The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Poul-Henning Kamp
    3  * Copyright (c) 1994,1997 John S. Dyson
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * this file contains a new buffer I/O scheme implementing a coherent
   30  * VM object and buffer cache scheme.  Pains have been taken to make
   31  * sure that the performance degradation associated with schemes such
   32  * as this is not realized.
   33  *
   34  * Author:  John S. Dyson
   35  * Significant help during the development and debugging phases
   36  * had been provided by David Greenman, also of the FreeBSD core team.
   37  *
   38  * see man buf(9) for more info.
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/7.3/sys/kern/vfs_bio.c 196087 2009-08-09 11:47:39Z kib $");
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/bio.h>
   47 #include <sys/conf.h>
   48 #include <sys/buf.h>
   49 #include <sys/devicestat.h>
   50 #include <sys/eventhandler.h>
   51 #include <sys/limits.h>
   52 #include <sys/lock.h>
   53 #include <sys/malloc.h>
   54 #include <sys/mount.h>
   55 #include <sys/mutex.h>
   56 #include <sys/kernel.h>
   57 #include <sys/kthread.h>
   58 #include <sys/proc.h>
   59 #include <sys/resourcevar.h>
   60 #include <sys/sysctl.h>
   61 #include <sys/vmmeter.h>
   62 #include <sys/vnode.h>
   63 #include <geom/geom.h>
   64 #include <vm/vm.h>
   65 #include <vm/vm_param.h>
   66 #include <vm/vm_kern.h>
   67 #include <vm/vm_pageout.h>
   68 #include <vm/vm_page.h>
   69 #include <vm/vm_object.h>
   70 #include <vm/vm_extern.h>
   71 #include <vm/vm_map.h>
   72 #include "opt_directio.h"
   73 #include "opt_swap.h"
   74 
   75 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
   76 
   77 struct  bio_ops bioops;         /* I/O operation notification */
   78 
   79 struct  buf_ops buf_ops_bio = {
   80         .bop_name       =       "buf_ops_bio",
   81         .bop_write      =       bufwrite,
   82         .bop_strategy   =       bufstrategy,
   83         .bop_sync       =       bufsync,
   84         .bop_bdflush    =       bufbdflush,
   85 };
   86 
   87 /*
   88  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
   89  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
   90  */
   91 struct buf *buf;                /* buffer header pool */
   92 
   93 static struct proc *bufdaemonproc;
   94 
   95 static int inmem(struct vnode *vp, daddr_t blkno);
   96 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
   97                 vm_offset_t to);
   98 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
   99                 vm_offset_t to);
  100 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
  101                                int pageno, vm_page_t m);
  102 static void vfs_clean_pages(struct buf *bp);
  103 static void vfs_setdirty(struct buf *bp);
  104 static void vfs_setdirty_locked_object(struct buf *bp);
  105 static void vfs_vmio_release(struct buf *bp);
  106 static int vfs_bio_clcheck(struct vnode *vp, int size,
  107                 daddr_t lblkno, daddr_t blkno);
  108 static int buf_do_flush(struct vnode *vp);
  109 static int flushbufqueues(struct vnode *, int, int);
  110 static void buf_daemon(void);
  111 static void bremfreel(struct buf *bp);
  112 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
  113 
  114 int vmiodirenable = TRUE;
  115 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
  116     "Use the VM system for directory writes");
  117 long runningbufspace;
  118 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
  119     "Amount of presently outstanding async buffer io");
  120 static long bufspace;
  121 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
  122     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
  123 static long maxbufspace;
  124 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
  125     "Maximum allowed value of bufspace (including buf_daemon)");
  126 static long bufmallocspace;
  127 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
  128     "Amount of malloced memory for buffers");
  129 static long maxbufmallocspace;
  130 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
  131     "Maximum amount of malloced memory for buffers");
  132 static long lobufspace;
  133 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
  134     "Minimum amount of buffers we want to have");
  135 long hibufspace;
  136 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
  137     "Maximum allowed value of bufspace (excluding buf_daemon)");
  138 static int bufreusecnt;
  139 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
  140     "Number of times we have reused a buffer");
  141 static int buffreekvacnt;
  142 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
  143     "Number of times we have freed the KVA space from some buffer");
  144 static int bufdefragcnt;
  145 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
  146     "Number of times we have had to repeat buffer allocation to defragment");
  147 static long lorunningspace;
  148 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
  149     "Minimum preferred space used for in-progress I/O");
  150 static long hirunningspace;
  151 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
  152     "Maximum amount of space to use for in-progress I/O");
  153 int dirtybufferflushes;
  154 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
  155     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
  156 int bdwriteskip;
  157 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
  158     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
  159 int altbufferflushes;
  160 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
  161     0, "Number of fsync flushes to limit dirty buffers");
  162 static int recursiveflushes;
  163 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
  164     0, "Number of flushes skipped due to being recursive");
  165 static int numdirtybuffers;
  166 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
  167     "Number of buffers that are dirty (has unwritten changes) at the moment");
  168 static int lodirtybuffers;
  169 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
  170     "How many buffers we want to have free before bufdaemon can sleep");
  171 static int hidirtybuffers;
  172 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
  173     "When the number of dirty buffers is considered severe");
  174 int dirtybufthresh;
  175 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
  176     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
  177 static int numfreebuffers;
  178 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
  179     "Number of free buffers");
  180 static int lofreebuffers;
  181 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
  182    "XXX Unused");
  183 static int hifreebuffers;
  184 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
  185    "XXX Complicatedly unused");
  186 static int getnewbufcalls;
  187 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
  188    "Number of calls to getnewbuf");
  189 static int getnewbufrestarts;
  190 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
  191     "Number of times getnewbuf has had to restart a buffer aquisition");
  192 static int flushbufqtarget = -1;
  193 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
  194     "Amount of work to do in flushbufqueues when helping bufdaemon");
  195 static long notbufdflashes;
  196 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
  197     "Number of dirty buffer flushes done by the bufdaemon helpers");
  198 
  199 /*
  200  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  201  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  202  * is idling.
  203  */
  204 static int bd_request;
  205 
  206 /*
  207  * This lock synchronizes access to bd_request.
  208  */
  209 static struct mtx bdlock;
  210 
  211 /*
  212  * bogus page -- for I/O to/from partially complete buffers
  213  * this is a temporary solution to the problem, but it is not
  214  * really that bad.  it would be better to split the buffer
  215  * for input in the case of buffers partially already in memory,
  216  * but the code is intricate enough already.
  217  */
  218 vm_page_t bogus_page;
  219 
  220 /*
  221  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  222  * Set when wait starts, cleared prior to wakeup().
  223  * Used in runningbufwakeup() and waitrunningbufspace().
  224  */
  225 static int runningbufreq;
  226 
  227 /*
  228  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  229  * waitrunningbufspace().
  230  */
  231 static struct mtx rbreqlock;
  232 
  233 /* 
  234  * Synchronization (sleep/wakeup) variable for buffer requests.
  235  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
  236  * by and/or.
  237  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
  238  * getnewbuf(), and getblk().
  239  */
  240 static int needsbuffer;
  241 
  242 /*
  243  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
  244  */
  245 static struct mtx nblock;
  246 
  247 /*
  248  * Lock that protects against bwait()/bdone()/B_DONE races.
  249  */
  250 
  251 static struct mtx bdonelock;
  252 
  253 /*
  254  * Lock that protects against bwait()/bdone()/B_DONE races.
  255  */
  256 static struct mtx bpinlock;
  257 
  258 /*
  259  * Definitions for the buffer free lists.
  260  */
  261 #define BUFFER_QUEUES   6       /* number of free buffer queues */
  262 
  263 #define QUEUE_NONE      0       /* on no queue */
  264 #define QUEUE_CLEAN     1       /* non-B_DELWRI buffers */
  265 #define QUEUE_DIRTY     2       /* B_DELWRI buffers */
  266 #define QUEUE_DIRTY_GIANT 3     /* B_DELWRI buffers that need giant */
  267 #define QUEUE_EMPTYKVA  4       /* empty buffer headers w/KVA assignment */
  268 #define QUEUE_EMPTY     5       /* empty buffer headers */
  269 #define QUEUE_SENTINEL  1024    /* not an queue index, but mark for sentinel */
  270 
  271 /* Queues for free buffers with various properties */
  272 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
  273 
  274 /* Lock for the bufqueues */
  275 static struct mtx bqlock;
  276 
  277 /*
  278  * Single global constant for BUF_WMESG, to avoid getting multiple references.
  279  * buf_wmesg is referred from macros.
  280  */
  281 const char *buf_wmesg = BUF_WMESG;
  282 
  283 #define VFS_BIO_NEED_ANY        0x01    /* any freeable buffer */
  284 #define VFS_BIO_NEED_DIRTYFLUSH 0x02    /* waiting for dirty buffer flush */
  285 #define VFS_BIO_NEED_FREE       0x04    /* wait for free bufs, hi hysteresis */
  286 #define VFS_BIO_NEED_BUFSPACE   0x08    /* wait for buf space, lo hysteresis */
  287 
  288 static int
  289 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
  290 {
  291         long lvalue;
  292         int ivalue;
  293 
  294         if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
  295                 return (sysctl_handle_long(oidp, arg1, arg2, req));
  296         lvalue = *(long *)arg1;
  297         if (lvalue > INT_MAX)
  298                 /* On overflow, still write out a long to trigger ENOMEM. */
  299                 return (sysctl_handle_long(oidp, &lvalue, 0, req));
  300         ivalue = lvalue;
  301         return (sysctl_handle_int(oidp, &ivalue, 0, req));
  302 }
  303 
  304 #ifdef DIRECTIO
  305 extern void ffs_rawread_setup(void);
  306 #endif /* DIRECTIO */
  307 /*
  308  *      numdirtywakeup:
  309  *
  310  *      If someone is blocked due to there being too many dirty buffers,
  311  *      and numdirtybuffers is now reasonable, wake them up.
  312  */
  313 
  314 static __inline void
  315 numdirtywakeup(int level)
  316 {
  317 
  318         if (numdirtybuffers <= level) {
  319                 mtx_lock(&nblock);
  320                 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
  321                         needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
  322                         wakeup(&needsbuffer);
  323                 }
  324                 mtx_unlock(&nblock);
  325         }
  326 }
  327 
  328 /*
  329  *      bufspacewakeup:
  330  *
  331  *      Called when buffer space is potentially available for recovery.
  332  *      getnewbuf() will block on this flag when it is unable to free 
  333  *      sufficient buffer space.  Buffer space becomes recoverable when 
  334  *      bp's get placed back in the queues.
  335  */
  336 
  337 static __inline void
  338 bufspacewakeup(void)
  339 {
  340 
  341         /*
  342          * If someone is waiting for BUF space, wake them up.  Even
  343          * though we haven't freed the kva space yet, the waiting
  344          * process will be able to now.
  345          */
  346         mtx_lock(&nblock);
  347         if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
  348                 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
  349                 wakeup(&needsbuffer);
  350         }
  351         mtx_unlock(&nblock);
  352 }
  353 
  354 /*
  355  * runningbufwakeup() - in-progress I/O accounting.
  356  *
  357  */
  358 void
  359 runningbufwakeup(struct buf *bp)
  360 {
  361 
  362         if (bp->b_runningbufspace) {
  363                 atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
  364                 bp->b_runningbufspace = 0;
  365                 mtx_lock(&rbreqlock);
  366                 if (runningbufreq && runningbufspace <= lorunningspace) {
  367                         runningbufreq = 0;
  368                         wakeup(&runningbufreq);
  369                 }
  370                 mtx_unlock(&rbreqlock);
  371         }
  372 }
  373 
  374 /*
  375  *      bufcountwakeup:
  376  *
  377  *      Called when a buffer has been added to one of the free queues to
  378  *      account for the buffer and to wakeup anyone waiting for free buffers.
  379  *      This typically occurs when large amounts of metadata are being handled
  380  *      by the buffer cache ( else buffer space runs out first, usually ).
  381  */
  382 
  383 static __inline void
  384 bufcountwakeup(void) 
  385 {
  386 
  387         atomic_add_int(&numfreebuffers, 1);
  388         mtx_lock(&nblock);
  389         if (needsbuffer) {
  390                 needsbuffer &= ~VFS_BIO_NEED_ANY;
  391                 if (numfreebuffers >= hifreebuffers)
  392                         needsbuffer &= ~VFS_BIO_NEED_FREE;
  393                 wakeup(&needsbuffer);
  394         }
  395         mtx_unlock(&nblock);
  396 }
  397 
  398 /*
  399  *      waitrunningbufspace()
  400  *
  401  *      runningbufspace is a measure of the amount of I/O currently
  402  *      running.  This routine is used in async-write situations to
  403  *      prevent creating huge backups of pending writes to a device.
  404  *      Only asynchronous writes are governed by this function.
  405  *
  406  *      Reads will adjust runningbufspace, but will not block based on it.
  407  *      The read load has a side effect of reducing the allowed write load.
  408  *
  409  *      This does NOT turn an async write into a sync write.  It waits  
  410  *      for earlier writes to complete and generally returns before the
  411  *      caller's write has reached the device.
  412  */
  413 void
  414 waitrunningbufspace(void)
  415 {
  416 
  417         mtx_lock(&rbreqlock);
  418         while (runningbufspace > hirunningspace) {
  419                 ++runningbufreq;
  420                 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
  421         }
  422         mtx_unlock(&rbreqlock);
  423 }
  424 
  425 
  426 /*
  427  *      vfs_buf_test_cache:
  428  *
  429  *      Called when a buffer is extended.  This function clears the B_CACHE
  430  *      bit if the newly extended portion of the buffer does not contain
  431  *      valid data.
  432  */
  433 static __inline
  434 void
  435 vfs_buf_test_cache(struct buf *bp,
  436                   vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
  437                   vm_page_t m)
  438 {
  439 
  440         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  441         if (bp->b_flags & B_CACHE) {
  442                 int base = (foff + off) & PAGE_MASK;
  443                 if (vm_page_is_valid(m, base, size) == 0)
  444                         bp->b_flags &= ~B_CACHE;
  445         }
  446 }
  447 
  448 /* Wake up the buffer daemon if necessary */
  449 static __inline
  450 void
  451 bd_wakeup(int dirtybuflevel)
  452 {
  453 
  454         mtx_lock(&bdlock);
  455         if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
  456                 bd_request = 1;
  457                 wakeup(&bd_request);
  458         }
  459         mtx_unlock(&bdlock);
  460 }
  461 
  462 /*
  463  * bd_speedup - speedup the buffer cache flushing code
  464  */
  465 
  466 static __inline
  467 void
  468 bd_speedup(void)
  469 {
  470 
  471         bd_wakeup(1);
  472 }
  473 
  474 /*
  475  * Calculating buffer cache scaling values and reserve space for buffer
  476  * headers.  This is called during low level kernel initialization and
  477  * may be called more then once.  We CANNOT write to the memory area
  478  * being reserved at this time.
  479  */
  480 caddr_t
  481 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
  482 {
  483         int tuned_nbuf;
  484         long maxbuf;
  485 
  486         /*
  487          * physmem_est is in pages.  Convert it to kilobytes (assumes
  488          * PAGE_SIZE is >= 1K)
  489          */
  490         physmem_est = physmem_est * (PAGE_SIZE / 1024);
  491 
  492         /*
  493          * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
  494          * For the first 64MB of ram nominally allocate sufficient buffers to
  495          * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
  496          * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
  497          * the buffer cache we limit the eventual kva reservation to
  498          * maxbcache bytes.
  499          *
  500          * factor represents the 1/4 x ram conversion.
  501          */
  502         if (nbuf == 0) {
  503                 int factor = 4 * BKVASIZE / 1024;
  504 
  505                 nbuf = 50;
  506                 if (physmem_est > 4096)
  507                         nbuf += min((physmem_est - 4096) / factor,
  508                             65536 / factor);
  509                 if (physmem_est > 65536)
  510                         nbuf += (physmem_est - 65536) * 2 / (factor * 5);
  511 
  512                 if (maxbcache && nbuf > maxbcache / BKVASIZE)
  513                         nbuf = maxbcache / BKVASIZE;
  514                 tuned_nbuf = 1;
  515         } else
  516                 tuned_nbuf = 0;
  517 
  518         /* XXX Avoid unsigned long overflows later on with maxbufspace. */
  519         maxbuf = (LONG_MAX / 3) / BKVASIZE;
  520         if (nbuf > maxbuf) {
  521                 if (!tuned_nbuf)
  522                         printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
  523                             maxbuf);
  524                 nbuf = maxbuf;
  525         }
  526 
  527 #if 0
  528         /*
  529          * Do not allow the buffer_map to be more then 1/2 the size of the
  530          * kernel_map.
  531          */
  532         if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) / 
  533             (BKVASIZE * 2)) {
  534                 nbuf = (kernel_map->max_offset - kernel_map->min_offset) / 
  535                     (BKVASIZE * 2);
  536                 printf("Warning: nbufs capped at %d\n", nbuf);
  537         }
  538 #endif
  539 
  540         /*
  541          * swbufs are used as temporary holders for I/O, such as paging I/O.
  542          * We have no less then 16 and no more then 256.
  543          */
  544         nswbuf = max(min(nbuf/4, 256), 16);
  545 #ifdef NSWBUF_MIN
  546         if (nswbuf < NSWBUF_MIN)
  547                 nswbuf = NSWBUF_MIN;
  548 #endif
  549 #ifdef DIRECTIO
  550         ffs_rawread_setup();
  551 #endif
  552 
  553         /*
  554          * Reserve space for the buffer cache buffers
  555          */
  556         swbuf = (void *)v;
  557         v = (caddr_t)(swbuf + nswbuf);
  558         buf = (void *)v;
  559         v = (caddr_t)(buf + nbuf);
  560 
  561         return(v);
  562 }
  563 
  564 /* Initialize the buffer subsystem.  Called before use of any buffers. */
  565 void
  566 bufinit(void)
  567 {
  568         struct buf *bp;
  569         int i;
  570 
  571         mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
  572         mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
  573         mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
  574         mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
  575         mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
  576         mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
  577 
  578         /* next, make a null set of free lists */
  579         for (i = 0; i < BUFFER_QUEUES; i++)
  580                 TAILQ_INIT(&bufqueues[i]);
  581 
  582         /* finally, initialize each buffer header and stick on empty q */
  583         for (i = 0; i < nbuf; i++) {
  584                 bp = &buf[i];
  585                 bzero(bp, sizeof *bp);
  586                 bp->b_flags = B_INVAL;  /* we're just an empty header */
  587                 bp->b_rcred = NOCRED;
  588                 bp->b_wcred = NOCRED;
  589                 bp->b_qindex = QUEUE_EMPTY;
  590                 bp->b_vflags = 0;
  591                 bp->b_xflags = 0;
  592                 LIST_INIT(&bp->b_dep);
  593                 BUF_LOCKINIT(bp);
  594                 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
  595         }
  596 
  597         /*
  598          * maxbufspace is the absolute maximum amount of buffer space we are 
  599          * allowed to reserve in KVM and in real terms.  The absolute maximum
  600          * is nominally used by buf_daemon.  hibufspace is the nominal maximum
  601          * used by most other processes.  The differential is required to 
  602          * ensure that buf_daemon is able to run when other processes might 
  603          * be blocked waiting for buffer space.
  604          *
  605          * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
  606          * this may result in KVM fragmentation which is not handled optimally
  607          * by the system.
  608          */
  609         maxbufspace = (long)nbuf * BKVASIZE;
  610         hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
  611         lobufspace = hibufspace - MAXBSIZE;
  612 
  613         lorunningspace = 512 * 1024;
  614         hirunningspace = 1024 * 1024;
  615 
  616 /*
  617  * Limit the amount of malloc memory since it is wired permanently into
  618  * the kernel space.  Even though this is accounted for in the buffer
  619  * allocation, we don't want the malloced region to grow uncontrolled.
  620  * The malloc scheme improves memory utilization significantly on average
  621  * (small) directories.
  622  */
  623         maxbufmallocspace = hibufspace / 20;
  624 
  625 /*
  626  * Reduce the chance of a deadlock occuring by limiting the number
  627  * of delayed-write dirty buffers we allow to stack up.
  628  */
  629         hidirtybuffers = nbuf / 4 + 20;
  630         dirtybufthresh = hidirtybuffers * 9 / 10;
  631         numdirtybuffers = 0;
  632 /*
  633  * To support extreme low-memory systems, make sure hidirtybuffers cannot
  634  * eat up all available buffer space.  This occurs when our minimum cannot
  635  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
  636  * BKVASIZE'd (8K) buffers.
  637  */
  638         while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
  639                 hidirtybuffers >>= 1;
  640         }
  641         lodirtybuffers = hidirtybuffers / 2;
  642 
  643 /*
  644  * Try to keep the number of free buffers in the specified range,
  645  * and give special processes (e.g. like buf_daemon) access to an 
  646  * emergency reserve.
  647  */
  648         lofreebuffers = nbuf / 18 + 5;
  649         hifreebuffers = 2 * lofreebuffers;
  650         numfreebuffers = nbuf;
  651 
  652 /*
  653  * Maximum number of async ops initiated per buf_daemon loop.  This is
  654  * somewhat of a hack at the moment, we really need to limit ourselves
  655  * based on the number of bytes of I/O in-transit that were initiated
  656  * from buf_daemon.
  657  */
  658 
  659         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
  660             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
  661 }
  662 
  663 /*
  664  * bfreekva() - free the kva allocation for a buffer.
  665  *
  666  *      Since this call frees up buffer space, we call bufspacewakeup().
  667  */
  668 static void
  669 bfreekva(struct buf *bp)
  670 {
  671 
  672         if (bp->b_kvasize) {
  673                 atomic_add_int(&buffreekvacnt, 1);
  674                 atomic_subtract_long(&bufspace, bp->b_kvasize);
  675                 vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
  676                     (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
  677                 bp->b_kvasize = 0;
  678                 bufspacewakeup();
  679         }
  680 }
  681 
  682 /*
  683  *      bremfree:
  684  *
  685  *      Mark the buffer for removal from the appropriate free list in brelse.
  686  *      
  687  */
  688 void
  689 bremfree(struct buf *bp)
  690 {
  691 
  692         CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  693         KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
  694         KASSERT((bp->b_flags & B_REMFREE) == 0,
  695             ("bremfree: buffer %p already marked for delayed removal.", bp));
  696         KASSERT(bp->b_qindex != QUEUE_NONE,
  697             ("bremfree: buffer %p not on a queue.", bp));
  698 
  699         bp->b_flags |= B_REMFREE;
  700         /* Fixup numfreebuffers count.  */
  701         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
  702                 atomic_subtract_int(&numfreebuffers, 1);
  703 }
  704 
  705 /*
  706  *      bremfreef:
  707  *
  708  *      Force an immediate removal from a free list.  Used only in nfs when
  709  *      it abuses the b_freelist pointer.
  710  */
  711 void
  712 bremfreef(struct buf *bp)
  713 {
  714         mtx_lock(&bqlock);
  715         bremfreel(bp);
  716         mtx_unlock(&bqlock);
  717 }
  718 
  719 /*
  720  *      bremfreel:
  721  *
  722  *      Removes a buffer from the free list, must be called with the
  723  *      bqlock held.
  724  */
  725 static void
  726 bremfreel(struct buf *bp)
  727 {
  728         CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
  729             bp, bp->b_vp, bp->b_flags);
  730         KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
  731         KASSERT(bp->b_qindex != QUEUE_NONE,
  732             ("bremfreel: buffer %p not on a queue.", bp));
  733         mtx_assert(&bqlock, MA_OWNED);
  734 
  735         TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
  736         bp->b_qindex = QUEUE_NONE;
  737         /*
  738          * If this was a delayed bremfree() we only need to remove the buffer
  739          * from the queue and return the stats are already done.
  740          */
  741         if (bp->b_flags & B_REMFREE) {
  742                 bp->b_flags &= ~B_REMFREE;
  743                 return;
  744         }
  745         /*
  746          * Fixup numfreebuffers count.  If the buffer is invalid or not
  747          * delayed-write, the buffer was free and we must decrement
  748          * numfreebuffers.
  749          */
  750         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
  751                 atomic_subtract_int(&numfreebuffers, 1);
  752 }
  753 
  754 
  755 /*
  756  * Get a buffer with the specified data.  Look in the cache first.  We
  757  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
  758  * is set, the buffer is valid and we do not have to do anything ( see
  759  * getblk() ).  This is really just a special case of breadn().
  760  */
  761 int
  762 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
  763     struct buf **bpp)
  764 {
  765 
  766         return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
  767 }
  768 
  769 /*
  770  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
  771  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
  772  * the buffer is valid and we do not have to do anything.
  773  */
  774 void
  775 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
  776     int cnt, struct ucred * cred)
  777 {
  778         struct buf *rabp;
  779         int i;
  780 
  781         for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
  782                 if (inmem(vp, *rablkno))
  783                         continue;
  784                 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
  785 
  786                 if ((rabp->b_flags & B_CACHE) == 0) {
  787                         if (!TD_IS_IDLETHREAD(curthread))
  788                                 curthread->td_ru.ru_inblock++;
  789                         rabp->b_flags |= B_ASYNC;
  790                         rabp->b_flags &= ~B_INVAL;
  791                         rabp->b_ioflags &= ~BIO_ERROR;
  792                         rabp->b_iocmd = BIO_READ;
  793                         if (rabp->b_rcred == NOCRED && cred != NOCRED)
  794                                 rabp->b_rcred = crhold(cred);
  795                         vfs_busy_pages(rabp, 0);
  796                         BUF_KERNPROC(rabp);
  797                         rabp->b_iooffset = dbtob(rabp->b_blkno);
  798                         bstrategy(rabp);
  799                 } else {
  800                         brelse(rabp);
  801                 }
  802         }
  803 }
  804 
  805 /*
  806  * Operates like bread, but also starts asynchronous I/O on
  807  * read-ahead blocks.
  808  */
  809 int
  810 breadn(struct vnode * vp, daddr_t blkno, int size,
  811     daddr_t * rablkno, int *rabsize,
  812     int cnt, struct ucred * cred, struct buf **bpp)
  813 {
  814         struct buf *bp;
  815         int rv = 0, readwait = 0;
  816 
  817         CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
  818         *bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
  819 
  820         /* if not found in cache, do some I/O */
  821         if ((bp->b_flags & B_CACHE) == 0) {
  822                 if (!TD_IS_IDLETHREAD(curthread))
  823                         curthread->td_ru.ru_inblock++;
  824                 bp->b_iocmd = BIO_READ;
  825                 bp->b_flags &= ~B_INVAL;
  826                 bp->b_ioflags &= ~BIO_ERROR;
  827                 if (bp->b_rcred == NOCRED && cred != NOCRED)
  828                         bp->b_rcred = crhold(cred);
  829                 vfs_busy_pages(bp, 0);
  830                 bp->b_iooffset = dbtob(bp->b_blkno);
  831                 bstrategy(bp);
  832                 ++readwait;
  833         }
  834 
  835         breada(vp, rablkno, rabsize, cnt, cred);
  836 
  837         if (readwait) {
  838                 rv = bufwait(bp);
  839         }
  840         return (rv);
  841 }
  842 
  843 /*
  844  * Write, release buffer on completion.  (Done by iodone
  845  * if async).  Do not bother writing anything if the buffer
  846  * is invalid.
  847  *
  848  * Note that we set B_CACHE here, indicating that buffer is
  849  * fully valid and thus cacheable.  This is true even of NFS
  850  * now so we set it generally.  This could be set either here 
  851  * or in biodone() since the I/O is synchronous.  We put it
  852  * here.
  853  */
  854 int
  855 bufwrite(struct buf *bp)
  856 {
  857         int oldflags;
  858         struct vnode *vp;
  859         int vp_md;
  860 
  861         CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  862         if (bp->b_flags & B_INVAL) {
  863                 brelse(bp);
  864                 return (0);
  865         }
  866 
  867         oldflags = bp->b_flags;
  868 
  869         if (BUF_REFCNT(bp) == 0)
  870                 panic("bufwrite: buffer is not busy???");
  871 
  872         if (bp->b_pin_count > 0)
  873                 bunpin_wait(bp);
  874 
  875         KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
  876             ("FFS background buffer should not get here %p", bp));
  877 
  878         vp = bp->b_vp;
  879         if (vp)
  880                 vp_md = vp->v_vflag & VV_MD;
  881         else
  882                 vp_md = 0;
  883 
  884         /* Mark the buffer clean */
  885         bundirty(bp);
  886 
  887         bp->b_flags &= ~B_DONE;
  888         bp->b_ioflags &= ~BIO_ERROR;
  889         bp->b_flags |= B_CACHE;
  890         bp->b_iocmd = BIO_WRITE;
  891 
  892         bufobj_wref(bp->b_bufobj);
  893         vfs_busy_pages(bp, 1);
  894 
  895         /*
  896          * Normal bwrites pipeline writes
  897          */
  898         bp->b_runningbufspace = bp->b_bufsize;
  899         atomic_add_long(&runningbufspace, bp->b_runningbufspace);
  900 
  901         if (!TD_IS_IDLETHREAD(curthread))
  902                 curthread->td_ru.ru_oublock++;
  903         if (oldflags & B_ASYNC)
  904                 BUF_KERNPROC(bp);
  905         bp->b_iooffset = dbtob(bp->b_blkno);
  906         bstrategy(bp);
  907 
  908         if ((oldflags & B_ASYNC) == 0) {
  909                 int rtval = bufwait(bp);
  910                 brelse(bp);
  911                 return (rtval);
  912         } else {
  913                 /*
  914                  * don't allow the async write to saturate the I/O
  915                  * system.  We will not deadlock here because
  916                  * we are blocking waiting for I/O that is already in-progress
  917                  * to complete. We do not block here if it is the update
  918                  * or syncer daemon trying to clean up as that can lead
  919                  * to deadlock.
  920                  */
  921                 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
  922                         waitrunningbufspace();
  923         }
  924 
  925         return (0);
  926 }
  927 
  928 void
  929 bufbdflush(struct bufobj *bo, struct buf *bp)
  930 {
  931         struct buf *nbp;
  932 
  933         if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
  934                 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
  935                 altbufferflushes++;
  936         } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
  937                 BO_LOCK(bo);
  938                 /*
  939                  * Try to find a buffer to flush.
  940                  */
  941                 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
  942                         if ((nbp->b_vflags & BV_BKGRDINPROG) ||
  943                             BUF_LOCK(nbp,
  944                                      LK_EXCLUSIVE | LK_NOWAIT, NULL))
  945                                 continue;
  946                         if (bp == nbp)
  947                                 panic("bdwrite: found ourselves");
  948                         BO_UNLOCK(bo);
  949                         /* Don't countdeps with the bo lock held. */
  950                         if (buf_countdeps(nbp, 0)) {
  951                                 BO_LOCK(bo);
  952                                 BUF_UNLOCK(nbp);
  953                                 continue;
  954                         }
  955                         if (nbp->b_flags & B_CLUSTEROK) {
  956                                 vfs_bio_awrite(nbp);
  957                         } else {
  958                                 bremfree(nbp);
  959                                 bawrite(nbp);
  960                         }
  961                         dirtybufferflushes++;
  962                         break;
  963                 }
  964                 if (nbp == NULL)
  965                         BO_UNLOCK(bo);
  966         }
  967 }
  968 
  969 /*
  970  * Delayed write. (Buffer is marked dirty).  Do not bother writing
  971  * anything if the buffer is marked invalid.
  972  *
  973  * Note that since the buffer must be completely valid, we can safely
  974  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
  975  * biodone() in order to prevent getblk from writing the buffer
  976  * out synchronously.
  977  */
  978 void
  979 bdwrite(struct buf *bp)
  980 {
  981         struct thread *td = curthread;
  982         struct vnode *vp;
  983         struct bufobj *bo;
  984 
  985         CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  986         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
  987         KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
  988 
  989         if (bp->b_flags & B_INVAL) {
  990                 brelse(bp);
  991                 return;
  992         }
  993 
  994         /*
  995          * If we have too many dirty buffers, don't create any more.
  996          * If we are wildly over our limit, then force a complete
  997          * cleanup. Otherwise, just keep the situation from getting
  998          * out of control. Note that we have to avoid a recursive
  999          * disaster and not try to clean up after our own cleanup!
 1000          */
 1001         vp = bp->b_vp;
 1002         bo = bp->b_bufobj;
 1003         if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
 1004                 td->td_pflags |= TDP_INBDFLUSH;
 1005                 BO_BDFLUSH(bo, bp);
 1006                 td->td_pflags &= ~TDP_INBDFLUSH;
 1007         } else
 1008                 recursiveflushes++;
 1009 
 1010         bdirty(bp);
 1011         /*
 1012          * Set B_CACHE, indicating that the buffer is fully valid.  This is
 1013          * true even of NFS now.
 1014          */
 1015         bp->b_flags |= B_CACHE;
 1016 
 1017         /*
 1018          * This bmap keeps the system from needing to do the bmap later,
 1019          * perhaps when the system is attempting to do a sync.  Since it
 1020          * is likely that the indirect block -- or whatever other datastructure
 1021          * that the filesystem needs is still in memory now, it is a good
 1022          * thing to do this.  Note also, that if the pageout daemon is
 1023          * requesting a sync -- there might not be enough memory to do
 1024          * the bmap then...  So, this is important to do.
 1025          */
 1026         if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
 1027                 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
 1028         }
 1029 
 1030         /*
 1031          * Set the *dirty* buffer range based upon the VM system dirty pages.
 1032          */
 1033         vfs_setdirty(bp);
 1034 
 1035         /*
 1036          * We need to do this here to satisfy the vnode_pager and the
 1037          * pageout daemon, so that it thinks that the pages have been
 1038          * "cleaned".  Note that since the pages are in a delayed write
 1039          * buffer -- the VFS layer "will" see that the pages get written
 1040          * out on the next sync, or perhaps the cluster will be completed.
 1041          */
 1042         vfs_clean_pages(bp);
 1043         bqrelse(bp);
 1044 
 1045         /*
 1046          * Wakeup the buffer flushing daemon if we have a lot of dirty
 1047          * buffers (midpoint between our recovery point and our stall
 1048          * point).
 1049          */
 1050         bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1051 
 1052         /*
 1053          * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 1054          * due to the softdep code.
 1055          */
 1056 }
 1057 
 1058 /*
 1059  *      bdirty:
 1060  *
 1061  *      Turn buffer into delayed write request.  We must clear BIO_READ and
 1062  *      B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
 1063  *      itself to properly update it in the dirty/clean lists.  We mark it
 1064  *      B_DONE to ensure that any asynchronization of the buffer properly
 1065  *      clears B_DONE ( else a panic will occur later ).  
 1066  *
 1067  *      bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
 1068  *      might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
 1069  *      should only be called if the buffer is known-good.
 1070  *
 1071  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1072  *      count.
 1073  *
 1074  *      The buffer must be on QUEUE_NONE.
 1075  */
 1076 void
 1077 bdirty(struct buf *bp)
 1078 {
 1079 
 1080         CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
 1081             bp, bp->b_vp, bp->b_flags);
 1082         KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
 1083         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1084         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1085             ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1086         bp->b_flags &= ~(B_RELBUF);
 1087         bp->b_iocmd = BIO_WRITE;
 1088 
 1089         if ((bp->b_flags & B_DELWRI) == 0) {
 1090                 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
 1091                 reassignbuf(bp);
 1092                 atomic_add_int(&numdirtybuffers, 1);
 1093                 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1094         }
 1095 }
 1096 
 1097 /*
 1098  *      bundirty:
 1099  *
 1100  *      Clear B_DELWRI for buffer.
 1101  *
 1102  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1103  *      count.
 1104  *      
 1105  *      The buffer must be on QUEUE_NONE.
 1106  */
 1107 
 1108 void
 1109 bundirty(struct buf *bp)
 1110 {
 1111 
 1112         CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1113         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1114         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1115             ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1116         KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
 1117 
 1118         if (bp->b_flags & B_DELWRI) {
 1119                 bp->b_flags &= ~B_DELWRI;
 1120                 reassignbuf(bp);
 1121                 atomic_subtract_int(&numdirtybuffers, 1);
 1122                 numdirtywakeup(lodirtybuffers);
 1123         }
 1124         /*
 1125          * Since it is now being written, we can clear its deferred write flag.
 1126          */
 1127         bp->b_flags &= ~B_DEFERRED;
 1128 }
 1129 
 1130 /*
 1131  *      bawrite:
 1132  *
 1133  *      Asynchronous write.  Start output on a buffer, but do not wait for
 1134  *      it to complete.  The buffer is released when the output completes.
 1135  *
 1136  *      bwrite() ( or the VOP routine anyway ) is responsible for handling 
 1137  *      B_INVAL buffers.  Not us.
 1138  */
 1139 void
 1140 bawrite(struct buf *bp)
 1141 {
 1142 
 1143         bp->b_flags |= B_ASYNC;
 1144         (void) bwrite(bp);
 1145 }
 1146 
 1147 /*
 1148  *      bwillwrite:
 1149  *
 1150  *      Called prior to the locking of any vnodes when we are expecting to
 1151  *      write.  We do not want to starve the buffer cache with too many
 1152  *      dirty buffers so we block here.  By blocking prior to the locking
 1153  *      of any vnodes we attempt to avoid the situation where a locked vnode
 1154  *      prevents the various system daemons from flushing related buffers.
 1155  */
 1156 
 1157 void
 1158 bwillwrite(void)
 1159 {
 1160 
 1161         if (numdirtybuffers >= hidirtybuffers) {
 1162                 mtx_lock(&nblock);
 1163                 while (numdirtybuffers >= hidirtybuffers) {
 1164                         bd_wakeup(1);
 1165                         needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
 1166                         msleep(&needsbuffer, &nblock,
 1167                             (PRIBIO + 4), "flswai", 0);
 1168                 }
 1169                 mtx_unlock(&nblock);
 1170         }
 1171 }
 1172 
 1173 /*
 1174  * Return true if we have too many dirty buffers.
 1175  */
 1176 int
 1177 buf_dirty_count_severe(void)
 1178 {
 1179 
 1180         return(numdirtybuffers >= hidirtybuffers);
 1181 }
 1182 
 1183 /*
 1184  *      brelse:
 1185  *
 1186  *      Release a busy buffer and, if requested, free its resources.  The
 1187  *      buffer will be stashed in the appropriate bufqueue[] allowing it
 1188  *      to be accessed later as a cache entity or reused for other purposes.
 1189  */
 1190 void
 1191 brelse(struct buf *bp)
 1192 {
 1193         CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
 1194             bp, bp->b_vp, bp->b_flags);
 1195         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1196             ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1197 
 1198         if (bp->b_flags & B_MANAGED) {
 1199                 bqrelse(bp);
 1200                 return;
 1201         }
 1202 
 1203         if (bp->b_iocmd == BIO_WRITE &&
 1204             (bp->b_ioflags & BIO_ERROR) &&
 1205             bp->b_error != ENXIO &&
 1206             !(bp->b_flags & B_INVAL)) {
 1207                 /*
 1208                  * Failed write, redirty.  Must clear BIO_ERROR to prevent
 1209                  * pages from being scrapped.  If B_INVAL is set then
 1210                  * this case is not run and the next case is run to 
 1211                  * destroy the buffer.  B_INVAL can occur if the buffer
 1212                  * is outside the range supported by the underlying device.
 1213                  * If the error is that the device went away (ENXIO), we
 1214                  * shouldn't redirty the buffer either, but discard the
 1215                  * data too.
 1216                  */
 1217                 bp->b_ioflags &= ~BIO_ERROR;
 1218                 bdirty(bp);
 1219         } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 1220             (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
 1221                 /*
 1222                  * Either a failed I/O or we were asked to free or not
 1223                  * cache the buffer.
 1224                  */
 1225                 bp->b_flags |= B_INVAL;
 1226                 if (!LIST_EMPTY(&bp->b_dep))
 1227                         buf_deallocate(bp);
 1228                 if (bp->b_flags & B_DELWRI) {
 1229                         atomic_subtract_int(&numdirtybuffers, 1);
 1230                         numdirtywakeup(lodirtybuffers);
 1231                 }
 1232                 bp->b_flags &= ~(B_DELWRI | B_CACHE);
 1233                 if ((bp->b_flags & B_VMIO) == 0) {
 1234                         if (bp->b_bufsize)
 1235                                 allocbuf(bp, 0);
 1236                         if (bp->b_vp)
 1237                                 brelvp(bp);
 1238                 }
 1239         }
 1240 
 1241         /*
 1242          * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release() 
 1243          * is called with B_DELWRI set, the underlying pages may wind up
 1244          * getting freed causing a previous write (bdwrite()) to get 'lost'
 1245          * because pages associated with a B_DELWRI bp are marked clean.
 1246          * 
 1247          * We still allow the B_INVAL case to call vfs_vmio_release(), even
 1248          * if B_DELWRI is set.
 1249          *
 1250          * If B_DELWRI is not set we may have to set B_RELBUF if we are low
 1251          * on pages to return pages to the VM page queues.
 1252          */
 1253         if (bp->b_flags & B_DELWRI)
 1254                 bp->b_flags &= ~B_RELBUF;
 1255         else if (vm_page_count_severe()) {
 1256                 /*
 1257                  * XXX This lock may not be necessary since BKGRDINPROG
 1258                  * cannot be set while we hold the buf lock, it can only be
 1259                  * cleared if it is already pending.
 1260                  */
 1261                 if (bp->b_vp) {
 1262                         BO_LOCK(bp->b_bufobj);
 1263                         if (!(bp->b_vflags & BV_BKGRDINPROG))
 1264                                 bp->b_flags |= B_RELBUF;
 1265                         BO_UNLOCK(bp->b_bufobj);
 1266                 } else
 1267                         bp->b_flags |= B_RELBUF;
 1268         }
 1269 
 1270         /*
 1271          * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 1272          * constituted, not even NFS buffers now.  Two flags effect this.  If
 1273          * B_INVAL, the struct buf is invalidated but the VM object is kept
 1274          * around ( i.e. so it is trivial to reconstitute the buffer later ).
 1275          *
 1276          * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 1277          * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 1278          * buffer is also B_INVAL because it hits the re-dirtying code above.
 1279          *
 1280          * Normally we can do this whether a buffer is B_DELWRI or not.  If
 1281          * the buffer is an NFS buffer, it is tracking piecemeal writes or
 1282          * the commit state and we cannot afford to lose the buffer. If the
 1283          * buffer has a background write in progress, we need to keep it
 1284          * around to prevent it from being reconstituted and starting a second
 1285          * background write.
 1286          */
 1287         if ((bp->b_flags & B_VMIO)
 1288             && !(bp->b_vp->v_mount != NULL &&
 1289                  (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 1290                  !vn_isdisk(bp->b_vp, NULL) &&
 1291                  (bp->b_flags & B_DELWRI))
 1292             ) {
 1293 
 1294                 int i, j, resid;
 1295                 vm_page_t m;
 1296                 off_t foff;
 1297                 vm_pindex_t poff;
 1298                 vm_object_t obj;
 1299 
 1300                 obj = bp->b_bufobj->bo_object;
 1301 
 1302                 /*
 1303                  * Get the base offset and length of the buffer.  Note that 
 1304                  * in the VMIO case if the buffer block size is not
 1305                  * page-aligned then b_data pointer may not be page-aligned.
 1306                  * But our b_pages[] array *IS* page aligned.
 1307                  *
 1308                  * block sizes less then DEV_BSIZE (usually 512) are not 
 1309                  * supported due to the page granularity bits (m->valid,
 1310                  * m->dirty, etc...). 
 1311                  *
 1312                  * See man buf(9) for more information
 1313                  */
 1314                 resid = bp->b_bufsize;
 1315                 foff = bp->b_offset;
 1316                 VM_OBJECT_LOCK(obj);
 1317                 for (i = 0; i < bp->b_npages; i++) {
 1318                         int had_bogus = 0;
 1319 
 1320                         m = bp->b_pages[i];
 1321 
 1322                         /*
 1323                          * If we hit a bogus page, fixup *all* the bogus pages
 1324                          * now.
 1325                          */
 1326                         if (m == bogus_page) {
 1327                                 poff = OFF_TO_IDX(bp->b_offset);
 1328                                 had_bogus = 1;
 1329 
 1330                                 for (j = i; j < bp->b_npages; j++) {
 1331                                         vm_page_t mtmp;
 1332                                         mtmp = bp->b_pages[j];
 1333                                         if (mtmp == bogus_page) {
 1334                                                 mtmp = vm_page_lookup(obj, poff + j);
 1335                                                 if (!mtmp) {
 1336                                                         panic("brelse: page missing\n");
 1337                                                 }
 1338                                                 bp->b_pages[j] = mtmp;
 1339                                         }
 1340                                 }
 1341 
 1342                                 if ((bp->b_flags & B_INVAL) == 0) {
 1343                                         pmap_qenter(
 1344                                             trunc_page((vm_offset_t)bp->b_data),
 1345                                             bp->b_pages, bp->b_npages);
 1346                                 }
 1347                                 m = bp->b_pages[i];
 1348                         }
 1349                         if ((bp->b_flags & B_NOCACHE) ||
 1350                             (bp->b_ioflags & BIO_ERROR &&
 1351                              bp->b_iocmd == BIO_READ)) {
 1352                                 int poffset = foff & PAGE_MASK;
 1353                                 int presid = resid > (PAGE_SIZE - poffset) ?
 1354                                         (PAGE_SIZE - poffset) : resid;
 1355 
 1356                                 KASSERT(presid >= 0, ("brelse: extra page"));
 1357                                 vm_page_lock_queues();
 1358                                 vm_page_set_invalid(m, poffset, presid);
 1359                                 vm_page_unlock_queues();
 1360                                 if (had_bogus)
 1361                                         printf("avoided corruption bug in bogus_page/brelse code\n");
 1362                         }
 1363                         resid -= PAGE_SIZE - (foff & PAGE_MASK);
 1364                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 1365                 }
 1366                 VM_OBJECT_UNLOCK(obj);
 1367                 if (bp->b_flags & (B_INVAL | B_RELBUF))
 1368                         vfs_vmio_release(bp);
 1369 
 1370         } else if (bp->b_flags & B_VMIO) {
 1371 
 1372                 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
 1373                         vfs_vmio_release(bp);
 1374                 }
 1375 
 1376         } else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
 1377                 if (bp->b_bufsize != 0)
 1378                         allocbuf(bp, 0);
 1379                 if (bp->b_vp != NULL)
 1380                         brelvp(bp);
 1381         }
 1382                         
 1383         if (BUF_REFCNT(bp) > 1) {
 1384                 /* do not release to free list */
 1385                 BUF_UNLOCK(bp);
 1386                 return;
 1387         }
 1388 
 1389         /* enqueue */
 1390         mtx_lock(&bqlock);
 1391         /* Handle delayed bremfree() processing. */
 1392         if (bp->b_flags & B_REMFREE)
 1393                 bremfreel(bp);
 1394         if (bp->b_qindex != QUEUE_NONE)
 1395                 panic("brelse: free buffer onto another queue???");
 1396 
 1397         /* buffers with no memory */
 1398         if (bp->b_bufsize == 0) {
 1399                 bp->b_flags |= B_INVAL;
 1400                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1401                 if (bp->b_vflags & BV_BKGRDINPROG)
 1402                         panic("losing buffer 1");
 1403                 if (bp->b_kvasize) {
 1404                         bp->b_qindex = QUEUE_EMPTYKVA;
 1405                 } else {
 1406                         bp->b_qindex = QUEUE_EMPTY;
 1407                 }
 1408                 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1409         /* buffers with junk contents */
 1410         } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 1411             (bp->b_ioflags & BIO_ERROR)) {
 1412                 bp->b_flags |= B_INVAL;
 1413                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1414                 if (bp->b_vflags & BV_BKGRDINPROG)
 1415                         panic("losing buffer 2");
 1416                 bp->b_qindex = QUEUE_CLEAN;
 1417                 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
 1418         /* remaining buffers */
 1419         } else {
 1420                 if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
 1421                     (B_DELWRI|B_NEEDSGIANT))
 1422                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1423                 else if (bp->b_flags & B_DELWRI)
 1424                         bp->b_qindex = QUEUE_DIRTY;
 1425                 else
 1426                         bp->b_qindex = QUEUE_CLEAN;
 1427                 if (bp->b_flags & B_AGE)
 1428                         TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1429                 else
 1430                         TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1431         }
 1432         mtx_unlock(&bqlock);
 1433 
 1434         /*
 1435          * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
 1436          * placed the buffer on the correct queue.  We must also disassociate
 1437          * the device and vnode for a B_INVAL buffer so gbincore() doesn't
 1438          * find it.
 1439          */
 1440         if (bp->b_flags & B_INVAL) {
 1441                 if (bp->b_flags & B_DELWRI)
 1442                         bundirty(bp);
 1443                 if (bp->b_vp)
 1444                         brelvp(bp);
 1445         }
 1446 
 1447         /*
 1448          * Fixup numfreebuffers count.  The bp is on an appropriate queue
 1449          * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
 1450          * We've already handled the B_INVAL case ( B_DELWRI will be clear
 1451          * if B_INVAL is set ).
 1452          */
 1453 
 1454         if (!(bp->b_flags & B_DELWRI))
 1455                 bufcountwakeup();
 1456 
 1457         /*
 1458          * Something we can maybe free or reuse
 1459          */
 1460         if (bp->b_bufsize || bp->b_kvasize)
 1461                 bufspacewakeup();
 1462 
 1463         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
 1464         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1465                 panic("brelse: not dirty");
 1466         /* unlock */
 1467         BUF_UNLOCK(bp);
 1468 }
 1469 
 1470 /*
 1471  * Release a buffer back to the appropriate queue but do not try to free
 1472  * it.  The buffer is expected to be used again soon.
 1473  *
 1474  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
 1475  * biodone() to requeue an async I/O on completion.  It is also used when
 1476  * known good buffers need to be requeued but we think we may need the data
 1477  * again soon.
 1478  *
 1479  * XXX we should be able to leave the B_RELBUF hint set on completion.
 1480  */
 1481 void
 1482 bqrelse(struct buf *bp)
 1483 {
 1484         CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1485         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1486             ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1487 
 1488         if (BUF_REFCNT(bp) > 1) {
 1489                 /* do not release to free list */
 1490                 BUF_UNLOCK(bp);
 1491                 return;
 1492         }
 1493 
 1494         if (bp->b_flags & B_MANAGED) {
 1495                 if (bp->b_flags & B_REMFREE) {
 1496                         mtx_lock(&bqlock);
 1497                         bremfreel(bp);
 1498                         mtx_unlock(&bqlock);
 1499                 }
 1500                 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1501                 BUF_UNLOCK(bp);
 1502                 return;
 1503         }
 1504 
 1505         mtx_lock(&bqlock);
 1506         /* Handle delayed bremfree() processing. */
 1507         if (bp->b_flags & B_REMFREE)
 1508                 bremfreel(bp);
 1509         if (bp->b_qindex != QUEUE_NONE)
 1510                 panic("bqrelse: free buffer onto another queue???");
 1511         /* buffers with stale but valid contents */
 1512         if (bp->b_flags & B_DELWRI) {
 1513                 if (bp->b_flags & B_NEEDSGIANT)
 1514                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1515                 else
 1516                         bp->b_qindex = QUEUE_DIRTY;
 1517                 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1518         } else {
 1519                 /*
 1520                  * XXX This lock may not be necessary since BKGRDINPROG
 1521                  * cannot be set while we hold the buf lock, it can only be
 1522                  * cleared if it is already pending.
 1523                  */
 1524                 BO_LOCK(bp->b_bufobj);
 1525                 if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
 1526                         BO_UNLOCK(bp->b_bufobj);
 1527                         bp->b_qindex = QUEUE_CLEAN;
 1528                         TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
 1529                             b_freelist);
 1530                 } else {
 1531                         /*
 1532                          * We are too low on memory, we have to try to free
 1533                          * the buffer (most importantly: the wired pages
 1534                          * making up its backing store) *now*.
 1535                          */
 1536                         BO_UNLOCK(bp->b_bufobj);
 1537                         mtx_unlock(&bqlock);
 1538                         brelse(bp);
 1539                         return;
 1540                 }
 1541         }
 1542         mtx_unlock(&bqlock);
 1543 
 1544         if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
 1545                 bufcountwakeup();
 1546 
 1547         /*
 1548          * Something we can maybe free or reuse.
 1549          */
 1550         if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
 1551                 bufspacewakeup();
 1552 
 1553         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1554         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1555                 panic("bqrelse: not dirty");
 1556         /* unlock */
 1557         BUF_UNLOCK(bp);
 1558 }
 1559 
 1560 /* Give pages used by the bp back to the VM system (where possible) */
 1561 static void
 1562 vfs_vmio_release(struct buf *bp)
 1563 {
 1564         int i;
 1565         vm_page_t m;
 1566 
 1567         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 1568         vm_page_lock_queues();
 1569         for (i = 0; i < bp->b_npages; i++) {
 1570                 m = bp->b_pages[i];
 1571                 bp->b_pages[i] = NULL;
 1572                 /*
 1573                  * In order to keep page LRU ordering consistent, put
 1574                  * everything on the inactive queue.
 1575                  */
 1576                 vm_page_unwire(m, 0);
 1577                 /*
 1578                  * We don't mess with busy pages, it is
 1579                  * the responsibility of the process that
 1580                  * busied the pages to deal with them.
 1581                  */
 1582                 if ((m->oflags & VPO_BUSY) || (m->busy != 0))
 1583                         continue;
 1584                         
 1585                 if (m->wire_count == 0) {
 1586                         /*
 1587                          * Might as well free the page if we can and it has
 1588                          * no valid data.  We also free the page if the
 1589                          * buffer was used for direct I/O
 1590                          */
 1591                         if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
 1592                             m->hold_count == 0) {
 1593                                 vm_page_free(m);
 1594                         } else if (bp->b_flags & B_DIRECT) {
 1595                                 vm_page_try_to_free(m);
 1596                         } else if (vm_page_count_severe()) {
 1597                                 vm_page_try_to_cache(m);
 1598                         }
 1599                 }
 1600         }
 1601         vm_page_unlock_queues();
 1602         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 1603         pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
 1604         
 1605         if (bp->b_bufsize) {
 1606                 bufspacewakeup();
 1607                 bp->b_bufsize = 0;
 1608         }
 1609         bp->b_npages = 0;
 1610         bp->b_flags &= ~B_VMIO;
 1611         if (bp->b_vp)
 1612                 brelvp(bp);
 1613 }
 1614 
 1615 /*
 1616  * Check to see if a block at a particular lbn is available for a clustered
 1617  * write.
 1618  */
 1619 static int
 1620 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 1621 {
 1622         struct buf *bpa;
 1623         int match;
 1624 
 1625         match = 0;
 1626 
 1627         /* If the buf isn't in core skip it */
 1628         if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
 1629                 return (0);
 1630 
 1631         /* If the buf is busy we don't want to wait for it */
 1632         if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1633                 return (0);
 1634 
 1635         /* Only cluster with valid clusterable delayed write buffers */
 1636         if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 1637             (B_DELWRI | B_CLUSTEROK))
 1638                 goto done;
 1639 
 1640         if (bpa->b_bufsize != size)
 1641                 goto done;
 1642 
 1643         /*
 1644          * Check to see if it is in the expected place on disk and that the
 1645          * block has been mapped.
 1646          */
 1647         if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 1648                 match = 1;
 1649 done:
 1650         BUF_UNLOCK(bpa);
 1651         return (match);
 1652 }
 1653 
 1654 /*
 1655  *      vfs_bio_awrite:
 1656  *
 1657  *      Implement clustered async writes for clearing out B_DELWRI buffers.
 1658  *      This is much better then the old way of writing only one buffer at
 1659  *      a time.  Note that we may not be presented with the buffers in the 
 1660  *      correct order, so we search for the cluster in both directions.
 1661  */
 1662 int
 1663 vfs_bio_awrite(struct buf *bp)
 1664 {
 1665         int i;
 1666         int j;
 1667         daddr_t lblkno = bp->b_lblkno;
 1668         struct vnode *vp = bp->b_vp;
 1669         int ncl;
 1670         int nwritten;
 1671         int size;
 1672         int maxcl;
 1673 
 1674         /*
 1675          * right now we support clustered writing only to regular files.  If
 1676          * we find a clusterable block we could be in the middle of a cluster
 1677          * rather then at the beginning.
 1678          */
 1679         if ((vp->v_type == VREG) && 
 1680             (vp->v_mount != 0) && /* Only on nodes that have the size info */
 1681             (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 1682 
 1683                 size = vp->v_mount->mnt_stat.f_iosize;
 1684                 maxcl = MAXPHYS / size;
 1685 
 1686                 VI_LOCK(vp);
 1687                 for (i = 1; i < maxcl; i++)
 1688                         if (vfs_bio_clcheck(vp, size, lblkno + i,
 1689                             bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 1690                                 break;
 1691 
 1692                 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 1693                         if (vfs_bio_clcheck(vp, size, lblkno - j,
 1694                             bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 1695                                 break;
 1696 
 1697                 VI_UNLOCK(vp);
 1698                 --j;
 1699                 ncl = i + j;
 1700                 /*
 1701                  * this is a possible cluster write
 1702                  */
 1703                 if (ncl != 1) {
 1704                         BUF_UNLOCK(bp);
 1705                         nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
 1706                         return nwritten;
 1707                 }
 1708         }
 1709         bremfree(bp);
 1710         bp->b_flags |= B_ASYNC;
 1711         /*
 1712          * default (old) behavior, writing out only one block
 1713          *
 1714          * XXX returns b_bufsize instead of b_bcount for nwritten?
 1715          */
 1716         nwritten = bp->b_bufsize;
 1717         (void) bwrite(bp);
 1718 
 1719         return nwritten;
 1720 }
 1721 
 1722 /*
 1723  *      getnewbuf:
 1724  *
 1725  *      Find and initialize a new buffer header, freeing up existing buffers 
 1726  *      in the bufqueues as necessary.  The new buffer is returned locked.
 1727  *
 1728  *      Important:  B_INVAL is not set.  If the caller wishes to throw the
 1729  *      buffer away, the caller must set B_INVAL prior to calling brelse().
 1730  *
 1731  *      We block if:
 1732  *              We have insufficient buffer headers
 1733  *              We have insufficient buffer space
 1734  *              buffer_map is too fragmented ( space reservation fails )
 1735  *              If we have to flush dirty buffers ( but we try to avoid this )
 1736  *
 1737  *      To avoid VFS layer recursion we do not flush dirty buffers ourselves.
 1738  *      Instead we ask the buf daemon to do it for us.  We attempt to
 1739  *      avoid piecemeal wakeups of the pageout daemon.
 1740  */
 1741 
 1742 static struct buf *
 1743 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
 1744     int gbflags)
 1745 {
 1746         struct thread *td;
 1747         struct buf *bp;
 1748         struct buf *nbp;
 1749         int defrag = 0;
 1750         int nqindex;
 1751         static int flushingbufs;
 1752 
 1753         td = curthread;
 1754         /*
 1755          * We can't afford to block since we might be holding a vnode lock,
 1756          * which may prevent system daemons from running.  We deal with
 1757          * low-memory situations by proactively returning memory and running
 1758          * async I/O rather then sync I/O.
 1759          */
 1760         atomic_add_int(&getnewbufcalls, 1);
 1761         atomic_subtract_int(&getnewbufrestarts, 1);
 1762 restart:
 1763         atomic_add_int(&getnewbufrestarts, 1);
 1764 
 1765         /*
 1766          * Setup for scan.  If we do not have enough free buffers,
 1767          * we setup a degenerate case that immediately fails.  Note
 1768          * that if we are specially marked process, we are allowed to
 1769          * dip into our reserves.
 1770          *
 1771          * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
 1772          *
 1773          * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
 1774          * However, there are a number of cases (defragging, reusing, ...)
 1775          * where we cannot backup.
 1776          */
 1777         mtx_lock(&bqlock);
 1778         nqindex = QUEUE_EMPTYKVA;
 1779         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
 1780 
 1781         if (nbp == NULL) {
 1782                 /*
 1783                  * If no EMPTYKVA buffers and we are either
 1784                  * defragging or reusing, locate a CLEAN buffer
 1785                  * to free or reuse.  If bufspace useage is low
 1786                  * skip this step so we can allocate a new buffer.
 1787                  */
 1788                 if (defrag || bufspace >= lobufspace) {
 1789                         nqindex = QUEUE_CLEAN;
 1790                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
 1791                 }
 1792 
 1793                 /*
 1794                  * If we could not find or were not allowed to reuse a
 1795                  * CLEAN buffer, check to see if it is ok to use an EMPTY
 1796                  * buffer.  We can only use an EMPTY buffer if allocating
 1797                  * its KVA would not otherwise run us out of buffer space.
 1798                  */
 1799                 if (nbp == NULL && defrag == 0 &&
 1800                     bufspace + maxsize < hibufspace) {
 1801                         nqindex = QUEUE_EMPTY;
 1802                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
 1803                 }
 1804         }
 1805 
 1806         /*
 1807          * Run scan, possibly freeing data and/or kva mappings on the fly
 1808          * depending.
 1809          */
 1810 
 1811         while ((bp = nbp) != NULL) {
 1812                 int qindex = nqindex;
 1813 
 1814                 /*
 1815                  * Calculate next bp ( we can only use it if we do not block
 1816                  * or do other fancy things ).
 1817                  */
 1818                 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
 1819                         switch(qindex) {
 1820                         case QUEUE_EMPTY:
 1821                                 nqindex = QUEUE_EMPTYKVA;
 1822                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
 1823                                         break;
 1824                                 /* FALLTHROUGH */
 1825                         case QUEUE_EMPTYKVA:
 1826                                 nqindex = QUEUE_CLEAN;
 1827                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
 1828                                         break;
 1829                                 /* FALLTHROUGH */
 1830                         case QUEUE_CLEAN:
 1831                                 /*
 1832                                  * nbp is NULL. 
 1833                                  */
 1834                                 break;
 1835                         }
 1836                 }
 1837                 /*
 1838                  * If we are defragging then we need a buffer with 
 1839                  * b_kvasize != 0.  XXX this situation should no longer
 1840                  * occur, if defrag is non-zero the buffer's b_kvasize
 1841                  * should also be non-zero at this point.  XXX
 1842                  */
 1843                 if (defrag && bp->b_kvasize == 0) {
 1844                         printf("Warning: defrag empty buffer %p\n", bp);
 1845                         continue;
 1846                 }
 1847 
 1848                 /*
 1849                  * Start freeing the bp.  This is somewhat involved.  nbp
 1850                  * remains valid only for QUEUE_EMPTY[KVA] bp's.
 1851                  */
 1852                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1853                         continue;
 1854                 if (bp->b_vp) {
 1855                         BO_LOCK(bp->b_bufobj);
 1856                         if (bp->b_vflags & BV_BKGRDINPROG) {
 1857                                 BO_UNLOCK(bp->b_bufobj);
 1858                                 BUF_UNLOCK(bp);
 1859                                 continue;
 1860                         }
 1861                         BO_UNLOCK(bp->b_bufobj);
 1862                 }
 1863                 CTR6(KTR_BUF,
 1864                     "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
 1865                     "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
 1866                     bp->b_kvasize, bp->b_bufsize, qindex);
 1867 
 1868                 /*
 1869                  * Sanity Checks
 1870                  */
 1871                 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
 1872 
 1873                 /*
 1874                  * Note: we no longer distinguish between VMIO and non-VMIO
 1875                  * buffers.
 1876                  */
 1877 
 1878                 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
 1879 
 1880                 bremfreel(bp);
 1881                 mtx_unlock(&bqlock);
 1882 
 1883                 if (qindex == QUEUE_CLEAN) {
 1884                         if (bp->b_flags & B_VMIO) {
 1885                                 bp->b_flags &= ~B_ASYNC;
 1886                                 vfs_vmio_release(bp);
 1887                         }
 1888                         if (bp->b_vp)
 1889                                 brelvp(bp);
 1890                 }
 1891 
 1892                 /*
 1893                  * NOTE:  nbp is now entirely invalid.  We can only restart
 1894                  * the scan from this point on.
 1895                  *
 1896                  * Get the rest of the buffer freed up.  b_kva* is still
 1897                  * valid after this operation.
 1898                  */
 1899 
 1900                 if (bp->b_rcred != NOCRED) {
 1901                         crfree(bp->b_rcred);
 1902                         bp->b_rcred = NOCRED;
 1903                 }
 1904                 if (bp->b_wcred != NOCRED) {
 1905                         crfree(bp->b_wcred);
 1906                         bp->b_wcred = NOCRED;
 1907                 }
 1908                 if (!LIST_EMPTY(&bp->b_dep))
 1909                         buf_deallocate(bp);
 1910                 if (bp->b_vflags & BV_BKGRDINPROG)
 1911                         panic("losing buffer 3");
 1912                 KASSERT(bp->b_vp == NULL,
 1913                     ("bp: %p still has vnode %p.  qindex: %d",
 1914                     bp, bp->b_vp, qindex));
 1915                 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
 1916                    ("bp: %p still on a buffer list. xflags %X",
 1917                     bp, bp->b_xflags));
 1918 
 1919                 if (bp->b_bufsize)
 1920                         allocbuf(bp, 0);
 1921 
 1922                 bp->b_flags = 0;
 1923                 bp->b_ioflags = 0;
 1924                 bp->b_xflags = 0;
 1925                 bp->b_vflags = 0;
 1926                 bp->b_vp = NULL;
 1927                 bp->b_blkno = bp->b_lblkno = 0;
 1928                 bp->b_offset = NOOFFSET;
 1929                 bp->b_iodone = 0;
 1930                 bp->b_error = 0;
 1931                 bp->b_resid = 0;
 1932                 bp->b_bcount = 0;
 1933                 bp->b_npages = 0;
 1934                 bp->b_dirtyoff = bp->b_dirtyend = 0;
 1935                 bp->b_bufobj = NULL;
 1936                 bp->b_pin_count = 0;
 1937                 bp->b_fsprivate1 = NULL;
 1938                 bp->b_fsprivate2 = NULL;
 1939                 bp->b_fsprivate3 = NULL;
 1940 
 1941                 LIST_INIT(&bp->b_dep);
 1942 
 1943                 /*
 1944                  * If we are defragging then free the buffer.
 1945                  */
 1946                 if (defrag) {
 1947                         bp->b_flags |= B_INVAL;
 1948                         bfreekva(bp);
 1949                         brelse(bp);
 1950                         defrag = 0;
 1951                         goto restart;
 1952                 }
 1953 
 1954                 /*
 1955                  * Notify any waiters for the buffer lock about
 1956                  * identity change by freeing the buffer.
 1957                  */
 1958                 if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp) > 0) {
 1959                         bp->b_flags |= B_INVAL;
 1960                         bfreekva(bp);
 1961                         brelse(bp);
 1962                         goto restart;
 1963                 }
 1964 
 1965                 /*
 1966                  * If we are overcomitted then recover the buffer and its
 1967                  * KVM space.  This occurs in rare situations when multiple
 1968                  * processes are blocked in getnewbuf() or allocbuf().
 1969                  */
 1970                 if (bufspace >= hibufspace)
 1971                         flushingbufs = 1;
 1972                 if (flushingbufs && bp->b_kvasize != 0) {
 1973                         bp->b_flags |= B_INVAL;
 1974                         bfreekva(bp);
 1975                         brelse(bp);
 1976                         goto restart;
 1977                 }
 1978                 if (bufspace < lobufspace)
 1979                         flushingbufs = 0;
 1980                 break;
 1981         }
 1982 
 1983         /*
 1984          * If we exhausted our list, sleep as appropriate.  We may have to
 1985          * wakeup various daemons and write out some dirty buffers.
 1986          *
 1987          * Generally we are sleeping due to insufficient buffer space.
 1988          */
 1989 
 1990         if (bp == NULL) {
 1991                 int flags, norunbuf;
 1992                 char *waitmsg;
 1993                 int fl;
 1994 
 1995                 if (defrag) {
 1996                         flags = VFS_BIO_NEED_BUFSPACE;
 1997                         waitmsg = "nbufkv";
 1998                 } else if (bufspace >= hibufspace) {
 1999                         waitmsg = "nbufbs";
 2000                         flags = VFS_BIO_NEED_BUFSPACE;
 2001                 } else {
 2002                         waitmsg = "newbuf";
 2003                         flags = VFS_BIO_NEED_ANY;
 2004                 }
 2005                 mtx_lock(&nblock);
 2006                 needsbuffer |= flags;
 2007                 mtx_unlock(&nblock);
 2008                 mtx_unlock(&bqlock);
 2009 
 2010                 bd_speedup();   /* heeeelp */
 2011                 if (gbflags & GB_NOWAIT_BD)
 2012                         return (NULL);
 2013 
 2014                 mtx_lock(&nblock);
 2015                 while (needsbuffer & flags) {
 2016                         if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
 2017                                 mtx_unlock(&nblock);
 2018                                 /*
 2019                                  * getblk() is called with a vnode
 2020                                  * locked, and some majority of the
 2021                                  * dirty buffers may as well belong to
 2022                                  * the vnode. Flushing the buffers
 2023                                  * there would make a progress that
 2024                                  * cannot be achieved by the
 2025                                  * buf_daemon, that cannot lock the
 2026                                  * vnode.
 2027                                  */
 2028                                 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
 2029                                     (td->td_pflags & TDP_NORUNNINGBUF);
 2030                                 /* play bufdaemon */
 2031                                 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
 2032                                 fl = buf_do_flush(vp);
 2033                                 td->td_pflags &= norunbuf;
 2034                                 mtx_lock(&nblock);
 2035                                 if (fl != 0)
 2036                                         continue;
 2037                                 if ((needsbuffer & flags) == 0)
 2038                                         break;
 2039                         }
 2040                         if (msleep(&needsbuffer, &nblock,
 2041                             (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
 2042                                 mtx_unlock(&nblock);
 2043                                 return (NULL);
 2044                         }
 2045                 }
 2046                 mtx_unlock(&nblock);
 2047         } else {
 2048                 /*
 2049                  * We finally have a valid bp.  We aren't quite out of the
 2050                  * woods, we still have to reserve kva space.  In order
 2051                  * to keep fragmentation sane we only allocate kva in
 2052                  * BKVASIZE chunks.
 2053                  */
 2054                 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 2055 
 2056                 if (maxsize != bp->b_kvasize) {
 2057                         vm_offset_t addr = 0;
 2058 
 2059                         bfreekva(bp);
 2060 
 2061                         vm_map_lock(buffer_map);
 2062                         if (vm_map_findspace(buffer_map,
 2063                                 vm_map_min(buffer_map), maxsize, &addr)) {
 2064                                 /*
 2065                                  * Uh oh.  Buffer map is to fragmented.  We
 2066                                  * must defragment the map.
 2067                                  */
 2068                                 atomic_add_int(&bufdefragcnt, 1);
 2069                                 vm_map_unlock(buffer_map);
 2070                                 defrag = 1;
 2071                                 bp->b_flags |= B_INVAL;
 2072                                 brelse(bp);
 2073                                 goto restart;
 2074                         }
 2075                         if (addr) {
 2076                                 vm_map_insert(buffer_map, NULL, 0,
 2077                                         addr, addr + maxsize,
 2078                                         VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
 2079 
 2080                                 bp->b_kvabase = (caddr_t) addr;
 2081                                 bp->b_kvasize = maxsize;
 2082                                 atomic_add_long(&bufspace, bp->b_kvasize);
 2083                                 atomic_add_int(&bufreusecnt, 1);
 2084                         }
 2085                         vm_map_unlock(buffer_map);
 2086                 }
 2087                 bp->b_saveaddr = bp->b_kvabase;
 2088                 bp->b_data = bp->b_saveaddr;
 2089         }
 2090         return(bp);
 2091 }
 2092 
 2093 /*
 2094  *      buf_daemon:
 2095  *
 2096  *      buffer flushing daemon.  Buffers are normally flushed by the
 2097  *      update daemon but if it cannot keep up this process starts to
 2098  *      take the load in an attempt to prevent getnewbuf() from blocking.
 2099  */
 2100 
 2101 static struct kproc_desc buf_kp = {
 2102         "bufdaemon",
 2103         buf_daemon,
 2104         &bufdaemonproc
 2105 };
 2106 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
 2107 
 2108 static int
 2109 buf_do_flush(struct vnode *vp)
 2110 {
 2111         int flushed;
 2112 
 2113         flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
 2114         /* The list empty check here is slightly racy */
 2115         if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
 2116                 mtx_lock(&Giant);
 2117                 flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
 2118                 mtx_unlock(&Giant);
 2119         }
 2120         if (flushed == 0) {
 2121                 /*
 2122                  * Could not find any buffers without rollback
 2123                  * dependencies, so just write the first one
 2124                  * in the hopes of eventually making progress.
 2125                  */
 2126                 flushbufqueues(vp, QUEUE_DIRTY, 1);
 2127                 if (!TAILQ_EMPTY(
 2128                             &bufqueues[QUEUE_DIRTY_GIANT])) {
 2129                         mtx_lock(&Giant);
 2130                         flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
 2131                         mtx_unlock(&Giant);
 2132                 }
 2133         }
 2134         return (flushed);
 2135 }
 2136 
 2137 static void
 2138 buf_daemon()
 2139 {
 2140 
 2141         /*
 2142          * This process needs to be suspended prior to shutdown sync.
 2143          */
 2144         EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
 2145             SHUTDOWN_PRI_LAST);
 2146 
 2147         /*
 2148          * This process is allowed to take the buffer cache to the limit
 2149          */
 2150         curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
 2151         mtx_lock(&bdlock);
 2152         for (;;) {
 2153                 bd_request = 0;
 2154                 mtx_unlock(&bdlock);
 2155 
 2156                 kthread_suspend_check(bufdaemonproc);
 2157 
 2158                 /*
 2159                  * Do the flush.  Limit the amount of in-transit I/O we
 2160                  * allow to build up, otherwise we would completely saturate
 2161                  * the I/O system.  Wakeup any waiting processes before we
 2162                  * normally would so they can run in parallel with our drain.
 2163                  */
 2164                 while (numdirtybuffers > lodirtybuffers) {
 2165                         if (buf_do_flush(NULL) == 0)
 2166                                 break;
 2167                         uio_yield();
 2168                 }
 2169 
 2170                 /*
 2171                  * Only clear bd_request if we have reached our low water
 2172                  * mark.  The buf_daemon normally waits 1 second and
 2173                  * then incrementally flushes any dirty buffers that have
 2174                  * built up, within reason.
 2175                  *
 2176                  * If we were unable to hit our low water mark and couldn't
 2177                  * find any flushable buffers, we sleep half a second.
 2178                  * Otherwise we loop immediately.
 2179                  */
 2180                 mtx_lock(&bdlock);
 2181                 if (numdirtybuffers <= lodirtybuffers) {
 2182                         /*
 2183                          * We reached our low water mark, reset the
 2184                          * request and sleep until we are needed again.
 2185                          * The sleep is just so the suspend code works.
 2186                          */
 2187                         bd_request = 0;
 2188                         msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 2189                 } else {
 2190                         /*
 2191                          * We couldn't find any flushable dirty buffers but
 2192                          * still have too many dirty buffers, we
 2193                          * have to sleep and try again.  (rare)
 2194                          */
 2195                         msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 2196                 }
 2197         }
 2198 }
 2199 
 2200 /*
 2201  *      flushbufqueues:
 2202  *
 2203  *      Try to flush a buffer in the dirty queue.  We must be careful to
 2204  *      free up B_INVAL buffers instead of write them, which NFS is 
 2205  *      particularly sensitive to.
 2206  */
 2207 static int flushwithdeps = 0;
 2208 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
 2209     0, "Number of buffers flushed with dependecies that require rollbacks");
 2210 
 2211 static int
 2212 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
 2213 {
 2214         struct thread *td = curthread;
 2215         struct buf *sentinel;
 2216         struct vnode *vp;
 2217         struct mount *mp;
 2218         struct buf *bp;
 2219         int hasdeps;
 2220         int flushed;
 2221         int target;
 2222 
 2223         if (lvp == NULL) {
 2224                 target = numdirtybuffers - lodirtybuffers;
 2225                 if (flushdeps && target > 2)
 2226                         target /= 2;
 2227         } else
 2228                 target = flushbufqtarget;
 2229         flushed = 0;
 2230         bp = NULL;
 2231         sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
 2232         sentinel->b_qindex = QUEUE_SENTINEL;
 2233         mtx_lock(&bqlock);
 2234         TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
 2235         while (flushed != target) {
 2236                 bp = TAILQ_NEXT(sentinel, b_freelist);
 2237                 if (bp != NULL) {
 2238                         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2239                         TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
 2240                             b_freelist);
 2241                 } else
 2242                         break;
 2243                 /*
 2244                  * Skip sentinels inserted by other invocations of the
 2245                  * flushbufqueues(), taking care to not reorder them.
 2246                  */
 2247                 if (bp->b_qindex == QUEUE_SENTINEL)
 2248                         continue;
 2249                 /*
 2250                  * Only flush the buffers that belong to the
 2251                  * vnode locked by the curthread.
 2252                  */
 2253                 if (lvp != NULL && bp->b_vp != lvp)
 2254                         continue;
 2255                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 2256                         continue;
 2257                 if (bp->b_pin_count > 0) {
 2258                         BUF_UNLOCK(bp);
 2259                         continue;
 2260                 }
 2261                 BO_LOCK(bp->b_bufobj);
 2262                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
 2263                     (bp->b_flags & B_DELWRI) == 0) {
 2264                         BO_UNLOCK(bp->b_bufobj);
 2265                         BUF_UNLOCK(bp);
 2266                         continue;
 2267                 }
 2268                 BO_UNLOCK(bp->b_bufobj);
 2269                 if (bp->b_flags & B_INVAL) {
 2270                         bremfreel(bp);
 2271                         mtx_unlock(&bqlock);
 2272                         brelse(bp);
 2273                         flushed++;
 2274                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2275                         mtx_lock(&bqlock);
 2276                         continue;
 2277                 }
 2278 
 2279                 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
 2280                         if (flushdeps == 0) {
 2281                                 BUF_UNLOCK(bp);
 2282                                 continue;
 2283                         }
 2284                         hasdeps = 1;
 2285                 } else
 2286                         hasdeps = 0;
 2287                 /*
 2288                  * We must hold the lock on a vnode before writing
 2289                  * one of its buffers. Otherwise we may confuse, or
 2290                  * in the case of a snapshot vnode, deadlock the
 2291                  * system.
 2292                  *
 2293                  * The lock order here is the reverse of the normal
 2294                  * of vnode followed by buf lock.  This is ok because
 2295                  * the NOWAIT will prevent deadlock.
 2296                  */
 2297                 vp = bp->b_vp;
 2298                 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 2299                         BUF_UNLOCK(bp);
 2300                         continue;
 2301                 }
 2302                 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE,
 2303                     td) == 0) {
 2304                         mtx_unlock(&bqlock);
 2305                         CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
 2306                             bp, bp->b_vp, bp->b_flags);
 2307                         if (curproc == bufdaemonproc)
 2308                                 vfs_bio_awrite(bp);
 2309                         else {
 2310                                 bremfree(bp);
 2311                                 bwrite(bp);
 2312                                 notbufdflashes++;
 2313                         }
 2314                         vn_finished_write(mp);
 2315                         VOP_UNLOCK(vp, 0, td);
 2316                         flushwithdeps += hasdeps;
 2317                         flushed++;
 2318 
 2319                         /*
 2320                          * Sleeping on runningbufspace while holding
 2321                          * vnode lock leads to deadlock.
 2322                          */
 2323                         if (curproc == bufdaemonproc)
 2324                                 waitrunningbufspace();
 2325                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2326                         mtx_lock(&bqlock);
 2327                         continue;
 2328                 }
 2329                 vn_finished_write(mp);
 2330                 BUF_UNLOCK(bp);
 2331         }
 2332         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2333         mtx_unlock(&bqlock);
 2334         free(sentinel, M_TEMP);
 2335         return (flushed);
 2336 }
 2337 
 2338 /*
 2339  * Check to see if a block is currently memory resident.
 2340  */
 2341 struct buf *
 2342 incore(struct bufobj *bo, daddr_t blkno)
 2343 {
 2344         struct buf *bp;
 2345 
 2346         BO_LOCK(bo);
 2347         bp = gbincore(bo, blkno);
 2348         BO_UNLOCK(bo);
 2349         return (bp);
 2350 }
 2351 
 2352 /*
 2353  * Returns true if no I/O is needed to access the
 2354  * associated VM object.  This is like incore except
 2355  * it also hunts around in the VM system for the data.
 2356  */
 2357 
 2358 static int
 2359 inmem(struct vnode * vp, daddr_t blkno)
 2360 {
 2361         vm_object_t obj;
 2362         vm_offset_t toff, tinc, size;
 2363         vm_page_t m;
 2364         vm_ooffset_t off;
 2365 
 2366         ASSERT_VOP_LOCKED(vp, "inmem");
 2367 
 2368         if (incore(&vp->v_bufobj, blkno))
 2369                 return 1;
 2370         if (vp->v_mount == NULL)
 2371                 return 0;
 2372         obj = vp->v_object;
 2373         if (obj == NULL)
 2374                 return (0);
 2375 
 2376         size = PAGE_SIZE;
 2377         if (size > vp->v_mount->mnt_stat.f_iosize)
 2378                 size = vp->v_mount->mnt_stat.f_iosize;
 2379         off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 2380 
 2381         VM_OBJECT_LOCK(obj);
 2382         for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 2383                 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
 2384                 if (!m)
 2385                         goto notinmem;
 2386                 tinc = size;
 2387                 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 2388                         tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 2389                 if (vm_page_is_valid(m,
 2390                     (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
 2391                         goto notinmem;
 2392         }
 2393         VM_OBJECT_UNLOCK(obj);
 2394         return 1;
 2395 
 2396 notinmem:
 2397         VM_OBJECT_UNLOCK(obj);
 2398         return (0);
 2399 }
 2400 
 2401 /*
 2402  *      vfs_setdirty:
 2403  *
 2404  *      Sets the dirty range for a buffer based on the status of the dirty
 2405  *      bits in the pages comprising the buffer.
 2406  *
 2407  *      The range is limited to the size of the buffer.
 2408  *
 2409  *      This routine is primarily used by NFS, but is generalized for the
 2410  *      B_VMIO case.
 2411  */
 2412 static void
 2413 vfs_setdirty(struct buf *bp) 
 2414 {
 2415 
 2416         /*
 2417          * Degenerate case - empty buffer
 2418          */
 2419 
 2420         if (bp->b_bufsize == 0)
 2421                 return;
 2422 
 2423         /*
 2424          * We qualify the scan for modified pages on whether the
 2425          * object has been flushed yet.
 2426          */
 2427 
 2428         if ((bp->b_flags & B_VMIO) == 0)
 2429                 return;
 2430 
 2431         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 2432         vfs_setdirty_locked_object(bp);
 2433         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 2434 }
 2435 
 2436 static void
 2437 vfs_setdirty_locked_object(struct buf *bp)
 2438 {
 2439         vm_object_t object;
 2440         int i;
 2441 
 2442         object = bp->b_bufobj->bo_object;
 2443         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2444         if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
 2445                 vm_offset_t boffset;
 2446                 vm_offset_t eoffset;
 2447 
 2448                 vm_page_lock_queues();
 2449                 /*
 2450                  * test the pages to see if they have been modified directly
 2451                  * by users through the VM system.
 2452                  */
 2453                 for (i = 0; i < bp->b_npages; i++)
 2454                         vm_page_test_dirty(bp->b_pages[i]);
 2455 
 2456                 /*
 2457                  * Calculate the encompassing dirty range, boffset and eoffset,
 2458                  * (eoffset - boffset) bytes.
 2459                  */
 2460 
 2461                 for (i = 0; i < bp->b_npages; i++) {
 2462                         if (bp->b_pages[i]->dirty)
 2463                                 break;
 2464                 }
 2465                 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2466 
 2467                 for (i = bp->b_npages - 1; i >= 0; --i) {
 2468                         if (bp->b_pages[i]->dirty) {
 2469                                 break;
 2470                         }
 2471                 }
 2472                 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2473 
 2474                 vm_page_unlock_queues();
 2475                 /*
 2476                  * Fit it to the buffer.
 2477                  */
 2478 
 2479                 if (eoffset > bp->b_bcount)
 2480                         eoffset = bp->b_bcount;
 2481 
 2482                 /*
 2483                  * If we have a good dirty range, merge with the existing
 2484                  * dirty range.
 2485                  */
 2486 
 2487                 if (boffset < eoffset) {
 2488                         if (bp->b_dirtyoff > boffset)
 2489                                 bp->b_dirtyoff = boffset;
 2490                         if (bp->b_dirtyend < eoffset)
 2491                                 bp->b_dirtyend = eoffset;
 2492                 }
 2493         }
 2494 }
 2495 
 2496 /*
 2497  *      getblk:
 2498  *
 2499  *      Get a block given a specified block and offset into a file/device.
 2500  *      The buffers B_DONE bit will be cleared on return, making it almost
 2501  *      ready for an I/O initiation.  B_INVAL may or may not be set on 
 2502  *      return.  The caller should clear B_INVAL prior to initiating a
 2503  *      READ.
 2504  *
 2505  *      For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
 2506  *      an existing buffer.
 2507  *
 2508  *      For a VMIO buffer, B_CACHE is modified according to the backing VM.
 2509  *      If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
 2510  *      and then cleared based on the backing VM.  If the previous buffer is
 2511  *      non-0-sized but invalid, B_CACHE will be cleared.
 2512  *
 2513  *      If getblk() must create a new buffer, the new buffer is returned with
 2514  *      both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
 2515  *      case it is returned with B_INVAL clear and B_CACHE set based on the
 2516  *      backing VM.
 2517  *
 2518  *      getblk() also forces a bwrite() for any B_DELWRI buffer whos
 2519  *      B_CACHE bit is clear.
 2520  *      
 2521  *      What this means, basically, is that the caller should use B_CACHE to
 2522  *      determine whether the buffer is fully valid or not and should clear
 2523  *      B_INVAL prior to issuing a read.  If the caller intends to validate
 2524  *      the buffer by loading its data area with something, the caller needs
 2525  *      to clear B_INVAL.  If the caller does this without issuing an I/O, 
 2526  *      the caller should set B_CACHE ( as an optimization ), else the caller
 2527  *      should issue the I/O and biodone() will set B_CACHE if the I/O was
 2528  *      a write attempt or if it was a successfull read.  If the caller 
 2529  *      intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
 2530  *      prior to issuing the READ.  biodone() will *not* clear B_INVAL.
 2531  */
 2532 struct buf *
 2533 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
 2534     int flags)
 2535 {
 2536         struct buf *bp;
 2537         struct bufobj *bo;
 2538         int error;
 2539 
 2540         CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
 2541         ASSERT_VOP_LOCKED(vp, "getblk");
 2542         if (size > MAXBSIZE)
 2543                 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
 2544 
 2545         bo = &vp->v_bufobj;
 2546 loop:
 2547         /*
 2548          * Block if we are low on buffers.   Certain processes are allowed
 2549          * to completely exhaust the buffer cache.
 2550          *
 2551          * If this check ever becomes a bottleneck it may be better to
 2552          * move it into the else, when gbincore() fails.  At the moment
 2553          * it isn't a problem.
 2554          *
 2555          * XXX remove if 0 sections (clean this up after its proven)
 2556          */
 2557         if (numfreebuffers == 0) {
 2558                 if (TD_IS_IDLETHREAD(curthread))
 2559                         return NULL;
 2560                 mtx_lock(&nblock);
 2561                 needsbuffer |= VFS_BIO_NEED_ANY;
 2562                 mtx_unlock(&nblock);
 2563         }
 2564 
 2565         BO_LOCK(bo);
 2566         bp = gbincore(bo, blkno);
 2567         if (bp != NULL) {
 2568                 int lockflags;
 2569                 /*
 2570                  * Buffer is in-core.  If the buffer is not busy, it must
 2571                  * be on a queue.
 2572                  */
 2573                 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
 2574 
 2575                 if (flags & GB_LOCK_NOWAIT)
 2576                         lockflags |= LK_NOWAIT;
 2577 
 2578                 error = BUF_TIMELOCK(bp, lockflags,
 2579                     VI_MTX(vp), "getblk", slpflag, slptimeo);
 2580 
 2581                 /*
 2582                  * If we slept and got the lock we have to restart in case
 2583                  * the buffer changed identities.
 2584                  */
 2585                 if (error == ENOLCK)
 2586                         goto loop;
 2587                 /* We timed out or were interrupted. */
 2588                 else if (error)
 2589                         return (NULL);
 2590 
 2591                 /*
 2592                  * The buffer is locked.  B_CACHE is cleared if the buffer is 
 2593                  * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 2594                  * and for a VMIO buffer B_CACHE is adjusted according to the
 2595                  * backing VM cache.
 2596                  */
 2597                 if (bp->b_flags & B_INVAL)
 2598                         bp->b_flags &= ~B_CACHE;
 2599                 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 2600                         bp->b_flags |= B_CACHE;
 2601                 bremfree(bp);
 2602 
 2603                 /*
 2604                  * check for size inconsistancies for non-VMIO case.
 2605                  */
 2606 
 2607                 if (bp->b_bcount != size) {
 2608                         if ((bp->b_flags & B_VMIO) == 0 ||
 2609                             (size > bp->b_kvasize)) {
 2610                                 if (bp->b_flags & B_DELWRI) {
 2611                                         /*
 2612                                          * If buffer is pinned and caller does
 2613                                          * not want sleep  waiting for it to be
 2614                                          * unpinned, bail out
 2615                                          * */
 2616                                         if (bp->b_pin_count > 0) {
 2617                                                 if (flags & GB_LOCK_NOWAIT) {
 2618                                                         bqrelse(bp);
 2619                                                         return (NULL);
 2620                                                 } else {
 2621                                                         bunpin_wait(bp);
 2622                                                 }
 2623                                         }
 2624                                         bp->b_flags |= B_NOCACHE;
 2625                                         bwrite(bp);
 2626                                 } else {
 2627                                         if (LIST_EMPTY(&bp->b_dep)) {
 2628                                                 bp->b_flags |= B_RELBUF;
 2629                                                 brelse(bp);
 2630                                         } else {
 2631                                                 bp->b_flags |= B_NOCACHE;
 2632                                                 bwrite(bp);
 2633                                         }
 2634                                 }
 2635                                 goto loop;
 2636                         }
 2637                 }
 2638 
 2639                 /*
 2640                  * If the size is inconsistant in the VMIO case, we can resize
 2641                  * the buffer.  This might lead to B_CACHE getting set or
 2642                  * cleared.  If the size has not changed, B_CACHE remains
 2643                  * unchanged from its previous state.
 2644                  */
 2645 
 2646                 if (bp->b_bcount != size)
 2647                         allocbuf(bp, size);
 2648 
 2649                 KASSERT(bp->b_offset != NOOFFSET, 
 2650                     ("getblk: no buffer offset"));
 2651 
 2652                 /*
 2653                  * A buffer with B_DELWRI set and B_CACHE clear must
 2654                  * be committed before we can return the buffer in
 2655                  * order to prevent the caller from issuing a read
 2656                  * ( due to B_CACHE not being set ) and overwriting
 2657                  * it.
 2658                  *
 2659                  * Most callers, including NFS and FFS, need this to
 2660                  * operate properly either because they assume they
 2661                  * can issue a read if B_CACHE is not set, or because
 2662                  * ( for example ) an uncached B_DELWRI might loop due 
 2663                  * to softupdates re-dirtying the buffer.  In the latter
 2664                  * case, B_CACHE is set after the first write completes,
 2665                  * preventing further loops.
 2666                  * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 2667                  * above while extending the buffer, we cannot allow the
 2668                  * buffer to remain with B_CACHE set after the write
 2669                  * completes or it will represent a corrupt state.  To
 2670                  * deal with this we set B_NOCACHE to scrap the buffer
 2671                  * after the write.
 2672                  *
 2673                  * We might be able to do something fancy, like setting
 2674                  * B_CACHE in bwrite() except if B_DELWRI is already set,
 2675                  * so the below call doesn't set B_CACHE, but that gets real
 2676                  * confusing.  This is much easier.
 2677                  */
 2678 
 2679                 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 2680                         bp->b_flags |= B_NOCACHE;
 2681                         bwrite(bp);
 2682                         goto loop;
 2683                 }
 2684                 bp->b_flags &= ~B_DONE;
 2685         } else {
 2686                 int bsize, maxsize, vmio;
 2687                 off_t offset;
 2688 
 2689                 /*
 2690                  * Buffer is not in-core, create new buffer.  The buffer
 2691                  * returned by getnewbuf() is locked.  Note that the returned
 2692                  * buffer is also considered valid (not marked B_INVAL).
 2693                  */
 2694                 BO_UNLOCK(bo);
 2695                 /*
 2696                  * If the user does not want us to create the buffer, bail out
 2697                  * here.
 2698                  */
 2699                 if (flags & GB_NOCREAT)
 2700                         return NULL;
 2701                 bsize = bo->bo_bsize;
 2702                 offset = blkno * bsize;
 2703                 vmio = vp->v_object != NULL;
 2704                 maxsize = vmio ? size + (offset & PAGE_MASK) : size;
 2705                 maxsize = imax(maxsize, bsize);
 2706 
 2707                 bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
 2708                 if (bp == NULL) {
 2709                         if (slpflag || slptimeo)
 2710                                 return NULL;
 2711                         goto loop;
 2712                 }
 2713 
 2714                 /*
 2715                  * This code is used to make sure that a buffer is not
 2716                  * created while the getnewbuf routine is blocked.
 2717                  * This can be a problem whether the vnode is locked or not.
 2718                  * If the buffer is created out from under us, we have to
 2719                  * throw away the one we just created.
 2720                  *
 2721                  * Note: this must occur before we associate the buffer
 2722                  * with the vp especially considering limitations in
 2723                  * the splay tree implementation when dealing with duplicate
 2724                  * lblkno's.
 2725                  */
 2726                 BO_LOCK(bo);
 2727                 if (gbincore(bo, blkno)) {
 2728                         BO_UNLOCK(bo);
 2729                         bp->b_flags |= B_INVAL;
 2730                         brelse(bp);
 2731                         goto loop;
 2732                 }
 2733 
 2734                 /*
 2735                  * Insert the buffer into the hash, so that it can
 2736                  * be found by incore.
 2737                  */
 2738                 bp->b_blkno = bp->b_lblkno = blkno;
 2739                 bp->b_offset = offset;
 2740                 bgetvp(vp, bp);
 2741                 BO_UNLOCK(bo);
 2742 
 2743                 /*
 2744                  * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 2745                  * buffer size starts out as 0, B_CACHE will be set by
 2746                  * allocbuf() for the VMIO case prior to it testing the
 2747                  * backing store for validity.
 2748                  */
 2749 
 2750                 if (vmio) {
 2751                         bp->b_flags |= B_VMIO;
 2752 #if defined(VFS_BIO_DEBUG)
 2753                         if (vn_canvmio(vp) != TRUE)
 2754                                 printf("getblk: VMIO on vnode type %d\n",
 2755                                         vp->v_type);
 2756 #endif
 2757                         KASSERT(vp->v_object == bp->b_bufobj->bo_object,
 2758                             ("ARGH! different b_bufobj->bo_object %p %p %p\n",
 2759                             bp, vp->v_object, bp->b_bufobj->bo_object));
 2760                 } else {
 2761                         bp->b_flags &= ~B_VMIO;
 2762                         KASSERT(bp->b_bufobj->bo_object == NULL,
 2763                             ("ARGH! has b_bufobj->bo_object %p %p\n",
 2764                             bp, bp->b_bufobj->bo_object));
 2765                 }
 2766 
 2767                 allocbuf(bp, size);
 2768                 bp->b_flags &= ~B_DONE;
 2769         }
 2770         CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
 2771         KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
 2772         KASSERT(bp->b_bufobj == bo,
 2773             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 2774         return (bp);
 2775 }
 2776 
 2777 /*
 2778  * Get an empty, disassociated buffer of given size.  The buffer is initially
 2779  * set to B_INVAL.
 2780  */
 2781 struct buf *
 2782 geteblk(int size, int flags)
 2783 {
 2784         struct buf *bp;
 2785         int maxsize;
 2786 
 2787         maxsize = (size + BKVAMASK) & ~BKVAMASK;
 2788         while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
 2789                 if ((flags & GB_NOWAIT_BD) &&
 2790                     (curthread->td_pflags & TDP_BUFNEED) != 0)
 2791                         return (NULL);
 2792         }
 2793         allocbuf(bp, size);
 2794         bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
 2795         KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
 2796         return (bp);
 2797 }
 2798 
 2799 
 2800 /*
 2801  * This code constitutes the buffer memory from either anonymous system
 2802  * memory (in the case of non-VMIO operations) or from an associated
 2803  * VM object (in the case of VMIO operations).  This code is able to
 2804  * resize a buffer up or down.
 2805  *
 2806  * Note that this code is tricky, and has many complications to resolve
 2807  * deadlock or inconsistant data situations.  Tread lightly!!! 
 2808  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
 2809  * the caller.  Calling this code willy nilly can result in the loss of data.
 2810  *
 2811  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
 2812  * B_CACHE for the non-VMIO case.
 2813  */
 2814 
 2815 int
 2816 allocbuf(struct buf *bp, int size)
 2817 {
 2818         int newbsize, mbsize;
 2819         int i;
 2820 
 2821         if (BUF_REFCNT(bp) == 0)
 2822                 panic("allocbuf: buffer not busy");
 2823 
 2824         if (bp->b_kvasize < size)
 2825                 panic("allocbuf: buffer too small");
 2826 
 2827         if ((bp->b_flags & B_VMIO) == 0) {
 2828                 caddr_t origbuf;
 2829                 int origbufsize;
 2830                 /*
 2831                  * Just get anonymous memory from the kernel.  Don't
 2832                  * mess with B_CACHE.
 2833                  */
 2834                 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2835                 if (bp->b_flags & B_MALLOC)
 2836                         newbsize = mbsize;
 2837                 else
 2838                         newbsize = round_page(size);
 2839 
 2840                 if (newbsize < bp->b_bufsize) {
 2841                         /*
 2842                          * malloced buffers are not shrunk
 2843                          */
 2844                         if (bp->b_flags & B_MALLOC) {
 2845                                 if (newbsize) {
 2846                                         bp->b_bcount = size;
 2847                                 } else {
 2848                                         free(bp->b_data, M_BIOBUF);
 2849                                         if (bp->b_bufsize) {
 2850                                                 atomic_subtract_long(
 2851                                                     &bufmallocspace,
 2852                                                     bp->b_bufsize);
 2853                                                 bufspacewakeup();
 2854                                                 bp->b_bufsize = 0;
 2855                                         }
 2856                                         bp->b_saveaddr = bp->b_kvabase;
 2857                                         bp->b_data = bp->b_saveaddr;
 2858                                         bp->b_bcount = 0;
 2859                                         bp->b_flags &= ~B_MALLOC;
 2860                                 }
 2861                                 return 1;
 2862                         }               
 2863                         vm_hold_free_pages(
 2864                             bp,
 2865                             (vm_offset_t) bp->b_data + newbsize,
 2866                             (vm_offset_t) bp->b_data + bp->b_bufsize);
 2867                 } else if (newbsize > bp->b_bufsize) {
 2868                         /*
 2869                          * We only use malloced memory on the first allocation.
 2870                          * and revert to page-allocated memory when the buffer
 2871                          * grows.
 2872                          */
 2873                         /*
 2874                          * There is a potential smp race here that could lead
 2875                          * to bufmallocspace slightly passing the max.  It
 2876                          * is probably extremely rare and not worth worrying
 2877                          * over.
 2878                          */
 2879                         if ( (bufmallocspace < maxbufmallocspace) &&
 2880                                 (bp->b_bufsize == 0) &&
 2881                                 (mbsize <= PAGE_SIZE/2)) {
 2882 
 2883                                 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
 2884                                 bp->b_bufsize = mbsize;
 2885                                 bp->b_bcount = size;
 2886                                 bp->b_flags |= B_MALLOC;
 2887                                 atomic_add_long(&bufmallocspace, mbsize);
 2888                                 return 1;
 2889                         }
 2890                         origbuf = NULL;
 2891                         origbufsize = 0;
 2892                         /*
 2893                          * If the buffer is growing on its other-than-first allocation,
 2894                          * then we revert to the page-allocation scheme.
 2895                          */
 2896                         if (bp->b_flags & B_MALLOC) {
 2897                                 origbuf = bp->b_data;
 2898                                 origbufsize = bp->b_bufsize;
 2899                                 bp->b_data = bp->b_kvabase;
 2900                                 if (bp->b_bufsize) {
 2901                                         atomic_subtract_long(&bufmallocspace,
 2902                                             bp->b_bufsize);
 2903                                         bufspacewakeup();
 2904                                         bp->b_bufsize = 0;
 2905                                 }
 2906                                 bp->b_flags &= ~B_MALLOC;
 2907                                 newbsize = round_page(newbsize);
 2908                         }
 2909                         vm_hold_load_pages(
 2910                             bp,
 2911                             (vm_offset_t) bp->b_data + bp->b_bufsize,
 2912                             (vm_offset_t) bp->b_data + newbsize);
 2913                         if (origbuf) {
 2914                                 bcopy(origbuf, bp->b_data, origbufsize);
 2915                                 free(origbuf, M_BIOBUF);
 2916                         }
 2917                 }
 2918         } else {
 2919                 int desiredpages;
 2920 
 2921                 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2922                 desiredpages = (size == 0) ? 0 :
 2923                         num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 2924 
 2925                 if (bp->b_flags & B_MALLOC)
 2926                         panic("allocbuf: VMIO buffer can't be malloced");
 2927                 /*
 2928                  * Set B_CACHE initially if buffer is 0 length or will become
 2929                  * 0-length.
 2930                  */
 2931                 if (size == 0 || bp->b_bufsize == 0)
 2932                         bp->b_flags |= B_CACHE;
 2933 
 2934                 if (newbsize < bp->b_bufsize) {
 2935                         /*
 2936                          * DEV_BSIZE aligned new buffer size is less then the
 2937                          * DEV_BSIZE aligned existing buffer size.  Figure out
 2938                          * if we have to remove any pages.
 2939                          */
 2940                         if (desiredpages < bp->b_npages) {
 2941                                 vm_page_t m;
 2942 
 2943                                 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 2944                                 vm_page_lock_queues();
 2945                                 for (i = desiredpages; i < bp->b_npages; i++) {
 2946                                         /*
 2947                                          * the page is not freed here -- it
 2948                                          * is the responsibility of 
 2949                                          * vnode_pager_setsize
 2950                                          */
 2951                                         m = bp->b_pages[i];
 2952                                         KASSERT(m != bogus_page,
 2953                                             ("allocbuf: bogus page found"));
 2954                                         while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
 2955                                                 vm_page_lock_queues();
 2956 
 2957                                         bp->b_pages[i] = NULL;
 2958                                         vm_page_unwire(m, 0);
 2959                                 }
 2960                                 vm_page_unlock_queues();
 2961                                 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 2962                                 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
 2963                                     (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
 2964                                 bp->b_npages = desiredpages;
 2965                         }
 2966                 } else if (size > bp->b_bcount) {
 2967                         /*
 2968                          * We are growing the buffer, possibly in a 
 2969                          * byte-granular fashion.
 2970                          */
 2971                         struct vnode *vp;
 2972                         vm_object_t obj;
 2973                         vm_offset_t toff;
 2974                         vm_offset_t tinc;
 2975 
 2976                         /*
 2977                          * Step 1, bring in the VM pages from the object, 
 2978                          * allocating them if necessary.  We must clear
 2979                          * B_CACHE if these pages are not valid for the 
 2980                          * range covered by the buffer.
 2981                          */
 2982 
 2983                         vp = bp->b_vp;
 2984                         obj = bp->b_bufobj->bo_object;
 2985 
 2986                         VM_OBJECT_LOCK(obj);
 2987                         while (bp->b_npages < desiredpages) {
 2988                                 vm_page_t m;
 2989                                 vm_pindex_t pi;
 2990 
 2991                                 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
 2992                                 if ((m = vm_page_lookup(obj, pi)) == NULL) {
 2993                                         /*
 2994                                          * note: must allocate system pages
 2995                                          * since blocking here could intefere
 2996                                          * with paging I/O, no matter which
 2997                                          * process we are.
 2998                                          */
 2999                                         m = vm_page_alloc(obj, pi,
 3000                                             VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
 3001                                             VM_ALLOC_WIRED);
 3002                                         if (m == NULL) {
 3003                                                 atomic_add_int(&vm_pageout_deficit,
 3004                                                     desiredpages - bp->b_npages);
 3005                                                 VM_OBJECT_UNLOCK(obj);
 3006                                                 VM_WAIT;
 3007                                                 VM_OBJECT_LOCK(obj);
 3008                                         } else {
 3009                                                 if (m->valid == 0)
 3010                                                         bp->b_flags &= ~B_CACHE;
 3011                                                 bp->b_pages[bp->b_npages] = m;
 3012                                                 ++bp->b_npages;
 3013                                         }
 3014                                         continue;
 3015                                 }
 3016 
 3017                                 /*
 3018                                  * We found a page.  If we have to sleep on it,
 3019                                  * retry because it might have gotten freed out
 3020                                  * from under us.
 3021                                  *
 3022                                  * We can only test VPO_BUSY here.  Blocking on
 3023                                  * m->busy might lead to a deadlock:
 3024                                  *
 3025                                  *  vm_fault->getpages->cluster_read->allocbuf
 3026                                  *
 3027                                  */
 3028                                 if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
 3029                                         continue;
 3030 
 3031                                 /*
 3032                                  * We have a good page.
 3033                                  */
 3034                                 vm_page_lock_queues();
 3035                                 vm_page_wire(m);
 3036                                 vm_page_unlock_queues();
 3037                                 bp->b_pages[bp->b_npages] = m;
 3038                                 ++bp->b_npages;
 3039                         }
 3040 
 3041                         /*
 3042                          * Step 2.  We've loaded the pages into the buffer,
 3043                          * we have to figure out if we can still have B_CACHE
 3044                          * set.  Note that B_CACHE is set according to the
 3045                          * byte-granular range ( bcount and size ), new the
 3046                          * aligned range ( newbsize ).
 3047                          *
 3048                          * The VM test is against m->valid, which is DEV_BSIZE
 3049                          * aligned.  Needless to say, the validity of the data
 3050                          * needs to also be DEV_BSIZE aligned.  Note that this
 3051                          * fails with NFS if the server or some other client
 3052                          * extends the file's EOF.  If our buffer is resized, 
 3053                          * B_CACHE may remain set! XXX
 3054                          */
 3055 
 3056                         toff = bp->b_bcount;
 3057                         tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 3058 
 3059                         while ((bp->b_flags & B_CACHE) && toff < size) {
 3060                                 vm_pindex_t pi;
 3061 
 3062                                 if (tinc > (size - toff))
 3063                                         tinc = size - toff;
 3064 
 3065                                 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 
 3066                                     PAGE_SHIFT;
 3067 
 3068                                 vfs_buf_test_cache(
 3069                                     bp, 
 3070                                     bp->b_offset,
 3071                                     toff, 
 3072                                     tinc, 
 3073                                     bp->b_pages[pi]
 3074                                 );
 3075                                 toff += tinc;
 3076                                 tinc = PAGE_SIZE;
 3077                         }
 3078                         VM_OBJECT_UNLOCK(obj);
 3079 
 3080                         /*
 3081                          * Step 3, fixup the KVM pmap.  Remember that
 3082                          * bp->b_data is relative to bp->b_offset, but 
 3083                          * bp->b_offset may be offset into the first page.
 3084                          */
 3085 
 3086                         bp->b_data = (caddr_t)
 3087                             trunc_page((vm_offset_t)bp->b_data);
 3088                         pmap_qenter(
 3089                             (vm_offset_t)bp->b_data,
 3090                             bp->b_pages, 
 3091                             bp->b_npages
 3092                         );
 3093                         
 3094                         bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 
 3095                             (vm_offset_t)(bp->b_offset & PAGE_MASK));
 3096                 }
 3097         }
 3098         if (newbsize < bp->b_bufsize)
 3099                 bufspacewakeup();
 3100         bp->b_bufsize = newbsize;       /* actual buffer allocation     */
 3101         bp->b_bcount = size;            /* requested buffer size        */
 3102         return 1;
 3103 }
 3104 
 3105 void
 3106 biodone(struct bio *bp)
 3107 {
 3108         void (*done)(struct bio *);
 3109 
 3110         mtx_lock(&bdonelock);
 3111         bp->bio_flags |= BIO_DONE;
 3112         done = bp->bio_done;
 3113         if (done == NULL)
 3114                 wakeup(bp);
 3115         mtx_unlock(&bdonelock);
 3116         if (done != NULL)
 3117                 done(bp);
 3118 }
 3119 
 3120 /*
 3121  * Wait for a BIO to finish.
 3122  *
 3123  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
 3124  * case is not yet clear.
 3125  */
 3126 int
 3127 biowait(struct bio *bp, const char *wchan)
 3128 {
 3129 
 3130         mtx_lock(&bdonelock);
 3131         while ((bp->bio_flags & BIO_DONE) == 0)
 3132                 msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
 3133         mtx_unlock(&bdonelock);
 3134         if (bp->bio_error != 0)
 3135                 return (bp->bio_error);
 3136         if (!(bp->bio_flags & BIO_ERROR))
 3137                 return (0);
 3138         return (EIO);
 3139 }
 3140 
 3141 void
 3142 biofinish(struct bio *bp, struct devstat *stat, int error)
 3143 {
 3144         
 3145         if (error) {
 3146                 bp->bio_error = error;
 3147                 bp->bio_flags |= BIO_ERROR;
 3148         }
 3149         if (stat != NULL)
 3150                 devstat_end_transaction_bio(stat, bp);
 3151         biodone(bp);
 3152 }
 3153 
 3154 /*
 3155  *      bufwait:
 3156  *
 3157  *      Wait for buffer I/O completion, returning error status.  The buffer
 3158  *      is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
 3159  *      error and cleared.
 3160  */
 3161 int
 3162 bufwait(struct buf *bp)
 3163 {
 3164         if (bp->b_iocmd == BIO_READ)
 3165                 bwait(bp, PRIBIO, "biord");
 3166         else
 3167                 bwait(bp, PRIBIO, "biowr");
 3168         if (bp->b_flags & B_EINTR) {
 3169                 bp->b_flags &= ~B_EINTR;
 3170                 return (EINTR);
 3171         }
 3172         if (bp->b_ioflags & BIO_ERROR) {
 3173                 return (bp->b_error ? bp->b_error : EIO);
 3174         } else {
 3175                 return (0);
 3176         }
 3177 }
 3178 
 3179  /*
 3180   * Call back function from struct bio back up to struct buf.
 3181   */
 3182 static void
 3183 bufdonebio(struct bio *bip)
 3184 {
 3185         struct buf *bp;
 3186 
 3187         bp = bip->bio_caller2;
 3188         bp->b_resid = bp->b_bcount - bip->bio_completed;
 3189         bp->b_resid = bip->bio_resid;   /* XXX: remove */
 3190         bp->b_ioflags = bip->bio_flags;
 3191         bp->b_error = bip->bio_error;
 3192         if (bp->b_error)
 3193                 bp->b_ioflags |= BIO_ERROR;
 3194         bufdone(bp);
 3195         g_destroy_bio(bip);
 3196 }
 3197 
 3198 void
 3199 dev_strategy(struct cdev *dev, struct buf *bp)
 3200 {
 3201         struct cdevsw *csw;
 3202         struct bio *bip;
 3203 
 3204         if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
 3205                 panic("b_iocmd botch");
 3206         for (;;) {
 3207                 bip = g_new_bio();
 3208                 if (bip != NULL)
 3209                         break;
 3210                 /* Try again later */
 3211                 tsleep(&bp, PRIBIO, "dev_strat", hz/10);
 3212         }
 3213         bip->bio_cmd = bp->b_iocmd;
 3214         bip->bio_offset = bp->b_iooffset;
 3215         bip->bio_length = bp->b_bcount;
 3216         bip->bio_bcount = bp->b_bcount; /* XXX: remove */
 3217         bip->bio_data = bp->b_data;
 3218         bip->bio_done = bufdonebio;
 3219         bip->bio_caller2 = bp;
 3220         bip->bio_dev = dev;
 3221         KASSERT(dev->si_refcount > 0,
 3222             ("dev_strategy on un-referenced struct cdev *(%s)",
 3223             devtoname(dev)));
 3224         csw = dev_refthread(dev);
 3225         if (csw == NULL) {
 3226                 g_destroy_bio(bip);
 3227                 bp->b_error = ENXIO;
 3228                 bp->b_ioflags = BIO_ERROR;
 3229                 bufdone(bp);
 3230                 return;
 3231         }
 3232         (*csw->d_strategy)(bip);
 3233         dev_relthread(dev);
 3234 }
 3235 
 3236 /*
 3237  *      bufdone:
 3238  *
 3239  *      Finish I/O on a buffer, optionally calling a completion function.
 3240  *      This is usually called from an interrupt so process blocking is
 3241  *      not allowed.
 3242  *
 3243  *      biodone is also responsible for setting B_CACHE in a B_VMIO bp.
 3244  *      In a non-VMIO bp, B_CACHE will be set on the next getblk() 
 3245  *      assuming B_INVAL is clear.
 3246  *
 3247  *      For the VMIO case, we set B_CACHE if the op was a read and no
 3248  *      read error occured, or if the op was a write.  B_CACHE is never
 3249  *      set if the buffer is invalid or otherwise uncacheable.
 3250  *
 3251  *      biodone does not mess with B_INVAL, allowing the I/O routine or the
 3252  *      initiator to leave B_INVAL set to brelse the buffer out of existance
 3253  *      in the biodone routine.
 3254  */
 3255 void
 3256 bufdone(struct buf *bp)
 3257 {
 3258         struct bufobj *dropobj;
 3259         void    (*biodone)(struct buf *);
 3260 
 3261         CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 3262         dropobj = NULL;
 3263 
 3264         KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
 3265             BUF_REFCNT(bp)));
 3266         KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 3267 
 3268         runningbufwakeup(bp);
 3269         if (bp->b_iocmd == BIO_WRITE)
 3270                 dropobj = bp->b_bufobj;
 3271         /* call optional completion function if requested */
 3272         if (bp->b_iodone != NULL) {
 3273                 biodone = bp->b_iodone;
 3274                 bp->b_iodone = NULL;
 3275                 (*biodone) (bp);
 3276                 if (dropobj)
 3277                         bufobj_wdrop(dropobj);
 3278                 return;
 3279         }
 3280 
 3281         bufdone_finish(bp);
 3282 
 3283         if (dropobj)
 3284                 bufobj_wdrop(dropobj);
 3285 }
 3286 
 3287 void
 3288 bufdone_finish(struct buf *bp)
 3289 {
 3290         KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
 3291             BUF_REFCNT(bp)));
 3292 
 3293         if (!LIST_EMPTY(&bp->b_dep))
 3294                 buf_complete(bp);
 3295 
 3296         if (bp->b_flags & B_VMIO) {
 3297                 int i;
 3298                 vm_ooffset_t foff;
 3299                 vm_page_t m;
 3300                 vm_object_t obj;
 3301                 int iosize;
 3302                 struct vnode *vp = bp->b_vp;
 3303                 boolean_t are_queues_locked;
 3304 
 3305                 obj = bp->b_bufobj->bo_object;
 3306 
 3307 #if defined(VFS_BIO_DEBUG)
 3308                 mp_fixme("usecount and vflag accessed without locks.");
 3309                 if (vp->v_usecount == 0) {
 3310                         panic("biodone: zero vnode ref count");
 3311                 }
 3312 
 3313                 KASSERT(vp->v_object != NULL,
 3314                         ("biodone: vnode %p has no vm_object", vp));
 3315 #endif
 3316 
 3317                 foff = bp->b_offset;
 3318                 KASSERT(bp->b_offset != NOOFFSET,
 3319                     ("biodone: no buffer offset"));
 3320 
 3321                 VM_OBJECT_LOCK(obj);
 3322 #if defined(VFS_BIO_DEBUG)
 3323                 if (obj->paging_in_progress < bp->b_npages) {
 3324                         printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
 3325                             obj->paging_in_progress, bp->b_npages);
 3326                 }
 3327 #endif
 3328 
 3329                 /*
 3330                  * Set B_CACHE if the op was a normal read and no error
 3331                  * occured.  B_CACHE is set for writes in the b*write()
 3332                  * routines.
 3333                  */
 3334                 iosize = bp->b_bcount - bp->b_resid;
 3335                 if (bp->b_iocmd == BIO_READ &&
 3336                     !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 3337                     !(bp->b_ioflags & BIO_ERROR)) {
 3338                         bp->b_flags |= B_CACHE;
 3339                 }
 3340                 if (bp->b_iocmd == BIO_READ) {
 3341                         vm_page_lock_queues();
 3342                         are_queues_locked = TRUE;
 3343                 } else
 3344                         are_queues_locked = FALSE;
 3345                 for (i = 0; i < bp->b_npages; i++) {
 3346                         int bogusflag = 0;
 3347                         int resid;
 3348 
 3349                         resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 3350                         if (resid > iosize)
 3351                                 resid = iosize;
 3352 
 3353                         /*
 3354                          * cleanup bogus pages, restoring the originals
 3355                          */
 3356                         m = bp->b_pages[i];
 3357                         if (m == bogus_page) {
 3358                                 bogusflag = 1;
 3359                                 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
 3360                                 if (m == NULL)
 3361                                         panic("biodone: page disappeared!");
 3362                                 bp->b_pages[i] = m;
 3363                                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3364                                     bp->b_pages, bp->b_npages);
 3365                         }
 3366 #if defined(VFS_BIO_DEBUG)
 3367                         if (OFF_TO_IDX(foff) != m->pindex) {
 3368                                 printf(
 3369 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
 3370                                     (intmax_t)foff, (uintmax_t)m->pindex);
 3371                         }
 3372 #endif
 3373 
 3374                         /*
 3375                          * In the write case, the valid and clean bits are
 3376                          * already changed correctly ( see bdwrite() ), so we 
 3377                          * only need to do this here in the read case.
 3378                          */
 3379                         if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
 3380                                 vfs_page_set_valid(bp, foff, i, m);
 3381                         }
 3382 
 3383                         /*
 3384                          * when debugging new filesystems or buffer I/O methods, this
 3385                          * is the most common error that pops up.  if you see this, you
 3386                          * have not set the page busy flag correctly!!!
 3387                          */
 3388                         if (m->busy == 0) {
 3389                                 printf("biodone: page busy < 0, "
 3390                                     "pindex: %d, foff: 0x(%x,%x), "
 3391                                     "resid: %d, index: %d\n",
 3392                                     (int) m->pindex, (int)(foff >> 32),
 3393                                                 (int) foff & 0xffffffff, resid, i);
 3394                                 if (!vn_isdisk(vp, NULL))
 3395                                         printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
 3396                                             (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
 3397                                             (intmax_t) bp->b_lblkno,
 3398                                             bp->b_flags, bp->b_npages);
 3399                                 else
 3400                                         printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
 3401                                             (intmax_t) bp->b_lblkno,
 3402                                             bp->b_flags, bp->b_npages);
 3403                                 printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
 3404                                     (u_long)m->valid, (u_long)m->dirty,
 3405                                     m->wire_count);
 3406                                 panic("biodone: page busy < 0\n");
 3407                         }
 3408                         vm_page_io_finish(m);
 3409                         vm_object_pip_subtract(obj, 1);
 3410                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3411                         iosize -= resid;
 3412                 }
 3413                 if (are_queues_locked)
 3414                         vm_page_unlock_queues();
 3415                 vm_object_pip_wakeupn(obj, 0);
 3416                 VM_OBJECT_UNLOCK(obj);
 3417         }
 3418 
 3419         /*
 3420          * For asynchronous completions, release the buffer now. The brelse
 3421          * will do a wakeup there if necessary - so no need to do a wakeup
 3422          * here in the async case. The sync case always needs to do a wakeup.
 3423          */
 3424 
 3425         if (bp->b_flags & B_ASYNC) {
 3426                 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
 3427                         brelse(bp);
 3428                 else
 3429                         bqrelse(bp);
 3430         } else
 3431                 bdone(bp);
 3432 }
 3433 
 3434 /*
 3435  * This routine is called in lieu of iodone in the case of
 3436  * incomplete I/O.  This keeps the busy status for pages
 3437  * consistant.
 3438  */
 3439 void
 3440 vfs_unbusy_pages(struct buf *bp)
 3441 {
 3442         int i;
 3443         vm_object_t obj;
 3444         vm_page_t m;
 3445 
 3446         runningbufwakeup(bp);
 3447         if (!(bp->b_flags & B_VMIO))
 3448                 return;
 3449 
 3450         obj = bp->b_bufobj->bo_object;
 3451         VM_OBJECT_LOCK(obj);
 3452         for (i = 0; i < bp->b_npages; i++) {
 3453                 m = bp->b_pages[i];
 3454                 if (m == bogus_page) {
 3455                         m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 3456                         if (!m)
 3457                                 panic("vfs_unbusy_pages: page missing\n");
 3458                         bp->b_pages[i] = m;
 3459                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3460                             bp->b_pages, bp->b_npages);
 3461                 }
 3462                 vm_object_pip_subtract(obj, 1);
 3463                 vm_page_io_finish(m);
 3464         }
 3465         vm_object_pip_wakeupn(obj, 0);
 3466         VM_OBJECT_UNLOCK(obj);
 3467 }
 3468 
 3469 /*
 3470  * vfs_page_set_valid:
 3471  *
 3472  *      Set the valid bits in a page based on the supplied offset.   The
 3473  *      range is restricted to the buffer's size.
 3474  *
 3475  *      This routine is typically called after a read completes.
 3476  */
 3477 static void
 3478 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
 3479 {
 3480         vm_ooffset_t soff, eoff;
 3481 
 3482         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3483         /*
 3484          * Start and end offsets in buffer.  eoff - soff may not cross a
 3485          * page boundry or cross the end of the buffer.  The end of the
 3486          * buffer, in this case, is our file EOF, not the allocation size
 3487          * of the buffer.
 3488          */
 3489         soff = off;
 3490         eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3491         if (eoff > bp->b_offset + bp->b_bcount)
 3492                 eoff = bp->b_offset + bp->b_bcount;
 3493 
 3494         /*
 3495          * Set valid range.  This is typically the entire buffer and thus the
 3496          * entire page.
 3497          */
 3498         if (eoff > soff) {
 3499                 vm_page_set_validclean(
 3500                     m,
 3501                    (vm_offset_t) (soff & PAGE_MASK),
 3502                    (vm_offset_t) (eoff - soff)
 3503                 );
 3504         }
 3505 }
 3506 
 3507 /*
 3508  * This routine is called before a device strategy routine.
 3509  * It is used to tell the VM system that paging I/O is in
 3510  * progress, and treat the pages associated with the buffer
 3511  * almost as being VPO_BUSY.  Also the object paging_in_progress
 3512  * flag is handled to make sure that the object doesn't become
 3513  * inconsistant.
 3514  *
 3515  * Since I/O has not been initiated yet, certain buffer flags
 3516  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
 3517  * and should be ignored.
 3518  */
 3519 void
 3520 vfs_busy_pages(struct buf *bp, int clear_modify)
 3521 {
 3522         int i, bogus;
 3523         vm_object_t obj;
 3524         vm_ooffset_t foff;
 3525         vm_page_t m;
 3526 
 3527         if (!(bp->b_flags & B_VMIO))
 3528                 return;
 3529 
 3530         obj = bp->b_bufobj->bo_object;
 3531         foff = bp->b_offset;
 3532         KASSERT(bp->b_offset != NOOFFSET,
 3533             ("vfs_busy_pages: no buffer offset"));
 3534         VM_OBJECT_LOCK(obj);
 3535         if (bp->b_bufsize != 0)
 3536                 vfs_setdirty_locked_object(bp);
 3537 retry:
 3538         for (i = 0; i < bp->b_npages; i++) {
 3539                 m = bp->b_pages[i];
 3540 
 3541                 if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
 3542                         goto retry;
 3543         }
 3544         bogus = 0;
 3545         vm_page_lock_queues();
 3546         for (i = 0; i < bp->b_npages; i++) {
 3547                 m = bp->b_pages[i];
 3548 
 3549                 if ((bp->b_flags & B_CLUSTER) == 0) {
 3550                         vm_object_pip_add(obj, 1);
 3551                         vm_page_io_start(m);
 3552                 }
 3553                 /*
 3554                  * When readying a buffer for a read ( i.e
 3555                  * clear_modify == 0 ), it is important to do
 3556                  * bogus_page replacement for valid pages in 
 3557                  * partially instantiated buffers.  Partially 
 3558                  * instantiated buffers can, in turn, occur when
 3559                  * reconstituting a buffer from its VM backing store
 3560                  * base.  We only have to do this if B_CACHE is
 3561                  * clear ( which causes the I/O to occur in the
 3562                  * first place ).  The replacement prevents the read
 3563                  * I/O from overwriting potentially dirty VM-backed
 3564                  * pages.  XXX bogus page replacement is, uh, bogus.
 3565                  * It may not work properly with small-block devices.
 3566                  * We need to find a better way.
 3567                  */
 3568                 pmap_remove_all(m);
 3569                 if (clear_modify)
 3570                         vfs_page_set_valid(bp, foff, i, m);
 3571                 else if (m->valid == VM_PAGE_BITS_ALL &&
 3572                     (bp->b_flags & B_CACHE) == 0) {
 3573                         bp->b_pages[i] = bogus_page;
 3574                         bogus++;
 3575                 }
 3576                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3577         }
 3578         vm_page_unlock_queues();
 3579         VM_OBJECT_UNLOCK(obj);
 3580         if (bogus)
 3581                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3582                     bp->b_pages, bp->b_npages);
 3583 }
 3584 
 3585 /*
 3586  * Tell the VM system that the pages associated with this buffer
 3587  * are clean.  This is used for delayed writes where the data is
 3588  * going to go to disk eventually without additional VM intevention.
 3589  *
 3590  * Note that while we only really need to clean through to b_bcount, we
 3591  * just go ahead and clean through to b_bufsize.
 3592  */
 3593 static void
 3594 vfs_clean_pages(struct buf *bp)
 3595 {
 3596         int i;
 3597         vm_ooffset_t foff, noff, eoff;
 3598         vm_page_t m;
 3599 
 3600         if (!(bp->b_flags & B_VMIO))
 3601                 return;
 3602 
 3603         foff = bp->b_offset;
 3604         KASSERT(bp->b_offset != NOOFFSET,
 3605             ("vfs_clean_pages: no buffer offset"));
 3606         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3607         vm_page_lock_queues();
 3608         for (i = 0; i < bp->b_npages; i++) {
 3609                 m = bp->b_pages[i];
 3610                 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3611                 eoff = noff;
 3612 
 3613                 if (eoff > bp->b_offset + bp->b_bufsize)
 3614                         eoff = bp->b_offset + bp->b_bufsize;
 3615                 vfs_page_set_valid(bp, foff, i, m);
 3616                 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 3617                 foff = noff;
 3618         }
 3619         vm_page_unlock_queues();
 3620         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3621 }
 3622 
 3623 /*
 3624  *      vfs_bio_set_validclean:
 3625  *
 3626  *      Set the range within the buffer to valid and clean.  The range is 
 3627  *      relative to the beginning of the buffer, b_offset.  Note that b_offset
 3628  *      itself may be offset from the beginning of the first page.
 3629  *
 3630  */
 3631 
 3632 void   
 3633 vfs_bio_set_validclean(struct buf *bp, int base, int size)
 3634 {
 3635         int i, n;
 3636         vm_page_t m;
 3637 
 3638         if (!(bp->b_flags & B_VMIO))
 3639                 return;
 3640         /*
 3641          * Fixup base to be relative to beginning of first page.
 3642          * Set initial n to be the maximum number of bytes in the
 3643          * first page that can be validated.
 3644          */
 3645 
 3646         base += (bp->b_offset & PAGE_MASK);
 3647         n = PAGE_SIZE - (base & PAGE_MASK);
 3648 
 3649         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3650         vm_page_lock_queues();
 3651         for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 3652                 m = bp->b_pages[i];
 3653                 if (n > size)
 3654                         n = size;
 3655                 vm_page_set_validclean(m, base & PAGE_MASK, n);
 3656                 base += n;
 3657                 size -= n;
 3658                 n = PAGE_SIZE;
 3659         }
 3660         vm_page_unlock_queues();
 3661         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3662 }
 3663 
 3664 /*
 3665  *      vfs_bio_clrbuf:
 3666  *
 3667  *      clear a buffer.  This routine essentially fakes an I/O, so we need
 3668  *      to clear BIO_ERROR and B_INVAL.
 3669  *
 3670  *      Note that while we only theoretically need to clear through b_bcount,
 3671  *      we go ahead and clear through b_bufsize.
 3672  */
 3673 
 3674 void
 3675 vfs_bio_clrbuf(struct buf *bp) 
 3676 {
 3677         int i, j, mask = 0;
 3678         caddr_t sa, ea;
 3679 
 3680         if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
 3681                 clrbuf(bp);
 3682                 return;
 3683         }
 3684 
 3685         bp->b_flags &= ~B_INVAL;
 3686         bp->b_ioflags &= ~BIO_ERROR;
 3687         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3688         if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
 3689             (bp->b_offset & PAGE_MASK) == 0) {
 3690                 if (bp->b_pages[0] == bogus_page)
 3691                         goto unlock;
 3692                 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
 3693                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
 3694                 if ((bp->b_pages[0]->valid & mask) == mask)
 3695                         goto unlock;
 3696                 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
 3697                     ((bp->b_pages[0]->valid & mask) == 0)) {
 3698                         bzero(bp->b_data, bp->b_bufsize);
 3699                         bp->b_pages[0]->valid |= mask;
 3700                         goto unlock;
 3701                 }
 3702         }
 3703         ea = sa = bp->b_data;
 3704         for(i = 0; i < bp->b_npages; i++, sa = ea) {
 3705                 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
 3706                 ea = (caddr_t)(vm_offset_t)ulmin(
 3707                     (u_long)(vm_offset_t)ea,
 3708                     (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
 3709                 if (bp->b_pages[i] == bogus_page)
 3710                         continue;
 3711                 j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
 3712                 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
 3713                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
 3714                 if ((bp->b_pages[i]->valid & mask) == mask)
 3715                         continue;
 3716                 if ((bp->b_pages[i]->valid & mask) == 0) {
 3717                         if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
 3718                                 bzero(sa, ea - sa);
 3719                 } else {
 3720                         for (; sa < ea; sa += DEV_BSIZE, j++) {
 3721                                 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
 3722                                     (bp->b_pages[i]->valid & (1 << j)) == 0)
 3723                                         bzero(sa, DEV_BSIZE);
 3724                         }
 3725                 }
 3726                 bp->b_pages[i]->valid |= mask;
 3727         }
 3728 unlock:
 3729         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3730         bp->b_resid = 0;
 3731 }
 3732 
 3733 /*
 3734  * vm_hold_load_pages and vm_hold_free_pages get pages into
 3735  * a buffers address space.  The pages are anonymous and are
 3736  * not associated with a file object.
 3737  */
 3738 static void
 3739 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 3740 {
 3741         vm_offset_t pg;
 3742         vm_page_t p;
 3743         int index;
 3744 
 3745         to = round_page(to);
 3746         from = round_page(from);
 3747         index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3748 
 3749         VM_OBJECT_LOCK(kernel_object);
 3750         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3751 tryagain:
 3752                 /*
 3753                  * note: must allocate system pages since blocking here
 3754                  * could intefere with paging I/O, no matter which
 3755                  * process we are.
 3756                  */
 3757                 p = vm_page_alloc(kernel_object,
 3758                         ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
 3759                     VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 3760                 if (!p) {
 3761                         atomic_add_int(&vm_pageout_deficit,
 3762                             (to - pg) >> PAGE_SHIFT);
 3763                         VM_OBJECT_UNLOCK(kernel_object);
 3764                         VM_WAIT;
 3765                         VM_OBJECT_LOCK(kernel_object);
 3766                         goto tryagain;
 3767                 }
 3768                 p->valid = VM_PAGE_BITS_ALL;
 3769                 pmap_qenter(pg, &p, 1);
 3770                 bp->b_pages[index] = p;
 3771         }
 3772         VM_OBJECT_UNLOCK(kernel_object);
 3773         bp->b_npages = index;
 3774 }
 3775 
 3776 /* Return pages associated with this buf to the vm system */
 3777 static void
 3778 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 3779 {
 3780         vm_offset_t pg;
 3781         vm_page_t p;
 3782         int index, newnpages;
 3783 
 3784         from = round_page(from);
 3785         to = round_page(to);
 3786         newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3787 
 3788         VM_OBJECT_LOCK(kernel_object);
 3789         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3790                 p = bp->b_pages[index];
 3791                 if (p && (index < bp->b_npages)) {
 3792                         if (p->busy) {
 3793                                 printf(
 3794                             "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
 3795                                     (intmax_t)bp->b_blkno,
 3796                                     (intmax_t)bp->b_lblkno);
 3797                         }
 3798                         bp->b_pages[index] = NULL;
 3799                         pmap_qremove(pg, 1);
 3800                         vm_page_lock_queues();
 3801                         vm_page_unwire(p, 0);
 3802                         vm_page_free(p);
 3803                         vm_page_unlock_queues();
 3804                 }
 3805         }
 3806         VM_OBJECT_UNLOCK(kernel_object);
 3807         bp->b_npages = newnpages;
 3808 }
 3809 
 3810 /*
 3811  * Map an IO request into kernel virtual address space.
 3812  *
 3813  * All requests are (re)mapped into kernel VA space.
 3814  * Notice that we use b_bufsize for the size of the buffer
 3815  * to be mapped.  b_bcount might be modified by the driver.
 3816  *
 3817  * Note that even if the caller determines that the address space should
 3818  * be valid, a race or a smaller-file mapped into a larger space may
 3819  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
 3820  * check the return value.
 3821  */
 3822 int
 3823 vmapbuf(struct buf *bp)
 3824 {
 3825         caddr_t addr, kva;
 3826         vm_prot_t prot;
 3827         int pidx, i;
 3828         struct vm_page *m;
 3829         struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
 3830 
 3831         if (bp->b_bufsize < 0)
 3832                 return (-1);
 3833         prot = VM_PROT_READ;
 3834         if (bp->b_iocmd == BIO_READ)
 3835                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 3836         for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
 3837              addr < bp->b_data + bp->b_bufsize;
 3838              addr += PAGE_SIZE, pidx++) {
 3839                 /*
 3840                  * Do the vm_fault if needed; do the copy-on-write thing
 3841                  * when reading stuff off device into memory.
 3842                  *
 3843                  * NOTE! Must use pmap_extract() because addr may be in
 3844                  * the userland address space, and kextract is only guarenteed
 3845                  * to work for the kernland address space (see: sparc64 port).
 3846                  */
 3847 retry:
 3848                 if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
 3849                     prot) < 0) {
 3850                         vm_page_lock_queues();
 3851                         for (i = 0; i < pidx; ++i) {
 3852                                 vm_page_unhold(bp->b_pages[i]);
 3853                                 bp->b_pages[i] = NULL;
 3854                         }
 3855                         vm_page_unlock_queues();
 3856                         return(-1);
 3857                 }
 3858                 m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
 3859                 if (m == NULL)
 3860                         goto retry;
 3861                 bp->b_pages[pidx] = m;
 3862         }
 3863         if (pidx > btoc(MAXPHYS))
 3864                 panic("vmapbuf: mapped more than MAXPHYS");
 3865         pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
 3866         
 3867         kva = bp->b_saveaddr;
 3868         bp->b_npages = pidx;
 3869         bp->b_saveaddr = bp->b_data;
 3870         bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
 3871         return(0);
 3872 }
 3873 
 3874 /*
 3875  * Free the io map PTEs associated with this IO operation.
 3876  * We also invalidate the TLB entries and restore the original b_addr.
 3877  */
 3878 void
 3879 vunmapbuf(struct buf *bp)
 3880 {
 3881         int pidx;
 3882         int npages;
 3883 
 3884         npages = bp->b_npages;
 3885         pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
 3886         vm_page_lock_queues();
 3887         for (pidx = 0; pidx < npages; pidx++)
 3888                 vm_page_unhold(bp->b_pages[pidx]);
 3889         vm_page_unlock_queues();
 3890 
 3891         bp->b_data = bp->b_saveaddr;
 3892 }
 3893 
 3894 void
 3895 bdone(struct buf *bp)
 3896 {
 3897 
 3898         mtx_lock(&bdonelock);
 3899         bp->b_flags |= B_DONE;
 3900         wakeup(bp);
 3901         mtx_unlock(&bdonelock);
 3902 }
 3903 
 3904 void
 3905 bwait(struct buf *bp, u_char pri, const char *wchan)
 3906 {
 3907 
 3908         mtx_lock(&bdonelock);
 3909         while ((bp->b_flags & B_DONE) == 0)
 3910                 msleep(bp, &bdonelock, pri, wchan, 0);
 3911         mtx_unlock(&bdonelock);
 3912 }
 3913 
 3914 int
 3915 bufsync(struct bufobj *bo, int waitfor, struct thread *td)
 3916 {
 3917 
 3918         return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
 3919 }
 3920 
 3921 void
 3922 bufstrategy(struct bufobj *bo, struct buf *bp)
 3923 {
 3924         int i = 0;
 3925         struct vnode *vp;
 3926 
 3927         vp = bp->b_vp;
 3928         KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
 3929         KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
 3930             ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
 3931         i = VOP_STRATEGY(vp, bp);
 3932         KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
 3933 }
 3934 
 3935 void
 3936 bufobj_wrefl(struct bufobj *bo)
 3937 {
 3938 
 3939         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 3940         ASSERT_BO_LOCKED(bo);
 3941         bo->bo_numoutput++;
 3942 }
 3943 
 3944 void
 3945 bufobj_wref(struct bufobj *bo)
 3946 {
 3947 
 3948         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 3949         BO_LOCK(bo);
 3950         bo->bo_numoutput++;
 3951         BO_UNLOCK(bo);
 3952 }
 3953 
 3954 void
 3955 bufobj_wdrop(struct bufobj *bo)
 3956 {
 3957 
 3958         KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
 3959         BO_LOCK(bo);
 3960         KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
 3961         if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
 3962                 bo->bo_flag &= ~BO_WWAIT;
 3963                 wakeup(&bo->bo_numoutput);
 3964         }
 3965         BO_UNLOCK(bo);
 3966 }
 3967 
 3968 int
 3969 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
 3970 {
 3971         int error;
 3972 
 3973         KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
 3974         ASSERT_BO_LOCKED(bo);
 3975         error = 0;
 3976         while (bo->bo_numoutput) {
 3977                 bo->bo_flag |= BO_WWAIT;
 3978                 error = msleep(&bo->bo_numoutput, BO_MTX(bo),
 3979                     slpflag | (PRIBIO + 1), "bo_wwait", timeo);
 3980                 if (error)
 3981                         break;
 3982         }
 3983         return (error);
 3984 }
 3985 
 3986 void
 3987 bpin(struct buf *bp)
 3988 {
 3989         mtx_lock(&bpinlock);
 3990         bp->b_pin_count++;
 3991         mtx_unlock(&bpinlock);
 3992 }
 3993 
 3994 void
 3995 bunpin(struct buf *bp)
 3996 {
 3997         mtx_lock(&bpinlock);
 3998         if (--bp->b_pin_count == 0)
 3999                 wakeup(bp);
 4000         mtx_unlock(&bpinlock);
 4001 }
 4002 
 4003 void
 4004 bunpin_wait(struct buf *bp)
 4005 {
 4006         mtx_lock(&bpinlock);
 4007         while (bp->b_pin_count > 0)
 4008                 msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
 4009         mtx_unlock(&bpinlock);
 4010 }
 4011 
 4012 #include "opt_ddb.h"
 4013 #ifdef DDB
 4014 #include <ddb/ddb.h>
 4015 
 4016 /* DDB command to show buffer data */
 4017 DB_SHOW_COMMAND(buffer, db_show_buffer)
 4018 {
 4019         /* get args */
 4020         struct buf *bp = (struct buf *)addr;
 4021 
 4022         if (!have_addr) {
 4023                 db_printf("usage: show buffer <addr>\n");
 4024                 return;
 4025         }
 4026 
 4027         db_printf("buf at %p\n", bp);
 4028         db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
 4029         db_printf(
 4030             "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 4031             "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
 4032             bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 4033             bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
 4034             bp->b_dep.lh_first);
 4035         if (bp->b_npages) {
 4036                 int i;
 4037                 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 4038                 for (i = 0; i < bp->b_npages; i++) {
 4039                         vm_page_t m;
 4040                         m = bp->b_pages[i];
 4041                         db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
 4042                             (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
 4043                         if ((i + 1) < bp->b_npages)
 4044                                 db_printf(",");
 4045                 }
 4046                 db_printf("\n");
 4047         }
 4048         lockmgr_printinfo(&bp->b_lock);
 4049 }
 4050 
 4051 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
 4052 {
 4053         struct buf *bp;
 4054         int i;
 4055 
 4056         for (i = 0; i < nbuf; i++) {
 4057                 bp = &buf[i];
 4058                 if (lockcount(&bp->b_lock)) {
 4059                         db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4060                         db_printf("\n");
 4061                 }
 4062         }
 4063 }
 4064 
 4065 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
 4066 {
 4067         struct vnode *vp;
 4068         struct buf *bp;
 4069 
 4070         if (!have_addr) {
 4071                 db_printf("usage: show vnodebufs <addr>\n");
 4072                 return;
 4073         }
 4074         vp = (struct vnode *)addr;
 4075         db_printf("Clean buffers:\n");
 4076         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
 4077                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4078                 db_printf("\n");
 4079         }
 4080         db_printf("Dirty buffers:\n");
 4081         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
 4082                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4083                 db_printf("\n");
 4084         }
 4085 }
 4086 #endif /* DDB */

Cache object: 87482597cea0b6289dd40e222ae684c7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.