The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Poul-Henning Kamp
    3  * Copyright (c) 1994,1997 John S. Dyson
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * this file contains a new buffer I/O scheme implementing a coherent
   30  * VM object and buffer cache scheme.  Pains have been taken to make
   31  * sure that the performance degradation associated with schemes such
   32  * as this is not realized.
   33  *
   34  * Author:  John S. Dyson
   35  * Significant help during the development and debugging phases
   36  * had been provided by David Greenman, also of the FreeBSD core team.
   37  *
   38  * see man buf(9) for more info.
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/8.0/sys/kern/vfs_bio.c 195773 2009-07-19 20:25:59Z kib $");
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/bio.h>
   47 #include <sys/conf.h>
   48 #include <sys/buf.h>
   49 #include <sys/devicestat.h>
   50 #include <sys/eventhandler.h>
   51 #include <sys/fail.h>
   52 #include <sys/limits.h>
   53 #include <sys/lock.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mount.h>
   56 #include <sys/mutex.h>
   57 #include <sys/kernel.h>
   58 #include <sys/kthread.h>
   59 #include <sys/proc.h>
   60 #include <sys/resourcevar.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/vmmeter.h>
   63 #include <sys/vnode.h>
   64 #include <geom/geom.h>
   65 #include <vm/vm.h>
   66 #include <vm/vm_param.h>
   67 #include <vm/vm_kern.h>
   68 #include <vm/vm_pageout.h>
   69 #include <vm/vm_page.h>
   70 #include <vm/vm_object.h>
   71 #include <vm/vm_extern.h>
   72 #include <vm/vm_map.h>
   73 #include "opt_compat.h"
   74 #include "opt_directio.h"
   75 #include "opt_swap.h"
   76 
   77 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
   78 
   79 struct  bio_ops bioops;         /* I/O operation notification */
   80 
   81 struct  buf_ops buf_ops_bio = {
   82         .bop_name       =       "buf_ops_bio",
   83         .bop_write      =       bufwrite,
   84         .bop_strategy   =       bufstrategy,
   85         .bop_sync       =       bufsync,
   86         .bop_bdflush    =       bufbdflush,
   87 };
   88 
   89 /*
   90  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
   91  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
   92  */
   93 struct buf *buf;                /* buffer header pool */
   94 
   95 static struct proc *bufdaemonproc;
   96 
   97 static int inmem(struct vnode *vp, daddr_t blkno);
   98 static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
   99                 vm_offset_t to);
  100 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
  101                 vm_offset_t to);
  102 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
  103 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
  104                 vm_page_t m);
  105 static void vfs_clean_pages(struct buf *bp);
  106 static void vfs_setdirty(struct buf *bp);
  107 static void vfs_setdirty_locked_object(struct buf *bp);
  108 static void vfs_vmio_release(struct buf *bp);
  109 static int vfs_bio_clcheck(struct vnode *vp, int size,
  110                 daddr_t lblkno, daddr_t blkno);
  111 static int buf_do_flush(struct vnode *vp);
  112 static int flushbufqueues(struct vnode *, int, int);
  113 static void buf_daemon(void);
  114 static void bremfreel(struct buf *bp);
  115 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  116     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  117 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
  118 #endif
  119 
  120 int vmiodirenable = TRUE;
  121 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
  122     "Use the VM system for directory writes");
  123 long runningbufspace;
  124 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
  125     "Amount of presently outstanding async buffer io");
  126 static long bufspace;
  127 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  128     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  129 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
  130     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
  131 #else
  132 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
  133     "Virtual memory used for buffers");
  134 #endif
  135 static long maxbufspace;
  136 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
  137     "Maximum allowed value of bufspace (including buf_daemon)");
  138 static long bufmallocspace;
  139 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
  140     "Amount of malloced memory for buffers");
  141 static long maxbufmallocspace;
  142 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
  143     "Maximum amount of malloced memory for buffers");
  144 static long lobufspace;
  145 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
  146     "Minimum amount of buffers we want to have");
  147 long hibufspace;
  148 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
  149     "Maximum allowed value of bufspace (excluding buf_daemon)");
  150 static int bufreusecnt;
  151 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
  152     "Number of times we have reused a buffer");
  153 static int buffreekvacnt;
  154 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
  155     "Number of times we have freed the KVA space from some buffer");
  156 static int bufdefragcnt;
  157 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
  158     "Number of times we have had to repeat buffer allocation to defragment");
  159 static long lorunningspace;
  160 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
  161     "Minimum preferred space used for in-progress I/O");
  162 static long hirunningspace;
  163 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
  164     "Maximum amount of space to use for in-progress I/O");
  165 int dirtybufferflushes;
  166 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
  167     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
  168 int bdwriteskip;
  169 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
  170     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
  171 int altbufferflushes;
  172 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
  173     0, "Number of fsync flushes to limit dirty buffers");
  174 static int recursiveflushes;
  175 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
  176     0, "Number of flushes skipped due to being recursive");
  177 static int numdirtybuffers;
  178 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
  179     "Number of buffers that are dirty (has unwritten changes) at the moment");
  180 static int lodirtybuffers;
  181 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
  182     "How many buffers we want to have free before bufdaemon can sleep");
  183 static int hidirtybuffers;
  184 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
  185     "When the number of dirty buffers is considered severe");
  186 int dirtybufthresh;
  187 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
  188     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
  189 static int numfreebuffers;
  190 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
  191     "Number of free buffers");
  192 static int lofreebuffers;
  193 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
  194    "XXX Unused");
  195 static int hifreebuffers;
  196 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
  197    "XXX Complicatedly unused");
  198 static int getnewbufcalls;
  199 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
  200    "Number of calls to getnewbuf");
  201 static int getnewbufrestarts;
  202 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
  203     "Number of times getnewbuf has had to restart a buffer aquisition");
  204 static int flushbufqtarget = 100;
  205 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
  206     "Amount of work to do in flushbufqueues when helping bufdaemon");
  207 static long notbufdflashes;
  208 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
  209     "Number of dirty buffer flushes done by the bufdaemon helpers");
  210 
  211 /*
  212  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  213  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  214  * is idling.
  215  */
  216 static int bd_request;
  217 
  218 /*
  219  * This lock synchronizes access to bd_request.
  220  */
  221 static struct mtx bdlock;
  222 
  223 /*
  224  * bogus page -- for I/O to/from partially complete buffers
  225  * this is a temporary solution to the problem, but it is not
  226  * really that bad.  it would be better to split the buffer
  227  * for input in the case of buffers partially already in memory,
  228  * but the code is intricate enough already.
  229  */
  230 vm_page_t bogus_page;
  231 
  232 /*
  233  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  234  * Set when wait starts, cleared prior to wakeup().
  235  * Used in runningbufwakeup() and waitrunningbufspace().
  236  */
  237 static int runningbufreq;
  238 
  239 /*
  240  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  241  * waitrunningbufspace().
  242  */
  243 static struct mtx rbreqlock;
  244 
  245 /* 
  246  * Synchronization (sleep/wakeup) variable for buffer requests.
  247  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
  248  * by and/or.
  249  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
  250  * getnewbuf(), and getblk().
  251  */
  252 static int needsbuffer;
  253 
  254 /*
  255  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
  256  */
  257 static struct mtx nblock;
  258 
  259 /*
  260  * Definitions for the buffer free lists.
  261  */
  262 #define BUFFER_QUEUES   6       /* number of free buffer queues */
  263 
  264 #define QUEUE_NONE      0       /* on no queue */
  265 #define QUEUE_CLEAN     1       /* non-B_DELWRI buffers */
  266 #define QUEUE_DIRTY     2       /* B_DELWRI buffers */
  267 #define QUEUE_DIRTY_GIANT 3     /* B_DELWRI buffers that need giant */
  268 #define QUEUE_EMPTYKVA  4       /* empty buffer headers w/KVA assignment */
  269 #define QUEUE_EMPTY     5       /* empty buffer headers */
  270 #define QUEUE_SENTINEL  1024    /* not an queue index, but mark for sentinel */
  271 
  272 /* Queues for free buffers with various properties */
  273 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
  274 
  275 /* Lock for the bufqueues */
  276 static struct mtx bqlock;
  277 
  278 /*
  279  * Single global constant for BUF_WMESG, to avoid getting multiple references.
  280  * buf_wmesg is referred from macros.
  281  */
  282 const char *buf_wmesg = BUF_WMESG;
  283 
  284 #define VFS_BIO_NEED_ANY        0x01    /* any freeable buffer */
  285 #define VFS_BIO_NEED_DIRTYFLUSH 0x02    /* waiting for dirty buffer flush */
  286 #define VFS_BIO_NEED_FREE       0x04    /* wait for free bufs, hi hysteresis */
  287 #define VFS_BIO_NEED_BUFSPACE   0x08    /* wait for buf space, lo hysteresis */
  288 
  289 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  290     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  291 static int
  292 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
  293 {
  294         long lvalue;
  295         int ivalue;
  296 
  297         if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
  298                 return (sysctl_handle_long(oidp, arg1, arg2, req));
  299         lvalue = *(long *)arg1;
  300         if (lvalue > INT_MAX)
  301                 /* On overflow, still write out a long to trigger ENOMEM. */
  302                 return (sysctl_handle_long(oidp, &lvalue, 0, req));
  303         ivalue = lvalue;
  304         return (sysctl_handle_int(oidp, &ivalue, 0, req));
  305 }
  306 #endif
  307 
  308 #ifdef DIRECTIO
  309 extern void ffs_rawread_setup(void);
  310 #endif /* DIRECTIO */
  311 /*
  312  *      numdirtywakeup:
  313  *
  314  *      If someone is blocked due to there being too many dirty buffers,
  315  *      and numdirtybuffers is now reasonable, wake them up.
  316  */
  317 
  318 static __inline void
  319 numdirtywakeup(int level)
  320 {
  321 
  322         if (numdirtybuffers <= level) {
  323                 mtx_lock(&nblock);
  324                 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
  325                         needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
  326                         wakeup(&needsbuffer);
  327                 }
  328                 mtx_unlock(&nblock);
  329         }
  330 }
  331 
  332 /*
  333  *      bufspacewakeup:
  334  *
  335  *      Called when buffer space is potentially available for recovery.
  336  *      getnewbuf() will block on this flag when it is unable to free 
  337  *      sufficient buffer space.  Buffer space becomes recoverable when 
  338  *      bp's get placed back in the queues.
  339  */
  340 
  341 static __inline void
  342 bufspacewakeup(void)
  343 {
  344 
  345         /*
  346          * If someone is waiting for BUF space, wake them up.  Even
  347          * though we haven't freed the kva space yet, the waiting
  348          * process will be able to now.
  349          */
  350         mtx_lock(&nblock);
  351         if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
  352                 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
  353                 wakeup(&needsbuffer);
  354         }
  355         mtx_unlock(&nblock);
  356 }
  357 
  358 /*
  359  * runningbufwakeup() - in-progress I/O accounting.
  360  *
  361  */
  362 void
  363 runningbufwakeup(struct buf *bp)
  364 {
  365 
  366         if (bp->b_runningbufspace) {
  367                 atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
  368                 bp->b_runningbufspace = 0;
  369                 mtx_lock(&rbreqlock);
  370                 if (runningbufreq && runningbufspace <= lorunningspace) {
  371                         runningbufreq = 0;
  372                         wakeup(&runningbufreq);
  373                 }
  374                 mtx_unlock(&rbreqlock);
  375         }
  376 }
  377 
  378 /*
  379  *      bufcountwakeup:
  380  *
  381  *      Called when a buffer has been added to one of the free queues to
  382  *      account for the buffer and to wakeup anyone waiting for free buffers.
  383  *      This typically occurs when large amounts of metadata are being handled
  384  *      by the buffer cache ( else buffer space runs out first, usually ).
  385  */
  386 
  387 static __inline void
  388 bufcountwakeup(void) 
  389 {
  390 
  391         atomic_add_int(&numfreebuffers, 1);
  392         mtx_lock(&nblock);
  393         if (needsbuffer) {
  394                 needsbuffer &= ~VFS_BIO_NEED_ANY;
  395                 if (numfreebuffers >= hifreebuffers)
  396                         needsbuffer &= ~VFS_BIO_NEED_FREE;
  397                 wakeup(&needsbuffer);
  398         }
  399         mtx_unlock(&nblock);
  400 }
  401 
  402 /*
  403  *      waitrunningbufspace()
  404  *
  405  *      runningbufspace is a measure of the amount of I/O currently
  406  *      running.  This routine is used in async-write situations to
  407  *      prevent creating huge backups of pending writes to a device.
  408  *      Only asynchronous writes are governed by this function.
  409  *
  410  *      Reads will adjust runningbufspace, but will not block based on it.
  411  *      The read load has a side effect of reducing the allowed write load.
  412  *
  413  *      This does NOT turn an async write into a sync write.  It waits  
  414  *      for earlier writes to complete and generally returns before the
  415  *      caller's write has reached the device.
  416  */
  417 void
  418 waitrunningbufspace(void)
  419 {
  420 
  421         mtx_lock(&rbreqlock);
  422         while (runningbufspace > hirunningspace) {
  423                 ++runningbufreq;
  424                 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
  425         }
  426         mtx_unlock(&rbreqlock);
  427 }
  428 
  429 
  430 /*
  431  *      vfs_buf_test_cache:
  432  *
  433  *      Called when a buffer is extended.  This function clears the B_CACHE
  434  *      bit if the newly extended portion of the buffer does not contain
  435  *      valid data.
  436  */
  437 static __inline
  438 void
  439 vfs_buf_test_cache(struct buf *bp,
  440                   vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
  441                   vm_page_t m)
  442 {
  443 
  444         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  445         if (bp->b_flags & B_CACHE) {
  446                 int base = (foff + off) & PAGE_MASK;
  447                 if (vm_page_is_valid(m, base, size) == 0)
  448                         bp->b_flags &= ~B_CACHE;
  449         }
  450 }
  451 
  452 /* Wake up the buffer daemon if necessary */
  453 static __inline
  454 void
  455 bd_wakeup(int dirtybuflevel)
  456 {
  457 
  458         mtx_lock(&bdlock);
  459         if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
  460                 bd_request = 1;
  461                 wakeup(&bd_request);
  462         }
  463         mtx_unlock(&bdlock);
  464 }
  465 
  466 /*
  467  * bd_speedup - speedup the buffer cache flushing code
  468  */
  469 
  470 static __inline
  471 void
  472 bd_speedup(void)
  473 {
  474 
  475         bd_wakeup(1);
  476 }
  477 
  478 /*
  479  * Calculating buffer cache scaling values and reserve space for buffer
  480  * headers.  This is called during low level kernel initialization and
  481  * may be called more then once.  We CANNOT write to the memory area
  482  * being reserved at this time.
  483  */
  484 caddr_t
  485 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
  486 {
  487         int tuned_nbuf;
  488         long maxbuf;
  489 
  490         /*
  491          * physmem_est is in pages.  Convert it to kilobytes (assumes
  492          * PAGE_SIZE is >= 1K)
  493          */
  494         physmem_est = physmem_est * (PAGE_SIZE / 1024);
  495 
  496         /*
  497          * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
  498          * For the first 64MB of ram nominally allocate sufficient buffers to
  499          * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
  500          * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
  501          * the buffer cache we limit the eventual kva reservation to
  502          * maxbcache bytes.
  503          *
  504          * factor represents the 1/4 x ram conversion.
  505          */
  506         if (nbuf == 0) {
  507                 int factor = 4 * BKVASIZE / 1024;
  508 
  509                 nbuf = 50;
  510                 if (physmem_est > 4096)
  511                         nbuf += min((physmem_est - 4096) / factor,
  512                             65536 / factor);
  513                 if (physmem_est > 65536)
  514                         nbuf += (physmem_est - 65536) * 2 / (factor * 5);
  515 
  516                 if (maxbcache && nbuf > maxbcache / BKVASIZE)
  517                         nbuf = maxbcache / BKVASIZE;
  518                 tuned_nbuf = 1;
  519         } else
  520                 tuned_nbuf = 0;
  521 
  522         /* XXX Avoid unsigned long overflows later on with maxbufspace. */
  523         maxbuf = (LONG_MAX / 3) / BKVASIZE;
  524         if (nbuf > maxbuf) {
  525                 if (!tuned_nbuf)
  526                         printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
  527                             maxbuf);
  528                 nbuf = maxbuf;
  529         }
  530 
  531         /*
  532          * swbufs are used as temporary holders for I/O, such as paging I/O.
  533          * We have no less then 16 and no more then 256.
  534          */
  535         nswbuf = max(min(nbuf/4, 256), 16);
  536 #ifdef NSWBUF_MIN
  537         if (nswbuf < NSWBUF_MIN)
  538                 nswbuf = NSWBUF_MIN;
  539 #endif
  540 #ifdef DIRECTIO
  541         ffs_rawread_setup();
  542 #endif
  543 
  544         /*
  545          * Reserve space for the buffer cache buffers
  546          */
  547         swbuf = (void *)v;
  548         v = (caddr_t)(swbuf + nswbuf);
  549         buf = (void *)v;
  550         v = (caddr_t)(buf + nbuf);
  551 
  552         return(v);
  553 }
  554 
  555 /* Initialize the buffer subsystem.  Called before use of any buffers. */
  556 void
  557 bufinit(void)
  558 {
  559         struct buf *bp;
  560         int i;
  561 
  562         mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
  563         mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
  564         mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
  565         mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
  566 
  567         /* next, make a null set of free lists */
  568         for (i = 0; i < BUFFER_QUEUES; i++)
  569                 TAILQ_INIT(&bufqueues[i]);
  570 
  571         /* finally, initialize each buffer header and stick on empty q */
  572         for (i = 0; i < nbuf; i++) {
  573                 bp = &buf[i];
  574                 bzero(bp, sizeof *bp);
  575                 bp->b_flags = B_INVAL;  /* we're just an empty header */
  576                 bp->b_rcred = NOCRED;
  577                 bp->b_wcred = NOCRED;
  578                 bp->b_qindex = QUEUE_EMPTY;
  579                 bp->b_vflags = 0;
  580                 bp->b_xflags = 0;
  581                 LIST_INIT(&bp->b_dep);
  582                 BUF_LOCKINIT(bp);
  583                 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
  584         }
  585 
  586         /*
  587          * maxbufspace is the absolute maximum amount of buffer space we are 
  588          * allowed to reserve in KVM and in real terms.  The absolute maximum
  589          * is nominally used by buf_daemon.  hibufspace is the nominal maximum
  590          * used by most other processes.  The differential is required to 
  591          * ensure that buf_daemon is able to run when other processes might 
  592          * be blocked waiting for buffer space.
  593          *
  594          * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
  595          * this may result in KVM fragmentation which is not handled optimally
  596          * by the system.
  597          */
  598         maxbufspace = (long)nbuf * BKVASIZE;
  599         hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
  600         lobufspace = hibufspace - MAXBSIZE;
  601 
  602         lorunningspace = 512 * 1024;
  603         hirunningspace = 1024 * 1024;
  604 
  605 /*
  606  * Limit the amount of malloc memory since it is wired permanently into
  607  * the kernel space.  Even though this is accounted for in the buffer
  608  * allocation, we don't want the malloced region to grow uncontrolled.
  609  * The malloc scheme improves memory utilization significantly on average
  610  * (small) directories.
  611  */
  612         maxbufmallocspace = hibufspace / 20;
  613 
  614 /*
  615  * Reduce the chance of a deadlock occuring by limiting the number
  616  * of delayed-write dirty buffers we allow to stack up.
  617  */
  618         hidirtybuffers = nbuf / 4 + 20;
  619         dirtybufthresh = hidirtybuffers * 9 / 10;
  620         numdirtybuffers = 0;
  621 /*
  622  * To support extreme low-memory systems, make sure hidirtybuffers cannot
  623  * eat up all available buffer space.  This occurs when our minimum cannot
  624  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
  625  * BKVASIZE'd (8K) buffers.
  626  */
  627         while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
  628                 hidirtybuffers >>= 1;
  629         }
  630         lodirtybuffers = hidirtybuffers / 2;
  631 
  632 /*
  633  * Try to keep the number of free buffers in the specified range,
  634  * and give special processes (e.g. like buf_daemon) access to an 
  635  * emergency reserve.
  636  */
  637         lofreebuffers = nbuf / 18 + 5;
  638         hifreebuffers = 2 * lofreebuffers;
  639         numfreebuffers = nbuf;
  640 
  641         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
  642             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
  643 }
  644 
  645 /*
  646  * bfreekva() - free the kva allocation for a buffer.
  647  *
  648  *      Since this call frees up buffer space, we call bufspacewakeup().
  649  */
  650 static void
  651 bfreekva(struct buf *bp)
  652 {
  653 
  654         if (bp->b_kvasize) {
  655                 atomic_add_int(&buffreekvacnt, 1);
  656                 atomic_subtract_long(&bufspace, bp->b_kvasize);
  657                 vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
  658                     (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
  659                 bp->b_kvasize = 0;
  660                 bufspacewakeup();
  661         }
  662 }
  663 
  664 /*
  665  *      bremfree:
  666  *
  667  *      Mark the buffer for removal from the appropriate free list in brelse.
  668  *      
  669  */
  670 void
  671 bremfree(struct buf *bp)
  672 {
  673 
  674         CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  675         KASSERT((bp->b_flags & B_REMFREE) == 0,
  676             ("bremfree: buffer %p already marked for delayed removal.", bp));
  677         KASSERT(bp->b_qindex != QUEUE_NONE,
  678             ("bremfree: buffer %p not on a queue.", bp));
  679         BUF_ASSERT_HELD(bp);
  680 
  681         bp->b_flags |= B_REMFREE;
  682         /* Fixup numfreebuffers count.  */
  683         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
  684                 atomic_subtract_int(&numfreebuffers, 1);
  685 }
  686 
  687 /*
  688  *      bremfreef:
  689  *
  690  *      Force an immediate removal from a free list.  Used only in nfs when
  691  *      it abuses the b_freelist pointer.
  692  */
  693 void
  694 bremfreef(struct buf *bp)
  695 {
  696         mtx_lock(&bqlock);
  697         bremfreel(bp);
  698         mtx_unlock(&bqlock);
  699 }
  700 
  701 /*
  702  *      bremfreel:
  703  *
  704  *      Removes a buffer from the free list, must be called with the
  705  *      bqlock held.
  706  */
  707 static void
  708 bremfreel(struct buf *bp)
  709 {
  710         CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
  711             bp, bp->b_vp, bp->b_flags);
  712         KASSERT(bp->b_qindex != QUEUE_NONE,
  713             ("bremfreel: buffer %p not on a queue.", bp));
  714         BUF_ASSERT_HELD(bp);
  715         mtx_assert(&bqlock, MA_OWNED);
  716 
  717         TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
  718         bp->b_qindex = QUEUE_NONE;
  719         /*
  720          * If this was a delayed bremfree() we only need to remove the buffer
  721          * from the queue and return the stats are already done.
  722          */
  723         if (bp->b_flags & B_REMFREE) {
  724                 bp->b_flags &= ~B_REMFREE;
  725                 return;
  726         }
  727         /*
  728          * Fixup numfreebuffers count.  If the buffer is invalid or not
  729          * delayed-write, the buffer was free and we must decrement
  730          * numfreebuffers.
  731          */
  732         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
  733                 atomic_subtract_int(&numfreebuffers, 1);
  734 }
  735 
  736 
  737 /*
  738  * Get a buffer with the specified data.  Look in the cache first.  We
  739  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
  740  * is set, the buffer is valid and we do not have to do anything ( see
  741  * getblk() ).  This is really just a special case of breadn().
  742  */
  743 int
  744 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
  745     struct buf **bpp)
  746 {
  747 
  748         return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
  749 }
  750 
  751 /*
  752  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
  753  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
  754  * the buffer is valid and we do not have to do anything.
  755  */
  756 void
  757 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
  758     int cnt, struct ucred * cred)
  759 {
  760         struct buf *rabp;
  761         int i;
  762 
  763         for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
  764                 if (inmem(vp, *rablkno))
  765                         continue;
  766                 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
  767 
  768                 if ((rabp->b_flags & B_CACHE) == 0) {
  769                         if (!TD_IS_IDLETHREAD(curthread))
  770                                 curthread->td_ru.ru_inblock++;
  771                         rabp->b_flags |= B_ASYNC;
  772                         rabp->b_flags &= ~B_INVAL;
  773                         rabp->b_ioflags &= ~BIO_ERROR;
  774                         rabp->b_iocmd = BIO_READ;
  775                         if (rabp->b_rcred == NOCRED && cred != NOCRED)
  776                                 rabp->b_rcred = crhold(cred);
  777                         vfs_busy_pages(rabp, 0);
  778                         BUF_KERNPROC(rabp);
  779                         rabp->b_iooffset = dbtob(rabp->b_blkno);
  780                         bstrategy(rabp);
  781                 } else {
  782                         brelse(rabp);
  783                 }
  784         }
  785 }
  786 
  787 /*
  788  * Operates like bread, but also starts asynchronous I/O on
  789  * read-ahead blocks.
  790  */
  791 int
  792 breadn(struct vnode * vp, daddr_t blkno, int size,
  793     daddr_t * rablkno, int *rabsize,
  794     int cnt, struct ucred * cred, struct buf **bpp)
  795 {
  796         struct buf *bp;
  797         int rv = 0, readwait = 0;
  798 
  799         CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
  800         *bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
  801 
  802         /* if not found in cache, do some I/O */
  803         if ((bp->b_flags & B_CACHE) == 0) {
  804                 if (!TD_IS_IDLETHREAD(curthread))
  805                         curthread->td_ru.ru_inblock++;
  806                 bp->b_iocmd = BIO_READ;
  807                 bp->b_flags &= ~B_INVAL;
  808                 bp->b_ioflags &= ~BIO_ERROR;
  809                 if (bp->b_rcred == NOCRED && cred != NOCRED)
  810                         bp->b_rcred = crhold(cred);
  811                 vfs_busy_pages(bp, 0);
  812                 bp->b_iooffset = dbtob(bp->b_blkno);
  813                 bstrategy(bp);
  814                 ++readwait;
  815         }
  816 
  817         breada(vp, rablkno, rabsize, cnt, cred);
  818 
  819         if (readwait) {
  820                 rv = bufwait(bp);
  821         }
  822         return (rv);
  823 }
  824 
  825 /*
  826  * Write, release buffer on completion.  (Done by iodone
  827  * if async).  Do not bother writing anything if the buffer
  828  * is invalid.
  829  *
  830  * Note that we set B_CACHE here, indicating that buffer is
  831  * fully valid and thus cacheable.  This is true even of NFS
  832  * now so we set it generally.  This could be set either here 
  833  * or in biodone() since the I/O is synchronous.  We put it
  834  * here.
  835  */
  836 int
  837 bufwrite(struct buf *bp)
  838 {
  839         int oldflags;
  840         struct vnode *vp;
  841         int vp_md;
  842 
  843         CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  844         if (bp->b_flags & B_INVAL) {
  845                 brelse(bp);
  846                 return (0);
  847         }
  848 
  849         oldflags = bp->b_flags;
  850 
  851         BUF_ASSERT_HELD(bp);
  852 
  853         if (bp->b_pin_count > 0)
  854                 bunpin_wait(bp);
  855 
  856         KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
  857             ("FFS background buffer should not get here %p", bp));
  858 
  859         vp = bp->b_vp;
  860         if (vp)
  861                 vp_md = vp->v_vflag & VV_MD;
  862         else
  863                 vp_md = 0;
  864 
  865         /* Mark the buffer clean */
  866         bundirty(bp);
  867 
  868         bp->b_flags &= ~B_DONE;
  869         bp->b_ioflags &= ~BIO_ERROR;
  870         bp->b_flags |= B_CACHE;
  871         bp->b_iocmd = BIO_WRITE;
  872 
  873         bufobj_wref(bp->b_bufobj);
  874         vfs_busy_pages(bp, 1);
  875 
  876         /*
  877          * Normal bwrites pipeline writes
  878          */
  879         bp->b_runningbufspace = bp->b_bufsize;
  880         atomic_add_long(&runningbufspace, bp->b_runningbufspace);
  881 
  882         if (!TD_IS_IDLETHREAD(curthread))
  883                 curthread->td_ru.ru_oublock++;
  884         if (oldflags & B_ASYNC)
  885                 BUF_KERNPROC(bp);
  886         bp->b_iooffset = dbtob(bp->b_blkno);
  887         bstrategy(bp);
  888 
  889         if ((oldflags & B_ASYNC) == 0) {
  890                 int rtval = bufwait(bp);
  891                 brelse(bp);
  892                 return (rtval);
  893         } else {
  894                 /*
  895                  * don't allow the async write to saturate the I/O
  896                  * system.  We will not deadlock here because
  897                  * we are blocking waiting for I/O that is already in-progress
  898                  * to complete. We do not block here if it is the update
  899                  * or syncer daemon trying to clean up as that can lead
  900                  * to deadlock.
  901                  */
  902                 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
  903                         waitrunningbufspace();
  904         }
  905 
  906         return (0);
  907 }
  908 
  909 void
  910 bufbdflush(struct bufobj *bo, struct buf *bp)
  911 {
  912         struct buf *nbp;
  913 
  914         if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
  915                 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
  916                 altbufferflushes++;
  917         } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
  918                 BO_LOCK(bo);
  919                 /*
  920                  * Try to find a buffer to flush.
  921                  */
  922                 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
  923                         if ((nbp->b_vflags & BV_BKGRDINPROG) ||
  924                             BUF_LOCK(nbp,
  925                                      LK_EXCLUSIVE | LK_NOWAIT, NULL))
  926                                 continue;
  927                         if (bp == nbp)
  928                                 panic("bdwrite: found ourselves");
  929                         BO_UNLOCK(bo);
  930                         /* Don't countdeps with the bo lock held. */
  931                         if (buf_countdeps(nbp, 0)) {
  932                                 BO_LOCK(bo);
  933                                 BUF_UNLOCK(nbp);
  934                                 continue;
  935                         }
  936                         if (nbp->b_flags & B_CLUSTEROK) {
  937                                 vfs_bio_awrite(nbp);
  938                         } else {
  939                                 bremfree(nbp);
  940                                 bawrite(nbp);
  941                         }
  942                         dirtybufferflushes++;
  943                         break;
  944                 }
  945                 if (nbp == NULL)
  946                         BO_UNLOCK(bo);
  947         }
  948 }
  949 
  950 /*
  951  * Delayed write. (Buffer is marked dirty).  Do not bother writing
  952  * anything if the buffer is marked invalid.
  953  *
  954  * Note that since the buffer must be completely valid, we can safely
  955  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
  956  * biodone() in order to prevent getblk from writing the buffer
  957  * out synchronously.
  958  */
  959 void
  960 bdwrite(struct buf *bp)
  961 {
  962         struct thread *td = curthread;
  963         struct vnode *vp;
  964         struct bufobj *bo;
  965 
  966         CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  967         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
  968         BUF_ASSERT_HELD(bp);
  969 
  970         if (bp->b_flags & B_INVAL) {
  971                 brelse(bp);
  972                 return;
  973         }
  974 
  975         /*
  976          * If we have too many dirty buffers, don't create any more.
  977          * If we are wildly over our limit, then force a complete
  978          * cleanup. Otherwise, just keep the situation from getting
  979          * out of control. Note that we have to avoid a recursive
  980          * disaster and not try to clean up after our own cleanup!
  981          */
  982         vp = bp->b_vp;
  983         bo = bp->b_bufobj;
  984         if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
  985                 td->td_pflags |= TDP_INBDFLUSH;
  986                 BO_BDFLUSH(bo, bp);
  987                 td->td_pflags &= ~TDP_INBDFLUSH;
  988         } else
  989                 recursiveflushes++;
  990 
  991         bdirty(bp);
  992         /*
  993          * Set B_CACHE, indicating that the buffer is fully valid.  This is
  994          * true even of NFS now.
  995          */
  996         bp->b_flags |= B_CACHE;
  997 
  998         /*
  999          * This bmap keeps the system from needing to do the bmap later,
 1000          * perhaps when the system is attempting to do a sync.  Since it
 1001          * is likely that the indirect block -- or whatever other datastructure
 1002          * that the filesystem needs is still in memory now, it is a good
 1003          * thing to do this.  Note also, that if the pageout daemon is
 1004          * requesting a sync -- there might not be enough memory to do
 1005          * the bmap then...  So, this is important to do.
 1006          */
 1007         if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
 1008                 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
 1009         }
 1010 
 1011         /*
 1012          * Set the *dirty* buffer range based upon the VM system dirty pages.
 1013          */
 1014         vfs_setdirty(bp);
 1015 
 1016         /*
 1017          * We need to do this here to satisfy the vnode_pager and the
 1018          * pageout daemon, so that it thinks that the pages have been
 1019          * "cleaned".  Note that since the pages are in a delayed write
 1020          * buffer -- the VFS layer "will" see that the pages get written
 1021          * out on the next sync, or perhaps the cluster will be completed.
 1022          */
 1023         vfs_clean_pages(bp);
 1024         bqrelse(bp);
 1025 
 1026         /*
 1027          * Wakeup the buffer flushing daemon if we have a lot of dirty
 1028          * buffers (midpoint between our recovery point and our stall
 1029          * point).
 1030          */
 1031         bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1032 
 1033         /*
 1034          * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 1035          * due to the softdep code.
 1036          */
 1037 }
 1038 
 1039 /*
 1040  *      bdirty:
 1041  *
 1042  *      Turn buffer into delayed write request.  We must clear BIO_READ and
 1043  *      B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
 1044  *      itself to properly update it in the dirty/clean lists.  We mark it
 1045  *      B_DONE to ensure that any asynchronization of the buffer properly
 1046  *      clears B_DONE ( else a panic will occur later ).  
 1047  *
 1048  *      bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
 1049  *      might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
 1050  *      should only be called if the buffer is known-good.
 1051  *
 1052  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1053  *      count.
 1054  *
 1055  *      The buffer must be on QUEUE_NONE.
 1056  */
 1057 void
 1058 bdirty(struct buf *bp)
 1059 {
 1060 
 1061         CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
 1062             bp, bp->b_vp, bp->b_flags);
 1063         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1064         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1065             ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1066         BUF_ASSERT_HELD(bp);
 1067         bp->b_flags &= ~(B_RELBUF);
 1068         bp->b_iocmd = BIO_WRITE;
 1069 
 1070         if ((bp->b_flags & B_DELWRI) == 0) {
 1071                 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
 1072                 reassignbuf(bp);
 1073                 atomic_add_int(&numdirtybuffers, 1);
 1074                 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1075         }
 1076 }
 1077 
 1078 /*
 1079  *      bundirty:
 1080  *
 1081  *      Clear B_DELWRI for buffer.
 1082  *
 1083  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1084  *      count.
 1085  *      
 1086  *      The buffer must be on QUEUE_NONE.
 1087  */
 1088 
 1089 void
 1090 bundirty(struct buf *bp)
 1091 {
 1092 
 1093         CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1094         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1095         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1096             ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1097         BUF_ASSERT_HELD(bp);
 1098 
 1099         if (bp->b_flags & B_DELWRI) {
 1100                 bp->b_flags &= ~B_DELWRI;
 1101                 reassignbuf(bp);
 1102                 atomic_subtract_int(&numdirtybuffers, 1);
 1103                 numdirtywakeup(lodirtybuffers);
 1104         }
 1105         /*
 1106          * Since it is now being written, we can clear its deferred write flag.
 1107          */
 1108         bp->b_flags &= ~B_DEFERRED;
 1109 }
 1110 
 1111 /*
 1112  *      bawrite:
 1113  *
 1114  *      Asynchronous write.  Start output on a buffer, but do not wait for
 1115  *      it to complete.  The buffer is released when the output completes.
 1116  *
 1117  *      bwrite() ( or the VOP routine anyway ) is responsible for handling 
 1118  *      B_INVAL buffers.  Not us.
 1119  */
 1120 void
 1121 bawrite(struct buf *bp)
 1122 {
 1123 
 1124         bp->b_flags |= B_ASYNC;
 1125         (void) bwrite(bp);
 1126 }
 1127 
 1128 /*
 1129  *      bwillwrite:
 1130  *
 1131  *      Called prior to the locking of any vnodes when we are expecting to
 1132  *      write.  We do not want to starve the buffer cache with too many
 1133  *      dirty buffers so we block here.  By blocking prior to the locking
 1134  *      of any vnodes we attempt to avoid the situation where a locked vnode
 1135  *      prevents the various system daemons from flushing related buffers.
 1136  */
 1137 
 1138 void
 1139 bwillwrite(void)
 1140 {
 1141 
 1142         if (numdirtybuffers >= hidirtybuffers) {
 1143                 mtx_lock(&nblock);
 1144                 while (numdirtybuffers >= hidirtybuffers) {
 1145                         bd_wakeup(1);
 1146                         needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
 1147                         msleep(&needsbuffer, &nblock,
 1148                             (PRIBIO + 4), "flswai", 0);
 1149                 }
 1150                 mtx_unlock(&nblock);
 1151         }
 1152 }
 1153 
 1154 /*
 1155  * Return true if we have too many dirty buffers.
 1156  */
 1157 int
 1158 buf_dirty_count_severe(void)
 1159 {
 1160 
 1161         return(numdirtybuffers >= hidirtybuffers);
 1162 }
 1163 
 1164 static __noinline int
 1165 buf_vm_page_count_severe(void)
 1166 {
 1167 
 1168         KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
 1169 
 1170         return vm_page_count_severe();
 1171 }
 1172 
 1173 /*
 1174  *      brelse:
 1175  *
 1176  *      Release a busy buffer and, if requested, free its resources.  The
 1177  *      buffer will be stashed in the appropriate bufqueue[] allowing it
 1178  *      to be accessed later as a cache entity or reused for other purposes.
 1179  */
 1180 void
 1181 brelse(struct buf *bp)
 1182 {
 1183         CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
 1184             bp, bp->b_vp, bp->b_flags);
 1185         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1186             ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1187 
 1188         if (bp->b_flags & B_MANAGED) {
 1189                 bqrelse(bp);
 1190                 return;
 1191         }
 1192 
 1193         if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
 1194             bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
 1195                 /*
 1196                  * Failed write, redirty.  Must clear BIO_ERROR to prevent
 1197                  * pages from being scrapped.  If the error is anything
 1198                  * other than an I/O error (EIO), assume that retrying
 1199                  * is futile.
 1200                  */
 1201                 bp->b_ioflags &= ~BIO_ERROR;
 1202                 bdirty(bp);
 1203         } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 1204             (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
 1205                 /*
 1206                  * Either a failed I/O or we were asked to free or not
 1207                  * cache the buffer.
 1208                  */
 1209                 bp->b_flags |= B_INVAL;
 1210                 if (!LIST_EMPTY(&bp->b_dep))
 1211                         buf_deallocate(bp);
 1212                 if (bp->b_flags & B_DELWRI) {
 1213                         atomic_subtract_int(&numdirtybuffers, 1);
 1214                         numdirtywakeup(lodirtybuffers);
 1215                 }
 1216                 bp->b_flags &= ~(B_DELWRI | B_CACHE);
 1217                 if ((bp->b_flags & B_VMIO) == 0) {
 1218                         if (bp->b_bufsize)
 1219                                 allocbuf(bp, 0);
 1220                         if (bp->b_vp)
 1221                                 brelvp(bp);
 1222                 }
 1223         }
 1224 
 1225         /*
 1226          * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release() 
 1227          * is called with B_DELWRI set, the underlying pages may wind up
 1228          * getting freed causing a previous write (bdwrite()) to get 'lost'
 1229          * because pages associated with a B_DELWRI bp are marked clean.
 1230          * 
 1231          * We still allow the B_INVAL case to call vfs_vmio_release(), even
 1232          * if B_DELWRI is set.
 1233          *
 1234          * If B_DELWRI is not set we may have to set B_RELBUF if we are low
 1235          * on pages to return pages to the VM page queues.
 1236          */
 1237         if (bp->b_flags & B_DELWRI)
 1238                 bp->b_flags &= ~B_RELBUF;
 1239         else if (buf_vm_page_count_severe()) {
 1240                 /*
 1241                  * The locking of the BO_LOCK is not necessary since
 1242                  * BKGRDINPROG cannot be set while we hold the buf
 1243                  * lock, it can only be cleared if it is already
 1244                  * pending.
 1245                  */
 1246                 if (bp->b_vp) {
 1247                         if (!(bp->b_vflags & BV_BKGRDINPROG))
 1248                                 bp->b_flags |= B_RELBUF;
 1249                 } else
 1250                         bp->b_flags |= B_RELBUF;
 1251         }
 1252 
 1253         /*
 1254          * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 1255          * constituted, not even NFS buffers now.  Two flags effect this.  If
 1256          * B_INVAL, the struct buf is invalidated but the VM object is kept
 1257          * around ( i.e. so it is trivial to reconstitute the buffer later ).
 1258          *
 1259          * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 1260          * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 1261          * buffer is also B_INVAL because it hits the re-dirtying code above.
 1262          *
 1263          * Normally we can do this whether a buffer is B_DELWRI or not.  If
 1264          * the buffer is an NFS buffer, it is tracking piecemeal writes or
 1265          * the commit state and we cannot afford to lose the buffer. If the
 1266          * buffer has a background write in progress, we need to keep it
 1267          * around to prevent it from being reconstituted and starting a second
 1268          * background write.
 1269          */
 1270         if ((bp->b_flags & B_VMIO)
 1271             && !(bp->b_vp->v_mount != NULL &&
 1272                  (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 1273                  !vn_isdisk(bp->b_vp, NULL) &&
 1274                  (bp->b_flags & B_DELWRI))
 1275             ) {
 1276 
 1277                 int i, j, resid;
 1278                 vm_page_t m;
 1279                 off_t foff;
 1280                 vm_pindex_t poff;
 1281                 vm_object_t obj;
 1282 
 1283                 obj = bp->b_bufobj->bo_object;
 1284 
 1285                 /*
 1286                  * Get the base offset and length of the buffer.  Note that 
 1287                  * in the VMIO case if the buffer block size is not
 1288                  * page-aligned then b_data pointer may not be page-aligned.
 1289                  * But our b_pages[] array *IS* page aligned.
 1290                  *
 1291                  * block sizes less then DEV_BSIZE (usually 512) are not 
 1292                  * supported due to the page granularity bits (m->valid,
 1293                  * m->dirty, etc...). 
 1294                  *
 1295                  * See man buf(9) for more information
 1296                  */
 1297                 resid = bp->b_bufsize;
 1298                 foff = bp->b_offset;
 1299                 VM_OBJECT_LOCK(obj);
 1300                 for (i = 0; i < bp->b_npages; i++) {
 1301                         int had_bogus = 0;
 1302 
 1303                         m = bp->b_pages[i];
 1304 
 1305                         /*
 1306                          * If we hit a bogus page, fixup *all* the bogus pages
 1307                          * now.
 1308                          */
 1309                         if (m == bogus_page) {
 1310                                 poff = OFF_TO_IDX(bp->b_offset);
 1311                                 had_bogus = 1;
 1312 
 1313                                 for (j = i; j < bp->b_npages; j++) {
 1314                                         vm_page_t mtmp;
 1315                                         mtmp = bp->b_pages[j];
 1316                                         if (mtmp == bogus_page) {
 1317                                                 mtmp = vm_page_lookup(obj, poff + j);
 1318                                                 if (!mtmp) {
 1319                                                         panic("brelse: page missing\n");
 1320                                                 }
 1321                                                 bp->b_pages[j] = mtmp;
 1322                                         }
 1323                                 }
 1324 
 1325                                 if ((bp->b_flags & B_INVAL) == 0) {
 1326                                         pmap_qenter(
 1327                                             trunc_page((vm_offset_t)bp->b_data),
 1328                                             bp->b_pages, bp->b_npages);
 1329                                 }
 1330                                 m = bp->b_pages[i];
 1331                         }
 1332                         if ((bp->b_flags & B_NOCACHE) ||
 1333                             (bp->b_ioflags & BIO_ERROR &&
 1334                              bp->b_iocmd == BIO_READ)) {
 1335                                 int poffset = foff & PAGE_MASK;
 1336                                 int presid = resid > (PAGE_SIZE - poffset) ?
 1337                                         (PAGE_SIZE - poffset) : resid;
 1338 
 1339                                 KASSERT(presid >= 0, ("brelse: extra page"));
 1340                                 vm_page_lock_queues();
 1341                                 vm_page_set_invalid(m, poffset, presid);
 1342                                 vm_page_unlock_queues();
 1343                                 if (had_bogus)
 1344                                         printf("avoided corruption bug in bogus_page/brelse code\n");
 1345                         }
 1346                         resid -= PAGE_SIZE - (foff & PAGE_MASK);
 1347                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 1348                 }
 1349                 VM_OBJECT_UNLOCK(obj);
 1350                 if (bp->b_flags & (B_INVAL | B_RELBUF))
 1351                         vfs_vmio_release(bp);
 1352 
 1353         } else if (bp->b_flags & B_VMIO) {
 1354 
 1355                 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
 1356                         vfs_vmio_release(bp);
 1357                 }
 1358 
 1359         } else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
 1360                 if (bp->b_bufsize != 0)
 1361                         allocbuf(bp, 0);
 1362                 if (bp->b_vp != NULL)
 1363                         brelvp(bp);
 1364         }
 1365                         
 1366         if (BUF_LOCKRECURSED(bp)) {
 1367                 /* do not release to free list */
 1368                 BUF_UNLOCK(bp);
 1369                 return;
 1370         }
 1371 
 1372         /* enqueue */
 1373         mtx_lock(&bqlock);
 1374         /* Handle delayed bremfree() processing. */
 1375         if (bp->b_flags & B_REMFREE)
 1376                 bremfreel(bp);
 1377         if (bp->b_qindex != QUEUE_NONE)
 1378                 panic("brelse: free buffer onto another queue???");
 1379 
 1380         /*
 1381          * If the buffer has junk contents signal it and eventually
 1382          * clean up B_DELWRI and diassociate the vnode so that gbincore()
 1383          * doesn't find it.
 1384          */
 1385         if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
 1386             (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
 1387                 bp->b_flags |= B_INVAL;
 1388         if (bp->b_flags & B_INVAL) {
 1389                 if (bp->b_flags & B_DELWRI)
 1390                         bundirty(bp);
 1391                 if (bp->b_vp)
 1392                         brelvp(bp);
 1393         }
 1394 
 1395         /* buffers with no memory */
 1396         if (bp->b_bufsize == 0) {
 1397                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1398                 if (bp->b_vflags & BV_BKGRDINPROG)
 1399                         panic("losing buffer 1");
 1400                 if (bp->b_kvasize) {
 1401                         bp->b_qindex = QUEUE_EMPTYKVA;
 1402                 } else {
 1403                         bp->b_qindex = QUEUE_EMPTY;
 1404                 }
 1405                 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1406         /* buffers with junk contents */
 1407         } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 1408             (bp->b_ioflags & BIO_ERROR)) {
 1409                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1410                 if (bp->b_vflags & BV_BKGRDINPROG)
 1411                         panic("losing buffer 2");
 1412                 bp->b_qindex = QUEUE_CLEAN;
 1413                 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
 1414         /* remaining buffers */
 1415         } else {
 1416                 if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
 1417                     (B_DELWRI|B_NEEDSGIANT))
 1418                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1419                 else if (bp->b_flags & B_DELWRI)
 1420                         bp->b_qindex = QUEUE_DIRTY;
 1421                 else
 1422                         bp->b_qindex = QUEUE_CLEAN;
 1423                 if (bp->b_flags & B_AGE)
 1424                         TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1425                 else
 1426                         TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1427         }
 1428         mtx_unlock(&bqlock);
 1429 
 1430         /*
 1431          * Fixup numfreebuffers count.  The bp is on an appropriate queue
 1432          * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
 1433          * We've already handled the B_INVAL case ( B_DELWRI will be clear
 1434          * if B_INVAL is set ).
 1435          */
 1436 
 1437         if (!(bp->b_flags & B_DELWRI))
 1438                 bufcountwakeup();
 1439 
 1440         /*
 1441          * Something we can maybe free or reuse
 1442          */
 1443         if (bp->b_bufsize || bp->b_kvasize)
 1444                 bufspacewakeup();
 1445 
 1446         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
 1447         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1448                 panic("brelse: not dirty");
 1449         /* unlock */
 1450         BUF_UNLOCK(bp);
 1451 }
 1452 
 1453 /*
 1454  * Release a buffer back to the appropriate queue but do not try to free
 1455  * it.  The buffer is expected to be used again soon.
 1456  *
 1457  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
 1458  * biodone() to requeue an async I/O on completion.  It is also used when
 1459  * known good buffers need to be requeued but we think we may need the data
 1460  * again soon.
 1461  *
 1462  * XXX we should be able to leave the B_RELBUF hint set on completion.
 1463  */
 1464 void
 1465 bqrelse(struct buf *bp)
 1466 {
 1467         CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1468         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1469             ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1470 
 1471         if (BUF_LOCKRECURSED(bp)) {
 1472                 /* do not release to free list */
 1473                 BUF_UNLOCK(bp);
 1474                 return;
 1475         }
 1476 
 1477         if (bp->b_flags & B_MANAGED) {
 1478                 if (bp->b_flags & B_REMFREE) {
 1479                         mtx_lock(&bqlock);
 1480                         bremfreel(bp);
 1481                         mtx_unlock(&bqlock);
 1482                 }
 1483                 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1484                 BUF_UNLOCK(bp);
 1485                 return;
 1486         }
 1487 
 1488         mtx_lock(&bqlock);
 1489         /* Handle delayed bremfree() processing. */
 1490         if (bp->b_flags & B_REMFREE)
 1491                 bremfreel(bp);
 1492         if (bp->b_qindex != QUEUE_NONE)
 1493                 panic("bqrelse: free buffer onto another queue???");
 1494         /* buffers with stale but valid contents */
 1495         if (bp->b_flags & B_DELWRI) {
 1496                 if (bp->b_flags & B_NEEDSGIANT)
 1497                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1498                 else
 1499                         bp->b_qindex = QUEUE_DIRTY;
 1500                 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1501         } else {
 1502                 /*
 1503                  * The locking of the BO_LOCK for checking of the
 1504                  * BV_BKGRDINPROG is not necessary since the
 1505                  * BV_BKGRDINPROG cannot be set while we hold the buf
 1506                  * lock, it can only be cleared if it is already
 1507                  * pending.
 1508                  */
 1509                 if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
 1510                         bp->b_qindex = QUEUE_CLEAN;
 1511                         TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
 1512                             b_freelist);
 1513                 } else {
 1514                         /*
 1515                          * We are too low on memory, we have to try to free
 1516                          * the buffer (most importantly: the wired pages
 1517                          * making up its backing store) *now*.
 1518                          */
 1519                         mtx_unlock(&bqlock);
 1520                         brelse(bp);
 1521                         return;
 1522                 }
 1523         }
 1524         mtx_unlock(&bqlock);
 1525 
 1526         if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
 1527                 bufcountwakeup();
 1528 
 1529         /*
 1530          * Something we can maybe free or reuse.
 1531          */
 1532         if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
 1533                 bufspacewakeup();
 1534 
 1535         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1536         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1537                 panic("bqrelse: not dirty");
 1538         /* unlock */
 1539         BUF_UNLOCK(bp);
 1540 }
 1541 
 1542 /* Give pages used by the bp back to the VM system (where possible) */
 1543 static void
 1544 vfs_vmio_release(struct buf *bp)
 1545 {
 1546         int i;
 1547         vm_page_t m;
 1548 
 1549         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 1550         vm_page_lock_queues();
 1551         for (i = 0; i < bp->b_npages; i++) {
 1552                 m = bp->b_pages[i];
 1553                 bp->b_pages[i] = NULL;
 1554                 /*
 1555                  * In order to keep page LRU ordering consistent, put
 1556                  * everything on the inactive queue.
 1557                  */
 1558                 vm_page_unwire(m, 0);
 1559                 /*
 1560                  * We don't mess with busy pages, it is
 1561                  * the responsibility of the process that
 1562                  * busied the pages to deal with them.
 1563                  */
 1564                 if ((m->oflags & VPO_BUSY) || (m->busy != 0))
 1565                         continue;
 1566                         
 1567                 if (m->wire_count == 0) {
 1568                         /*
 1569                          * Might as well free the page if we can and it has
 1570                          * no valid data.  We also free the page if the
 1571                          * buffer was used for direct I/O
 1572                          */
 1573                         if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
 1574                             m->hold_count == 0) {
 1575                                 vm_page_free(m);
 1576                         } else if (bp->b_flags & B_DIRECT) {
 1577                                 vm_page_try_to_free(m);
 1578                         } else if (buf_vm_page_count_severe()) {
 1579                                 vm_page_try_to_cache(m);
 1580                         }
 1581                 }
 1582         }
 1583         vm_page_unlock_queues();
 1584         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 1585         pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
 1586         
 1587         if (bp->b_bufsize) {
 1588                 bufspacewakeup();
 1589                 bp->b_bufsize = 0;
 1590         }
 1591         bp->b_npages = 0;
 1592         bp->b_flags &= ~B_VMIO;
 1593         if (bp->b_vp)
 1594                 brelvp(bp);
 1595 }
 1596 
 1597 /*
 1598  * Check to see if a block at a particular lbn is available for a clustered
 1599  * write.
 1600  */
 1601 static int
 1602 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 1603 {
 1604         struct buf *bpa;
 1605         int match;
 1606 
 1607         match = 0;
 1608 
 1609         /* If the buf isn't in core skip it */
 1610         if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
 1611                 return (0);
 1612 
 1613         /* If the buf is busy we don't want to wait for it */
 1614         if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1615                 return (0);
 1616 
 1617         /* Only cluster with valid clusterable delayed write buffers */
 1618         if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 1619             (B_DELWRI | B_CLUSTEROK))
 1620                 goto done;
 1621 
 1622         if (bpa->b_bufsize != size)
 1623                 goto done;
 1624 
 1625         /*
 1626          * Check to see if it is in the expected place on disk and that the
 1627          * block has been mapped.
 1628          */
 1629         if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 1630                 match = 1;
 1631 done:
 1632         BUF_UNLOCK(bpa);
 1633         return (match);
 1634 }
 1635 
 1636 /*
 1637  *      vfs_bio_awrite:
 1638  *
 1639  *      Implement clustered async writes for clearing out B_DELWRI buffers.
 1640  *      This is much better then the old way of writing only one buffer at
 1641  *      a time.  Note that we may not be presented with the buffers in the 
 1642  *      correct order, so we search for the cluster in both directions.
 1643  */
 1644 int
 1645 vfs_bio_awrite(struct buf *bp)
 1646 {
 1647         struct bufobj *bo;
 1648         int i;
 1649         int j;
 1650         daddr_t lblkno = bp->b_lblkno;
 1651         struct vnode *vp = bp->b_vp;
 1652         int ncl;
 1653         int nwritten;
 1654         int size;
 1655         int maxcl;
 1656 
 1657         bo = &vp->v_bufobj;
 1658         /*
 1659          * right now we support clustered writing only to regular files.  If
 1660          * we find a clusterable block we could be in the middle of a cluster
 1661          * rather then at the beginning.
 1662          */
 1663         if ((vp->v_type == VREG) && 
 1664             (vp->v_mount != 0) && /* Only on nodes that have the size info */
 1665             (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 1666 
 1667                 size = vp->v_mount->mnt_stat.f_iosize;
 1668                 maxcl = MAXPHYS / size;
 1669 
 1670                 BO_LOCK(bo);
 1671                 for (i = 1; i < maxcl; i++)
 1672                         if (vfs_bio_clcheck(vp, size, lblkno + i,
 1673                             bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 1674                                 break;
 1675 
 1676                 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 1677                         if (vfs_bio_clcheck(vp, size, lblkno - j,
 1678                             bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 1679                                 break;
 1680                 BO_UNLOCK(bo);
 1681                 --j;
 1682                 ncl = i + j;
 1683                 /*
 1684                  * this is a possible cluster write
 1685                  */
 1686                 if (ncl != 1) {
 1687                         BUF_UNLOCK(bp);
 1688                         nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
 1689                         return nwritten;
 1690                 }
 1691         }
 1692         bremfree(bp);
 1693         bp->b_flags |= B_ASYNC;
 1694         /*
 1695          * default (old) behavior, writing out only one block
 1696          *
 1697          * XXX returns b_bufsize instead of b_bcount for nwritten?
 1698          */
 1699         nwritten = bp->b_bufsize;
 1700         (void) bwrite(bp);
 1701 
 1702         return nwritten;
 1703 }
 1704 
 1705 /*
 1706  *      getnewbuf:
 1707  *
 1708  *      Find and initialize a new buffer header, freeing up existing buffers 
 1709  *      in the bufqueues as necessary.  The new buffer is returned locked.
 1710  *
 1711  *      Important:  B_INVAL is not set.  If the caller wishes to throw the
 1712  *      buffer away, the caller must set B_INVAL prior to calling brelse().
 1713  *
 1714  *      We block if:
 1715  *              We have insufficient buffer headers
 1716  *              We have insufficient buffer space
 1717  *              buffer_map is too fragmented ( space reservation fails )
 1718  *              If we have to flush dirty buffers ( but we try to avoid this )
 1719  *
 1720  *      To avoid VFS layer recursion we do not flush dirty buffers ourselves.
 1721  *      Instead we ask the buf daemon to do it for us.  We attempt to
 1722  *      avoid piecemeal wakeups of the pageout daemon.
 1723  */
 1724 
 1725 static struct buf *
 1726 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
 1727     int gbflags)
 1728 {
 1729         struct thread *td;
 1730         struct buf *bp;
 1731         struct buf *nbp;
 1732         int defrag = 0;
 1733         int nqindex;
 1734         static int flushingbufs;
 1735 
 1736         td = curthread;
 1737         /*
 1738          * We can't afford to block since we might be holding a vnode lock,
 1739          * which may prevent system daemons from running.  We deal with
 1740          * low-memory situations by proactively returning memory and running
 1741          * async I/O rather then sync I/O.
 1742          */
 1743         atomic_add_int(&getnewbufcalls, 1);
 1744         atomic_subtract_int(&getnewbufrestarts, 1);
 1745 restart:
 1746         atomic_add_int(&getnewbufrestarts, 1);
 1747 
 1748         /*
 1749          * Setup for scan.  If we do not have enough free buffers,
 1750          * we setup a degenerate case that immediately fails.  Note
 1751          * that if we are specially marked process, we are allowed to
 1752          * dip into our reserves.
 1753          *
 1754          * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
 1755          *
 1756          * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
 1757          * However, there are a number of cases (defragging, reusing, ...)
 1758          * where we cannot backup.
 1759          */
 1760         mtx_lock(&bqlock);
 1761         nqindex = QUEUE_EMPTYKVA;
 1762         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
 1763 
 1764         if (nbp == NULL) {
 1765                 /*
 1766                  * If no EMPTYKVA buffers and we are either
 1767                  * defragging or reusing, locate a CLEAN buffer
 1768                  * to free or reuse.  If bufspace useage is low
 1769                  * skip this step so we can allocate a new buffer.
 1770                  */
 1771                 if (defrag || bufspace >= lobufspace) {
 1772                         nqindex = QUEUE_CLEAN;
 1773                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
 1774                 }
 1775 
 1776                 /*
 1777                  * If we could not find or were not allowed to reuse a
 1778                  * CLEAN buffer, check to see if it is ok to use an EMPTY
 1779                  * buffer.  We can only use an EMPTY buffer if allocating
 1780                  * its KVA would not otherwise run us out of buffer space.
 1781                  */
 1782                 if (nbp == NULL && defrag == 0 &&
 1783                     bufspace + maxsize < hibufspace) {
 1784                         nqindex = QUEUE_EMPTY;
 1785                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
 1786                 }
 1787         }
 1788 
 1789         /*
 1790          * Run scan, possibly freeing data and/or kva mappings on the fly
 1791          * depending.
 1792          */
 1793 
 1794         while ((bp = nbp) != NULL) {
 1795                 int qindex = nqindex;
 1796 
 1797                 /*
 1798                  * Calculate next bp ( we can only use it if we do not block
 1799                  * or do other fancy things ).
 1800                  */
 1801                 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
 1802                         switch(qindex) {
 1803                         case QUEUE_EMPTY:
 1804                                 nqindex = QUEUE_EMPTYKVA;
 1805                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
 1806                                         break;
 1807                                 /* FALLTHROUGH */
 1808                         case QUEUE_EMPTYKVA:
 1809                                 nqindex = QUEUE_CLEAN;
 1810                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
 1811                                         break;
 1812                                 /* FALLTHROUGH */
 1813                         case QUEUE_CLEAN:
 1814                                 /*
 1815                                  * nbp is NULL. 
 1816                                  */
 1817                                 break;
 1818                         }
 1819                 }
 1820                 /*
 1821                  * If we are defragging then we need a buffer with 
 1822                  * b_kvasize != 0.  XXX this situation should no longer
 1823                  * occur, if defrag is non-zero the buffer's b_kvasize
 1824                  * should also be non-zero at this point.  XXX
 1825                  */
 1826                 if (defrag && bp->b_kvasize == 0) {
 1827                         printf("Warning: defrag empty buffer %p\n", bp);
 1828                         continue;
 1829                 }
 1830 
 1831                 /*
 1832                  * Start freeing the bp.  This is somewhat involved.  nbp
 1833                  * remains valid only for QUEUE_EMPTY[KVA] bp's.
 1834                  */
 1835                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1836                         continue;
 1837                 if (bp->b_vp) {
 1838                         BO_LOCK(bp->b_bufobj);
 1839                         if (bp->b_vflags & BV_BKGRDINPROG) {
 1840                                 BO_UNLOCK(bp->b_bufobj);
 1841                                 BUF_UNLOCK(bp);
 1842                                 continue;
 1843                         }
 1844                         BO_UNLOCK(bp->b_bufobj);
 1845                 }
 1846                 CTR6(KTR_BUF,
 1847                     "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
 1848                     "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
 1849                     bp->b_kvasize, bp->b_bufsize, qindex);
 1850 
 1851                 /*
 1852                  * Sanity Checks
 1853                  */
 1854                 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
 1855 
 1856                 /*
 1857                  * Note: we no longer distinguish between VMIO and non-VMIO
 1858                  * buffers.
 1859                  */
 1860 
 1861                 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
 1862 
 1863                 bremfreel(bp);
 1864                 mtx_unlock(&bqlock);
 1865 
 1866                 if (qindex == QUEUE_CLEAN) {
 1867                         if (bp->b_flags & B_VMIO) {
 1868                                 bp->b_flags &= ~B_ASYNC;
 1869                                 vfs_vmio_release(bp);
 1870                         }
 1871                         if (bp->b_vp)
 1872                                 brelvp(bp);
 1873                 }
 1874 
 1875                 /*
 1876                  * NOTE:  nbp is now entirely invalid.  We can only restart
 1877                  * the scan from this point on.
 1878                  *
 1879                  * Get the rest of the buffer freed up.  b_kva* is still
 1880                  * valid after this operation.
 1881                  */
 1882 
 1883                 if (bp->b_rcred != NOCRED) {
 1884                         crfree(bp->b_rcred);
 1885                         bp->b_rcred = NOCRED;
 1886                 }
 1887                 if (bp->b_wcred != NOCRED) {
 1888                         crfree(bp->b_wcred);
 1889                         bp->b_wcred = NOCRED;
 1890                 }
 1891                 if (!LIST_EMPTY(&bp->b_dep))
 1892                         buf_deallocate(bp);
 1893                 if (bp->b_vflags & BV_BKGRDINPROG)
 1894                         panic("losing buffer 3");
 1895                 KASSERT(bp->b_vp == NULL,
 1896                     ("bp: %p still has vnode %p.  qindex: %d",
 1897                     bp, bp->b_vp, qindex));
 1898                 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
 1899                    ("bp: %p still on a buffer list. xflags %X",
 1900                     bp, bp->b_xflags));
 1901 
 1902                 if (bp->b_bufsize)
 1903                         allocbuf(bp, 0);
 1904 
 1905                 bp->b_flags = 0;
 1906                 bp->b_ioflags = 0;
 1907                 bp->b_xflags = 0;
 1908                 bp->b_vflags = 0;
 1909                 bp->b_vp = NULL;
 1910                 bp->b_blkno = bp->b_lblkno = 0;
 1911                 bp->b_offset = NOOFFSET;
 1912                 bp->b_iodone = 0;
 1913                 bp->b_error = 0;
 1914                 bp->b_resid = 0;
 1915                 bp->b_bcount = 0;
 1916                 bp->b_npages = 0;
 1917                 bp->b_dirtyoff = bp->b_dirtyend = 0;
 1918                 bp->b_bufobj = NULL;
 1919                 bp->b_pin_count = 0;
 1920                 bp->b_fsprivate1 = NULL;
 1921                 bp->b_fsprivate2 = NULL;
 1922                 bp->b_fsprivate3 = NULL;
 1923 
 1924                 LIST_INIT(&bp->b_dep);
 1925 
 1926                 /*
 1927                  * If we are defragging then free the buffer.
 1928                  */
 1929                 if (defrag) {
 1930                         bp->b_flags |= B_INVAL;
 1931                         bfreekva(bp);
 1932                         brelse(bp);
 1933                         defrag = 0;
 1934                         goto restart;
 1935                 }
 1936 
 1937                 /*
 1938                  * Notify any waiters for the buffer lock about
 1939                  * identity change by freeing the buffer.
 1940                  */
 1941                 if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
 1942                         bp->b_flags |= B_INVAL;
 1943                         bfreekva(bp);
 1944                         brelse(bp);
 1945                         goto restart;
 1946                 }
 1947 
 1948                 /*
 1949                  * If we are overcomitted then recover the buffer and its
 1950                  * KVM space.  This occurs in rare situations when multiple
 1951                  * processes are blocked in getnewbuf() or allocbuf().
 1952                  */
 1953                 if (bufspace >= hibufspace)
 1954                         flushingbufs = 1;
 1955                 if (flushingbufs && bp->b_kvasize != 0) {
 1956                         bp->b_flags |= B_INVAL;
 1957                         bfreekva(bp);
 1958                         brelse(bp);
 1959                         goto restart;
 1960                 }
 1961                 if (bufspace < lobufspace)
 1962                         flushingbufs = 0;
 1963                 break;
 1964         }
 1965 
 1966         /*
 1967          * If we exhausted our list, sleep as appropriate.  We may have to
 1968          * wakeup various daemons and write out some dirty buffers.
 1969          *
 1970          * Generally we are sleeping due to insufficient buffer space.
 1971          */
 1972 
 1973         if (bp == NULL) {
 1974                 int flags, norunbuf;
 1975                 char *waitmsg;
 1976                 int fl;
 1977 
 1978                 if (defrag) {
 1979                         flags = VFS_BIO_NEED_BUFSPACE;
 1980                         waitmsg = "nbufkv";
 1981                 } else if (bufspace >= hibufspace) {
 1982                         waitmsg = "nbufbs";
 1983                         flags = VFS_BIO_NEED_BUFSPACE;
 1984                 } else {
 1985                         waitmsg = "newbuf";
 1986                         flags = VFS_BIO_NEED_ANY;
 1987                 }
 1988                 mtx_lock(&nblock);
 1989                 needsbuffer |= flags;
 1990                 mtx_unlock(&nblock);
 1991                 mtx_unlock(&bqlock);
 1992 
 1993                 bd_speedup();   /* heeeelp */
 1994                 if (gbflags & GB_NOWAIT_BD)
 1995                         return (NULL);
 1996 
 1997                 mtx_lock(&nblock);
 1998                 while (needsbuffer & flags) {
 1999                         if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
 2000                                 mtx_unlock(&nblock);
 2001                                 /*
 2002                                  * getblk() is called with a vnode
 2003                                  * locked, and some majority of the
 2004                                  * dirty buffers may as well belong to
 2005                                  * the vnode. Flushing the buffers
 2006                                  * there would make a progress that
 2007                                  * cannot be achieved by the
 2008                                  * buf_daemon, that cannot lock the
 2009                                  * vnode.
 2010                                  */
 2011                                 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
 2012                                     (td->td_pflags & TDP_NORUNNINGBUF);
 2013                                 /* play bufdaemon */
 2014                                 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
 2015                                 fl = buf_do_flush(vp);
 2016                                 td->td_pflags &= norunbuf;
 2017                                 mtx_lock(&nblock);
 2018                                 if (fl != 0)
 2019                                         continue;
 2020                                 if ((needsbuffer & flags) == 0)
 2021                                         break;
 2022                         }
 2023                         if (msleep(&needsbuffer, &nblock,
 2024                             (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
 2025                                 mtx_unlock(&nblock);
 2026                                 return (NULL);
 2027                         }
 2028                 }
 2029                 mtx_unlock(&nblock);
 2030         } else {
 2031                 /*
 2032                  * We finally have a valid bp.  We aren't quite out of the
 2033                  * woods, we still have to reserve kva space.  In order
 2034                  * to keep fragmentation sane we only allocate kva in
 2035                  * BKVASIZE chunks.
 2036                  */
 2037                 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 2038 
 2039                 if (maxsize != bp->b_kvasize) {
 2040                         vm_offset_t addr = 0;
 2041 
 2042                         bfreekva(bp);
 2043 
 2044                         vm_map_lock(buffer_map);
 2045                         if (vm_map_findspace(buffer_map,
 2046                                 vm_map_min(buffer_map), maxsize, &addr)) {
 2047                                 /*
 2048                                  * Uh oh.  Buffer map is to fragmented.  We
 2049                                  * must defragment the map.
 2050                                  */
 2051                                 atomic_add_int(&bufdefragcnt, 1);
 2052                                 vm_map_unlock(buffer_map);
 2053                                 defrag = 1;
 2054                                 bp->b_flags |= B_INVAL;
 2055                                 brelse(bp);
 2056                                 goto restart;
 2057                         }
 2058                         if (addr) {
 2059                                 vm_map_insert(buffer_map, NULL, 0,
 2060                                         addr, addr + maxsize,
 2061                                         VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
 2062 
 2063                                 bp->b_kvabase = (caddr_t) addr;
 2064                                 bp->b_kvasize = maxsize;
 2065                                 atomic_add_long(&bufspace, bp->b_kvasize);
 2066                                 atomic_add_int(&bufreusecnt, 1);
 2067                         }
 2068                         vm_map_unlock(buffer_map);
 2069                 }
 2070                 bp->b_saveaddr = bp->b_kvabase;
 2071                 bp->b_data = bp->b_saveaddr;
 2072         }
 2073         return(bp);
 2074 }
 2075 
 2076 /*
 2077  *      buf_daemon:
 2078  *
 2079  *      buffer flushing daemon.  Buffers are normally flushed by the
 2080  *      update daemon but if it cannot keep up this process starts to
 2081  *      take the load in an attempt to prevent getnewbuf() from blocking.
 2082  */
 2083 
 2084 static struct kproc_desc buf_kp = {
 2085         "bufdaemon",
 2086         buf_daemon,
 2087         &bufdaemonproc
 2088 };
 2089 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
 2090 
 2091 static int
 2092 buf_do_flush(struct vnode *vp)
 2093 {
 2094         int flushed;
 2095 
 2096         flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
 2097         /* The list empty check here is slightly racy */
 2098         if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
 2099                 mtx_lock(&Giant);
 2100                 flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
 2101                 mtx_unlock(&Giant);
 2102         }
 2103         if (flushed == 0) {
 2104                 /*
 2105                  * Could not find any buffers without rollback
 2106                  * dependencies, so just write the first one
 2107                  * in the hopes of eventually making progress.
 2108                  */
 2109                 flushbufqueues(vp, QUEUE_DIRTY, 1);
 2110                 if (!TAILQ_EMPTY(
 2111                             &bufqueues[QUEUE_DIRTY_GIANT])) {
 2112                         mtx_lock(&Giant);
 2113                         flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
 2114                         mtx_unlock(&Giant);
 2115                 }
 2116         }
 2117         return (flushed);
 2118 }
 2119 
 2120 static void
 2121 buf_daemon()
 2122 {
 2123 
 2124         /*
 2125          * This process needs to be suspended prior to shutdown sync.
 2126          */
 2127         EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
 2128             SHUTDOWN_PRI_LAST);
 2129 
 2130         /*
 2131          * This process is allowed to take the buffer cache to the limit
 2132          */
 2133         curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
 2134         mtx_lock(&bdlock);
 2135         for (;;) {
 2136                 bd_request = 0;
 2137                 mtx_unlock(&bdlock);
 2138 
 2139                 kproc_suspend_check(bufdaemonproc);
 2140 
 2141                 /*
 2142                  * Do the flush.  Limit the amount of in-transit I/O we
 2143                  * allow to build up, otherwise we would completely saturate
 2144                  * the I/O system.  Wakeup any waiting processes before we
 2145                  * normally would so they can run in parallel with our drain.
 2146                  */
 2147                 while (numdirtybuffers > lodirtybuffers) {
 2148                         if (buf_do_flush(NULL) == 0)
 2149                                 break;
 2150                         uio_yield();
 2151                 }
 2152 
 2153                 /*
 2154                  * Only clear bd_request if we have reached our low water
 2155                  * mark.  The buf_daemon normally waits 1 second and
 2156                  * then incrementally flushes any dirty buffers that have
 2157                  * built up, within reason.
 2158                  *
 2159                  * If we were unable to hit our low water mark and couldn't
 2160                  * find any flushable buffers, we sleep half a second.
 2161                  * Otherwise we loop immediately.
 2162                  */
 2163                 mtx_lock(&bdlock);
 2164                 if (numdirtybuffers <= lodirtybuffers) {
 2165                         /*
 2166                          * We reached our low water mark, reset the
 2167                          * request and sleep until we are needed again.
 2168                          * The sleep is just so the suspend code works.
 2169                          */
 2170                         bd_request = 0;
 2171                         msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 2172                 } else {
 2173                         /*
 2174                          * We couldn't find any flushable dirty buffers but
 2175                          * still have too many dirty buffers, we
 2176                          * have to sleep and try again.  (rare)
 2177                          */
 2178                         msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 2179                 }
 2180         }
 2181 }
 2182 
 2183 /*
 2184  *      flushbufqueues:
 2185  *
 2186  *      Try to flush a buffer in the dirty queue.  We must be careful to
 2187  *      free up B_INVAL buffers instead of write them, which NFS is 
 2188  *      particularly sensitive to.
 2189  */
 2190 static int flushwithdeps = 0;
 2191 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
 2192     0, "Number of buffers flushed with dependecies that require rollbacks");
 2193 
 2194 static int
 2195 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
 2196 {
 2197         struct buf *sentinel;
 2198         struct vnode *vp;
 2199         struct mount *mp;
 2200         struct buf *bp;
 2201         int hasdeps;
 2202         int flushed;
 2203         int target;
 2204 
 2205         if (lvp == NULL) {
 2206                 target = numdirtybuffers - lodirtybuffers;
 2207                 if (flushdeps && target > 2)
 2208                         target /= 2;
 2209         } else
 2210                 target = flushbufqtarget;
 2211         flushed = 0;
 2212         bp = NULL;
 2213         sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
 2214         sentinel->b_qindex = QUEUE_SENTINEL;
 2215         mtx_lock(&bqlock);
 2216         TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
 2217         while (flushed != target) {
 2218                 bp = TAILQ_NEXT(sentinel, b_freelist);
 2219                 if (bp != NULL) {
 2220                         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2221                         TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
 2222                             b_freelist);
 2223                 } else
 2224                         break;
 2225                 /*
 2226                  * Skip sentinels inserted by other invocations of the
 2227                  * flushbufqueues(), taking care to not reorder them.
 2228                  */
 2229                 if (bp->b_qindex == QUEUE_SENTINEL)
 2230                         continue;
 2231                 /*
 2232                  * Only flush the buffers that belong to the
 2233                  * vnode locked by the curthread.
 2234                  */
 2235                 if (lvp != NULL && bp->b_vp != lvp)
 2236                         continue;
 2237                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 2238                         continue;
 2239                 if (bp->b_pin_count > 0) {
 2240                         BUF_UNLOCK(bp);
 2241                         continue;
 2242                 }
 2243                 BO_LOCK(bp->b_bufobj);
 2244                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
 2245                     (bp->b_flags & B_DELWRI) == 0) {
 2246                         BO_UNLOCK(bp->b_bufobj);
 2247                         BUF_UNLOCK(bp);
 2248                         continue;
 2249                 }
 2250                 BO_UNLOCK(bp->b_bufobj);
 2251                 if (bp->b_flags & B_INVAL) {
 2252                         bremfreel(bp);
 2253                         mtx_unlock(&bqlock);
 2254                         brelse(bp);
 2255                         flushed++;
 2256                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2257                         mtx_lock(&bqlock);
 2258                         continue;
 2259                 }
 2260 
 2261                 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
 2262                         if (flushdeps == 0) {
 2263                                 BUF_UNLOCK(bp);
 2264                                 continue;
 2265                         }
 2266                         hasdeps = 1;
 2267                 } else
 2268                         hasdeps = 0;
 2269                 /*
 2270                  * We must hold the lock on a vnode before writing
 2271                  * one of its buffers. Otherwise we may confuse, or
 2272                  * in the case of a snapshot vnode, deadlock the
 2273                  * system.
 2274                  *
 2275                  * The lock order here is the reverse of the normal
 2276                  * of vnode followed by buf lock.  This is ok because
 2277                  * the NOWAIT will prevent deadlock.
 2278                  */
 2279                 vp = bp->b_vp;
 2280                 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 2281                         BUF_UNLOCK(bp);
 2282                         continue;
 2283                 }
 2284                 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
 2285                         mtx_unlock(&bqlock);
 2286                         CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
 2287                             bp, bp->b_vp, bp->b_flags);
 2288                         if (curproc == bufdaemonproc)
 2289                                 vfs_bio_awrite(bp);
 2290                         else {
 2291                                 bremfree(bp);
 2292                                 bwrite(bp);
 2293                                 notbufdflashes++;
 2294                         }
 2295                         vn_finished_write(mp);
 2296                         VOP_UNLOCK(vp, 0);
 2297                         flushwithdeps += hasdeps;
 2298                         flushed++;
 2299 
 2300                         /*
 2301                          * Sleeping on runningbufspace while holding
 2302                          * vnode lock leads to deadlock.
 2303                          */
 2304                         if (curproc == bufdaemonproc)
 2305                                 waitrunningbufspace();
 2306                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2307                         mtx_lock(&bqlock);
 2308                         continue;
 2309                 }
 2310                 vn_finished_write(mp);
 2311                 BUF_UNLOCK(bp);
 2312         }
 2313         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2314         mtx_unlock(&bqlock);
 2315         free(sentinel, M_TEMP);
 2316         return (flushed);
 2317 }
 2318 
 2319 /*
 2320  * Check to see if a block is currently memory resident.
 2321  */
 2322 struct buf *
 2323 incore(struct bufobj *bo, daddr_t blkno)
 2324 {
 2325         struct buf *bp;
 2326 
 2327         BO_LOCK(bo);
 2328         bp = gbincore(bo, blkno);
 2329         BO_UNLOCK(bo);
 2330         return (bp);
 2331 }
 2332 
 2333 /*
 2334  * Returns true if no I/O is needed to access the
 2335  * associated VM object.  This is like incore except
 2336  * it also hunts around in the VM system for the data.
 2337  */
 2338 
 2339 static int
 2340 inmem(struct vnode * vp, daddr_t blkno)
 2341 {
 2342         vm_object_t obj;
 2343         vm_offset_t toff, tinc, size;
 2344         vm_page_t m;
 2345         vm_ooffset_t off;
 2346 
 2347         ASSERT_VOP_LOCKED(vp, "inmem");
 2348 
 2349         if (incore(&vp->v_bufobj, blkno))
 2350                 return 1;
 2351         if (vp->v_mount == NULL)
 2352                 return 0;
 2353         obj = vp->v_object;
 2354         if (obj == NULL)
 2355                 return (0);
 2356 
 2357         size = PAGE_SIZE;
 2358         if (size > vp->v_mount->mnt_stat.f_iosize)
 2359                 size = vp->v_mount->mnt_stat.f_iosize;
 2360         off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 2361 
 2362         VM_OBJECT_LOCK(obj);
 2363         for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 2364                 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
 2365                 if (!m)
 2366                         goto notinmem;
 2367                 tinc = size;
 2368                 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 2369                         tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 2370                 if (vm_page_is_valid(m,
 2371                     (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
 2372                         goto notinmem;
 2373         }
 2374         VM_OBJECT_UNLOCK(obj);
 2375         return 1;
 2376 
 2377 notinmem:
 2378         VM_OBJECT_UNLOCK(obj);
 2379         return (0);
 2380 }
 2381 
 2382 /*
 2383  *      vfs_setdirty:
 2384  *
 2385  *      Sets the dirty range for a buffer based on the status of the dirty
 2386  *      bits in the pages comprising the buffer.
 2387  *
 2388  *      The range is limited to the size of the buffer.
 2389  *
 2390  *      This routine is primarily used by NFS, but is generalized for the
 2391  *      B_VMIO case.
 2392  */
 2393 static void
 2394 vfs_setdirty(struct buf *bp) 
 2395 {
 2396 
 2397         /*
 2398          * Degenerate case - empty buffer
 2399          */
 2400         if (bp->b_bufsize == 0)
 2401                 return;
 2402 
 2403         if ((bp->b_flags & B_VMIO) == 0)
 2404                 return;
 2405 
 2406         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 2407         vfs_setdirty_locked_object(bp);
 2408         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 2409 }
 2410 
 2411 static void
 2412 vfs_setdirty_locked_object(struct buf *bp)
 2413 {
 2414         vm_object_t object;
 2415         int i;
 2416 
 2417         object = bp->b_bufobj->bo_object;
 2418         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2419 
 2420         /*
 2421          * We qualify the scan for modified pages on whether the
 2422          * object has been flushed yet.
 2423          */
 2424         if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
 2425                 vm_offset_t boffset;
 2426                 vm_offset_t eoffset;
 2427 
 2428                 vm_page_lock_queues();
 2429                 /*
 2430                  * test the pages to see if they have been modified directly
 2431                  * by users through the VM system.
 2432                  */
 2433                 for (i = 0; i < bp->b_npages; i++)
 2434                         vm_page_test_dirty(bp->b_pages[i]);
 2435 
 2436                 /*
 2437                  * Calculate the encompassing dirty range, boffset and eoffset,
 2438                  * (eoffset - boffset) bytes.
 2439                  */
 2440 
 2441                 for (i = 0; i < bp->b_npages; i++) {
 2442                         if (bp->b_pages[i]->dirty)
 2443                                 break;
 2444                 }
 2445                 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2446 
 2447                 for (i = bp->b_npages - 1; i >= 0; --i) {
 2448                         if (bp->b_pages[i]->dirty) {
 2449                                 break;
 2450                         }
 2451                 }
 2452                 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2453 
 2454                 vm_page_unlock_queues();
 2455                 /*
 2456                  * Fit it to the buffer.
 2457                  */
 2458 
 2459                 if (eoffset > bp->b_bcount)
 2460                         eoffset = bp->b_bcount;
 2461 
 2462                 /*
 2463                  * If we have a good dirty range, merge with the existing
 2464                  * dirty range.
 2465                  */
 2466 
 2467                 if (boffset < eoffset) {
 2468                         if (bp->b_dirtyoff > boffset)
 2469                                 bp->b_dirtyoff = boffset;
 2470                         if (bp->b_dirtyend < eoffset)
 2471                                 bp->b_dirtyend = eoffset;
 2472                 }
 2473         }
 2474 }
 2475 
 2476 /*
 2477  *      getblk:
 2478  *
 2479  *      Get a block given a specified block and offset into a file/device.
 2480  *      The buffers B_DONE bit will be cleared on return, making it almost
 2481  *      ready for an I/O initiation.  B_INVAL may or may not be set on 
 2482  *      return.  The caller should clear B_INVAL prior to initiating a
 2483  *      READ.
 2484  *
 2485  *      For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
 2486  *      an existing buffer.
 2487  *
 2488  *      For a VMIO buffer, B_CACHE is modified according to the backing VM.
 2489  *      If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
 2490  *      and then cleared based on the backing VM.  If the previous buffer is
 2491  *      non-0-sized but invalid, B_CACHE will be cleared.
 2492  *
 2493  *      If getblk() must create a new buffer, the new buffer is returned with
 2494  *      both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
 2495  *      case it is returned with B_INVAL clear and B_CACHE set based on the
 2496  *      backing VM.
 2497  *
 2498  *      getblk() also forces a bwrite() for any B_DELWRI buffer whos
 2499  *      B_CACHE bit is clear.
 2500  *      
 2501  *      What this means, basically, is that the caller should use B_CACHE to
 2502  *      determine whether the buffer is fully valid or not and should clear
 2503  *      B_INVAL prior to issuing a read.  If the caller intends to validate
 2504  *      the buffer by loading its data area with something, the caller needs
 2505  *      to clear B_INVAL.  If the caller does this without issuing an I/O, 
 2506  *      the caller should set B_CACHE ( as an optimization ), else the caller
 2507  *      should issue the I/O and biodone() will set B_CACHE if the I/O was
 2508  *      a write attempt or if it was a successfull read.  If the caller 
 2509  *      intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
 2510  *      prior to issuing the READ.  biodone() will *not* clear B_INVAL.
 2511  */
 2512 struct buf *
 2513 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
 2514     int flags)
 2515 {
 2516         struct buf *bp;
 2517         struct bufobj *bo;
 2518         int error;
 2519 
 2520         CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
 2521         ASSERT_VOP_LOCKED(vp, "getblk");
 2522         if (size > MAXBSIZE)
 2523                 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
 2524 
 2525         bo = &vp->v_bufobj;
 2526 loop:
 2527         /*
 2528          * Block if we are low on buffers.   Certain processes are allowed
 2529          * to completely exhaust the buffer cache.
 2530          *
 2531          * If this check ever becomes a bottleneck it may be better to
 2532          * move it into the else, when gbincore() fails.  At the moment
 2533          * it isn't a problem.
 2534          *
 2535          * XXX remove if 0 sections (clean this up after its proven)
 2536          */
 2537         if (numfreebuffers == 0) {
 2538                 if (TD_IS_IDLETHREAD(curthread))
 2539                         return NULL;
 2540                 mtx_lock(&nblock);
 2541                 needsbuffer |= VFS_BIO_NEED_ANY;
 2542                 mtx_unlock(&nblock);
 2543         }
 2544 
 2545         BO_LOCK(bo);
 2546         bp = gbincore(bo, blkno);
 2547         if (bp != NULL) {
 2548                 int lockflags;
 2549                 /*
 2550                  * Buffer is in-core.  If the buffer is not busy, it must
 2551                  * be on a queue.
 2552                  */
 2553                 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
 2554 
 2555                 if (flags & GB_LOCK_NOWAIT)
 2556                         lockflags |= LK_NOWAIT;
 2557 
 2558                 error = BUF_TIMELOCK(bp, lockflags,
 2559                     BO_MTX(bo), "getblk", slpflag, slptimeo);
 2560 
 2561                 /*
 2562                  * If we slept and got the lock we have to restart in case
 2563                  * the buffer changed identities.
 2564                  */
 2565                 if (error == ENOLCK)
 2566                         goto loop;
 2567                 /* We timed out or were interrupted. */
 2568                 else if (error)
 2569                         return (NULL);
 2570 
 2571                 /*
 2572                  * The buffer is locked.  B_CACHE is cleared if the buffer is 
 2573                  * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 2574                  * and for a VMIO buffer B_CACHE is adjusted according to the
 2575                  * backing VM cache.
 2576                  */
 2577                 if (bp->b_flags & B_INVAL)
 2578                         bp->b_flags &= ~B_CACHE;
 2579                 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 2580                         bp->b_flags |= B_CACHE;
 2581                 bremfree(bp);
 2582 
 2583                 /*
 2584                  * check for size inconsistancies for non-VMIO case.
 2585                  */
 2586 
 2587                 if (bp->b_bcount != size) {
 2588                         if ((bp->b_flags & B_VMIO) == 0 ||
 2589                             (size > bp->b_kvasize)) {
 2590                                 if (bp->b_flags & B_DELWRI) {
 2591                                         /*
 2592                                          * If buffer is pinned and caller does
 2593                                          * not want sleep  waiting for it to be
 2594                                          * unpinned, bail out
 2595                                          * */
 2596                                         if (bp->b_pin_count > 0) {
 2597                                                 if (flags & GB_LOCK_NOWAIT) {
 2598                                                         bqrelse(bp);
 2599                                                         return (NULL);
 2600                                                 } else {
 2601                                                         bunpin_wait(bp);
 2602                                                 }
 2603                                         }
 2604                                         bp->b_flags |= B_NOCACHE;
 2605                                         bwrite(bp);
 2606                                 } else {
 2607                                         if (LIST_EMPTY(&bp->b_dep)) {
 2608                                                 bp->b_flags |= B_RELBUF;
 2609                                                 brelse(bp);
 2610                                         } else {
 2611                                                 bp->b_flags |= B_NOCACHE;
 2612                                                 bwrite(bp);
 2613                                         }
 2614                                 }
 2615                                 goto loop;
 2616                         }
 2617                 }
 2618 
 2619                 /*
 2620                  * If the size is inconsistant in the VMIO case, we can resize
 2621                  * the buffer.  This might lead to B_CACHE getting set or
 2622                  * cleared.  If the size has not changed, B_CACHE remains
 2623                  * unchanged from its previous state.
 2624                  */
 2625 
 2626                 if (bp->b_bcount != size)
 2627                         allocbuf(bp, size);
 2628 
 2629                 KASSERT(bp->b_offset != NOOFFSET, 
 2630                     ("getblk: no buffer offset"));
 2631 
 2632                 /*
 2633                  * A buffer with B_DELWRI set and B_CACHE clear must
 2634                  * be committed before we can return the buffer in
 2635                  * order to prevent the caller from issuing a read
 2636                  * ( due to B_CACHE not being set ) and overwriting
 2637                  * it.
 2638                  *
 2639                  * Most callers, including NFS and FFS, need this to
 2640                  * operate properly either because they assume they
 2641                  * can issue a read if B_CACHE is not set, or because
 2642                  * ( for example ) an uncached B_DELWRI might loop due 
 2643                  * to softupdates re-dirtying the buffer.  In the latter
 2644                  * case, B_CACHE is set after the first write completes,
 2645                  * preventing further loops.
 2646                  * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 2647                  * above while extending the buffer, we cannot allow the
 2648                  * buffer to remain with B_CACHE set after the write
 2649                  * completes or it will represent a corrupt state.  To
 2650                  * deal with this we set B_NOCACHE to scrap the buffer
 2651                  * after the write.
 2652                  *
 2653                  * We might be able to do something fancy, like setting
 2654                  * B_CACHE in bwrite() except if B_DELWRI is already set,
 2655                  * so the below call doesn't set B_CACHE, but that gets real
 2656                  * confusing.  This is much easier.
 2657                  */
 2658 
 2659                 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 2660                         bp->b_flags |= B_NOCACHE;
 2661                         bwrite(bp);
 2662                         goto loop;
 2663                 }
 2664                 bp->b_flags &= ~B_DONE;
 2665         } else {
 2666                 int bsize, maxsize, vmio;
 2667                 off_t offset;
 2668 
 2669                 /*
 2670                  * Buffer is not in-core, create new buffer.  The buffer
 2671                  * returned by getnewbuf() is locked.  Note that the returned
 2672                  * buffer is also considered valid (not marked B_INVAL).
 2673                  */
 2674                 BO_UNLOCK(bo);
 2675                 /*
 2676                  * If the user does not want us to create the buffer, bail out
 2677                  * here.
 2678                  */
 2679                 if (flags & GB_NOCREAT)
 2680                         return NULL;
 2681                 bsize = bo->bo_bsize;
 2682                 offset = blkno * bsize;
 2683                 vmio = vp->v_object != NULL;
 2684                 maxsize = vmio ? size + (offset & PAGE_MASK) : size;
 2685                 maxsize = imax(maxsize, bsize);
 2686 
 2687                 bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
 2688                 if (bp == NULL) {
 2689                         if (slpflag || slptimeo)
 2690                                 return NULL;
 2691                         goto loop;
 2692                 }
 2693 
 2694                 /*
 2695                  * This code is used to make sure that a buffer is not
 2696                  * created while the getnewbuf routine is blocked.
 2697                  * This can be a problem whether the vnode is locked or not.
 2698                  * If the buffer is created out from under us, we have to
 2699                  * throw away the one we just created.
 2700                  *
 2701                  * Note: this must occur before we associate the buffer
 2702                  * with the vp especially considering limitations in
 2703                  * the splay tree implementation when dealing with duplicate
 2704                  * lblkno's.
 2705                  */
 2706                 BO_LOCK(bo);
 2707                 if (gbincore(bo, blkno)) {
 2708                         BO_UNLOCK(bo);
 2709                         bp->b_flags |= B_INVAL;
 2710                         brelse(bp);
 2711                         goto loop;
 2712                 }
 2713 
 2714                 /*
 2715                  * Insert the buffer into the hash, so that it can
 2716                  * be found by incore.
 2717                  */
 2718                 bp->b_blkno = bp->b_lblkno = blkno;
 2719                 bp->b_offset = offset;
 2720                 bgetvp(vp, bp);
 2721                 BO_UNLOCK(bo);
 2722 
 2723                 /*
 2724                  * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 2725                  * buffer size starts out as 0, B_CACHE will be set by
 2726                  * allocbuf() for the VMIO case prior to it testing the
 2727                  * backing store for validity.
 2728                  */
 2729 
 2730                 if (vmio) {
 2731                         bp->b_flags |= B_VMIO;
 2732 #if defined(VFS_BIO_DEBUG)
 2733                         if (vn_canvmio(vp) != TRUE)
 2734                                 printf("getblk: VMIO on vnode type %d\n",
 2735                                         vp->v_type);
 2736 #endif
 2737                         KASSERT(vp->v_object == bp->b_bufobj->bo_object,
 2738                             ("ARGH! different b_bufobj->bo_object %p %p %p\n",
 2739                             bp, vp->v_object, bp->b_bufobj->bo_object));
 2740                 } else {
 2741                         bp->b_flags &= ~B_VMIO;
 2742                         KASSERT(bp->b_bufobj->bo_object == NULL,
 2743                             ("ARGH! has b_bufobj->bo_object %p %p\n",
 2744                             bp, bp->b_bufobj->bo_object));
 2745                 }
 2746 
 2747                 allocbuf(bp, size);
 2748                 bp->b_flags &= ~B_DONE;
 2749         }
 2750         CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
 2751         BUF_ASSERT_HELD(bp);
 2752         KASSERT(bp->b_bufobj == bo,
 2753             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 2754         return (bp);
 2755 }
 2756 
 2757 /*
 2758  * Get an empty, disassociated buffer of given size.  The buffer is initially
 2759  * set to B_INVAL.
 2760  */
 2761 struct buf *
 2762 geteblk(int size, int flags)
 2763 {
 2764         struct buf *bp;
 2765         int maxsize;
 2766 
 2767         maxsize = (size + BKVAMASK) & ~BKVAMASK;
 2768         while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
 2769                 if ((flags & GB_NOWAIT_BD) &&
 2770                     (curthread->td_pflags & TDP_BUFNEED) != 0)
 2771                         return (NULL);
 2772         }
 2773         allocbuf(bp, size);
 2774         bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
 2775         BUF_ASSERT_HELD(bp);
 2776         return (bp);
 2777 }
 2778 
 2779 
 2780 /*
 2781  * This code constitutes the buffer memory from either anonymous system
 2782  * memory (in the case of non-VMIO operations) or from an associated
 2783  * VM object (in the case of VMIO operations).  This code is able to
 2784  * resize a buffer up or down.
 2785  *
 2786  * Note that this code is tricky, and has many complications to resolve
 2787  * deadlock or inconsistant data situations.  Tread lightly!!! 
 2788  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
 2789  * the caller.  Calling this code willy nilly can result in the loss of data.
 2790  *
 2791  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
 2792  * B_CACHE for the non-VMIO case.
 2793  */
 2794 
 2795 int
 2796 allocbuf(struct buf *bp, int size)
 2797 {
 2798         int newbsize, mbsize;
 2799         int i;
 2800 
 2801         BUF_ASSERT_HELD(bp);
 2802 
 2803         if (bp->b_kvasize < size)
 2804                 panic("allocbuf: buffer too small");
 2805 
 2806         if ((bp->b_flags & B_VMIO) == 0) {
 2807                 caddr_t origbuf;
 2808                 int origbufsize;
 2809                 /*
 2810                  * Just get anonymous memory from the kernel.  Don't
 2811                  * mess with B_CACHE.
 2812                  */
 2813                 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2814                 if (bp->b_flags & B_MALLOC)
 2815                         newbsize = mbsize;
 2816                 else
 2817                         newbsize = round_page(size);
 2818 
 2819                 if (newbsize < bp->b_bufsize) {
 2820                         /*
 2821                          * malloced buffers are not shrunk
 2822                          */
 2823                         if (bp->b_flags & B_MALLOC) {
 2824                                 if (newbsize) {
 2825                                         bp->b_bcount = size;
 2826                                 } else {
 2827                                         free(bp->b_data, M_BIOBUF);
 2828                                         if (bp->b_bufsize) {
 2829                                                 atomic_subtract_long(
 2830                                                     &bufmallocspace,
 2831                                                     bp->b_bufsize);
 2832                                                 bufspacewakeup();
 2833                                                 bp->b_bufsize = 0;
 2834                                         }
 2835                                         bp->b_saveaddr = bp->b_kvabase;
 2836                                         bp->b_data = bp->b_saveaddr;
 2837                                         bp->b_bcount = 0;
 2838                                         bp->b_flags &= ~B_MALLOC;
 2839                                 }
 2840                                 return 1;
 2841                         }               
 2842                         vm_hold_free_pages(
 2843                             bp,
 2844                             (vm_offset_t) bp->b_data + newbsize,
 2845                             (vm_offset_t) bp->b_data + bp->b_bufsize);
 2846                 } else if (newbsize > bp->b_bufsize) {
 2847                         /*
 2848                          * We only use malloced memory on the first allocation.
 2849                          * and revert to page-allocated memory when the buffer
 2850                          * grows.
 2851                          */
 2852                         /*
 2853                          * There is a potential smp race here that could lead
 2854                          * to bufmallocspace slightly passing the max.  It
 2855                          * is probably extremely rare and not worth worrying
 2856                          * over.
 2857                          */
 2858                         if ( (bufmallocspace < maxbufmallocspace) &&
 2859                                 (bp->b_bufsize == 0) &&
 2860                                 (mbsize <= PAGE_SIZE/2)) {
 2861 
 2862                                 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
 2863                                 bp->b_bufsize = mbsize;
 2864                                 bp->b_bcount = size;
 2865                                 bp->b_flags |= B_MALLOC;
 2866                                 atomic_add_long(&bufmallocspace, mbsize);
 2867                                 return 1;
 2868                         }
 2869                         origbuf = NULL;
 2870                         origbufsize = 0;
 2871                         /*
 2872                          * If the buffer is growing on its other-than-first allocation,
 2873                          * then we revert to the page-allocation scheme.
 2874                          */
 2875                         if (bp->b_flags & B_MALLOC) {
 2876                                 origbuf = bp->b_data;
 2877                                 origbufsize = bp->b_bufsize;
 2878                                 bp->b_data = bp->b_kvabase;
 2879                                 if (bp->b_bufsize) {
 2880                                         atomic_subtract_long(&bufmallocspace,
 2881                                             bp->b_bufsize);
 2882                                         bufspacewakeup();
 2883                                         bp->b_bufsize = 0;
 2884                                 }
 2885                                 bp->b_flags &= ~B_MALLOC;
 2886                                 newbsize = round_page(newbsize);
 2887                         }
 2888                         vm_hold_load_pages(
 2889                             bp,
 2890                             (vm_offset_t) bp->b_data + bp->b_bufsize,
 2891                             (vm_offset_t) bp->b_data + newbsize);
 2892                         if (origbuf) {
 2893                                 bcopy(origbuf, bp->b_data, origbufsize);
 2894                                 free(origbuf, M_BIOBUF);
 2895                         }
 2896                 }
 2897         } else {
 2898                 int desiredpages;
 2899 
 2900                 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2901                 desiredpages = (size == 0) ? 0 :
 2902                         num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 2903 
 2904                 if (bp->b_flags & B_MALLOC)
 2905                         panic("allocbuf: VMIO buffer can't be malloced");
 2906                 /*
 2907                  * Set B_CACHE initially if buffer is 0 length or will become
 2908                  * 0-length.
 2909                  */
 2910                 if (size == 0 || bp->b_bufsize == 0)
 2911                         bp->b_flags |= B_CACHE;
 2912 
 2913                 if (newbsize < bp->b_bufsize) {
 2914                         /*
 2915                          * DEV_BSIZE aligned new buffer size is less then the
 2916                          * DEV_BSIZE aligned existing buffer size.  Figure out
 2917                          * if we have to remove any pages.
 2918                          */
 2919                         if (desiredpages < bp->b_npages) {
 2920                                 vm_page_t m;
 2921 
 2922                                 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 2923                                 vm_page_lock_queues();
 2924                                 for (i = desiredpages; i < bp->b_npages; i++) {
 2925                                         /*
 2926                                          * the page is not freed here -- it
 2927                                          * is the responsibility of 
 2928                                          * vnode_pager_setsize
 2929                                          */
 2930                                         m = bp->b_pages[i];
 2931                                         KASSERT(m != bogus_page,
 2932                                             ("allocbuf: bogus page found"));
 2933                                         while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
 2934                                                 vm_page_lock_queues();
 2935 
 2936                                         bp->b_pages[i] = NULL;
 2937                                         vm_page_unwire(m, 0);
 2938                                 }
 2939                                 vm_page_unlock_queues();
 2940                                 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 2941                                 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
 2942                                     (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
 2943                                 bp->b_npages = desiredpages;
 2944                         }
 2945                 } else if (size > bp->b_bcount) {
 2946                         /*
 2947                          * We are growing the buffer, possibly in a 
 2948                          * byte-granular fashion.
 2949                          */
 2950                         vm_object_t obj;
 2951                         vm_offset_t toff;
 2952                         vm_offset_t tinc;
 2953 
 2954                         /*
 2955                          * Step 1, bring in the VM pages from the object, 
 2956                          * allocating them if necessary.  We must clear
 2957                          * B_CACHE if these pages are not valid for the 
 2958                          * range covered by the buffer.
 2959                          */
 2960 
 2961                         obj = bp->b_bufobj->bo_object;
 2962 
 2963                         VM_OBJECT_LOCK(obj);
 2964                         while (bp->b_npages < desiredpages) {
 2965                                 vm_page_t m;
 2966                                 vm_pindex_t pi;
 2967 
 2968                                 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
 2969                                 if ((m = vm_page_lookup(obj, pi)) == NULL) {
 2970                                         /*
 2971                                          * note: must allocate system pages
 2972                                          * since blocking here could intefere
 2973                                          * with paging I/O, no matter which
 2974                                          * process we are.
 2975                                          */
 2976                                         m = vm_page_alloc(obj, pi,
 2977                                             VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
 2978                                             VM_ALLOC_WIRED);
 2979                                         if (m == NULL) {
 2980                                                 atomic_add_int(&vm_pageout_deficit,
 2981                                                     desiredpages - bp->b_npages);
 2982                                                 VM_OBJECT_UNLOCK(obj);
 2983                                                 VM_WAIT;
 2984                                                 VM_OBJECT_LOCK(obj);
 2985                                         } else {
 2986                                                 if (m->valid == 0)
 2987                                                         bp->b_flags &= ~B_CACHE;
 2988                                                 bp->b_pages[bp->b_npages] = m;
 2989                                                 ++bp->b_npages;
 2990                                         }
 2991                                         continue;
 2992                                 }
 2993 
 2994                                 /*
 2995                                  * We found a page.  If we have to sleep on it,
 2996                                  * retry because it might have gotten freed out
 2997                                  * from under us.
 2998                                  *
 2999                                  * We can only test VPO_BUSY here.  Blocking on
 3000                                  * m->busy might lead to a deadlock:
 3001                                  *
 3002                                  *  vm_fault->getpages->cluster_read->allocbuf
 3003                                  *
 3004                                  */
 3005                                 if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
 3006                                         continue;
 3007 
 3008                                 /*
 3009                                  * We have a good page.
 3010                                  */
 3011                                 vm_page_lock_queues();
 3012                                 vm_page_wire(m);
 3013                                 vm_page_unlock_queues();
 3014                                 bp->b_pages[bp->b_npages] = m;
 3015                                 ++bp->b_npages;
 3016                         }
 3017 
 3018                         /*
 3019                          * Step 2.  We've loaded the pages into the buffer,
 3020                          * we have to figure out if we can still have B_CACHE
 3021                          * set.  Note that B_CACHE is set according to the
 3022                          * byte-granular range ( bcount and size ), new the
 3023                          * aligned range ( newbsize ).
 3024                          *
 3025                          * The VM test is against m->valid, which is DEV_BSIZE
 3026                          * aligned.  Needless to say, the validity of the data
 3027                          * needs to also be DEV_BSIZE aligned.  Note that this
 3028                          * fails with NFS if the server or some other client
 3029                          * extends the file's EOF.  If our buffer is resized, 
 3030                          * B_CACHE may remain set! XXX
 3031                          */
 3032 
 3033                         toff = bp->b_bcount;
 3034                         tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 3035 
 3036                         while ((bp->b_flags & B_CACHE) && toff < size) {
 3037                                 vm_pindex_t pi;
 3038 
 3039                                 if (tinc > (size - toff))
 3040                                         tinc = size - toff;
 3041 
 3042                                 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 
 3043                                     PAGE_SHIFT;
 3044 
 3045                                 vfs_buf_test_cache(
 3046                                     bp, 
 3047                                     bp->b_offset,
 3048                                     toff, 
 3049                                     tinc, 
 3050                                     bp->b_pages[pi]
 3051                                 );
 3052                                 toff += tinc;
 3053                                 tinc = PAGE_SIZE;
 3054                         }
 3055                         VM_OBJECT_UNLOCK(obj);
 3056 
 3057                         /*
 3058                          * Step 3, fixup the KVM pmap.  Remember that
 3059                          * bp->b_data is relative to bp->b_offset, but 
 3060                          * bp->b_offset may be offset into the first page.
 3061                          */
 3062 
 3063                         bp->b_data = (caddr_t)
 3064                             trunc_page((vm_offset_t)bp->b_data);
 3065                         pmap_qenter(
 3066                             (vm_offset_t)bp->b_data,
 3067                             bp->b_pages, 
 3068                             bp->b_npages
 3069                         );
 3070                         
 3071                         bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 
 3072                             (vm_offset_t)(bp->b_offset & PAGE_MASK));
 3073                 }
 3074         }
 3075         if (newbsize < bp->b_bufsize)
 3076                 bufspacewakeup();
 3077         bp->b_bufsize = newbsize;       /* actual buffer allocation     */
 3078         bp->b_bcount = size;            /* requested buffer size        */
 3079         return 1;
 3080 }
 3081 
 3082 void
 3083 biodone(struct bio *bp)
 3084 {
 3085         struct mtx *mtxp;
 3086         void (*done)(struct bio *);
 3087 
 3088         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3089         mtx_lock(mtxp);
 3090         bp->bio_flags |= BIO_DONE;
 3091         done = bp->bio_done;
 3092         if (done == NULL)
 3093                 wakeup(bp);
 3094         mtx_unlock(mtxp);
 3095         if (done != NULL)
 3096                 done(bp);
 3097 }
 3098 
 3099 /*
 3100  * Wait for a BIO to finish.
 3101  *
 3102  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
 3103  * case is not yet clear.
 3104  */
 3105 int
 3106 biowait(struct bio *bp, const char *wchan)
 3107 {
 3108         struct mtx *mtxp;
 3109 
 3110         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3111         mtx_lock(mtxp);
 3112         while ((bp->bio_flags & BIO_DONE) == 0)
 3113                 msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
 3114         mtx_unlock(mtxp);
 3115         if (bp->bio_error != 0)
 3116                 return (bp->bio_error);
 3117         if (!(bp->bio_flags & BIO_ERROR))
 3118                 return (0);
 3119         return (EIO);
 3120 }
 3121 
 3122 void
 3123 biofinish(struct bio *bp, struct devstat *stat, int error)
 3124 {
 3125         
 3126         if (error) {
 3127                 bp->bio_error = error;
 3128                 bp->bio_flags |= BIO_ERROR;
 3129         }
 3130         if (stat != NULL)
 3131                 devstat_end_transaction_bio(stat, bp);
 3132         biodone(bp);
 3133 }
 3134 
 3135 /*
 3136  *      bufwait:
 3137  *
 3138  *      Wait for buffer I/O completion, returning error status.  The buffer
 3139  *      is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
 3140  *      error and cleared.
 3141  */
 3142 int
 3143 bufwait(struct buf *bp)
 3144 {
 3145         if (bp->b_iocmd == BIO_READ)
 3146                 bwait(bp, PRIBIO, "biord");
 3147         else
 3148                 bwait(bp, PRIBIO, "biowr");
 3149         if (bp->b_flags & B_EINTR) {
 3150                 bp->b_flags &= ~B_EINTR;
 3151                 return (EINTR);
 3152         }
 3153         if (bp->b_ioflags & BIO_ERROR) {
 3154                 return (bp->b_error ? bp->b_error : EIO);
 3155         } else {
 3156                 return (0);
 3157         }
 3158 }
 3159 
 3160  /*
 3161   * Call back function from struct bio back up to struct buf.
 3162   */
 3163 static void
 3164 bufdonebio(struct bio *bip)
 3165 {
 3166         struct buf *bp;
 3167 
 3168         bp = bip->bio_caller2;
 3169         bp->b_resid = bp->b_bcount - bip->bio_completed;
 3170         bp->b_resid = bip->bio_resid;   /* XXX: remove */
 3171         bp->b_ioflags = bip->bio_flags;
 3172         bp->b_error = bip->bio_error;
 3173         if (bp->b_error)
 3174                 bp->b_ioflags |= BIO_ERROR;
 3175         bufdone(bp);
 3176         g_destroy_bio(bip);
 3177 }
 3178 
 3179 void
 3180 dev_strategy(struct cdev *dev, struct buf *bp)
 3181 {
 3182         struct cdevsw *csw;
 3183         struct bio *bip;
 3184 
 3185         if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
 3186                 panic("b_iocmd botch");
 3187         for (;;) {
 3188                 bip = g_new_bio();
 3189                 if (bip != NULL)
 3190                         break;
 3191                 /* Try again later */
 3192                 tsleep(&bp, PRIBIO, "dev_strat", hz/10);
 3193         }
 3194         bip->bio_cmd = bp->b_iocmd;
 3195         bip->bio_offset = bp->b_iooffset;
 3196         bip->bio_length = bp->b_bcount;
 3197         bip->bio_bcount = bp->b_bcount; /* XXX: remove */
 3198         bip->bio_data = bp->b_data;
 3199         bip->bio_done = bufdonebio;
 3200         bip->bio_caller2 = bp;
 3201         bip->bio_dev = dev;
 3202         KASSERT(dev->si_refcount > 0,
 3203             ("dev_strategy on un-referenced struct cdev *(%s)",
 3204             devtoname(dev)));
 3205         csw = dev_refthread(dev);
 3206         if (csw == NULL) {
 3207                 g_destroy_bio(bip);
 3208                 bp->b_error = ENXIO;
 3209                 bp->b_ioflags = BIO_ERROR;
 3210                 bufdone(bp);
 3211                 return;
 3212         }
 3213         (*csw->d_strategy)(bip);
 3214         dev_relthread(dev);
 3215 }
 3216 
 3217 /*
 3218  *      bufdone:
 3219  *
 3220  *      Finish I/O on a buffer, optionally calling a completion function.
 3221  *      This is usually called from an interrupt so process blocking is
 3222  *      not allowed.
 3223  *
 3224  *      biodone is also responsible for setting B_CACHE in a B_VMIO bp.
 3225  *      In a non-VMIO bp, B_CACHE will be set on the next getblk() 
 3226  *      assuming B_INVAL is clear.
 3227  *
 3228  *      For the VMIO case, we set B_CACHE if the op was a read and no
 3229  *      read error occured, or if the op was a write.  B_CACHE is never
 3230  *      set if the buffer is invalid or otherwise uncacheable.
 3231  *
 3232  *      biodone does not mess with B_INVAL, allowing the I/O routine or the
 3233  *      initiator to leave B_INVAL set to brelse the buffer out of existance
 3234  *      in the biodone routine.
 3235  */
 3236 void
 3237 bufdone(struct buf *bp)
 3238 {
 3239         struct bufobj *dropobj;
 3240         void    (*biodone)(struct buf *);
 3241 
 3242         CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 3243         dropobj = NULL;
 3244 
 3245         KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 3246         BUF_ASSERT_HELD(bp);
 3247 
 3248         runningbufwakeup(bp);
 3249         if (bp->b_iocmd == BIO_WRITE)
 3250                 dropobj = bp->b_bufobj;
 3251         /* call optional completion function if requested */
 3252         if (bp->b_iodone != NULL) {
 3253                 biodone = bp->b_iodone;
 3254                 bp->b_iodone = NULL;
 3255                 (*biodone) (bp);
 3256                 if (dropobj)
 3257                         bufobj_wdrop(dropobj);
 3258                 return;
 3259         }
 3260 
 3261         bufdone_finish(bp);
 3262 
 3263         if (dropobj)
 3264                 bufobj_wdrop(dropobj);
 3265 }
 3266 
 3267 void
 3268 bufdone_finish(struct buf *bp)
 3269 {
 3270         BUF_ASSERT_HELD(bp);
 3271 
 3272         if (!LIST_EMPTY(&bp->b_dep))
 3273                 buf_complete(bp);
 3274 
 3275         if (bp->b_flags & B_VMIO) {
 3276                 int i;
 3277                 vm_ooffset_t foff;
 3278                 vm_page_t m;
 3279                 vm_object_t obj;
 3280                 int iosize;
 3281                 struct vnode *vp = bp->b_vp;
 3282 
 3283                 obj = bp->b_bufobj->bo_object;
 3284 
 3285 #if defined(VFS_BIO_DEBUG)
 3286                 mp_fixme("usecount and vflag accessed without locks.");
 3287                 if (vp->v_usecount == 0) {
 3288                         panic("biodone: zero vnode ref count");
 3289                 }
 3290 
 3291                 KASSERT(vp->v_object != NULL,
 3292                         ("biodone: vnode %p has no vm_object", vp));
 3293 #endif
 3294 
 3295                 foff = bp->b_offset;
 3296                 KASSERT(bp->b_offset != NOOFFSET,
 3297                     ("biodone: no buffer offset"));
 3298 
 3299                 VM_OBJECT_LOCK(obj);
 3300 #if defined(VFS_BIO_DEBUG)
 3301                 if (obj->paging_in_progress < bp->b_npages) {
 3302                         printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
 3303                             obj->paging_in_progress, bp->b_npages);
 3304                 }
 3305 #endif
 3306 
 3307                 /*
 3308                  * Set B_CACHE if the op was a normal read and no error
 3309                  * occured.  B_CACHE is set for writes in the b*write()
 3310                  * routines.
 3311                  */
 3312                 iosize = bp->b_bcount - bp->b_resid;
 3313                 if (bp->b_iocmd == BIO_READ &&
 3314                     !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 3315                     !(bp->b_ioflags & BIO_ERROR)) {
 3316                         bp->b_flags |= B_CACHE;
 3317                 }
 3318                 for (i = 0; i < bp->b_npages; i++) {
 3319                         int bogusflag = 0;
 3320                         int resid;
 3321 
 3322                         resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 3323                         if (resid > iosize)
 3324                                 resid = iosize;
 3325 
 3326                         /*
 3327                          * cleanup bogus pages, restoring the originals
 3328                          */
 3329                         m = bp->b_pages[i];
 3330                         if (m == bogus_page) {
 3331                                 bogusflag = 1;
 3332                                 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
 3333                                 if (m == NULL)
 3334                                         panic("biodone: page disappeared!");
 3335                                 bp->b_pages[i] = m;
 3336                                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3337                                     bp->b_pages, bp->b_npages);
 3338                         }
 3339 #if defined(VFS_BIO_DEBUG)
 3340                         if (OFF_TO_IDX(foff) != m->pindex) {
 3341                                 printf(
 3342 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
 3343                                     (intmax_t)foff, (uintmax_t)m->pindex);
 3344                         }
 3345 #endif
 3346 
 3347                         /*
 3348                          * In the write case, the valid and clean bits are
 3349                          * already changed correctly ( see bdwrite() ), so we 
 3350                          * only need to do this here in the read case.
 3351                          */
 3352                         if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
 3353                                 KASSERT((m->dirty & vm_page_bits(foff &
 3354                                     PAGE_MASK, resid)) == 0, ("bufdone_finish:"
 3355                                     " page %p has unexpected dirty bits", m));
 3356                                 vfs_page_set_valid(bp, foff, m);
 3357                         }
 3358 
 3359                         /*
 3360                          * when debugging new filesystems or buffer I/O methods, this
 3361                          * is the most common error that pops up.  if you see this, you
 3362                          * have not set the page busy flag correctly!!!
 3363                          */
 3364                         if (m->busy == 0) {
 3365                                 printf("biodone: page busy < 0, "
 3366                                     "pindex: %d, foff: 0x(%x,%x), "
 3367                                     "resid: %d, index: %d\n",
 3368                                     (int) m->pindex, (int)(foff >> 32),
 3369                                                 (int) foff & 0xffffffff, resid, i);
 3370                                 if (!vn_isdisk(vp, NULL))
 3371                                         printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
 3372                                             (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
 3373                                             (intmax_t) bp->b_lblkno,
 3374                                             bp->b_flags, bp->b_npages);
 3375                                 else
 3376                                         printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
 3377                                             (intmax_t) bp->b_lblkno,
 3378                                             bp->b_flags, bp->b_npages);
 3379                                 printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
 3380                                     (u_long)m->valid, (u_long)m->dirty,
 3381                                     m->wire_count);
 3382                                 panic("biodone: page busy < 0\n");
 3383                         }
 3384                         vm_page_io_finish(m);
 3385                         vm_object_pip_subtract(obj, 1);
 3386                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3387                         iosize -= resid;
 3388                 }
 3389                 vm_object_pip_wakeupn(obj, 0);
 3390                 VM_OBJECT_UNLOCK(obj);
 3391         }
 3392 
 3393         /*
 3394          * For asynchronous completions, release the buffer now. The brelse
 3395          * will do a wakeup there if necessary - so no need to do a wakeup
 3396          * here in the async case. The sync case always needs to do a wakeup.
 3397          */
 3398 
 3399         if (bp->b_flags & B_ASYNC) {
 3400                 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
 3401                         brelse(bp);
 3402                 else
 3403                         bqrelse(bp);
 3404         } else
 3405                 bdone(bp);
 3406 }
 3407 
 3408 /*
 3409  * This routine is called in lieu of iodone in the case of
 3410  * incomplete I/O.  This keeps the busy status for pages
 3411  * consistant.
 3412  */
 3413 void
 3414 vfs_unbusy_pages(struct buf *bp)
 3415 {
 3416         int i;
 3417         vm_object_t obj;
 3418         vm_page_t m;
 3419 
 3420         runningbufwakeup(bp);
 3421         if (!(bp->b_flags & B_VMIO))
 3422                 return;
 3423 
 3424         obj = bp->b_bufobj->bo_object;
 3425         VM_OBJECT_LOCK(obj);
 3426         for (i = 0; i < bp->b_npages; i++) {
 3427                 m = bp->b_pages[i];
 3428                 if (m == bogus_page) {
 3429                         m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 3430                         if (!m)
 3431                                 panic("vfs_unbusy_pages: page missing\n");
 3432                         bp->b_pages[i] = m;
 3433                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3434                             bp->b_pages, bp->b_npages);
 3435                 }
 3436                 vm_object_pip_subtract(obj, 1);
 3437                 vm_page_io_finish(m);
 3438         }
 3439         vm_object_pip_wakeupn(obj, 0);
 3440         VM_OBJECT_UNLOCK(obj);
 3441 }
 3442 
 3443 /*
 3444  * vfs_page_set_valid:
 3445  *
 3446  *      Set the valid bits in a page based on the supplied offset.   The
 3447  *      range is restricted to the buffer's size.
 3448  *
 3449  *      This routine is typically called after a read completes.
 3450  */
 3451 static void
 3452 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 3453 {
 3454         vm_ooffset_t eoff;
 3455 
 3456         /*
 3457          * Compute the end offset, eoff, such that [off, eoff) does not span a
 3458          * page boundary and eoff is not greater than the end of the buffer.
 3459          * The end of the buffer, in this case, is our file EOF, not the
 3460          * allocation size of the buffer.
 3461          */
 3462         eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
 3463         if (eoff > bp->b_offset + bp->b_bcount)
 3464                 eoff = bp->b_offset + bp->b_bcount;
 3465 
 3466         /*
 3467          * Set valid range.  This is typically the entire buffer and thus the
 3468          * entire page.
 3469          */
 3470         if (eoff > off)
 3471                 vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
 3472 }
 3473 
 3474 /*
 3475  * vfs_page_set_validclean:
 3476  *
 3477  *      Set the valid bits and clear the dirty bits in a page based on the
 3478  *      supplied offset.   The range is restricted to the buffer's size.
 3479  */
 3480 static void
 3481 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 3482 {
 3483         vm_ooffset_t soff, eoff;
 3484 
 3485         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3486         /*
 3487          * Start and end offsets in buffer.  eoff - soff may not cross a
 3488          * page boundry or cross the end of the buffer.  The end of the
 3489          * buffer, in this case, is our file EOF, not the allocation size
 3490          * of the buffer.
 3491          */
 3492         soff = off;
 3493         eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3494         if (eoff > bp->b_offset + bp->b_bcount)
 3495                 eoff = bp->b_offset + bp->b_bcount;
 3496 
 3497         /*
 3498          * Set valid range.  This is typically the entire buffer and thus the
 3499          * entire page.
 3500          */
 3501         if (eoff > soff) {
 3502                 vm_page_set_validclean(
 3503                     m,
 3504                    (vm_offset_t) (soff & PAGE_MASK),
 3505                    (vm_offset_t) (eoff - soff)
 3506                 );
 3507         }
 3508 }
 3509 
 3510 /*
 3511  * This routine is called before a device strategy routine.
 3512  * It is used to tell the VM system that paging I/O is in
 3513  * progress, and treat the pages associated with the buffer
 3514  * almost as being VPO_BUSY.  Also the object paging_in_progress
 3515  * flag is handled to make sure that the object doesn't become
 3516  * inconsistant.
 3517  *
 3518  * Since I/O has not been initiated yet, certain buffer flags
 3519  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
 3520  * and should be ignored.
 3521  */
 3522 void
 3523 vfs_busy_pages(struct buf *bp, int clear_modify)
 3524 {
 3525         int i, bogus;
 3526         vm_object_t obj;
 3527         vm_ooffset_t foff;
 3528         vm_page_t m;
 3529 
 3530         if (!(bp->b_flags & B_VMIO))
 3531                 return;
 3532 
 3533         obj = bp->b_bufobj->bo_object;
 3534         foff = bp->b_offset;
 3535         KASSERT(bp->b_offset != NOOFFSET,
 3536             ("vfs_busy_pages: no buffer offset"));
 3537         VM_OBJECT_LOCK(obj);
 3538         if (bp->b_bufsize != 0)
 3539                 vfs_setdirty_locked_object(bp);
 3540 retry:
 3541         for (i = 0; i < bp->b_npages; i++) {
 3542                 m = bp->b_pages[i];
 3543 
 3544                 if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
 3545                         goto retry;
 3546         }
 3547         bogus = 0;
 3548         if (clear_modify)
 3549                 vm_page_lock_queues();
 3550         for (i = 0; i < bp->b_npages; i++) {
 3551                 m = bp->b_pages[i];
 3552 
 3553                 if ((bp->b_flags & B_CLUSTER) == 0) {
 3554                         vm_object_pip_add(obj, 1);
 3555                         vm_page_io_start(m);
 3556                 }
 3557                 /*
 3558                  * When readying a buffer for a read ( i.e
 3559                  * clear_modify == 0 ), it is important to do
 3560                  * bogus_page replacement for valid pages in 
 3561                  * partially instantiated buffers.  Partially 
 3562                  * instantiated buffers can, in turn, occur when
 3563                  * reconstituting a buffer from its VM backing store
 3564                  * base.  We only have to do this if B_CACHE is
 3565                  * clear ( which causes the I/O to occur in the
 3566                  * first place ).  The replacement prevents the read
 3567                  * I/O from overwriting potentially dirty VM-backed
 3568                  * pages.  XXX bogus page replacement is, uh, bogus.
 3569                  * It may not work properly with small-block devices.
 3570                  * We need to find a better way.
 3571                  */
 3572                 if (clear_modify) {
 3573                         pmap_remove_write(m);
 3574                         vfs_page_set_validclean(bp, foff, m);
 3575                 } else if (m->valid == VM_PAGE_BITS_ALL &&
 3576                     (bp->b_flags & B_CACHE) == 0) {
 3577                         bp->b_pages[i] = bogus_page;
 3578                         bogus++;
 3579                 }
 3580                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3581         }
 3582         if (clear_modify)
 3583                 vm_page_unlock_queues();
 3584         VM_OBJECT_UNLOCK(obj);
 3585         if (bogus)
 3586                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3587                     bp->b_pages, bp->b_npages);
 3588 }
 3589 
 3590 /*
 3591  * Tell the VM system that the pages associated with this buffer
 3592  * are clean.  This is used for delayed writes where the data is
 3593  * going to go to disk eventually without additional VM intevention.
 3594  *
 3595  * Note that while we only really need to clean through to b_bcount, we
 3596  * just go ahead and clean through to b_bufsize.
 3597  */
 3598 static void
 3599 vfs_clean_pages(struct buf *bp)
 3600 {
 3601         int i;
 3602         vm_ooffset_t foff, noff, eoff;
 3603         vm_page_t m;
 3604 
 3605         if (!(bp->b_flags & B_VMIO))
 3606                 return;
 3607 
 3608         foff = bp->b_offset;
 3609         KASSERT(bp->b_offset != NOOFFSET,
 3610             ("vfs_clean_pages: no buffer offset"));
 3611         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3612         vm_page_lock_queues();
 3613         for (i = 0; i < bp->b_npages; i++) {
 3614                 m = bp->b_pages[i];
 3615                 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3616                 eoff = noff;
 3617 
 3618                 if (eoff > bp->b_offset + bp->b_bufsize)
 3619                         eoff = bp->b_offset + bp->b_bufsize;
 3620                 vfs_page_set_validclean(bp, foff, m);
 3621                 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 3622                 foff = noff;
 3623         }
 3624         vm_page_unlock_queues();
 3625         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3626 }
 3627 
 3628 /*
 3629  *      vfs_bio_set_valid:
 3630  *
 3631  *      Set the range within the buffer to valid.  The range is
 3632  *      relative to the beginning of the buffer, b_offset.  Note that
 3633  *      b_offset itself may be offset from the beginning of the first
 3634  *      page.
 3635  */
 3636 void   
 3637 vfs_bio_set_valid(struct buf *bp, int base, int size)
 3638 {
 3639         int i, n;
 3640         vm_page_t m;
 3641 
 3642         if (!(bp->b_flags & B_VMIO))
 3643                 return;
 3644 
 3645         /*
 3646          * Fixup base to be relative to beginning of first page.
 3647          * Set initial n to be the maximum number of bytes in the
 3648          * first page that can be validated.
 3649          */
 3650         base += (bp->b_offset & PAGE_MASK);
 3651         n = PAGE_SIZE - (base & PAGE_MASK);
 3652 
 3653         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3654         for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 3655                 m = bp->b_pages[i];
 3656                 if (n > size)
 3657                         n = size;
 3658                 vm_page_set_valid(m, base & PAGE_MASK, n);
 3659                 base += n;
 3660                 size -= n;
 3661                 n = PAGE_SIZE;
 3662         }
 3663         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3664 }
 3665 
 3666 /*
 3667  *      vfs_bio_clrbuf:
 3668  *
 3669  *      If the specified buffer is a non-VMIO buffer, clear the entire
 3670  *      buffer.  If the specified buffer is a VMIO buffer, clear and
 3671  *      validate only the previously invalid portions of the buffer.
 3672  *      This routine essentially fakes an I/O, so we need to clear
 3673  *      BIO_ERROR and B_INVAL.
 3674  *
 3675  *      Note that while we only theoretically need to clear through b_bcount,
 3676  *      we go ahead and clear through b_bufsize.
 3677  */
 3678 void
 3679 vfs_bio_clrbuf(struct buf *bp) 
 3680 {
 3681         int i, j, mask;
 3682         caddr_t sa, ea;
 3683 
 3684         if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
 3685                 clrbuf(bp);
 3686                 return;
 3687         }
 3688         bp->b_flags &= ~B_INVAL;
 3689         bp->b_ioflags &= ~BIO_ERROR;
 3690         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3691         if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
 3692             (bp->b_offset & PAGE_MASK) == 0) {
 3693                 if (bp->b_pages[0] == bogus_page)
 3694                         goto unlock;
 3695                 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
 3696                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
 3697                 if ((bp->b_pages[0]->valid & mask) == mask)
 3698                         goto unlock;
 3699                 if ((bp->b_pages[0]->valid & mask) == 0) {
 3700                         bzero(bp->b_data, bp->b_bufsize);
 3701                         bp->b_pages[0]->valid |= mask;
 3702                         goto unlock;
 3703                 }
 3704         }
 3705         ea = sa = bp->b_data;
 3706         for(i = 0; i < bp->b_npages; i++, sa = ea) {
 3707                 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
 3708                 ea = (caddr_t)(vm_offset_t)ulmin(
 3709                     (u_long)(vm_offset_t)ea,
 3710                     (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
 3711                 if (bp->b_pages[i] == bogus_page)
 3712                         continue;
 3713                 j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
 3714                 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
 3715                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
 3716                 if ((bp->b_pages[i]->valid & mask) == mask)
 3717                         continue;
 3718                 if ((bp->b_pages[i]->valid & mask) == 0)
 3719                         bzero(sa, ea - sa);
 3720                 else {
 3721                         for (; sa < ea; sa += DEV_BSIZE, j++) {
 3722                                 if ((bp->b_pages[i]->valid & (1 << j)) == 0)
 3723                                         bzero(sa, DEV_BSIZE);
 3724                         }
 3725                 }
 3726                 bp->b_pages[i]->valid |= mask;
 3727         }
 3728 unlock:
 3729         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3730         bp->b_resid = 0;
 3731 }
 3732 
 3733 /*
 3734  * vm_hold_load_pages and vm_hold_free_pages get pages into
 3735  * a buffers address space.  The pages are anonymous and are
 3736  * not associated with a file object.
 3737  */
 3738 static void
 3739 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 3740 {
 3741         vm_offset_t pg;
 3742         vm_page_t p;
 3743         int index;
 3744 
 3745         to = round_page(to);
 3746         from = round_page(from);
 3747         index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3748 
 3749         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3750 tryagain:
 3751                 /*
 3752                  * note: must allocate system pages since blocking here
 3753                  * could interfere with paging I/O, no matter which
 3754                  * process we are.
 3755                  */
 3756                 p = vm_page_alloc(NULL, pg >> PAGE_SHIFT, VM_ALLOC_NOOBJ |
 3757                     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 3758                 if (!p) {
 3759                         atomic_add_int(&vm_pageout_deficit,
 3760                             (to - pg) >> PAGE_SHIFT);
 3761                         VM_WAIT;
 3762                         goto tryagain;
 3763                 }
 3764                 pmap_qenter(pg, &p, 1);
 3765                 bp->b_pages[index] = p;
 3766         }
 3767         bp->b_npages = index;
 3768 }
 3769 
 3770 /* Return pages associated with this buf to the vm system */
 3771 static void
 3772 vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 3773 {
 3774         vm_offset_t pg;
 3775         vm_page_t p;
 3776         int index, newnpages;
 3777 
 3778         from = round_page(from);
 3779         to = round_page(to);
 3780         newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3781 
 3782         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3783                 p = bp->b_pages[index];
 3784                 if (p && (index < bp->b_npages)) {
 3785                         if (p->busy) {
 3786                                 printf(
 3787                             "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
 3788                                     (intmax_t)bp->b_blkno,
 3789                                     (intmax_t)bp->b_lblkno);
 3790                         }
 3791                         bp->b_pages[index] = NULL;
 3792                         pmap_qremove(pg, 1);
 3793                         p->wire_count--;
 3794                         vm_page_free(p);
 3795                         atomic_subtract_int(&cnt.v_wire_count, 1);
 3796                 }
 3797         }
 3798         bp->b_npages = newnpages;
 3799 }
 3800 
 3801 /*
 3802  * Map an IO request into kernel virtual address space.
 3803  *
 3804  * All requests are (re)mapped into kernel VA space.
 3805  * Notice that we use b_bufsize for the size of the buffer
 3806  * to be mapped.  b_bcount might be modified by the driver.
 3807  *
 3808  * Note that even if the caller determines that the address space should
 3809  * be valid, a race or a smaller-file mapped into a larger space may
 3810  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
 3811  * check the return value.
 3812  */
 3813 int
 3814 vmapbuf(struct buf *bp)
 3815 {
 3816         caddr_t addr, kva;
 3817         vm_prot_t prot;
 3818         int pidx, i;
 3819         struct vm_page *m;
 3820         struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
 3821 
 3822         if (bp->b_bufsize < 0)
 3823                 return (-1);
 3824         prot = VM_PROT_READ;
 3825         if (bp->b_iocmd == BIO_READ)
 3826                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 3827         for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
 3828              addr < bp->b_data + bp->b_bufsize;
 3829              addr += PAGE_SIZE, pidx++) {
 3830                 /*
 3831                  * Do the vm_fault if needed; do the copy-on-write thing
 3832                  * when reading stuff off device into memory.
 3833                  *
 3834                  * NOTE! Must use pmap_extract() because addr may be in
 3835                  * the userland address space, and kextract is only guarenteed
 3836                  * to work for the kernland address space (see: sparc64 port).
 3837                  */
 3838 retry:
 3839                 if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
 3840                     prot) < 0) {
 3841                         vm_page_lock_queues();
 3842                         for (i = 0; i < pidx; ++i) {
 3843                                 vm_page_unhold(bp->b_pages[i]);
 3844                                 bp->b_pages[i] = NULL;
 3845                         }
 3846                         vm_page_unlock_queues();
 3847                         return(-1);
 3848                 }
 3849                 m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
 3850                 if (m == NULL)
 3851                         goto retry;
 3852                 bp->b_pages[pidx] = m;
 3853         }
 3854         if (pidx > btoc(MAXPHYS))
 3855                 panic("vmapbuf: mapped more than MAXPHYS");
 3856         pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
 3857         
 3858         kva = bp->b_saveaddr;
 3859         bp->b_npages = pidx;
 3860         bp->b_saveaddr = bp->b_data;
 3861         bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
 3862         return(0);
 3863 }
 3864 
 3865 /*
 3866  * Free the io map PTEs associated with this IO operation.
 3867  * We also invalidate the TLB entries and restore the original b_addr.
 3868  */
 3869 void
 3870 vunmapbuf(struct buf *bp)
 3871 {
 3872         int pidx;
 3873         int npages;
 3874 
 3875         npages = bp->b_npages;
 3876         pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
 3877         vm_page_lock_queues();
 3878         for (pidx = 0; pidx < npages; pidx++)
 3879                 vm_page_unhold(bp->b_pages[pidx]);
 3880         vm_page_unlock_queues();
 3881 
 3882         bp->b_data = bp->b_saveaddr;
 3883 }
 3884 
 3885 void
 3886 bdone(struct buf *bp)
 3887 {
 3888         struct mtx *mtxp;
 3889 
 3890         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3891         mtx_lock(mtxp);
 3892         bp->b_flags |= B_DONE;
 3893         wakeup(bp);
 3894         mtx_unlock(mtxp);
 3895 }
 3896 
 3897 void
 3898 bwait(struct buf *bp, u_char pri, const char *wchan)
 3899 {
 3900         struct mtx *mtxp;
 3901 
 3902         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3903         mtx_lock(mtxp);
 3904         while ((bp->b_flags & B_DONE) == 0)
 3905                 msleep(bp, mtxp, pri, wchan, 0);
 3906         mtx_unlock(mtxp);
 3907 }
 3908 
 3909 int
 3910 bufsync(struct bufobj *bo, int waitfor)
 3911 {
 3912 
 3913         return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
 3914 }
 3915 
 3916 void
 3917 bufstrategy(struct bufobj *bo, struct buf *bp)
 3918 {
 3919         int i = 0;
 3920         struct vnode *vp;
 3921 
 3922         vp = bp->b_vp;
 3923         KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
 3924         KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
 3925             ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
 3926         i = VOP_STRATEGY(vp, bp);
 3927         KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
 3928 }
 3929 
 3930 void
 3931 bufobj_wrefl(struct bufobj *bo)
 3932 {
 3933 
 3934         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 3935         ASSERT_BO_LOCKED(bo);
 3936         bo->bo_numoutput++;
 3937 }
 3938 
 3939 void
 3940 bufobj_wref(struct bufobj *bo)
 3941 {
 3942 
 3943         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 3944         BO_LOCK(bo);
 3945         bo->bo_numoutput++;
 3946         BO_UNLOCK(bo);
 3947 }
 3948 
 3949 void
 3950 bufobj_wdrop(struct bufobj *bo)
 3951 {
 3952 
 3953         KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
 3954         BO_LOCK(bo);
 3955         KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
 3956         if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
 3957                 bo->bo_flag &= ~BO_WWAIT;
 3958                 wakeup(&bo->bo_numoutput);
 3959         }
 3960         BO_UNLOCK(bo);
 3961 }
 3962 
 3963 int
 3964 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
 3965 {
 3966         int error;
 3967 
 3968         KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
 3969         ASSERT_BO_LOCKED(bo);
 3970         error = 0;
 3971         while (bo->bo_numoutput) {
 3972                 bo->bo_flag |= BO_WWAIT;
 3973                 error = msleep(&bo->bo_numoutput, BO_MTX(bo),
 3974                     slpflag | (PRIBIO + 1), "bo_wwait", timeo);
 3975                 if (error)
 3976                         break;
 3977         }
 3978         return (error);
 3979 }
 3980 
 3981 void
 3982 bpin(struct buf *bp)
 3983 {
 3984         struct mtx *mtxp;
 3985 
 3986         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3987         mtx_lock(mtxp);
 3988         bp->b_pin_count++;
 3989         mtx_unlock(mtxp);
 3990 }
 3991 
 3992 void
 3993 bunpin(struct buf *bp)
 3994 {
 3995         struct mtx *mtxp;
 3996 
 3997         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3998         mtx_lock(mtxp);
 3999         if (--bp->b_pin_count == 0)
 4000                 wakeup(bp);
 4001         mtx_unlock(mtxp);
 4002 }
 4003 
 4004 void
 4005 bunpin_wait(struct buf *bp)
 4006 {
 4007         struct mtx *mtxp;
 4008 
 4009         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4010         mtx_lock(mtxp);
 4011         while (bp->b_pin_count > 0)
 4012                 msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
 4013         mtx_unlock(mtxp);
 4014 }
 4015 
 4016 #include "opt_ddb.h"
 4017 #ifdef DDB
 4018 #include <ddb/ddb.h>
 4019 
 4020 /* DDB command to show buffer data */
 4021 DB_SHOW_COMMAND(buffer, db_show_buffer)
 4022 {
 4023         /* get args */
 4024         struct buf *bp = (struct buf *)addr;
 4025 
 4026         if (!have_addr) {
 4027                 db_printf("usage: show buffer <addr>\n");
 4028                 return;
 4029         }
 4030 
 4031         db_printf("buf at %p\n", bp);
 4032         db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
 4033         db_printf(
 4034             "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 4035             "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
 4036             bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 4037             bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
 4038             bp->b_dep.lh_first);
 4039         if (bp->b_npages) {
 4040                 int i;
 4041                 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 4042                 for (i = 0; i < bp->b_npages; i++) {
 4043                         vm_page_t m;
 4044                         m = bp->b_pages[i];
 4045                         db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
 4046                             (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
 4047                         if ((i + 1) < bp->b_npages)
 4048                                 db_printf(",");
 4049                 }
 4050                 db_printf("\n");
 4051         }
 4052         db_printf(" ");
 4053         lockmgr_printinfo(&bp->b_lock);
 4054 }
 4055 
 4056 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
 4057 {
 4058         struct buf *bp;
 4059         int i;
 4060 
 4061         for (i = 0; i < nbuf; i++) {
 4062                 bp = &buf[i];
 4063                 if (BUF_ISLOCKED(bp)) {
 4064                         db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4065                         db_printf("\n");
 4066                 }
 4067         }
 4068 }
 4069 
 4070 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
 4071 {
 4072         struct vnode *vp;
 4073         struct buf *bp;
 4074 
 4075         if (!have_addr) {
 4076                 db_printf("usage: show vnodebufs <addr>\n");
 4077                 return;
 4078         }
 4079         vp = (struct vnode *)addr;
 4080         db_printf("Clean buffers:\n");
 4081         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
 4082                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4083                 db_printf("\n");
 4084         }
 4085         db_printf("Dirty buffers:\n");
 4086         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
 4087                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4088                 db_printf("\n");
 4089         }
 4090 }
 4091 #endif /* DDB */

Cache object: 7c75cb53eda451d7e9bee80f236dec33


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.