The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Poul-Henning Kamp
    3  * Copyright (c) 1994,1997 John S. Dyson
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * this file contains a new buffer I/O scheme implementing a coherent
   30  * VM object and buffer cache scheme.  Pains have been taken to make
   31  * sure that the performance degradation associated with schemes such
   32  * as this is not realized.
   33  *
   34  * Author:  John S. Dyson
   35  * Significant help during the development and debugging phases
   36  * had been provided by David Greenman, also of the FreeBSD core team.
   37  *
   38  * see man buf(9) for more info.
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD$");
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/bio.h>
   47 #include <sys/conf.h>
   48 #include <sys/buf.h>
   49 #include <sys/devicestat.h>
   50 #include <sys/eventhandler.h>
   51 #include <sys/fail.h>
   52 #include <sys/limits.h>
   53 #include <sys/lock.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mount.h>
   56 #include <sys/mutex.h>
   57 #include <sys/kernel.h>
   58 #include <sys/kthread.h>
   59 #include <sys/proc.h>
   60 #include <sys/resourcevar.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/vmmeter.h>
   63 #include <sys/vnode.h>
   64 #include <geom/geom.h>
   65 #include <vm/vm.h>
   66 #include <vm/vm_param.h>
   67 #include <vm/vm_kern.h>
   68 #include <vm/vm_pageout.h>
   69 #include <vm/vm_page.h>
   70 #include <vm/vm_object.h>
   71 #include <vm/vm_extern.h>
   72 #include <vm/vm_map.h>
   73 #include "opt_directio.h"
   74 #include "opt_swap.h"
   75 
   76 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
   77 
   78 struct  bio_ops bioops;         /* I/O operation notification */
   79 
   80 struct  buf_ops buf_ops_bio = {
   81         .bop_name       =       "buf_ops_bio",
   82         .bop_write      =       bufwrite,
   83         .bop_strategy   =       bufstrategy,
   84         .bop_sync       =       bufsync,
   85         .bop_bdflush    =       bufbdflush,
   86 };
   87 
   88 /*
   89  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
   90  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
   91  */
   92 struct buf *buf;                /* buffer header pool */
   93 
   94 static struct proc *bufdaemonproc;
   95 
   96 static int inmem(struct vnode *vp, daddr_t blkno);
   97 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
   98                 vm_offset_t to);
   99 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
  100                 vm_offset_t to);
  101 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
  102                                int pageno, vm_page_t m);
  103 static void vfs_clean_pages(struct buf *bp);
  104 static void vfs_setdirty(struct buf *bp);
  105 static void vfs_setdirty_locked_object(struct buf *bp);
  106 static void vfs_vmio_release(struct buf *bp);
  107 static int vfs_bio_clcheck(struct vnode *vp, int size,
  108                 daddr_t lblkno, daddr_t blkno);
  109 static int buf_do_flush(struct vnode *vp);
  110 static int flushbufqueues(struct vnode *, int, int);
  111 static void buf_daemon(void);
  112 static void bremfreel(struct buf *bp);
  113 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
  114 
  115 int vmiodirenable = TRUE;
  116 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
  117     "Use the VM system for directory writes");
  118 long runningbufspace;
  119 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
  120     "Amount of presently outstanding async buffer io");
  121 static long bufspace;
  122 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
  123     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
  124 static long maxbufspace;
  125 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
  126     "Maximum allowed value of bufspace (including buf_daemon)");
  127 static long bufmallocspace;
  128 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
  129     "Amount of malloced memory for buffers");
  130 static long maxbufmallocspace;
  131 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
  132     "Maximum amount of malloced memory for buffers");
  133 static long lobufspace;
  134 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
  135     "Minimum amount of buffers we want to have");
  136 long hibufspace;
  137 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
  138     "Maximum allowed value of bufspace (excluding buf_daemon)");
  139 static int bufreusecnt;
  140 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
  141     "Number of times we have reused a buffer");
  142 static int buffreekvacnt;
  143 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
  144     "Number of times we have freed the KVA space from some buffer");
  145 static int bufdefragcnt;
  146 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
  147     "Number of times we have had to repeat buffer allocation to defragment");
  148 static long lorunningspace;
  149 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
  150     "Minimum preferred space used for in-progress I/O");
  151 static long hirunningspace;
  152 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
  153     "Maximum amount of space to use for in-progress I/O");
  154 int dirtybufferflushes;
  155 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
  156     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
  157 int bdwriteskip;
  158 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
  159     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
  160 int altbufferflushes;
  161 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
  162     0, "Number of fsync flushes to limit dirty buffers");
  163 static int recursiveflushes;
  164 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
  165     0, "Number of flushes skipped due to being recursive");
  166 static int numdirtybuffers;
  167 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
  168     "Number of buffers that are dirty (has unwritten changes) at the moment");
  169 static int lodirtybuffers;
  170 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
  171     "How many buffers we want to have free before bufdaemon can sleep");
  172 static int hidirtybuffers;
  173 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
  174     "When the number of dirty buffers is considered severe");
  175 int dirtybufthresh;
  176 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
  177     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
  178 static int numfreebuffers;
  179 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
  180     "Number of free buffers");
  181 static int lofreebuffers;
  182 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
  183    "XXX Unused");
  184 static int hifreebuffers;
  185 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
  186    "XXX Complicatedly unused");
  187 static int getnewbufcalls;
  188 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
  189    "Number of calls to getnewbuf");
  190 static int getnewbufrestarts;
  191 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
  192     "Number of times getnewbuf has had to restart a buffer aquisition");
  193 static int flushbufqtarget = -1;
  194 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
  195     "Amount of work to do in flushbufqueues when helping bufdaemon");
  196 static long notbufdflashes;
  197 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
  198     "Number of dirty buffer flushes done by the bufdaemon helpers");
  199 
  200 /*
  201  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  202  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  203  * is idling.
  204  */
  205 static int bd_request;
  206 
  207 /*
  208  * This lock synchronizes access to bd_request.
  209  */
  210 static struct mtx bdlock;
  211 
  212 /*
  213  * bogus page -- for I/O to/from partially complete buffers
  214  * this is a temporary solution to the problem, but it is not
  215  * really that bad.  it would be better to split the buffer
  216  * for input in the case of buffers partially already in memory,
  217  * but the code is intricate enough already.
  218  */
  219 vm_page_t bogus_page;
  220 
  221 /*
  222  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  223  * Set when wait starts, cleared prior to wakeup().
  224  * Used in runningbufwakeup() and waitrunningbufspace().
  225  */
  226 static int runningbufreq;
  227 
  228 /*
  229  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  230  * waitrunningbufspace().
  231  */
  232 static struct mtx rbreqlock;
  233 
  234 /* 
  235  * Synchronization (sleep/wakeup) variable for buffer requests.
  236  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
  237  * by and/or.
  238  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
  239  * getnewbuf(), and getblk().
  240  */
  241 static int needsbuffer;
  242 
  243 /*
  244  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
  245  */
  246 static struct mtx nblock;
  247 
  248 /*
  249  * Lock that protects against bwait()/bdone()/B_DONE races.
  250  */
  251 
  252 static struct mtx bdonelock;
  253 
  254 /*
  255  * Lock that protects against bwait()/bdone()/B_DONE races.
  256  */
  257 static struct mtx bpinlock;
  258 
  259 /*
  260  * Definitions for the buffer free lists.
  261  */
  262 #define BUFFER_QUEUES   6       /* number of free buffer queues */
  263 
  264 #define QUEUE_NONE      0       /* on no queue */
  265 #define QUEUE_CLEAN     1       /* non-B_DELWRI buffers */
  266 #define QUEUE_DIRTY     2       /* B_DELWRI buffers */
  267 #define QUEUE_DIRTY_GIANT 3     /* B_DELWRI buffers that need giant */
  268 #define QUEUE_EMPTYKVA  4       /* empty buffer headers w/KVA assignment */
  269 #define QUEUE_EMPTY     5       /* empty buffer headers */
  270 #define QUEUE_SENTINEL  1024    /* not an queue index, but mark for sentinel */
  271 
  272 /* Queues for free buffers with various properties */
  273 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
  274 
  275 /* Lock for the bufqueues */
  276 static struct mtx bqlock;
  277 
  278 /*
  279  * Single global constant for BUF_WMESG, to avoid getting multiple references.
  280  * buf_wmesg is referred from macros.
  281  */
  282 const char *buf_wmesg = BUF_WMESG;
  283 
  284 #define VFS_BIO_NEED_ANY        0x01    /* any freeable buffer */
  285 #define VFS_BIO_NEED_DIRTYFLUSH 0x02    /* waiting for dirty buffer flush */
  286 #define VFS_BIO_NEED_FREE       0x04    /* wait for free bufs, hi hysteresis */
  287 #define VFS_BIO_NEED_BUFSPACE   0x08    /* wait for buf space, lo hysteresis */
  288 
  289 static int
  290 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
  291 {
  292         long lvalue;
  293         int ivalue;
  294 
  295         if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
  296                 return (sysctl_handle_long(oidp, arg1, arg2, req));
  297         lvalue = *(long *)arg1;
  298         if (lvalue > INT_MAX)
  299                 /* On overflow, still write out a long to trigger ENOMEM. */
  300                 return (sysctl_handle_long(oidp, &lvalue, 0, req));
  301         ivalue = lvalue;
  302         return (sysctl_handle_int(oidp, &ivalue, 0, req));
  303 }
  304 
  305 #ifdef DIRECTIO
  306 extern void ffs_rawread_setup(void);
  307 #endif /* DIRECTIO */
  308 /*
  309  *      numdirtywakeup:
  310  *
  311  *      If someone is blocked due to there being too many dirty buffers,
  312  *      and numdirtybuffers is now reasonable, wake them up.
  313  */
  314 
  315 static __inline void
  316 numdirtywakeup(int level)
  317 {
  318 
  319         if (numdirtybuffers <= level) {
  320                 mtx_lock(&nblock);
  321                 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
  322                         needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
  323                         wakeup(&needsbuffer);
  324                 }
  325                 mtx_unlock(&nblock);
  326         }
  327 }
  328 
  329 /*
  330  *      bufspacewakeup:
  331  *
  332  *      Called when buffer space is potentially available for recovery.
  333  *      getnewbuf() will block on this flag when it is unable to free 
  334  *      sufficient buffer space.  Buffer space becomes recoverable when 
  335  *      bp's get placed back in the queues.
  336  */
  337 
  338 static __inline void
  339 bufspacewakeup(void)
  340 {
  341 
  342         /*
  343          * If someone is waiting for BUF space, wake them up.  Even
  344          * though we haven't freed the kva space yet, the waiting
  345          * process will be able to now.
  346          */
  347         mtx_lock(&nblock);
  348         if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
  349                 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
  350                 wakeup(&needsbuffer);
  351         }
  352         mtx_unlock(&nblock);
  353 }
  354 
  355 /*
  356  * runningbufwakeup() - in-progress I/O accounting.
  357  *
  358  */
  359 void
  360 runningbufwakeup(struct buf *bp)
  361 {
  362 
  363         if (bp->b_runningbufspace) {
  364                 atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
  365                 bp->b_runningbufspace = 0;
  366                 mtx_lock(&rbreqlock);
  367                 if (runningbufreq && runningbufspace <= lorunningspace) {
  368                         runningbufreq = 0;
  369                         wakeup(&runningbufreq);
  370                 }
  371                 mtx_unlock(&rbreqlock);
  372         }
  373 }
  374 
  375 /*
  376  *      bufcountwakeup:
  377  *
  378  *      Called when a buffer has been added to one of the free queues to
  379  *      account for the buffer and to wakeup anyone waiting for free buffers.
  380  *      This typically occurs when large amounts of metadata are being handled
  381  *      by the buffer cache ( else buffer space runs out first, usually ).
  382  */
  383 
  384 static __inline void
  385 bufcountwakeup(void) 
  386 {
  387 
  388         atomic_add_int(&numfreebuffers, 1);
  389         mtx_lock(&nblock);
  390         if (needsbuffer) {
  391                 needsbuffer &= ~VFS_BIO_NEED_ANY;
  392                 if (numfreebuffers >= hifreebuffers)
  393                         needsbuffer &= ~VFS_BIO_NEED_FREE;
  394                 wakeup(&needsbuffer);
  395         }
  396         mtx_unlock(&nblock);
  397 }
  398 
  399 /*
  400  *      waitrunningbufspace()
  401  *
  402  *      runningbufspace is a measure of the amount of I/O currently
  403  *      running.  This routine is used in async-write situations to
  404  *      prevent creating huge backups of pending writes to a device.
  405  *      Only asynchronous writes are governed by this function.
  406  *
  407  *      Reads will adjust runningbufspace, but will not block based on it.
  408  *      The read load has a side effect of reducing the allowed write load.
  409  *
  410  *      This does NOT turn an async write into a sync write.  It waits  
  411  *      for earlier writes to complete and generally returns before the
  412  *      caller's write has reached the device.
  413  */
  414 void
  415 waitrunningbufspace(void)
  416 {
  417 
  418         mtx_lock(&rbreqlock);
  419         while (runningbufspace > hirunningspace) {
  420                 ++runningbufreq;
  421                 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
  422         }
  423         mtx_unlock(&rbreqlock);
  424 }
  425 
  426 
  427 /*
  428  *      vfs_buf_test_cache:
  429  *
  430  *      Called when a buffer is extended.  This function clears the B_CACHE
  431  *      bit if the newly extended portion of the buffer does not contain
  432  *      valid data.
  433  */
  434 static __inline
  435 void
  436 vfs_buf_test_cache(struct buf *bp,
  437                   vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
  438                   vm_page_t m)
  439 {
  440 
  441         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  442         if (bp->b_flags & B_CACHE) {
  443                 int base = (foff + off) & PAGE_MASK;
  444                 if (vm_page_is_valid(m, base, size) == 0)
  445                         bp->b_flags &= ~B_CACHE;
  446         }
  447 }
  448 
  449 /* Wake up the buffer daemon if necessary */
  450 static __inline
  451 void
  452 bd_wakeup(int dirtybuflevel)
  453 {
  454 
  455         mtx_lock(&bdlock);
  456         if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
  457                 bd_request = 1;
  458                 wakeup(&bd_request);
  459         }
  460         mtx_unlock(&bdlock);
  461 }
  462 
  463 /*
  464  * bd_speedup - speedup the buffer cache flushing code
  465  */
  466 
  467 static __inline
  468 void
  469 bd_speedup(void)
  470 {
  471 
  472         bd_wakeup(1);
  473 }
  474 
  475 /*
  476  * Calculating buffer cache scaling values and reserve space for buffer
  477  * headers.  This is called during low level kernel initialization and
  478  * may be called more then once.  We CANNOT write to the memory area
  479  * being reserved at this time.
  480  */
  481 caddr_t
  482 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
  483 {
  484         int tuned_nbuf;
  485         long maxbuf;
  486 
  487         /*
  488          * physmem_est is in pages.  Convert it to kilobytes (assumes
  489          * PAGE_SIZE is >= 1K)
  490          */
  491         physmem_est = physmem_est * (PAGE_SIZE / 1024);
  492 
  493         /*
  494          * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
  495          * For the first 64MB of ram nominally allocate sufficient buffers to
  496          * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
  497          * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
  498          * the buffer cache we limit the eventual kva reservation to
  499          * maxbcache bytes.
  500          *
  501          * factor represents the 1/4 x ram conversion.
  502          */
  503         if (nbuf == 0) {
  504                 int factor = 4 * BKVASIZE / 1024;
  505 
  506                 nbuf = 50;
  507                 if (physmem_est > 4096)
  508                         nbuf += min((physmem_est - 4096) / factor,
  509                             65536 / factor);
  510                 if (physmem_est > 65536)
  511                         nbuf += (physmem_est - 65536) * 2 / (factor * 5);
  512 
  513                 if (maxbcache && nbuf > maxbcache / BKVASIZE)
  514                         nbuf = maxbcache / BKVASIZE;
  515                 tuned_nbuf = 1;
  516         } else
  517                 tuned_nbuf = 0;
  518 
  519         /* XXX Avoid unsigned long overflows later on with maxbufspace. */
  520         maxbuf = (LONG_MAX / 3) / BKVASIZE;
  521         if (nbuf > maxbuf) {
  522                 if (!tuned_nbuf)
  523                         printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
  524                             maxbuf);
  525                 nbuf = maxbuf;
  526         }
  527 
  528 #if 0
  529         /*
  530          * Do not allow the buffer_map to be more then 1/2 the size of the
  531          * kernel_map.
  532          */
  533         if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) / 
  534             (BKVASIZE * 2)) {
  535                 nbuf = (kernel_map->max_offset - kernel_map->min_offset) / 
  536                     (BKVASIZE * 2);
  537                 printf("Warning: nbufs capped at %d\n", nbuf);
  538         }
  539 #endif
  540 
  541         /*
  542          * swbufs are used as temporary holders for I/O, such as paging I/O.
  543          * We have no less then 16 and no more then 256.
  544          */
  545         nswbuf = max(min(nbuf/4, 256), 16);
  546 #ifdef NSWBUF_MIN
  547         if (nswbuf < NSWBUF_MIN)
  548                 nswbuf = NSWBUF_MIN;
  549 #endif
  550 #ifdef DIRECTIO
  551         ffs_rawread_setup();
  552 #endif
  553 
  554         /*
  555          * Reserve space for the buffer cache buffers
  556          */
  557         swbuf = (void *)v;
  558         v = (caddr_t)(swbuf + nswbuf);
  559         buf = (void *)v;
  560         v = (caddr_t)(buf + nbuf);
  561 
  562         return(v);
  563 }
  564 
  565 /* Initialize the buffer subsystem.  Called before use of any buffers. */
  566 void
  567 bufinit(void)
  568 {
  569         struct buf *bp;
  570         int i;
  571 
  572         mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
  573         mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
  574         mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
  575         mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
  576         mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
  577         mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
  578 
  579         /* next, make a null set of free lists */
  580         for (i = 0; i < BUFFER_QUEUES; i++)
  581                 TAILQ_INIT(&bufqueues[i]);
  582 
  583         /* finally, initialize each buffer header and stick on empty q */
  584         for (i = 0; i < nbuf; i++) {
  585                 bp = &buf[i];
  586                 bzero(bp, sizeof *bp);
  587                 bp->b_flags = B_INVAL;  /* we're just an empty header */
  588                 bp->b_rcred = NOCRED;
  589                 bp->b_wcred = NOCRED;
  590                 bp->b_qindex = QUEUE_EMPTY;
  591                 bp->b_vflags = 0;
  592                 bp->b_xflags = 0;
  593                 LIST_INIT(&bp->b_dep);
  594                 BUF_LOCKINIT(bp);
  595                 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
  596         }
  597 
  598         /*
  599          * maxbufspace is the absolute maximum amount of buffer space we are 
  600          * allowed to reserve in KVM and in real terms.  The absolute maximum
  601          * is nominally used by buf_daemon.  hibufspace is the nominal maximum
  602          * used by most other processes.  The differential is required to 
  603          * ensure that buf_daemon is able to run when other processes might 
  604          * be blocked waiting for buffer space.
  605          *
  606          * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
  607          * this may result in KVM fragmentation which is not handled optimally
  608          * by the system.
  609          */
  610         maxbufspace = (long)nbuf * BKVASIZE;
  611         hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
  612         lobufspace = hibufspace - MAXBSIZE;
  613 
  614         lorunningspace = 512 * 1024;
  615         hirunningspace = 1024 * 1024;
  616 
  617 /*
  618  * Limit the amount of malloc memory since it is wired permanently into
  619  * the kernel space.  Even though this is accounted for in the buffer
  620  * allocation, we don't want the malloced region to grow uncontrolled.
  621  * The malloc scheme improves memory utilization significantly on average
  622  * (small) directories.
  623  */
  624         maxbufmallocspace = hibufspace / 20;
  625 
  626 /*
  627  * Reduce the chance of a deadlock occuring by limiting the number
  628  * of delayed-write dirty buffers we allow to stack up.
  629  */
  630         hidirtybuffers = nbuf / 4 + 20;
  631         dirtybufthresh = hidirtybuffers * 9 / 10;
  632         numdirtybuffers = 0;
  633 /*
  634  * To support extreme low-memory systems, make sure hidirtybuffers cannot
  635  * eat up all available buffer space.  This occurs when our minimum cannot
  636  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
  637  * BKVASIZE'd (8K) buffers.
  638  */
  639         while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
  640                 hidirtybuffers >>= 1;
  641         }
  642         lodirtybuffers = hidirtybuffers / 2;
  643 
  644 /*
  645  * Try to keep the number of free buffers in the specified range,
  646  * and give special processes (e.g. like buf_daemon) access to an 
  647  * emergency reserve.
  648  */
  649         lofreebuffers = nbuf / 18 + 5;
  650         hifreebuffers = 2 * lofreebuffers;
  651         numfreebuffers = nbuf;
  652 
  653 /*
  654  * Maximum number of async ops initiated per buf_daemon loop.  This is
  655  * somewhat of a hack at the moment, we really need to limit ourselves
  656  * based on the number of bytes of I/O in-transit that were initiated
  657  * from buf_daemon.
  658  */
  659 
  660         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
  661             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
  662 }
  663 
  664 /*
  665  * bfreekva() - free the kva allocation for a buffer.
  666  *
  667  *      Since this call frees up buffer space, we call bufspacewakeup().
  668  */
  669 static void
  670 bfreekva(struct buf *bp)
  671 {
  672 
  673         if (bp->b_kvasize) {
  674                 atomic_add_int(&buffreekvacnt, 1);
  675                 atomic_subtract_long(&bufspace, bp->b_kvasize);
  676                 vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
  677                     (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
  678                 bp->b_kvasize = 0;
  679                 bufspacewakeup();
  680         }
  681 }
  682 
  683 /*
  684  *      bremfree:
  685  *
  686  *      Mark the buffer for removal from the appropriate free list in brelse.
  687  *      
  688  */
  689 void
  690 bremfree(struct buf *bp)
  691 {
  692 
  693         CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  694         KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
  695         KASSERT((bp->b_flags & B_REMFREE) == 0,
  696             ("bremfree: buffer %p already marked for delayed removal.", bp));
  697         KASSERT(bp->b_qindex != QUEUE_NONE,
  698             ("bremfree: buffer %p not on a queue.", bp));
  699 
  700         bp->b_flags |= B_REMFREE;
  701         /* Fixup numfreebuffers count.  */
  702         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
  703                 atomic_subtract_int(&numfreebuffers, 1);
  704 }
  705 
  706 /*
  707  *      bremfreef:
  708  *
  709  *      Force an immediate removal from a free list.  Used only in nfs when
  710  *      it abuses the b_freelist pointer.
  711  */
  712 void
  713 bremfreef(struct buf *bp)
  714 {
  715         mtx_lock(&bqlock);
  716         bremfreel(bp);
  717         mtx_unlock(&bqlock);
  718 }
  719 
  720 /*
  721  *      bremfreel:
  722  *
  723  *      Removes a buffer from the free list, must be called with the
  724  *      bqlock held.
  725  */
  726 static void
  727 bremfreel(struct buf *bp)
  728 {
  729         CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
  730             bp, bp->b_vp, bp->b_flags);
  731         KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
  732         KASSERT(bp->b_qindex != QUEUE_NONE,
  733             ("bremfreel: buffer %p not on a queue.", bp));
  734         mtx_assert(&bqlock, MA_OWNED);
  735 
  736         TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
  737         bp->b_qindex = QUEUE_NONE;
  738         /*
  739          * If this was a delayed bremfree() we only need to remove the buffer
  740          * from the queue and return the stats are already done.
  741          */
  742         if (bp->b_flags & B_REMFREE) {
  743                 bp->b_flags &= ~B_REMFREE;
  744                 return;
  745         }
  746         /*
  747          * Fixup numfreebuffers count.  If the buffer is invalid or not
  748          * delayed-write, the buffer was free and we must decrement
  749          * numfreebuffers.
  750          */
  751         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
  752                 atomic_subtract_int(&numfreebuffers, 1);
  753 }
  754 
  755 
  756 /*
  757  * Get a buffer with the specified data.  Look in the cache first.  We
  758  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
  759  * is set, the buffer is valid and we do not have to do anything ( see
  760  * getblk() ).  This is really just a special case of breadn().
  761  */
  762 int
  763 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
  764     struct buf **bpp)
  765 {
  766 
  767         return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
  768 }
  769 
  770 /*
  771  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
  772  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
  773  * the buffer is valid and we do not have to do anything.
  774  */
  775 void
  776 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
  777     int cnt, struct ucred * cred)
  778 {
  779         struct buf *rabp;
  780         int i;
  781 
  782         for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
  783                 if (inmem(vp, *rablkno))
  784                         continue;
  785                 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
  786 
  787                 if ((rabp->b_flags & B_CACHE) == 0) {
  788                         if (!TD_IS_IDLETHREAD(curthread))
  789                                 curthread->td_ru.ru_inblock++;
  790                         rabp->b_flags |= B_ASYNC;
  791                         rabp->b_flags &= ~B_INVAL;
  792                         rabp->b_ioflags &= ~BIO_ERROR;
  793                         rabp->b_iocmd = BIO_READ;
  794                         if (rabp->b_rcred == NOCRED && cred != NOCRED)
  795                                 rabp->b_rcred = crhold(cred);
  796                         vfs_busy_pages(rabp, 0);
  797                         BUF_KERNPROC(rabp);
  798                         rabp->b_iooffset = dbtob(rabp->b_blkno);
  799                         bstrategy(rabp);
  800                 } else {
  801                         brelse(rabp);
  802                 }
  803         }
  804 }
  805 
  806 /*
  807  * Operates like bread, but also starts asynchronous I/O on
  808  * read-ahead blocks.
  809  */
  810 int
  811 breadn(struct vnode * vp, daddr_t blkno, int size,
  812     daddr_t * rablkno, int *rabsize,
  813     int cnt, struct ucred * cred, struct buf **bpp)
  814 {
  815         struct buf *bp;
  816         int rv = 0, readwait = 0;
  817 
  818         CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
  819         *bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
  820 
  821         /* if not found in cache, do some I/O */
  822         if ((bp->b_flags & B_CACHE) == 0) {
  823                 if (!TD_IS_IDLETHREAD(curthread))
  824                         curthread->td_ru.ru_inblock++;
  825                 bp->b_iocmd = BIO_READ;
  826                 bp->b_flags &= ~B_INVAL;
  827                 bp->b_ioflags &= ~BIO_ERROR;
  828                 if (bp->b_rcred == NOCRED && cred != NOCRED)
  829                         bp->b_rcred = crhold(cred);
  830                 vfs_busy_pages(bp, 0);
  831                 bp->b_iooffset = dbtob(bp->b_blkno);
  832                 bstrategy(bp);
  833                 ++readwait;
  834         }
  835 
  836         breada(vp, rablkno, rabsize, cnt, cred);
  837 
  838         if (readwait) {
  839                 rv = bufwait(bp);
  840         }
  841         return (rv);
  842 }
  843 
  844 /*
  845  * Write, release buffer on completion.  (Done by iodone
  846  * if async).  Do not bother writing anything if the buffer
  847  * is invalid.
  848  *
  849  * Note that we set B_CACHE here, indicating that buffer is
  850  * fully valid and thus cacheable.  This is true even of NFS
  851  * now so we set it generally.  This could be set either here 
  852  * or in biodone() since the I/O is synchronous.  We put it
  853  * here.
  854  */
  855 int
  856 bufwrite(struct buf *bp)
  857 {
  858         int oldflags;
  859         struct vnode *vp;
  860         int vp_md;
  861 
  862         CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  863         if (bp->b_flags & B_INVAL) {
  864                 brelse(bp);
  865                 return (0);
  866         }
  867 
  868         oldflags = bp->b_flags;
  869 
  870         if (BUF_REFCNT(bp) == 0)
  871                 panic("bufwrite: buffer is not busy???");
  872 
  873         if (bp->b_pin_count > 0)
  874                 bunpin_wait(bp);
  875 
  876         KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
  877             ("FFS background buffer should not get here %p", bp));
  878 
  879         vp = bp->b_vp;
  880         if (vp)
  881                 vp_md = vp->v_vflag & VV_MD;
  882         else
  883                 vp_md = 0;
  884 
  885         /* Mark the buffer clean */
  886         bundirty(bp);
  887 
  888         bp->b_flags &= ~B_DONE;
  889         bp->b_ioflags &= ~BIO_ERROR;
  890         bp->b_flags |= B_CACHE;
  891         bp->b_iocmd = BIO_WRITE;
  892 
  893         bufobj_wref(bp->b_bufobj);
  894         vfs_busy_pages(bp, 1);
  895 
  896         /*
  897          * Normal bwrites pipeline writes
  898          */
  899         bp->b_runningbufspace = bp->b_bufsize;
  900         atomic_add_long(&runningbufspace, bp->b_runningbufspace);
  901 
  902         if (!TD_IS_IDLETHREAD(curthread))
  903                 curthread->td_ru.ru_oublock++;
  904         if (oldflags & B_ASYNC)
  905                 BUF_KERNPROC(bp);
  906         bp->b_iooffset = dbtob(bp->b_blkno);
  907         bstrategy(bp);
  908 
  909         if ((oldflags & B_ASYNC) == 0) {
  910                 int rtval = bufwait(bp);
  911                 brelse(bp);
  912                 return (rtval);
  913         } else {
  914                 /*
  915                  * don't allow the async write to saturate the I/O
  916                  * system.  We will not deadlock here because
  917                  * we are blocking waiting for I/O that is already in-progress
  918                  * to complete. We do not block here if it is the update
  919                  * or syncer daemon trying to clean up as that can lead
  920                  * to deadlock.
  921                  */
  922                 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
  923                         waitrunningbufspace();
  924         }
  925 
  926         return (0);
  927 }
  928 
  929 void
  930 bufbdflush(struct bufobj *bo, struct buf *bp)
  931 {
  932         struct buf *nbp;
  933 
  934         if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
  935                 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
  936                 altbufferflushes++;
  937         } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
  938                 BO_LOCK(bo);
  939                 /*
  940                  * Try to find a buffer to flush.
  941                  */
  942                 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
  943                         if ((nbp->b_vflags & BV_BKGRDINPROG) ||
  944                             BUF_LOCK(nbp,
  945                                      LK_EXCLUSIVE | LK_NOWAIT, NULL))
  946                                 continue;
  947                         if (bp == nbp)
  948                                 panic("bdwrite: found ourselves");
  949                         BO_UNLOCK(bo);
  950                         /* Don't countdeps with the bo lock held. */
  951                         if (buf_countdeps(nbp, 0)) {
  952                                 BO_LOCK(bo);
  953                                 BUF_UNLOCK(nbp);
  954                                 continue;
  955                         }
  956                         if (nbp->b_flags & B_CLUSTEROK) {
  957                                 vfs_bio_awrite(nbp);
  958                         } else {
  959                                 bremfree(nbp);
  960                                 bawrite(nbp);
  961                         }
  962                         dirtybufferflushes++;
  963                         break;
  964                 }
  965                 if (nbp == NULL)
  966                         BO_UNLOCK(bo);
  967         }
  968 }
  969 
  970 /*
  971  * Delayed write. (Buffer is marked dirty).  Do not bother writing
  972  * anything if the buffer is marked invalid.
  973  *
  974  * Note that since the buffer must be completely valid, we can safely
  975  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
  976  * biodone() in order to prevent getblk from writing the buffer
  977  * out synchronously.
  978  */
  979 void
  980 bdwrite(struct buf *bp)
  981 {
  982         struct thread *td = curthread;
  983         struct vnode *vp;
  984         struct bufobj *bo;
  985 
  986         CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  987         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
  988         KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
  989 
  990         if (bp->b_flags & B_INVAL) {
  991                 brelse(bp);
  992                 return;
  993         }
  994 
  995         /*
  996          * If we have too many dirty buffers, don't create any more.
  997          * If we are wildly over our limit, then force a complete
  998          * cleanup. Otherwise, just keep the situation from getting
  999          * out of control. Note that we have to avoid a recursive
 1000          * disaster and not try to clean up after our own cleanup!
 1001          */
 1002         vp = bp->b_vp;
 1003         bo = bp->b_bufobj;
 1004         if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
 1005                 td->td_pflags |= TDP_INBDFLUSH;
 1006                 BO_BDFLUSH(bo, bp);
 1007                 td->td_pflags &= ~TDP_INBDFLUSH;
 1008         } else
 1009                 recursiveflushes++;
 1010 
 1011         bdirty(bp);
 1012         /*
 1013          * Set B_CACHE, indicating that the buffer is fully valid.  This is
 1014          * true even of NFS now.
 1015          */
 1016         bp->b_flags |= B_CACHE;
 1017 
 1018         /*
 1019          * This bmap keeps the system from needing to do the bmap later,
 1020          * perhaps when the system is attempting to do a sync.  Since it
 1021          * is likely that the indirect block -- or whatever other datastructure
 1022          * that the filesystem needs is still in memory now, it is a good
 1023          * thing to do this.  Note also, that if the pageout daemon is
 1024          * requesting a sync -- there might not be enough memory to do
 1025          * the bmap then...  So, this is important to do.
 1026          */
 1027         if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
 1028                 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
 1029         }
 1030 
 1031         /*
 1032          * Set the *dirty* buffer range based upon the VM system dirty pages.
 1033          */
 1034         vfs_setdirty(bp);
 1035 
 1036         /*
 1037          * We need to do this here to satisfy the vnode_pager and the
 1038          * pageout daemon, so that it thinks that the pages have been
 1039          * "cleaned".  Note that since the pages are in a delayed write
 1040          * buffer -- the VFS layer "will" see that the pages get written
 1041          * out on the next sync, or perhaps the cluster will be completed.
 1042          */
 1043         vfs_clean_pages(bp);
 1044         bqrelse(bp);
 1045 
 1046         /*
 1047          * Wakeup the buffer flushing daemon if we have a lot of dirty
 1048          * buffers (midpoint between our recovery point and our stall
 1049          * point).
 1050          */
 1051         bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1052 
 1053         /*
 1054          * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 1055          * due to the softdep code.
 1056          */
 1057 }
 1058 
 1059 /*
 1060  *      bdirty:
 1061  *
 1062  *      Turn buffer into delayed write request.  We must clear BIO_READ and
 1063  *      B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
 1064  *      itself to properly update it in the dirty/clean lists.  We mark it
 1065  *      B_DONE to ensure that any asynchronization of the buffer properly
 1066  *      clears B_DONE ( else a panic will occur later ).  
 1067  *
 1068  *      bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
 1069  *      might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
 1070  *      should only be called if the buffer is known-good.
 1071  *
 1072  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1073  *      count.
 1074  *
 1075  *      The buffer must be on QUEUE_NONE.
 1076  */
 1077 void
 1078 bdirty(struct buf *bp)
 1079 {
 1080 
 1081         CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
 1082             bp, bp->b_vp, bp->b_flags);
 1083         KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
 1084         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1085         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1086             ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1087         bp->b_flags &= ~(B_RELBUF);
 1088         bp->b_iocmd = BIO_WRITE;
 1089 
 1090         if ((bp->b_flags & B_DELWRI) == 0) {
 1091                 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
 1092                 reassignbuf(bp);
 1093                 atomic_add_int(&numdirtybuffers, 1);
 1094                 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1095         }
 1096 }
 1097 
 1098 /*
 1099  *      bundirty:
 1100  *
 1101  *      Clear B_DELWRI for buffer.
 1102  *
 1103  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1104  *      count.
 1105  *      
 1106  *      The buffer must be on QUEUE_NONE.
 1107  */
 1108 
 1109 void
 1110 bundirty(struct buf *bp)
 1111 {
 1112 
 1113         CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1114         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1115         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1116             ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1117         KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
 1118 
 1119         if (bp->b_flags & B_DELWRI) {
 1120                 bp->b_flags &= ~B_DELWRI;
 1121                 reassignbuf(bp);
 1122                 atomic_subtract_int(&numdirtybuffers, 1);
 1123                 numdirtywakeup(lodirtybuffers);
 1124         }
 1125         /*
 1126          * Since it is now being written, we can clear its deferred write flag.
 1127          */
 1128         bp->b_flags &= ~B_DEFERRED;
 1129 }
 1130 
 1131 /*
 1132  *      bawrite:
 1133  *
 1134  *      Asynchronous write.  Start output on a buffer, but do not wait for
 1135  *      it to complete.  The buffer is released when the output completes.
 1136  *
 1137  *      bwrite() ( or the VOP routine anyway ) is responsible for handling 
 1138  *      B_INVAL buffers.  Not us.
 1139  */
 1140 void
 1141 bawrite(struct buf *bp)
 1142 {
 1143 
 1144         bp->b_flags |= B_ASYNC;
 1145         (void) bwrite(bp);
 1146 }
 1147 
 1148 /*
 1149  *      bwillwrite:
 1150  *
 1151  *      Called prior to the locking of any vnodes when we are expecting to
 1152  *      write.  We do not want to starve the buffer cache with too many
 1153  *      dirty buffers so we block here.  By blocking prior to the locking
 1154  *      of any vnodes we attempt to avoid the situation where a locked vnode
 1155  *      prevents the various system daemons from flushing related buffers.
 1156  */
 1157 
 1158 void
 1159 bwillwrite(void)
 1160 {
 1161 
 1162         if (numdirtybuffers >= hidirtybuffers) {
 1163                 mtx_lock(&nblock);
 1164                 while (numdirtybuffers >= hidirtybuffers) {
 1165                         bd_wakeup(1);
 1166                         needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
 1167                         msleep(&needsbuffer, &nblock,
 1168                             (PRIBIO + 4), "flswai", 0);
 1169                 }
 1170                 mtx_unlock(&nblock);
 1171         }
 1172 }
 1173 
 1174 /*
 1175  * Return true if we have too many dirty buffers.
 1176  */
 1177 int
 1178 buf_dirty_count_severe(void)
 1179 {
 1180 
 1181         return(numdirtybuffers >= hidirtybuffers);
 1182 }
 1183 
 1184 static __noinline int
 1185 buf_vm_page_count_severe(void)
 1186 {
 1187 
 1188         KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
 1189 
 1190         return vm_page_count_severe();
 1191 }
 1192 
 1193 /*
 1194  *      brelse:
 1195  *
 1196  *      Release a busy buffer and, if requested, free its resources.  The
 1197  *      buffer will be stashed in the appropriate bufqueue[] allowing it
 1198  *      to be accessed later as a cache entity or reused for other purposes.
 1199  */
 1200 void
 1201 brelse(struct buf *bp)
 1202 {
 1203         CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
 1204             bp, bp->b_vp, bp->b_flags);
 1205         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1206             ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1207 
 1208         if (bp->b_flags & B_MANAGED) {
 1209                 bqrelse(bp);
 1210                 return;
 1211         }
 1212 
 1213         if (bp->b_iocmd == BIO_WRITE &&
 1214             (bp->b_ioflags & BIO_ERROR) &&
 1215             bp->b_error != ENXIO &&
 1216             !(bp->b_flags & B_INVAL)) {
 1217                 /*
 1218                  * Failed write, redirty.  Must clear BIO_ERROR to prevent
 1219                  * pages from being scrapped.  If B_INVAL is set then
 1220                  * this case is not run and the next case is run to 
 1221                  * destroy the buffer.  B_INVAL can occur if the buffer
 1222                  * is outside the range supported by the underlying device.
 1223                  * If the error is that the device went away (ENXIO), we
 1224                  * shouldn't redirty the buffer either, but discard the
 1225                  * data too.
 1226                  */
 1227                 bp->b_ioflags &= ~BIO_ERROR;
 1228                 bdirty(bp);
 1229         } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 1230             (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
 1231                 /*
 1232                  * Either a failed I/O or we were asked to free or not
 1233                  * cache the buffer.
 1234                  */
 1235                 bp->b_flags |= B_INVAL;
 1236                 if (!LIST_EMPTY(&bp->b_dep))
 1237                         buf_deallocate(bp);
 1238                 if (bp->b_flags & B_DELWRI) {
 1239                         atomic_subtract_int(&numdirtybuffers, 1);
 1240                         numdirtywakeup(lodirtybuffers);
 1241                 }
 1242                 bp->b_flags &= ~(B_DELWRI | B_CACHE);
 1243                 if ((bp->b_flags & B_VMIO) == 0) {
 1244                         if (bp->b_bufsize)
 1245                                 allocbuf(bp, 0);
 1246                         if (bp->b_vp)
 1247                                 brelvp(bp);
 1248                 }
 1249         }
 1250 
 1251         /*
 1252          * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release() 
 1253          * is called with B_DELWRI set, the underlying pages may wind up
 1254          * getting freed causing a previous write (bdwrite()) to get 'lost'
 1255          * because pages associated with a B_DELWRI bp are marked clean.
 1256          * 
 1257          * We still allow the B_INVAL case to call vfs_vmio_release(), even
 1258          * if B_DELWRI is set.
 1259          *
 1260          * If B_DELWRI is not set we may have to set B_RELBUF if we are low
 1261          * on pages to return pages to the VM page queues.
 1262          */
 1263         if (bp->b_flags & B_DELWRI)
 1264                 bp->b_flags &= ~B_RELBUF;
 1265         else if (buf_vm_page_count_severe()) {
 1266                 /*
 1267                  * XXX This lock may not be necessary since BKGRDINPROG
 1268                  * cannot be set while we hold the buf lock, it can only be
 1269                  * cleared if it is already pending.
 1270                  */
 1271                 if (bp->b_vp) {
 1272                         BO_LOCK(bp->b_bufobj);
 1273                         if (!(bp->b_vflags & BV_BKGRDINPROG))
 1274                                 bp->b_flags |= B_RELBUF;
 1275                         BO_UNLOCK(bp->b_bufobj);
 1276                 } else
 1277                         bp->b_flags |= B_RELBUF;
 1278         }
 1279 
 1280         /*
 1281          * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 1282          * constituted, not even NFS buffers now.  Two flags effect this.  If
 1283          * B_INVAL, the struct buf is invalidated but the VM object is kept
 1284          * around ( i.e. so it is trivial to reconstitute the buffer later ).
 1285          *
 1286          * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 1287          * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 1288          * buffer is also B_INVAL because it hits the re-dirtying code above.
 1289          *
 1290          * Normally we can do this whether a buffer is B_DELWRI or not.  If
 1291          * the buffer is an NFS buffer, it is tracking piecemeal writes or
 1292          * the commit state and we cannot afford to lose the buffer. If the
 1293          * buffer has a background write in progress, we need to keep it
 1294          * around to prevent it from being reconstituted and starting a second
 1295          * background write.
 1296          */
 1297         if ((bp->b_flags & B_VMIO)
 1298             && !(bp->b_vp->v_mount != NULL &&
 1299                  (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 1300                  !vn_isdisk(bp->b_vp, NULL) &&
 1301                  (bp->b_flags & B_DELWRI))
 1302             ) {
 1303 
 1304                 int i, j, resid;
 1305                 vm_page_t m;
 1306                 off_t foff;
 1307                 vm_pindex_t poff;
 1308                 vm_object_t obj;
 1309 
 1310                 obj = bp->b_bufobj->bo_object;
 1311 
 1312                 /*
 1313                  * Get the base offset and length of the buffer.  Note that 
 1314                  * in the VMIO case if the buffer block size is not
 1315                  * page-aligned then b_data pointer may not be page-aligned.
 1316                  * But our b_pages[] array *IS* page aligned.
 1317                  *
 1318                  * block sizes less then DEV_BSIZE (usually 512) are not 
 1319                  * supported due to the page granularity bits (m->valid,
 1320                  * m->dirty, etc...). 
 1321                  *
 1322                  * See man buf(9) for more information
 1323                  */
 1324                 resid = bp->b_bufsize;
 1325                 foff = bp->b_offset;
 1326                 VM_OBJECT_LOCK(obj);
 1327                 for (i = 0; i < bp->b_npages; i++) {
 1328                         int had_bogus = 0;
 1329 
 1330                         m = bp->b_pages[i];
 1331 
 1332                         /*
 1333                          * If we hit a bogus page, fixup *all* the bogus pages
 1334                          * now.
 1335                          */
 1336                         if (m == bogus_page) {
 1337                                 poff = OFF_TO_IDX(bp->b_offset);
 1338                                 had_bogus = 1;
 1339 
 1340                                 for (j = i; j < bp->b_npages; j++) {
 1341                                         vm_page_t mtmp;
 1342                                         mtmp = bp->b_pages[j];
 1343                                         if (mtmp == bogus_page) {
 1344                                                 mtmp = vm_page_lookup(obj, poff + j);
 1345                                                 if (!mtmp) {
 1346                                                         panic("brelse: page missing\n");
 1347                                                 }
 1348                                                 bp->b_pages[j] = mtmp;
 1349                                         }
 1350                                 }
 1351 
 1352                                 if ((bp->b_flags & B_INVAL) == 0) {
 1353                                         pmap_qenter(
 1354                                             trunc_page((vm_offset_t)bp->b_data),
 1355                                             bp->b_pages, bp->b_npages);
 1356                                 }
 1357                                 m = bp->b_pages[i];
 1358                         }
 1359                         if ((bp->b_flags & B_NOCACHE) ||
 1360                             (bp->b_ioflags & BIO_ERROR &&
 1361                              bp->b_iocmd == BIO_READ)) {
 1362                                 int poffset = foff & PAGE_MASK;
 1363                                 int presid = resid > (PAGE_SIZE - poffset) ?
 1364                                         (PAGE_SIZE - poffset) : resid;
 1365 
 1366                                 KASSERT(presid >= 0, ("brelse: extra page"));
 1367                                 vm_page_lock_queues();
 1368                                 vm_page_set_invalid(m, poffset, presid);
 1369                                 vm_page_unlock_queues();
 1370                                 if (had_bogus)
 1371                                         printf("avoided corruption bug in bogus_page/brelse code\n");
 1372                         }
 1373                         resid -= PAGE_SIZE - (foff & PAGE_MASK);
 1374                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 1375                 }
 1376                 VM_OBJECT_UNLOCK(obj);
 1377                 if (bp->b_flags & (B_INVAL | B_RELBUF))
 1378                         vfs_vmio_release(bp);
 1379 
 1380         } else if (bp->b_flags & B_VMIO) {
 1381 
 1382                 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
 1383                         vfs_vmio_release(bp);
 1384                 }
 1385 
 1386         } else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
 1387                 if (bp->b_bufsize != 0)
 1388                         allocbuf(bp, 0);
 1389                 if (bp->b_vp != NULL)
 1390                         brelvp(bp);
 1391         }
 1392                         
 1393         if (BUF_REFCNT(bp) > 1) {
 1394                 /* do not release to free list */
 1395                 BUF_UNLOCK(bp);
 1396                 return;
 1397         }
 1398 
 1399         /* enqueue */
 1400         mtx_lock(&bqlock);
 1401         /* Handle delayed bremfree() processing. */
 1402         if (bp->b_flags & B_REMFREE)
 1403                 bremfreel(bp);
 1404         if (bp->b_qindex != QUEUE_NONE)
 1405                 panic("brelse: free buffer onto another queue???");
 1406 
 1407         /* buffers with no memory */
 1408         if (bp->b_bufsize == 0) {
 1409                 bp->b_flags |= B_INVAL;
 1410                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1411                 if (bp->b_vflags & BV_BKGRDINPROG)
 1412                         panic("losing buffer 1");
 1413                 if (bp->b_kvasize) {
 1414                         bp->b_qindex = QUEUE_EMPTYKVA;
 1415                 } else {
 1416                         bp->b_qindex = QUEUE_EMPTY;
 1417                 }
 1418                 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1419         /* buffers with junk contents */
 1420         } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 1421             (bp->b_ioflags & BIO_ERROR)) {
 1422                 bp->b_flags |= B_INVAL;
 1423                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1424                 if (bp->b_vflags & BV_BKGRDINPROG)
 1425                         panic("losing buffer 2");
 1426                 bp->b_qindex = QUEUE_CLEAN;
 1427                 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
 1428         /* remaining buffers */
 1429         } else {
 1430                 if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
 1431                     (B_DELWRI|B_NEEDSGIANT))
 1432                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1433                 else if (bp->b_flags & B_DELWRI)
 1434                         bp->b_qindex = QUEUE_DIRTY;
 1435                 else
 1436                         bp->b_qindex = QUEUE_CLEAN;
 1437                 if (bp->b_flags & B_AGE)
 1438                         TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1439                 else
 1440                         TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1441         }
 1442         mtx_unlock(&bqlock);
 1443 
 1444         /*
 1445          * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
 1446          * placed the buffer on the correct queue.  We must also disassociate
 1447          * the device and vnode for a B_INVAL buffer so gbincore() doesn't
 1448          * find it.
 1449          */
 1450         if (bp->b_flags & B_INVAL) {
 1451                 if (bp->b_flags & B_DELWRI)
 1452                         bundirty(bp);
 1453                 if (bp->b_vp)
 1454                         brelvp(bp);
 1455         }
 1456 
 1457         /*
 1458          * Fixup numfreebuffers count.  The bp is on an appropriate queue
 1459          * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
 1460          * We've already handled the B_INVAL case ( B_DELWRI will be clear
 1461          * if B_INVAL is set ).
 1462          */
 1463 
 1464         if (!(bp->b_flags & B_DELWRI))
 1465                 bufcountwakeup();
 1466 
 1467         /*
 1468          * Something we can maybe free or reuse
 1469          */
 1470         if (bp->b_bufsize || bp->b_kvasize)
 1471                 bufspacewakeup();
 1472 
 1473         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
 1474         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1475                 panic("brelse: not dirty");
 1476         /* unlock */
 1477         BUF_UNLOCK(bp);
 1478 }
 1479 
 1480 /*
 1481  * Release a buffer back to the appropriate queue but do not try to free
 1482  * it.  The buffer is expected to be used again soon.
 1483  *
 1484  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
 1485  * biodone() to requeue an async I/O on completion.  It is also used when
 1486  * known good buffers need to be requeued but we think we may need the data
 1487  * again soon.
 1488  *
 1489  * XXX we should be able to leave the B_RELBUF hint set on completion.
 1490  */
 1491 void
 1492 bqrelse(struct buf *bp)
 1493 {
 1494         CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1495         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1496             ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1497 
 1498         if (BUF_REFCNT(bp) > 1) {
 1499                 /* do not release to free list */
 1500                 BUF_UNLOCK(bp);
 1501                 return;
 1502         }
 1503 
 1504         if (bp->b_flags & B_MANAGED) {
 1505                 if (bp->b_flags & B_REMFREE) {
 1506                         mtx_lock(&bqlock);
 1507                         bremfreel(bp);
 1508                         mtx_unlock(&bqlock);
 1509                 }
 1510                 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1511                 BUF_UNLOCK(bp);
 1512                 return;
 1513         }
 1514 
 1515         mtx_lock(&bqlock);
 1516         /* Handle delayed bremfree() processing. */
 1517         if (bp->b_flags & B_REMFREE)
 1518                 bremfreel(bp);
 1519         if (bp->b_qindex != QUEUE_NONE)
 1520                 panic("bqrelse: free buffer onto another queue???");
 1521         /* buffers with stale but valid contents */
 1522         if (bp->b_flags & B_DELWRI) {
 1523                 if (bp->b_flags & B_NEEDSGIANT)
 1524                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1525                 else
 1526                         bp->b_qindex = QUEUE_DIRTY;
 1527                 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1528         } else {
 1529                 /*
 1530                  * XXX This lock may not be necessary since BKGRDINPROG
 1531                  * cannot be set while we hold the buf lock, it can only be
 1532                  * cleared if it is already pending.
 1533                  */
 1534                 BO_LOCK(bp->b_bufobj);
 1535                 if (!buf_vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
 1536                         BO_UNLOCK(bp->b_bufobj);
 1537                         bp->b_qindex = QUEUE_CLEAN;
 1538                         TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
 1539                             b_freelist);
 1540                 } else {
 1541                         /*
 1542                          * We are too low on memory, we have to try to free
 1543                          * the buffer (most importantly: the wired pages
 1544                          * making up its backing store) *now*.
 1545                          */
 1546                         BO_UNLOCK(bp->b_bufobj);
 1547                         mtx_unlock(&bqlock);
 1548                         brelse(bp);
 1549                         return;
 1550                 }
 1551         }
 1552         mtx_unlock(&bqlock);
 1553 
 1554         if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
 1555                 bufcountwakeup();
 1556 
 1557         /*
 1558          * Something we can maybe free or reuse.
 1559          */
 1560         if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
 1561                 bufspacewakeup();
 1562 
 1563         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1564         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1565                 panic("bqrelse: not dirty");
 1566         /* unlock */
 1567         BUF_UNLOCK(bp);
 1568 }
 1569 
 1570 /* Give pages used by the bp back to the VM system (where possible) */
 1571 static void
 1572 vfs_vmio_release(struct buf *bp)
 1573 {
 1574         int i;
 1575         vm_page_t m;
 1576 
 1577         pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
 1578         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 1579         vm_page_lock_queues();
 1580         for (i = 0; i < bp->b_npages; i++) {
 1581                 m = bp->b_pages[i];
 1582                 bp->b_pages[i] = NULL;
 1583                 /*
 1584                  * In order to keep page LRU ordering consistent, put
 1585                  * everything on the inactive queue.
 1586                  */
 1587                 vm_page_unwire(m, 0);
 1588                 /*
 1589                  * We don't mess with busy pages, it is
 1590                  * the responsibility of the process that
 1591                  * busied the pages to deal with them.
 1592                  */
 1593                 if ((m->oflags & VPO_BUSY) || (m->busy != 0))
 1594                         continue;
 1595                         
 1596                 if (m->wire_count == 0) {
 1597                         /*
 1598                          * Might as well free the page if we can and it has
 1599                          * no valid data.  We also free the page if the
 1600                          * buffer was used for direct I/O
 1601                          */
 1602                         if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
 1603                             m->hold_count == 0) {
 1604                                 vm_page_free(m);
 1605                         } else if (bp->b_flags & B_DIRECT) {
 1606                                 vm_page_try_to_free(m);
 1607                         } else if (buf_vm_page_count_severe()) {
 1608                                 vm_page_try_to_cache(m);
 1609                         }
 1610                 }
 1611         }
 1612         vm_page_unlock_queues();
 1613         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 1614         
 1615         if (bp->b_bufsize) {
 1616                 bufspacewakeup();
 1617                 bp->b_bufsize = 0;
 1618         }
 1619         bp->b_npages = 0;
 1620         bp->b_flags &= ~B_VMIO;
 1621         if (bp->b_vp)
 1622                 brelvp(bp);
 1623 }
 1624 
 1625 /*
 1626  * Check to see if a block at a particular lbn is available for a clustered
 1627  * write.
 1628  */
 1629 static int
 1630 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 1631 {
 1632         struct buf *bpa;
 1633         int match;
 1634 
 1635         match = 0;
 1636 
 1637         /* If the buf isn't in core skip it */
 1638         if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
 1639                 return (0);
 1640 
 1641         /* If the buf is busy we don't want to wait for it */
 1642         if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1643                 return (0);
 1644 
 1645         /* Only cluster with valid clusterable delayed write buffers */
 1646         if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 1647             (B_DELWRI | B_CLUSTEROK))
 1648                 goto done;
 1649 
 1650         if (bpa->b_bufsize != size)
 1651                 goto done;
 1652 
 1653         /*
 1654          * Check to see if it is in the expected place on disk and that the
 1655          * block has been mapped.
 1656          */
 1657         if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 1658                 match = 1;
 1659 done:
 1660         BUF_UNLOCK(bpa);
 1661         return (match);
 1662 }
 1663 
 1664 /*
 1665  *      vfs_bio_awrite:
 1666  *
 1667  *      Implement clustered async writes for clearing out B_DELWRI buffers.
 1668  *      This is much better then the old way of writing only one buffer at
 1669  *      a time.  Note that we may not be presented with the buffers in the 
 1670  *      correct order, so we search for the cluster in both directions.
 1671  */
 1672 int
 1673 vfs_bio_awrite(struct buf *bp)
 1674 {
 1675         int i;
 1676         int j;
 1677         daddr_t lblkno = bp->b_lblkno;
 1678         struct vnode *vp = bp->b_vp;
 1679         int ncl;
 1680         int nwritten;
 1681         int size;
 1682         int maxcl;
 1683 
 1684         /*
 1685          * right now we support clustered writing only to regular files.  If
 1686          * we find a clusterable block we could be in the middle of a cluster
 1687          * rather then at the beginning.
 1688          */
 1689         if ((vp->v_type == VREG) && 
 1690             (vp->v_mount != 0) && /* Only on nodes that have the size info */
 1691             (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 1692 
 1693                 size = vp->v_mount->mnt_stat.f_iosize;
 1694                 maxcl = MAXPHYS / size;
 1695 
 1696                 VI_LOCK(vp);
 1697                 for (i = 1; i < maxcl; i++)
 1698                         if (vfs_bio_clcheck(vp, size, lblkno + i,
 1699                             bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 1700                                 break;
 1701 
 1702                 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 1703                         if (vfs_bio_clcheck(vp, size, lblkno - j,
 1704                             bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 1705                                 break;
 1706 
 1707                 VI_UNLOCK(vp);
 1708                 --j;
 1709                 ncl = i + j;
 1710                 /*
 1711                  * this is a possible cluster write
 1712                  */
 1713                 if (ncl != 1) {
 1714                         BUF_UNLOCK(bp);
 1715                         nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
 1716                         return nwritten;
 1717                 }
 1718         }
 1719         bremfree(bp);
 1720         bp->b_flags |= B_ASYNC;
 1721         /*
 1722          * default (old) behavior, writing out only one block
 1723          *
 1724          * XXX returns b_bufsize instead of b_bcount for nwritten?
 1725          */
 1726         nwritten = bp->b_bufsize;
 1727         (void) bwrite(bp);
 1728 
 1729         return nwritten;
 1730 }
 1731 
 1732 /*
 1733  *      getnewbuf:
 1734  *
 1735  *      Find and initialize a new buffer header, freeing up existing buffers 
 1736  *      in the bufqueues as necessary.  The new buffer is returned locked.
 1737  *
 1738  *      Important:  B_INVAL is not set.  If the caller wishes to throw the
 1739  *      buffer away, the caller must set B_INVAL prior to calling brelse().
 1740  *
 1741  *      We block if:
 1742  *              We have insufficient buffer headers
 1743  *              We have insufficient buffer space
 1744  *              buffer_map is too fragmented ( space reservation fails )
 1745  *              If we have to flush dirty buffers ( but we try to avoid this )
 1746  *
 1747  *      To avoid VFS layer recursion we do not flush dirty buffers ourselves.
 1748  *      Instead we ask the buf daemon to do it for us.  We attempt to
 1749  *      avoid piecemeal wakeups of the pageout daemon.
 1750  */
 1751 
 1752 static struct buf *
 1753 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
 1754     int gbflags)
 1755 {
 1756         struct thread *td;
 1757         struct buf *bp;
 1758         struct buf *nbp;
 1759         int defrag = 0;
 1760         int nqindex;
 1761         static int flushingbufs;
 1762 
 1763         td = curthread;
 1764         /*
 1765          * We can't afford to block since we might be holding a vnode lock,
 1766          * which may prevent system daemons from running.  We deal with
 1767          * low-memory situations by proactively returning memory and running
 1768          * async I/O rather then sync I/O.
 1769          */
 1770         atomic_add_int(&getnewbufcalls, 1);
 1771         atomic_subtract_int(&getnewbufrestarts, 1);
 1772 restart:
 1773         atomic_add_int(&getnewbufrestarts, 1);
 1774 
 1775         /*
 1776          * Setup for scan.  If we do not have enough free buffers,
 1777          * we setup a degenerate case that immediately fails.  Note
 1778          * that if we are specially marked process, we are allowed to
 1779          * dip into our reserves.
 1780          *
 1781          * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
 1782          *
 1783          * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
 1784          * However, there are a number of cases (defragging, reusing, ...)
 1785          * where we cannot backup.
 1786          */
 1787         mtx_lock(&bqlock);
 1788         nqindex = QUEUE_EMPTYKVA;
 1789         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
 1790 
 1791         if (nbp == NULL) {
 1792                 /*
 1793                  * If no EMPTYKVA buffers and we are either
 1794                  * defragging or reusing, locate a CLEAN buffer
 1795                  * to free or reuse.  If bufspace useage is low
 1796                  * skip this step so we can allocate a new buffer.
 1797                  */
 1798                 if (defrag || bufspace >= lobufspace) {
 1799                         nqindex = QUEUE_CLEAN;
 1800                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
 1801                 }
 1802 
 1803                 /*
 1804                  * If we could not find or were not allowed to reuse a
 1805                  * CLEAN buffer, check to see if it is ok to use an EMPTY
 1806                  * buffer.  We can only use an EMPTY buffer if allocating
 1807                  * its KVA would not otherwise run us out of buffer space.
 1808                  */
 1809                 if (nbp == NULL && defrag == 0 &&
 1810                     bufspace + maxsize < hibufspace) {
 1811                         nqindex = QUEUE_EMPTY;
 1812                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
 1813                 }
 1814         }
 1815 
 1816         /*
 1817          * Run scan, possibly freeing data and/or kva mappings on the fly
 1818          * depending.
 1819          */
 1820 
 1821         while ((bp = nbp) != NULL) {
 1822                 int qindex = nqindex;
 1823 
 1824                 /*
 1825                  * Calculate next bp ( we can only use it if we do not block
 1826                  * or do other fancy things ).
 1827                  */
 1828                 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
 1829                         switch(qindex) {
 1830                         case QUEUE_EMPTY:
 1831                                 nqindex = QUEUE_EMPTYKVA;
 1832                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
 1833                                         break;
 1834                                 /* FALLTHROUGH */
 1835                         case QUEUE_EMPTYKVA:
 1836                                 nqindex = QUEUE_CLEAN;
 1837                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
 1838                                         break;
 1839                                 /* FALLTHROUGH */
 1840                         case QUEUE_CLEAN:
 1841                                 /*
 1842                                  * nbp is NULL. 
 1843                                  */
 1844                                 break;
 1845                         }
 1846                 }
 1847                 /*
 1848                  * If we are defragging then we need a buffer with 
 1849                  * b_kvasize != 0.  XXX this situation should no longer
 1850                  * occur, if defrag is non-zero the buffer's b_kvasize
 1851                  * should also be non-zero at this point.  XXX
 1852                  */
 1853                 if (defrag && bp->b_kvasize == 0) {
 1854                         printf("Warning: defrag empty buffer %p\n", bp);
 1855                         continue;
 1856                 }
 1857 
 1858                 /*
 1859                  * Start freeing the bp.  This is somewhat involved.  nbp
 1860                  * remains valid only for QUEUE_EMPTY[KVA] bp's.
 1861                  */
 1862                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1863                         continue;
 1864                 if (bp->b_vp) {
 1865                         BO_LOCK(bp->b_bufobj);
 1866                         if (bp->b_vflags & BV_BKGRDINPROG) {
 1867                                 BO_UNLOCK(bp->b_bufobj);
 1868                                 BUF_UNLOCK(bp);
 1869                                 continue;
 1870                         }
 1871                         BO_UNLOCK(bp->b_bufobj);
 1872                 }
 1873                 CTR6(KTR_BUF,
 1874                     "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
 1875                     "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
 1876                     bp->b_kvasize, bp->b_bufsize, qindex);
 1877 
 1878                 /*
 1879                  * Sanity Checks
 1880                  */
 1881                 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
 1882 
 1883                 /*
 1884                  * Note: we no longer distinguish between VMIO and non-VMIO
 1885                  * buffers.
 1886                  */
 1887 
 1888                 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
 1889 
 1890                 bremfreel(bp);
 1891                 mtx_unlock(&bqlock);
 1892 
 1893                 if (qindex == QUEUE_CLEAN) {
 1894                         if (bp->b_flags & B_VMIO) {
 1895                                 bp->b_flags &= ~B_ASYNC;
 1896                                 vfs_vmio_release(bp);
 1897                         }
 1898                         if (bp->b_vp)
 1899                                 brelvp(bp);
 1900                 }
 1901 
 1902                 /*
 1903                  * NOTE:  nbp is now entirely invalid.  We can only restart
 1904                  * the scan from this point on.
 1905                  *
 1906                  * Get the rest of the buffer freed up.  b_kva* is still
 1907                  * valid after this operation.
 1908                  */
 1909 
 1910                 if (bp->b_rcred != NOCRED) {
 1911                         crfree(bp->b_rcred);
 1912                         bp->b_rcred = NOCRED;
 1913                 }
 1914                 if (bp->b_wcred != NOCRED) {
 1915                         crfree(bp->b_wcred);
 1916                         bp->b_wcred = NOCRED;
 1917                 }
 1918                 if (!LIST_EMPTY(&bp->b_dep))
 1919                         buf_deallocate(bp);
 1920                 if (bp->b_vflags & BV_BKGRDINPROG)
 1921                         panic("losing buffer 3");
 1922                 KASSERT(bp->b_vp == NULL,
 1923                     ("bp: %p still has vnode %p.  qindex: %d",
 1924                     bp, bp->b_vp, qindex));
 1925                 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
 1926                    ("bp: %p still on a buffer list. xflags %X",
 1927                     bp, bp->b_xflags));
 1928 
 1929                 if (bp->b_bufsize)
 1930                         allocbuf(bp, 0);
 1931 
 1932                 bp->b_flags = 0;
 1933                 bp->b_ioflags = 0;
 1934                 bp->b_xflags = 0;
 1935                 bp->b_vflags = 0;
 1936                 bp->b_vp = NULL;
 1937                 bp->b_blkno = bp->b_lblkno = 0;
 1938                 bp->b_offset = NOOFFSET;
 1939                 bp->b_iodone = 0;
 1940                 bp->b_error = 0;
 1941                 bp->b_resid = 0;
 1942                 bp->b_bcount = 0;
 1943                 bp->b_npages = 0;
 1944                 bp->b_dirtyoff = bp->b_dirtyend = 0;
 1945                 bp->b_bufobj = NULL;
 1946                 bp->b_pin_count = 0;
 1947                 bp->b_fsprivate1 = NULL;
 1948                 bp->b_fsprivate2 = NULL;
 1949                 bp->b_fsprivate3 = NULL;
 1950 
 1951                 LIST_INIT(&bp->b_dep);
 1952 
 1953                 /*
 1954                  * If we are defragging then free the buffer.
 1955                  */
 1956                 if (defrag) {
 1957                         bp->b_flags |= B_INVAL;
 1958                         bfreekva(bp);
 1959                         brelse(bp);
 1960                         defrag = 0;
 1961                         goto restart;
 1962                 }
 1963 
 1964                 /*
 1965                  * Notify any waiters for the buffer lock about
 1966                  * identity change by freeing the buffer.
 1967                  */
 1968                 if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp) > 0) {
 1969                         bp->b_flags |= B_INVAL;
 1970                         bfreekva(bp);
 1971                         brelse(bp);
 1972                         goto restart;
 1973                 }
 1974 
 1975                 /*
 1976                  * If we are overcomitted then recover the buffer and its
 1977                  * KVM space.  This occurs in rare situations when multiple
 1978                  * processes are blocked in getnewbuf() or allocbuf().
 1979                  */
 1980                 if (bufspace >= hibufspace)
 1981                         flushingbufs = 1;
 1982                 if (flushingbufs && bp->b_kvasize != 0) {
 1983                         bp->b_flags |= B_INVAL;
 1984                         bfreekva(bp);
 1985                         brelse(bp);
 1986                         goto restart;
 1987                 }
 1988                 if (bufspace < lobufspace)
 1989                         flushingbufs = 0;
 1990                 break;
 1991         }
 1992 
 1993         /*
 1994          * If we exhausted our list, sleep as appropriate.  We may have to
 1995          * wakeup various daemons and write out some dirty buffers.
 1996          *
 1997          * Generally we are sleeping due to insufficient buffer space.
 1998          */
 1999 
 2000         if (bp == NULL) {
 2001                 int flags, norunbuf;
 2002                 char *waitmsg;
 2003                 int fl;
 2004 
 2005                 if (defrag) {
 2006                         flags = VFS_BIO_NEED_BUFSPACE;
 2007                         waitmsg = "nbufkv";
 2008                 } else if (bufspace >= hibufspace) {
 2009                         waitmsg = "nbufbs";
 2010                         flags = VFS_BIO_NEED_BUFSPACE;
 2011                 } else {
 2012                         waitmsg = "newbuf";
 2013                         flags = VFS_BIO_NEED_ANY;
 2014                 }
 2015                 mtx_lock(&nblock);
 2016                 needsbuffer |= flags;
 2017                 mtx_unlock(&nblock);
 2018                 mtx_unlock(&bqlock);
 2019 
 2020                 bd_speedup();   /* heeeelp */
 2021                 if (gbflags & GB_NOWAIT_BD)
 2022                         return (NULL);
 2023 
 2024                 mtx_lock(&nblock);
 2025                 while (needsbuffer & flags) {
 2026                         if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
 2027                                 mtx_unlock(&nblock);
 2028                                 /*
 2029                                  * getblk() is called with a vnode
 2030                                  * locked, and some majority of the
 2031                                  * dirty buffers may as well belong to
 2032                                  * the vnode. Flushing the buffers
 2033                                  * there would make a progress that
 2034                                  * cannot be achieved by the
 2035                                  * buf_daemon, that cannot lock the
 2036                                  * vnode.
 2037                                  */
 2038                                 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
 2039                                     (td->td_pflags & TDP_NORUNNINGBUF);
 2040                                 /* play bufdaemon */
 2041                                 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
 2042                                 fl = buf_do_flush(vp);
 2043                                 td->td_pflags &= norunbuf;
 2044                                 mtx_lock(&nblock);
 2045                                 if (fl != 0)
 2046                                         continue;
 2047                                 if ((needsbuffer & flags) == 0)
 2048                                         break;
 2049                         }
 2050                         if (msleep(&needsbuffer, &nblock,
 2051                             (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
 2052                                 mtx_unlock(&nblock);
 2053                                 return (NULL);
 2054                         }
 2055                 }
 2056                 mtx_unlock(&nblock);
 2057         } else {
 2058                 /*
 2059                  * We finally have a valid bp.  We aren't quite out of the
 2060                  * woods, we still have to reserve kva space.  In order
 2061                  * to keep fragmentation sane we only allocate kva in
 2062                  * BKVASIZE chunks.
 2063                  */
 2064                 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 2065 
 2066                 if (maxsize != bp->b_kvasize) {
 2067                         vm_offset_t addr = 0;
 2068 
 2069                         bfreekva(bp);
 2070 
 2071                         vm_map_lock(buffer_map);
 2072                         if (vm_map_findspace(buffer_map,
 2073                                 vm_map_min(buffer_map), maxsize, &addr)) {
 2074                                 /*
 2075                                  * Uh oh.  Buffer map is to fragmented.  We
 2076                                  * must defragment the map.
 2077                                  */
 2078                                 atomic_add_int(&bufdefragcnt, 1);
 2079                                 vm_map_unlock(buffer_map);
 2080                                 defrag = 1;
 2081                                 bp->b_flags |= B_INVAL;
 2082                                 brelse(bp);
 2083                                 goto restart;
 2084                         }
 2085                         if (addr) {
 2086                                 vm_map_insert(buffer_map, NULL, 0,
 2087                                         addr, addr + maxsize,
 2088                                         VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
 2089 
 2090                                 bp->b_kvabase = (caddr_t) addr;
 2091                                 bp->b_kvasize = maxsize;
 2092                                 atomic_add_long(&bufspace, bp->b_kvasize);
 2093                                 atomic_add_int(&bufreusecnt, 1);
 2094                         }
 2095                         vm_map_unlock(buffer_map);
 2096                 }
 2097                 bp->b_saveaddr = bp->b_kvabase;
 2098                 bp->b_data = bp->b_saveaddr;
 2099         }
 2100         return(bp);
 2101 }
 2102 
 2103 /*
 2104  *      buf_daemon:
 2105  *
 2106  *      buffer flushing daemon.  Buffers are normally flushed by the
 2107  *      update daemon but if it cannot keep up this process starts to
 2108  *      take the load in an attempt to prevent getnewbuf() from blocking.
 2109  */
 2110 
 2111 static struct kproc_desc buf_kp = {
 2112         "bufdaemon",
 2113         buf_daemon,
 2114         &bufdaemonproc
 2115 };
 2116 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
 2117 
 2118 static int
 2119 buf_do_flush(struct vnode *vp)
 2120 {
 2121         int flushed;
 2122 
 2123         flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
 2124         /* The list empty check here is slightly racy */
 2125         if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
 2126                 mtx_lock(&Giant);
 2127                 flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
 2128                 mtx_unlock(&Giant);
 2129         }
 2130         if (flushed == 0) {
 2131                 /*
 2132                  * Could not find any buffers without rollback
 2133                  * dependencies, so just write the first one
 2134                  * in the hopes of eventually making progress.
 2135                  */
 2136                 flushbufqueues(vp, QUEUE_DIRTY, 1);
 2137                 if (!TAILQ_EMPTY(
 2138                             &bufqueues[QUEUE_DIRTY_GIANT])) {
 2139                         mtx_lock(&Giant);
 2140                         flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
 2141                         mtx_unlock(&Giant);
 2142                 }
 2143         }
 2144         return (flushed);
 2145 }
 2146 
 2147 static void
 2148 buf_daemon()
 2149 {
 2150 
 2151         /*
 2152          * This process needs to be suspended prior to shutdown sync.
 2153          */
 2154         EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
 2155             SHUTDOWN_PRI_LAST);
 2156 
 2157         /*
 2158          * This process is allowed to take the buffer cache to the limit
 2159          */
 2160         curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
 2161         mtx_lock(&bdlock);
 2162         for (;;) {
 2163                 bd_request = 0;
 2164                 mtx_unlock(&bdlock);
 2165 
 2166                 kthread_suspend_check(bufdaemonproc);
 2167 
 2168                 /*
 2169                  * Do the flush.  Limit the amount of in-transit I/O we
 2170                  * allow to build up, otherwise we would completely saturate
 2171                  * the I/O system.  Wakeup any waiting processes before we
 2172                  * normally would so they can run in parallel with our drain.
 2173                  */
 2174                 while (numdirtybuffers > lodirtybuffers) {
 2175                         if (buf_do_flush(NULL) == 0)
 2176                                 break;
 2177                         uio_yield();
 2178                 }
 2179 
 2180                 /*
 2181                  * Only clear bd_request if we have reached our low water
 2182                  * mark.  The buf_daemon normally waits 1 second and
 2183                  * then incrementally flushes any dirty buffers that have
 2184                  * built up, within reason.
 2185                  *
 2186                  * If we were unable to hit our low water mark and couldn't
 2187                  * find any flushable buffers, we sleep half a second.
 2188                  * Otherwise we loop immediately.
 2189                  */
 2190                 mtx_lock(&bdlock);
 2191                 if (numdirtybuffers <= lodirtybuffers) {
 2192                         /*
 2193                          * We reached our low water mark, reset the
 2194                          * request and sleep until we are needed again.
 2195                          * The sleep is just so the suspend code works.
 2196                          */
 2197                         bd_request = 0;
 2198                         msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 2199                 } else {
 2200                         /*
 2201                          * We couldn't find any flushable dirty buffers but
 2202                          * still have too many dirty buffers, we
 2203                          * have to sleep and try again.  (rare)
 2204                          */
 2205                         msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 2206                 }
 2207         }
 2208 }
 2209 
 2210 /*
 2211  *      flushbufqueues:
 2212  *
 2213  *      Try to flush a buffer in the dirty queue.  We must be careful to
 2214  *      free up B_INVAL buffers instead of write them, which NFS is 
 2215  *      particularly sensitive to.
 2216  */
 2217 static int flushwithdeps = 0;
 2218 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
 2219     0, "Number of buffers flushed with dependecies that require rollbacks");
 2220 
 2221 static int
 2222 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
 2223 {
 2224         struct thread *td = curthread;
 2225         struct buf *sentinel;
 2226         struct vnode *vp;
 2227         struct mount *mp;
 2228         struct buf *bp;
 2229         int hasdeps;
 2230         int flushed;
 2231         int target;
 2232 
 2233         if (lvp == NULL) {
 2234                 target = numdirtybuffers - lodirtybuffers;
 2235                 if (flushdeps && target > 2)
 2236                         target /= 2;
 2237         } else
 2238                 target = flushbufqtarget;
 2239         flushed = 0;
 2240         bp = NULL;
 2241         sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
 2242         sentinel->b_qindex = QUEUE_SENTINEL;
 2243         mtx_lock(&bqlock);
 2244         TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
 2245         while (flushed != target) {
 2246                 bp = TAILQ_NEXT(sentinel, b_freelist);
 2247                 if (bp != NULL) {
 2248                         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2249                         TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
 2250                             b_freelist);
 2251                 } else
 2252                         break;
 2253                 /*
 2254                  * Skip sentinels inserted by other invocations of the
 2255                  * flushbufqueues(), taking care to not reorder them.
 2256                  */
 2257                 if (bp->b_qindex == QUEUE_SENTINEL)
 2258                         continue;
 2259                 /*
 2260                  * Only flush the buffers that belong to the
 2261                  * vnode locked by the curthread.
 2262                  */
 2263                 if (lvp != NULL && bp->b_vp != lvp)
 2264                         continue;
 2265                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 2266                         continue;
 2267                 if (bp->b_pin_count > 0) {
 2268                         BUF_UNLOCK(bp);
 2269                         continue;
 2270                 }
 2271                 BO_LOCK(bp->b_bufobj);
 2272                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
 2273                     (bp->b_flags & B_DELWRI) == 0) {
 2274                         BO_UNLOCK(bp->b_bufobj);
 2275                         BUF_UNLOCK(bp);
 2276                         continue;
 2277                 }
 2278                 BO_UNLOCK(bp->b_bufobj);
 2279                 if (bp->b_flags & B_INVAL) {
 2280                         bremfreel(bp);
 2281                         mtx_unlock(&bqlock);
 2282                         brelse(bp);
 2283                         flushed++;
 2284                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2285                         mtx_lock(&bqlock);
 2286                         continue;
 2287                 }
 2288 
 2289                 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
 2290                         if (flushdeps == 0) {
 2291                                 BUF_UNLOCK(bp);
 2292                                 continue;
 2293                         }
 2294                         hasdeps = 1;
 2295                 } else
 2296                         hasdeps = 0;
 2297                 /*
 2298                  * We must hold the lock on a vnode before writing
 2299                  * one of its buffers. Otherwise we may confuse, or
 2300                  * in the case of a snapshot vnode, deadlock the
 2301                  * system.
 2302                  *
 2303                  * The lock order here is the reverse of the normal
 2304                  * of vnode followed by buf lock.  This is ok because
 2305                  * the NOWAIT will prevent deadlock.
 2306                  */
 2307                 vp = bp->b_vp;
 2308                 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 2309                         BUF_UNLOCK(bp);
 2310                         continue;
 2311                 }
 2312                 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE,
 2313                     td) == 0) {
 2314                         mtx_unlock(&bqlock);
 2315                         CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
 2316                             bp, bp->b_vp, bp->b_flags);
 2317                         if (curproc == bufdaemonproc)
 2318                                 vfs_bio_awrite(bp);
 2319                         else {
 2320                                 bremfree(bp);
 2321                                 bwrite(bp);
 2322                                 notbufdflashes++;
 2323                         }
 2324                         vn_finished_write(mp);
 2325                         VOP_UNLOCK(vp, 0, td);
 2326                         flushwithdeps += hasdeps;
 2327                         flushed++;
 2328 
 2329                         /*
 2330                          * Sleeping on runningbufspace while holding
 2331                          * vnode lock leads to deadlock.
 2332                          */
 2333                         if (curproc == bufdaemonproc)
 2334                                 waitrunningbufspace();
 2335                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2336                         mtx_lock(&bqlock);
 2337                         continue;
 2338                 }
 2339                 vn_finished_write(mp);
 2340                 BUF_UNLOCK(bp);
 2341         }
 2342         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2343         mtx_unlock(&bqlock);
 2344         free(sentinel, M_TEMP);
 2345         return (flushed);
 2346 }
 2347 
 2348 /*
 2349  * Check to see if a block is currently memory resident.
 2350  */
 2351 struct buf *
 2352 incore(struct bufobj *bo, daddr_t blkno)
 2353 {
 2354         struct buf *bp;
 2355 
 2356         BO_LOCK(bo);
 2357         bp = gbincore(bo, blkno);
 2358         BO_UNLOCK(bo);
 2359         return (bp);
 2360 }
 2361 
 2362 /*
 2363  * Returns true if no I/O is needed to access the
 2364  * associated VM object.  This is like incore except
 2365  * it also hunts around in the VM system for the data.
 2366  */
 2367 
 2368 static int
 2369 inmem(struct vnode * vp, daddr_t blkno)
 2370 {
 2371         vm_object_t obj;
 2372         vm_offset_t toff, tinc, size;
 2373         vm_page_t m;
 2374         vm_ooffset_t off;
 2375 
 2376         ASSERT_VOP_LOCKED(vp, "inmem");
 2377 
 2378         if (incore(&vp->v_bufobj, blkno))
 2379                 return 1;
 2380         if (vp->v_mount == NULL)
 2381                 return 0;
 2382         obj = vp->v_object;
 2383         if (obj == NULL)
 2384                 return (0);
 2385 
 2386         size = PAGE_SIZE;
 2387         if (size > vp->v_mount->mnt_stat.f_iosize)
 2388                 size = vp->v_mount->mnt_stat.f_iosize;
 2389         off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 2390 
 2391         VM_OBJECT_LOCK(obj);
 2392         for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 2393                 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
 2394                 if (!m)
 2395                         goto notinmem;
 2396                 tinc = size;
 2397                 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 2398                         tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 2399                 if (vm_page_is_valid(m,
 2400                     (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
 2401                         goto notinmem;
 2402         }
 2403         VM_OBJECT_UNLOCK(obj);
 2404         return 1;
 2405 
 2406 notinmem:
 2407         VM_OBJECT_UNLOCK(obj);
 2408         return (0);
 2409 }
 2410 
 2411 /*
 2412  *      vfs_setdirty:
 2413  *
 2414  *      Sets the dirty range for a buffer based on the status of the dirty
 2415  *      bits in the pages comprising the buffer.
 2416  *
 2417  *      The range is limited to the size of the buffer.
 2418  *
 2419  *      This routine is primarily used by NFS, but is generalized for the
 2420  *      B_VMIO case.
 2421  */
 2422 static void
 2423 vfs_setdirty(struct buf *bp) 
 2424 {
 2425 
 2426         /*
 2427          * Degenerate case - empty buffer
 2428          */
 2429 
 2430         if (bp->b_bufsize == 0)
 2431                 return;
 2432 
 2433         /*
 2434          * We qualify the scan for modified pages on whether the
 2435          * object has been flushed yet.
 2436          */
 2437 
 2438         if ((bp->b_flags & B_VMIO) == 0)
 2439                 return;
 2440 
 2441         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 2442         vfs_setdirty_locked_object(bp);
 2443         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 2444 }
 2445 
 2446 static void
 2447 vfs_setdirty_locked_object(struct buf *bp)
 2448 {
 2449         vm_object_t object;
 2450         int i;
 2451 
 2452         object = bp->b_bufobj->bo_object;
 2453         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2454         if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
 2455                 vm_offset_t boffset;
 2456                 vm_offset_t eoffset;
 2457 
 2458                 vm_page_lock_queues();
 2459                 /*
 2460                  * test the pages to see if they have been modified directly
 2461                  * by users through the VM system.
 2462                  */
 2463                 for (i = 0; i < bp->b_npages; i++)
 2464                         vm_page_test_dirty(bp->b_pages[i]);
 2465 
 2466                 /*
 2467                  * Calculate the encompassing dirty range, boffset and eoffset,
 2468                  * (eoffset - boffset) bytes.
 2469                  */
 2470 
 2471                 for (i = 0; i < bp->b_npages; i++) {
 2472                         if (bp->b_pages[i]->dirty)
 2473                                 break;
 2474                 }
 2475                 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2476 
 2477                 for (i = bp->b_npages - 1; i >= 0; --i) {
 2478                         if (bp->b_pages[i]->dirty) {
 2479                                 break;
 2480                         }
 2481                 }
 2482                 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2483 
 2484                 vm_page_unlock_queues();
 2485                 /*
 2486                  * Fit it to the buffer.
 2487                  */
 2488 
 2489                 if (eoffset > bp->b_bcount)
 2490                         eoffset = bp->b_bcount;
 2491 
 2492                 /*
 2493                  * If we have a good dirty range, merge with the existing
 2494                  * dirty range.
 2495                  */
 2496 
 2497                 if (boffset < eoffset) {
 2498                         if (bp->b_dirtyoff > boffset)
 2499                                 bp->b_dirtyoff = boffset;
 2500                         if (bp->b_dirtyend < eoffset)
 2501                                 bp->b_dirtyend = eoffset;
 2502                 }
 2503         }
 2504 }
 2505 
 2506 /*
 2507  *      getblk:
 2508  *
 2509  *      Get a block given a specified block and offset into a file/device.
 2510  *      The buffers B_DONE bit will be cleared on return, making it almost
 2511  *      ready for an I/O initiation.  B_INVAL may or may not be set on 
 2512  *      return.  The caller should clear B_INVAL prior to initiating a
 2513  *      READ.
 2514  *
 2515  *      For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
 2516  *      an existing buffer.
 2517  *
 2518  *      For a VMIO buffer, B_CACHE is modified according to the backing VM.
 2519  *      If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
 2520  *      and then cleared based on the backing VM.  If the previous buffer is
 2521  *      non-0-sized but invalid, B_CACHE will be cleared.
 2522  *
 2523  *      If getblk() must create a new buffer, the new buffer is returned with
 2524  *      both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
 2525  *      case it is returned with B_INVAL clear and B_CACHE set based on the
 2526  *      backing VM.
 2527  *
 2528  *      getblk() also forces a bwrite() for any B_DELWRI buffer whos
 2529  *      B_CACHE bit is clear.
 2530  *      
 2531  *      What this means, basically, is that the caller should use B_CACHE to
 2532  *      determine whether the buffer is fully valid or not and should clear
 2533  *      B_INVAL prior to issuing a read.  If the caller intends to validate
 2534  *      the buffer by loading its data area with something, the caller needs
 2535  *      to clear B_INVAL.  If the caller does this without issuing an I/O, 
 2536  *      the caller should set B_CACHE ( as an optimization ), else the caller
 2537  *      should issue the I/O and biodone() will set B_CACHE if the I/O was
 2538  *      a write attempt or if it was a successfull read.  If the caller 
 2539  *      intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
 2540  *      prior to issuing the READ.  biodone() will *not* clear B_INVAL.
 2541  */
 2542 struct buf *
 2543 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
 2544     int flags)
 2545 {
 2546         struct buf *bp;
 2547         struct bufobj *bo;
 2548         int error;
 2549 
 2550         CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
 2551         ASSERT_VOP_LOCKED(vp, "getblk");
 2552         if (size > MAXBSIZE)
 2553                 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
 2554 
 2555         bo = &vp->v_bufobj;
 2556 loop:
 2557         /*
 2558          * Block if we are low on buffers.   Certain processes are allowed
 2559          * to completely exhaust the buffer cache.
 2560          *
 2561          * If this check ever becomes a bottleneck it may be better to
 2562          * move it into the else, when gbincore() fails.  At the moment
 2563          * it isn't a problem.
 2564          *
 2565          * XXX remove if 0 sections (clean this up after its proven)
 2566          */
 2567         if (numfreebuffers == 0) {
 2568                 if (TD_IS_IDLETHREAD(curthread))
 2569                         return NULL;
 2570                 mtx_lock(&nblock);
 2571                 needsbuffer |= VFS_BIO_NEED_ANY;
 2572                 mtx_unlock(&nblock);
 2573         }
 2574 
 2575         BO_LOCK(bo);
 2576         bp = gbincore(bo, blkno);
 2577         if (bp != NULL) {
 2578                 int lockflags;
 2579                 /*
 2580                  * Buffer is in-core.  If the buffer is not busy, it must
 2581                  * be on a queue.
 2582                  */
 2583                 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
 2584 
 2585                 if (flags & GB_LOCK_NOWAIT)
 2586                         lockflags |= LK_NOWAIT;
 2587 
 2588                 error = BUF_TIMELOCK(bp, lockflags,
 2589                     VI_MTX(vp), "getblk", slpflag, slptimeo);
 2590 
 2591                 /*
 2592                  * If we slept and got the lock we have to restart in case
 2593                  * the buffer changed identities.
 2594                  */
 2595                 if (error == ENOLCK)
 2596                         goto loop;
 2597                 /* We timed out or were interrupted. */
 2598                 else if (error)
 2599                         return (NULL);
 2600 
 2601                 /*
 2602                  * The buffer is locked.  B_CACHE is cleared if the buffer is 
 2603                  * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 2604                  * and for a VMIO buffer B_CACHE is adjusted according to the
 2605                  * backing VM cache.
 2606                  */
 2607                 if (bp->b_flags & B_INVAL)
 2608                         bp->b_flags &= ~B_CACHE;
 2609                 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 2610                         bp->b_flags |= B_CACHE;
 2611                 bremfree(bp);
 2612 
 2613                 /*
 2614                  * check for size inconsistancies for non-VMIO case.
 2615                  */
 2616 
 2617                 if (bp->b_bcount != size) {
 2618                         if ((bp->b_flags & B_VMIO) == 0 ||
 2619                             (size > bp->b_kvasize)) {
 2620                                 if (bp->b_flags & B_DELWRI) {
 2621                                         /*
 2622                                          * If buffer is pinned and caller does
 2623                                          * not want sleep  waiting for it to be
 2624                                          * unpinned, bail out
 2625                                          * */
 2626                                         if (bp->b_pin_count > 0) {
 2627                                                 if (flags & GB_LOCK_NOWAIT) {
 2628                                                         bqrelse(bp);
 2629                                                         return (NULL);
 2630                                                 } else {
 2631                                                         bunpin_wait(bp);
 2632                                                 }
 2633                                         }
 2634                                         bp->b_flags |= B_NOCACHE;
 2635                                         bwrite(bp);
 2636                                 } else {
 2637                                         if (LIST_EMPTY(&bp->b_dep)) {
 2638                                                 bp->b_flags |= B_RELBUF;
 2639                                                 brelse(bp);
 2640                                         } else {
 2641                                                 bp->b_flags |= B_NOCACHE;
 2642                                                 bwrite(bp);
 2643                                         }
 2644                                 }
 2645                                 goto loop;
 2646                         }
 2647                 }
 2648 
 2649                 /*
 2650                  * If the size is inconsistant in the VMIO case, we can resize
 2651                  * the buffer.  This might lead to B_CACHE getting set or
 2652                  * cleared.  If the size has not changed, B_CACHE remains
 2653                  * unchanged from its previous state.
 2654                  */
 2655 
 2656                 if (bp->b_bcount != size)
 2657                         allocbuf(bp, size);
 2658 
 2659                 KASSERT(bp->b_offset != NOOFFSET, 
 2660                     ("getblk: no buffer offset"));
 2661 
 2662                 /*
 2663                  * A buffer with B_DELWRI set and B_CACHE clear must
 2664                  * be committed before we can return the buffer in
 2665                  * order to prevent the caller from issuing a read
 2666                  * ( due to B_CACHE not being set ) and overwriting
 2667                  * it.
 2668                  *
 2669                  * Most callers, including NFS and FFS, need this to
 2670                  * operate properly either because they assume they
 2671                  * can issue a read if B_CACHE is not set, or because
 2672                  * ( for example ) an uncached B_DELWRI might loop due 
 2673                  * to softupdates re-dirtying the buffer.  In the latter
 2674                  * case, B_CACHE is set after the first write completes,
 2675                  * preventing further loops.
 2676                  * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 2677                  * above while extending the buffer, we cannot allow the
 2678                  * buffer to remain with B_CACHE set after the write
 2679                  * completes or it will represent a corrupt state.  To
 2680                  * deal with this we set B_NOCACHE to scrap the buffer
 2681                  * after the write.
 2682                  *
 2683                  * We might be able to do something fancy, like setting
 2684                  * B_CACHE in bwrite() except if B_DELWRI is already set,
 2685                  * so the below call doesn't set B_CACHE, but that gets real
 2686                  * confusing.  This is much easier.
 2687                  */
 2688 
 2689                 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 2690                         bp->b_flags |= B_NOCACHE;
 2691                         bwrite(bp);
 2692                         goto loop;
 2693                 }
 2694                 bp->b_flags &= ~B_DONE;
 2695         } else {
 2696                 int bsize, maxsize, vmio;
 2697                 off_t offset;
 2698 
 2699                 /*
 2700                  * Buffer is not in-core, create new buffer.  The buffer
 2701                  * returned by getnewbuf() is locked.  Note that the returned
 2702                  * buffer is also considered valid (not marked B_INVAL).
 2703                  */
 2704                 BO_UNLOCK(bo);
 2705                 /*
 2706                  * If the user does not want us to create the buffer, bail out
 2707                  * here.
 2708                  */
 2709                 if (flags & GB_NOCREAT)
 2710                         return NULL;
 2711                 bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
 2712                 offset = blkno * bsize;
 2713                 vmio = vp->v_object != NULL;
 2714                 maxsize = vmio ? size + (offset & PAGE_MASK) : size;
 2715                 maxsize = imax(maxsize, bsize);
 2716 
 2717                 bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
 2718                 if (bp == NULL) {
 2719                         if (slpflag || slptimeo)
 2720                                 return NULL;
 2721                         goto loop;
 2722                 }
 2723 
 2724                 /*
 2725                  * This code is used to make sure that a buffer is not
 2726                  * created while the getnewbuf routine is blocked.
 2727                  * This can be a problem whether the vnode is locked or not.
 2728                  * If the buffer is created out from under us, we have to
 2729                  * throw away the one we just created.
 2730                  *
 2731                  * Note: this must occur before we associate the buffer
 2732                  * with the vp especially considering limitations in
 2733                  * the splay tree implementation when dealing with duplicate
 2734                  * lblkno's.
 2735                  */
 2736                 BO_LOCK(bo);
 2737                 if (gbincore(bo, blkno)) {
 2738                         BO_UNLOCK(bo);
 2739                         bp->b_flags |= B_INVAL;
 2740                         brelse(bp);
 2741                         goto loop;
 2742                 }
 2743 
 2744                 /*
 2745                  * Insert the buffer into the hash, so that it can
 2746                  * be found by incore.
 2747                  */
 2748                 bp->b_blkno = bp->b_lblkno = blkno;
 2749                 bp->b_offset = offset;
 2750                 bgetvp(vp, bp);
 2751                 BO_UNLOCK(bo);
 2752 
 2753                 /*
 2754                  * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 2755                  * buffer size starts out as 0, B_CACHE will be set by
 2756                  * allocbuf() for the VMIO case prior to it testing the
 2757                  * backing store for validity.
 2758                  */
 2759 
 2760                 if (vmio) {
 2761                         bp->b_flags |= B_VMIO;
 2762 #if defined(VFS_BIO_DEBUG)
 2763                         if (vn_canvmio(vp) != TRUE)
 2764                                 printf("getblk: VMIO on vnode type %d\n",
 2765                                         vp->v_type);
 2766 #endif
 2767                         KASSERT(vp->v_object == bp->b_bufobj->bo_object,
 2768                             ("ARGH! different b_bufobj->bo_object %p %p %p\n",
 2769                             bp, vp->v_object, bp->b_bufobj->bo_object));
 2770                 } else {
 2771                         bp->b_flags &= ~B_VMIO;
 2772                         KASSERT(bp->b_bufobj->bo_object == NULL,
 2773                             ("ARGH! has b_bufobj->bo_object %p %p\n",
 2774                             bp, bp->b_bufobj->bo_object));
 2775                 }
 2776 
 2777                 allocbuf(bp, size);
 2778                 bp->b_flags &= ~B_DONE;
 2779         }
 2780         CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
 2781         KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
 2782         KASSERT(bp->b_bufobj == bo,
 2783             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 2784         return (bp);
 2785 }
 2786 
 2787 /*
 2788  * Get an empty, disassociated buffer of given size.  The buffer is initially
 2789  * set to B_INVAL.
 2790  */
 2791 struct buf *
 2792 geteblk(int size, int flags)
 2793 {
 2794         struct buf *bp;
 2795         int maxsize;
 2796 
 2797         maxsize = (size + BKVAMASK) & ~BKVAMASK;
 2798         while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
 2799                 if ((flags & GB_NOWAIT_BD) &&
 2800                     (curthread->td_pflags & TDP_BUFNEED) != 0)
 2801                         return (NULL);
 2802         }
 2803         allocbuf(bp, size);
 2804         bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
 2805         KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
 2806         return (bp);
 2807 }
 2808 
 2809 
 2810 /*
 2811  * This code constitutes the buffer memory from either anonymous system
 2812  * memory (in the case of non-VMIO operations) or from an associated
 2813  * VM object (in the case of VMIO operations).  This code is able to
 2814  * resize a buffer up or down.
 2815  *
 2816  * Note that this code is tricky, and has many complications to resolve
 2817  * deadlock or inconsistant data situations.  Tread lightly!!! 
 2818  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
 2819  * the caller.  Calling this code willy nilly can result in the loss of data.
 2820  *
 2821  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
 2822  * B_CACHE for the non-VMIO case.
 2823  */
 2824 
 2825 int
 2826 allocbuf(struct buf *bp, int size)
 2827 {
 2828         int newbsize, mbsize;
 2829         int i;
 2830 
 2831         if (BUF_REFCNT(bp) == 0)
 2832                 panic("allocbuf: buffer not busy");
 2833 
 2834         if (bp->b_kvasize < size)
 2835                 panic("allocbuf: buffer too small");
 2836 
 2837         if ((bp->b_flags & B_VMIO) == 0) {
 2838                 caddr_t origbuf;
 2839                 int origbufsize;
 2840                 /*
 2841                  * Just get anonymous memory from the kernel.  Don't
 2842                  * mess with B_CACHE.
 2843                  */
 2844                 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2845                 if (bp->b_flags & B_MALLOC)
 2846                         newbsize = mbsize;
 2847                 else
 2848                         newbsize = round_page(size);
 2849 
 2850                 if (newbsize < bp->b_bufsize) {
 2851                         /*
 2852                          * malloced buffers are not shrunk
 2853                          */
 2854                         if (bp->b_flags & B_MALLOC) {
 2855                                 if (newbsize) {
 2856                                         bp->b_bcount = size;
 2857                                 } else {
 2858                                         free(bp->b_data, M_BIOBUF);
 2859                                         if (bp->b_bufsize) {
 2860                                                 atomic_subtract_long(
 2861                                                     &bufmallocspace,
 2862                                                     bp->b_bufsize);
 2863                                                 bufspacewakeup();
 2864                                                 bp->b_bufsize = 0;
 2865                                         }
 2866                                         bp->b_saveaddr = bp->b_kvabase;
 2867                                         bp->b_data = bp->b_saveaddr;
 2868                                         bp->b_bcount = 0;
 2869                                         bp->b_flags &= ~B_MALLOC;
 2870                                 }
 2871                                 return 1;
 2872                         }               
 2873                         vm_hold_free_pages(
 2874                             bp,
 2875                             (vm_offset_t) bp->b_data + newbsize,
 2876                             (vm_offset_t) bp->b_data + bp->b_bufsize);
 2877                 } else if (newbsize > bp->b_bufsize) {
 2878                         /*
 2879                          * We only use malloced memory on the first allocation.
 2880                          * and revert to page-allocated memory when the buffer
 2881                          * grows.
 2882                          */
 2883                         /*
 2884                          * There is a potential smp race here that could lead
 2885                          * to bufmallocspace slightly passing the max.  It
 2886                          * is probably extremely rare and not worth worrying
 2887                          * over.
 2888                          */
 2889                         if ( (bufmallocspace < maxbufmallocspace) &&
 2890                                 (bp->b_bufsize == 0) &&
 2891                                 (mbsize <= PAGE_SIZE/2)) {
 2892 
 2893                                 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
 2894                                 bp->b_bufsize = mbsize;
 2895                                 bp->b_bcount = size;
 2896                                 bp->b_flags |= B_MALLOC;
 2897                                 atomic_add_long(&bufmallocspace, mbsize);
 2898                                 return 1;
 2899                         }
 2900                         origbuf = NULL;
 2901                         origbufsize = 0;
 2902                         /*
 2903                          * If the buffer is growing on its other-than-first allocation,
 2904                          * then we revert to the page-allocation scheme.
 2905                          */
 2906                         if (bp->b_flags & B_MALLOC) {
 2907                                 origbuf = bp->b_data;
 2908                                 origbufsize = bp->b_bufsize;
 2909                                 bp->b_data = bp->b_kvabase;
 2910                                 if (bp->b_bufsize) {
 2911                                         atomic_subtract_long(&bufmallocspace,
 2912                                             bp->b_bufsize);
 2913                                         bufspacewakeup();
 2914                                         bp->b_bufsize = 0;
 2915                                 }
 2916                                 bp->b_flags &= ~B_MALLOC;
 2917                                 newbsize = round_page(newbsize);
 2918                         }
 2919                         vm_hold_load_pages(
 2920                             bp,
 2921                             (vm_offset_t) bp->b_data + bp->b_bufsize,
 2922                             (vm_offset_t) bp->b_data + newbsize);
 2923                         if (origbuf) {
 2924                                 bcopy(origbuf, bp->b_data, origbufsize);
 2925                                 free(origbuf, M_BIOBUF);
 2926                         }
 2927                 }
 2928         } else {
 2929                 int desiredpages;
 2930 
 2931                 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2932                 desiredpages = (size == 0) ? 0 :
 2933                         num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 2934 
 2935                 if (bp->b_flags & B_MALLOC)
 2936                         panic("allocbuf: VMIO buffer can't be malloced");
 2937                 /*
 2938                  * Set B_CACHE initially if buffer is 0 length or will become
 2939                  * 0-length.
 2940                  */
 2941                 if (size == 0 || bp->b_bufsize == 0)
 2942                         bp->b_flags |= B_CACHE;
 2943 
 2944                 if (newbsize < bp->b_bufsize) {
 2945                         /*
 2946                          * DEV_BSIZE aligned new buffer size is less then the
 2947                          * DEV_BSIZE aligned existing buffer size.  Figure out
 2948                          * if we have to remove any pages.
 2949                          */
 2950                         if (desiredpages < bp->b_npages) {
 2951                                 vm_page_t m;
 2952 
 2953                                 pmap_qremove((vm_offset_t)trunc_page(
 2954                                     (vm_offset_t)bp->b_data) +
 2955                                     (desiredpages << PAGE_SHIFT),
 2956                                     (bp->b_npages - desiredpages));
 2957                                 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 2958                                 vm_page_lock_queues();
 2959                                 for (i = desiredpages; i < bp->b_npages; i++) {
 2960                                         /*
 2961                                          * the page is not freed here -- it
 2962                                          * is the responsibility of 
 2963                                          * vnode_pager_setsize
 2964                                          */
 2965                                         m = bp->b_pages[i];
 2966                                         KASSERT(m != bogus_page,
 2967                                             ("allocbuf: bogus page found"));
 2968                                         while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
 2969                                                 vm_page_lock_queues();
 2970 
 2971                                         bp->b_pages[i] = NULL;
 2972                                         vm_page_unwire(m, 0);
 2973                                 }
 2974                                 vm_page_unlock_queues();
 2975                                 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 2976                                 bp->b_npages = desiredpages;
 2977                         }
 2978                 } else if (size > bp->b_bcount) {
 2979                         /*
 2980                          * We are growing the buffer, possibly in a 
 2981                          * byte-granular fashion.
 2982                          */
 2983                         struct vnode *vp;
 2984                         vm_object_t obj;
 2985                         vm_offset_t toff;
 2986                         vm_offset_t tinc;
 2987 
 2988                         /*
 2989                          * Step 1, bring in the VM pages from the object, 
 2990                          * allocating them if necessary.  We must clear
 2991                          * B_CACHE if these pages are not valid for the 
 2992                          * range covered by the buffer.
 2993                          */
 2994 
 2995                         vp = bp->b_vp;
 2996                         obj = bp->b_bufobj->bo_object;
 2997 
 2998                         VM_OBJECT_LOCK(obj);
 2999                         while (bp->b_npages < desiredpages) {
 3000                                 vm_page_t m;
 3001                                 vm_pindex_t pi;
 3002 
 3003                                 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
 3004                                 if ((m = vm_page_lookup(obj, pi)) == NULL) {
 3005                                         /*
 3006                                          * note: must allocate system pages
 3007                                          * since blocking here could intefere
 3008                                          * with paging I/O, no matter which
 3009                                          * process we are.
 3010                                          */
 3011                                         m = vm_page_alloc(obj, pi,
 3012                                             VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
 3013                                             VM_ALLOC_WIRED);
 3014                                         if (m == NULL) {
 3015                                                 atomic_add_int(&vm_pageout_deficit,
 3016                                                     desiredpages - bp->b_npages);
 3017                                                 VM_OBJECT_UNLOCK(obj);
 3018                                                 VM_WAIT;
 3019                                                 VM_OBJECT_LOCK(obj);
 3020                                         } else {
 3021                                                 if (m->valid == 0)
 3022                                                         bp->b_flags &= ~B_CACHE;
 3023                                                 bp->b_pages[bp->b_npages] = m;
 3024                                                 ++bp->b_npages;
 3025                                         }
 3026                                         continue;
 3027                                 }
 3028 
 3029                                 /*
 3030                                  * We found a page.  If we have to sleep on it,
 3031                                  * retry because it might have gotten freed out
 3032                                  * from under us.
 3033                                  *
 3034                                  * We can only test VPO_BUSY here.  Blocking on
 3035                                  * m->busy might lead to a deadlock:
 3036                                  *
 3037                                  *  vm_fault->getpages->cluster_read->allocbuf
 3038                                  *
 3039                                  */
 3040                                 if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
 3041                                         continue;
 3042 
 3043                                 /*
 3044                                  * We have a good page.
 3045                                  */
 3046                                 vm_page_lock_queues();
 3047                                 vm_page_wire(m);
 3048                                 vm_page_unlock_queues();
 3049                                 bp->b_pages[bp->b_npages] = m;
 3050                                 ++bp->b_npages;
 3051                         }
 3052 
 3053                         /*
 3054                          * Step 2.  We've loaded the pages into the buffer,
 3055                          * we have to figure out if we can still have B_CACHE
 3056                          * set.  Note that B_CACHE is set according to the
 3057                          * byte-granular range ( bcount and size ), new the
 3058                          * aligned range ( newbsize ).
 3059                          *
 3060                          * The VM test is against m->valid, which is DEV_BSIZE
 3061                          * aligned.  Needless to say, the validity of the data
 3062                          * needs to also be DEV_BSIZE aligned.  Note that this
 3063                          * fails with NFS if the server or some other client
 3064                          * extends the file's EOF.  If our buffer is resized, 
 3065                          * B_CACHE may remain set! XXX
 3066                          */
 3067 
 3068                         toff = bp->b_bcount;
 3069                         tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 3070 
 3071                         while ((bp->b_flags & B_CACHE) && toff < size) {
 3072                                 vm_pindex_t pi;
 3073 
 3074                                 if (tinc > (size - toff))
 3075                                         tinc = size - toff;
 3076 
 3077                                 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 
 3078                                     PAGE_SHIFT;
 3079 
 3080                                 vfs_buf_test_cache(
 3081                                     bp, 
 3082                                     bp->b_offset,
 3083                                     toff, 
 3084                                     tinc, 
 3085                                     bp->b_pages[pi]
 3086                                 );
 3087                                 toff += tinc;
 3088                                 tinc = PAGE_SIZE;
 3089                         }
 3090                         VM_OBJECT_UNLOCK(obj);
 3091 
 3092                         /*
 3093                          * Step 3, fixup the KVM pmap.  Remember that
 3094                          * bp->b_data is relative to bp->b_offset, but 
 3095                          * bp->b_offset may be offset into the first page.
 3096                          */
 3097 
 3098                         bp->b_data = (caddr_t)
 3099                             trunc_page((vm_offset_t)bp->b_data);
 3100                         pmap_qenter(
 3101                             (vm_offset_t)bp->b_data,
 3102                             bp->b_pages, 
 3103                             bp->b_npages
 3104                         );
 3105                         
 3106                         bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 
 3107                             (vm_offset_t)(bp->b_offset & PAGE_MASK));
 3108                 }
 3109         }
 3110         if (newbsize < bp->b_bufsize)
 3111                 bufspacewakeup();
 3112         bp->b_bufsize = newbsize;       /* actual buffer allocation     */
 3113         bp->b_bcount = size;            /* requested buffer size        */
 3114         return 1;
 3115 }
 3116 
 3117 void
 3118 biodone(struct bio *bp)
 3119 {
 3120         void (*done)(struct bio *);
 3121 
 3122         mtx_lock(&bdonelock);
 3123         bp->bio_flags |= BIO_DONE;
 3124         done = bp->bio_done;
 3125         if (done == NULL)
 3126                 wakeup(bp);
 3127         mtx_unlock(&bdonelock);
 3128         if (done != NULL)
 3129                 done(bp);
 3130 }
 3131 
 3132 /*
 3133  * Wait for a BIO to finish.
 3134  *
 3135  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
 3136  * case is not yet clear.
 3137  */
 3138 int
 3139 biowait(struct bio *bp, const char *wchan)
 3140 {
 3141 
 3142         mtx_lock(&bdonelock);
 3143         while ((bp->bio_flags & BIO_DONE) == 0)
 3144                 msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
 3145         mtx_unlock(&bdonelock);
 3146         if (bp->bio_error != 0)
 3147                 return (bp->bio_error);
 3148         if (!(bp->bio_flags & BIO_ERROR))
 3149                 return (0);
 3150         return (EIO);
 3151 }
 3152 
 3153 void
 3154 biofinish(struct bio *bp, struct devstat *stat, int error)
 3155 {
 3156         
 3157         if (error) {
 3158                 bp->bio_error = error;
 3159                 bp->bio_flags |= BIO_ERROR;
 3160         }
 3161         if (stat != NULL)
 3162                 devstat_end_transaction_bio(stat, bp);
 3163         biodone(bp);
 3164 }
 3165 
 3166 /*
 3167  *      bufwait:
 3168  *
 3169  *      Wait for buffer I/O completion, returning error status.  The buffer
 3170  *      is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
 3171  *      error and cleared.
 3172  */
 3173 int
 3174 bufwait(struct buf *bp)
 3175 {
 3176         if (bp->b_iocmd == BIO_READ)
 3177                 bwait(bp, PRIBIO, "biord");
 3178         else
 3179                 bwait(bp, PRIBIO, "biowr");
 3180         if (bp->b_flags & B_EINTR) {
 3181                 bp->b_flags &= ~B_EINTR;
 3182                 return (EINTR);
 3183         }
 3184         if (bp->b_ioflags & BIO_ERROR) {
 3185                 return (bp->b_error ? bp->b_error : EIO);
 3186         } else {
 3187                 return (0);
 3188         }
 3189 }
 3190 
 3191  /*
 3192   * Call back function from struct bio back up to struct buf.
 3193   */
 3194 static void
 3195 bufdonebio(struct bio *bip)
 3196 {
 3197         struct buf *bp;
 3198 
 3199         bp = bip->bio_caller2;
 3200         bp->b_resid = bp->b_bcount - bip->bio_completed;
 3201         bp->b_resid = bip->bio_resid;   /* XXX: remove */
 3202         bp->b_ioflags = bip->bio_flags;
 3203         bp->b_error = bip->bio_error;
 3204         if (bp->b_error)
 3205                 bp->b_ioflags |= BIO_ERROR;
 3206         bufdone(bp);
 3207         g_destroy_bio(bip);
 3208 }
 3209 
 3210 void
 3211 dev_strategy(struct cdev *dev, struct buf *bp)
 3212 {
 3213         struct cdevsw *csw;
 3214         struct bio *bip;
 3215 
 3216         if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
 3217                 panic("b_iocmd botch");
 3218         for (;;) {
 3219                 bip = g_new_bio();
 3220                 if (bip != NULL)
 3221                         break;
 3222                 /* Try again later */
 3223                 tsleep(&bp, PRIBIO, "dev_strat", hz/10);
 3224         }
 3225         bip->bio_cmd = bp->b_iocmd;
 3226         bip->bio_offset = bp->b_iooffset;
 3227         bip->bio_length = bp->b_bcount;
 3228         bip->bio_bcount = bp->b_bcount; /* XXX: remove */
 3229         bip->bio_data = bp->b_data;
 3230         bip->bio_done = bufdonebio;
 3231         bip->bio_caller2 = bp;
 3232         bip->bio_dev = dev;
 3233         KASSERT(dev->si_refcount > 0,
 3234             ("dev_strategy on un-referenced struct cdev *(%s)",
 3235             devtoname(dev)));
 3236         csw = dev_refthread(dev);
 3237         if (csw == NULL) {
 3238                 g_destroy_bio(bip);
 3239                 bp->b_error = ENXIO;
 3240                 bp->b_ioflags = BIO_ERROR;
 3241                 bufdone(bp);
 3242                 return;
 3243         }
 3244         (*csw->d_strategy)(bip);
 3245         dev_relthread(dev);
 3246 }
 3247 
 3248 /*
 3249  *      bufdone:
 3250  *
 3251  *      Finish I/O on a buffer, optionally calling a completion function.
 3252  *      This is usually called from an interrupt so process blocking is
 3253  *      not allowed.
 3254  *
 3255  *      biodone is also responsible for setting B_CACHE in a B_VMIO bp.
 3256  *      In a non-VMIO bp, B_CACHE will be set on the next getblk() 
 3257  *      assuming B_INVAL is clear.
 3258  *
 3259  *      For the VMIO case, we set B_CACHE if the op was a read and no
 3260  *      read error occured, or if the op was a write.  B_CACHE is never
 3261  *      set if the buffer is invalid or otherwise uncacheable.
 3262  *
 3263  *      biodone does not mess with B_INVAL, allowing the I/O routine or the
 3264  *      initiator to leave B_INVAL set to brelse the buffer out of existance
 3265  *      in the biodone routine.
 3266  */
 3267 void
 3268 bufdone(struct buf *bp)
 3269 {
 3270         struct bufobj *dropobj;
 3271         void    (*biodone)(struct buf *);
 3272 
 3273         CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 3274         dropobj = NULL;
 3275 
 3276         KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
 3277             BUF_REFCNT(bp)));
 3278         KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 3279 
 3280         runningbufwakeup(bp);
 3281         if (bp->b_iocmd == BIO_WRITE)
 3282                 dropobj = bp->b_bufobj;
 3283         /* call optional completion function if requested */
 3284         if (bp->b_iodone != NULL) {
 3285                 biodone = bp->b_iodone;
 3286                 bp->b_iodone = NULL;
 3287                 (*biodone) (bp);
 3288                 if (dropobj)
 3289                         bufobj_wdrop(dropobj);
 3290                 return;
 3291         }
 3292 
 3293         bufdone_finish(bp);
 3294 
 3295         if (dropobj)
 3296                 bufobj_wdrop(dropobj);
 3297 }
 3298 
 3299 void
 3300 bufdone_finish(struct buf *bp)
 3301 {
 3302         KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
 3303             BUF_REFCNT(bp)));
 3304 
 3305         if (!LIST_EMPTY(&bp->b_dep))
 3306                 buf_complete(bp);
 3307 
 3308         if (bp->b_flags & B_VMIO) {
 3309                 int i;
 3310                 vm_ooffset_t foff;
 3311                 vm_page_t m;
 3312                 vm_object_t obj;
 3313                 int iosize;
 3314                 struct vnode *vp = bp->b_vp;
 3315                 boolean_t are_queues_locked;
 3316 
 3317                 obj = bp->b_bufobj->bo_object;
 3318 
 3319 #if defined(VFS_BIO_DEBUG)
 3320                 mp_fixme("usecount and vflag accessed without locks.");
 3321                 if (vp->v_usecount == 0) {
 3322                         panic("biodone: zero vnode ref count");
 3323                 }
 3324 
 3325                 KASSERT(vp->v_object != NULL,
 3326                         ("biodone: vnode %p has no vm_object", vp));
 3327 #endif
 3328 
 3329                 foff = bp->b_offset;
 3330                 KASSERT(bp->b_offset != NOOFFSET,
 3331                     ("biodone: no buffer offset"));
 3332 
 3333                 VM_OBJECT_LOCK(obj);
 3334 #if defined(VFS_BIO_DEBUG)
 3335                 if (obj->paging_in_progress < bp->b_npages) {
 3336                         printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
 3337                             obj->paging_in_progress, bp->b_npages);
 3338                 }
 3339 #endif
 3340 
 3341                 /*
 3342                  * Set B_CACHE if the op was a normal read and no error
 3343                  * occured.  B_CACHE is set for writes in the b*write()
 3344                  * routines.
 3345                  */
 3346                 iosize = bp->b_bcount - bp->b_resid;
 3347                 if (bp->b_iocmd == BIO_READ &&
 3348                     !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 3349                     !(bp->b_ioflags & BIO_ERROR)) {
 3350                         bp->b_flags |= B_CACHE;
 3351                 }
 3352                 if (bp->b_iocmd == BIO_READ) {
 3353                         vm_page_lock_queues();
 3354                         are_queues_locked = TRUE;
 3355                 } else
 3356                         are_queues_locked = FALSE;
 3357                 for (i = 0; i < bp->b_npages; i++) {
 3358                         int bogusflag = 0;
 3359                         int resid;
 3360 
 3361                         resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 3362                         if (resid > iosize)
 3363                                 resid = iosize;
 3364 
 3365                         /*
 3366                          * cleanup bogus pages, restoring the originals
 3367                          */
 3368                         m = bp->b_pages[i];
 3369                         if (m == bogus_page) {
 3370                                 bogusflag = 1;
 3371                                 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
 3372                                 if (m == NULL)
 3373                                         panic("biodone: page disappeared!");
 3374                                 bp->b_pages[i] = m;
 3375                                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3376                                     bp->b_pages, bp->b_npages);
 3377                         }
 3378 #if defined(VFS_BIO_DEBUG)
 3379                         if (OFF_TO_IDX(foff) != m->pindex) {
 3380                                 printf(
 3381 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
 3382                                     (intmax_t)foff, (uintmax_t)m->pindex);
 3383                         }
 3384 #endif
 3385 
 3386                         /*
 3387                          * In the write case, the valid and clean bits are
 3388                          * already changed correctly ( see bdwrite() ), so we 
 3389                          * only need to do this here in the read case.
 3390                          */
 3391                         if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
 3392                                 vfs_page_set_valid(bp, foff, i, m);
 3393                         }
 3394 
 3395                         /*
 3396                          * when debugging new filesystems or buffer I/O methods, this
 3397                          * is the most common error that pops up.  if you see this, you
 3398                          * have not set the page busy flag correctly!!!
 3399                          */
 3400                         if (m->busy == 0) {
 3401                                 printf("biodone: page busy < 0, "
 3402                                     "pindex: %d, foff: 0x(%x,%x), "
 3403                                     "resid: %d, index: %d\n",
 3404                                     (int) m->pindex, (int)(foff >> 32),
 3405                                                 (int) foff & 0xffffffff, resid, i);
 3406                                 if (!vn_isdisk(vp, NULL))
 3407                                         printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
 3408                                             (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
 3409                                             (intmax_t) bp->b_lblkno,
 3410                                             bp->b_flags, bp->b_npages);
 3411                                 else
 3412                                         printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
 3413                                             (intmax_t) bp->b_lblkno,
 3414                                             bp->b_flags, bp->b_npages);
 3415                                 printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
 3416                                     (u_long)m->valid, (u_long)m->dirty,
 3417                                     m->wire_count);
 3418                                 panic("biodone: page busy < 0\n");
 3419                         }
 3420                         vm_page_io_finish(m);
 3421                         vm_object_pip_subtract(obj, 1);
 3422                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3423                         iosize -= resid;
 3424                 }
 3425                 if (are_queues_locked)
 3426                         vm_page_unlock_queues();
 3427                 vm_object_pip_wakeupn(obj, 0);
 3428                 VM_OBJECT_UNLOCK(obj);
 3429         }
 3430 
 3431         /*
 3432          * For asynchronous completions, release the buffer now. The brelse
 3433          * will do a wakeup there if necessary - so no need to do a wakeup
 3434          * here in the async case. The sync case always needs to do a wakeup.
 3435          */
 3436 
 3437         if (bp->b_flags & B_ASYNC) {
 3438                 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
 3439                         brelse(bp);
 3440                 else
 3441                         bqrelse(bp);
 3442         } else
 3443                 bdone(bp);
 3444 }
 3445 
 3446 /*
 3447  * This routine is called in lieu of iodone in the case of
 3448  * incomplete I/O.  This keeps the busy status for pages
 3449  * consistant.
 3450  */
 3451 void
 3452 vfs_unbusy_pages(struct buf *bp)
 3453 {
 3454         int i;
 3455         vm_object_t obj;
 3456         vm_page_t m;
 3457 
 3458         runningbufwakeup(bp);
 3459         if (!(bp->b_flags & B_VMIO))
 3460                 return;
 3461 
 3462         obj = bp->b_bufobj->bo_object;
 3463         VM_OBJECT_LOCK(obj);
 3464         for (i = 0; i < bp->b_npages; i++) {
 3465                 m = bp->b_pages[i];
 3466                 if (m == bogus_page) {
 3467                         m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 3468                         if (!m)
 3469                                 panic("vfs_unbusy_pages: page missing\n");
 3470                         bp->b_pages[i] = m;
 3471                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3472                             bp->b_pages, bp->b_npages);
 3473                 }
 3474                 vm_object_pip_subtract(obj, 1);
 3475                 vm_page_io_finish(m);
 3476         }
 3477         vm_object_pip_wakeupn(obj, 0);
 3478         VM_OBJECT_UNLOCK(obj);
 3479 }
 3480 
 3481 /*
 3482  * vfs_page_set_valid:
 3483  *
 3484  *      Set the valid bits in a page based on the supplied offset.   The
 3485  *      range is restricted to the buffer's size.
 3486  *
 3487  *      This routine is typically called after a read completes.
 3488  */
 3489 static void
 3490 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
 3491 {
 3492         vm_ooffset_t soff, eoff;
 3493 
 3494         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3495         /*
 3496          * Start and end offsets in buffer.  eoff - soff may not cross a
 3497          * page boundry or cross the end of the buffer.  The end of the
 3498          * buffer, in this case, is our file EOF, not the allocation size
 3499          * of the buffer.
 3500          */
 3501         soff = off;
 3502         eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3503         if (eoff > bp->b_offset + bp->b_bcount)
 3504                 eoff = bp->b_offset + bp->b_bcount;
 3505 
 3506         /*
 3507          * Set valid range.  This is typically the entire buffer and thus the
 3508          * entire page.
 3509          */
 3510         if (eoff > soff) {
 3511                 vm_page_set_validclean(
 3512                     m,
 3513                    (vm_offset_t) (soff & PAGE_MASK),
 3514                    (vm_offset_t) (eoff - soff)
 3515                 );
 3516         }
 3517 }
 3518 
 3519 /*
 3520  * This routine is called before a device strategy routine.
 3521  * It is used to tell the VM system that paging I/O is in
 3522  * progress, and treat the pages associated with the buffer
 3523  * almost as being VPO_BUSY.  Also the object paging_in_progress
 3524  * flag is handled to make sure that the object doesn't become
 3525  * inconsistant.
 3526  *
 3527  * Since I/O has not been initiated yet, certain buffer flags
 3528  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
 3529  * and should be ignored.
 3530  */
 3531 void
 3532 vfs_busy_pages(struct buf *bp, int clear_modify)
 3533 {
 3534         int i, bogus;
 3535         vm_object_t obj;
 3536         vm_ooffset_t foff;
 3537         vm_page_t m;
 3538 
 3539         if (!(bp->b_flags & B_VMIO))
 3540                 return;
 3541 
 3542         obj = bp->b_bufobj->bo_object;
 3543         foff = bp->b_offset;
 3544         KASSERT(bp->b_offset != NOOFFSET,
 3545             ("vfs_busy_pages: no buffer offset"));
 3546         VM_OBJECT_LOCK(obj);
 3547         if (bp->b_bufsize != 0)
 3548                 vfs_setdirty_locked_object(bp);
 3549 retry:
 3550         for (i = 0; i < bp->b_npages; i++) {
 3551                 m = bp->b_pages[i];
 3552 
 3553                 if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
 3554                         goto retry;
 3555         }
 3556         bogus = 0;
 3557         vm_page_lock_queues();
 3558         for (i = 0; i < bp->b_npages; i++) {
 3559                 m = bp->b_pages[i];
 3560 
 3561                 if ((bp->b_flags & B_CLUSTER) == 0) {
 3562                         vm_object_pip_add(obj, 1);
 3563                         vm_page_io_start(m);
 3564                 }
 3565                 /*
 3566                  * When readying a buffer for a read ( i.e
 3567                  * clear_modify == 0 ), it is important to do
 3568                  * bogus_page replacement for valid pages in 
 3569                  * partially instantiated buffers.  Partially 
 3570                  * instantiated buffers can, in turn, occur when
 3571                  * reconstituting a buffer from its VM backing store
 3572                  * base.  We only have to do this if B_CACHE is
 3573                  * clear ( which causes the I/O to occur in the
 3574                  * first place ).  The replacement prevents the read
 3575                  * I/O from overwriting potentially dirty VM-backed
 3576                  * pages.  XXX bogus page replacement is, uh, bogus.
 3577                  * It may not work properly with small-block devices.
 3578                  * We need to find a better way.
 3579                  */
 3580                 pmap_remove_all(m);
 3581                 if (clear_modify)
 3582                         vfs_page_set_valid(bp, foff, i, m);
 3583                 else if (m->valid == VM_PAGE_BITS_ALL &&
 3584                     (bp->b_flags & B_CACHE) == 0) {
 3585                         bp->b_pages[i] = bogus_page;
 3586                         bogus++;
 3587                 }
 3588                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3589         }
 3590         vm_page_unlock_queues();
 3591         VM_OBJECT_UNLOCK(obj);
 3592         if (bogus)
 3593                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3594                     bp->b_pages, bp->b_npages);
 3595 }
 3596 
 3597 /*
 3598  * Tell the VM system that the pages associated with this buffer
 3599  * are clean.  This is used for delayed writes where the data is
 3600  * going to go to disk eventually without additional VM intevention.
 3601  *
 3602  * Note that while we only really need to clean through to b_bcount, we
 3603  * just go ahead and clean through to b_bufsize.
 3604  */
 3605 static void
 3606 vfs_clean_pages(struct buf *bp)
 3607 {
 3608         int i;
 3609         vm_ooffset_t foff, noff, eoff;
 3610         vm_page_t m;
 3611 
 3612         if (!(bp->b_flags & B_VMIO))
 3613                 return;
 3614 
 3615         foff = bp->b_offset;
 3616         KASSERT(bp->b_offset != NOOFFSET,
 3617             ("vfs_clean_pages: no buffer offset"));
 3618         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3619         vm_page_lock_queues();
 3620         for (i = 0; i < bp->b_npages; i++) {
 3621                 m = bp->b_pages[i];
 3622                 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3623                 eoff = noff;
 3624 
 3625                 if (eoff > bp->b_offset + bp->b_bufsize)
 3626                         eoff = bp->b_offset + bp->b_bufsize;
 3627                 vfs_page_set_valid(bp, foff, i, m);
 3628                 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 3629                 foff = noff;
 3630         }
 3631         vm_page_unlock_queues();
 3632         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3633 }
 3634 
 3635 /*
 3636  *      vfs_bio_set_validclean:
 3637  *
 3638  *      Set the range within the buffer to valid and clean.  The range is 
 3639  *      relative to the beginning of the buffer, b_offset.  Note that b_offset
 3640  *      itself may be offset from the beginning of the first page.
 3641  *
 3642  */
 3643 
 3644 void   
 3645 vfs_bio_set_validclean(struct buf *bp, int base, int size)
 3646 {
 3647         int i, n;
 3648         vm_page_t m;
 3649 
 3650         if (!(bp->b_flags & B_VMIO))
 3651                 return;
 3652         /*
 3653          * Fixup base to be relative to beginning of first page.
 3654          * Set initial n to be the maximum number of bytes in the
 3655          * first page that can be validated.
 3656          */
 3657 
 3658         base += (bp->b_offset & PAGE_MASK);
 3659         n = PAGE_SIZE - (base & PAGE_MASK);
 3660 
 3661         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3662         vm_page_lock_queues();
 3663         for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 3664                 m = bp->b_pages[i];
 3665                 if (n > size)
 3666                         n = size;
 3667                 vm_page_set_validclean(m, base & PAGE_MASK, n);
 3668                 base += n;
 3669                 size -= n;
 3670                 n = PAGE_SIZE;
 3671         }
 3672         vm_page_unlock_queues();
 3673         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3674 }
 3675 
 3676 /*
 3677  *      vfs_bio_clrbuf:
 3678  *
 3679  *      clear a buffer.  This routine essentially fakes an I/O, so we need
 3680  *      to clear BIO_ERROR and B_INVAL.
 3681  *
 3682  *      Note that while we only theoretically need to clear through b_bcount,
 3683  *      we go ahead and clear through b_bufsize.
 3684  */
 3685 
 3686 void
 3687 vfs_bio_clrbuf(struct buf *bp) 
 3688 {
 3689         int i, j, mask = 0;
 3690         caddr_t sa, ea;
 3691 
 3692         if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
 3693                 clrbuf(bp);
 3694                 return;
 3695         }
 3696 
 3697         bp->b_flags &= ~B_INVAL;
 3698         bp->b_ioflags &= ~BIO_ERROR;
 3699         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3700         if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
 3701             (bp->b_offset & PAGE_MASK) == 0) {
 3702                 if (bp->b_pages[0] == bogus_page)
 3703                         goto unlock;
 3704                 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
 3705                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
 3706                 if ((bp->b_pages[0]->valid & mask) == mask)
 3707                         goto unlock;
 3708                 if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
 3709                     ((bp->b_pages[0]->valid & mask) == 0)) {
 3710                         bzero(bp->b_data, bp->b_bufsize);
 3711                         bp->b_pages[0]->valid |= mask;
 3712                         goto unlock;
 3713                 }
 3714         }
 3715         ea = sa = bp->b_data;
 3716         for(i = 0; i < bp->b_npages; i++, sa = ea) {
 3717                 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
 3718                 ea = (caddr_t)(vm_offset_t)ulmin(
 3719                     (u_long)(vm_offset_t)ea,
 3720                     (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
 3721                 if (bp->b_pages[i] == bogus_page)
 3722                         continue;
 3723                 j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
 3724                 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
 3725                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
 3726                 if ((bp->b_pages[i]->valid & mask) == mask)
 3727                         continue;
 3728                 if ((bp->b_pages[i]->valid & mask) == 0) {
 3729                         if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
 3730                                 bzero(sa, ea - sa);
 3731                 } else {
 3732                         for (; sa < ea; sa += DEV_BSIZE, j++) {
 3733                                 if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
 3734                                     (bp->b_pages[i]->valid & (1 << j)) == 0)
 3735                                         bzero(sa, DEV_BSIZE);
 3736                         }
 3737                 }
 3738                 bp->b_pages[i]->valid |= mask;
 3739         }
 3740 unlock:
 3741         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3742         bp->b_resid = 0;
 3743 }
 3744 
 3745 /*
 3746  * vm_hold_load_pages and vm_hold_free_pages get pages into
 3747  * a buffers address space.  The pages are anonymous and are
 3748  * not associated with a file object.
 3749  */
 3750 static void
 3751 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 3752 {
 3753         vm_offset_t pg;
 3754         vm_page_t p;
 3755         int index;
 3756 
 3757         to = round_page(to);
 3758         from = round_page(from);
 3759         index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3760 
 3761         VM_OBJECT_LOCK(kernel_object);
 3762         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3763 tryagain:
 3764                 /*
 3765                  * note: must allocate system pages since blocking here
 3766                  * could intefere with paging I/O, no matter which
 3767                  * process we are.
 3768                  */
 3769                 p = vm_page_alloc(kernel_object,
 3770                         ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
 3771                     VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 3772                 if (!p) {
 3773                         atomic_add_int(&vm_pageout_deficit,
 3774                             (to - pg) >> PAGE_SHIFT);
 3775                         VM_OBJECT_UNLOCK(kernel_object);
 3776                         VM_WAIT;
 3777                         VM_OBJECT_LOCK(kernel_object);
 3778                         goto tryagain;
 3779                 }
 3780                 p->valid = VM_PAGE_BITS_ALL;
 3781                 pmap_qenter(pg, &p, 1);
 3782                 bp->b_pages[index] = p;
 3783         }
 3784         VM_OBJECT_UNLOCK(kernel_object);
 3785         bp->b_npages = index;
 3786 }
 3787 
 3788 /* Return pages associated with this buf to the vm system */
 3789 static void
 3790 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 3791 {
 3792         vm_offset_t pg;
 3793         vm_page_t p;
 3794         int index, newnpages;
 3795 
 3796         from = round_page(from);
 3797         to = round_page(to);
 3798         newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3799 
 3800         VM_OBJECT_LOCK(kernel_object);
 3801         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3802                 p = bp->b_pages[index];
 3803                 if (p && (index < bp->b_npages)) {
 3804                         if (p->busy) {
 3805                                 printf(
 3806                             "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
 3807                                     (intmax_t)bp->b_blkno,
 3808                                     (intmax_t)bp->b_lblkno);
 3809                         }
 3810                         bp->b_pages[index] = NULL;
 3811                         pmap_qremove(pg, 1);
 3812                         vm_page_lock_queues();
 3813                         vm_page_unwire(p, 0);
 3814                         vm_page_free(p);
 3815                         vm_page_unlock_queues();
 3816                 }
 3817         }
 3818         VM_OBJECT_UNLOCK(kernel_object);
 3819         bp->b_npages = newnpages;
 3820 }
 3821 
 3822 /*
 3823  * Map an IO request into kernel virtual address space.
 3824  *
 3825  * All requests are (re)mapped into kernel VA space.
 3826  * Notice that we use b_bufsize for the size of the buffer
 3827  * to be mapped.  b_bcount might be modified by the driver.
 3828  *
 3829  * Note that even if the caller determines that the address space should
 3830  * be valid, a race or a smaller-file mapped into a larger space may
 3831  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
 3832  * check the return value.
 3833  */
 3834 int
 3835 vmapbuf(struct buf *bp)
 3836 {
 3837         caddr_t addr, kva;
 3838         vm_prot_t prot;
 3839         int pidx, i;
 3840         struct vm_page *m;
 3841         struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
 3842 
 3843         if (bp->b_bufsize < 0)
 3844                 return (-1);
 3845         prot = VM_PROT_READ;
 3846         if (bp->b_iocmd == BIO_READ)
 3847                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 3848         for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
 3849              addr < bp->b_data + bp->b_bufsize;
 3850              addr += PAGE_SIZE, pidx++) {
 3851                 /*
 3852                  * Do the vm_fault if needed; do the copy-on-write thing
 3853                  * when reading stuff off device into memory.
 3854                  *
 3855                  * NOTE! Must use pmap_extract() because addr may be in
 3856                  * the userland address space, and kextract is only guarenteed
 3857                  * to work for the kernland address space (see: sparc64 port).
 3858                  */
 3859 retry:
 3860                 if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
 3861                     prot) < 0) {
 3862                         vm_page_lock_queues();
 3863                         for (i = 0; i < pidx; ++i) {
 3864                                 vm_page_unhold(bp->b_pages[i]);
 3865                                 bp->b_pages[i] = NULL;
 3866                         }
 3867                         vm_page_unlock_queues();
 3868                         return(-1);
 3869                 }
 3870                 m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
 3871                 if (m == NULL)
 3872                         goto retry;
 3873                 bp->b_pages[pidx] = m;
 3874         }
 3875         if (pidx > btoc(MAXPHYS))
 3876                 panic("vmapbuf: mapped more than MAXPHYS");
 3877         pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
 3878         
 3879         kva = bp->b_saveaddr;
 3880         bp->b_npages = pidx;
 3881         bp->b_saveaddr = bp->b_data;
 3882         bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
 3883         return(0);
 3884 }
 3885 
 3886 /*
 3887  * Free the io map PTEs associated with this IO operation.
 3888  * We also invalidate the TLB entries and restore the original b_addr.
 3889  */
 3890 void
 3891 vunmapbuf(struct buf *bp)
 3892 {
 3893         int pidx;
 3894         int npages;
 3895 
 3896         npages = bp->b_npages;
 3897         pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
 3898         vm_page_lock_queues();
 3899         for (pidx = 0; pidx < npages; pidx++)
 3900                 vm_page_unhold(bp->b_pages[pidx]);
 3901         vm_page_unlock_queues();
 3902 
 3903         bp->b_data = bp->b_saveaddr;
 3904 }
 3905 
 3906 void
 3907 bdone(struct buf *bp)
 3908 {
 3909 
 3910         mtx_lock(&bdonelock);
 3911         bp->b_flags |= B_DONE;
 3912         wakeup(bp);
 3913         mtx_unlock(&bdonelock);
 3914 }
 3915 
 3916 void
 3917 bwait(struct buf *bp, u_char pri, const char *wchan)
 3918 {
 3919 
 3920         mtx_lock(&bdonelock);
 3921         while ((bp->b_flags & B_DONE) == 0)
 3922                 msleep(bp, &bdonelock, pri, wchan, 0);
 3923         mtx_unlock(&bdonelock);
 3924 }
 3925 
 3926 int
 3927 bufsync(struct bufobj *bo, int waitfor, struct thread *td)
 3928 {
 3929 
 3930         return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
 3931 }
 3932 
 3933 void
 3934 bufstrategy(struct bufobj *bo, struct buf *bp)
 3935 {
 3936         int i = 0;
 3937         struct vnode *vp;
 3938 
 3939         vp = bp->b_vp;
 3940         KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
 3941         KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
 3942             ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
 3943         i = VOP_STRATEGY(vp, bp);
 3944         KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
 3945 }
 3946 
 3947 void
 3948 bufobj_wrefl(struct bufobj *bo)
 3949 {
 3950 
 3951         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 3952         ASSERT_BO_LOCKED(bo);
 3953         bo->bo_numoutput++;
 3954 }
 3955 
 3956 void
 3957 bufobj_wref(struct bufobj *bo)
 3958 {
 3959 
 3960         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 3961         BO_LOCK(bo);
 3962         bo->bo_numoutput++;
 3963         BO_UNLOCK(bo);
 3964 }
 3965 
 3966 void
 3967 bufobj_wdrop(struct bufobj *bo)
 3968 {
 3969 
 3970         KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
 3971         BO_LOCK(bo);
 3972         KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
 3973         if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
 3974                 bo->bo_flag &= ~BO_WWAIT;
 3975                 wakeup(&bo->bo_numoutput);
 3976         }
 3977         BO_UNLOCK(bo);
 3978 }
 3979 
 3980 int
 3981 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
 3982 {
 3983         int error;
 3984 
 3985         KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
 3986         ASSERT_BO_LOCKED(bo);
 3987         error = 0;
 3988         while (bo->bo_numoutput) {
 3989                 bo->bo_flag |= BO_WWAIT;
 3990                 error = msleep(&bo->bo_numoutput, BO_MTX(bo),
 3991                     slpflag | (PRIBIO + 1), "bo_wwait", timeo);
 3992                 if (error)
 3993                         break;
 3994         }
 3995         return (error);
 3996 }
 3997 
 3998 void
 3999 bpin(struct buf *bp)
 4000 {
 4001         mtx_lock(&bpinlock);
 4002         bp->b_pin_count++;
 4003         mtx_unlock(&bpinlock);
 4004 }
 4005 
 4006 void
 4007 bunpin(struct buf *bp)
 4008 {
 4009         mtx_lock(&bpinlock);
 4010         if (--bp->b_pin_count == 0)
 4011                 wakeup(bp);
 4012         mtx_unlock(&bpinlock);
 4013 }
 4014 
 4015 void
 4016 bunpin_wait(struct buf *bp)
 4017 {
 4018         mtx_lock(&bpinlock);
 4019         while (bp->b_pin_count > 0)
 4020                 msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
 4021         mtx_unlock(&bpinlock);
 4022 }
 4023 
 4024 #include "opt_ddb.h"
 4025 #ifdef DDB
 4026 #include <ddb/ddb.h>
 4027 
 4028 /* DDB command to show buffer data */
 4029 DB_SHOW_COMMAND(buffer, db_show_buffer)
 4030 {
 4031         /* get args */
 4032         struct buf *bp = (struct buf *)addr;
 4033 
 4034         if (!have_addr) {
 4035                 db_printf("usage: show buffer <addr>\n");
 4036                 return;
 4037         }
 4038 
 4039         db_printf("buf at %p\n", bp);
 4040         db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
 4041         db_printf(
 4042             "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 4043             "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
 4044             bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 4045             bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
 4046             bp->b_dep.lh_first);
 4047         if (bp->b_npages) {
 4048                 int i;
 4049                 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 4050                 for (i = 0; i < bp->b_npages; i++) {
 4051                         vm_page_t m;
 4052                         m = bp->b_pages[i];
 4053                         db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
 4054                             (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
 4055                         if ((i + 1) < bp->b_npages)
 4056                                 db_printf(",");
 4057                 }
 4058                 db_printf("\n");
 4059         }
 4060         lockmgr_printinfo(&bp->b_lock);
 4061 }
 4062 
 4063 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
 4064 {
 4065         struct buf *bp;
 4066         int i;
 4067 
 4068         for (i = 0; i < nbuf; i++) {
 4069                 bp = &buf[i];
 4070                 if (lockcount(&bp->b_lock)) {
 4071                         db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4072                         db_printf("\n");
 4073                 }
 4074         }
 4075 }
 4076 
 4077 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
 4078 {
 4079         struct vnode *vp;
 4080         struct buf *bp;
 4081 
 4082         if (!have_addr) {
 4083                 db_printf("usage: show vnodebufs <addr>\n");
 4084                 return;
 4085         }
 4086         vp = (struct vnode *)addr;
 4087         db_printf("Clean buffers:\n");
 4088         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
 4089                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4090                 db_printf("\n");
 4091         }
 4092         db_printf("Dirty buffers:\n");
 4093         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
 4094                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4095                 db_printf("\n");
 4096         }
 4097 }
 4098 #endif /* DDB */

Cache object: 4ecbc8e8cbd51d205d648bd3bc9b3c14


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.