struct devstat *stat, int error)
 3028 {
 3029         
 3030         if (error) {
 3031                 bp->bio_error = error;
 3032                 bp->bio_flags |= BIO_ERROR;
 3033         }
 3034         if (stat != NULL)
 3035                 devstat_end_transaction_bio(stat, bp);
 3036         biodone(bp);
 3037 }
 3038 
 3039 /*
 3040  *      bufwait:
 3041  *
 3042  *      Wait for buffer I/O completion, returning error status.  The buffer
 3043  *      is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
 3044  *      error and cleared.
 3045  */
 3046 int
 3047 bufwait(register struct buf * bp)
 3048 {
 3049         int s;
 3050 
 3051         s = splbio();
 3052         if (bp->b_iocmd == BIO_READ)
 3053                 bwait(bp, PRIBIO, "biord");
 3054         else
 3055                 bwait(bp, PRIBIO, "biowr");
 3056         splx(s);
 3057         if (bp->b_flags & B_EINTR) {
 3058                 bp->b_flags &= ~B_EINTR;
 3059                 return (EINTR);
 3060         }
 3061         if (bp->b_ioflags & BIO_ERROR) {
 3062                 return (bp->b_error ? bp->b_error : EIO);
 3063         } else {
 3064                 return (0);
 3065         }
 3066 }
 3067 
 3068  /*
 3069   * Call back function from struct bio back up to struct buf.
 3070   */
 3071 static void
 3072 bufdonebio(struct bio *bp)
 3073 {
 3074 
 3075         /* Device drivers may or may not hold giant, hold it here. */
 3076         mtx_lock(&Giant);
 3077         bufdone(bp->bio_caller2);
 3078         mtx_unlock(&Giant);
 3079 }
 3080 
 3081 void
 3082 dev_strategy(struct buf *bp)
 3083 {
 3084         struct cdevsw *csw;
 3085 
 3086         if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
 3087                 panic("b_iocmd botch");
 3088         bp->b_io.bio_done = bufdonebio;
 3089         bp->b_io.bio_caller2 = bp;
 3090         csw = devsw(bp->b_io.bio_dev);
 3091         KASSERT(bp->b_io.bio_dev->si_refcount > 0,
 3092             ("dev_strategy on un-referenced struct cdev *(%s)",
 3093             devtoname(bp->b_io.bio_dev)));
 3094         cdevsw_ref(csw);
 3095         (*devsw(bp->b_io.bio_dev)->d_strategy)(&bp->b_io);
 3096         cdevsw_rel(csw);
 3097 }
 3098 
 3099 /*
 3100  *      bufdone:
 3101  *
 3102  *      Finish I/O on a buffer, optionally calling a completion function.
 3103  *      This is usually called from an interrupt so process blocking is
 3104  *      not allowed.
 3105  *
 3106  *      biodone is also responsible for setting B_CACHE in a B_VMIO bp.
 3107  *      In a non-VMIO bp, B_CACHE will be set on the next getblk() 
 3108  *      assuming B_INVAL is clear.
 3109  *
 3110  *      For the VMIO case, we set B_CACHE if the op was a read and no
 3111  *      read error occured, or if the op was a write.  B_CACHE is never
 3112  *      set if the buffer is invalid or otherwise uncacheable.
 3113  *
 3114  *      biodone does not mess with B_INVAL, allowing the I/O routine or the
 3115  *      initiator to leave B_INVAL set to brelse the buffer out of existance
 3116  *      in the biodone routine.
 3117  */
 3118 void
 3119 bufdone(struct buf *bp)
 3120 {
 3121         int s;
 3122         void    (*biodone)(struct buf *);
 3123 
 3124 
 3125         s = splbio();
 3126 
 3127         KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
 3128         KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 3129 
 3130         bp->b_flags |= B_DONE;
 3131         runningbufwakeup(bp);
 3132 
 3133         if (bp->b_iocmd == BIO_DELETE) {
 3134                 brelse(bp);
 3135                 splx(s);
 3136                 return;
 3137         }
 3138 
 3139         if (bp->b_iocmd == BIO_WRITE) {
 3140                 vwakeup(bp);
 3141         }
 3142 
 3143         /* call optional completion function if requested */
 3144         if (bp->b_iodone != NULL) {
 3145                 biodone = bp->b_iodone;
 3146                 bp->b_iodone = NULL;
 3147                 (*biodone) (bp);
 3148                 splx(s);
 3149                 return;
 3150         }
 3151         if (LIST_FIRST(&bp->b_dep) != NULL)
 3152                 buf_complete(bp);
 3153 
 3154         if (bp->b_flags & B_VMIO) {
 3155                 int i;
 3156                 vm_ooffset_t foff;
 3157                 vm_page_t m;
 3158                 vm_object_t obj;
 3159                 int iosize;
 3160                 struct vnode *vp = bp->b_vp;
 3161 
 3162                 obj = bp->b_object;
 3163 
 3164 #if defined(VFS_BIO_DEBUG)
 3165                 mp_fixme("usecount and vflag accessed without locks.");
 3166                 if (vp->v_usecount == 0) {
 3167                         panic("biodone: zero vnode ref count");
 3168                 }
 3169 
 3170                 if ((vp->v_vflag & VV_OBJBUF) == 0) {
 3171                         panic("biodone: vnode is not setup for merged cache");
 3172                 }
 3173 #endif
 3174 
 3175                 foff = bp->b_offset;
 3176                 KASSERT(bp->b_offset != NOOFFSET,
 3177                     ("biodone: no buffer offset"));
 3178 
 3179                 VM_OBJECT_LOCK(obj);
 3180 #if defined(VFS_BIO_DEBUG)
 3181                 if (obj->paging_in_progress < bp->b_npages) {
 3182                         printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
 3183                             obj->paging_in_progress, bp->b_npages);
 3184                 }
 3185 #endif
 3186 
 3187                 /*
 3188                  * Set B_CACHE if the op was a normal read and no error
 3189                  * occured.  B_CACHE is set for writes in the b*write()
 3190                  * routines.
 3191                  */
 3192                 iosize = bp->b_bcount - bp->b_resid;
 3193                 if (bp->b_iocmd == BIO_READ &&
 3194                     !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 3195                     !(bp->b_ioflags & BIO_ERROR)) {
 3196                         bp->b_flags |= B_CACHE;
 3197                 }
 3198                 vm_page_lock_queues();
 3199                 for (i = 0; i < bp->b_npages; i++) {
 3200                         int bogusflag = 0;
 3201                         int resid;
 3202 
 3203                         resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 3204                         if (resid > iosize)
 3205                                 resid = iosize;
 3206 
 3207                         /*
 3208                          * cleanup bogus pages, restoring the originals
 3209                          */
 3210                         m = bp->b_pages[i];
 3211                         if (m == bogus_page) {
 3212                                 bogusflag = 1;
 3213                                 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
 3214                                 if (m == NULL)
 3215                                         panic("biodone: page disappeared!");
 3216                                 bp->b_pages[i] = m;
 3217                                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
 3218                         }
 3219 #if defined(VFS_BIO_DEBUG)
 3220                         if (OFF_TO_IDX(foff) != m->pindex) {
 3221                                 printf(
 3222 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
 3223                                     (intmax_t)foff, (uintmax_t)m->pindex);
 3224                         }
 3225 #endif
 3226 
 3227                         /*
 3228                          * In the write case, the valid and clean bits are
 3229                          * already changed correctly ( see bdwrite() ), so we 
 3230                          * only need to do this here in the read case.
 3231                          */
 3232                         if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
 3233                                 vfs_page_set_valid(bp, foff, i, m);
 3234                         }
 3235 
 3236                         /*
 3237                          * when debugging new filesystems or buffer I/O methods, this
 3238                          * is the most common error that pops up.  if you see this, you
 3239                          * have not set the page busy flag correctly!!!
 3240                          */
 3241                         if (m->busy == 0) {
 3242                                 printf("biodone: page busy < 0, "
 3243                                     "pindex: %d, foff: 0x(%x,%x), "
 3244                                     "resid: %d, index: %d\n",
 3245                                     (int) m->pindex, (int)(foff >> 32),
 3246                                                 (int) foff & 0xffffffff, resid, i);
 3247                                 if (!vn_isdisk(vp, NULL))
 3248                                         printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
 3249                                             (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
 3250                                             (intmax_t) bp->b_lblkno,
 3251                                             bp->b_flags, bp->b_npages);
 3252                                 else
 3253                                         printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
 3254                                             (intmax_t) bp->b_lblkno,
 3255                                             bp->b_flags, bp->b_npages);
 3256                                 printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
 3257                                     (u_long)m->valid, (u_long)m->dirty,
 3258                                     m->wire_count);
 3259                                 panic("biodone: page busy < 0\n");
 3260                         }
 3261                         vm_page_io_finish(m);
 3262                         vm_object_pip_subtract(obj, 1);
 3263                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3264                         iosize -= resid;
 3265                 }
 3266                 vm_page_unlock_queues();
 3267                 vm_object_pip_wakeupn(obj, 0);
 3268                 VM_OBJECT_UNLOCK(obj);
 3269         }
 3270 
 3271         /*
 3272          * For asynchronous completions, release the buffer now. The brelse
 3273          * will do a wakeup there if necessary - so no need to do a wakeup
 3274          * here in the async case. The sync case always needs to do a wakeup.
 3275          */
 3276 
 3277         if (bp->b_flags & B_ASYNC) {
 3278                 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
 3279                         brelse(bp);
 3280                 else
 3281                         bqrelse(bp);
 3282         } else {
 3283                 bdone(bp);
 3284         }
 3285         splx(s);
 3286 }
 3287 
 3288 /*
 3289  * This routine is called in lieu of iodone in the case of
 3290  * incomplete I/O.  This keeps the busy status for pages
 3291  * consistant.
 3292  */
 3293 void
 3294 vfs_unbusy_pages(struct buf * bp)
 3295 {
 3296         int i;
 3297 
 3298         runningbufwakeup(bp);
 3299         if (bp->b_flags & B_VMIO) {
 3300                 vm_object_t obj;
 3301 
 3302                 obj = bp->b_object;
 3303                 VM_OBJECT_LOCK(obj);
 3304                 vm_page_lock_queues();
 3305                 for (i = 0; i < bp->b_npages; i++) {
 3306                         vm_page_t m = bp->b_pages[i];
 3307 
 3308                         if (m == bogus_page) {
 3309                                 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 3310                                 if (!m) {
 3311                                         panic("vfs_unbusy_pages: page missing\n");
 3312                                 }
 3313                                 bp->b_pages[i] = m;
 3314                                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
 3315                         }
 3316                         vm_object_pip_subtract(obj, 1);
 3317                         vm_page_io_finish(m);
 3318                 }
 3319                 vm_page_unlock_queues();
 3320                 vm_object_pip_wakeupn(obj, 0);
 3321                 VM_OBJECT_UNLOCK(obj);
 3322         }
 3323 }
 3324 
 3325 /*
 3326  * vfs_page_set_valid:
 3327  *
 3328  *      Set the valid bits in a page based on the supplied offset.   The
 3329  *      range is restricted to the buffer's size.
 3330  *
 3331  *      This routine is typically called after a read completes.
 3332  */
 3333 static void
 3334 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
 3335 {
 3336         vm_ooffset_t soff, eoff;
 3337 
 3338         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3339         /*
 3340          * Start and end offsets in buffer.  eoff - soff may not cross a
 3341          * page boundry or cross the end of the buffer.  The end of the
 3342          * buffer, in this case, is our file EOF, not the allocation size
 3343          * of the buffer.
 3344          */
 3345         soff = off;
 3346         eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3347         if (eoff > bp->b_offset + bp->b_bcount)
 3348                 eoff = bp->b_offset + bp->b_bcount;
 3349 
 3350         /*
 3351          * Set valid range.  This is typically the entire buffer and thus the
 3352          * entire page.
 3353          */
 3354         if (eoff > soff) {
 3355                 vm_page_set_validclean(
 3356                     m,
 3357                    (vm_offset_t) (soff & PAGE_MASK),
 3358                    (vm_offset_t) (eoff - soff)
 3359                 );
 3360         }
 3361 }
 3362 
 3363 /*
 3364  * This routine is called before a device strategy routine.
 3365  * It is used to tell the VM system that paging I/O is in
 3366  * progress, and treat the pages associated with the buffer
 3367  * almost as being PG_BUSY.  Also the object paging_in_progress
 3368  * flag is handled to make sure that the object doesn't become
 3369  * inconsistant.
 3370  *
 3371  * Since I/O has not been initiated yet, certain buffer flags
 3372  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
 3373  * and should be ignored.
 3374  */
 3375 void
 3376 vfs_busy_pages(struct buf * bp, int clear_modify)
 3377 {
 3378         int i, bogus;
 3379 
 3380         if (bp->b_flags & B_VMIO) {
 3381                 vm_object_t obj;
 3382                 vm_ooffset_t foff;
 3383 
 3384                 obj = bp->b_object;
 3385                 foff = bp->b_offset;
 3386                 KASSERT(bp->b_offset != NOOFFSET,
 3387                     ("vfs_busy_pages: no buffer offset"));
 3388                 vfs_setdirty(bp);
 3389                 VM_OBJECT_LOCK(obj);
 3390 retry:
 3391                 vm_page_lock_queues();
 3392                 for (i = 0; i < bp->b_npages; i++) {
 3393                         vm_page_t m = bp->b_pages[i];
 3394 
 3395                         if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
 3396                                 goto retry;
 3397                 }
 3398                 bogus = 0;
 3399                 for (i = 0; i < bp->b_npages; i++) {
 3400                         vm_page_t m = bp->b_pages[i];
 3401 
 3402                         if ((bp->b_flags & B_CLUSTER) == 0) {
 3403                                 vm_object_pip_add(obj, 1);
 3404                                 vm_page_io_start(m);
 3405                         }
 3406                         /*
 3407                          * When readying a buffer for a read ( i.e
 3408                          * clear_modify == 0 ), it is important to do
 3409                          * bogus_page replacement for valid pages in 
 3410                          * partially instantiated buffers.  Partially 
 3411                          * instantiated buffers can, in turn, occur when
 3412                          * reconstituting a buffer from its VM backing store
 3413                          * base.  We only have to do this if B_CACHE is
 3414                          * clear ( which causes the I/O to occur in the
 3415                          * first place ).  The replacement prevents the read
 3416                          * I/O from overwriting potentially dirty VM-backed
 3417                          * pages.  XXX bogus page replacement is, uh, bogus.
 3418                          * It may not work properly with small-block devices.
 3419                          * We need to find a better way.
 3420                          */
 3421                         pmap_remove_all(m);
 3422                         if (clear_modify)
 3423                                 vfs_page_set_valid(bp, foff, i, m);
 3424                         else if (m->valid == VM_PAGE_BITS_ALL &&
 3425                                 (bp->b_flags & B_CACHE) == 0) {
 3426                                 bp->b_pages[i] = bogus_page;
 3427                                 bogus++;
 3428                         }
 3429                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3430                 }
 3431                 vm_page_unlock_queues();
 3432                 VM_OBJECT_UNLOCK(obj);
 3433                 if (bogus)
 3434                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
 3435         }
 3436 }
 3437 
 3438 /*
 3439  * Tell the VM system that the pages associated with this buffer
 3440  * are clean.  This is used for delayed writes where the data is
 3441  * going to go to disk eventually without additional VM intevention.
 3442  *
 3443  * Note that while we only really need to clean through to b_bcount, we
 3444  * just go ahead and clean through to b_bufsize.
 3445  */
 3446 static void
 3447 vfs_clean_pages(struct buf * bp)
 3448 {
 3449         int i;
 3450 
 3451         if (bp->b_flags & B_VMIO) {
 3452                 vm_ooffset_t foff;
 3453 
 3454                 foff = bp->b_offset;
 3455                 KASSERT(bp->b_offset != NOOFFSET,
 3456                     ("vfs_clean_pages: no buffer offset"));
 3457                 VM_OBJECT_LOCK(bp->b_object);
 3458                 vm_page_lock_queues();
 3459                 for (i = 0; i < bp->b_npages; i++) {
 3460                         vm_page_t m = bp->b_pages[i];
 3461                         vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3462                         vm_ooffset_t eoff = noff;
 3463 
 3464                         if (eoff > bp->b_offset + bp->b_bufsize)
 3465                                 eoff = bp->b_offset + bp->b_bufsize;
 3466                         vfs_page_set_valid(bp, foff, i, m);
 3467                         /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 3468                         foff = noff;
 3469                 }
 3470                 vm_page_unlock_queues();
 3471                 VM_OBJECT_UNLOCK(bp->b_object);
 3472         }
 3473 }
 3474 
 3475 /*
 3476  *      vfs_bio_set_validclean:
 3477  *
 3478  *      Set the range within the buffer to valid and clean.  The range is 
 3479  *      relative to the beginning of the buffer, b_offset.  Note that b_offset
 3480  *      itself may be offset from the beginning of the first page.
 3481  *
 3482  */
 3483 
 3484 void   
 3485 vfs_bio_set_validclean(struct buf *bp, int base, int size)
 3486 {
 3487         if (bp->b_flags & B_VMIO) {
 3488                 int i;
 3489                 int n;
 3490 
 3491                 /*
 3492                  * Fixup base to be relative to beginning of first page.
 3493                  * Set initial n to be the maximum number of bytes in the
 3494                  * first page that can be validated.
 3495                  */
 3496 
 3497                 base += (bp->b_offset & PAGE_MASK);
 3498                 n = PAGE_SIZE - (base & PAGE_MASK);
 3499 
 3500                 VM_OBJECT_LOCK(bp->b_object);
 3501                 vm_page_lock_queues();
 3502                 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 3503                         vm_page_t m = bp->b_pages[i];
 3504 
 3505                         if (n > size)
 3506                                 n = size;
 3507 
 3508                         vm_page_set_validclean(m, base & PAGE_MASK, n);
 3509                         base += n;
 3510                         size -= n;
 3511                         n = PAGE_SIZE;
 3512                 }
 3513                 vm_page_unlock_queues();
 3514                 VM_OBJECT_UNLOCK(bp->b_object);
 3515         }
 3516 }
 3517 
 3518 /*
 3519  *      vfs_bio_clrbuf:
 3520  *
 3521  *      clear a buffer.  This routine essentially fakes an I/O, so we need
 3522  *      to clear BIO_ERROR and B_INVAL.
 3523  *
 3524  *      Note that while we only theoretically need to clear through b_bcount,
 3525  *      we go ahead and clear through b_bufsize.
 3526  */
 3527 
 3528 void
 3529 vfs_bio_clrbuf(struct buf *bp) 
 3530 {
 3531         int i, j, mask = 0;
 3532         caddr_t sa, ea;
 3533 
 3534         GIANT_REQUIRED;
 3535 
 3536         if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
 3537                 bp->b_flags &= ~B_INVAL;
 3538                 bp->b_ioflags &= ~BIO_ERROR;
 3539                 VM_OBJECT_LOCK(bp->b_object);
 3540                 if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
 3541                     (bp->b_offset & PAGE_MASK) == 0) {
 3542                         if (bp->b_pages[0] == bogus_page)
 3543                                 goto unlock;
 3544                         mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
 3545                         VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
 3546                         if ((bp->b_pages[0]->valid & mask) == mask)
 3547                                 goto unlock;
 3548                         if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
 3549                             ((bp->b_pages[0]->valid & mask) == 0)) {
 3550                                 bzero(bp->b_data, bp->b_bufsize);
 3551                                 bp->b_pages[0]->valid |= mask;
 3552                                 goto unlock;
 3553                         }
 3554                 }
 3555                 ea = sa = bp->b_data;
 3556                 for(i=0;i<bp->b_npages;i++,sa=ea) {
 3557                         ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
 3558                         ea = (caddr_t)(vm_offset_t)ulmin(
 3559                             (u_long)(vm_offset_t)ea,
 3560                             (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
 3561                         if (bp->b_pages[i] == bogus_page)
 3562                                 continue;
 3563                         j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
 3564                         mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
 3565                         VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
 3566                         if ((bp->b_pages[i]->valid & mask) == mask)
 3567                                 continue;
 3568                         if ((bp->b_pages[i]->valid & mask) == 0) {
 3569                                 if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
 3570                                         bzero(sa, ea - sa);
 3571                                 }
 3572                         } else {
 3573                                 for (; sa < ea; sa += DEV_BSIZE, j++) {
 3574                                         if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
 3575                                                 (bp->b_pages[i]->valid & (1<<j)) == 0)
 3576                                                 bzero(sa, DEV_BSIZE);
 3577                                 }
 3578                         }
 3579                         bp->b_pages[i]->valid |= mask;
 3580                 }
 3581 unlock:
 3582                 VM_OBJECT_UNLOCK(bp->b_object);
 3583                 bp->b_resid = 0;
 3584         } else {
 3585                 clrbuf(bp);
 3586         }
 3587 }
 3588 
 3589 /*
 3590  * vm_hold_load_pages and vm_hold_free_pages get pages into
 3591  * a buffers address space.  The pages are anonymous and are
 3592  * not associated with a file object.
 3593  */
 3594 static void
 3595 vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
 3596 {
 3597         vm_offset_t pg;
 3598         vm_page_t p;
 3599         int index;
 3600 
 3601         to = round_page(to);
 3602         from = round_page(from);
 3603         index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3604 
 3605         VM_OBJECT_LOCK(kernel_object);
 3606         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3607 tryagain:
 3608                 /*
 3609                  * note: must allocate system pages since blocking here
 3610                  * could intefere with paging I/O, no matter which
 3611                  * process we are.
 3612                  */
 3613                 p = vm_page_alloc(kernel_object,
 3614                         ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
 3615                     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 3616                 if (!p) {
 3617                         atomic_add_int(&vm_pageout_deficit,
 3618                             (to - pg) >> PAGE_SHIFT);
 3619                         VM_OBJECT_UNLOCK(kernel_object);
 3620                         VM_WAIT;
 3621                         VM_OBJECT_LOCK(kernel_object);
 3622                         goto tryagain;
 3623                 }
 3624                 p->valid = VM_PAGE_BITS_ALL;
 3625                 pmap_qenter(pg, &p, 1);
 3626                 bp->b_pages[index] = p;
 3627                 vm_page_lock_queues();
 3628                 vm_page_wakeup(p);
 3629                 vm_page_unlock_queues();
 3630         }
 3631         VM_OBJECT_UNLOCK(kernel_object);
 3632         bp->b_npages = index;
 3633 }
 3634 
 3635 /* Return pages associated with this buf to the vm system */
 3636 static void
 3637 vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
 3638 {
 3639         vm_offset_t pg;
 3640         vm_page_t p;
 3641         int index, newnpages;
 3642 
 3643         GIANT_REQUIRED;
 3644 
 3645         from = round_page(from);
 3646         to = round_page(to);
 3647         newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3648 
 3649         VM_OBJECT_LOCK(kernel_object);
 3650         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3651                 p = bp->b_pages[index];
 3652                 if (p && (index < bp->b_npages)) {
 3653                         if (p->busy) {
 3654                                 printf(
 3655                             "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
 3656                                     (intmax_t)bp->b_blkno,
 3657                                     (intmax_t)bp->b_lblkno);
 3658                         }
 3659                         bp->b_pages[index] = NULL;
 3660                         pmap_qremove(pg, 1);
 3661                         vm_page_lock_queues();
 3662                         vm_page_busy(p);
 3663                         vm_page_unwire(p, 0);
 3664                         vm_page_free(p);
 3665                         vm_page_unlock_queues();
 3666                 }
 3667         }
 3668         VM_OBJECT_UNLOCK(kernel_object);
 3669         bp->b_npages = newnpages;
 3670 }
 3671 
 3672 /*
 3673  * Map an IO request into kernel virtual address space.
 3674  *
 3675  * All requests are (re)mapped into kernel VA space.
 3676  * Notice that we use b_bufsize for the size of the buffer
 3677  * to be mapped.  b_bcount might be modified by the driver.
 3678  *
 3679  * Note that even if the caller determines that the address space should
 3680  * be valid, a race or a smaller-file mapped into a larger space may
 3681  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
 3682  * check the return value.
 3683  */
 3684 int
 3685 vmapbuf(struct buf *bp)
 3686 {
 3687         caddr_t addr, kva;
 3688         vm_prot_t prot;
 3689         int pidx, i;
 3690         struct vm_page *m;
 3691         struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
 3692 
 3693         if (bp->b_bufsize < 0)
 3694                 return (-1);
 3695         prot = (bp->b_iocmd == BIO_READ) ? VM_PROT_READ | VM_PROT_WRITE :
 3696             VM_PROT_READ;
 3697         for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
 3698              addr < bp->b_data + bp->b_bufsize;
 3699              addr += PAGE_SIZE, pidx++) {
 3700                 /*
 3701                  * Do the vm_fault if needed; do the copy-on-write thing
 3702                  * when reading stuff off device into memory.
 3703                  *
 3704                  * NOTE! Must use pmap_extract() because addr may be in
 3705                  * the userland address space, and kextract is only guarenteed
 3706                  * to work for the kernland address space (see: sparc64 port).
 3707                  */
 3708 retry:
 3709                 if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
 3710                     prot) < 0) {
 3711                         vm_page_lock_queues();
 3712                         for (i = 0; i < pidx; ++i) {
 3713                                 vm_page_unhold(bp->b_pages[i]);
 3714                                 bp->b_pages[i] = NULL;
 3715                         }
 3716                         vm_page_unlock_queues();
 3717                         return(-1);
 3718                 }
 3719                 m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
 3720                 if (m == NULL)
 3721                         goto retry;
 3722                 bp->b_pages[pidx] = m;
 3723         }
 3724         if (pidx > btoc(MAXPHYS))
 3725                 panic("vmapbuf: mapped more than MAXPHYS");
 3726         pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
 3727         
 3728         kva = bp->b_saveaddr;
 3729         bp->b_npages = pidx;
 3730         bp->b_saveaddr = bp->b_data;
 3731         bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
 3732         return(0);
 3733 }
 3734 
 3735 /*
 3736  * Free the io map PTEs associated with this IO operation.
 3737  * We also invalidate the TLB entries and restore the original b_addr.
 3738  */
 3739 void
 3740 vunmapbuf(struct buf *bp)
 3741 {
 3742         int pidx;
 3743         int npages;
 3744 
 3745         npages = bp->b_npages;
 3746         pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
 3747                      npages);
 3748         vm_page_lock_queues();
 3749         for (pidx = 0; pidx < npages; pidx++)
 3750                 vm_page_unhold(bp->b_pages[pidx]);
 3751         vm_page_unlock_queues();
 3752 
 3753         bp->b_data = bp->b_saveaddr;
 3754 }
 3755 
 3756 void
 3757 bdone(struct buf *bp)
 3758 {
 3759         mtx_lock(&bdonelock);
 3760         bp->b_flags |= B_DONE;
 3761         wakeup(bp);
 3762         mtx_unlock(&bdonelock);
 3763 }
 3764 
 3765 void
 3766 bwait(struct buf *bp, u_char pri, const char *wchan)
 3767 {
 3768         mtx_lock(&bdonelock);
 3769         while ((bp->b_flags & B_DONE) == 0)
 3770                 msleep(bp, &bdonelock, pri, wchan, 0);
 3771         mtx_unlock(&bdonelock);
 3772 }
 3773 
 3774 #include "opt_ddb.h"
 3775 #ifdef DDB
 3776 #include <ddb/ddb.h>
 3777 
 3778 /* DDB command to show buffer data */
 3779 DB_SHOW_COMMAND(buffer, db_show_buffer)
 3780 {
 3781         /* get args */
 3782         struct buf *bp = (struct buf *)addr;
 3783 
 3784         if (!have_addr) {
 3785                 db_printf("usage: show buffer <addr>\n");
 3786                 return;
 3787         }
 3788 
 3789         db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
 3790         db_printf(
 3791             "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 3792             "b_dev = (%d,%d), b_data = %p, b_blkno = %jd\n",
 3793             bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 3794             major(bp->b_dev), minor(bp->b_dev), bp->b_data,
 3795             (intmax_t)bp->b_blkno);
 3796         if (bp->b_npages) {
 3797                 int i;
 3798                 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 3799                 for (i = 0; i < bp->b_npages; i++) {
 3800                         vm_page_t m;
 3801                         m = bp->b_pages[i];
 3802                         db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
 3803                             (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
 3804                         if ((i + 1) < bp->b_npages)
 3805                                 db_printf(",");
 3806                 }
 3807                 db_printf("\n");
 3808         }
 3809 }
 3810 #endif /* DDB */

Cache object: d1ac89864f3c8f461f6e35c51d370842


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.