The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Poul-Henning Kamp
    3  * Copyright (c) 1994,1997 John S. Dyson
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * this file contains a new buffer I/O scheme implementing a coherent
   30  * VM object and buffer cache scheme.  Pains have been taken to make
   31  * sure that the performance degradation associated with schemes such
   32  * as this is not realized.
   33  *
   34  * Author:  John S. Dyson
   35  * Significant help during the development and debugging phases
   36  * had been provided by David Greenman, also of the FreeBSD core team.
   37  *
   38  * see man buf(9) for more info.
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD$");
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/bio.h>
   47 #include <sys/conf.h>
   48 #include <sys/buf.h>
   49 #include <sys/devicestat.h>
   50 #include <sys/eventhandler.h>
   51 #include <sys/limits.h>
   52 #include <sys/lock.h>
   53 #include <sys/malloc.h>
   54 #include <sys/mount.h>
   55 #include <sys/mutex.h>
   56 #include <sys/kernel.h>
   57 #include <sys/kthread.h>
   58 #include <sys/proc.h>
   59 #include <sys/resourcevar.h>
   60 #include <sys/sysctl.h>
   61 #include <sys/vmmeter.h>
   62 #include <sys/vnode.h>
   63 #include <geom/geom.h>
   64 #include <vm/vm.h>
   65 #include <vm/vm_param.h>
   66 #include <vm/vm_kern.h>
   67 #include <vm/vm_pageout.h>
   68 #include <vm/vm_page.h>
   69 #include <vm/vm_object.h>
   70 #include <vm/vm_extern.h>
   71 #include <vm/vm_map.h>
   72 #include "opt_directio.h"
   73 #include "opt_swap.h"
   74 
   75 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
   76 
   77 struct  bio_ops bioops;         /* I/O operation notification */
   78 
   79 struct  buf_ops buf_ops_bio = {
   80         .bop_name       =       "buf_ops_bio",
   81         .bop_write      =       bufwrite,
   82         .bop_strategy   =       bufstrategy,
   83         .bop_sync       =       bufsync,
   84         .bop_bdflush    =       bufbdflush,
   85 };
   86 
   87 /*
   88  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
   89  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
   90  */
   91 struct buf *buf;                /* buffer header pool */
   92 
   93 static struct proc *bufdaemonproc;
   94 
   95 static int inmem(struct vnode *vp, daddr_t blkno);
   96 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
   97                 vm_offset_t to);
   98 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
   99                 vm_offset_t to);
  100 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
  101                                int pageno, vm_page_t m);
  102 static void vfs_clean_pages(struct buf *bp);
  103 static void vfs_setdirty(struct buf *bp);
  104 static void vfs_setdirty_locked_object(struct buf *bp);
  105 static void vfs_vmio_release(struct buf *bp);
  106 static int vfs_bio_clcheck(struct vnode *vp, int size,
  107                 daddr_t lblkno, daddr_t blkno);
  108 static int flushbufqueues(int, int);
  109 static void buf_daemon(void);
  110 static void bremfreel(struct buf *bp);
  111 
  112 int vmiodirenable = TRUE;
  113 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
  114     "Use the VM system for directory writes");
  115 int runningbufspace;
  116 SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
  117     "Amount of presently outstanding async buffer io");
  118 static int bufspace;
  119 SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
  120     "KVA memory used for bufs");
  121 static int maxbufspace;
  122 SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
  123     "Maximum allowed value of bufspace (including buf_daemon)");
  124 static int bufmallocspace;
  125 SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
  126     "Amount of malloced memory for buffers");
  127 static int maxbufmallocspace;
  128 SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
  129     "Maximum amount of malloced memory for buffers");
  130 static int lobufspace;
  131 SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
  132     "Minimum amount of buffers we want to have");
  133 int hibufspace;
  134 SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
  135     "Maximum allowed value of bufspace (excluding buf_daemon)");
  136 static int bufreusecnt;
  137 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
  138     "Number of times we have reused a buffer");
  139 static int buffreekvacnt;
  140 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
  141     "Number of times we have freed the KVA space from some buffer");
  142 static int bufdefragcnt;
  143 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
  144     "Number of times we have had to repeat buffer allocation to defragment");
  145 static int lorunningspace;
  146 SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
  147     "Minimum preferred space used for in-progress I/O");
  148 static int hirunningspace;
  149 SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
  150     "Maximum amount of space to use for in-progress I/O");
  151 int dirtybufferflushes;
  152 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
  153     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
  154 int bdwriteskip;
  155 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
  156     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
  157 int altbufferflushes;
  158 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
  159     0, "Number of fsync flushes to limit dirty buffers");
  160 static int recursiveflushes;
  161 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
  162     0, "Number of flushes skipped due to being recursive");
  163 static int numdirtybuffers;
  164 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
  165     "Number of buffers that are dirty (has unwritten changes) at the moment");
  166 static int lodirtybuffers;
  167 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
  168     "How many buffers we want to have free before bufdaemon can sleep");
  169 static int hidirtybuffers;
  170 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
  171     "When the number of dirty buffers is considered severe");
  172 int dirtybufthresh;
  173 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
  174     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
  175 static int numfreebuffers;
  176 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
  177     "Number of free buffers");
  178 static int lofreebuffers;
  179 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
  180    "XXX Unused");
  181 static int hifreebuffers;
  182 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
  183    "XXX Complicatedly unused");
  184 static int getnewbufcalls;
  185 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
  186    "Number of calls to getnewbuf");
  187 static int getnewbufrestarts;
  188 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
  189     "Number of times getnewbuf has had to restart a buffer aquisition");
  190 
  191 /*
  192  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  193  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  194  * is idling.
  195  */
  196 static int bd_request;
  197 
  198 /*
  199  * This lock synchronizes access to bd_request.
  200  */
  201 static struct mtx bdlock;
  202 
  203 /*
  204  * bogus page -- for I/O to/from partially complete buffers
  205  * this is a temporary solution to the problem, but it is not
  206  * really that bad.  it would be better to split the buffer
  207  * for input in the case of buffers partially already in memory,
  208  * but the code is intricate enough already.
  209  */
  210 vm_page_t bogus_page;
  211 
  212 /*
  213  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  214  * Set when wait starts, cleared prior to wakeup().
  215  * Used in runningbufwakeup() and waitrunningbufspace().
  216  */
  217 static int runningbufreq;
  218 
  219 /*
  220  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  221  * waitrunningbufspace().
  222  */
  223 static struct mtx rbreqlock;
  224 
  225 /* 
  226  * Synchronization (sleep/wakeup) variable for buffer requests.
  227  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
  228  * by and/or.
  229  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
  230  * getnewbuf(), and getblk().
  231  */
  232 static int needsbuffer;
  233 
  234 /*
  235  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
  236  */
  237 static struct mtx nblock;
  238 
  239 /*
  240  * Lock that protects against bwait()/bdone()/B_DONE races.
  241  */
  242 
  243 static struct mtx bdonelock;
  244 
  245 /*
  246  * Lock that protects against bwait()/bdone()/B_DONE races.
  247  */
  248 static struct mtx bpinlock;
  249 
  250 /*
  251  * Definitions for the buffer free lists.
  252  */
  253 #define BUFFER_QUEUES   6       /* number of free buffer queues */
  254 
  255 #define QUEUE_NONE      0       /* on no queue */
  256 #define QUEUE_CLEAN     1       /* non-B_DELWRI buffers */
  257 #define QUEUE_DIRTY     2       /* B_DELWRI buffers */
  258 #define QUEUE_DIRTY_GIANT 3     /* B_DELWRI buffers that need giant */
  259 #define QUEUE_EMPTYKVA  4       /* empty buffer headers w/KVA assignment */
  260 #define QUEUE_EMPTY     5       /* empty buffer headers */
  261 
  262 /* Queues for free buffers with various properties */
  263 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
  264 
  265 /* Lock for the bufqueues */
  266 static struct mtx bqlock;
  267 
  268 /*
  269  * Single global constant for BUF_WMESG, to avoid getting multiple references.
  270  * buf_wmesg is referred from macros.
  271  */
  272 const char *buf_wmesg = BUF_WMESG;
  273 
  274 #define VFS_BIO_NEED_ANY        0x01    /* any freeable buffer */
  275 #define VFS_BIO_NEED_DIRTYFLUSH 0x02    /* waiting for dirty buffer flush */
  276 #define VFS_BIO_NEED_FREE       0x04    /* wait for free bufs, hi hysteresis */
  277 #define VFS_BIO_NEED_BUFSPACE   0x08    /* wait for buf space, lo hysteresis */
  278 
  279 #ifdef DIRECTIO
  280 extern void ffs_rawread_setup(void);
  281 #endif /* DIRECTIO */
  282 /*
  283  *      numdirtywakeup:
  284  *
  285  *      If someone is blocked due to there being too many dirty buffers,
  286  *      and numdirtybuffers is now reasonable, wake them up.
  287  */
  288 
  289 static __inline void
  290 numdirtywakeup(int level)
  291 {
  292 
  293         if (numdirtybuffers <= level) {
  294                 mtx_lock(&nblock);
  295                 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
  296                         needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
  297                         wakeup(&needsbuffer);
  298                 }
  299                 mtx_unlock(&nblock);
  300         }
  301 }
  302 
  303 /*
  304  *      bufspacewakeup:
  305  *
  306  *      Called when buffer space is potentially available for recovery.
  307  *      getnewbuf() will block on this flag when it is unable to free 
  308  *      sufficient buffer space.  Buffer space becomes recoverable when 
  309  *      bp's get placed back in the queues.
  310  */
  311 
  312 static __inline void
  313 bufspacewakeup(void)
  314 {
  315 
  316         /*
  317          * If someone is waiting for BUF space, wake them up.  Even
  318          * though we haven't freed the kva space yet, the waiting
  319          * process will be able to now.
  320          */
  321         mtx_lock(&nblock);
  322         if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
  323                 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
  324                 wakeup(&needsbuffer);
  325         }
  326         mtx_unlock(&nblock);
  327 }
  328 
  329 /*
  330  * runningbufwakeup() - in-progress I/O accounting.
  331  *
  332  */
  333 void
  334 runningbufwakeup(struct buf *bp)
  335 {
  336 
  337         if (bp->b_runningbufspace) {
  338                 atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
  339                 bp->b_runningbufspace = 0;
  340                 mtx_lock(&rbreqlock);
  341                 if (runningbufreq && runningbufspace <= lorunningspace) {
  342                         runningbufreq = 0;
  343                         wakeup(&runningbufreq);
  344                 }
  345                 mtx_unlock(&rbreqlock);
  346         }
  347 }
  348 
  349 /*
  350  *      bufcountwakeup:
  351  *
  352  *      Called when a buffer has been added to one of the free queues to
  353  *      account for the buffer and to wakeup anyone waiting for free buffers.
  354  *      This typically occurs when large amounts of metadata are being handled
  355  *      by the buffer cache ( else buffer space runs out first, usually ).
  356  */
  357 
  358 static __inline void
  359 bufcountwakeup(void) 
  360 {
  361 
  362         atomic_add_int(&numfreebuffers, 1);
  363         mtx_lock(&nblock);
  364         if (needsbuffer) {
  365                 needsbuffer &= ~VFS_BIO_NEED_ANY;
  366                 if (numfreebuffers >= hifreebuffers)
  367                         needsbuffer &= ~VFS_BIO_NEED_FREE;
  368                 wakeup(&needsbuffer);
  369         }
  370         mtx_unlock(&nblock);
  371 }
  372 
  373 /*
  374  *      waitrunningbufspace()
  375  *
  376  *      runningbufspace is a measure of the amount of I/O currently
  377  *      running.  This routine is used in async-write situations to
  378  *      prevent creating huge backups of pending writes to a device.
  379  *      Only asynchronous writes are governed by this function.
  380  *
  381  *      Reads will adjust runningbufspace, but will not block based on it.
  382  *      The read load has a side effect of reducing the allowed write load.
  383  *
  384  *      This does NOT turn an async write into a sync write.  It waits  
  385  *      for earlier writes to complete and generally returns before the
  386  *      caller's write has reached the device.
  387  */
  388 void
  389 waitrunningbufspace(void)
  390 {
  391 
  392         mtx_lock(&rbreqlock);
  393         while (runningbufspace > hirunningspace) {
  394                 ++runningbufreq;
  395                 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
  396         }
  397         mtx_unlock(&rbreqlock);
  398 }
  399 
  400 
  401 /*
  402  *      vfs_buf_test_cache:
  403  *
  404  *      Called when a buffer is extended.  This function clears the B_CACHE
  405  *      bit if the newly extended portion of the buffer does not contain
  406  *      valid data.
  407  */
  408 static __inline
  409 void
  410 vfs_buf_test_cache(struct buf *bp,
  411                   vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
  412                   vm_page_t m)
  413 {
  414 
  415         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  416         if (bp->b_flags & B_CACHE) {
  417                 int base = (foff + off) & PAGE_MASK;
  418                 if (vm_page_is_valid(m, base, size) == 0)
  419                         bp->b_flags &= ~B_CACHE;
  420         }
  421 }
  422 
  423 /* Wake up the buffer daemon if necessary */
  424 static __inline
  425 void
  426 bd_wakeup(int dirtybuflevel)
  427 {
  428 
  429         mtx_lock(&bdlock);
  430         if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
  431                 bd_request = 1;
  432                 wakeup(&bd_request);
  433         }
  434         mtx_unlock(&bdlock);
  435 }
  436 
  437 /*
  438  * bd_speedup - speedup the buffer cache flushing code
  439  */
  440 
  441 static __inline
  442 void
  443 bd_speedup(void)
  444 {
  445 
  446         bd_wakeup(1);
  447 }
  448 
  449 /*
  450  * Calculating buffer cache scaling values and reserve space for buffer
  451  * headers.  This is called during low level kernel initialization and
  452  * may be called more then once.  We CANNOT write to the memory area
  453  * being reserved at this time.
  454  */
  455 caddr_t
  456 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
  457 {
  458         int maxbuf;
  459 
  460         /*
  461          * physmem_est is in pages.  Convert it to kilobytes (assumes
  462          * PAGE_SIZE is >= 1K)
  463          */
  464         physmem_est = physmem_est * (PAGE_SIZE / 1024);
  465 
  466         /*
  467          * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
  468          * For the first 64MB of ram nominally allocate sufficient buffers to
  469          * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
  470          * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
  471          * the buffer cache we limit the eventual kva reservation to
  472          * maxbcache bytes.
  473          *
  474          * factor represents the 1/4 x ram conversion.
  475          */
  476         if (nbuf == 0) {
  477                 int factor = 4 * BKVASIZE / 1024;
  478 
  479                 nbuf = 50;
  480                 if (physmem_est > 4096)
  481                         nbuf += min((physmem_est - 4096) / factor,
  482                             65536 / factor);
  483                 if (physmem_est > 65536)
  484                         nbuf += (physmem_est - 65536) * 2 / (factor * 5);
  485 
  486                 if (maxbcache && nbuf > maxbcache / BKVASIZE)
  487                         nbuf = maxbcache / BKVASIZE;
  488 
  489                 /* XXX Avoid integer overflows later on with maxbufspace. */
  490                 maxbuf = (INT_MAX / 3) / BKVASIZE;
  491                 if (nbuf > maxbuf)
  492                         nbuf = maxbuf;
  493         }
  494 
  495 #if 0
  496         /*
  497          * Do not allow the buffer_map to be more then 1/2 the size of the
  498          * kernel_map.
  499          */
  500         if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) / 
  501             (BKVASIZE * 2)) {
  502                 nbuf = (kernel_map->max_offset - kernel_map->min_offset) / 
  503                     (BKVASIZE * 2);
  504                 printf("Warning: nbufs capped at %d\n", nbuf);
  505         }
  506 #endif
  507 
  508         /*
  509          * swbufs are used as temporary holders for I/O, such as paging I/O.
  510          * We have no less then 16 and no more then 256.
  511          */
  512         nswbuf = max(min(nbuf/4, 256), 16);
  513 #ifdef NSWBUF_MIN
  514         if (nswbuf < NSWBUF_MIN)
  515                 nswbuf = NSWBUF_MIN;
  516 #endif
  517 #ifdef DIRECTIO
  518         ffs_rawread_setup();
  519 #endif
  520 
  521         /*
  522          * Reserve space for the buffer cache buffers
  523          */
  524         swbuf = (void *)v;
  525         v = (caddr_t)(swbuf + nswbuf);
  526         buf = (void *)v;
  527         v = (caddr_t)(buf + nbuf);
  528 
  529         return(v);
  530 }
  531 
  532 /* Initialize the buffer subsystem.  Called before use of any buffers. */
  533 void
  534 bufinit(void)
  535 {
  536         struct buf *bp;
  537         int i;
  538 
  539         mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
  540         mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
  541         mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
  542         mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
  543         mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
  544         mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
  545 
  546         /* next, make a null set of free lists */
  547         for (i = 0; i < BUFFER_QUEUES; i++)
  548                 TAILQ_INIT(&bufqueues[i]);
  549 
  550         /* finally, initialize each buffer header and stick on empty q */
  551         for (i = 0; i < nbuf; i++) {
  552                 bp = &buf[i];
  553                 bzero(bp, sizeof *bp);
  554                 bp->b_flags = B_INVAL;  /* we're just an empty header */
  555                 bp->b_rcred = NOCRED;
  556                 bp->b_wcred = NOCRED;
  557                 bp->b_qindex = QUEUE_EMPTY;
  558                 bp->b_vflags = 0;
  559                 bp->b_xflags = 0;
  560                 LIST_INIT(&bp->b_dep);
  561                 BUF_LOCKINIT(bp);
  562                 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
  563         }
  564 
  565         /*
  566          * maxbufspace is the absolute maximum amount of buffer space we are 
  567          * allowed to reserve in KVM and in real terms.  The absolute maximum
  568          * is nominally used by buf_daemon.  hibufspace is the nominal maximum
  569          * used by most other processes.  The differential is required to 
  570          * ensure that buf_daemon is able to run when other processes might 
  571          * be blocked waiting for buffer space.
  572          *
  573          * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
  574          * this may result in KVM fragmentation which is not handled optimally
  575          * by the system.
  576          */
  577         maxbufspace = nbuf * BKVASIZE;
  578         hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
  579         lobufspace = hibufspace - MAXBSIZE;
  580 
  581         lorunningspace = 512 * 1024;
  582         hirunningspace = 1024 * 1024;
  583 
  584 /*
  585  * Limit the amount of malloc memory since it is wired permanently into
  586  * the kernel space.  Even though this is accounted for in the buffer
  587  * allocation, we don't want the malloced region to grow uncontrolled.
  588  * The malloc scheme improves memory utilization significantly on average
  589  * (small) directories.
  590  */
  591         maxbufmallocspace = hibufspace / 20;
  592 
  593 /*
  594  * Reduce the chance of a deadlock occuring by limiting the number
  595  * of delayed-write dirty buffers we allow to stack up.
  596  */
  597         hidirtybuffers = nbuf / 4 + 20;
  598         dirtybufthresh = hidirtybuffers * 9 / 10;
  599         numdirtybuffers = 0;
  600 /*
  601  * To support extreme low-memory systems, make sure hidirtybuffers cannot
  602  * eat up all available buffer space.  This occurs when our minimum cannot
  603  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
  604  * BKVASIZE'd (8K) buffers.
  605  */
  606         while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
  607                 hidirtybuffers >>= 1;
  608         }
  609         lodirtybuffers = hidirtybuffers / 2;
  610 
  611 /*
  612  * Try to keep the number of free buffers in the specified range,
  613  * and give special processes (e.g. like buf_daemon) access to an 
  614  * emergency reserve.
  615  */
  616         lofreebuffers = nbuf / 18 + 5;
  617         hifreebuffers = 2 * lofreebuffers;
  618         numfreebuffers = nbuf;
  619 
  620 /*
  621  * Maximum number of async ops initiated per buf_daemon loop.  This is
  622  * somewhat of a hack at the moment, we really need to limit ourselves
  623  * based on the number of bytes of I/O in-transit that were initiated
  624  * from buf_daemon.
  625  */
  626 
  627         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
  628             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
  629 }
  630 
  631 /*
  632  * bfreekva() - free the kva allocation for a buffer.
  633  *
  634  *      Since this call frees up buffer space, we call bufspacewakeup().
  635  */
  636 static void
  637 bfreekva(struct buf *bp)
  638 {
  639 
  640         if (bp->b_kvasize) {
  641                 atomic_add_int(&buffreekvacnt, 1);
  642                 atomic_subtract_int(&bufspace, bp->b_kvasize);
  643                 vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
  644                     (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
  645                 bp->b_kvasize = 0;
  646                 bufspacewakeup();
  647         }
  648 }
  649 
  650 /*
  651  *      bremfree:
  652  *
  653  *      Mark the buffer for removal from the appropriate free list in brelse.
  654  *      
  655  */
  656 void
  657 bremfree(struct buf *bp)
  658 {
  659 
  660         CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  661         KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
  662         KASSERT((bp->b_flags & B_REMFREE) == 0,
  663             ("bremfree: buffer %p already marked for delayed removal.", bp));
  664         KASSERT(bp->b_qindex != QUEUE_NONE,
  665             ("bremfree: buffer %p not on a queue.", bp));
  666 
  667         bp->b_flags |= B_REMFREE;
  668         /* Fixup numfreebuffers count.  */
  669         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
  670                 atomic_subtract_int(&numfreebuffers, 1);
  671 }
  672 
  673 /*
  674  *      bremfreef:
  675  *
  676  *      Force an immediate removal from a free list.  Used only in nfs when
  677  *      it abuses the b_freelist pointer.
  678  */
  679 void
  680 bremfreef(struct buf *bp)
  681 {
  682         mtx_lock(&bqlock);
  683         bremfreel(bp);
  684         mtx_unlock(&bqlock);
  685 }
  686 
  687 /*
  688  *      bremfreel:
  689  *
  690  *      Removes a buffer from the free list, must be called with the
  691  *      bqlock held.
  692  */
  693 static void
  694 bremfreel(struct buf *bp)
  695 {
  696         CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
  697             bp, bp->b_vp, bp->b_flags);
  698         KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
  699         KASSERT(bp->b_qindex != QUEUE_NONE,
  700             ("bremfreel: buffer %p not on a queue.", bp));
  701         mtx_assert(&bqlock, MA_OWNED);
  702 
  703         TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
  704         bp->b_qindex = QUEUE_NONE;
  705         /*
  706          * If this was a delayed bremfree() we only need to remove the buffer
  707          * from the queue and return the stats are already done.
  708          */
  709         if (bp->b_flags & B_REMFREE) {
  710                 bp->b_flags &= ~B_REMFREE;
  711                 return;
  712         }
  713         /*
  714          * Fixup numfreebuffers count.  If the buffer is invalid or not
  715          * delayed-write, the buffer was free and we must decrement
  716          * numfreebuffers.
  717          */
  718         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
  719                 atomic_subtract_int(&numfreebuffers, 1);
  720 }
  721 
  722 
  723 /*
  724  * Get a buffer with the specified data.  Look in the cache first.  We
  725  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
  726  * is set, the buffer is valid and we do not have to do anything ( see
  727  * getblk() ).  This is really just a special case of breadn().
  728  */
  729 int
  730 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
  731     struct buf **bpp)
  732 {
  733 
  734         return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
  735 }
  736 
  737 /*
  738  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
  739  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
  740  * the buffer is valid and we do not have to do anything.
  741  */
  742 void
  743 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
  744     int cnt, struct ucred * cred)
  745 {
  746         struct buf *rabp;
  747         int i;
  748 
  749         for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
  750                 if (inmem(vp, *rablkno))
  751                         continue;
  752                 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
  753 
  754                 if ((rabp->b_flags & B_CACHE) == 0) {
  755                         if (!TD_IS_IDLETHREAD(curthread))
  756                                 curthread->td_ru.ru_inblock++;
  757                         rabp->b_flags |= B_ASYNC;
  758                         rabp->b_flags &= ~B_INVAL;
  759                         rabp->b_ioflags &= ~BIO_ERROR;
  760                         rabp->b_iocmd = BIO_READ;
  761                         if (rabp->b_rcred == NOCRED && cred != NOCRED)
  762                                 rabp->b_rcred = crhold(cred);
  763                         vfs_busy_pages(rabp, 0);
  764                         BUF_KERNPROC(rabp);
  765                         rabp->b_iooffset = dbtob(rabp->b_blkno);
  766                         bstrategy(rabp);
  767                 } else {
  768                         brelse(rabp);
  769                 }
  770         }
  771 }
  772 
  773 /*
  774  * Operates like bread, but also starts asynchronous I/O on
  775  * read-ahead blocks.
  776  */
  777 int
  778 breadn(struct vnode * vp, daddr_t blkno, int size,
  779     daddr_t * rablkno, int *rabsize,
  780     int cnt, struct ucred * cred, struct buf **bpp)
  781 {
  782         struct buf *bp;
  783         int rv = 0, readwait = 0;
  784 
  785         CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
  786         *bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
  787 
  788         /* if not found in cache, do some I/O */
  789         if ((bp->b_flags & B_CACHE) == 0) {
  790                 if (!TD_IS_IDLETHREAD(curthread))
  791                         curthread->td_ru.ru_inblock++;
  792                 bp->b_iocmd = BIO_READ;
  793                 bp->b_flags &= ~B_INVAL;
  794                 bp->b_ioflags &= ~BIO_ERROR;
  795                 if (bp->b_rcred == NOCRED && cred != NOCRED)
  796                         bp->b_rcred = crhold(cred);
  797                 vfs_busy_pages(bp, 0);
  798                 bp->b_iooffset = dbtob(bp->b_blkno);
  799                 bstrategy(bp);
  800                 ++readwait;
  801         }
  802 
  803         breada(vp, rablkno, rabsize, cnt, cred);
  804 
  805         if (readwait) {
  806                 rv = bufwait(bp);
  807         }
  808         return (rv);
  809 }
  810 
  811 /*
  812  * Write, release buffer on completion.  (Done by iodone
  813  * if async).  Do not bother writing anything if the buffer
  814  * is invalid.
  815  *
  816  * Note that we set B_CACHE here, indicating that buffer is
  817  * fully valid and thus cacheable.  This is true even of NFS
  818  * now so we set it generally.  This could be set either here 
  819  * or in biodone() since the I/O is synchronous.  We put it
  820  * here.
  821  */
  822 int
  823 bufwrite(struct buf *bp)
  824 {
  825         int oldflags;
  826         struct vnode *vp;
  827         int vp_md;
  828 
  829         CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  830         if (bp->b_flags & B_INVAL) {
  831                 brelse(bp);
  832                 return (0);
  833         }
  834 
  835         oldflags = bp->b_flags;
  836 
  837         if (BUF_REFCNT(bp) == 0)
  838                 panic("bufwrite: buffer is not busy???");
  839 
  840         if (bp->b_pin_count > 0)
  841                 bunpin_wait(bp);
  842 
  843         KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
  844             ("FFS background buffer should not get here %p", bp));
  845 
  846         vp = bp->b_vp;
  847         if (vp)
  848                 vp_md = vp->v_vflag & VV_MD;
  849         else
  850                 vp_md = 0;
  851 
  852         /* Mark the buffer clean */
  853         bundirty(bp);
  854 
  855         bp->b_flags &= ~B_DONE;
  856         bp->b_ioflags &= ~BIO_ERROR;
  857         bp->b_flags |= B_CACHE;
  858         bp->b_iocmd = BIO_WRITE;
  859 
  860         bufobj_wref(bp->b_bufobj);
  861         vfs_busy_pages(bp, 1);
  862 
  863         /*
  864          * Normal bwrites pipeline writes
  865          */
  866         bp->b_runningbufspace = bp->b_bufsize;
  867         atomic_add_int(&runningbufspace, bp->b_runningbufspace);
  868 
  869         if (!TD_IS_IDLETHREAD(curthread))
  870                 curthread->td_ru.ru_oublock++;
  871         if (oldflags & B_ASYNC)
  872                 BUF_KERNPROC(bp);
  873         bp->b_iooffset = dbtob(bp->b_blkno);
  874         bstrategy(bp);
  875 
  876         if ((oldflags & B_ASYNC) == 0) {
  877                 int rtval = bufwait(bp);
  878                 brelse(bp);
  879                 return (rtval);
  880         } else {
  881                 /*
  882                  * don't allow the async write to saturate the I/O
  883                  * system.  We will not deadlock here because
  884                  * we are blocking waiting for I/O that is already in-progress
  885                  * to complete. We do not block here if it is the update
  886                  * or syncer daemon trying to clean up as that can lead
  887                  * to deadlock.
  888                  */
  889                 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
  890                         waitrunningbufspace();
  891         }
  892 
  893         return (0);
  894 }
  895 
  896 void
  897 bufbdflush(struct bufobj *bo, struct buf *bp)
  898 {
  899         struct buf *nbp;
  900 
  901         if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
  902                 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
  903                 altbufferflushes++;
  904         } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
  905                 BO_LOCK(bo);
  906                 /*
  907                  * Try to find a buffer to flush.
  908                  */
  909                 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
  910                         if ((nbp->b_vflags & BV_BKGRDINPROG) ||
  911                             BUF_LOCK(nbp,
  912                                      LK_EXCLUSIVE | LK_NOWAIT, NULL))
  913                                 continue;
  914                         if (bp == nbp)
  915                                 panic("bdwrite: found ourselves");
  916                         BO_UNLOCK(bo);
  917                         /* Don't countdeps with the bo lock held. */
  918                         if (buf_countdeps(nbp, 0)) {
  919                                 BO_LOCK(bo);
  920                                 BUF_UNLOCK(nbp);
  921                                 continue;
  922                         }
  923                         if (nbp->b_flags & B_CLUSTEROK) {
  924                                 vfs_bio_awrite(nbp);
  925                         } else {
  926                                 bremfree(nbp);
  927                                 bawrite(nbp);
  928                         }
  929                         dirtybufferflushes++;
  930                         break;
  931                 }
  932                 if (nbp == NULL)
  933                         BO_UNLOCK(bo);
  934         }
  935 }
  936 
  937 /*
  938  * Delayed write. (Buffer is marked dirty).  Do not bother writing
  939  * anything if the buffer is marked invalid.
  940  *
  941  * Note that since the buffer must be completely valid, we can safely
  942  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
  943  * biodone() in order to prevent getblk from writing the buffer
  944  * out synchronously.
  945  */
  946 void
  947 bdwrite(struct buf *bp)
  948 {
  949         struct thread *td = curthread;
  950         struct vnode *vp;
  951         struct bufobj *bo;
  952 
  953         CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  954         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
  955         KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
  956 
  957         if (bp->b_flags & B_INVAL) {
  958                 brelse(bp);
  959                 return;
  960         }
  961 
  962         /*
  963          * If we have too many dirty buffers, don't create any more.
  964          * If we are wildly over our limit, then force a complete
  965          * cleanup. Otherwise, just keep the situation from getting
  966          * out of control. Note that we have to avoid a recursive
  967          * disaster and not try to clean up after our own cleanup!
  968          */
  969         vp = bp->b_vp;
  970         bo = bp->b_bufobj;
  971         if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
  972                 td->td_pflags |= TDP_INBDFLUSH;
  973                 BO_BDFLUSH(bo, bp);
  974                 td->td_pflags &= ~TDP_INBDFLUSH;
  975         } else
  976                 recursiveflushes++;
  977 
  978         bdirty(bp);
  979         /*
  980          * Set B_CACHE, indicating that the buffer is fully valid.  This is
  981          * true even of NFS now.
  982          */
  983         bp->b_flags |= B_CACHE;
  984 
  985         /*
  986          * This bmap keeps the system from needing to do the bmap later,
  987          * perhaps when the system is attempting to do a sync.  Since it
  988          * is likely that the indirect block -- or whatever other datastructure
  989          * that the filesystem needs is still in memory now, it is a good
  990          * thing to do this.  Note also, that if the pageout daemon is
  991          * requesting a sync -- there might not be enough memory to do
  992          * the bmap then...  So, this is important to do.
  993          */
  994         if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
  995                 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
  996         }
  997 
  998         /*
  999          * Set the *dirty* buffer range based upon the VM system dirty pages.
 1000          */
 1001         vfs_setdirty(bp);
 1002 
 1003         /*
 1004          * We need to do this here to satisfy the vnode_pager and the
 1005          * pageout daemon, so that it thinks that the pages have been
 1006          * "cleaned".  Note that since the pages are in a delayed write
 1007          * buffer -- the VFS layer "will" see that the pages get written
 1008          * out on the next sync, or perhaps the cluster will be completed.
 1009          */
 1010         vfs_clean_pages(bp);
 1011         bqrelse(bp);
 1012 
 1013         /*
 1014          * Wakeup the buffer flushing daemon if we have a lot of dirty
 1015          * buffers (midpoint between our recovery point and our stall
 1016          * point).
 1017          */
 1018         bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1019 
 1020         /*
 1021          * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 1022          * due to the softdep code.
 1023          */
 1024 }
 1025 
 1026 /*
 1027  *      bdirty:
 1028  *
 1029  *      Turn buffer into delayed write request.  We must clear BIO_READ and
 1030  *      B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
 1031  *      itself to properly update it in the dirty/clean lists.  We mark it
 1032  *      B_DONE to ensure that any asynchronization of the buffer properly
 1033  *      clears B_DONE ( else a panic will occur later ).  
 1034  *
 1035  *      bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
 1036  *      might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
 1037  *      should only be called if the buffer is known-good.
 1038  *
 1039  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1040  *      count.
 1041  *
 1042  *      The buffer must be on QUEUE_NONE.
 1043  */
 1044 void
 1045 bdirty(struct buf *bp)
 1046 {
 1047 
 1048         CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
 1049             bp, bp->b_vp, bp->b_flags);
 1050         KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
 1051         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1052         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1053             ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1054         bp->b_flags &= ~(B_RELBUF);
 1055         bp->b_iocmd = BIO_WRITE;
 1056 
 1057         if ((bp->b_flags & B_DELWRI) == 0) {
 1058                 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
 1059                 reassignbuf(bp);
 1060                 atomic_add_int(&numdirtybuffers, 1);
 1061                 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1062         }
 1063 }
 1064 
 1065 /*
 1066  *      bundirty:
 1067  *
 1068  *      Clear B_DELWRI for buffer.
 1069  *
 1070  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1071  *      count.
 1072  *      
 1073  *      The buffer must be on QUEUE_NONE.
 1074  */
 1075 
 1076 void
 1077 bundirty(struct buf *bp)
 1078 {
 1079 
 1080         CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1081         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1082         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1083             ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1084         KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
 1085 
 1086         if (bp->b_flags & B_DELWRI) {
 1087                 bp->b_flags &= ~B_DELWRI;
 1088                 reassignbuf(bp);
 1089                 atomic_subtract_int(&numdirtybuffers, 1);
 1090                 numdirtywakeup(lodirtybuffers);
 1091         }
 1092         /*
 1093          * Since it is now being written, we can clear its deferred write flag.
 1094          */
 1095         bp->b_flags &= ~B_DEFERRED;
 1096 }
 1097 
 1098 /*
 1099  *      bawrite:
 1100  *
 1101  *      Asynchronous write.  Start output on a buffer, but do not wait for
 1102  *      it to complete.  The buffer is released when the output completes.
 1103  *
 1104  *      bwrite() ( or the VOP routine anyway ) is responsible for handling 
 1105  *      B_INVAL buffers.  Not us.
 1106  */
 1107 void
 1108 bawrite(struct buf *bp)
 1109 {
 1110 
 1111         bp->b_flags |= B_ASYNC;
 1112         (void) bwrite(bp);
 1113 }
 1114 
 1115 /*
 1116  *      bwillwrite:
 1117  *
 1118  *      Called prior to the locking of any vnodes when we are expecting to
 1119  *      write.  We do not want to starve the buffer cache with too many
 1120  *      dirty buffers so we block here.  By blocking prior to the locking
 1121  *      of any vnodes we attempt to avoid the situation where a locked vnode
 1122  *      prevents the various system daemons from flushing related buffers.
 1123  */
 1124 
 1125 void
 1126 bwillwrite(void)
 1127 {
 1128 
 1129         if (numdirtybuffers >= hidirtybuffers) {
 1130                 mtx_lock(&nblock);
 1131                 while (numdirtybuffers >= hidirtybuffers) {
 1132                         bd_wakeup(1);
 1133                         needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
 1134                         msleep(&needsbuffer, &nblock,
 1135                             (PRIBIO + 4), "flswai", 0);
 1136                 }
 1137                 mtx_unlock(&nblock);
 1138         }
 1139 }
 1140 
 1141 /*
 1142  * Return true if we have too many dirty buffers.
 1143  */
 1144 int
 1145 buf_dirty_count_severe(void)
 1146 {
 1147 
 1148         return(numdirtybuffers >= hidirtybuffers);
 1149 }
 1150 
 1151 /*
 1152  *      brelse:
 1153  *
 1154  *      Release a busy buffer and, if requested, free its resources.  The
 1155  *      buffer will be stashed in the appropriate bufqueue[] allowing it
 1156  *      to be accessed later as a cache entity or reused for other purposes.
 1157  */
 1158 void
 1159 brelse(struct buf *bp)
 1160 {
 1161         CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
 1162             bp, bp->b_vp, bp->b_flags);
 1163         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1164             ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1165 
 1166         if (bp->b_flags & B_MANAGED) {
 1167                 bqrelse(bp);
 1168                 return;
 1169         }
 1170 
 1171         if (bp->b_iocmd == BIO_WRITE &&
 1172             (bp->b_ioflags & BIO_ERROR) &&
 1173             !(bp->b_flags & B_INVAL)) {
 1174                 /*
 1175                  * Failed write, redirty.  Must clear BIO_ERROR to prevent
 1176                  * pages from being scrapped.  If B_INVAL is set then
 1177                  * this case is not run and the next case is run to 
 1178                  * destroy the buffer.  B_INVAL can occur if the buffer
 1179                  * is outside the range supported by the underlying device.
 1180                  */
 1181                 bp->b_ioflags &= ~BIO_ERROR;
 1182                 bdirty(bp);
 1183         } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 1184             (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
 1185                 /*
 1186                  * Either a failed I/O or we were asked to free or not
 1187                  * cache the buffer.
 1188                  */
 1189                 bp->b_flags |= B_INVAL;
 1190                 if (!LIST_EMPTY(&bp->b_dep))
 1191                         buf_deallocate(bp);
 1192                 if (bp->b_flags & B_DELWRI) {
 1193                         atomic_subtract_int(&numdirtybuffers, 1);
 1194                         numdirtywakeup(lodirtybuffers);
 1195                 }
 1196                 bp->b_flags &= ~(B_DELWRI | B_CACHE);
 1197                 if ((bp->b_flags & B_VMIO) == 0) {
 1198                         if (bp->b_bufsize)
 1199                                 allocbuf(bp, 0);
 1200                         if (bp->b_vp)
 1201                                 brelvp(bp);
 1202                 }
 1203         }
 1204 
 1205         /*
 1206          * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release() 
 1207          * is called with B_DELWRI set, the underlying pages may wind up
 1208          * getting freed causing a previous write (bdwrite()) to get 'lost'
 1209          * because pages associated with a B_DELWRI bp are marked clean.
 1210          * 
 1211          * We still allow the B_INVAL case to call vfs_vmio_release(), even
 1212          * if B_DELWRI is set.
 1213          *
 1214          * If B_DELWRI is not set we may have to set B_RELBUF if we are low
 1215          * on pages to return pages to the VM page queues.
 1216          */
 1217         if (bp->b_flags & B_DELWRI)
 1218                 bp->b_flags &= ~B_RELBUF;
 1219         else if (vm_page_count_severe()) {
 1220                 /*
 1221                  * XXX This lock may not be necessary since BKGRDINPROG
 1222                  * cannot be set while we hold the buf lock, it can only be
 1223                  * cleared if it is already pending.
 1224                  */
 1225                 if (bp->b_vp) {
 1226                         BO_LOCK(bp->b_bufobj);
 1227                         if (!(bp->b_vflags & BV_BKGRDINPROG))
 1228                                 bp->b_flags |= B_RELBUF;
 1229                         BO_UNLOCK(bp->b_bufobj);
 1230                 } else
 1231                         bp->b_flags |= B_RELBUF;
 1232         }
 1233 
 1234         /*
 1235          * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 1236          * constituted, not even NFS buffers now.  Two flags effect this.  If
 1237          * B_INVAL, the struct buf is invalidated but the VM object is kept
 1238          * around ( i.e. so it is trivial to reconstitute the buffer later ).
 1239          *
 1240          * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 1241          * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 1242          * buffer is also B_INVAL because it hits the re-dirtying code above.
 1243          *
 1244          * Normally we can do this whether a buffer is B_DELWRI or not.  If
 1245          * the buffer is an NFS buffer, it is tracking piecemeal writes or
 1246          * the commit state and we cannot afford to lose the buffer. If the
 1247          * buffer has a background write in progress, we need to keep it
 1248          * around to prevent it from being reconstituted and starting a second
 1249          * background write.
 1250          */
 1251         if ((bp->b_flags & B_VMIO)
 1252             && !(bp->b_vp->v_mount != NULL &&
 1253                  (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 1254                  !vn_isdisk(bp->b_vp, NULL) &&
 1255                  (bp->b_flags & B_DELWRI))
 1256             ) {
 1257 
 1258                 int i, j, resid;
 1259                 vm_page_t m;
 1260                 off_t foff;
 1261                 vm_pindex_t poff;
 1262                 vm_object_t obj;
 1263 
 1264                 obj = bp->b_bufobj->bo_object;
 1265 
 1266                 /*
 1267                  * Get the base offset and length of the buffer.  Note that 
 1268                  * in the VMIO case if the buffer block size is not
 1269                  * page-aligned then b_data pointer may not be page-aligned.
 1270                  * But our b_pages[] array *IS* page aligned.
 1271                  *
 1272                  * block sizes less then DEV_BSIZE (usually 512) are not 
 1273                  * supported due to the page granularity bits (m->valid,
 1274                  * m->dirty, etc...). 
 1275                  *
 1276                  * See man buf(9) for more information
 1277                  */
 1278                 resid = bp->b_bufsize;
 1279                 foff = bp->b_offset;
 1280                 VM_OBJECT_LOCK(obj);
 1281                 for (i = 0; i < bp->b_npages; i++) {
 1282                         int had_bogus = 0;
 1283 
 1284                         m = bp->b_pages[i];
 1285 
 1286                         /*
 1287                          * If we hit a bogus page, fixup *all* the bogus pages
 1288                          * now.
 1289                          */
 1290                         if (m == bogus_page) {
 1291                                 poff = OFF_TO_IDX(bp->b_offset);
 1292                                 had_bogus = 1;
 1293 
 1294                                 for (j = i; j < bp->b_npages; j++) {
 1295                                         vm_page_t mtmp;
 1296                                         mtmp = bp->b_pages[j];
 1297                                         if (mtmp == bogus_page) {
 1298                                                 mtmp = vm_page_lookup(obj, poff + j);
 1299                                                 if (!mtmp) {
 1300                                                         panic("brelse: page missing\n");
 1301                                                 }
 1302                                                 bp->b_pages[j] = mtmp;
 1303                                         }
 1304                                 }
 1305 
 1306                                 if ((bp->b_flags & B_INVAL) == 0) {
 1307                                         pmap_qenter(
 1308                                             trunc_page((vm_offset_t)bp->b_data),
 1309                                             bp->b_pages, bp->b_npages);
 1310                                 }
 1311                                 m = bp->b_pages[i];
 1312                         }
 1313                         if ((bp->b_flags & B_NOCACHE) ||
 1314                             (bp->b_ioflags & BIO_ERROR)) {
 1315                                 int poffset = foff & PAGE_MASK;
 1316                                 int presid = resid > (PAGE_SIZE - poffset) ?
 1317                                         (PAGE_SIZE - poffset) : resid;
 1318 
 1319                                 KASSERT(presid >= 0, ("brelse: extra page"));
 1320                                 vm_page_lock_queues();
 1321                                 vm_page_set_invalid(m, poffset, presid);
 1322                                 vm_page_unlock_queues();
 1323                                 if (had_bogus)
 1324                                         printf("avoided corruption bug in bogus_page/brelse code\n");
 1325                         }
 1326                         resid -= PAGE_SIZE - (foff & PAGE_MASK);
 1327                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 1328                 }
 1329                 VM_OBJECT_UNLOCK(obj);
 1330                 if (bp->b_flags & (B_INVAL | B_RELBUF))
 1331                         vfs_vmio_release(bp);
 1332 
 1333         } else if (bp->b_flags & B_VMIO) {
 1334 
 1335                 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
 1336                         vfs_vmio_release(bp);
 1337                 }
 1338 
 1339         } else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
 1340                 if (bp->b_bufsize != 0)
 1341                         allocbuf(bp, 0);
 1342                 if (bp->b_vp != NULL)
 1343                         brelvp(bp);
 1344         }
 1345                         
 1346         if (BUF_REFCNT(bp) > 1) {
 1347                 /* do not release to free list */
 1348                 BUF_UNLOCK(bp);
 1349                 return;
 1350         }
 1351 
 1352         /* enqueue */
 1353         mtx_lock(&bqlock);
 1354         /* Handle delayed bremfree() processing. */
 1355         if (bp->b_flags & B_REMFREE)
 1356                 bremfreel(bp);
 1357         if (bp->b_qindex != QUEUE_NONE)
 1358                 panic("brelse: free buffer onto another queue???");
 1359 
 1360         /* buffers with no memory */
 1361         if (bp->b_bufsize == 0) {
 1362                 bp->b_flags |= B_INVAL;
 1363                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1364                 if (bp->b_vflags & BV_BKGRDINPROG)
 1365                         panic("losing buffer 1");
 1366                 if (bp->b_kvasize) {
 1367                         bp->b_qindex = QUEUE_EMPTYKVA;
 1368                 } else {
 1369                         bp->b_qindex = QUEUE_EMPTY;
 1370                 }
 1371                 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1372         /* buffers with junk contents */
 1373         } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 1374             (bp->b_ioflags & BIO_ERROR)) {
 1375                 bp->b_flags |= B_INVAL;
 1376                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1377                 if (bp->b_vflags & BV_BKGRDINPROG)
 1378                         panic("losing buffer 2");
 1379                 bp->b_qindex = QUEUE_CLEAN;
 1380                 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
 1381         /* remaining buffers */
 1382         } else {
 1383                 if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
 1384                     (B_DELWRI|B_NEEDSGIANT))
 1385                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1386                 if (bp->b_flags & B_DELWRI)
 1387                         bp->b_qindex = QUEUE_DIRTY;
 1388                 else
 1389                         bp->b_qindex = QUEUE_CLEAN;
 1390                 if (bp->b_flags & B_AGE)
 1391                         TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1392                 else
 1393                         TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1394         }
 1395         mtx_unlock(&bqlock);
 1396 
 1397         /*
 1398          * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
 1399          * placed the buffer on the correct queue.  We must also disassociate
 1400          * the device and vnode for a B_INVAL buffer so gbincore() doesn't
 1401          * find it.
 1402          */
 1403         if (bp->b_flags & B_INVAL) {
 1404                 if (bp->b_flags & B_DELWRI)
 1405                         bundirty(bp);
 1406                 if (bp->b_vp)
 1407                         brelvp(bp);
 1408         }
 1409 
 1410         /*
 1411          * Fixup numfreebuffers count.  The bp is on an appropriate queue
 1412          * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
 1413          * We've already handled the B_INVAL case ( B_DELWRI will be clear
 1414          * if B_INVAL is set ).
 1415          */
 1416 
 1417         if (!(bp->b_flags & B_DELWRI))
 1418                 bufcountwakeup();
 1419 
 1420         /*
 1421          * Something we can maybe free or reuse
 1422          */
 1423         if (bp->b_bufsize || bp->b_kvasize)
 1424                 bufspacewakeup();
 1425 
 1426         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
 1427         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1428                 panic("brelse: not dirty");
 1429         /* unlock */
 1430         BUF_UNLOCK(bp);
 1431 }
 1432 
 1433 /*
 1434  * Release a buffer back to the appropriate queue but do not try to free
 1435  * it.  The buffer is expected to be used again soon.
 1436  *
 1437  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
 1438  * biodone() to requeue an async I/O on completion.  It is also used when
 1439  * known good buffers need to be requeued but we think we may need the data
 1440  * again soon.
 1441  *
 1442  * XXX we should be able to leave the B_RELBUF hint set on completion.
 1443  */
 1444 void
 1445 bqrelse(struct buf *bp)
 1446 {
 1447         CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1448         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1449             ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1450 
 1451         if (BUF_REFCNT(bp) > 1) {
 1452                 /* do not release to free list */
 1453                 BUF_UNLOCK(bp);
 1454                 return;
 1455         }
 1456 
 1457         if (bp->b_flags & B_MANAGED) {
 1458                 if (bp->b_flags & B_REMFREE) {
 1459                         mtx_lock(&bqlock);
 1460                         bremfreel(bp);
 1461                         mtx_unlock(&bqlock);
 1462                 }
 1463                 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1464                 BUF_UNLOCK(bp);
 1465                 return;
 1466         }
 1467 
 1468         mtx_lock(&bqlock);
 1469         /* Handle delayed bremfree() processing. */
 1470         if (bp->b_flags & B_REMFREE)
 1471                 bremfreel(bp);
 1472         if (bp->b_qindex != QUEUE_NONE)
 1473                 panic("bqrelse: free buffer onto another queue???");
 1474         /* buffers with stale but valid contents */
 1475         if (bp->b_flags & B_DELWRI) {
 1476                 if (bp->b_flags & B_NEEDSGIANT)
 1477                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1478                 else
 1479                         bp->b_qindex = QUEUE_DIRTY;
 1480                 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1481         } else {
 1482                 /*
 1483                  * XXX This lock may not be necessary since BKGRDINPROG
 1484                  * cannot be set while we hold the buf lock, it can only be
 1485                  * cleared if it is already pending.
 1486                  */
 1487                 BO_LOCK(bp->b_bufobj);
 1488                 if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
 1489                         BO_UNLOCK(bp->b_bufobj);
 1490                         bp->b_qindex = QUEUE_CLEAN;
 1491                         TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
 1492                             b_freelist);
 1493                 } else {
 1494                         /*
 1495                          * We are too low on memory, we have to try to free
 1496                          * the buffer (most importantly: the wired pages
 1497                          * making up its backing store) *now*.
 1498                          */
 1499                         BO_UNLOCK(bp->b_bufobj);
 1500                         mtx_unlock(&bqlock);
 1501                         brelse(bp);
 1502                         return;
 1503                 }
 1504         }
 1505         mtx_unlock(&bqlock);
 1506 
 1507         if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
 1508                 bufcountwakeup();
 1509 
 1510         /*
 1511          * Something we can maybe free or reuse.
 1512          */
 1513         if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
 1514                 bufspacewakeup();
 1515 
 1516         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1517         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1518                 panic("bqrelse: not dirty");
 1519         /* unlock */
 1520         BUF_UNLOCK(bp);
 1521 }
 1522 
 1523 /* Give pages used by the bp back to the VM system (where possible) */
 1524 static void
 1525 vfs_vmio_release(struct buf *bp)
 1526 {
 1527         int i;
 1528         vm_page_t m;
 1529 
 1530         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 1531         vm_page_lock_queues();
 1532         for (i = 0; i < bp->b_npages; i++) {
 1533                 m = bp->b_pages[i];
 1534                 bp->b_pages[i] = NULL;
 1535                 /*
 1536                  * In order to keep page LRU ordering consistent, put
 1537                  * everything on the inactive queue.
 1538                  */
 1539                 vm_page_unwire(m, 0);
 1540                 /*
 1541                  * We don't mess with busy pages, it is
 1542                  * the responsibility of the process that
 1543                  * busied the pages to deal with them.
 1544                  */
 1545                 if ((m->oflags & VPO_BUSY) || (m->busy != 0))
 1546                         continue;
 1547                         
 1548                 if (m->wire_count == 0) {
 1549                         /*
 1550                          * Might as well free the page if we can and it has
 1551                          * no valid data.  We also free the page if the
 1552                          * buffer was used for direct I/O
 1553                          */
 1554                         if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
 1555                             m->hold_count == 0) {
 1556                                 vm_page_free(m);
 1557                         } else if (bp->b_flags & B_DIRECT) {
 1558                                 vm_page_try_to_free(m);
 1559                         } else if (vm_page_count_severe()) {
 1560                                 vm_page_try_to_cache(m);
 1561                         }
 1562                 }
 1563         }
 1564         vm_page_unlock_queues();
 1565         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 1566         pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
 1567         
 1568         if (bp->b_bufsize) {
 1569                 bufspacewakeup();
 1570                 bp->b_bufsize = 0;
 1571         }
 1572         bp->b_npages = 0;
 1573         bp->b_flags &= ~B_VMIO;
 1574         if (bp->b_vp)
 1575                 brelvp(bp);
 1576 }
 1577 
 1578 /*
 1579  * Check to see if a block at a particular lbn is available for a clustered
 1580  * write.
 1581  */
 1582 static int
 1583 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 1584 {
 1585         struct buf *bpa;
 1586         int match;
 1587 
 1588         match = 0;
 1589 
 1590         /* If the buf isn't in core skip it */
 1591         if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
 1592                 return (0);
 1593 
 1594         /* If the buf is busy we don't want to wait for it */
 1595         if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1596                 return (0);
 1597 
 1598         /* Only cluster with valid clusterable delayed write buffers */
 1599         if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 1600             (B_DELWRI | B_CLUSTEROK))
 1601                 goto done;
 1602 
 1603         if (bpa->b_bufsize != size)
 1604                 goto done;
 1605 
 1606         /*
 1607          * Check to see if it is in the expected place on disk and that the
 1608          * block has been mapped.
 1609          */
 1610         if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 1611                 match = 1;
 1612 done:
 1613         BUF_UNLOCK(bpa);
 1614         return (match);
 1615 }
 1616 
 1617 /*
 1618  *      vfs_bio_awrite:
 1619  *
 1620  *      Implement clustered async writes for clearing out B_DELWRI buffers.
 1621  *      This is much better then the old way of writing only one buffer at
 1622  *      a time.  Note that we may not be presented with the buffers in the 
 1623  *      correct order, so we search for the cluster in both directions.
 1624  */
 1625 int
 1626 vfs_bio_awrite(struct buf *bp)
 1627 {
 1628         int i;
 1629         int j;
 1630         daddr_t lblkno = bp->b_lblkno;
 1631         struct vnode *vp = bp->b_vp;
 1632         int ncl;
 1633         int nwritten;
 1634         int size;
 1635         int maxcl;
 1636 
 1637         /*
 1638          * right now we support clustered writing only to regular files.  If
 1639          * we find a clusterable block we could be in the middle of a cluster
 1640          * rather then at the beginning.
 1641          */
 1642         if ((vp->v_type == VREG) && 
 1643             (vp->v_mount != 0) && /* Only on nodes that have the size info */
 1644             (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 1645 
 1646                 size = vp->v_mount->mnt_stat.f_iosize;
 1647                 maxcl = MAXPHYS / size;
 1648 
 1649                 VI_LOCK(vp);
 1650                 for (i = 1; i < maxcl; i++)
 1651                         if (vfs_bio_clcheck(vp, size, lblkno + i,
 1652                             bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 1653                                 break;
 1654 
 1655                 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 1656                         if (vfs_bio_clcheck(vp, size, lblkno - j,
 1657                             bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 1658                                 break;
 1659 
 1660                 VI_UNLOCK(vp);
 1661                 --j;
 1662                 ncl = i + j;
 1663                 /*
 1664                  * this is a possible cluster write
 1665                  */
 1666                 if (ncl != 1) {
 1667                         BUF_UNLOCK(bp);
 1668                         nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
 1669                         return nwritten;
 1670                 }
 1671         }
 1672         bremfree(bp);
 1673         bp->b_flags |= B_ASYNC;
 1674         /*
 1675          * default (old) behavior, writing out only one block
 1676          *
 1677          * XXX returns b_bufsize instead of b_bcount for nwritten?
 1678          */
 1679         nwritten = bp->b_bufsize;
 1680         (void) bwrite(bp);
 1681 
 1682         return nwritten;
 1683 }
 1684 
 1685 /*
 1686  *      getnewbuf:
 1687  *
 1688  *      Find and initialize a new buffer header, freeing up existing buffers 
 1689  *      in the bufqueues as necessary.  The new buffer is returned locked.
 1690  *
 1691  *      Important:  B_INVAL is not set.  If the caller wishes to throw the
 1692  *      buffer away, the caller must set B_INVAL prior to calling brelse().
 1693  *
 1694  *      We block if:
 1695  *              We have insufficient buffer headers
 1696  *              We have insufficient buffer space
 1697  *              buffer_map is too fragmented ( space reservation fails )
 1698  *              If we have to flush dirty buffers ( but we try to avoid this )
 1699  *
 1700  *      To avoid VFS layer recursion we do not flush dirty buffers ourselves.
 1701  *      Instead we ask the buf daemon to do it for us.  We attempt to
 1702  *      avoid piecemeal wakeups of the pageout daemon.
 1703  */
 1704 
 1705 static struct buf *
 1706 getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
 1707 {
 1708         struct buf *bp;
 1709         struct buf *nbp;
 1710         int defrag = 0;
 1711         int nqindex;
 1712         static int flushingbufs;
 1713 
 1714         /*
 1715          * We can't afford to block since we might be holding a vnode lock,
 1716          * which may prevent system daemons from running.  We deal with
 1717          * low-memory situations by proactively returning memory and running
 1718          * async I/O rather then sync I/O.
 1719          */
 1720 
 1721         atomic_add_int(&getnewbufcalls, 1);
 1722         atomic_subtract_int(&getnewbufrestarts, 1);
 1723 restart:
 1724         atomic_add_int(&getnewbufrestarts, 1);
 1725 
 1726         /*
 1727          * Setup for scan.  If we do not have enough free buffers,
 1728          * we setup a degenerate case that immediately fails.  Note
 1729          * that if we are specially marked process, we are allowed to
 1730          * dip into our reserves.
 1731          *
 1732          * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
 1733          *
 1734          * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
 1735          * However, there are a number of cases (defragging, reusing, ...)
 1736          * where we cannot backup.
 1737          */
 1738         mtx_lock(&bqlock);
 1739         nqindex = QUEUE_EMPTYKVA;
 1740         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
 1741 
 1742         if (nbp == NULL) {
 1743                 /*
 1744                  * If no EMPTYKVA buffers and we are either
 1745                  * defragging or reusing, locate a CLEAN buffer
 1746                  * to free or reuse.  If bufspace useage is low
 1747                  * skip this step so we can allocate a new buffer.
 1748                  */
 1749                 if (defrag || bufspace >= lobufspace) {
 1750                         nqindex = QUEUE_CLEAN;
 1751                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
 1752                 }
 1753 
 1754                 /*
 1755                  * If we could not find or were not allowed to reuse a
 1756                  * CLEAN buffer, check to see if it is ok to use an EMPTY
 1757                  * buffer.  We can only use an EMPTY buffer if allocating
 1758                  * its KVA would not otherwise run us out of buffer space.
 1759                  */
 1760                 if (nbp == NULL && defrag == 0 &&
 1761                     bufspace + maxsize < hibufspace) {
 1762                         nqindex = QUEUE_EMPTY;
 1763                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
 1764                 }
 1765         }
 1766 
 1767         /*
 1768          * Run scan, possibly freeing data and/or kva mappings on the fly
 1769          * depending.
 1770          */
 1771 
 1772         while ((bp = nbp) != NULL) {
 1773                 int qindex = nqindex;
 1774 
 1775                 /*
 1776                  * Calculate next bp ( we can only use it if we do not block
 1777                  * or do other fancy things ).
 1778                  */
 1779                 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
 1780                         switch(qindex) {
 1781                         case QUEUE_EMPTY:
 1782                                 nqindex = QUEUE_EMPTYKVA;
 1783                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
 1784                                         break;
 1785                                 /* FALLTHROUGH */
 1786                         case QUEUE_EMPTYKVA:
 1787                                 nqindex = QUEUE_CLEAN;
 1788                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
 1789                                         break;
 1790                                 /* FALLTHROUGH */
 1791                         case QUEUE_CLEAN:
 1792                                 /*
 1793                                  * nbp is NULL. 
 1794                                  */
 1795                                 break;
 1796                         }
 1797                 }
 1798                 /*
 1799                  * If we are defragging then we need a buffer with 
 1800                  * b_kvasize != 0.  XXX this situation should no longer
 1801                  * occur, if defrag is non-zero the buffer's b_kvasize
 1802                  * should also be non-zero at this point.  XXX
 1803                  */
 1804                 if (defrag && bp->b_kvasize == 0) {
 1805                         printf("Warning: defrag empty buffer %p\n", bp);
 1806                         continue;
 1807                 }
 1808 
 1809                 /*
 1810                  * Start freeing the bp.  This is somewhat involved.  nbp
 1811                  * remains valid only for QUEUE_EMPTY[KVA] bp's.
 1812                  */
 1813                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1814                         continue;
 1815                 if (bp->b_vp) {
 1816                         BO_LOCK(bp->b_bufobj);
 1817                         if (bp->b_vflags & BV_BKGRDINPROG) {
 1818                                 BO_UNLOCK(bp->b_bufobj);
 1819                                 BUF_UNLOCK(bp);
 1820                                 continue;
 1821                         }
 1822                         BO_UNLOCK(bp->b_bufobj);
 1823                 }
 1824                 CTR6(KTR_BUF,
 1825                     "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
 1826                     "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
 1827                     bp->b_kvasize, bp->b_bufsize, qindex);
 1828 
 1829                 /*
 1830                  * Sanity Checks
 1831                  */
 1832                 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
 1833 
 1834                 /*
 1835                  * Note: we no longer distinguish between VMIO and non-VMIO
 1836                  * buffers.
 1837                  */
 1838 
 1839                 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
 1840 
 1841                 bremfreel(bp);
 1842                 mtx_unlock(&bqlock);
 1843 
 1844                 if (qindex == QUEUE_CLEAN) {
 1845                         if (bp->b_flags & B_VMIO) {
 1846                                 bp->b_flags &= ~B_ASYNC;
 1847                                 vfs_vmio_release(bp);
 1848                         }
 1849                         if (bp->b_vp)
 1850                                 brelvp(bp);
 1851                 }
 1852 
 1853                 /*
 1854                  * NOTE:  nbp is now entirely invalid.  We can only restart
 1855                  * the scan from this point on.
 1856                  *
 1857                  * Get the rest of the buffer freed up.  b_kva* is still
 1858                  * valid after this operation.
 1859                  */
 1860 
 1861                 if (bp->b_rcred != NOCRED) {
 1862                         crfree(bp->b_rcred);
 1863                         bp->b_rcred = NOCRED;
 1864                 }
 1865                 if (bp->b_wcred != NOCRED) {
 1866                         crfree(bp->b_wcred);
 1867                         bp->b_wcred = NOCRED;
 1868                 }
 1869                 if (!LIST_EMPTY(&bp->b_dep))
 1870                         buf_deallocate(bp);
 1871                 if (bp->b_vflags & BV_BKGRDINPROG)
 1872                         panic("losing buffer 3");
 1873                 KASSERT(bp->b_vp == NULL,
 1874                     ("bp: %p still has vnode %p.  qindex: %d",
 1875                     bp, bp->b_vp, qindex));
 1876                 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
 1877                    ("bp: %p still on a buffer list. xflags %X",
 1878                     bp, bp->b_xflags));
 1879 
 1880                 if (bp->b_bufsize)
 1881                         allocbuf(bp, 0);
 1882 
 1883                 bp->b_flags = 0;
 1884                 bp->b_ioflags = 0;
 1885                 bp->b_xflags = 0;
 1886                 bp->b_vflags = 0;
 1887                 bp->b_vp = NULL;
 1888                 bp->b_blkno = bp->b_lblkno = 0;
 1889                 bp->b_offset = NOOFFSET;
 1890                 bp->b_iodone = 0;
 1891                 bp->b_error = 0;
 1892                 bp->b_resid = 0;
 1893                 bp->b_bcount = 0;
 1894                 bp->b_npages = 0;
 1895                 bp->b_dirtyoff = bp->b_dirtyend = 0;
 1896                 bp->b_bufobj = NULL;
 1897                 bp->b_pin_count = 0;
 1898                 bp->b_fsprivate1 = NULL;
 1899                 bp->b_fsprivate2 = NULL;
 1900                 bp->b_fsprivate3 = NULL;
 1901 
 1902                 LIST_INIT(&bp->b_dep);
 1903 
 1904                 /*
 1905                  * If we are defragging then free the buffer.
 1906                  */
 1907                 if (defrag) {
 1908                         bp->b_flags |= B_INVAL;
 1909                         bfreekva(bp);
 1910                         brelse(bp);
 1911                         defrag = 0;
 1912                         goto restart;
 1913                 }
 1914 
 1915                 /*
 1916                  * Notify any waiters for the buffer lock about
 1917                  * identity change by freeing the buffer.
 1918                  */
 1919                 if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp) > 0) {
 1920                         bp->b_flags |= B_INVAL;
 1921                         bfreekva(bp);
 1922                         brelse(bp);
 1923                         goto restart;
 1924                 }
 1925 
 1926                 /*
 1927                  * If we are overcomitted then recover the buffer and its
 1928                  * KVM space.  This occurs in rare situations when multiple
 1929                  * processes are blocked in getnewbuf() or allocbuf().
 1930                  */
 1931                 if (bufspace >= hibufspace)
 1932                         flushingbufs = 1;
 1933                 if (flushingbufs && bp->b_kvasize != 0) {
 1934                         bp->b_flags |= B_INVAL;
 1935                         bfreekva(bp);
 1936                         brelse(bp);
 1937                         goto restart;
 1938                 }
 1939                 if (bufspace < lobufspace)
 1940                         flushingbufs = 0;
 1941                 break;
 1942         }
 1943 
 1944         /*
 1945          * If we exhausted our list, sleep as appropriate.  We may have to
 1946          * wakeup various daemons and write out some dirty buffers.
 1947          *
 1948          * Generally we are sleeping due to insufficient buffer space.
 1949          */
 1950 
 1951         if (bp == NULL) {
 1952                 int flags;
 1953                 char *waitmsg;
 1954 
 1955                 if (defrag) {
 1956                         flags = VFS_BIO_NEED_BUFSPACE;
 1957                         waitmsg = "nbufkv";
 1958                 } else if (bufspace >= hibufspace) {
 1959                         waitmsg = "nbufbs";
 1960                         flags = VFS_BIO_NEED_BUFSPACE;
 1961                 } else {
 1962                         waitmsg = "newbuf";
 1963                         flags = VFS_BIO_NEED_ANY;
 1964                 }
 1965                 mtx_lock(&nblock);
 1966                 needsbuffer |= flags;
 1967                 mtx_unlock(&nblock);
 1968                 mtx_unlock(&bqlock);
 1969 
 1970                 bd_speedup();   /* heeeelp */
 1971 
 1972                 mtx_lock(&nblock);
 1973                 while (needsbuffer & flags) {
 1974                         if (msleep(&needsbuffer, &nblock,
 1975                             (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
 1976                                 mtx_unlock(&nblock);
 1977                                 return (NULL);
 1978                         }
 1979                 }
 1980                 mtx_unlock(&nblock);
 1981         } else {
 1982                 /*
 1983                  * We finally have a valid bp.  We aren't quite out of the
 1984                  * woods, we still have to reserve kva space.  In order
 1985                  * to keep fragmentation sane we only allocate kva in
 1986                  * BKVASIZE chunks.
 1987                  */
 1988                 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 1989 
 1990                 if (maxsize != bp->b_kvasize) {
 1991                         vm_offset_t addr = 0;
 1992 
 1993                         bfreekva(bp);
 1994 
 1995                         vm_map_lock(buffer_map);
 1996                         if (vm_map_findspace(buffer_map,
 1997                                 vm_map_min(buffer_map), maxsize, &addr)) {
 1998                                 /*
 1999                                  * Uh oh.  Buffer map is to fragmented.  We
 2000                                  * must defragment the map.
 2001                                  */
 2002                                 atomic_add_int(&bufdefragcnt, 1);
 2003                                 vm_map_unlock(buffer_map);
 2004                                 defrag = 1;
 2005                                 bp->b_flags |= B_INVAL;
 2006                                 brelse(bp);
 2007                                 goto restart;
 2008                         }
 2009                         if (addr) {
 2010                                 vm_map_insert(buffer_map, NULL, 0,
 2011                                         addr, addr + maxsize,
 2012                                         VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
 2013 
 2014                                 bp->b_kvabase = (caddr_t) addr;
 2015                                 bp->b_kvasize = maxsize;
 2016                                 atomic_add_int(&bufspace, bp->b_kvasize);
 2017                                 atomic_add_int(&bufreusecnt, 1);
 2018                         }
 2019                         vm_map_unlock(buffer_map);
 2020                 }
 2021                 bp->b_saveaddr = bp->b_kvabase;
 2022                 bp->b_data = bp->b_saveaddr;
 2023         }
 2024         return(bp);
 2025 }
 2026 
 2027 /*
 2028  *      buf_daemon:
 2029  *
 2030  *      buffer flushing daemon.  Buffers are normally flushed by the
 2031  *      update daemon but if it cannot keep up this process starts to
 2032  *      take the load in an attempt to prevent getnewbuf() from blocking.
 2033  */
 2034 
 2035 static struct kproc_desc buf_kp = {
 2036         "bufdaemon",
 2037         buf_daemon,
 2038         &bufdaemonproc
 2039 };
 2040 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
 2041 
 2042 static void
 2043 buf_daemon()
 2044 {
 2045 
 2046         /*
 2047          * This process needs to be suspended prior to shutdown sync.
 2048          */
 2049         EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
 2050             SHUTDOWN_PRI_LAST);
 2051 
 2052         /*
 2053          * This process is allowed to take the buffer cache to the limit
 2054          */
 2055         curthread->td_pflags |= TDP_NORUNNINGBUF;
 2056         mtx_lock(&bdlock);
 2057         for (;;) {
 2058                 bd_request = 0;
 2059                 mtx_unlock(&bdlock);
 2060 
 2061                 kthread_suspend_check(bufdaemonproc);
 2062 
 2063                 /*
 2064                  * Do the flush.  Limit the amount of in-transit I/O we
 2065                  * allow to build up, otherwise we would completely saturate
 2066                  * the I/O system.  Wakeup any waiting processes before we
 2067                  * normally would so they can run in parallel with our drain.
 2068                  */
 2069                 while (numdirtybuffers > lodirtybuffers) {
 2070                         int flushed;
 2071 
 2072                         flushed = flushbufqueues(QUEUE_DIRTY, 0);
 2073                         /* The list empty check here is slightly racy */
 2074                         if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
 2075                                 mtx_lock(&Giant);
 2076                                 flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
 2077                                 mtx_unlock(&Giant);
 2078                         }
 2079                         if (flushed == 0) {
 2080                                 /*
 2081                                  * Could not find any buffers without rollback
 2082                                  * dependencies, so just write the first one
 2083                                  * in the hopes of eventually making progress.
 2084                                  */
 2085                                 flushbufqueues(QUEUE_DIRTY, 1);
 2086                                 if (!TAILQ_EMPTY(
 2087                                     &bufqueues[QUEUE_DIRTY_GIANT])) {
 2088                                         mtx_lock(&Giant);
 2089                                         flushbufqueues(QUEUE_DIRTY_GIANT, 1);
 2090                                         mtx_unlock(&Giant);
 2091                                 }
 2092                                 break;
 2093                         }
 2094                         uio_yield();
 2095                 }
 2096 
 2097                 /*
 2098                  * Only clear bd_request if we have reached our low water
 2099                  * mark.  The buf_daemon normally waits 1 second and
 2100                  * then incrementally flushes any dirty buffers that have
 2101                  * built up, within reason.
 2102                  *
 2103                  * If we were unable to hit our low water mark and couldn't
 2104                  * find any flushable buffers, we sleep half a second.
 2105                  * Otherwise we loop immediately.
 2106                  */
 2107                 mtx_lock(&bdlock);
 2108                 if (numdirtybuffers <= lodirtybuffers) {
 2109                         /*
 2110                          * We reached our low water mark, reset the
 2111                          * request and sleep until we are needed again.
 2112                          * The sleep is just so the suspend code works.
 2113                          */
 2114                         bd_request = 0;
 2115                         msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 2116                 } else {
 2117                         /*
 2118                          * We couldn't find any flushable dirty buffers but
 2119                          * still have too many dirty buffers, we
 2120                          * have to sleep and try again.  (rare)
 2121                          */
 2122                         msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 2123                 }
 2124         }
 2125 }
 2126 
 2127 /*
 2128  *      flushbufqueues:
 2129  *
 2130  *      Try to flush a buffer in the dirty queue.  We must be careful to
 2131  *      free up B_INVAL buffers instead of write them, which NFS is 
 2132  *      particularly sensitive to.
 2133  */
 2134 static int flushwithdeps = 0;
 2135 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
 2136     0, "Number of buffers flushed with dependecies that require rollbacks");
 2137 
 2138 static int
 2139 flushbufqueues(int queue, int flushdeps)
 2140 {
 2141         struct thread *td = curthread;
 2142         struct buf sentinel;
 2143         struct vnode *vp;
 2144         struct mount *mp;
 2145         struct buf *bp;
 2146         int hasdeps;
 2147         int flushed;
 2148         int target;
 2149 
 2150         target = numdirtybuffers - lodirtybuffers;
 2151         if (flushdeps && target > 2)
 2152                 target /= 2;
 2153         flushed = 0;
 2154         bp = NULL;
 2155         mtx_lock(&bqlock);
 2156         TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
 2157         while (flushed != target) {
 2158                 bp = TAILQ_FIRST(&bufqueues[queue]);
 2159                 if (bp == &sentinel)
 2160                         break;
 2161                 TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
 2162                 TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
 2163 
 2164                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 2165                         continue;
 2166                 if (bp->b_pin_count > 0) {
 2167                         BUF_UNLOCK(bp);
 2168                         continue;
 2169                 }
 2170                 BO_LOCK(bp->b_bufobj);
 2171                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
 2172                     (bp->b_flags & B_DELWRI) == 0) {
 2173                         BO_UNLOCK(bp->b_bufobj);
 2174                         BUF_UNLOCK(bp);
 2175                         continue;
 2176                 }
 2177                 BO_UNLOCK(bp->b_bufobj);
 2178                 if (bp->b_flags & B_INVAL) {
 2179                         bremfreel(bp);
 2180                         mtx_unlock(&bqlock);
 2181                         brelse(bp);
 2182                         flushed++;
 2183                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2184                         mtx_lock(&bqlock);
 2185                         continue;
 2186                 }
 2187 
 2188                 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
 2189                         if (flushdeps == 0) {
 2190                                 BUF_UNLOCK(bp);
 2191                                 continue;
 2192                         }
 2193                         hasdeps = 1;
 2194                 } else
 2195                         hasdeps = 0;
 2196                 /*
 2197                  * We must hold the lock on a vnode before writing
 2198                  * one of its buffers. Otherwise we may confuse, or
 2199                  * in the case of a snapshot vnode, deadlock the
 2200                  * system.
 2201                  *
 2202                  * The lock order here is the reverse of the normal
 2203                  * of vnode followed by buf lock.  This is ok because
 2204                  * the NOWAIT will prevent deadlock.
 2205                  */
 2206                 vp = bp->b_vp;
 2207                 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 2208                         BUF_UNLOCK(bp);
 2209                         continue;
 2210                 }
 2211                 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
 2212                         mtx_unlock(&bqlock);
 2213                         CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
 2214                             bp, bp->b_vp, bp->b_flags);
 2215                         vfs_bio_awrite(bp);
 2216                         vn_finished_write(mp);
 2217                         VOP_UNLOCK(vp, 0, td);
 2218                         flushwithdeps += hasdeps;
 2219                         flushed++;
 2220                         waitrunningbufspace();
 2221                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2222                         mtx_lock(&bqlock);
 2223                         continue;
 2224                 }
 2225                 vn_finished_write(mp);
 2226                 BUF_UNLOCK(bp);
 2227         }
 2228         TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
 2229         mtx_unlock(&bqlock);
 2230         return (flushed);
 2231 }
 2232 
 2233 /*
 2234  * Check to see if a block is currently memory resident.
 2235  */
 2236 struct buf *
 2237 incore(struct bufobj *bo, daddr_t blkno)
 2238 {
 2239         struct buf *bp;
 2240 
 2241         BO_LOCK(bo);
 2242         bp = gbincore(bo, blkno);
 2243         BO_UNLOCK(bo);
 2244         return (bp);
 2245 }
 2246 
 2247 /*
 2248  * Returns true if no I/O is needed to access the
 2249  * associated VM object.  This is like incore except
 2250  * it also hunts around in the VM system for the data.
 2251  */
 2252 
 2253 static int
 2254 inmem(struct vnode * vp, daddr_t blkno)
 2255 {
 2256         vm_object_t obj;
 2257         vm_offset_t toff, tinc, size;
 2258         vm_page_t m;
 2259         vm_ooffset_t off;
 2260 
 2261         ASSERT_VOP_LOCKED(vp, "inmem");
 2262 
 2263         if (incore(&vp->v_bufobj, blkno))
 2264                 return 1;
 2265         if (vp->v_mount == NULL)
 2266                 return 0;
 2267         obj = vp->v_object;
 2268         if (obj == NULL)
 2269                 return (0);
 2270 
 2271         size = PAGE_SIZE;
 2272         if (size > vp->v_mount->mnt_stat.f_iosize)
 2273                 size = vp->v_mount->mnt_stat.f_iosize;
 2274         off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 2275 
 2276         VM_OBJECT_LOCK(obj);
 2277         for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 2278                 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
 2279                 if (!m)
 2280                         goto notinmem;
 2281                 tinc = size;
 2282                 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 2283                         tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 2284                 if (vm_page_is_valid(m,
 2285                     (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
 2286                         goto notinmem;
 2287         }
 2288         VM_OBJECT_UNLOCK(obj);
 2289         return 1;
 2290 
 2291 notinmem:
 2292         VM_OBJECT_UNLOCK(obj);
 2293         return (0);
 2294 }
 2295 
 2296 /*
 2297  *      vfs_setdirty:
 2298  *
 2299  *      Sets the dirty range for a buffer based on the status of the dirty
 2300  *      bits in the pages comprising the buffer.
 2301  *
 2302  *      The range is limited to the size of the buffer.
 2303  *
 2304  *      This routine is primarily used by NFS, but is generalized for the
 2305  *      B_VMIO case.
 2306  */
 2307 static void
 2308 vfs_setdirty(struct buf *bp) 
 2309 {
 2310 
 2311         /*
 2312          * Degenerate case - empty buffer
 2313          */
 2314 
 2315         if (bp->b_bufsize == 0)
 2316                 return;
 2317 
 2318         /*
 2319          * We qualify the scan for modified pages on whether the
 2320          * object has been flushed yet.
 2321          */
 2322 
 2323         if ((bp->b_flags & B_VMIO) == 0)
 2324                 return;
 2325 
 2326         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 2327         vfs_setdirty_locked_object(bp);
 2328         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 2329 }
 2330 
 2331 static void
 2332 vfs_setdirty_locked_object(struct buf *bp)
 2333 {
 2334         vm_object_t object;
 2335         int i;
 2336 
 2337         object = bp->b_bufobj->bo_object;
 2338         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2339         if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
 2340                 vm_offset_t boffset;
 2341                 vm_offset_t eoffset;
 2342 
 2343                 vm_page_lock_queues();
 2344                 /*
 2345                  * test the pages to see if they have been modified directly
 2346                  * by users through the VM system.
 2347                  */
 2348                 for (i = 0; i < bp->b_npages; i++)
 2349                         vm_page_test_dirty(bp->b_pages[i]);
 2350 
 2351                 /*
 2352                  * Calculate the encompassing dirty range, boffset and eoffset,
 2353                  * (eoffset - boffset) bytes.
 2354                  */
 2355 
 2356                 for (i = 0; i < bp->b_npages; i++) {
 2357                         if (bp->b_pages[i]->dirty)
 2358                                 break;
 2359                 }
 2360                 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2361 
 2362                 for (i = bp->b_npages - 1; i >= 0; --i) {
 2363                         if (bp->b_pages[i]->dirty) {
 2364                                 break;
 2365                         }
 2366                 }
 2367                 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2368 
 2369                 vm_page_unlock_queues();
 2370                 /*
 2371                  * Fit it to the buffer.
 2372                  */
 2373 
 2374                 if (eoffset > bp->b_bcount)
 2375                         eoffset = bp->b_bcount;
 2376 
 2377                 /*
 2378                  * If we have a good dirty range, merge with the existing
 2379                  * dirty range.
 2380                  */
 2381 
 2382                 if (boffset < eoffset) {
 2383                         if (bp->b_dirtyoff > boffset)
 2384                                 bp->b_dirtyoff = boffset;
 2385                         if (bp->b_dirtyend < eoffset)
 2386                                 bp->b_dirtyend = eoffset;
 2387                 }
 2388         }
 2389 }
 2390 
 2391 /*
 2392  *      getblk:
 2393  *
 2394  *      Get a block given a specified block and offset into a file/device.
 2395  *      The buffers B_DONE bit will be cleared on return, making it almost
 2396  *      ready for an I/O initiation.  B_INVAL may or may not be set on 
 2397  *      return.  The caller should clear B_INVAL prior to initiating a
 2398  *      READ.
 2399  *
 2400  *      For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
 2401  *      an existing buffer.
 2402  *
 2403  *      For a VMIO buffer, B_CACHE is modified according to the backing VM.
 2404  *      If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
 2405  *      and then cleared based on the backing VM.  If the previous buffer is
 2406  *      non-0-sized but invalid, B_CACHE will be cleared.
 2407  *
 2408  *      If getblk() must create a new buffer, the new buffer is returned with
 2409  *      both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
 2410  *      case it is returned with B_INVAL clear and B_CACHE set based on the
 2411  *      backing VM.
 2412  *
 2413  *      getblk() also forces a bwrite() for any B_DELWRI buffer whos
 2414  *      B_CACHE bit is clear.
 2415  *      
 2416  *      What this means, basically, is that the caller should use B_CACHE to
 2417  *      determine whether the buffer is fully valid or not and should clear
 2418  *      B_INVAL prior to issuing a read.  If the caller intends to validate
 2419  *      the buffer by loading its data area with something, the caller needs
 2420  *      to clear B_INVAL.  If the caller does this without issuing an I/O, 
 2421  *      the caller should set B_CACHE ( as an optimization ), else the caller
 2422  *      should issue the I/O and biodone() will set B_CACHE if the I/O was
 2423  *      a write attempt or if it was a successfull read.  If the caller 
 2424  *      intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
 2425  *      prior to issuing the READ.  biodone() will *not* clear B_INVAL.
 2426  */
 2427 struct buf *
 2428 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
 2429     int flags)
 2430 {
 2431         struct buf *bp;
 2432         struct bufobj *bo;
 2433         int error;
 2434 
 2435         CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
 2436         ASSERT_VOP_LOCKED(vp, "getblk");
 2437         if (size > MAXBSIZE)
 2438                 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
 2439 
 2440         bo = &vp->v_bufobj;
 2441 loop:
 2442         /*
 2443          * Block if we are low on buffers.   Certain processes are allowed
 2444          * to completely exhaust the buffer cache.
 2445          *
 2446          * If this check ever becomes a bottleneck it may be better to
 2447          * move it into the else, when gbincore() fails.  At the moment
 2448          * it isn't a problem.
 2449          *
 2450          * XXX remove if 0 sections (clean this up after its proven)
 2451          */
 2452         if (numfreebuffers == 0) {
 2453                 if (TD_IS_IDLETHREAD(curthread))
 2454                         return NULL;
 2455                 mtx_lock(&nblock);
 2456                 needsbuffer |= VFS_BIO_NEED_ANY;
 2457                 mtx_unlock(&nblock);
 2458         }
 2459 
 2460         BO_LOCK(bo);
 2461         bp = gbincore(bo, blkno);
 2462         if (bp != NULL) {
 2463                 int lockflags;
 2464                 /*
 2465                  * Buffer is in-core.  If the buffer is not busy, it must
 2466                  * be on a queue.
 2467                  */
 2468                 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
 2469 
 2470                 if (flags & GB_LOCK_NOWAIT)
 2471                         lockflags |= LK_NOWAIT;
 2472 
 2473                 error = BUF_TIMELOCK(bp, lockflags,
 2474                     VI_MTX(vp), "getblk", slpflag, slptimeo);
 2475 
 2476                 /*
 2477                  * If we slept and got the lock we have to restart in case
 2478                  * the buffer changed identities.
 2479                  */
 2480                 if (error == ENOLCK)
 2481                         goto loop;
 2482                 /* We timed out or were interrupted. */
 2483                 else if (error)
 2484                         return (NULL);
 2485 
 2486                 /*
 2487                  * The buffer is locked.  B_CACHE is cleared if the buffer is 
 2488                  * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 2489                  * and for a VMIO buffer B_CACHE is adjusted according to the
 2490                  * backing VM cache.
 2491                  */
 2492                 if (bp->b_flags & B_INVAL)
 2493                         bp->b_flags &= ~B_CACHE;
 2494                 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 2495                         bp->b_flags |= B_CACHE;
 2496                 bremfree(bp);
 2497 
 2498                 /*
 2499                  * check for size inconsistancies for non-VMIO case.
 2500                  */
 2501 
 2502                 if (bp->b_bcount != size) {
 2503                         if ((bp->b_flags & B_VMIO) == 0 ||
 2504                             (size > bp->b_kvasize)) {
 2505                                 if (bp->b_flags & B_DELWRI) {
 2506                                         /*
 2507                                          * If buffer is pinned and caller does
 2508                                          * not want sleep  waiting for it to be
 2509                                          * unpinned, bail out
 2510                                          * */
 2511                                         if (bp->b_pin_count > 0) {
 2512                                                 if (flags & GB_LOCK_NOWAIT) {
 2513                                                         bqrelse(bp);
 2514                                                         return (NULL);
 2515                                                 } else {
 2516                                                         bunpin_wait(bp);
 2517                                                 }
 2518                                         }
 2519                                         bp->b_flags |= B_NOCACHE;
 2520                                         bwrite(bp);
 2521                                 } else {
 2522                                         if (LIST_EMPTY(&bp->b_dep)) {
 2523                                                 bp->b_flags |= B_RELBUF;
 2524                                                 brelse(bp);
 2525                                         } else {
 2526                                                 bp->b_flags |= B_NOCACHE;
 2527                                                 bwrite(bp);
 2528                                         }
 2529                                 }
 2530                                 goto loop;
 2531                         }
 2532                 }
 2533 
 2534                 /*
 2535                  * If the size is inconsistant in the VMIO case, we can resize
 2536                  * the buffer.  This might lead to B_CACHE getting set or
 2537                  * cleared.  If the size has not changed, B_CACHE remains
 2538                  * unchanged from its previous state.
 2539                  */
 2540 
 2541                 if (bp->b_bcount != size)
 2542                         allocbuf(bp, size);
 2543 
 2544                 KASSERT(bp->b_offset != NOOFFSET, 
 2545                     ("getblk: no buffer offset"));
 2546 
 2547                 /*
 2548                  * A buffer with B_DELWRI set and B_CACHE clear must
 2549                  * be committed before we can return the buffer in
 2550                  * order to prevent the caller from issuing a read
 2551                  * ( due to B_CACHE not being set ) and overwriting
 2552                  * it.
 2553                  *
 2554                  * Most callers, including NFS and FFS, need this to
 2555                  * operate properly either because they assume they
 2556                  * can issue a read if B_CACHE is not set, or because
 2557                  * ( for example ) an uncached B_DELWRI might loop due 
 2558                  * to softupdates re-dirtying the buffer.  In the latter
 2559                  * case, B_CACHE is set after the first write completes,
 2560                  * preventing further loops.
 2561                  * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 2562                  * above while extending the buffer, we cannot allow the
 2563                  * buffer to remain with B_CACHE set after the write
 2564                  * completes or it will represent a corrupt state.  To
 2565                  * deal with this we set B_NOCACHE to scrap the buffer
 2566                  * after the write.
 2567                  *
 2568                  * We might be able to do something fancy, like setting
 2569                  * B_CACHE in bwrite() except if B_DELWRI is already set,
 2570                  * so the below call doesn't set B_CACHE, but that gets real
 2571                  * confusing.  This is much easier.
 2572                  */
 2573 
 2574                 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 2575                         bp->b_flags |= B_NOCACHE;
 2576                         bwrite(bp);
 2577                         goto loop;
 2578                 }
 2579                 bp->b_flags &= ~B_DONE;
 2580         } else {
 2581                 int bsize, maxsize, vmio;
 2582                 off_t offset;
 2583 
 2584                 /*
 2585                  * Buffer is not in-core, create new buffer.  The buffer
 2586                  * returned by getnewbuf() is locked.  Note that the returned
 2587                  * buffer is also considered valid (not marked B_INVAL).
 2588                  */
 2589                 BO_UNLOCK(bo);
 2590                 /*
 2591                  * If the user does not want us to create the buffer, bail out
 2592                  * here.
 2593                  */
 2594                 if (flags & GB_NOCREAT)
 2595                         return NULL;
 2596                 bsize = bo->bo_bsize;
 2597                 offset = blkno * bsize;
 2598                 vmio = vp->v_object != NULL;
 2599                 maxsize = vmio ? size + (offset & PAGE_MASK) : size;
 2600                 maxsize = imax(maxsize, bsize);
 2601 
 2602                 bp = getnewbuf(slpflag, slptimeo, size, maxsize);
 2603                 if (bp == NULL) {
 2604                         if (slpflag || slptimeo)
 2605                                 return NULL;
 2606                         goto loop;
 2607                 }
 2608 
 2609                 /*
 2610                  * This code is used to make sure that a buffer is not
 2611                  * created while the getnewbuf routine is blocked.
 2612                  * This can be a problem whether the vnode is locked or not.
 2613                  * If the buffer is created out from under us, we have to
 2614                  * throw away the one we just created.
 2615                  *
 2616                  * Note: this must occur before we associate the buffer
 2617                  * with the vp especially considering limitations in
 2618                  * the splay tree implementation when dealing with duplicate
 2619                  * lblkno's.
 2620                  */
 2621                 BO_LOCK(bo);
 2622                 if (gbincore(bo, blkno)) {
 2623                         BO_UNLOCK(bo);
 2624                         bp->b_flags |= B_INVAL;
 2625                         brelse(bp);
 2626                         goto loop;
 2627                 }
 2628 
 2629                 /*
 2630                  * Insert the buffer into the hash, so that it can
 2631                  * be found by incore.
 2632                  */
 2633                 bp->b_blkno = bp->b_lblkno = blkno;
 2634                 bp->b_offset = offset;
 2635                 bgetvp(vp, bp);
 2636                 BO_UNLOCK(bo);
 2637 
 2638                 /*
 2639                  * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 2640                  * buffer size starts out as 0, B_CACHE will be set by
 2641                  * allocbuf() for the VMIO case prior to it testing the
 2642                  * backing store for validity.
 2643                  */
 2644 
 2645                 if (vmio) {
 2646                         bp->b_flags |= B_VMIO;
 2647 #if defined(VFS_BIO_DEBUG)
 2648                         if (vn_canvmio(vp) != TRUE)
 2649                                 printf("getblk: VMIO on vnode type %d\n",
 2650                                         vp->v_type);
 2651 #endif
 2652                         KASSERT(vp->v_object == bp->b_bufobj->bo_object,
 2653                             ("ARGH! different b_bufobj->bo_object %p %p %p\n",
 2654                             bp, vp->v_object, bp->b_bufobj->bo_object));
 2655                 } else {
 2656                         bp->b_flags &= ~B_VMIO;
 2657                         KASSERT(bp->b_bufobj->bo_object == NULL,
 2658                             ("ARGH! has b_bufobj->bo_object %p %p\n",
 2659                             bp, bp->b_bufobj->bo_object));
 2660                 }
 2661 
 2662                 allocbuf(bp, size);
 2663                 bp->b_flags &= ~B_DONE;
 2664         }
 2665         CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
 2666         KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
 2667         KASSERT(bp->b_bufobj == bo,
 2668             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 2669         return (bp);
 2670 }
 2671 
 2672 /*
 2673  * Get an empty, disassociated buffer of given size.  The buffer is initially
 2674  * set to B_INVAL.
 2675  */
 2676 struct buf *
 2677 geteblk(int size)
 2678 {
 2679         struct buf *bp;
 2680         int maxsize;
 2681 
 2682         maxsize = (size + BKVAMASK) & ~BKVAMASK;
 2683         while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
 2684                 continue;
 2685         allocbuf(bp, size);
 2686         bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
 2687         KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
 2688         return (bp);
 2689 }
 2690 
 2691 
 2692 /*
 2693  * This code constitutes the buffer memory from either anonymous system
 2694  * memory (in the case of non-VMIO operations) or from an associated
 2695  * VM object (in the case of VMIO operations).  This code is able to
 2696  * resize a buffer up or down.
 2697  *
 2698  * Note that this code is tricky, and has many complications to resolve
 2699  * deadlock or inconsistant data situations.  Tread lightly!!! 
 2700  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
 2701  * the caller.  Calling this code willy nilly can result in the loss of data.
 2702  *
 2703  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
 2704  * B_CACHE for the non-VMIO case.
 2705  */
 2706 
 2707 int
 2708 allocbuf(struct buf *bp, int size)
 2709 {
 2710         int newbsize, mbsize;
 2711         int i;
 2712 
 2713         if (BUF_REFCNT(bp) == 0)
 2714                 panic("allocbuf: buffer not busy");
 2715 
 2716         if (bp->b_kvasize < size)
 2717                 panic("allocbuf: buffer too small");
 2718 
 2719         if ((bp->b_flags & B_VMIO) == 0) {
 2720                 caddr_t origbuf;
 2721                 int origbufsize;
 2722                 /*
 2723                  * Just get anonymous memory from the kernel.  Don't
 2724                  * mess with B_CACHE.
 2725                  */
 2726                 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2727                 if (bp->b_flags & B_MALLOC)
 2728                         newbsize = mbsize;
 2729                 else
 2730                         newbsize = round_page(size);
 2731 
 2732                 if (newbsize < bp->b_bufsize) {
 2733                         /*
 2734                          * malloced buffers are not shrunk
 2735                          */
 2736                         if (bp->b_flags & B_MALLOC) {
 2737                                 if (newbsize) {
 2738                                         bp->b_bcount = size;
 2739                                 } else {
 2740                                         free(bp->b_data, M_BIOBUF);
 2741                                         if (bp->b_bufsize) {
 2742                                                 atomic_subtract_int(
 2743                                                     &bufmallocspace,
 2744                                                     bp->b_bufsize);
 2745                                                 bufspacewakeup();
 2746                                                 bp->b_bufsize = 0;
 2747                                         }
 2748                                         bp->b_saveaddr = bp->b_kvabase;
 2749                                         bp->b_data = bp->b_saveaddr;
 2750                                         bp->b_bcount = 0;
 2751                                         bp->b_flags &= ~B_MALLOC;
 2752                                 }
 2753                                 return 1;
 2754                         }               
 2755                         vm_hold_free_pages(
 2756                             bp,
 2757                             (vm_offset_t) bp->b_data + newbsize,
 2758                             (vm_offset_t) bp->b_data + bp->b_bufsize);
 2759                 } else if (newbsize > bp->b_bufsize) {
 2760                         /*
 2761                          * We only use malloced memory on the first allocation.
 2762                          * and revert to page-allocated memory when the buffer
 2763                          * grows.
 2764                          */
 2765                         /*
 2766                          * There is a potential smp race here that could lead
 2767                          * to bufmallocspace slightly passing the max.  It
 2768                          * is probably extremely rare and not worth worrying
 2769                          * over.
 2770                          */
 2771                         if ( (bufmallocspace < maxbufmallocspace) &&
 2772                                 (bp->b_bufsize == 0) &&
 2773                                 (mbsize <= PAGE_SIZE/2)) {
 2774 
 2775                                 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
 2776                                 bp->b_bufsize = mbsize;
 2777                                 bp->b_bcount = size;
 2778                                 bp->b_flags |= B_MALLOC;
 2779                                 atomic_add_int(&bufmallocspace, mbsize);
 2780                                 return 1;
 2781                         }
 2782                         origbuf = NULL;
 2783                         origbufsize = 0;
 2784                         /*
 2785                          * If the buffer is growing on its other-than-first allocation,
 2786                          * then we revert to the page-allocation scheme.
 2787                          */
 2788                         if (bp->b_flags & B_MALLOC) {
 2789                                 origbuf = bp->b_data;
 2790                                 origbufsize = bp->b_bufsize;
 2791                                 bp->b_data = bp->b_kvabase;
 2792                                 if (bp->b_bufsize) {
 2793                                         atomic_subtract_int(&bufmallocspace,
 2794                                             bp->b_bufsize);
 2795                                         bufspacewakeup();
 2796                                         bp->b_bufsize = 0;
 2797                                 }
 2798                                 bp->b_flags &= ~B_MALLOC;
 2799                                 newbsize = round_page(newbsize);
 2800                         }
 2801                         vm_hold_load_pages(
 2802                             bp,
 2803                             (vm_offset_t) bp->b_data + bp->b_bufsize,
 2804                             (vm_offset_t) bp->b_data + newbsize);
 2805                         if (origbuf) {
 2806                                 bcopy(origbuf, bp->b_data, origbufsize);
 2807                                 free(origbuf, M_BIOBUF);
 2808                         }
 2809                 }
 2810         } else {
 2811                 int desiredpages;
 2812 
 2813                 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2814                 desiredpages = (size == 0) ? 0 :
 2815                         num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 2816 
 2817                 if (bp->b_flags & B_MALLOC)
 2818                         panic("allocbuf: VMIO buffer can't be malloced");
 2819                 /*
 2820                  * Set B_CACHE initially if buffer is 0 length or will become
 2821                  * 0-length.
 2822                  */
 2823                 if (size == 0 || bp->b_bufsize == 0)
 2824                         bp->b_flags |= B_CACHE;
 2825 
 2826                 if (newbsize < bp->b_bufsize) {
 2827                         /*
 2828                          * DEV_BSIZE aligned new buffer size is less then the
 2829                          * DEV_BSIZE aligned existing buffer size.  Figure out
 2830                          * if we have to remove any pages.
 2831                          */
 2832                         if (desiredpages < bp->b_npages) {
 2833                                 vm_page_t m;
 2834 
 2835                                 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 2836                                 vm_page_lock_queues();
 2837                                 for (i = desiredpages; i < bp->b_npages; i++) {
 2838                                         /*
 2839                                          * the page is not freed here -- it
 2840                                          * is the responsibility of 
 2841                                          * vnode_pager_setsize
 2842                                          */
 2843                                         m = bp->b_pages[i];
 2844                                         KASSERT(m != bogus_page,
 2845                                             ("allocbuf: bogus page found"));
 2846                                         while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
 2847                                                 vm_page_lock_queues();
 2848 
 2849                                         bp->b_pages[i] = NULL;
 2850                                         vm_page_unwire(m, 0);
 2851                                 }
 2852                                 vm_page_unlock_queues();
 2853                                 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 2854                                 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
 2855                                     (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
 2856                                 bp->b_npages = desiredpages;
 2857                         }
 2858                 } else if (size > bp->b_bcount) {
 2859                         /*
 2860                          * We are growing the buffer, possibly in a 
 2861                          * byte-granular fashion.
 2862                          */
 2863                         struct vnode *vp;
 2864                         vm_object_t obj;
 2865                         vm_offset_t toff;
 2866                         vm_offset_t tinc;
 2867 
 2868                         /*
 2869                          * Step 1, bring in the VM pages from the object, 
 2870                          * allocating them if necessary.  We must clear
 2871                          * B_CACHE if these pages are not valid for the 
 2872                          * range covered by the buffer.
 2873                          */
 2874 
 2875                         vp = bp->b_vp;
 2876                         obj = bp->b_bufobj->bo_object;
 2877 
 2878                         VM_OBJECT_LOCK(obj);
 2879                         while (bp->b_npages < desiredpages) {
 2880                                 vm_page_t m;
 2881                                 vm_pindex_t pi;
 2882 
 2883                                 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
 2884                                 if ((m = vm_page_lookup(obj, pi)) == NULL) {
 2885                                         /*
 2886                                          * note: must allocate system pages
 2887                                          * since blocking here could intefere
 2888                                          * with paging I/O, no matter which
 2889                                          * process we are.
 2890                                          */
 2891                                         m = vm_page_alloc(obj, pi,
 2892                                             VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
 2893                                             VM_ALLOC_WIRED);
 2894                                         if (m == NULL) {
 2895                                                 atomic_add_int(&vm_pageout_deficit,
 2896                                                     desiredpages - bp->b_npages);
 2897                                                 VM_OBJECT_UNLOCK(obj);
 2898                                                 VM_WAIT;
 2899                                                 VM_OBJECT_LOCK(obj);
 2900                                         } else {
 2901                                                 if (m->valid == 0)
 2902                                                         bp->b_flags &= ~B_CACHE;
 2903                                                 bp->b_pages[bp->b_npages] = m;
 2904                                                 ++bp->b_npages;
 2905                                         }
 2906                                         continue;
 2907                                 }
 2908 
 2909                                 /*
 2910                                  * We found a page.  If we have to sleep on it,
 2911                                  * retry because it might have gotten freed out
 2912                                  * from under us.
 2913                                  *
 2914                                  * We can only test VPO_BUSY here.  Blocking on
 2915                                  * m->busy might lead to a deadlock:
 2916                                  *
 2917                                  *  vm_fault->getpages->cluster_read->allocbuf
 2918                                  *
 2919                                  */
 2920                                 if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
 2921                                         continue;
 2922 
 2923                                 /*
 2924                                  * We have a good page.
 2925                                  */
 2926                                 vm_page_lock_queues();
 2927                                 vm_page_wire(m);
 2928                                 vm_page_unlock_queues();
 2929                                 bp->b_pages[bp->b_npages] = m;
 2930                                 ++bp->b_npages;
 2931                         }
 2932 
 2933                         /*
 2934                          * Step 2.  We've loaded the pages into the buffer,
 2935                          * we have to figure out if we can still have B_CACHE
 2936                          * set.  Note that B_CACHE is set according to the
 2937                          * byte-granular range ( bcount and size ), new the
 2938                          * aligned range ( newbsize ).
 2939                          *
 2940                          * The VM test is against m->valid, which is DEV_BSIZE
 2941                          * aligned.  Needless to say, the validity of the data
 2942                          * needs to also be DEV_BSIZE aligned.  Note that this
 2943                          * fails with NFS if the server or some other client
 2944                          * extends the file's EOF.  If our buffer is resized, 
 2945                          * B_CACHE may remain set! XXX
 2946                          */
 2947 
 2948                         toff = bp->b_bcount;
 2949                         tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 2950 
 2951                         while ((bp->b_flags & B_CACHE) && toff < size) {
 2952                                 vm_pindex_t pi;
 2953 
 2954                                 if (tinc > (size - toff))
 2955                                         tinc = size - toff;
 2956 
 2957                                 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 
 2958                                     PAGE_SHIFT;
 2959 
 2960                                 vfs_buf_test_cache(
 2961                                     bp, 
 2962                                     bp->b_offset,
 2963                                     toff, 
 2964                                     tinc, 
 2965                                     bp->b_pages[pi]
 2966                                 );
 2967                                 toff += tinc;
 2968                                 tinc = PAGE_SIZE;
 2969                         }
 2970                         VM_OBJECT_UNLOCK(obj);
 2971 
 2972                         /*
 2973                          * Step 3, fixup the KVM pmap.  Remember that
 2974                          * bp->b_data is relative to bp->b_offset, but 
 2975                          * bp->b_offset may be offset into the first page.
 2976                          */
 2977 
 2978                         bp->b_data = (caddr_t)
 2979                             trunc_page((vm_offset_t)bp->b_data);
 2980                         pmap_qenter(
 2981                             (vm_offset_t)bp->b_data,
 2982                             bp->b_pages, 
 2983                             bp->b_npages
 2984                         );
 2985                         
 2986                         bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 
 2987                             (vm_offset_t)(bp->b_offset & PAGE_MASK));
 2988                 }
 2989         }
 2990         if (newbsize < bp->b_bufsize)
 2991                 bufspacewakeup();
 2992         bp->b_bufsize = newbsize;       /* actual buffer allocation     */
 2993         bp->b_bcount = size;            /* requested buffer size        */
 2994         return 1;
 2995 }
 2996 
 2997 void
 2998 biodone(struct bio *bp)
 2999 {
 3000         void (*done)(struct bio *);
 3001 
 3002         mtx_lock(&bdonelock);
 3003         bp->bio_flags |= BIO_DONE;
 3004         done = bp->bio_done;
 3005         if (done == NULL)
 3006                 wakeup(bp);
 3007         mtx_unlock(&bdonelock);
 3008         if (done != NULL)
 3009                 done(bp);
 3010 }
 3011 
 3012 /*
 3013  * Wait for a BIO to finish.
 3014  *
 3015  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
 3016  * case is not yet clear.
 3017  */
 3018 int
 3019 biowait(struct bio *bp, const char *wchan)
 3020 {
 3021 
 3022         mtx_lock(&bdonelock);
 3023         while ((bp->bio_flags & BIO_DONE) == 0)
 3024                 msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
 3025         mtx_unlock(&bdonelock);
 3026         if (bp->bio_error != 0)
 3027                 return (bp->bio_error);
 3028         if (!(bp->bio_flags & BIO_ERROR))
 3029                 return (0);
 3030         return (EIO);
 3031 }
 3032 
 3033 void
 3034 biofinish(struct bio *bp, struct devstat *stat, int error)
 3035 {
 3036         
 3037         if (error) {
 3038                 bp->bio_error = error;
 3039                 bp->bio_flags |= BIO_ERROR;
 3040         }
 3041         if (stat != NULL)
 3042                 devstat_end_transaction_bio(stat, bp);
 3043         biodone(bp);
 3044 }
 3045 
 3046 /*
 3047  *      bufwait:
 3048  *
 3049  *      Wait for buffer I/O completion, returning error status.  The buffer
 3050  *      is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
 3051  *      error and cleared.
 3052  */
 3053 int
 3054 bufwait(struct buf *bp)
 3055 {
 3056         if (bp->b_iocmd == BIO_READ)
 3057                 bwait(bp, PRIBIO, "biord");
 3058         else
 3059                 bwait(bp, PRIBIO, "biowr");
 3060         if (bp->b_flags & B_EINTR) {
 3061                 bp->b_flags &= ~B_EINTR;
 3062                 return (EINTR);
 3063         }
 3064         if (bp->b_ioflags & BIO_ERROR) {
 3065                 return (bp->b_error ? bp->b_error : EIO);
 3066         } else {
 3067                 return (0);
 3068         }
 3069 }
 3070 
 3071  /*
 3072   * Call back function from struct bio back up to struct buf.
 3073   */
 3074 static void
 3075 bufdonebio(struct bio *bip)
 3076 {
 3077         struct buf *bp;
 3078 
 3079         bp = bip->bio_caller2;
 3080         bp->b_resid = bp->b_bcount - bip->bio_completed;
 3081         bp->b_resid = bip->bio_resid;   /* XXX: remove */
 3082         bp->b_ioflags = bip->bio_flags;
 3083         bp->b_error = bip->bio_error;
 3084         if (bp->b_error)
 3085                 bp->b_ioflags |= BIO_ERROR;
 3086         bufdone(bp);
 3087         g_destroy_bio(bip);
 3088 }
 3089 
 3090 void
 3091 dev_strategy(struct cdev *dev, struct buf *bp)
 3092 {
 3093         struct cdevsw *csw;
 3094         struct bio *bip;
 3095 
 3096         if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
 3097                 panic("b_iocmd botch");
 3098         for (;;) {
 3099                 bip = g_new_bio();
 3100                 if (bip != NULL)
 3101                         break;
 3102                 /* Try again later */
 3103                 tsleep(&bp, PRIBIO, "dev_strat", hz/10);
 3104         }
 3105         bip->bio_cmd = bp->b_iocmd;
 3106         bip->bio_offset = bp->b_iooffset;
 3107         bip->bio_length = bp->b_bcount;
 3108         bip->bio_bcount = bp->b_bcount; /* XXX: remove */
 3109         bip->bio_data = bp->b_data;
 3110         bip->bio_done = bufdonebio;
 3111         bip->bio_caller2 = bp;
 3112         bip->bio_dev = dev;
 3113         KASSERT(dev->si_refcount > 0,
 3114             ("dev_strategy on un-referenced struct cdev *(%s)",
 3115             devtoname(dev)));
 3116         csw = dev_refthread(dev);
 3117         if (csw == NULL) {
 3118                 g_destroy_bio(bip);
 3119                 bp->b_error = ENXIO;
 3120                 bp->b_ioflags = BIO_ERROR;
 3121                 bufdone(bp);
 3122                 return;
 3123         }
 3124         (*csw->d_strategy)(bip);
 3125         dev_relthread(dev);
 3126 }
 3127 
 3128 /*
 3129  *      bufdone:
 3130  *
 3131  *      Finish I/O on a buffer, optionally calling a completion function.
 3132  *      This is usually called from an interrupt so process blocking is
 3133  *      not allowed.
 3134  *
 3135  *      biodone is also responsible for setting B_CACHE in a B_VMIO bp.
 3136  *      In a non-VMIO bp, B_CACHE will be set on the next getblk() 
 3137  *      assuming B_INVAL is clear.
 3138  *
 3139  *      For the VMIO case, we set B_CACHE if the op was a read and no
 3140  *      read error occured, or if the op was a write.  B_CACHE is never
 3141  *      set if the buffer is invalid or otherwise uncacheable.
 3142  *
 3143  *      biodone does not mess with B_INVAL, allowing the I/O routine or the
 3144  *      initiator to leave B_INVAL set to brelse the buffer out of existance
 3145  *      in the biodone routine.
 3146  */
 3147 void
 3148 bufdone(struct buf *bp)
 3149 {
 3150         struct bufobj *dropobj;
 3151         void    (*biodone)(struct buf *);
 3152 
 3153         CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 3154         dropobj = NULL;
 3155 
 3156         KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
 3157             BUF_REFCNT(bp)));
 3158         KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 3159 
 3160         runningbufwakeup(bp);
 3161         if (bp->b_iocmd == BIO_WRITE)
 3162                 dropobj = bp->b_bufobj;
 3163         /* call optional completion function if requested */
 3164         if (bp->b_iodone != NULL) {
 3165                 biodone = bp->b_iodone;
 3166                 bp->b_iodone = NULL;
 3167                 (*biodone) (bp);
 3168                 if (dropobj)
 3169                         bufobj_wdrop(dropobj);
 3170                 return;
 3171         }
 3172 
 3173         bufdone_finish(bp);
 3174 
 3175         if (dropobj)
 3176                 bufobj_wdrop(dropobj);
 3177 }
 3178 
 3179 void
 3180 bufdone_finish(struct buf *bp)
 3181 {
 3182         KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
 3183             BUF_REFCNT(bp)));
 3184 
 3185         if (!LIST_EMPTY(&bp->b_dep))
 3186                 buf_complete(bp);
 3187 
 3188         if (bp->b_flags & B_VMIO) {
 3189                 int i;
 3190                 vm_ooffset_t foff;
 3191                 vm_page_t m;
 3192                 vm_object_t obj;
 3193                 int iosize;
 3194                 struct vnode *vp = bp->b_vp;
 3195                 boolean_t are_queues_locked;
 3196 
 3197                 obj = bp->b_bufobj->bo_object;
 3198 
 3199 #if defined(VFS_BIO_DEBUG)
 3200                 mp_fixme("usecount and vflag accessed without locks.");
 3201                 if (vp->v_usecount == 0) {
 3202                         panic("biodone: zero vnode ref count");
 3203                 }
 3204 
 3205                 KASSERT(vp->v_object != NULL,
 3206                         ("biodone: vnode %p has no vm_object", vp));
 3207 #endif
 3208 
 3209                 foff = bp->b_offset;
 3210                 KASSERT(bp->b_offset != NOOFFSET,
 3211                     ("biodone: no buffer offset"));
 3212 
 3213                 VM_OBJECT_LOCK(obj);
 3214 #if defined(VFS_BIO_DEBUG)
 3215                 if (obj->paging_in_progress < bp->b_npages) {
 3216                         printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
 3217                             obj->paging_in_progress, bp->b_npages);
 3218                 }
 3219 #endif
 3220 
 3221                 /*
 3222                  * Set B_CACHE if the op was a normal read and no error
 3223                  * occured.  B_CACHE is set for writes in the b*write()
 3224                  * routines.
 3225                  */
 3226                 iosize = bp->b_bcount - bp->b_resid;
 3227                 if (bp->b_iocmd == BIO_READ &&
 3228                     !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 3229                     !(bp->b_ioflags & BIO_ERROR)) {
 3230                         bp->b_flags |= B_CACHE;
 3231                 }
 3232                 if (bp->b_iocmd == BIO_READ) {
 3233                         vm_page_lock_queues();
 3234                         are_queues_locked = TRUE;
 3235                 } else
 3236                         are_queues_locked = FALSE;
 3237                 for (i = 0; i < bp->b_npages; i++) {
 3238                         int bogusflag = 0;
 3239                         int resid;
 3240 
 3241                         resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 3242                         if (resid > iosize)
 3243                                 resid = iosize;
 3244 
 3245                         /*
 3246                          * cleanup bogus pages, restoring the originals
 3247                          */
 3248                         m = bp->b_pages[i];
 3249                         if (m == bogus_page) {
 3250                                 bogusflag = 1;
 3251                                 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
 3252                                 if (m == NULL)
 3253                                         panic("biodone: page disappeared!");
 3254                                 bp->b_pages[i] = m;
 3255                                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3256                                     bp->b_pages, bp->b_npages);
 3257                         }
 3258 #if defined(VFS_BIO_DEBUG)
 3259                         if (OFF_TO_IDX(foff) != m->pindex) {
 3260                                 printf(
 3261 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
 3262                                     (intmax_t)foff, (uintmax_t)m->pindex);
 3263                         }
 3264 #endif
 3265 
 3266                         /*
 3267                          * In the write case, the valid and clean bits are
 3268                          * already changed correctly ( see bdwrite() ), so we 
 3269                          * only need to do this here in the read case.
 3270                          */
 3271                         if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
 3272                                 vfs_page_set_valid(bp, foff, i, m);
 3273                         }
 3274 
 3275                         /*
 3276                          * when debugging new filesystems or buffer I/O methods, this
 3277                          * is the most common error that pops up.  if you see this, you
 3278                          * have not set the page busy flag correctly!!!
 3279                          */
 3280                         if (m->busy == 0) {
 3281                                 printf("biodone: page busy < 0, "
 3282                                     "pindex: %d, foff: 0x(%x,%x), "
 3283                                     "resid: %d, index: %d\n",
 3284                                     (int) m->pindex, (int)(foff >> 32),
 3285                                                 (int) foff & 0xffffffff, resid, i);
 3286                                 if (!vn_isdisk(vp, NULL))
 3287                                         printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
 3288                                             (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
 3289                                             (intmax_t) bp->b_lblkno,
 3290                                             bp->b_flags, bp->b_npages);
 3291                                 else
 3292                                         printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
 3293                                             (intmax_t) bp->b_lblkno,
 3294                                             bp->b_flags, bp->b_npages);
 3295                                 printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
 3296                                     (u_long)m->valid, (u_long)m->dirty,
 3297                                     m->wire_count);
 3298                                 panic("biodone: page busy < 0\n");
 3299                         }
 3300                         vm_page_io_finish(m);
 3301                         vm_object_pip_subtract(obj, 1);
 3302                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3303                         iosize -= resid;
 3304                 }
 3305                 if (are_queues_locked)
 3306                         vm_page_unlock_queues();
 3307                 vm_object_pip_wakeupn(obj, 0);
 3308                 VM_OBJECT_UNLOCK(obj);
 3309         }
 3310 
 3311         /*
 3312          * For asynchronous completions, release the buffer now. The brelse
 3313          * will do a wakeup there if necessary - so no need to do a wakeup
 3314          * here in the async case. The sync case always needs to do a wakeup.
 3315          */
 3316 
 3317         if (bp->b_flags & B_ASYNC) {
 3318                 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
 3319                         brelse(bp);
 3320                 else
 3321                         bqrelse(bp);
 3322         } else
 3323                 bdone(bp);
 3324 }
 3325 
 3326 /*
 3327  * This routine is called in lieu of iodone in the case of
 3328  * incomplete I/O.  This keeps the busy status for pages
 3329  * consistant.
 3330  */
 3331 void
 3332 vfs_unbusy_pages(struct buf *bp)
 3333 {
 3334         int i;
 3335         vm_object_t obj;
 3336         vm_page_t m;
 3337 
 3338         runningbufwakeup(bp);
 3339         if (!(bp->b_flags & B_VMIO))
 3340                 return;
 3341 
 3342         obj = bp->b_bufobj->bo_object;
 3343         VM_OBJECT_LOCK(obj);
 3344         for (i = 0; i < bp->b_npages; i++) {
 3345                 m = bp->b_pages[i];
 3346                 if (m == bogus_page) {
 3347                         m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 3348                         if (!m)
 3349                                 panic("vfs_unbusy_pages: page missing\n");
 3350                         bp->b_pages[i] = m;
 3351                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3352                             bp->b_pages, bp->b_npages);
 3353                 }
 3354                 vm_object_pip_subtract(obj, 1);
 3355                 vm_page_io_finish(m);
 3356         }
 3357         vm_object_pip_wakeupn(obj, 0);
 3358         VM_OBJECT_UNLOCK(obj);
 3359 }
 3360 
 3361 /*
 3362  * vfs_page_set_valid:
 3363  *
 3364  *      Set the valid bits in a page based on the supplied offset.   The
 3365  *      range is restricted to the buffer's size.
 3366  *
 3367  *      This routine is typically called after a read completes.
 3368  */
 3369 static void
 3370 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
 3371 {
 3372         vm_ooffset_t soff, eoff;
 3373 
 3374         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3375         /*
 3376          * Start and end offsets in buffer.  eoff - soff may not cross a
 3377          * page boundry or cross the end of the buffer.  The end of the
 3378          * buffer, in this case, is our file EOF, not the allocation size
 3379          * of the buffer.
 3380          */
 3381         soff = off;
 3382         eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3383         if (eoff > bp->b_offset + bp->b_bcount)
 3384                 eoff = bp->b_offset + bp->b_bcount;
 3385 
 3386         /*
 3387          * Set valid range.  This is typically the entire buffer and thus the
 3388          * entire page.
 3389          */
 3390         if (eoff > soff) {
 3391                 vm_page_set_validclean(
 3392                     m,
 3393                    (vm_offset_t) (soff & PAGE_MASK),
 3394                    (vm_offset_t) (eoff - soff)
 3395                 );
 3396         }
 3397 }
 3398 
 3399 /*
 3400  * This routine is called before a device strategy routine.
 3401  * It is used to tell the VM system that paging I/O is in
 3402  * progress, and treat the pages associated with the buffer
 3403  * almost as being VPO_BUSY.  Also the object paging_in_progress
 3404  * flag is handled to make sure that the object doesn't become
 3405  * inconsistant.
 3406  *
 3407  * Since I/O has not been initiated yet, certain buffer flags
 3408  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
 3409  * and should be ignored.
 3410  */
 3411 void
 3412 vfs_busy_pages(struct buf *bp, int clear_modify)
 3413 {
 3414         int i, bogus;
 3415         vm_object_t obj;
 3416         vm_ooffset_t foff;
 3417         vm_page_t m;
 3418 
 3419         if (!(bp->b_flags & B_VMIO))
 3420                 return;
 3421 
 3422         obj = bp->b_bufobj->bo_object;
 3423         foff = bp->b_offset;
 3424         KASSERT(bp->b_offset != NOOFFSET,
 3425             ("vfs_busy_pages: no buffer offset"));
 3426         VM_OBJECT_LOCK(obj);
 3427         if (bp->b_bufsize != 0)
 3428                 vfs_setdirty_locked_object(bp);
 3429 retry:
 3430         for (i = 0; i < bp->b_npages; i++) {
 3431                 m = bp->b_pages[i];
 3432 
 3433                 if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
 3434                         goto retry;
 3435         }
 3436         bogus = 0;
 3437         vm_page_lock_queues();
 3438         for (i = 0; i < bp->b_npages; i++) {
 3439                 m = bp->b_pages[i];
 3440 
 3441                 if ((bp->b_flags & B_CLUSTER) == 0) {
 3442                         vm_object_pip_add(obj, 1);
 3443                         vm_page_io_start(m);
 3444                 }
 3445                 /*
 3446                  * When readying a buffer for a read ( i.e
 3447                  * clear_modify == 0 ), it is important to do
 3448                  * bogus_page replacement for valid pages in 
 3449                  * partially instantiated buffers.  Partially 
 3450                  * instantiated buffers can, in turn, occur when
 3451                  * reconstituting a buffer from its VM backing store
 3452                  * base.  We only have to do this if B_CACHE is
 3453                  * clear ( which causes the I/O to occur in the
 3454                  * first place ).  The replacement prevents the read
 3455                  * I/O from overwriting potentially dirty VM-backed
 3456                  * pages.  XXX bogus page replacement is, uh, bogus.
 3457                  * It may not work properly with small-block devices.
 3458                  * We need to find a better way.
 3459                  */
 3460                 pmap_remove_all(m);
 3461                 if (clear_modify)
 3462                         vfs_page_set_valid(bp, foff, i, m);
 3463                 else if (m->valid == VM_PAGE_BITS_ALL &&
 3464                     (bp->b_flags & B_CACHE) == 0) {
 3465                         bp->b_pages[i] = bogus_page;
 3466                         bogus++;
 3467                 }
 3468                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3469         }
 3470         vm_page_unlock_queues();
 3471         VM_OBJECT_UNLOCK(obj);
 3472         if (bogus)
 3473                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3474                     bp->b_pages, bp->b_npages);
 3475 }
 3476 
 3477 /*
 3478  * Tell the VM system that the pages associated with this buffer
 3479  * are clean.  This is used for delayed writes where the data is
 3480  * going to go to disk eventually without additional VM intevention.
 3481  *
 3482  * Note that while we only really need to clean through to b_bcount, we
 3483  * just go ahead and clean through to b_bufsize.
 3484  */
 3485 static void
 3486 vfs_clean_pages(struct buf *bp)
 3487 {
 3488         int i;
 3489         vm_ooffset_t foff, noff, eoff;
 3490         vm_page_t m;
 3491 
 3492         if (!(bp->b_flags & B_VMIO))
 3493                 return;
 3494 
 3495         foff = bp->b_offset;
 3496         KASSERT(bp->b_offset != NOOFFSET,
 3497             ("vfs_clean_pages: no buffer offset"));
 3498         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3499         vm_page_lock_queues();
 3500         for (i = 0; i < bp->b_npages; i++) {
 3501                 m = bp->b_pages[i];
 3502                 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3503                 eoff = noff;
 3504 
 3505                 if (eoff > bp->b_offset + bp->b_bufsize)
 3506                         eoff = bp->b_offset + bp->b_bufsize;
 3507                 vfs_page_set_valid(bp, foff, i, m);
 3508                 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 3509                 foff = noff;
 3510         }
 3511         vm_page_unlock_queues();
 3512         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3513 }
 3514 
 3515 /*
 3516  *      vfs_bio_set_validclean:
 3517  *
 3518  *      Set the range within the buffer to valid and clean.  The range is 
 3519  *      relative to the beginning of the buffer, b_offset.  Note that b_offset
 3520  *      itself may be offset from the beginning of the first page.
 3521  *
 3522  */
 3523 
 3524 void   
 3525 vfs_bio_set_validclean(struct buf *bp, int base, int size)
 3526 {
 3527         int i, n;
 3528         vm_page_t m;
 3529 
 3530         if (!(bp->b_flags & B_VMIO))
 3531                 return;
 3532         /*
 3533          * Fixup base to be relative to beginning of first page.
 3534          * Set initial n to be the maximum number of bytes in the
 3535          * first page that can be validated.
 3536          */
 3537 
 3538         base += (bp->b_offset & PAGE_MASK);
 3539         n = PAGE_SIZE - (base & PAGE_MASK);
 3540 
 3541         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3542         vm_page_lock_queues();
 3543         for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 3544                 m = bp->b_pages[i];
 3545                 if (n > size)
 3546                         n = size;
 3547                 vm_page_set_validclean(m, base & PAGE_MASK, n);
 3548                 base += n;
 3549                 size -= n;
 3550                 n = PAGE_SIZE;
 3551         }
 3552         vm_page_unlock_queues();
 3553         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3554 }
 3555 
 3556 /*
 3557  *      vfs_bio_clrbuf:
 3558  *
 3559  *      clear a buffer.  This routine essentially fakes an I/O, so we need
 3560  *      to clear BIO_ERROR and B_INVAL.
 3561  *
 3562  *      Note that while we only theoretically need to clear through b_bcount,
 3563  *      we go ahead and clear through b_bufsize.
 3564  */
 3565 
 3566 void
 3567 vfs_bio_clrbuf(struct buf *bp) 
 3568 {
 3569         int i, j, mask = 0;
 3570         caddr_t sa, ea;
 3571 
 3572         if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
 3573                 clrbuf(bp);
 3574                 return;
 3575         }
 3576 
 3577         bp->b_flags &= ~B_INVAL;
 3578         bp->b_ioflags &= ~BIO_ERROR;
 3579         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3580         if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
 3581             (bp->b_offset & PAGE_MASK) == 0) {
 3582                 if (bp->b_pages[0] == bogus_page)
 3583                         goto unlock;
 3584                 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
 3585                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
 3586                 if ((bp->b_pages[0]->valid & mask) == mask)
 3587                         goto unlock;
 3588                 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
 3589                     ((bp->b_pages[0]->valid & mask) == 0)) {
 3590                         bzero(bp->b_data, bp->b_bufsize);
 3591                         bp->b_pages[0]->valid |= mask;
 3592                         goto unlock;
 3593                 }
 3594         }
 3595         ea = sa = bp->b_data;
 3596         for(i = 0; i < bp->b_npages; i++, sa = ea) {
 3597                 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
 3598                 ea = (caddr_t)(vm_offset_t)ulmin(
 3599                     (u_long)(vm_offset_t)ea,
 3600                     (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
 3601                 if (bp->b_pages[i] == bogus_page)
 3602                         continue;
 3603                 j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
 3604                 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
 3605                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
 3606                 if ((bp->b_pages[i]->valid & mask) == mask)
 3607                         continue;
 3608                 if ((bp->b_pages[i]->valid & mask) == 0) {
 3609                         if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
 3610                                 bzero(sa, ea - sa);
 3611                 } else {
 3612                         for (; sa < ea; sa += DEV_BSIZE, j++) {
 3613                                 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
 3614                                     (bp->b_pages[i]->valid & (1 << j)) == 0)
 3615                                         bzero(sa, DEV_BSIZE);
 3616                         }
 3617                 }
 3618                 bp->b_pages[i]->valid |= mask;
 3619         }
 3620 unlock:
 3621         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3622         bp->b_resid = 0;
 3623 }
 3624 
 3625 /*
 3626  * vm_hold_load_pages and vm_hold_free_pages get pages into
 3627  * a buffers address space.  The pages are anonymous and are
 3628  * not associated with a file object.
 3629  */
 3630 static void
 3631 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 3632 {
 3633         vm_offset_t pg;
 3634         vm_page_t p;
 3635         int index;
 3636 
 3637         to = round_page(to);
 3638         from = round_page(from);
 3639         index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3640 
 3641         VM_OBJECT_LOCK(kernel_object);
 3642         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3643 tryagain:
 3644                 /*
 3645                  * note: must allocate system pages since blocking here
 3646                  * could intefere with paging I/O, no matter which
 3647                  * process we are.
 3648                  */
 3649                 p = vm_page_alloc(kernel_object,
 3650                         ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
 3651                     VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 3652                 if (!p) {
 3653                         atomic_add_int(&vm_pageout_deficit,
 3654                             (to - pg) >> PAGE_SHIFT);
 3655                         VM_OBJECT_UNLOCK(kernel_object);
 3656                         VM_WAIT;
 3657                         VM_OBJECT_LOCK(kernel_object);
 3658                         goto tryagain;
 3659                 }
 3660                 p->valid = VM_PAGE_BITS_ALL;
 3661                 pmap_qenter(pg, &p, 1);
 3662                 bp->b_pages[index] = p;
 3663         }
 3664         VM_OBJECT_UNLOCK(kernel_object);
 3665         bp->b_npages = index;
 3666 }
 3667 
 3668 /* Return pages associated with this buf to the vm system */
 3669 static void
 3670 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 3671 {
 3672         vm_offset_t pg;
 3673         vm_page_t p;
 3674         int index, newnpages;
 3675 
 3676         from = round_page(from);
 3677         to = round_page(to);
 3678         newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3679 
 3680         VM_OBJECT_LOCK(kernel_object);
 3681         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3682                 p = bp->b_pages[index];
 3683                 if (p && (index < bp->b_npages)) {
 3684                         if (p->busy) {
 3685                                 printf(
 3686                             "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
 3687                                     (intmax_t)bp->b_blkno,
 3688                                     (intmax_t)bp->b_lblkno);
 3689                         }
 3690                         bp->b_pages[index] = NULL;
 3691                         pmap_qremove(pg, 1);
 3692                         vm_page_lock_queues();
 3693                         vm_page_unwire(p, 0);
 3694                         vm_page_free(p);
 3695                         vm_page_unlock_queues();
 3696                 }
 3697         }
 3698         VM_OBJECT_UNLOCK(kernel_object);
 3699         bp->b_npages = newnpages;
 3700 }
 3701 
 3702 /*
 3703  * Map an IO request into kernel virtual address space.
 3704  *
 3705  * All requests are (re)mapped into kernel VA space.
 3706  * Notice that we use b_bufsize for the size of the buffer
 3707  * to be mapped.  b_bcount might be modified by the driver.
 3708  *
 3709  * Note that even if the caller determines that the address space should
 3710  * be valid, a race or a smaller-file mapped into a larger space may
 3711  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
 3712  * check the return value.
 3713  */
 3714 int
 3715 vmapbuf(struct buf *bp)
 3716 {
 3717         caddr_t addr, kva;
 3718         vm_prot_t prot;
 3719         int pidx, i;
 3720         struct vm_page *m;
 3721         struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
 3722 
 3723         if (bp->b_bufsize < 0)
 3724                 return (-1);
 3725         prot = VM_PROT_READ;
 3726         if (bp->b_iocmd == BIO_READ)
 3727                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 3728         for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
 3729              addr < bp->b_data + bp->b_bufsize;
 3730              addr += PAGE_SIZE, pidx++) {
 3731                 /*
 3732                  * Do the vm_fault if needed; do the copy-on-write thing
 3733                  * when reading stuff off device into memory.
 3734                  *
 3735                  * NOTE! Must use pmap_extract() because addr may be in
 3736                  * the userland address space, and kextract is only guarenteed
 3737                  * to work for the kernland address space (see: sparc64 port).
 3738                  */
 3739 retry:
 3740                 if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
 3741                     prot) < 0) {
 3742                         vm_page_lock_queues();
 3743                         for (i = 0; i < pidx; ++i) {
 3744                                 vm_page_unhold(bp->b_pages[i]);
 3745                                 bp->b_pages[i] = NULL;
 3746                         }
 3747                         vm_page_unlock_queues();
 3748                         return(-1);
 3749                 }
 3750                 m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
 3751                 if (m == NULL)
 3752                         goto retry;
 3753                 bp->b_pages[pidx] = m;
 3754         }
 3755         if (pidx > btoc(MAXPHYS))
 3756                 panic("vmapbuf: mapped more than MAXPHYS");
 3757         pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
 3758         
 3759         kva = bp->b_saveaddr;
 3760         bp->b_npages = pidx;
 3761         bp->b_saveaddr = bp->b_data;
 3762         bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
 3763         return(0);
 3764 }
 3765 
 3766 /*
 3767  * Free the io map PTEs associated with this IO operation.
 3768  * We also invalidate the TLB entries and restore the original b_addr.
 3769  */
 3770 void
 3771 vunmapbuf(struct buf *bp)
 3772 {
 3773         int pidx;
 3774         int npages;
 3775 
 3776         npages = bp->b_npages;
 3777         pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
 3778         vm_page_lock_queues();
 3779         for (pidx = 0; pidx < npages; pidx++)
 3780                 vm_page_unhold(bp->b_pages[pidx]);
 3781         vm_page_unlock_queues();
 3782 
 3783         bp->b_data = bp->b_saveaddr;
 3784 }
 3785 
 3786 void
 3787 bdone(struct buf *bp)
 3788 {
 3789 
 3790         mtx_lock(&bdonelock);
 3791         bp->b_flags |= B_DONE;
 3792         wakeup(bp);
 3793         mtx_unlock(&bdonelock);
 3794 }
 3795 
 3796 void
 3797 bwait(struct buf *bp, u_char pri, const char *wchan)
 3798 {
 3799 
 3800         mtx_lock(&bdonelock);
 3801         while ((bp->b_flags & B_DONE) == 0)
 3802                 msleep(bp, &bdonelock, pri, wchan, 0);
 3803         mtx_unlock(&bdonelock);
 3804 }
 3805 
 3806 int
 3807 bufsync(struct bufobj *bo, int waitfor, struct thread *td)
 3808 {
 3809 
 3810         return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
 3811 }
 3812 
 3813 void
 3814 bufstrategy(struct bufobj *bo, struct buf *bp)
 3815 {
 3816         int i = 0;
 3817         struct vnode *vp;
 3818 
 3819         vp = bp->b_vp;
 3820         KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
 3821         KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
 3822             ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
 3823         i = VOP_STRATEGY(vp, bp);
 3824         KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
 3825 }
 3826 
 3827 void
 3828 bufobj_wrefl(struct bufobj *bo)
 3829 {
 3830 
 3831         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 3832         ASSERT_BO_LOCKED(bo);
 3833         bo->bo_numoutput++;
 3834 }
 3835 
 3836 void
 3837 bufobj_wref(struct bufobj *bo)
 3838 {
 3839 
 3840         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 3841         BO_LOCK(bo);
 3842         bo->bo_numoutput++;
 3843         BO_UNLOCK(bo);
 3844 }
 3845 
 3846 void
 3847 bufobj_wdrop(struct bufobj *bo)
 3848 {
 3849 
 3850         KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
 3851         BO_LOCK(bo);
 3852         KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
 3853         if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
 3854                 bo->bo_flag &= ~BO_WWAIT;
 3855                 wakeup(&bo->bo_numoutput);
 3856         }
 3857         BO_UNLOCK(bo);
 3858 }
 3859 
 3860 int
 3861 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
 3862 {
 3863         int error;
 3864 
 3865         KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
 3866         ASSERT_BO_LOCKED(bo);
 3867         error = 0;
 3868         while (bo->bo_numoutput) {
 3869                 bo->bo_flag |= BO_WWAIT;
 3870                 error = msleep(&bo->bo_numoutput, BO_MTX(bo),
 3871                     slpflag | (PRIBIO + 1), "bo_wwait", timeo);
 3872                 if (error)
 3873                         break;
 3874         }
 3875         return (error);
 3876 }
 3877 
 3878 void
 3879 bpin(struct buf *bp)
 3880 {
 3881         mtx_lock(&bpinlock);
 3882         bp->b_pin_count++;
 3883         mtx_unlock(&bpinlock);
 3884 }
 3885 
 3886 void
 3887 bunpin(struct buf *bp)
 3888 {
 3889         mtx_lock(&bpinlock);
 3890         if (--bp->b_pin_count == 0)
 3891                 wakeup(bp);
 3892         mtx_unlock(&bpinlock);
 3893 }
 3894 
 3895 void
 3896 bunpin_wait(struct buf *bp)
 3897 {
 3898         mtx_lock(&bpinlock);
 3899         while (bp->b_pin_count > 0)
 3900                 msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
 3901         mtx_unlock(&bpinlock);
 3902 }
 3903 
 3904 #include "opt_ddb.h"
 3905 #ifdef DDB
 3906 #include <ddb/ddb.h>
 3907 
 3908 /* DDB command to show buffer data */
 3909 DB_SHOW_COMMAND(buffer, db_show_buffer)
 3910 {
 3911         /* get args */
 3912         struct buf *bp = (struct buf *)addr;
 3913 
 3914         if (!have_addr) {
 3915                 db_printf("usage: show buffer <addr>\n");
 3916                 return;
 3917         }
 3918 
 3919         db_printf("buf at %p\n", bp);
 3920         db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
 3921         db_printf(
 3922             "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 3923             "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
 3924             bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 3925             bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
 3926         if (bp->b_npages) {
 3927                 int i;
 3928                 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 3929                 for (i = 0; i < bp->b_npages; i++) {
 3930                         vm_page_t m;
 3931                         m = bp->b_pages[i];
 3932                         db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
 3933                             (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
 3934                         if ((i + 1) < bp->b_npages)
 3935                                 db_printf(",");
 3936                 }
 3937                 db_printf("\n");
 3938         }
 3939         lockmgr_printinfo(&bp->b_lock);
 3940 }
 3941 
 3942 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
 3943 {
 3944         struct buf *bp;
 3945         int i;
 3946 
 3947         for (i = 0; i < nbuf; i++) {
 3948                 bp = &buf[i];
 3949                 if (lockcount(&bp->b_lock)) {
 3950                         db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 3951                         db_printf("\n");
 3952                 }
 3953         }
 3954 }
 3955 #endif /* DDB */

Cache object: 251bd70f53957153d9540a0dda387b01


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.