The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Poul-Henning Kamp
    3  * Copyright (c) 1994,1997 John S. Dyson
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * this file contains a new buffer I/O scheme implementing a coherent
   30  * VM object and buffer cache scheme.  Pains have been taken to make
   31  * sure that the performance degradation associated with schemes such
   32  * as this is not realized.
   33  *
   34  * Author:  John S. Dyson
   35  * Significant help during the development and debugging phases
   36  * had been provided by David Greenman, also of the FreeBSD core team.
   37  *
   38  * see man buf(9) for more info.
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD$");
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/bio.h>
   47 #include <sys/conf.h>
   48 #include <sys/buf.h>
   49 #include <sys/devicestat.h>
   50 #include <sys/eventhandler.h>
   51 #include <sys/fail.h>
   52 #include <sys/limits.h>
   53 #include <sys/lock.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mount.h>
   56 #include <sys/mutex.h>
   57 #include <sys/kernel.h>
   58 #include <sys/kthread.h>
   59 #include <sys/proc.h>
   60 #include <sys/resourcevar.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/vmmeter.h>
   63 #include <sys/vnode.h>
   64 #include <geom/geom.h>
   65 #include <vm/vm.h>
   66 #include <vm/vm_param.h>
   67 #include <vm/vm_kern.h>
   68 #include <vm/vm_pageout.h>
   69 #include <vm/vm_page.h>
   70 #include <vm/vm_object.h>
   71 #include <vm/vm_extern.h>
   72 #include <vm/vm_map.h>
   73 #include "opt_compat.h"
   74 #include "opt_directio.h"
   75 #include "opt_swap.h"
   76 
   77 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
   78 
   79 struct  bio_ops bioops;         /* I/O operation notification */
   80 
   81 struct  buf_ops buf_ops_bio = {
   82         .bop_name       =       "buf_ops_bio",
   83         .bop_write      =       bufwrite,
   84         .bop_strategy   =       bufstrategy,
   85         .bop_sync       =       bufsync,
   86         .bop_bdflush    =       bufbdflush,
   87 };
   88 
   89 /*
   90  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
   91  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
   92  */
   93 struct buf *buf;                /* buffer header pool */
   94 
   95 static struct proc *bufdaemonproc;
   96 
   97 static int inmem(struct vnode *vp, daddr_t blkno);
   98 static void vm_hold_free_pages(struct buf *bp, int newbsize);
   99 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
  100                 vm_offset_t to);
  101 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
  102 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
  103                 vm_page_t m);
  104 static void vfs_drain_busy_pages(struct buf *bp);
  105 static void vfs_clean_pages_dirty_buf(struct buf *bp);
  106 static void vfs_setdirty_locked_object(struct buf *bp);
  107 static void vfs_vmio_release(struct buf *bp);
  108 static int vfs_bio_clcheck(struct vnode *vp, int size,
  109                 daddr_t lblkno, daddr_t blkno);
  110 static int buf_do_flush(struct vnode *vp);
  111 static int flushbufqueues(struct vnode *, int, int);
  112 static void buf_daemon(void);
  113 static void bremfreel(struct buf *bp);
  114 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  115     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  116 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
  117 #endif
  118 
  119 int vmiodirenable = TRUE;
  120 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
  121     "Use the VM system for directory writes");
  122 long runningbufspace;
  123 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
  124     "Amount of presently outstanding async buffer io");
  125 static long bufspace;
  126 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  127     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  128 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
  129     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
  130 #else
  131 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
  132     "Virtual memory used for buffers");
  133 #endif
  134 static long maxbufspace;
  135 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
  136     "Maximum allowed value of bufspace (including buf_daemon)");
  137 static long bufmallocspace;
  138 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
  139     "Amount of malloced memory for buffers");
  140 static long maxbufmallocspace;
  141 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
  142     "Maximum amount of malloced memory for buffers");
  143 static long lobufspace;
  144 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
  145     "Minimum amount of buffers we want to have");
  146 long hibufspace;
  147 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
  148     "Maximum allowed value of bufspace (excluding buf_daemon)");
  149 static int bufreusecnt;
  150 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
  151     "Number of times we have reused a buffer");
  152 static int buffreekvacnt;
  153 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
  154     "Number of times we have freed the KVA space from some buffer");
  155 static int bufdefragcnt;
  156 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
  157     "Number of times we have had to repeat buffer allocation to defragment");
  158 static long lorunningspace;
  159 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
  160     "Minimum preferred space used for in-progress I/O");
  161 static long hirunningspace;
  162 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
  163     "Maximum amount of space to use for in-progress I/O");
  164 int dirtybufferflushes;
  165 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
  166     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
  167 int bdwriteskip;
  168 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
  169     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
  170 int altbufferflushes;
  171 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
  172     0, "Number of fsync flushes to limit dirty buffers");
  173 static int recursiveflushes;
  174 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
  175     0, "Number of flushes skipped due to being recursive");
  176 static int numdirtybuffers;
  177 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
  178     "Number of buffers that are dirty (has unwritten changes) at the moment");
  179 static int lodirtybuffers;
  180 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
  181     "How many buffers we want to have free before bufdaemon can sleep");
  182 static int hidirtybuffers;
  183 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
  184     "When the number of dirty buffers is considered severe");
  185 int dirtybufthresh;
  186 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
  187     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
  188 static int numfreebuffers;
  189 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
  190     "Number of free buffers");
  191 static int lofreebuffers;
  192 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
  193    "XXX Unused");
  194 static int hifreebuffers;
  195 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
  196    "XXX Complicatedly unused");
  197 static int getnewbufcalls;
  198 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
  199    "Number of calls to getnewbuf");
  200 static int getnewbufrestarts;
  201 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
  202     "Number of times getnewbuf has had to restart a buffer aquisition");
  203 static int flushbufqtarget = 100;
  204 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
  205     "Amount of work to do in flushbufqueues when helping bufdaemon");
  206 static long notbufdflashes;
  207 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
  208     "Number of dirty buffer flushes done by the bufdaemon helpers");
  209 static long barrierwrites;
  210 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
  211     "Number of barrier writes");
  212 
  213 /*
  214  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  215  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  216  * is idling.
  217  */
  218 static int bd_request;
  219 
  220 /*
  221  * This lock synchronizes access to bd_request.
  222  */
  223 static struct mtx bdlock;
  224 
  225 /*
  226  * bogus page -- for I/O to/from partially complete buffers
  227  * this is a temporary solution to the problem, but it is not
  228  * really that bad.  it would be better to split the buffer
  229  * for input in the case of buffers partially already in memory,
  230  * but the code is intricate enough already.
  231  */
  232 vm_page_t bogus_page;
  233 
  234 /*
  235  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  236  * Set when wait starts, cleared prior to wakeup().
  237  * Used in runningbufwakeup() and waitrunningbufspace().
  238  */
  239 static int runningbufreq;
  240 
  241 /*
  242  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  243  * waitrunningbufspace().
  244  */
  245 static struct mtx rbreqlock;
  246 
  247 /* 
  248  * Synchronization (sleep/wakeup) variable for buffer requests.
  249  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
  250  * by and/or.
  251  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
  252  * getnewbuf(), and getblk().
  253  */
  254 static int needsbuffer;
  255 
  256 /*
  257  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
  258  */
  259 static struct mtx nblock;
  260 
  261 /*
  262  * Definitions for the buffer free lists.
  263  */
  264 #define BUFFER_QUEUES   6       /* number of free buffer queues */
  265 
  266 #define QUEUE_NONE      0       /* on no queue */
  267 #define QUEUE_CLEAN     1       /* non-B_DELWRI buffers */
  268 #define QUEUE_DIRTY     2       /* B_DELWRI buffers */
  269 #define QUEUE_DIRTY_GIANT 3     /* B_DELWRI buffers that need giant */
  270 #define QUEUE_EMPTYKVA  4       /* empty buffer headers w/KVA assignment */
  271 #define QUEUE_EMPTY     5       /* empty buffer headers */
  272 #define QUEUE_SENTINEL  1024    /* not an queue index, but mark for sentinel */
  273 
  274 /* Queues for free buffers with various properties */
  275 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
  276 
  277 /* Lock for the bufqueues */
  278 static struct mtx bqlock;
  279 
  280 /*
  281  * Single global constant for BUF_WMESG, to avoid getting multiple references.
  282  * buf_wmesg is referred from macros.
  283  */
  284 const char *buf_wmesg = BUF_WMESG;
  285 
  286 #define VFS_BIO_NEED_ANY        0x01    /* any freeable buffer */
  287 #define VFS_BIO_NEED_DIRTYFLUSH 0x02    /* waiting for dirty buffer flush */
  288 #define VFS_BIO_NEED_FREE       0x04    /* wait for free bufs, hi hysteresis */
  289 #define VFS_BIO_NEED_BUFSPACE   0x08    /* wait for buf space, lo hysteresis */
  290 
  291 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  292     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  293 static int
  294 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
  295 {
  296         long lvalue;
  297         int ivalue;
  298 
  299         if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
  300                 return (sysctl_handle_long(oidp, arg1, arg2, req));
  301         lvalue = *(long *)arg1;
  302         if (lvalue > INT_MAX)
  303                 /* On overflow, still write out a long to trigger ENOMEM. */
  304                 return (sysctl_handle_long(oidp, &lvalue, 0, req));
  305         ivalue = lvalue;
  306         return (sysctl_handle_int(oidp, &ivalue, 0, req));
  307 }
  308 #endif
  309 
  310 #ifdef DIRECTIO
  311 extern void ffs_rawread_setup(void);
  312 #endif /* DIRECTIO */
  313 /*
  314  *      numdirtywakeup:
  315  *
  316  *      If someone is blocked due to there being too many dirty buffers,
  317  *      and numdirtybuffers is now reasonable, wake them up.
  318  */
  319 
  320 static __inline void
  321 numdirtywakeup(int level)
  322 {
  323 
  324         if (numdirtybuffers <= level) {
  325                 mtx_lock(&nblock);
  326                 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
  327                         needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
  328                         wakeup(&needsbuffer);
  329                 }
  330                 mtx_unlock(&nblock);
  331         }
  332 }
  333 
  334 /*
  335  *      bufspacewakeup:
  336  *
  337  *      Called when buffer space is potentially available for recovery.
  338  *      getnewbuf() will block on this flag when it is unable to free 
  339  *      sufficient buffer space.  Buffer space becomes recoverable when 
  340  *      bp's get placed back in the queues.
  341  */
  342 
  343 static __inline void
  344 bufspacewakeup(void)
  345 {
  346 
  347         /*
  348          * If someone is waiting for BUF space, wake them up.  Even
  349          * though we haven't freed the kva space yet, the waiting
  350          * process will be able to now.
  351          */
  352         mtx_lock(&nblock);
  353         if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
  354                 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
  355                 wakeup(&needsbuffer);
  356         }
  357         mtx_unlock(&nblock);
  358 }
  359 
  360 /*
  361  * runningbufwakeup() - in-progress I/O accounting.
  362  *
  363  */
  364 void
  365 runningbufwakeup(struct buf *bp)
  366 {
  367 
  368         if (bp->b_runningbufspace) {
  369                 atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
  370                 bp->b_runningbufspace = 0;
  371                 mtx_lock(&rbreqlock);
  372                 if (runningbufreq && runningbufspace <= lorunningspace) {
  373                         runningbufreq = 0;
  374                         wakeup(&runningbufreq);
  375                 }
  376                 mtx_unlock(&rbreqlock);
  377         }
  378 }
  379 
  380 /*
  381  *      bufcountwakeup:
  382  *
  383  *      Called when a buffer has been added to one of the free queues to
  384  *      account for the buffer and to wakeup anyone waiting for free buffers.
  385  *      This typically occurs when large amounts of metadata are being handled
  386  *      by the buffer cache ( else buffer space runs out first, usually ).
  387  */
  388 
  389 static __inline void
  390 bufcountwakeup(struct buf *bp) 
  391 {
  392         int old;
  393 
  394         KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
  395             ("buf %p already counted as free", bp));
  396         if (bp->b_bufobj != NULL)
  397                 mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
  398         bp->b_vflags |= BV_INFREECNT;
  399         old = atomic_fetchadd_int(&numfreebuffers, 1);
  400         KASSERT(old >= 0 && old < nbuf,
  401             ("numfreebuffers climbed to %d", old + 1));
  402         mtx_lock(&nblock);
  403         if (needsbuffer) {
  404                 needsbuffer &= ~VFS_BIO_NEED_ANY;
  405                 if (numfreebuffers >= hifreebuffers)
  406                         needsbuffer &= ~VFS_BIO_NEED_FREE;
  407                 wakeup(&needsbuffer);
  408         }
  409         mtx_unlock(&nblock);
  410 }
  411 
  412 /*
  413  *      waitrunningbufspace()
  414  *
  415  *      runningbufspace is a measure of the amount of I/O currently
  416  *      running.  This routine is used in async-write situations to
  417  *      prevent creating huge backups of pending writes to a device.
  418  *      Only asynchronous writes are governed by this function.
  419  *
  420  *      Reads will adjust runningbufspace, but will not block based on it.
  421  *      The read load has a side effect of reducing the allowed write load.
  422  *
  423  *      This does NOT turn an async write into a sync write.  It waits  
  424  *      for earlier writes to complete and generally returns before the
  425  *      caller's write has reached the device.
  426  */
  427 void
  428 waitrunningbufspace(void)
  429 {
  430 
  431         mtx_lock(&rbreqlock);
  432         while (runningbufspace > hirunningspace) {
  433                 ++runningbufreq;
  434                 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
  435         }
  436         mtx_unlock(&rbreqlock);
  437 }
  438 
  439 
  440 /*
  441  *      vfs_buf_test_cache:
  442  *
  443  *      Called when a buffer is extended.  This function clears the B_CACHE
  444  *      bit if the newly extended portion of the buffer does not contain
  445  *      valid data.
  446  */
  447 static __inline
  448 void
  449 vfs_buf_test_cache(struct buf *bp,
  450                   vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
  451                   vm_page_t m)
  452 {
  453 
  454         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  455         if (bp->b_flags & B_CACHE) {
  456                 int base = (foff + off) & PAGE_MASK;
  457                 if (vm_page_is_valid(m, base, size) == 0)
  458                         bp->b_flags &= ~B_CACHE;
  459         }
  460 }
  461 
  462 /* Wake up the buffer daemon if necessary */
  463 static __inline
  464 void
  465 bd_wakeup(int dirtybuflevel)
  466 {
  467 
  468         mtx_lock(&bdlock);
  469         if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
  470                 bd_request = 1;
  471                 wakeup(&bd_request);
  472         }
  473         mtx_unlock(&bdlock);
  474 }
  475 
  476 /*
  477  * bd_speedup - speedup the buffer cache flushing code
  478  */
  479 
  480 static __inline
  481 void
  482 bd_speedup(void)
  483 {
  484 
  485         bd_wakeup(1);
  486 }
  487 
  488 /*
  489  * Calculating buffer cache scaling values and reserve space for buffer
  490  * headers.  This is called during low level kernel initialization and
  491  * may be called more then once.  We CANNOT write to the memory area
  492  * being reserved at this time.
  493  */
  494 caddr_t
  495 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
  496 {
  497         int tuned_nbuf;
  498         long maxbuf;
  499 
  500         /*
  501          * physmem_est is in pages.  Convert it to kilobytes (assumes
  502          * PAGE_SIZE is >= 1K)
  503          */
  504         physmem_est = physmem_est * (PAGE_SIZE / 1024);
  505 
  506         /*
  507          * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
  508          * For the first 64MB of ram nominally allocate sufficient buffers to
  509          * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
  510          * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
  511          * the buffer cache we limit the eventual kva reservation to
  512          * maxbcache bytes.
  513          *
  514          * factor represents the 1/4 x ram conversion.
  515          */
  516         if (nbuf == 0) {
  517                 int factor = 4 * BKVASIZE / 1024;
  518 
  519                 nbuf = 50;
  520                 if (physmem_est > 4096)
  521                         nbuf += min((physmem_est - 4096) / factor,
  522                             65536 / factor);
  523                 if (physmem_est > 65536)
  524                         nbuf += (physmem_est - 65536) * 2 / (factor * 5);
  525 
  526                 if (maxbcache && nbuf > maxbcache / BKVASIZE)
  527                         nbuf = maxbcache / BKVASIZE;
  528                 tuned_nbuf = 1;
  529         } else
  530                 tuned_nbuf = 0;
  531 
  532         /* XXX Avoid unsigned long overflows later on with maxbufspace. */
  533         maxbuf = (LONG_MAX / 3) / BKVASIZE;
  534         if (nbuf > maxbuf) {
  535                 if (!tuned_nbuf)
  536                         printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
  537                             maxbuf);
  538                 nbuf = maxbuf;
  539         }
  540 
  541         /*
  542          * swbufs are used as temporary holders for I/O, such as paging I/O.
  543          * We have no less then 16 and no more then 256.
  544          */
  545         nswbuf = max(min(nbuf/4, 256), 16);
  546 #ifdef NSWBUF_MIN
  547         if (nswbuf < NSWBUF_MIN)
  548                 nswbuf = NSWBUF_MIN;
  549 #endif
  550 #ifdef DIRECTIO
  551         ffs_rawread_setup();
  552 #endif
  553 
  554         /*
  555          * Reserve space for the buffer cache buffers
  556          */
  557         swbuf = (void *)v;
  558         v = (caddr_t)(swbuf + nswbuf);
  559         buf = (void *)v;
  560         v = (caddr_t)(buf + nbuf);
  561 
  562         return(v);
  563 }
  564 
  565 /* Initialize the buffer subsystem.  Called before use of any buffers. */
  566 void
  567 bufinit(void)
  568 {
  569         struct buf *bp;
  570         int i;
  571 
  572         mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
  573         mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
  574         mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
  575         mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
  576 
  577         /* next, make a null set of free lists */
  578         for (i = 0; i < BUFFER_QUEUES; i++)
  579                 TAILQ_INIT(&bufqueues[i]);
  580 
  581         /* finally, initialize each buffer header and stick on empty q */
  582         for (i = 0; i < nbuf; i++) {
  583                 bp = &buf[i];
  584                 bzero(bp, sizeof *bp);
  585                 bp->b_flags = B_INVAL;  /* we're just an empty header */
  586                 bp->b_rcred = NOCRED;
  587                 bp->b_wcred = NOCRED;
  588                 bp->b_qindex = QUEUE_EMPTY;
  589                 bp->b_vflags = BV_INFREECNT;    /* buf is counted as free */
  590                 bp->b_xflags = 0;
  591                 LIST_INIT(&bp->b_dep);
  592                 BUF_LOCKINIT(bp);
  593                 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
  594         }
  595 
  596         /*
  597          * maxbufspace is the absolute maximum amount of buffer space we are 
  598          * allowed to reserve in KVM and in real terms.  The absolute maximum
  599          * is nominally used by buf_daemon.  hibufspace is the nominal maximum
  600          * used by most other processes.  The differential is required to 
  601          * ensure that buf_daemon is able to run when other processes might 
  602          * be blocked waiting for buffer space.
  603          *
  604          * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
  605          * this may result in KVM fragmentation which is not handled optimally
  606          * by the system.
  607          */
  608         maxbufspace = (long)nbuf * BKVASIZE;
  609         hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
  610         lobufspace = hibufspace - MAXBSIZE;
  611 
  612         lorunningspace = 512 * 1024;
  613         hirunningspace = 1024 * 1024;
  614 
  615 /*
  616  * Limit the amount of malloc memory since it is wired permanently into
  617  * the kernel space.  Even though this is accounted for in the buffer
  618  * allocation, we don't want the malloced region to grow uncontrolled.
  619  * The malloc scheme improves memory utilization significantly on average
  620  * (small) directories.
  621  */
  622         maxbufmallocspace = hibufspace / 20;
  623 
  624 /*
  625  * Reduce the chance of a deadlock occuring by limiting the number
  626  * of delayed-write dirty buffers we allow to stack up.
  627  */
  628         hidirtybuffers = nbuf / 4 + 20;
  629         dirtybufthresh = hidirtybuffers * 9 / 10;
  630         numdirtybuffers = 0;
  631 /*
  632  * To support extreme low-memory systems, make sure hidirtybuffers cannot
  633  * eat up all available buffer space.  This occurs when our minimum cannot
  634  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
  635  * BKVASIZE'd (8K) buffers.
  636  */
  637         while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
  638                 hidirtybuffers >>= 1;
  639         }
  640         lodirtybuffers = hidirtybuffers / 2;
  641 
  642 /*
  643  * Try to keep the number of free buffers in the specified range,
  644  * and give special processes (e.g. like buf_daemon) access to an 
  645  * emergency reserve.
  646  */
  647         lofreebuffers = nbuf / 18 + 5;
  648         hifreebuffers = 2 * lofreebuffers;
  649         numfreebuffers = nbuf;
  650 
  651         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
  652             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
  653 }
  654 
  655 /*
  656  * bfreekva() - free the kva allocation for a buffer.
  657  *
  658  *      Since this call frees up buffer space, we call bufspacewakeup().
  659  */
  660 static void
  661 bfreekva(struct buf *bp)
  662 {
  663 
  664         if (bp->b_kvasize) {
  665                 atomic_add_int(&buffreekvacnt, 1);
  666                 atomic_subtract_long(&bufspace, bp->b_kvasize);
  667                 vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
  668                     (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
  669                 bp->b_kvasize = 0;
  670                 bufspacewakeup();
  671         }
  672 }
  673 
  674 /*
  675  *      bremfree:
  676  *
  677  *      Mark the buffer for removal from the appropriate free list in brelse.
  678  *      
  679  */
  680 void
  681 bremfree(struct buf *bp)
  682 {
  683         int old;
  684 
  685         CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  686         KASSERT((bp->b_flags & B_REMFREE) == 0,
  687             ("bremfree: buffer %p already marked for delayed removal.", bp));
  688         KASSERT(bp->b_qindex != QUEUE_NONE,
  689             ("bremfree: buffer %p not on a queue.", bp));
  690         BUF_ASSERT_HELD(bp);
  691 
  692         bp->b_flags |= B_REMFREE;
  693         /* Fixup numfreebuffers count.  */
  694         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
  695                 KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
  696                     ("buf %p not counted in numfreebuffers", bp));
  697                 if (bp->b_bufobj != NULL)
  698                         mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
  699                 bp->b_vflags &= ~BV_INFREECNT;
  700                 old = atomic_fetchadd_int(&numfreebuffers, -1);
  701                 KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
  702         }
  703 }
  704 
  705 /*
  706  *      bremfreef:
  707  *
  708  *      Force an immediate removal from a free list.  Used only in nfs when
  709  *      it abuses the b_freelist pointer.
  710  */
  711 void
  712 bremfreef(struct buf *bp)
  713 {
  714         mtx_lock(&bqlock);
  715         bremfreel(bp);
  716         mtx_unlock(&bqlock);
  717 }
  718 
  719 /*
  720  *      bremfreel:
  721  *
  722  *      Removes a buffer from the free list, must be called with the
  723  *      bqlock held.
  724  */
  725 static void
  726 bremfreel(struct buf *bp)
  727 {
  728         int old;
  729 
  730         CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
  731             bp, bp->b_vp, bp->b_flags);
  732         KASSERT(bp->b_qindex != QUEUE_NONE,
  733             ("bremfreel: buffer %p not on a queue.", bp));
  734         BUF_ASSERT_HELD(bp);
  735         mtx_assert(&bqlock, MA_OWNED);
  736 
  737         TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
  738         bp->b_qindex = QUEUE_NONE;
  739         /*
  740          * If this was a delayed bremfree() we only need to remove the buffer
  741          * from the queue and return the stats are already done.
  742          */
  743         if (bp->b_flags & B_REMFREE) {
  744                 bp->b_flags &= ~B_REMFREE;
  745                 return;
  746         }
  747         /*
  748          * Fixup numfreebuffers count.  If the buffer is invalid or not
  749          * delayed-write, the buffer was free and we must decrement
  750          * numfreebuffers.
  751          */
  752         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
  753                 KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
  754                     ("buf %p not counted in numfreebuffers", bp));
  755                 if (bp->b_bufobj != NULL)
  756                         mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
  757                 bp->b_vflags &= ~BV_INFREECNT;
  758                 old = atomic_fetchadd_int(&numfreebuffers, -1);
  759                 KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
  760         }
  761 }
  762 
  763 
  764 /*
  765  * Get a buffer with the specified data.  Look in the cache first.  We
  766  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
  767  * is set, the buffer is valid and we do not have to do anything ( see
  768  * getblk() ).  This is really just a special case of breadn().
  769  */
  770 int
  771 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
  772     struct buf **bpp)
  773 {
  774 
  775         return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
  776 }
  777 
  778 /*
  779  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
  780  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
  781  * the buffer is valid and we do not have to do anything.
  782  */
  783 void
  784 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
  785     int cnt, struct ucred * cred)
  786 {
  787         struct buf *rabp;
  788         int i;
  789 
  790         for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
  791                 if (inmem(vp, *rablkno))
  792                         continue;
  793                 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
  794 
  795                 if ((rabp->b_flags & B_CACHE) == 0) {
  796                         if (!TD_IS_IDLETHREAD(curthread))
  797                                 curthread->td_ru.ru_inblock++;
  798                         rabp->b_flags |= B_ASYNC;
  799                         rabp->b_flags &= ~B_INVAL;
  800                         rabp->b_ioflags &= ~BIO_ERROR;
  801                         rabp->b_iocmd = BIO_READ;
  802                         if (rabp->b_rcred == NOCRED && cred != NOCRED)
  803                                 rabp->b_rcred = crhold(cred);
  804                         vfs_busy_pages(rabp, 0);
  805                         BUF_KERNPROC(rabp);
  806                         rabp->b_iooffset = dbtob(rabp->b_blkno);
  807                         bstrategy(rabp);
  808                 } else {
  809                         brelse(rabp);
  810                 }
  811         }
  812 }
  813 
  814 /*
  815  * Operates like bread, but also starts asynchronous I/O on
  816  * read-ahead blocks.
  817  */
  818 int
  819 breadn(struct vnode * vp, daddr_t blkno, int size,
  820     daddr_t * rablkno, int *rabsize,
  821     int cnt, struct ucred * cred, struct buf **bpp)
  822 {
  823         struct buf *bp;
  824         int rv = 0, readwait = 0;
  825 
  826         CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
  827         *bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
  828 
  829         /* if not found in cache, do some I/O */
  830         if ((bp->b_flags & B_CACHE) == 0) {
  831                 if (!TD_IS_IDLETHREAD(curthread))
  832                         curthread->td_ru.ru_inblock++;
  833                 bp->b_iocmd = BIO_READ;
  834                 bp->b_flags &= ~B_INVAL;
  835                 bp->b_ioflags &= ~BIO_ERROR;
  836                 if (bp->b_rcred == NOCRED && cred != NOCRED)
  837                         bp->b_rcred = crhold(cred);
  838                 vfs_busy_pages(bp, 0);
  839                 bp->b_iooffset = dbtob(bp->b_blkno);
  840                 bstrategy(bp);
  841                 ++readwait;
  842         }
  843 
  844         breada(vp, rablkno, rabsize, cnt, cred);
  845 
  846         if (readwait) {
  847                 rv = bufwait(bp);
  848         }
  849         return (rv);
  850 }
  851 
  852 /*
  853  * Write, release buffer on completion.  (Done by iodone
  854  * if async).  Do not bother writing anything if the buffer
  855  * is invalid.
  856  *
  857  * Note that we set B_CACHE here, indicating that buffer is
  858  * fully valid and thus cacheable.  This is true even of NFS
  859  * now so we set it generally.  This could be set either here 
  860  * or in biodone() since the I/O is synchronous.  We put it
  861  * here.
  862  */
  863 int
  864 bufwrite(struct buf *bp)
  865 {
  866         int oldflags;
  867         struct vnode *vp;
  868         int vp_md;
  869 
  870         CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  871         if (bp->b_flags & B_INVAL) {
  872                 brelse(bp);
  873                 return (0);
  874         }
  875 
  876         if (bp->b_flags & B_BARRIER)
  877                 barrierwrites++;
  878 
  879         oldflags = bp->b_flags;
  880 
  881         BUF_ASSERT_HELD(bp);
  882 
  883         if (bp->b_pin_count > 0)
  884                 bunpin_wait(bp);
  885 
  886         KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
  887             ("FFS background buffer should not get here %p", bp));
  888 
  889         vp = bp->b_vp;
  890         if (vp)
  891                 vp_md = vp->v_vflag & VV_MD;
  892         else
  893                 vp_md = 0;
  894 
  895         /*
  896          * Mark the buffer clean.  Increment the bufobj write count
  897          * before bundirty() call, to prevent other thread from seeing
  898          * empty dirty list and zero counter for writes in progress,
  899          * falsely indicating that the bufobj is clean.
  900          */
  901         bufobj_wref(bp->b_bufobj);
  902         bundirty(bp);
  903 
  904         bp->b_flags &= ~B_DONE;
  905         bp->b_ioflags &= ~BIO_ERROR;
  906         bp->b_flags |= B_CACHE;
  907         bp->b_iocmd = BIO_WRITE;
  908 
  909         vfs_busy_pages(bp, 1);
  910 
  911         /*
  912          * Normal bwrites pipeline writes
  913          */
  914         bp->b_runningbufspace = bp->b_bufsize;
  915         atomic_add_long(&runningbufspace, bp->b_runningbufspace);
  916 
  917         if (!TD_IS_IDLETHREAD(curthread))
  918                 curthread->td_ru.ru_oublock++;
  919         if (oldflags & B_ASYNC)
  920                 BUF_KERNPROC(bp);
  921         bp->b_iooffset = dbtob(bp->b_blkno);
  922         bstrategy(bp);
  923 
  924         if ((oldflags & B_ASYNC) == 0) {
  925                 int rtval = bufwait(bp);
  926                 brelse(bp);
  927                 return (rtval);
  928         } else {
  929                 /*
  930                  * don't allow the async write to saturate the I/O
  931                  * system.  We will not deadlock here because
  932                  * we are blocking waiting for I/O that is already in-progress
  933                  * to complete. We do not block here if it is the update
  934                  * or syncer daemon trying to clean up as that can lead
  935                  * to deadlock.
  936                  */
  937                 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
  938                         waitrunningbufspace();
  939         }
  940 
  941         return (0);
  942 }
  943 
  944 void
  945 bufbdflush(struct bufobj *bo, struct buf *bp)
  946 {
  947         struct buf *nbp;
  948 
  949         if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
  950                 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
  951                 altbufferflushes++;
  952         } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
  953                 BO_LOCK(bo);
  954                 /*
  955                  * Try to find a buffer to flush.
  956                  */
  957                 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
  958                         if ((nbp->b_vflags & BV_BKGRDINPROG) ||
  959                             BUF_LOCK(nbp,
  960                                      LK_EXCLUSIVE | LK_NOWAIT, NULL))
  961                                 continue;
  962                         if (bp == nbp)
  963                                 panic("bdwrite: found ourselves");
  964                         BO_UNLOCK(bo);
  965                         /* Don't countdeps with the bo lock held. */
  966                         if (buf_countdeps(nbp, 0)) {
  967                                 BO_LOCK(bo);
  968                                 BUF_UNLOCK(nbp);
  969                                 continue;
  970                         }
  971                         if (nbp->b_flags & B_CLUSTEROK) {
  972                                 vfs_bio_awrite(nbp);
  973                         } else {
  974                                 bremfree(nbp);
  975                                 bawrite(nbp);
  976                         }
  977                         dirtybufferflushes++;
  978                         break;
  979                 }
  980                 if (nbp == NULL)
  981                         BO_UNLOCK(bo);
  982         }
  983 }
  984 
  985 /*
  986  * Delayed write. (Buffer is marked dirty).  Do not bother writing
  987  * anything if the buffer is marked invalid.
  988  *
  989  * Note that since the buffer must be completely valid, we can safely
  990  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
  991  * biodone() in order to prevent getblk from writing the buffer
  992  * out synchronously.
  993  */
  994 void
  995 bdwrite(struct buf *bp)
  996 {
  997         struct thread *td = curthread;
  998         struct vnode *vp;
  999         struct bufobj *bo;
 1000 
 1001         CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1002         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1003         KASSERT((bp->b_flags & B_BARRIER) == 0,
 1004             ("Barrier request in delayed write %p", bp));
 1005         BUF_ASSERT_HELD(bp);
 1006 
 1007         if (bp->b_flags & B_INVAL) {
 1008                 brelse(bp);
 1009                 return;
 1010         }
 1011 
 1012         /*
 1013          * If we have too many dirty buffers, don't create any more.
 1014          * If we are wildly over our limit, then force a complete
 1015          * cleanup. Otherwise, just keep the situation from getting
 1016          * out of control. Note that we have to avoid a recursive
 1017          * disaster and not try to clean up after our own cleanup!
 1018          */
 1019         vp = bp->b_vp;
 1020         bo = bp->b_bufobj;
 1021         if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
 1022                 td->td_pflags |= TDP_INBDFLUSH;
 1023                 BO_BDFLUSH(bo, bp);
 1024                 td->td_pflags &= ~TDP_INBDFLUSH;
 1025         } else
 1026                 recursiveflushes++;
 1027 
 1028         bdirty(bp);
 1029         /*
 1030          * Set B_CACHE, indicating that the buffer is fully valid.  This is
 1031          * true even of NFS now.
 1032          */
 1033         bp->b_flags |= B_CACHE;
 1034 
 1035         /*
 1036          * This bmap keeps the system from needing to do the bmap later,
 1037          * perhaps when the system is attempting to do a sync.  Since it
 1038          * is likely that the indirect block -- or whatever other datastructure
 1039          * that the filesystem needs is still in memory now, it is a good
 1040          * thing to do this.  Note also, that if the pageout daemon is
 1041          * requesting a sync -- there might not be enough memory to do
 1042          * the bmap then...  So, this is important to do.
 1043          */
 1044         if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
 1045                 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
 1046         }
 1047 
 1048         /*
 1049          * Set the *dirty* buffer range based upon the VM system dirty
 1050          * pages.
 1051          *
 1052          * Mark the buffer pages as clean.  We need to do this here to
 1053          * satisfy the vnode_pager and the pageout daemon, so that it
 1054          * thinks that the pages have been "cleaned".  Note that since
 1055          * the pages are in a delayed write buffer -- the VFS layer
 1056          * "will" see that the pages get written out on the next sync,
 1057          * or perhaps the cluster will be completed.
 1058          */
 1059         vfs_clean_pages_dirty_buf(bp);
 1060         bqrelse(bp);
 1061 
 1062         /*
 1063          * Wakeup the buffer flushing daemon if we have a lot of dirty
 1064          * buffers (midpoint between our recovery point and our stall
 1065          * point).
 1066          */
 1067         bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1068 
 1069         /*
 1070          * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 1071          * due to the softdep code.
 1072          */
 1073 }
 1074 
 1075 /*
 1076  *      bdirty:
 1077  *
 1078  *      Turn buffer into delayed write request.  We must clear BIO_READ and
 1079  *      B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
 1080  *      itself to properly update it in the dirty/clean lists.  We mark it
 1081  *      B_DONE to ensure that any asynchronization of the buffer properly
 1082  *      clears B_DONE ( else a panic will occur later ).  
 1083  *
 1084  *      bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
 1085  *      might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
 1086  *      should only be called if the buffer is known-good.
 1087  *
 1088  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1089  *      count.
 1090  *
 1091  *      The buffer must be on QUEUE_NONE.
 1092  */
 1093 void
 1094 bdirty(struct buf *bp)
 1095 {
 1096 
 1097         CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
 1098             bp, bp->b_vp, bp->b_flags);
 1099         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1100         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1101             ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1102         BUF_ASSERT_HELD(bp);
 1103         bp->b_flags &= ~(B_RELBUF);
 1104         bp->b_iocmd = BIO_WRITE;
 1105 
 1106         if ((bp->b_flags & B_DELWRI) == 0) {
 1107                 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
 1108                 reassignbuf(bp);
 1109                 atomic_add_int(&numdirtybuffers, 1);
 1110                 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1111         }
 1112 }
 1113 
 1114 /*
 1115  *      bundirty:
 1116  *
 1117  *      Clear B_DELWRI for buffer.
 1118  *
 1119  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1120  *      count.
 1121  *      
 1122  *      The buffer must be on QUEUE_NONE.
 1123  */
 1124 
 1125 void
 1126 bundirty(struct buf *bp)
 1127 {
 1128 
 1129         CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1130         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1131         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1132             ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1133         BUF_ASSERT_HELD(bp);
 1134 
 1135         if (bp->b_flags & B_DELWRI) {
 1136                 bp->b_flags &= ~B_DELWRI;
 1137                 reassignbuf(bp);
 1138                 atomic_subtract_int(&numdirtybuffers, 1);
 1139                 numdirtywakeup(lodirtybuffers);
 1140         }
 1141         /*
 1142          * Since it is now being written, we can clear its deferred write flag.
 1143          */
 1144         bp->b_flags &= ~B_DEFERRED;
 1145 }
 1146 
 1147 /*
 1148  *      bawrite:
 1149  *
 1150  *      Asynchronous write.  Start output on a buffer, but do not wait for
 1151  *      it to complete.  The buffer is released when the output completes.
 1152  *
 1153  *      bwrite() ( or the VOP routine anyway ) is responsible for handling 
 1154  *      B_INVAL buffers.  Not us.
 1155  */
 1156 void
 1157 bawrite(struct buf *bp)
 1158 {
 1159 
 1160         bp->b_flags |= B_ASYNC;
 1161         (void) bwrite(bp);
 1162 }
 1163 
 1164 /*
 1165  *      babarrierwrite:
 1166  *
 1167  *      Asynchronous barrier write.  Start output on a buffer, but do not
 1168  *      wait for it to complete.  Place a write barrier after this write so
 1169  *      that this buffer and all buffers written before it are committed to
 1170  *      the disk before any buffers written after this write are committed
 1171  *      to the disk.  The buffer is released when the output completes.
 1172  */
 1173 void
 1174 babarrierwrite(struct buf *bp)
 1175 {
 1176 
 1177         bp->b_flags |= B_ASYNC | B_BARRIER;
 1178         (void) bwrite(bp);
 1179 }
 1180 
 1181 /*
 1182  *      bbarrierwrite:
 1183  *
 1184  *      Synchronous barrier write.  Start output on a buffer and wait for
 1185  *      it to complete.  Place a write barrier after this write so that
 1186  *      this buffer and all buffers written before it are committed to 
 1187  *      the disk before any buffers written after this write are committed
 1188  *      to the disk.  The buffer is released when the output completes.
 1189  */
 1190 int
 1191 bbarrierwrite(struct buf *bp)
 1192 {
 1193 
 1194         bp->b_flags |= B_BARRIER;
 1195         return (bwrite(bp));
 1196 }
 1197 
 1198 /*
 1199  *      bwillwrite:
 1200  *
 1201  *      Called prior to the locking of any vnodes when we are expecting to
 1202  *      write.  We do not want to starve the buffer cache with too many
 1203  *      dirty buffers so we block here.  By blocking prior to the locking
 1204  *      of any vnodes we attempt to avoid the situation where a locked vnode
 1205  *      prevents the various system daemons from flushing related buffers.
 1206  */
 1207 
 1208 void
 1209 bwillwrite(void)
 1210 {
 1211 
 1212         if (numdirtybuffers >= hidirtybuffers) {
 1213                 mtx_lock(&nblock);
 1214                 while (numdirtybuffers >= hidirtybuffers) {
 1215                         bd_wakeup(1);
 1216                         needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
 1217                         msleep(&needsbuffer, &nblock,
 1218                             (PRIBIO + 4), "flswai", 0);
 1219                 }
 1220                 mtx_unlock(&nblock);
 1221         }
 1222 }
 1223 
 1224 /*
 1225  * Return true if we have too many dirty buffers.
 1226  */
 1227 int
 1228 buf_dirty_count_severe(void)
 1229 {
 1230 
 1231         return(numdirtybuffers >= hidirtybuffers);
 1232 }
 1233 
 1234 static __noinline int
 1235 buf_vm_page_count_severe(void)
 1236 {
 1237 
 1238         KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
 1239 
 1240         return vm_page_count_severe();
 1241 }
 1242 
 1243 /*
 1244  *      brelse:
 1245  *
 1246  *      Release a busy buffer and, if requested, free its resources.  The
 1247  *      buffer will be stashed in the appropriate bufqueue[] allowing it
 1248  *      to be accessed later as a cache entity or reused for other purposes.
 1249  */
 1250 void
 1251 brelse(struct buf *bp)
 1252 {
 1253         CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
 1254             bp, bp->b_vp, bp->b_flags);
 1255         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1256             ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1257 
 1258         if (bp->b_flags & B_MANAGED) {
 1259                 bqrelse(bp);
 1260                 return;
 1261         }
 1262 
 1263         if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
 1264             bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
 1265                 /*
 1266                  * Failed write, redirty.  Must clear BIO_ERROR to prevent
 1267                  * pages from being scrapped.  If the error is anything
 1268                  * other than an I/O error (EIO), assume that retrying
 1269                  * is futile.
 1270                  */
 1271                 bp->b_ioflags &= ~BIO_ERROR;
 1272                 bdirty(bp);
 1273         } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 1274             (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
 1275                 /*
 1276                  * Either a failed I/O or we were asked to free or not
 1277                  * cache the buffer.
 1278                  */
 1279                 bp->b_flags |= B_INVAL;
 1280                 if (!LIST_EMPTY(&bp->b_dep))
 1281                         buf_deallocate(bp);
 1282                 if (bp->b_flags & B_DELWRI) {
 1283                         atomic_subtract_int(&numdirtybuffers, 1);
 1284                         numdirtywakeup(lodirtybuffers);
 1285                 }
 1286                 bp->b_flags &= ~(B_DELWRI | B_CACHE);
 1287                 if ((bp->b_flags & B_VMIO) == 0) {
 1288                         if (bp->b_bufsize)
 1289                                 allocbuf(bp, 0);
 1290                         if (bp->b_vp)
 1291                                 brelvp(bp);
 1292                 }
 1293         }
 1294 
 1295         /*
 1296          * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release() 
 1297          * is called with B_DELWRI set, the underlying pages may wind up
 1298          * getting freed causing a previous write (bdwrite()) to get 'lost'
 1299          * because pages associated with a B_DELWRI bp are marked clean.
 1300          * 
 1301          * We still allow the B_INVAL case to call vfs_vmio_release(), even
 1302          * if B_DELWRI is set.
 1303          *
 1304          * If B_DELWRI is not set we may have to set B_RELBUF if we are low
 1305          * on pages to return pages to the VM page queues.
 1306          */
 1307         if (bp->b_flags & B_DELWRI)
 1308                 bp->b_flags &= ~B_RELBUF;
 1309         else if (buf_vm_page_count_severe()) {
 1310                 /*
 1311                  * The locking of the BO_LOCK is not necessary since
 1312                  * BKGRDINPROG cannot be set while we hold the buf
 1313                  * lock, it can only be cleared if it is already
 1314                  * pending.
 1315                  */
 1316                 if (bp->b_vp) {
 1317                         if (!(bp->b_vflags & BV_BKGRDINPROG))
 1318                                 bp->b_flags |= B_RELBUF;
 1319                 } else
 1320                         bp->b_flags |= B_RELBUF;
 1321         }
 1322 
 1323         /*
 1324          * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 1325          * constituted, not even NFS buffers now.  Two flags effect this.  If
 1326          * B_INVAL, the struct buf is invalidated but the VM object is kept
 1327          * around ( i.e. so it is trivial to reconstitute the buffer later ).
 1328          *
 1329          * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 1330          * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 1331          * buffer is also B_INVAL because it hits the re-dirtying code above.
 1332          *
 1333          * Normally we can do this whether a buffer is B_DELWRI or not.  If
 1334          * the buffer is an NFS buffer, it is tracking piecemeal writes or
 1335          * the commit state and we cannot afford to lose the buffer. If the
 1336          * buffer has a background write in progress, we need to keep it
 1337          * around to prevent it from being reconstituted and starting a second
 1338          * background write.
 1339          */
 1340         if ((bp->b_flags & B_VMIO)
 1341             && !(bp->b_vp->v_mount != NULL &&
 1342                  (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 1343                  !vn_isdisk(bp->b_vp, NULL) &&
 1344                  (bp->b_flags & B_DELWRI))
 1345             ) {
 1346 
 1347                 int i, j, resid;
 1348                 vm_page_t m;
 1349                 off_t foff;
 1350                 vm_pindex_t poff;
 1351                 vm_object_t obj;
 1352 
 1353                 obj = bp->b_bufobj->bo_object;
 1354 
 1355                 /*
 1356                  * Get the base offset and length of the buffer.  Note that 
 1357                  * in the VMIO case if the buffer block size is not
 1358                  * page-aligned then b_data pointer may not be page-aligned.
 1359                  * But our b_pages[] array *IS* page aligned.
 1360                  *
 1361                  * block sizes less then DEV_BSIZE (usually 512) are not 
 1362                  * supported due to the page granularity bits (m->valid,
 1363                  * m->dirty, etc...). 
 1364                  *
 1365                  * See man buf(9) for more information
 1366                  */
 1367                 resid = bp->b_bufsize;
 1368                 foff = bp->b_offset;
 1369                 VM_OBJECT_LOCK(obj);
 1370                 for (i = 0; i < bp->b_npages; i++) {
 1371                         int had_bogus = 0;
 1372 
 1373                         m = bp->b_pages[i];
 1374 
 1375                         /*
 1376                          * If we hit a bogus page, fixup *all* the bogus pages
 1377                          * now.
 1378                          */
 1379                         if (m == bogus_page) {
 1380                                 poff = OFF_TO_IDX(bp->b_offset);
 1381                                 had_bogus = 1;
 1382 
 1383                                 for (j = i; j < bp->b_npages; j++) {
 1384                                         vm_page_t mtmp;
 1385                                         mtmp = bp->b_pages[j];
 1386                                         if (mtmp == bogus_page) {
 1387                                                 mtmp = vm_page_lookup(obj, poff + j);
 1388                                                 if (!mtmp) {
 1389                                                         panic("brelse: page missing\n");
 1390                                                 }
 1391                                                 bp->b_pages[j] = mtmp;
 1392                                         }
 1393                                 }
 1394 
 1395                                 if ((bp->b_flags & B_INVAL) == 0) {
 1396                                         pmap_qenter(
 1397                                             trunc_page((vm_offset_t)bp->b_data),
 1398                                             bp->b_pages, bp->b_npages);
 1399                                 }
 1400                                 m = bp->b_pages[i];
 1401                         }
 1402                         if ((bp->b_flags & B_NOCACHE) ||
 1403                             (bp->b_ioflags & BIO_ERROR &&
 1404                              bp->b_iocmd == BIO_READ)) {
 1405                                 int poffset = foff & PAGE_MASK;
 1406                                 int presid = resid > (PAGE_SIZE - poffset) ?
 1407                                         (PAGE_SIZE - poffset) : resid;
 1408 
 1409                                 KASSERT(presid >= 0, ("brelse: extra page"));
 1410                                 vm_page_lock_queues();
 1411                                 vm_page_set_invalid(m, poffset, presid);
 1412                                 vm_page_unlock_queues();
 1413                                 if (had_bogus)
 1414                                         printf("avoided corruption bug in bogus_page/brelse code\n");
 1415                         }
 1416                         resid -= PAGE_SIZE - (foff & PAGE_MASK);
 1417                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 1418                 }
 1419                 VM_OBJECT_UNLOCK(obj);
 1420                 if (bp->b_flags & (B_INVAL | B_RELBUF))
 1421                         vfs_vmio_release(bp);
 1422 
 1423         } else if (bp->b_flags & B_VMIO) {
 1424 
 1425                 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
 1426                         vfs_vmio_release(bp);
 1427                 }
 1428 
 1429         } else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
 1430                 if (bp->b_bufsize != 0)
 1431                         allocbuf(bp, 0);
 1432                 if (bp->b_vp != NULL)
 1433                         brelvp(bp);
 1434         }
 1435                         
 1436         if (BUF_LOCKRECURSED(bp)) {
 1437                 /* do not release to free list */
 1438                 BUF_UNLOCK(bp);
 1439                 return;
 1440         }
 1441 
 1442         /* enqueue */
 1443         mtx_lock(&bqlock);
 1444         /* Handle delayed bremfree() processing. */
 1445         if (bp->b_flags & B_REMFREE) {
 1446                 struct bufobj *bo;
 1447 
 1448                 bo = bp->b_bufobj;
 1449                 if (bo != NULL)
 1450                         BO_LOCK(bo);
 1451                 bremfreel(bp);
 1452                 if (bo != NULL)
 1453                         BO_UNLOCK(bo);
 1454         }
 1455         if (bp->b_qindex != QUEUE_NONE)
 1456                 panic("brelse: free buffer onto another queue???");
 1457 
 1458         /*
 1459          * If the buffer has junk contents signal it and eventually
 1460          * clean up B_DELWRI and diassociate the vnode so that gbincore()
 1461          * doesn't find it.
 1462          */
 1463         if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
 1464             (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
 1465                 bp->b_flags |= B_INVAL;
 1466         if (bp->b_flags & B_INVAL) {
 1467                 if (bp->b_flags & B_DELWRI)
 1468                         bundirty(bp);
 1469                 if (bp->b_vp)
 1470                         brelvp(bp);
 1471         }
 1472 
 1473         /* buffers with no memory */
 1474         if (bp->b_bufsize == 0) {
 1475                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1476                 if (bp->b_vflags & BV_BKGRDINPROG)
 1477                         panic("losing buffer 1");
 1478                 if (bp->b_kvasize) {
 1479                         bp->b_qindex = QUEUE_EMPTYKVA;
 1480                 } else {
 1481                         bp->b_qindex = QUEUE_EMPTY;
 1482                 }
 1483                 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1484         /* buffers with junk contents */
 1485         } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 1486             (bp->b_ioflags & BIO_ERROR)) {
 1487                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1488                 if (bp->b_vflags & BV_BKGRDINPROG)
 1489                         panic("losing buffer 2");
 1490                 bp->b_qindex = QUEUE_CLEAN;
 1491                 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
 1492         /* remaining buffers */
 1493         } else {
 1494                 if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
 1495                     (B_DELWRI|B_NEEDSGIANT))
 1496                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1497                 else if (bp->b_flags & B_DELWRI)
 1498                         bp->b_qindex = QUEUE_DIRTY;
 1499                 else
 1500                         bp->b_qindex = QUEUE_CLEAN;
 1501                 if (bp->b_flags & B_AGE)
 1502                         TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1503                 else
 1504                         TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1505         }
 1506         mtx_unlock(&bqlock);
 1507 
 1508         /*
 1509          * Fixup numfreebuffers count.  The bp is on an appropriate queue
 1510          * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
 1511          * We've already handled the B_INVAL case ( B_DELWRI will be clear
 1512          * if B_INVAL is set ).
 1513          */
 1514 
 1515         if (!(bp->b_flags & B_DELWRI)) {
 1516                 struct bufobj *bo;
 1517 
 1518                 bo = bp->b_bufobj;
 1519                 if (bo != NULL)
 1520                         BO_LOCK(bo);
 1521                 bufcountwakeup(bp);
 1522                 if (bo != NULL)
 1523                         BO_UNLOCK(bo);
 1524         }
 1525 
 1526         /*
 1527          * Something we can maybe free or reuse
 1528          */
 1529         if (bp->b_bufsize || bp->b_kvasize)
 1530                 bufspacewakeup();
 1531 
 1532         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
 1533         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1534                 panic("brelse: not dirty");
 1535         /* unlock */
 1536         BUF_UNLOCK(bp);
 1537 }
 1538 
 1539 /*
 1540  * Release a buffer back to the appropriate queue but do not try to free
 1541  * it.  The buffer is expected to be used again soon.
 1542  *
 1543  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
 1544  * biodone() to requeue an async I/O on completion.  It is also used when
 1545  * known good buffers need to be requeued but we think we may need the data
 1546  * again soon.
 1547  *
 1548  * XXX we should be able to leave the B_RELBUF hint set on completion.
 1549  */
 1550 void
 1551 bqrelse(struct buf *bp)
 1552 {
 1553         struct bufobj *bo;
 1554 
 1555         CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1556         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1557             ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1558 
 1559         if (BUF_LOCKRECURSED(bp)) {
 1560                 /* do not release to free list */
 1561                 BUF_UNLOCK(bp);
 1562                 return;
 1563         }
 1564 
 1565         bo = bp->b_bufobj;
 1566         if (bp->b_flags & B_MANAGED) {
 1567                 if (bp->b_flags & B_REMFREE) {
 1568                         mtx_lock(&bqlock);
 1569                         if (bo != NULL)
 1570                                 BO_LOCK(bo);
 1571                         bremfreel(bp);
 1572                         if (bo != NULL)
 1573                                 BO_UNLOCK(bo);
 1574                         mtx_unlock(&bqlock);
 1575                 }
 1576                 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1577                 BUF_UNLOCK(bp);
 1578                 return;
 1579         }
 1580 
 1581         mtx_lock(&bqlock);
 1582         /* Handle delayed bremfree() processing. */
 1583         if (bp->b_flags & B_REMFREE) {
 1584                 if (bo != NULL)
 1585                         BO_LOCK(bo);
 1586                 bremfreel(bp);
 1587                 if (bo != NULL)
 1588                         BO_UNLOCK(bo);
 1589         }
 1590         if (bp->b_qindex != QUEUE_NONE)
 1591                 panic("bqrelse: free buffer onto another queue???");
 1592         /* buffers with stale but valid contents */
 1593         if (bp->b_flags & B_DELWRI) {
 1594                 if (bp->b_flags & B_NEEDSGIANT)
 1595                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1596                 else
 1597                         bp->b_qindex = QUEUE_DIRTY;
 1598                 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1599         } else {
 1600                 /*
 1601                  * The locking of the BO_LOCK for checking of the
 1602                  * BV_BKGRDINPROG is not necessary since the
 1603                  * BV_BKGRDINPROG cannot be set while we hold the buf
 1604                  * lock, it can only be cleared if it is already
 1605                  * pending.
 1606                  */
 1607                 if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
 1608                         bp->b_qindex = QUEUE_CLEAN;
 1609                         TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
 1610                             b_freelist);
 1611                 } else {
 1612                         /*
 1613                          * We are too low on memory, we have to try to free
 1614                          * the buffer (most importantly: the wired pages
 1615                          * making up its backing store) *now*.
 1616                          */
 1617                         mtx_unlock(&bqlock);
 1618                         brelse(bp);
 1619                         return;
 1620                 }
 1621         }
 1622         mtx_unlock(&bqlock);
 1623 
 1624         if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI)) {
 1625                 if (bo != NULL)
 1626                         BO_LOCK(bo);
 1627                 bufcountwakeup(bp);
 1628                 if (bo != NULL)
 1629                         BO_UNLOCK(bo);
 1630         }
 1631 
 1632         /*
 1633          * Something we can maybe free or reuse.
 1634          */
 1635         if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
 1636                 bufspacewakeup();
 1637 
 1638         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1639         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1640                 panic("bqrelse: not dirty");
 1641         /* unlock */
 1642         BUF_UNLOCK(bp);
 1643 }
 1644 
 1645 /* Give pages used by the bp back to the VM system (where possible) */
 1646 static void
 1647 vfs_vmio_release(struct buf *bp)
 1648 {
 1649         int i;
 1650         vm_page_t m;
 1651 
 1652         pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
 1653         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 1654         vm_page_lock_queues();
 1655         for (i = 0; i < bp->b_npages; i++) {
 1656                 m = bp->b_pages[i];
 1657                 bp->b_pages[i] = NULL;
 1658                 /*
 1659                  * In order to keep page LRU ordering consistent, put
 1660                  * everything on the inactive queue.
 1661                  */
 1662                 vm_page_unwire(m, 0);
 1663                 /*
 1664                  * We don't mess with busy pages, it is
 1665                  * the responsibility of the process that
 1666                  * busied the pages to deal with them.
 1667                  */
 1668                 if ((m->oflags & VPO_BUSY) || (m->busy != 0))
 1669                         continue;
 1670                         
 1671                 if (m->wire_count == 0) {
 1672                         /*
 1673                          * Might as well free the page if we can and it has
 1674                          * no valid data.  We also free the page if the
 1675                          * buffer was used for direct I/O
 1676                          */
 1677                         if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
 1678                             m->hold_count == 0) {
 1679                                 vm_page_free(m);
 1680                         } else if (bp->b_flags & B_DIRECT) {
 1681                                 vm_page_try_to_free(m);
 1682                         } else if (buf_vm_page_count_severe()) {
 1683                                 vm_page_try_to_cache(m);
 1684                         }
 1685                 }
 1686         }
 1687         vm_page_unlock_queues();
 1688         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 1689         
 1690         if (bp->b_bufsize) {
 1691                 bufspacewakeup();
 1692                 bp->b_bufsize = 0;
 1693         }
 1694         bp->b_npages = 0;
 1695         bp->b_flags &= ~B_VMIO;
 1696         if (bp->b_vp)
 1697                 brelvp(bp);
 1698 }
 1699 
 1700 /*
 1701  * Check to see if a block at a particular lbn is available for a clustered
 1702  * write.
 1703  */
 1704 static int
 1705 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 1706 {
 1707         struct buf *bpa;
 1708         int match;
 1709 
 1710         match = 0;
 1711 
 1712         /* If the buf isn't in core skip it */
 1713         if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
 1714                 return (0);
 1715 
 1716         /* If the buf is busy we don't want to wait for it */
 1717         if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1718                 return (0);
 1719 
 1720         /* Only cluster with valid clusterable delayed write buffers */
 1721         if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 1722             (B_DELWRI | B_CLUSTEROK))
 1723                 goto done;
 1724 
 1725         if (bpa->b_bufsize != size)
 1726                 goto done;
 1727 
 1728         /*
 1729          * Check to see if it is in the expected place on disk and that the
 1730          * block has been mapped.
 1731          */
 1732         if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 1733                 match = 1;
 1734 done:
 1735         BUF_UNLOCK(bpa);
 1736         return (match);
 1737 }
 1738 
 1739 /*
 1740  *      vfs_bio_awrite:
 1741  *
 1742  *      Implement clustered async writes for clearing out B_DELWRI buffers.
 1743  *      This is much better then the old way of writing only one buffer at
 1744  *      a time.  Note that we may not be presented with the buffers in the 
 1745  *      correct order, so we search for the cluster in both directions.
 1746  */
 1747 int
 1748 vfs_bio_awrite(struct buf *bp)
 1749 {
 1750         struct bufobj *bo;
 1751         int i;
 1752         int j;
 1753         daddr_t lblkno = bp->b_lblkno;
 1754         struct vnode *vp = bp->b_vp;
 1755         int ncl;
 1756         int nwritten;
 1757         int size;
 1758         int maxcl;
 1759 
 1760         bo = &vp->v_bufobj;
 1761         /*
 1762          * right now we support clustered writing only to regular files.  If
 1763          * we find a clusterable block we could be in the middle of a cluster
 1764          * rather then at the beginning.
 1765          */
 1766         if ((vp->v_type == VREG) && 
 1767             (vp->v_mount != 0) && /* Only on nodes that have the size info */
 1768             (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 1769 
 1770                 size = vp->v_mount->mnt_stat.f_iosize;
 1771                 maxcl = MAXPHYS / size;
 1772 
 1773                 BO_LOCK(bo);
 1774                 for (i = 1; i < maxcl; i++)
 1775                         if (vfs_bio_clcheck(vp, size, lblkno + i,
 1776                             bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 1777                                 break;
 1778 
 1779                 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 1780                         if (vfs_bio_clcheck(vp, size, lblkno - j,
 1781                             bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 1782                                 break;
 1783                 BO_UNLOCK(bo);
 1784                 --j;
 1785                 ncl = i + j;
 1786                 /*
 1787                  * this is a possible cluster write
 1788                  */
 1789                 if (ncl != 1) {
 1790                         BUF_UNLOCK(bp);
 1791                         nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
 1792                         return nwritten;
 1793                 }
 1794         }
 1795         bremfree(bp);
 1796         bp->b_flags |= B_ASYNC;
 1797         /*
 1798          * default (old) behavior, writing out only one block
 1799          *
 1800          * XXX returns b_bufsize instead of b_bcount for nwritten?
 1801          */
 1802         nwritten = bp->b_bufsize;
 1803         (void) bwrite(bp);
 1804 
 1805         return nwritten;
 1806 }
 1807 
 1808 /*
 1809  *      getnewbuf:
 1810  *
 1811  *      Find and initialize a new buffer header, freeing up existing buffers 
 1812  *      in the bufqueues as necessary.  The new buffer is returned locked.
 1813  *
 1814  *      Important:  B_INVAL is not set.  If the caller wishes to throw the
 1815  *      buffer away, the caller must set B_INVAL prior to calling brelse().
 1816  *
 1817  *      We block if:
 1818  *              We have insufficient buffer headers
 1819  *              We have insufficient buffer space
 1820  *              buffer_map is too fragmented ( space reservation fails )
 1821  *              If we have to flush dirty buffers ( but we try to avoid this )
 1822  *
 1823  *      To avoid VFS layer recursion we do not flush dirty buffers ourselves.
 1824  *      Instead we ask the buf daemon to do it for us.  We attempt to
 1825  *      avoid piecemeal wakeups of the pageout daemon.
 1826  */
 1827 
 1828 static struct buf *
 1829 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
 1830     int gbflags)
 1831 {
 1832         struct thread *td;
 1833         struct buf *bp;
 1834         struct buf *nbp;
 1835         int defrag = 0;
 1836         int nqindex;
 1837         static int flushingbufs;
 1838 
 1839         td = curthread;
 1840         /*
 1841          * We can't afford to block since we might be holding a vnode lock,
 1842          * which may prevent system daemons from running.  We deal with
 1843          * low-memory situations by proactively returning memory and running
 1844          * async I/O rather then sync I/O.
 1845          */
 1846         atomic_add_int(&getnewbufcalls, 1);
 1847         atomic_subtract_int(&getnewbufrestarts, 1);
 1848 restart:
 1849         atomic_add_int(&getnewbufrestarts, 1);
 1850 
 1851         /*
 1852          * Setup for scan.  If we do not have enough free buffers,
 1853          * we setup a degenerate case that immediately fails.  Note
 1854          * that if we are specially marked process, we are allowed to
 1855          * dip into our reserves.
 1856          *
 1857          * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
 1858          *
 1859          * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
 1860          * However, there are a number of cases (defragging, reusing, ...)
 1861          * where we cannot backup.
 1862          */
 1863         mtx_lock(&bqlock);
 1864         nqindex = QUEUE_EMPTYKVA;
 1865         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
 1866 
 1867         if (nbp == NULL) {
 1868                 /*
 1869                  * If no EMPTYKVA buffers and we are either
 1870                  * defragging or reusing, locate a CLEAN buffer
 1871                  * to free or reuse.  If bufspace useage is low
 1872                  * skip this step so we can allocate a new buffer.
 1873                  */
 1874                 if (defrag || bufspace >= lobufspace) {
 1875                         nqindex = QUEUE_CLEAN;
 1876                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
 1877                 }
 1878 
 1879                 /*
 1880                  * If we could not find or were not allowed to reuse a
 1881                  * CLEAN buffer, check to see if it is ok to use an EMPTY
 1882                  * buffer.  We can only use an EMPTY buffer if allocating
 1883                  * its KVA would not otherwise run us out of buffer space.
 1884                  */
 1885                 if (nbp == NULL && defrag == 0 &&
 1886                     bufspace + maxsize < hibufspace) {
 1887                         nqindex = QUEUE_EMPTY;
 1888                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
 1889                 }
 1890         }
 1891 
 1892         /*
 1893          * Run scan, possibly freeing data and/or kva mappings on the fly
 1894          * depending.
 1895          */
 1896 
 1897         while ((bp = nbp) != NULL) {
 1898                 int qindex = nqindex;
 1899 
 1900                 /*
 1901                  * Calculate next bp ( we can only use it if we do not block
 1902                  * or do other fancy things ).
 1903                  */
 1904                 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
 1905                         switch(qindex) {
 1906                         case QUEUE_EMPTY:
 1907                                 nqindex = QUEUE_EMPTYKVA;
 1908                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
 1909                                         break;
 1910                                 /* FALLTHROUGH */
 1911                         case QUEUE_EMPTYKVA:
 1912                                 nqindex = QUEUE_CLEAN;
 1913                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
 1914                                         break;
 1915                                 /* FALLTHROUGH */
 1916                         case QUEUE_CLEAN:
 1917                                 /*
 1918                                  * nbp is NULL. 
 1919                                  */
 1920                                 break;
 1921                         }
 1922                 }
 1923                 /*
 1924                  * If we are defragging then we need a buffer with 
 1925                  * b_kvasize != 0.  XXX this situation should no longer
 1926                  * occur, if defrag is non-zero the buffer's b_kvasize
 1927                  * should also be non-zero at this point.  XXX
 1928                  */
 1929                 if (defrag && bp->b_kvasize == 0) {
 1930                         printf("Warning: defrag empty buffer %p\n", bp);
 1931                         continue;
 1932                 }
 1933 
 1934                 /*
 1935                  * Start freeing the bp.  This is somewhat involved.  nbp
 1936                  * remains valid only for QUEUE_EMPTY[KVA] bp's.
 1937                  */
 1938                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1939                         continue;
 1940                 if (bp->b_vp) {
 1941                         BO_LOCK(bp->b_bufobj);
 1942                         if (bp->b_vflags & BV_BKGRDINPROG) {
 1943                                 BO_UNLOCK(bp->b_bufobj);
 1944                                 BUF_UNLOCK(bp);
 1945                                 continue;
 1946                         }
 1947                         BO_UNLOCK(bp->b_bufobj);
 1948                 }
 1949                 CTR6(KTR_BUF,
 1950                     "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
 1951                     "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
 1952                     bp->b_kvasize, bp->b_bufsize, qindex);
 1953 
 1954                 /*
 1955                  * Sanity Checks
 1956                  */
 1957                 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
 1958 
 1959                 /*
 1960                  * Note: we no longer distinguish between VMIO and non-VMIO
 1961                  * buffers.
 1962                  */
 1963 
 1964                 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
 1965 
 1966                 if (bp->b_bufobj != NULL)
 1967                         BO_LOCK(bp->b_bufobj);
 1968                 bremfreel(bp);
 1969                 if (bp->b_bufobj != NULL)
 1970                         BO_UNLOCK(bp->b_bufobj);
 1971                 mtx_unlock(&bqlock);
 1972 
 1973                 if (qindex == QUEUE_CLEAN) {
 1974                         if (bp->b_flags & B_VMIO) {
 1975                                 bp->b_flags &= ~B_ASYNC;
 1976                                 vfs_vmio_release(bp);
 1977                         }
 1978                         if (bp->b_vp)
 1979                                 brelvp(bp);
 1980                 }
 1981 
 1982                 /*
 1983                  * NOTE:  nbp is now entirely invalid.  We can only restart
 1984                  * the scan from this point on.
 1985                  *
 1986                  * Get the rest of the buffer freed up.  b_kva* is still
 1987                  * valid after this operation.
 1988                  */
 1989 
 1990                 if (bp->b_rcred != NOCRED) {
 1991                         crfree(bp->b_rcred);
 1992                         bp->b_rcred = NOCRED;
 1993                 }
 1994                 if (bp->b_wcred != NOCRED) {
 1995                         crfree(bp->b_wcred);
 1996                         bp->b_wcred = NOCRED;
 1997                 }
 1998                 if (!LIST_EMPTY(&bp->b_dep))
 1999                         buf_deallocate(bp);
 2000                 if (bp->b_vflags & BV_BKGRDINPROG)
 2001                         panic("losing buffer 3");
 2002                 KASSERT(bp->b_vp == NULL,
 2003                     ("bp: %p still has vnode %p.  qindex: %d",
 2004                     bp, bp->b_vp, qindex));
 2005                 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
 2006                    ("bp: %p still on a buffer list. xflags %X",
 2007                     bp, bp->b_xflags));
 2008 
 2009                 if (bp->b_bufsize)
 2010                         allocbuf(bp, 0);
 2011 
 2012                 bp->b_flags = 0;
 2013                 bp->b_ioflags = 0;
 2014                 bp->b_xflags = 0;
 2015                 KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
 2016                     ("buf %p still counted as free?", bp));
 2017                 bp->b_vflags = 0;
 2018                 bp->b_vp = NULL;
 2019                 bp->b_blkno = bp->b_lblkno = 0;
 2020                 bp->b_offset = NOOFFSET;
 2021                 bp->b_iodone = 0;
 2022                 bp->b_error = 0;
 2023                 bp->b_resid = 0;
 2024                 bp->b_bcount = 0;
 2025                 bp->b_npages = 0;
 2026                 bp->b_dirtyoff = bp->b_dirtyend = 0;
 2027                 bp->b_bufobj = NULL;
 2028                 bp->b_pin_count = 0;
 2029                 bp->b_fsprivate1 = NULL;
 2030                 bp->b_fsprivate2 = NULL;
 2031                 bp->b_fsprivate3 = NULL;
 2032 
 2033                 LIST_INIT(&bp->b_dep);
 2034 
 2035                 /*
 2036                  * If we are defragging then free the buffer.
 2037                  */
 2038                 if (defrag) {
 2039                         bp->b_flags |= B_INVAL;
 2040                         bfreekva(bp);
 2041                         brelse(bp);
 2042                         defrag = 0;
 2043                         goto restart;
 2044                 }
 2045 
 2046                 /*
 2047                  * Notify any waiters for the buffer lock about
 2048                  * identity change by freeing the buffer.
 2049                  */
 2050                 if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
 2051                         bp->b_flags |= B_INVAL;
 2052                         bfreekva(bp);
 2053                         brelse(bp);
 2054                         goto restart;
 2055                 }
 2056 
 2057                 /*
 2058                  * If we are overcomitted then recover the buffer and its
 2059                  * KVM space.  This occurs in rare situations when multiple
 2060                  * processes are blocked in getnewbuf() or allocbuf().
 2061                  */
 2062                 if (bufspace >= hibufspace)
 2063                         flushingbufs = 1;
 2064                 if (flushingbufs && bp->b_kvasize != 0) {
 2065                         bp->b_flags |= B_INVAL;
 2066                         bfreekva(bp);
 2067                         brelse(bp);
 2068                         goto restart;
 2069                 }
 2070                 if (bufspace < lobufspace)
 2071                         flushingbufs = 0;
 2072                 break;
 2073         }
 2074 
 2075         /*
 2076          * If we exhausted our list, sleep as appropriate.  We may have to
 2077          * wakeup various daemons and write out some dirty buffers.
 2078          *
 2079          * Generally we are sleeping due to insufficient buffer space.
 2080          */
 2081 
 2082         if (bp == NULL) {
 2083                 int flags, norunbuf;
 2084                 char *waitmsg;
 2085                 int fl;
 2086 
 2087                 if (defrag) {
 2088                         flags = VFS_BIO_NEED_BUFSPACE;
 2089                         waitmsg = "nbufkv";
 2090                 } else if (bufspace >= hibufspace) {
 2091                         waitmsg = "nbufbs";
 2092                         flags = VFS_BIO_NEED_BUFSPACE;
 2093                 } else {
 2094                         waitmsg = "newbuf";
 2095                         flags = VFS_BIO_NEED_ANY;
 2096                 }
 2097                 mtx_lock(&nblock);
 2098                 needsbuffer |= flags;
 2099                 mtx_unlock(&nblock);
 2100                 mtx_unlock(&bqlock);
 2101 
 2102                 bd_speedup();   /* heeeelp */
 2103                 if (gbflags & GB_NOWAIT_BD)
 2104                         return (NULL);
 2105 
 2106                 mtx_lock(&nblock);
 2107                 while (needsbuffer & flags) {
 2108                         if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
 2109                                 mtx_unlock(&nblock);
 2110                                 /*
 2111                                  * getblk() is called with a vnode
 2112                                  * locked, and some majority of the
 2113                                  * dirty buffers may as well belong to
 2114                                  * the vnode. Flushing the buffers
 2115                                  * there would make a progress that
 2116                                  * cannot be achieved by the
 2117                                  * buf_daemon, that cannot lock the
 2118                                  * vnode.
 2119                                  */
 2120                                 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
 2121                                     (td->td_pflags & TDP_NORUNNINGBUF);
 2122                                 /* play bufdaemon */
 2123                                 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
 2124                                 fl = buf_do_flush(vp);
 2125                                 td->td_pflags &= norunbuf;
 2126                                 mtx_lock(&nblock);
 2127                                 if (fl != 0)
 2128                                         continue;
 2129                                 if ((needsbuffer & flags) == 0)
 2130                                         break;
 2131                         }
 2132                         if (msleep(&needsbuffer, &nblock,
 2133                             (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
 2134                                 mtx_unlock(&nblock);
 2135                                 return (NULL);
 2136                         }
 2137                 }
 2138                 mtx_unlock(&nblock);
 2139         } else {
 2140                 /*
 2141                  * We finally have a valid bp.  We aren't quite out of the
 2142                  * woods, we still have to reserve kva space.  In order
 2143                  * to keep fragmentation sane we only allocate kva in
 2144                  * BKVASIZE chunks.
 2145                  */
 2146                 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 2147 
 2148                 if (maxsize != bp->b_kvasize) {
 2149                         vm_offset_t addr = 0;
 2150 
 2151                         bfreekva(bp);
 2152 
 2153                         vm_map_lock(buffer_map);
 2154                         if (vm_map_findspace(buffer_map,
 2155                                 vm_map_min(buffer_map), maxsize, &addr)) {
 2156                                 /*
 2157                                  * Uh oh.  Buffer map is to fragmented.  We
 2158                                  * must defragment the map.
 2159                                  */
 2160                                 atomic_add_int(&bufdefragcnt, 1);
 2161                                 vm_map_unlock(buffer_map);
 2162                                 defrag = 1;
 2163                                 bp->b_flags |= B_INVAL;
 2164                                 brelse(bp);
 2165                                 goto restart;
 2166                         }
 2167                         if (addr) {
 2168                                 vm_map_insert(buffer_map, NULL, 0,
 2169                                         addr, addr + maxsize,
 2170                                         VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
 2171 
 2172                                 bp->b_kvabase = (caddr_t) addr;
 2173                                 bp->b_kvasize = maxsize;
 2174                                 atomic_add_long(&bufspace, bp->b_kvasize);
 2175                                 atomic_add_int(&bufreusecnt, 1);
 2176                         }
 2177                         vm_map_unlock(buffer_map);
 2178                 }
 2179                 bp->b_saveaddr = bp->b_kvabase;
 2180                 bp->b_data = bp->b_saveaddr;
 2181         }
 2182         return(bp);
 2183 }
 2184 
 2185 /*
 2186  *      buf_daemon:
 2187  *
 2188  *      buffer flushing daemon.  Buffers are normally flushed by the
 2189  *      update daemon but if it cannot keep up this process starts to
 2190  *      take the load in an attempt to prevent getnewbuf() from blocking.
 2191  */
 2192 
 2193 static struct kproc_desc buf_kp = {
 2194         "bufdaemon",
 2195         buf_daemon,
 2196         &bufdaemonproc
 2197 };
 2198 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
 2199 
 2200 static int
 2201 buf_do_flush(struct vnode *vp)
 2202 {
 2203         int flushed;
 2204 
 2205         flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
 2206         /* The list empty check here is slightly racy */
 2207         if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
 2208                 mtx_lock(&Giant);
 2209                 flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
 2210                 mtx_unlock(&Giant);
 2211         }
 2212         if (flushed == 0) {
 2213                 /*
 2214                  * Could not find any buffers without rollback
 2215                  * dependencies, so just write the first one
 2216                  * in the hopes of eventually making progress.
 2217                  */
 2218                 flushbufqueues(vp, QUEUE_DIRTY, 1);
 2219                 if (!TAILQ_EMPTY(
 2220                             &bufqueues[QUEUE_DIRTY_GIANT])) {
 2221                         mtx_lock(&Giant);
 2222                         flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
 2223                         mtx_unlock(&Giant);
 2224                 }
 2225         }
 2226         return (flushed);
 2227 }
 2228 
 2229 static void
 2230 buf_daemon()
 2231 {
 2232 
 2233         /*
 2234          * This process needs to be suspended prior to shutdown sync.
 2235          */
 2236         EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
 2237             SHUTDOWN_PRI_LAST);
 2238 
 2239         /*
 2240          * This process is allowed to take the buffer cache to the limit
 2241          */
 2242         curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
 2243         mtx_lock(&bdlock);
 2244         for (;;) {
 2245                 bd_request = 0;
 2246                 mtx_unlock(&bdlock);
 2247 
 2248                 kproc_suspend_check(bufdaemonproc);
 2249 
 2250                 /*
 2251                  * Do the flush.  Limit the amount of in-transit I/O we
 2252                  * allow to build up, otherwise we would completely saturate
 2253                  * the I/O system.  Wakeup any waiting processes before we
 2254                  * normally would so they can run in parallel with our drain.
 2255                  */
 2256                 while (numdirtybuffers > lodirtybuffers) {
 2257                         if (buf_do_flush(NULL) == 0)
 2258                                 break;
 2259                         uio_yield();
 2260                 }
 2261 
 2262                 /*
 2263                  * Only clear bd_request if we have reached our low water
 2264                  * mark.  The buf_daemon normally waits 1 second and
 2265                  * then incrementally flushes any dirty buffers that have
 2266                  * built up, within reason.
 2267                  *
 2268                  * If we were unable to hit our low water mark and couldn't
 2269                  * find any flushable buffers, we sleep half a second.
 2270                  * Otherwise we loop immediately.
 2271                  */
 2272                 mtx_lock(&bdlock);
 2273                 if (numdirtybuffers <= lodirtybuffers) {
 2274                         /*
 2275                          * We reached our low water mark, reset the
 2276                          * request and sleep until we are needed again.
 2277                          * The sleep is just so the suspend code works.
 2278                          */
 2279                         bd_request = 0;
 2280                         msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 2281                 } else {
 2282                         /*
 2283                          * We couldn't find any flushable dirty buffers but
 2284                          * still have too many dirty buffers, we
 2285                          * have to sleep and try again.  (rare)
 2286                          */
 2287                         msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 2288                 }
 2289         }
 2290 }
 2291 
 2292 /*
 2293  *      flushbufqueues:
 2294  *
 2295  *      Try to flush a buffer in the dirty queue.  We must be careful to
 2296  *      free up B_INVAL buffers instead of write them, which NFS is 
 2297  *      particularly sensitive to.
 2298  */
 2299 static int flushwithdeps = 0;
 2300 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
 2301     0, "Number of buffers flushed with dependecies that require rollbacks");
 2302 
 2303 static int
 2304 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
 2305 {
 2306         struct buf *sentinel;
 2307         struct vnode *vp;
 2308         struct mount *mp;
 2309         struct buf *bp;
 2310         int hasdeps;
 2311         int flushed;
 2312         int target;
 2313 
 2314         if (lvp == NULL) {
 2315                 target = numdirtybuffers - lodirtybuffers;
 2316                 if (flushdeps && target > 2)
 2317                         target /= 2;
 2318         } else
 2319                 target = flushbufqtarget;
 2320         flushed = 0;
 2321         bp = NULL;
 2322         sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
 2323         sentinel->b_qindex = QUEUE_SENTINEL;
 2324         mtx_lock(&bqlock);
 2325         TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
 2326         while (flushed != target) {
 2327                 bp = TAILQ_NEXT(sentinel, b_freelist);
 2328                 if (bp != NULL) {
 2329                         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2330                         TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
 2331                             b_freelist);
 2332                 } else
 2333                         break;
 2334                 /*
 2335                  * Skip sentinels inserted by other invocations of the
 2336                  * flushbufqueues(), taking care to not reorder them.
 2337                  */
 2338                 if (bp->b_qindex == QUEUE_SENTINEL)
 2339                         continue;
 2340                 /*
 2341                  * Only flush the buffers that belong to the
 2342                  * vnode locked by the curthread.
 2343                  */
 2344                 if (lvp != NULL && bp->b_vp != lvp)
 2345                         continue;
 2346                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 2347                         continue;
 2348                 if (bp->b_pin_count > 0) {
 2349                         BUF_UNLOCK(bp);
 2350                         continue;
 2351                 }
 2352                 BO_LOCK(bp->b_bufobj);
 2353                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
 2354                     (bp->b_flags & B_DELWRI) == 0) {
 2355                         BO_UNLOCK(bp->b_bufobj);
 2356                         BUF_UNLOCK(bp);
 2357                         continue;
 2358                 }
 2359                 BO_UNLOCK(bp->b_bufobj);
 2360                 if (bp->b_flags & B_INVAL) {
 2361                         bremfreel(bp);
 2362                         mtx_unlock(&bqlock);
 2363                         brelse(bp);
 2364                         flushed++;
 2365                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2366                         mtx_lock(&bqlock);
 2367                         continue;
 2368                 }
 2369 
 2370                 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
 2371                         if (flushdeps == 0) {
 2372                                 BUF_UNLOCK(bp);
 2373                                 continue;
 2374                         }
 2375                         hasdeps = 1;
 2376                 } else
 2377                         hasdeps = 0;
 2378                 /*
 2379                  * We must hold the lock on a vnode before writing
 2380                  * one of its buffers. Otherwise we may confuse, or
 2381                  * in the case of a snapshot vnode, deadlock the
 2382                  * system.
 2383                  *
 2384                  * The lock order here is the reverse of the normal
 2385                  * of vnode followed by buf lock.  This is ok because
 2386                  * the NOWAIT will prevent deadlock.
 2387                  */
 2388                 vp = bp->b_vp;
 2389                 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 2390                         BUF_UNLOCK(bp);
 2391                         continue;
 2392                 }
 2393                 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
 2394                         mtx_unlock(&bqlock);
 2395                         CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
 2396                             bp, bp->b_vp, bp->b_flags);
 2397                         if (curproc == bufdaemonproc)
 2398                                 vfs_bio_awrite(bp);
 2399                         else {
 2400                                 bremfree(bp);
 2401                                 bwrite(bp);
 2402                                 notbufdflashes++;
 2403                         }
 2404                         vn_finished_write(mp);
 2405                         VOP_UNLOCK(vp, 0);
 2406                         flushwithdeps += hasdeps;
 2407                         flushed++;
 2408 
 2409                         /*
 2410                          * Sleeping on runningbufspace while holding
 2411                          * vnode lock leads to deadlock.
 2412                          */
 2413                         if (curproc == bufdaemonproc)
 2414                                 waitrunningbufspace();
 2415                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2416                         mtx_lock(&bqlock);
 2417                         continue;
 2418                 }
 2419                 vn_finished_write(mp);
 2420                 BUF_UNLOCK(bp);
 2421         }
 2422         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2423         mtx_unlock(&bqlock);
 2424         free(sentinel, M_TEMP);
 2425         return (flushed);
 2426 }
 2427 
 2428 /*
 2429  * Check to see if a block is currently memory resident.
 2430  */
 2431 struct buf *
 2432 incore(struct bufobj *bo, daddr_t blkno)
 2433 {
 2434         struct buf *bp;
 2435 
 2436         BO_LOCK(bo);
 2437         bp = gbincore(bo, blkno);
 2438         BO_UNLOCK(bo);
 2439         return (bp);
 2440 }
 2441 
 2442 /*
 2443  * Returns true if no I/O is needed to access the
 2444  * associated VM object.  This is like incore except
 2445  * it also hunts around in the VM system for the data.
 2446  */
 2447 
 2448 static int
 2449 inmem(struct vnode * vp, daddr_t blkno)
 2450 {
 2451         vm_object_t obj;
 2452         vm_offset_t toff, tinc, size;
 2453         vm_page_t m;
 2454         vm_ooffset_t off;
 2455 
 2456         ASSERT_VOP_LOCKED(vp, "inmem");
 2457 
 2458         if (incore(&vp->v_bufobj, blkno))
 2459                 return 1;
 2460         if (vp->v_mount == NULL)
 2461                 return 0;
 2462         obj = vp->v_object;
 2463         if (obj == NULL)
 2464                 return (0);
 2465 
 2466         size = PAGE_SIZE;
 2467         if (size > vp->v_mount->mnt_stat.f_iosize)
 2468                 size = vp->v_mount->mnt_stat.f_iosize;
 2469         off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 2470 
 2471         VM_OBJECT_LOCK(obj);
 2472         for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 2473                 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
 2474                 if (!m)
 2475                         goto notinmem;
 2476                 tinc = size;
 2477                 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 2478                         tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 2479                 if (vm_page_is_valid(m,
 2480                     (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
 2481                         goto notinmem;
 2482         }
 2483         VM_OBJECT_UNLOCK(obj);
 2484         return 1;
 2485 
 2486 notinmem:
 2487         VM_OBJECT_UNLOCK(obj);
 2488         return (0);
 2489 }
 2490 
 2491 /*
 2492  * Set the dirty range for a buffer based on the status of the dirty
 2493  * bits in the pages comprising the buffer.  The range is limited
 2494  * to the size of the buffer.
 2495  *
 2496  * Tell the VM system that the pages associated with this buffer
 2497  * are clean.  This is used for delayed writes where the data is
 2498  * going to go to disk eventually without additional VM intevention.
 2499  *
 2500  * Note that while we only really need to clean through to b_bcount, we
 2501  * just go ahead and clean through to b_bufsize.
 2502  */
 2503 static void
 2504 vfs_clean_pages_dirty_buf(struct buf *bp)
 2505 {
 2506         vm_ooffset_t foff, noff, eoff;
 2507         vm_page_t m;
 2508         int i;
 2509 
 2510         if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
 2511                 return;
 2512 
 2513         foff = bp->b_offset;
 2514         KASSERT(bp->b_offset != NOOFFSET,
 2515             ("vfs_clean_pages_dirty_buf: no buffer offset"));
 2516 
 2517         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 2518         vfs_drain_busy_pages(bp);
 2519         vfs_setdirty_locked_object(bp);
 2520         vm_page_lock_queues();
 2521         for (i = 0; i < bp->b_npages; i++) {
 2522                 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 2523                 eoff = noff;
 2524                 if (eoff > bp->b_offset + bp->b_bufsize)
 2525                         eoff = bp->b_offset + bp->b_bufsize;
 2526                 m = bp->b_pages[i];
 2527                 vfs_page_set_validclean(bp, foff, m);
 2528                 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 2529                 foff = noff;
 2530         }
 2531         vm_page_unlock_queues();
 2532         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 2533 }
 2534 
 2535 static void
 2536 vfs_setdirty_locked_object(struct buf *bp)
 2537 {
 2538         vm_object_t object;
 2539         int i;
 2540 
 2541         object = bp->b_bufobj->bo_object;
 2542         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2543 
 2544         /*
 2545          * We qualify the scan for modified pages on whether the
 2546          * object has been flushed yet.
 2547          */
 2548         if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
 2549                 vm_offset_t boffset;
 2550                 vm_offset_t eoffset;
 2551 
 2552                 vm_page_lock_queues();
 2553                 /*
 2554                  * test the pages to see if they have been modified directly
 2555                  * by users through the VM system.
 2556                  */
 2557                 for (i = 0; i < bp->b_npages; i++)
 2558                         vm_page_test_dirty(bp->b_pages[i]);
 2559 
 2560                 /*
 2561                  * Calculate the encompassing dirty range, boffset and eoffset,
 2562                  * (eoffset - boffset) bytes.
 2563                  */
 2564 
 2565                 for (i = 0; i < bp->b_npages; i++) {
 2566                         if (bp->b_pages[i]->dirty)
 2567                                 break;
 2568                 }
 2569                 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2570 
 2571                 for (i = bp->b_npages - 1; i >= 0; --i) {
 2572                         if (bp->b_pages[i]->dirty) {
 2573                                 break;
 2574                         }
 2575                 }
 2576                 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2577 
 2578                 vm_page_unlock_queues();
 2579                 /*
 2580                  * Fit it to the buffer.
 2581                  */
 2582 
 2583                 if (eoffset > bp->b_bcount)
 2584                         eoffset = bp->b_bcount;
 2585 
 2586                 /*
 2587                  * If we have a good dirty range, merge with the existing
 2588                  * dirty range.
 2589                  */
 2590 
 2591                 if (boffset < eoffset) {
 2592                         if (bp->b_dirtyoff > boffset)
 2593                                 bp->b_dirtyoff = boffset;
 2594                         if (bp->b_dirtyend < eoffset)
 2595                                 bp->b_dirtyend = eoffset;
 2596                 }
 2597         }
 2598 }
 2599 
 2600 /*
 2601  *      getblk:
 2602  *
 2603  *      Get a block given a specified block and offset into a file/device.
 2604  *      The buffers B_DONE bit will be cleared on return, making it almost
 2605  *      ready for an I/O initiation.  B_INVAL may or may not be set on 
 2606  *      return.  The caller should clear B_INVAL prior to initiating a
 2607  *      READ.
 2608  *
 2609  *      For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
 2610  *      an existing buffer.
 2611  *
 2612  *      For a VMIO buffer, B_CACHE is modified according to the backing VM.
 2613  *      If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
 2614  *      and then cleared based on the backing VM.  If the previous buffer is
 2615  *      non-0-sized but invalid, B_CACHE will be cleared.
 2616  *
 2617  *      If getblk() must create a new buffer, the new buffer is returned with
 2618  *      both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
 2619  *      case it is returned with B_INVAL clear and B_CACHE set based on the
 2620  *      backing VM.
 2621  *
 2622  *      getblk() also forces a bwrite() for any B_DELWRI buffer whos
 2623  *      B_CACHE bit is clear.
 2624  *      
 2625  *      What this means, basically, is that the caller should use B_CACHE to
 2626  *      determine whether the buffer is fully valid or not and should clear
 2627  *      B_INVAL prior to issuing a read.  If the caller intends to validate
 2628  *      the buffer by loading its data area with something, the caller needs
 2629  *      to clear B_INVAL.  If the caller does this without issuing an I/O, 
 2630  *      the caller should set B_CACHE ( as an optimization ), else the caller
 2631  *      should issue the I/O and biodone() will set B_CACHE if the I/O was
 2632  *      a write attempt or if it was a successfull read.  If the caller 
 2633  *      intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
 2634  *      prior to issuing the READ.  biodone() will *not* clear B_INVAL.
 2635  */
 2636 struct buf *
 2637 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
 2638     int flags)
 2639 {
 2640         struct buf *bp;
 2641         struct bufobj *bo;
 2642         int error;
 2643 
 2644         CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
 2645         ASSERT_VOP_LOCKED(vp, "getblk");
 2646         if (size > MAXBSIZE)
 2647                 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
 2648 
 2649         bo = &vp->v_bufobj;
 2650 loop:
 2651         /*
 2652          * Block if we are low on buffers.   Certain processes are allowed
 2653          * to completely exhaust the buffer cache.
 2654          *
 2655          * If this check ever becomes a bottleneck it may be better to
 2656          * move it into the else, when gbincore() fails.  At the moment
 2657          * it isn't a problem.
 2658          *
 2659          * XXX remove if 0 sections (clean this up after its proven)
 2660          */
 2661         if (numfreebuffers == 0) {
 2662                 if (TD_IS_IDLETHREAD(curthread))
 2663                         return NULL;
 2664                 mtx_lock(&nblock);
 2665                 needsbuffer |= VFS_BIO_NEED_ANY;
 2666                 mtx_unlock(&nblock);
 2667         }
 2668 
 2669         BO_LOCK(bo);
 2670         bp = gbincore(bo, blkno);
 2671         if (bp != NULL) {
 2672                 int lockflags;
 2673                 /*
 2674                  * Buffer is in-core.  If the buffer is not busy, it must
 2675                  * be on a queue.
 2676                  */
 2677                 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
 2678 
 2679                 if (flags & GB_LOCK_NOWAIT)
 2680                         lockflags |= LK_NOWAIT;
 2681 
 2682                 error = BUF_TIMELOCK(bp, lockflags,
 2683                     BO_MTX(bo), "getblk", slpflag, slptimeo);
 2684 
 2685                 /*
 2686                  * If we slept and got the lock we have to restart in case
 2687                  * the buffer changed identities.
 2688                  */
 2689                 if (error == ENOLCK)
 2690                         goto loop;
 2691                 /* We timed out or were interrupted. */
 2692                 else if (error)
 2693                         return (NULL);
 2694 
 2695                 /*
 2696                  * The buffer is locked.  B_CACHE is cleared if the buffer is 
 2697                  * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 2698                  * and for a VMIO buffer B_CACHE is adjusted according to the
 2699                  * backing VM cache.
 2700                  */
 2701                 if (bp->b_flags & B_INVAL)
 2702                         bp->b_flags &= ~B_CACHE;
 2703                 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 2704                         bp->b_flags |= B_CACHE;
 2705                 BO_LOCK(bo);
 2706                 bremfree(bp);
 2707                 BO_UNLOCK(bo);
 2708 
 2709                 /*
 2710                  * check for size inconsistancies for non-VMIO case.
 2711                  */
 2712 
 2713                 if (bp->b_bcount != size) {
 2714                         if ((bp->b_flags & B_VMIO) == 0 ||
 2715                             (size > bp->b_kvasize)) {
 2716                                 if (bp->b_flags & B_DELWRI) {
 2717                                         /*
 2718                                          * If buffer is pinned and caller does
 2719                                          * not want sleep  waiting for it to be
 2720                                          * unpinned, bail out
 2721                                          * */
 2722                                         if (bp->b_pin_count > 0) {
 2723                                                 if (flags & GB_LOCK_NOWAIT) {
 2724                                                         bqrelse(bp);
 2725                                                         return (NULL);
 2726                                                 } else {
 2727                                                         bunpin_wait(bp);
 2728                                                 }
 2729                                         }
 2730                                         bp->b_flags |= B_NOCACHE;
 2731                                         bwrite(bp);
 2732                                 } else {
 2733                                         if (LIST_EMPTY(&bp->b_dep)) {
 2734                                                 bp->b_flags |= B_RELBUF;
 2735                                                 brelse(bp);
 2736                                         } else {
 2737                                                 bp->b_flags |= B_NOCACHE;
 2738                                                 bwrite(bp);
 2739                                         }
 2740                                 }
 2741                                 goto loop;
 2742                         }
 2743                 }
 2744 
 2745                 /*
 2746                  * If the size is inconsistant in the VMIO case, we can resize
 2747                  * the buffer.  This might lead to B_CACHE getting set or
 2748                  * cleared.  If the size has not changed, B_CACHE remains
 2749                  * unchanged from its previous state.
 2750                  */
 2751 
 2752                 if (bp->b_bcount != size)
 2753                         allocbuf(bp, size);
 2754 
 2755                 KASSERT(bp->b_offset != NOOFFSET, 
 2756                     ("getblk: no buffer offset"));
 2757 
 2758                 /*
 2759                  * A buffer with B_DELWRI set and B_CACHE clear must
 2760                  * be committed before we can return the buffer in
 2761                  * order to prevent the caller from issuing a read
 2762                  * ( due to B_CACHE not being set ) and overwriting
 2763                  * it.
 2764                  *
 2765                  * Most callers, including NFS and FFS, need this to
 2766                  * operate properly either because they assume they
 2767                  * can issue a read if B_CACHE is not set, or because
 2768                  * ( for example ) an uncached B_DELWRI might loop due 
 2769                  * to softupdates re-dirtying the buffer.  In the latter
 2770                  * case, B_CACHE is set after the first write completes,
 2771                  * preventing further loops.
 2772                  * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 2773                  * above while extending the buffer, we cannot allow the
 2774                  * buffer to remain with B_CACHE set after the write
 2775                  * completes or it will represent a corrupt state.  To
 2776                  * deal with this we set B_NOCACHE to scrap the buffer
 2777                  * after the write.
 2778                  *
 2779                  * We might be able to do something fancy, like setting
 2780                  * B_CACHE in bwrite() except if B_DELWRI is already set,
 2781                  * so the below call doesn't set B_CACHE, but that gets real
 2782                  * confusing.  This is much easier.
 2783                  */
 2784 
 2785                 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 2786                         bp->b_flags |= B_NOCACHE;
 2787                         bwrite(bp);
 2788                         goto loop;
 2789                 }
 2790                 bp->b_flags &= ~B_DONE;
 2791         } else {
 2792                 int bsize, maxsize, vmio;
 2793                 off_t offset;
 2794 
 2795                 /*
 2796                  * Buffer is not in-core, create new buffer.  The buffer
 2797                  * returned by getnewbuf() is locked.  Note that the returned
 2798                  * buffer is also considered valid (not marked B_INVAL).
 2799                  */
 2800                 BO_UNLOCK(bo);
 2801                 /*
 2802                  * If the user does not want us to create the buffer, bail out
 2803                  * here.
 2804                  */
 2805                 if (flags & GB_NOCREAT)
 2806                         return NULL;
 2807                 bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
 2808                 offset = blkno * bsize;
 2809                 vmio = vp->v_object != NULL;
 2810                 maxsize = vmio ? size + (offset & PAGE_MASK) : size;
 2811                 maxsize = imax(maxsize, bsize);
 2812 
 2813                 bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
 2814                 if (bp == NULL) {
 2815                         if (slpflag || slptimeo)
 2816                                 return NULL;
 2817                         goto loop;
 2818                 }
 2819 
 2820                 /*
 2821                  * This code is used to make sure that a buffer is not
 2822                  * created while the getnewbuf routine is blocked.
 2823                  * This can be a problem whether the vnode is locked or not.
 2824                  * If the buffer is created out from under us, we have to
 2825                  * throw away the one we just created.
 2826                  *
 2827                  * Note: this must occur before we associate the buffer
 2828                  * with the vp especially considering limitations in
 2829                  * the splay tree implementation when dealing with duplicate
 2830                  * lblkno's.
 2831                  */
 2832                 BO_LOCK(bo);
 2833                 if (gbincore(bo, blkno)) {
 2834                         BO_UNLOCK(bo);
 2835                         bp->b_flags |= B_INVAL;
 2836                         brelse(bp);
 2837                         goto loop;
 2838                 }
 2839 
 2840                 /*
 2841                  * Insert the buffer into the hash, so that it can
 2842                  * be found by incore.
 2843                  */
 2844                 bp->b_blkno = bp->b_lblkno = blkno;
 2845                 bp->b_offset = offset;
 2846                 bgetvp(vp, bp);
 2847                 BO_UNLOCK(bo);
 2848 
 2849                 /*
 2850                  * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 2851                  * buffer size starts out as 0, B_CACHE will be set by
 2852                  * allocbuf() for the VMIO case prior to it testing the
 2853                  * backing store for validity.
 2854                  */
 2855 
 2856                 if (vmio) {
 2857                         bp->b_flags |= B_VMIO;
 2858 #if defined(VFS_BIO_DEBUG)
 2859                         if (vn_canvmio(vp) != TRUE)
 2860                                 printf("getblk: VMIO on vnode type %d\n",
 2861                                         vp->v_type);
 2862 #endif
 2863                         KASSERT(vp->v_object == bp->b_bufobj->bo_object,
 2864                             ("ARGH! different b_bufobj->bo_object %p %p %p\n",
 2865                             bp, vp->v_object, bp->b_bufobj->bo_object));
 2866                 } else {
 2867                         bp->b_flags &= ~B_VMIO;
 2868                         KASSERT(bp->b_bufobj->bo_object == NULL,
 2869                             ("ARGH! has b_bufobj->bo_object %p %p\n",
 2870                             bp, bp->b_bufobj->bo_object));
 2871                 }
 2872 
 2873                 allocbuf(bp, size);
 2874                 bp->b_flags &= ~B_DONE;
 2875         }
 2876         CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
 2877         BUF_ASSERT_HELD(bp);
 2878         KASSERT(bp->b_bufobj == bo,
 2879             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 2880         return (bp);
 2881 }
 2882 
 2883 /*
 2884  * Get an empty, disassociated buffer of given size.  The buffer is initially
 2885  * set to B_INVAL.
 2886  */
 2887 struct buf *
 2888 geteblk(int size, int flags)
 2889 {
 2890         struct buf *bp;
 2891         int maxsize;
 2892 
 2893         maxsize = (size + BKVAMASK) & ~BKVAMASK;
 2894         while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
 2895                 if ((flags & GB_NOWAIT_BD) &&
 2896                     (curthread->td_pflags & TDP_BUFNEED) != 0)
 2897                         return (NULL);
 2898         }
 2899         allocbuf(bp, size);
 2900         bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
 2901         BUF_ASSERT_HELD(bp);
 2902         return (bp);
 2903 }
 2904 
 2905 
 2906 /*
 2907  * This code constitutes the buffer memory from either anonymous system
 2908  * memory (in the case of non-VMIO operations) or from an associated
 2909  * VM object (in the case of VMIO operations).  This code is able to
 2910  * resize a buffer up or down.
 2911  *
 2912  * Note that this code is tricky, and has many complications to resolve
 2913  * deadlock or inconsistant data situations.  Tread lightly!!! 
 2914  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
 2915  * the caller.  Calling this code willy nilly can result in the loss of data.
 2916  *
 2917  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
 2918  * B_CACHE for the non-VMIO case.
 2919  */
 2920 
 2921 int
 2922 allocbuf(struct buf *bp, int size)
 2923 {
 2924         int newbsize, mbsize;
 2925         int i;
 2926 
 2927         BUF_ASSERT_HELD(bp);
 2928 
 2929         if (bp->b_kvasize < size)
 2930                 panic("allocbuf: buffer too small");
 2931 
 2932         if ((bp->b_flags & B_VMIO) == 0) {
 2933                 caddr_t origbuf;
 2934                 int origbufsize;
 2935                 /*
 2936                  * Just get anonymous memory from the kernel.  Don't
 2937                  * mess with B_CACHE.
 2938                  */
 2939                 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2940                 if (bp->b_flags & B_MALLOC)
 2941                         newbsize = mbsize;
 2942                 else
 2943                         newbsize = round_page(size);
 2944 
 2945                 if (newbsize < bp->b_bufsize) {
 2946                         /*
 2947                          * malloced buffers are not shrunk
 2948                          */
 2949                         if (bp->b_flags & B_MALLOC) {
 2950                                 if (newbsize) {
 2951                                         bp->b_bcount = size;
 2952                                 } else {
 2953                                         free(bp->b_data, M_BIOBUF);
 2954                                         if (bp->b_bufsize) {
 2955                                                 atomic_subtract_long(
 2956                                                     &bufmallocspace,
 2957                                                     bp->b_bufsize);
 2958                                                 bufspacewakeup();
 2959                                                 bp->b_bufsize = 0;
 2960                                         }
 2961                                         bp->b_saveaddr = bp->b_kvabase;
 2962                                         bp->b_data = bp->b_saveaddr;
 2963                                         bp->b_bcount = 0;
 2964                                         bp->b_flags &= ~B_MALLOC;
 2965                                 }
 2966                                 return 1;
 2967                         }               
 2968                         vm_hold_free_pages(bp, newbsize);
 2969                 } else if (newbsize > bp->b_bufsize) {
 2970                         /*
 2971                          * We only use malloced memory on the first allocation.
 2972                          * and revert to page-allocated memory when the buffer
 2973                          * grows.
 2974                          */
 2975                         /*
 2976                          * There is a potential smp race here that could lead
 2977                          * to bufmallocspace slightly passing the max.  It
 2978                          * is probably extremely rare and not worth worrying
 2979                          * over.
 2980                          */
 2981                         if ( (bufmallocspace < maxbufmallocspace) &&
 2982                                 (bp->b_bufsize == 0) &&
 2983                                 (mbsize <= PAGE_SIZE/2)) {
 2984 
 2985                                 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
 2986                                 bp->b_bufsize = mbsize;
 2987                                 bp->b_bcount = size;
 2988                                 bp->b_flags |= B_MALLOC;
 2989                                 atomic_add_long(&bufmallocspace, mbsize);
 2990                                 return 1;
 2991                         }
 2992                         origbuf = NULL;
 2993                         origbufsize = 0;
 2994                         /*
 2995                          * If the buffer is growing on its other-than-first allocation,
 2996                          * then we revert to the page-allocation scheme.
 2997                          */
 2998                         if (bp->b_flags & B_MALLOC) {
 2999                                 origbuf = bp->b_data;
 3000                                 origbufsize = bp->b_bufsize;
 3001                                 bp->b_data = bp->b_kvabase;
 3002                                 if (bp->b_bufsize) {
 3003                                         atomic_subtract_long(&bufmallocspace,
 3004                                             bp->b_bufsize);
 3005                                         bufspacewakeup();
 3006                                         bp->b_bufsize = 0;
 3007                                 }
 3008                                 bp->b_flags &= ~B_MALLOC;
 3009                                 newbsize = round_page(newbsize);
 3010                         }
 3011                         vm_hold_load_pages(
 3012                             bp,
 3013                             (vm_offset_t) bp->b_data + bp->b_bufsize,
 3014                             (vm_offset_t) bp->b_data + newbsize);
 3015                         if (origbuf) {
 3016                                 bcopy(origbuf, bp->b_data, origbufsize);
 3017                                 free(origbuf, M_BIOBUF);
 3018                         }
 3019                 }
 3020         } else {
 3021                 int desiredpages;
 3022 
 3023                 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 3024                 desiredpages = (size == 0) ? 0 :
 3025                         num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 3026 
 3027                 if (bp->b_flags & B_MALLOC)
 3028                         panic("allocbuf: VMIO buffer can't be malloced");
 3029                 /*
 3030                  * Set B_CACHE initially if buffer is 0 length or will become
 3031                  * 0-length.
 3032                  */
 3033                 if (size == 0 || bp->b_bufsize == 0)
 3034                         bp->b_flags |= B_CACHE;
 3035 
 3036                 if (newbsize < bp->b_bufsize) {
 3037                         /*
 3038                          * DEV_BSIZE aligned new buffer size is less then the
 3039                          * DEV_BSIZE aligned existing buffer size.  Figure out
 3040                          * if we have to remove any pages.
 3041                          */
 3042                         if (desiredpages < bp->b_npages) {
 3043                                 vm_page_t m;
 3044 
 3045                                 pmap_qremove((vm_offset_t)trunc_page(
 3046                                     (vm_offset_t)bp->b_data) +
 3047                                     (desiredpages << PAGE_SHIFT),
 3048                                     (bp->b_npages - desiredpages));
 3049                                 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3050                                 vm_page_lock_queues();
 3051                                 for (i = desiredpages; i < bp->b_npages; i++) {
 3052                                         /*
 3053                                          * the page is not freed here -- it
 3054                                          * is the responsibility of 
 3055                                          * vnode_pager_setsize
 3056                                          */
 3057                                         m = bp->b_pages[i];
 3058                                         KASSERT(m != bogus_page,
 3059                                             ("allocbuf: bogus page found"));
 3060                                         while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
 3061                                                 vm_page_lock_queues();
 3062 
 3063                                         bp->b_pages[i] = NULL;
 3064                                         vm_page_unwire(m, 0);
 3065                                 }
 3066                                 vm_page_unlock_queues();
 3067                                 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3068                                 bp->b_npages = desiredpages;
 3069                         }
 3070                 } else if (size > bp->b_bcount) {
 3071                         /*
 3072                          * We are growing the buffer, possibly in a 
 3073                          * byte-granular fashion.
 3074                          */
 3075                         vm_object_t obj;
 3076                         vm_offset_t toff;
 3077                         vm_offset_t tinc;
 3078 
 3079                         /*
 3080                          * Step 1, bring in the VM pages from the object, 
 3081                          * allocating them if necessary.  We must clear
 3082                          * B_CACHE if these pages are not valid for the 
 3083                          * range covered by the buffer.
 3084                          */
 3085 
 3086                         obj = bp->b_bufobj->bo_object;
 3087 
 3088                         VM_OBJECT_LOCK(obj);
 3089                         while (bp->b_npages < desiredpages) {
 3090                                 vm_page_t m;
 3091                                 vm_pindex_t pi;
 3092 
 3093                                 pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
 3094                                 if ((m = vm_page_lookup(obj, pi)) == NULL) {
 3095                                         /*
 3096                                          * note: must allocate system pages
 3097                                          * since blocking here could intefere
 3098                                          * with paging I/O, no matter which
 3099                                          * process we are.
 3100                                          */
 3101                                         m = vm_page_alloc(obj, pi,
 3102                                             VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
 3103                                             VM_ALLOC_WIRED);
 3104                                         if (m == NULL) {
 3105                                                 atomic_add_int(&vm_pageout_deficit,
 3106                                                     desiredpages - bp->b_npages);
 3107                                                 VM_OBJECT_UNLOCK(obj);
 3108                                                 VM_WAIT;
 3109                                                 VM_OBJECT_LOCK(obj);
 3110                                         } else {
 3111                                                 if (m->valid == 0)
 3112                                                         bp->b_flags &= ~B_CACHE;
 3113                                                 bp->b_pages[bp->b_npages] = m;
 3114                                                 ++bp->b_npages;
 3115                                         }
 3116                                         continue;
 3117                                 }
 3118 
 3119                                 /*
 3120                                  * We found a page.  If we have to sleep on it,
 3121                                  * retry because it might have gotten freed out
 3122                                  * from under us.
 3123                                  *
 3124                                  * We can only test VPO_BUSY here.  Blocking on
 3125                                  * m->busy might lead to a deadlock:
 3126                                  *
 3127                                  *  vm_fault->getpages->cluster_read->allocbuf
 3128                                  *
 3129                                  */
 3130                                 if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
 3131                                         continue;
 3132 
 3133                                 /*
 3134                                  * We have a good page.
 3135                                  */
 3136                                 vm_page_lock_queues();
 3137                                 vm_page_wire(m);
 3138                                 vm_page_unlock_queues();
 3139                                 bp->b_pages[bp->b_npages] = m;
 3140                                 ++bp->b_npages;
 3141                         }
 3142 
 3143                         /*
 3144                          * Step 2.  We've loaded the pages into the buffer,
 3145                          * we have to figure out if we can still have B_CACHE
 3146                          * set.  Note that B_CACHE is set according to the
 3147                          * byte-granular range ( bcount and size ), new the
 3148                          * aligned range ( newbsize ).
 3149                          *
 3150                          * The VM test is against m->valid, which is DEV_BSIZE
 3151                          * aligned.  Needless to say, the validity of the data
 3152                          * needs to also be DEV_BSIZE aligned.  Note that this
 3153                          * fails with NFS if the server or some other client
 3154                          * extends the file's EOF.  If our buffer is resized, 
 3155                          * B_CACHE may remain set! XXX
 3156                          */
 3157 
 3158                         toff = bp->b_bcount;
 3159                         tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 3160 
 3161                         while ((bp->b_flags & B_CACHE) && toff < size) {
 3162                                 vm_pindex_t pi;
 3163 
 3164                                 if (tinc > (size - toff))
 3165                                         tinc = size - toff;
 3166 
 3167                                 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 
 3168                                     PAGE_SHIFT;
 3169 
 3170                                 vfs_buf_test_cache(
 3171                                     bp, 
 3172                                     bp->b_offset,
 3173                                     toff, 
 3174                                     tinc, 
 3175                                     bp->b_pages[pi]
 3176                                 );
 3177                                 toff += tinc;
 3178                                 tinc = PAGE_SIZE;
 3179                         }
 3180                         VM_OBJECT_UNLOCK(obj);
 3181 
 3182                         /*
 3183                          * Step 3, fixup the KVM pmap.  Remember that
 3184                          * bp->b_data is relative to bp->b_offset, but 
 3185                          * bp->b_offset may be offset into the first page.
 3186                          */
 3187 
 3188                         bp->b_data = (caddr_t)
 3189                             trunc_page((vm_offset_t)bp->b_data);
 3190                         pmap_qenter(
 3191                             (vm_offset_t)bp->b_data,
 3192                             bp->b_pages, 
 3193                             bp->b_npages
 3194                         );
 3195                         
 3196                         bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 
 3197                             (vm_offset_t)(bp->b_offset & PAGE_MASK));
 3198                 }
 3199         }
 3200         if (newbsize < bp->b_bufsize)
 3201                 bufspacewakeup();
 3202         bp->b_bufsize = newbsize;       /* actual buffer allocation     */
 3203         bp->b_bcount = size;            /* requested buffer size        */
 3204         return 1;
 3205 }
 3206 
 3207 void
 3208 biodone(struct bio *bp)
 3209 {
 3210         struct mtx *mtxp;
 3211         void (*done)(struct bio *);
 3212 
 3213         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3214         mtx_lock(mtxp);
 3215         bp->bio_flags |= BIO_DONE;
 3216         done = bp->bio_done;
 3217         if (done == NULL)
 3218                 wakeup(bp);
 3219         mtx_unlock(mtxp);
 3220         if (done != NULL)
 3221                 done(bp);
 3222 }
 3223 
 3224 /*
 3225  * Wait for a BIO to finish.
 3226  *
 3227  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
 3228  * case is not yet clear.
 3229  */
 3230 int
 3231 biowait(struct bio *bp, const char *wchan)
 3232 {
 3233         struct mtx *mtxp;
 3234 
 3235         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3236         mtx_lock(mtxp);
 3237         while ((bp->bio_flags & BIO_DONE) == 0)
 3238                 msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
 3239         mtx_unlock(mtxp);
 3240         if (bp->bio_error != 0)
 3241                 return (bp->bio_error);
 3242         if (!(bp->bio_flags & BIO_ERROR))
 3243                 return (0);
 3244         return (EIO);
 3245 }
 3246 
 3247 void
 3248 biofinish(struct bio *bp, struct devstat *stat, int error)
 3249 {
 3250         
 3251         if (error) {
 3252                 bp->bio_error = error;
 3253                 bp->bio_flags |= BIO_ERROR;
 3254         }
 3255         if (stat != NULL)
 3256                 devstat_end_transaction_bio(stat, bp);
 3257         biodone(bp);
 3258 }
 3259 
 3260 /*
 3261  *      bufwait:
 3262  *
 3263  *      Wait for buffer I/O completion, returning error status.  The buffer
 3264  *      is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
 3265  *      error and cleared.
 3266  */
 3267 int
 3268 bufwait(struct buf *bp)
 3269 {
 3270         if (bp->b_iocmd == BIO_READ)
 3271                 bwait(bp, PRIBIO, "biord");
 3272         else
 3273                 bwait(bp, PRIBIO, "biowr");
 3274         if (bp->b_flags & B_EINTR) {
 3275                 bp->b_flags &= ~B_EINTR;
 3276                 return (EINTR);
 3277         }
 3278         if (bp->b_ioflags & BIO_ERROR) {
 3279                 return (bp->b_error ? bp->b_error : EIO);
 3280         } else {
 3281                 return (0);
 3282         }
 3283 }
 3284 
 3285  /*
 3286   * Call back function from struct bio back up to struct buf.
 3287   */
 3288 static void
 3289 bufdonebio(struct bio *bip)
 3290 {
 3291         struct buf *bp;
 3292 
 3293         bp = bip->bio_caller2;
 3294         bp->b_resid = bp->b_bcount - bip->bio_completed;
 3295         bp->b_resid = bip->bio_resid;   /* XXX: remove */
 3296         bp->b_ioflags = bip->bio_flags;
 3297         bp->b_error = bip->bio_error;
 3298         if (bp->b_error)
 3299                 bp->b_ioflags |= BIO_ERROR;
 3300         bufdone(bp);
 3301         g_destroy_bio(bip);
 3302 }
 3303 
 3304 void
 3305 dev_strategy(struct cdev *dev, struct buf *bp)
 3306 {
 3307         struct cdevsw *csw;
 3308         struct bio *bip;
 3309         int ref;
 3310 
 3311         if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
 3312                 panic("b_iocmd botch");
 3313         for (;;) {
 3314                 bip = g_new_bio();
 3315                 if (bip != NULL)
 3316                         break;
 3317                 /* Try again later */
 3318                 tsleep(&bp, PRIBIO, "dev_strat", hz/10);
 3319         }
 3320         bip->bio_cmd = bp->b_iocmd;
 3321         bip->bio_offset = bp->b_iooffset;
 3322         bip->bio_length = bp->b_bcount;
 3323         bip->bio_bcount = bp->b_bcount; /* XXX: remove */
 3324         bip->bio_data = bp->b_data;
 3325         bip->bio_done = bufdonebio;
 3326         bip->bio_caller2 = bp;
 3327         bip->bio_dev = dev;
 3328         KASSERT(dev->si_refcount > 0,
 3329             ("dev_strategy on un-referenced struct cdev *(%s)",
 3330             devtoname(dev)));
 3331         csw = dev_refthread(dev, &ref);
 3332         if (csw == NULL) {
 3333                 g_destroy_bio(bip);
 3334                 bp->b_error = ENXIO;
 3335                 bp->b_ioflags = BIO_ERROR;
 3336                 bufdone(bp);
 3337                 return;
 3338         }
 3339         (*csw->d_strategy)(bip);
 3340         dev_relthread(dev, ref);
 3341 }
 3342 
 3343 /*
 3344  *      bufdone:
 3345  *
 3346  *      Finish I/O on a buffer, optionally calling a completion function.
 3347  *      This is usually called from an interrupt so process blocking is
 3348  *      not allowed.
 3349  *
 3350  *      biodone is also responsible for setting B_CACHE in a B_VMIO bp.
 3351  *      In a non-VMIO bp, B_CACHE will be set on the next getblk() 
 3352  *      assuming B_INVAL is clear.
 3353  *
 3354  *      For the VMIO case, we set B_CACHE if the op was a read and no
 3355  *      read error occured, or if the op was a write.  B_CACHE is never
 3356  *      set if the buffer is invalid or otherwise uncacheable.
 3357  *
 3358  *      biodone does not mess with B_INVAL, allowing the I/O routine or the
 3359  *      initiator to leave B_INVAL set to brelse the buffer out of existance
 3360  *      in the biodone routine.
 3361  */
 3362 void
 3363 bufdone(struct buf *bp)
 3364 {
 3365         struct bufobj *dropobj;
 3366         void    (*biodone)(struct buf *);
 3367 
 3368         CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 3369         dropobj = NULL;
 3370 
 3371         KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 3372         BUF_ASSERT_HELD(bp);
 3373 
 3374         runningbufwakeup(bp);
 3375         if (bp->b_iocmd == BIO_WRITE)
 3376                 dropobj = bp->b_bufobj;
 3377         /* call optional completion function if requested */
 3378         if (bp->b_iodone != NULL) {
 3379                 biodone = bp->b_iodone;
 3380                 bp->b_iodone = NULL;
 3381                 (*biodone) (bp);
 3382                 if (dropobj)
 3383                         bufobj_wdrop(dropobj);
 3384                 return;
 3385         }
 3386 
 3387         bufdone_finish(bp);
 3388 
 3389         if (dropobj)
 3390                 bufobj_wdrop(dropobj);
 3391 }
 3392 
 3393 void
 3394 bufdone_finish(struct buf *bp)
 3395 {
 3396         BUF_ASSERT_HELD(bp);
 3397 
 3398         if (!LIST_EMPTY(&bp->b_dep))
 3399                 buf_complete(bp);
 3400 
 3401         if (bp->b_flags & B_VMIO) {
 3402                 int i;
 3403                 vm_ooffset_t foff;
 3404                 vm_page_t m;
 3405                 vm_object_t obj;
 3406                 int bogus, iosize;
 3407                 struct vnode *vp = bp->b_vp;
 3408 
 3409                 obj = bp->b_bufobj->bo_object;
 3410 
 3411 #if defined(VFS_BIO_DEBUG)
 3412                 mp_fixme("usecount and vflag accessed without locks.");
 3413                 if (vp->v_usecount == 0) {
 3414                         panic("biodone: zero vnode ref count");
 3415                 }
 3416 
 3417                 KASSERT(vp->v_object != NULL,
 3418                         ("biodone: vnode %p has no vm_object", vp));
 3419 #endif
 3420 
 3421                 foff = bp->b_offset;
 3422                 KASSERT(bp->b_offset != NOOFFSET,
 3423                     ("biodone: no buffer offset"));
 3424 
 3425                 VM_OBJECT_LOCK(obj);
 3426 #if defined(VFS_BIO_DEBUG)
 3427                 if (obj->paging_in_progress < bp->b_npages) {
 3428                         printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
 3429                             obj->paging_in_progress, bp->b_npages);
 3430                 }
 3431 #endif
 3432 
 3433                 /*
 3434                  * Set B_CACHE if the op was a normal read and no error
 3435                  * occured.  B_CACHE is set for writes in the b*write()
 3436                  * routines.
 3437                  */
 3438                 iosize = bp->b_bcount - bp->b_resid;
 3439                 if (bp->b_iocmd == BIO_READ &&
 3440                     !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 3441                     !(bp->b_ioflags & BIO_ERROR)) {
 3442                         bp->b_flags |= B_CACHE;
 3443                 }
 3444                 bogus = 0;
 3445                 for (i = 0; i < bp->b_npages; i++) {
 3446                         int bogusflag = 0;
 3447                         int resid;
 3448 
 3449                         resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 3450                         if (resid > iosize)
 3451                                 resid = iosize;
 3452 
 3453                         /*
 3454                          * cleanup bogus pages, restoring the originals
 3455                          */
 3456                         m = bp->b_pages[i];
 3457                         if (m == bogus_page) {
 3458                                 bogus = bogusflag = 1;
 3459                                 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
 3460                                 if (m == NULL)
 3461                                         panic("biodone: page disappeared!");
 3462                                 bp->b_pages[i] = m;
 3463                         }
 3464 #if defined(VFS_BIO_DEBUG)
 3465                         if (OFF_TO_IDX(foff) != m->pindex) {
 3466                                 printf(
 3467 "biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
 3468                                     (intmax_t)foff, (uintmax_t)m->pindex);
 3469                         }
 3470 #endif
 3471 
 3472                         /*
 3473                          * In the write case, the valid and clean bits are
 3474                          * already changed correctly ( see bdwrite() ), so we 
 3475                          * only need to do this here in the read case.
 3476                          */
 3477                         if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
 3478                                 KASSERT((m->dirty & vm_page_bits(foff &
 3479                                     PAGE_MASK, resid)) == 0, ("bufdone_finish:"
 3480                                     " page %p has unexpected dirty bits", m));
 3481                                 vfs_page_set_valid(bp, foff, m);
 3482                         }
 3483 
 3484                         /*
 3485                          * when debugging new filesystems or buffer I/O methods, this
 3486                          * is the most common error that pops up.  if you see this, you
 3487                          * have not set the page busy flag correctly!!!
 3488                          */
 3489                         if (m->busy == 0) {
 3490                                 printf("biodone: page busy < 0, "
 3491                                     "pindex: %d, foff: 0x(%x,%x), "
 3492                                     "resid: %d, index: %d\n",
 3493                                     (int) m->pindex, (int)(foff >> 32),
 3494                                                 (int) foff & 0xffffffff, resid, i);
 3495                                 if (!vn_isdisk(vp, NULL))
 3496                                         printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
 3497                                             (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
 3498                                             (intmax_t) bp->b_lblkno,
 3499                                             bp->b_flags, bp->b_npages);
 3500                                 else
 3501                                         printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
 3502                                             (intmax_t) bp->b_lblkno,
 3503                                             bp->b_flags, bp->b_npages);
 3504                                 printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
 3505                                     (u_long)m->valid, (u_long)m->dirty,
 3506                                     m->wire_count);
 3507                                 panic("biodone: page busy < 0\n");
 3508                         }
 3509                         vm_page_io_finish(m);
 3510                         vm_object_pip_subtract(obj, 1);
 3511                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3512                         iosize -= resid;
 3513                 }
 3514                 vm_object_pip_wakeupn(obj, 0);
 3515                 VM_OBJECT_UNLOCK(obj);
 3516                 if (bogus)
 3517                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3518                             bp->b_pages, bp->b_npages);
 3519         }
 3520 
 3521         /*
 3522          * For asynchronous completions, release the buffer now. The brelse
 3523          * will do a wakeup there if necessary - so no need to do a wakeup
 3524          * here in the async case. The sync case always needs to do a wakeup.
 3525          */
 3526 
 3527         if (bp->b_flags & B_ASYNC) {
 3528                 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
 3529                         brelse(bp);
 3530                 else
 3531                         bqrelse(bp);
 3532         } else
 3533                 bdone(bp);
 3534 }
 3535 
 3536 /*
 3537  * This routine is called in lieu of iodone in the case of
 3538  * incomplete I/O.  This keeps the busy status for pages
 3539  * consistant.
 3540  */
 3541 void
 3542 vfs_unbusy_pages(struct buf *bp)
 3543 {
 3544         int i;
 3545         vm_object_t obj;
 3546         vm_page_t m;
 3547 
 3548         runningbufwakeup(bp);
 3549         if (!(bp->b_flags & B_VMIO))
 3550                 return;
 3551 
 3552         obj = bp->b_bufobj->bo_object;
 3553         VM_OBJECT_LOCK(obj);
 3554         for (i = 0; i < bp->b_npages; i++) {
 3555                 m = bp->b_pages[i];
 3556                 if (m == bogus_page) {
 3557                         m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 3558                         if (!m)
 3559                                 panic("vfs_unbusy_pages: page missing\n");
 3560                         bp->b_pages[i] = m;
 3561                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3562                             bp->b_pages, bp->b_npages);
 3563                 }
 3564                 vm_object_pip_subtract(obj, 1);
 3565                 vm_page_io_finish(m);
 3566         }
 3567         vm_object_pip_wakeupn(obj, 0);
 3568         VM_OBJECT_UNLOCK(obj);
 3569 }
 3570 
 3571 /*
 3572  * vfs_page_set_valid:
 3573  *
 3574  *      Set the valid bits in a page based on the supplied offset.   The
 3575  *      range is restricted to the buffer's size.
 3576  *
 3577  *      This routine is typically called after a read completes.
 3578  */
 3579 static void
 3580 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 3581 {
 3582         vm_ooffset_t eoff;
 3583 
 3584         /*
 3585          * Compute the end offset, eoff, such that [off, eoff) does not span a
 3586          * page boundary and eoff is not greater than the end of the buffer.
 3587          * The end of the buffer, in this case, is our file EOF, not the
 3588          * allocation size of the buffer.
 3589          */
 3590         eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
 3591         if (eoff > bp->b_offset + bp->b_bcount)
 3592                 eoff = bp->b_offset + bp->b_bcount;
 3593 
 3594         /*
 3595          * Set valid range.  This is typically the entire buffer and thus the
 3596          * entire page.
 3597          */
 3598         if (eoff > off)
 3599                 vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
 3600 }
 3601 
 3602 /*
 3603  * vfs_page_set_validclean:
 3604  *
 3605  *      Set the valid bits and clear the dirty bits in a page based on the
 3606  *      supplied offset.   The range is restricted to the buffer's size.
 3607  */
 3608 static void
 3609 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 3610 {
 3611         vm_ooffset_t soff, eoff;
 3612 
 3613         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
 3614         /*
 3615          * Start and end offsets in buffer.  eoff - soff may not cross a
 3616          * page boundry or cross the end of the buffer.  The end of the
 3617          * buffer, in this case, is our file EOF, not the allocation size
 3618          * of the buffer.
 3619          */
 3620         soff = off;
 3621         eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3622         if (eoff > bp->b_offset + bp->b_bcount)
 3623                 eoff = bp->b_offset + bp->b_bcount;
 3624 
 3625         /*
 3626          * Set valid range.  This is typically the entire buffer and thus the
 3627          * entire page.
 3628          */
 3629         if (eoff > soff) {
 3630                 vm_page_set_validclean(
 3631                     m,
 3632                    (vm_offset_t) (soff & PAGE_MASK),
 3633                    (vm_offset_t) (eoff - soff)
 3634                 );
 3635         }
 3636 }
 3637 
 3638 /*
 3639  * Ensure that all buffer pages are not busied by VPO_BUSY flag. If
 3640  * any page is busy, drain the flag.
 3641  */
 3642 static void
 3643 vfs_drain_busy_pages(struct buf *bp)
 3644 {
 3645         vm_page_t m;
 3646         int i, last_busied;
 3647 
 3648         VM_OBJECT_LOCK_ASSERT(bp->b_bufobj->bo_object, MA_OWNED);
 3649         last_busied = 0;
 3650         for (i = 0; i < bp->b_npages; i++) {
 3651                 m = bp->b_pages[i];
 3652                 if ((m->oflags & VPO_BUSY) != 0) {
 3653                         for (; last_busied < i; last_busied++)
 3654                                 vm_page_busy(bp->b_pages[last_busied]);
 3655                         while ((m->oflags & VPO_BUSY) != 0)
 3656                                 vm_page_sleep(m, "vbpage");
 3657                 }
 3658         }
 3659         for (i = 0; i < last_busied; i++)
 3660                 vm_page_wakeup(bp->b_pages[i]);
 3661 }
 3662 
 3663 /*
 3664  * This routine is called before a device strategy routine.
 3665  * It is used to tell the VM system that paging I/O is in
 3666  * progress, and treat the pages associated with the buffer
 3667  * almost as being VPO_BUSY.  Also the object paging_in_progress
 3668  * flag is handled to make sure that the object doesn't become
 3669  * inconsistant.
 3670  *
 3671  * Since I/O has not been initiated yet, certain buffer flags
 3672  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
 3673  * and should be ignored.
 3674  */
 3675 void
 3676 vfs_busy_pages(struct buf *bp, int clear_modify)
 3677 {
 3678         int i, bogus;
 3679         vm_object_t obj;
 3680         vm_ooffset_t foff;
 3681         vm_page_t m;
 3682 
 3683         if (!(bp->b_flags & B_VMIO))
 3684                 return;
 3685 
 3686         obj = bp->b_bufobj->bo_object;
 3687         foff = bp->b_offset;
 3688         KASSERT(bp->b_offset != NOOFFSET,
 3689             ("vfs_busy_pages: no buffer offset"));
 3690         VM_OBJECT_LOCK(obj);
 3691         vfs_drain_busy_pages(bp);
 3692         if (bp->b_bufsize != 0)
 3693                 vfs_setdirty_locked_object(bp);
 3694         bogus = 0;
 3695         if (clear_modify)
 3696                 vm_page_lock_queues();
 3697         for (i = 0; i < bp->b_npages; i++) {
 3698                 m = bp->b_pages[i];
 3699 
 3700                 if ((bp->b_flags & B_CLUSTER) == 0) {
 3701                         vm_object_pip_add(obj, 1);
 3702                         vm_page_io_start(m);
 3703                 }
 3704                 /*
 3705                  * When readying a buffer for a read ( i.e
 3706                  * clear_modify == 0 ), it is important to do
 3707                  * bogus_page replacement for valid pages in 
 3708                  * partially instantiated buffers.  Partially 
 3709                  * instantiated buffers can, in turn, occur when
 3710                  * reconstituting a buffer from its VM backing store
 3711                  * base.  We only have to do this if B_CACHE is
 3712                  * clear ( which causes the I/O to occur in the
 3713                  * first place ).  The replacement prevents the read
 3714                  * I/O from overwriting potentially dirty VM-backed
 3715                  * pages.  XXX bogus page replacement is, uh, bogus.
 3716                  * It may not work properly with small-block devices.
 3717                  * We need to find a better way.
 3718                  */
 3719                 if (clear_modify) {
 3720                         pmap_remove_write(m);
 3721                         vfs_page_set_validclean(bp, foff, m);
 3722                 } else if (m->valid == VM_PAGE_BITS_ALL &&
 3723                     (bp->b_flags & B_CACHE) == 0) {
 3724                         bp->b_pages[i] = bogus_page;
 3725                         bogus++;
 3726                 }
 3727                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3728         }
 3729         if (clear_modify)
 3730                 vm_page_unlock_queues();
 3731         VM_OBJECT_UNLOCK(obj);
 3732         if (bogus)
 3733                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3734                     bp->b_pages, bp->b_npages);
 3735 }
 3736 
 3737 /*
 3738  *      vfs_bio_set_valid:
 3739  *
 3740  *      Set the range within the buffer to valid.  The range is
 3741  *      relative to the beginning of the buffer, b_offset.  Note that
 3742  *      b_offset itself may be offset from the beginning of the first
 3743  *      page.
 3744  */
 3745 void   
 3746 vfs_bio_set_valid(struct buf *bp, int base, int size)
 3747 {
 3748         int i, n;
 3749         vm_page_t m;
 3750 
 3751         if (!(bp->b_flags & B_VMIO))
 3752                 return;
 3753 
 3754         /*
 3755          * Fixup base to be relative to beginning of first page.
 3756          * Set initial n to be the maximum number of bytes in the
 3757          * first page that can be validated.
 3758          */
 3759         base += (bp->b_offset & PAGE_MASK);
 3760         n = PAGE_SIZE - (base & PAGE_MASK);
 3761 
 3762         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3763         for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 3764                 m = bp->b_pages[i];
 3765                 if (n > size)
 3766                         n = size;
 3767                 vm_page_set_valid(m, base & PAGE_MASK, n);
 3768                 base += n;
 3769                 size -= n;
 3770                 n = PAGE_SIZE;
 3771         }
 3772         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3773 }
 3774 
 3775 /*
 3776  *      vfs_bio_clrbuf:
 3777  *
 3778  *      If the specified buffer is a non-VMIO buffer, clear the entire
 3779  *      buffer.  If the specified buffer is a VMIO buffer, clear and
 3780  *      validate only the previously invalid portions of the buffer.
 3781  *      This routine essentially fakes an I/O, so we need to clear
 3782  *      BIO_ERROR and B_INVAL.
 3783  *
 3784  *      Note that while we only theoretically need to clear through b_bcount,
 3785  *      we go ahead and clear through b_bufsize.
 3786  */
 3787 void
 3788 vfs_bio_clrbuf(struct buf *bp) 
 3789 {
 3790         int i, j, mask;
 3791         caddr_t sa, ea;
 3792 
 3793         if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
 3794                 clrbuf(bp);
 3795                 return;
 3796         }
 3797         bp->b_flags &= ~B_INVAL;
 3798         bp->b_ioflags &= ~BIO_ERROR;
 3799         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3800         if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
 3801             (bp->b_offset & PAGE_MASK) == 0) {
 3802                 if (bp->b_pages[0] == bogus_page)
 3803                         goto unlock;
 3804                 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
 3805                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
 3806                 if ((bp->b_pages[0]->valid & mask) == mask)
 3807                         goto unlock;
 3808                 if ((bp->b_pages[0]->valid & mask) == 0) {
 3809                         bzero(bp->b_data, bp->b_bufsize);
 3810                         bp->b_pages[0]->valid |= mask;
 3811                         goto unlock;
 3812                 }
 3813         }
 3814         ea = sa = bp->b_data;
 3815         for(i = 0; i < bp->b_npages; i++, sa = ea) {
 3816                 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
 3817                 ea = (caddr_t)(vm_offset_t)ulmin(
 3818                     (u_long)(vm_offset_t)ea,
 3819                     (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
 3820                 if (bp->b_pages[i] == bogus_page)
 3821                         continue;
 3822                 j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
 3823                 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
 3824                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
 3825                 if ((bp->b_pages[i]->valid & mask) == mask)
 3826                         continue;
 3827                 if ((bp->b_pages[i]->valid & mask) == 0)
 3828                         bzero(sa, ea - sa);
 3829                 else {
 3830                         for (; sa < ea; sa += DEV_BSIZE, j++) {
 3831                                 if ((bp->b_pages[i]->valid & (1 << j)) == 0)
 3832                                         bzero(sa, DEV_BSIZE);
 3833                         }
 3834                 }
 3835                 bp->b_pages[i]->valid |= mask;
 3836         }
 3837 unlock:
 3838         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3839         bp->b_resid = 0;
 3840 }
 3841 
 3842 /*
 3843  * vm_hold_load_pages and vm_hold_free_pages get pages into
 3844  * a buffers address space.  The pages are anonymous and are
 3845  * not associated with a file object.
 3846  */
 3847 static void
 3848 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 3849 {
 3850         vm_offset_t pg;
 3851         vm_page_t p;
 3852         int index;
 3853 
 3854         to = round_page(to);
 3855         from = round_page(from);
 3856         index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3857 
 3858         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3859 tryagain:
 3860                 /*
 3861                  * note: must allocate system pages since blocking here
 3862                  * could interfere with paging I/O, no matter which
 3863                  * process we are.
 3864                  */
 3865                 p = vm_page_alloc(NULL, pg >> PAGE_SHIFT, VM_ALLOC_NOOBJ |
 3866                     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
 3867                 if (!p) {
 3868                         atomic_add_int(&vm_pageout_deficit,
 3869                             (to - pg) >> PAGE_SHIFT);
 3870                         VM_WAIT;
 3871                         goto tryagain;
 3872                 }
 3873                 pmap_qenter(pg, &p, 1);
 3874                 bp->b_pages[index] = p;
 3875         }
 3876         bp->b_npages = index;
 3877 }
 3878 
 3879 /* Return pages associated with this buf to the vm system */
 3880 static void
 3881 vm_hold_free_pages(struct buf *bp, int newbsize)
 3882 {
 3883         vm_offset_t from;
 3884         vm_page_t p;
 3885         int index, newnpages;
 3886 
 3887         from = round_page((vm_offset_t)bp->b_data + newbsize);
 3888         newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3889         if (bp->b_npages > newnpages)
 3890                 pmap_qremove(from, bp->b_npages - newnpages);
 3891         for (index = newnpages; index < bp->b_npages; index++) {
 3892                 p = bp->b_pages[index];
 3893                 bp->b_pages[index] = NULL;
 3894                 if (p->busy != 0)
 3895                         printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
 3896                             (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
 3897                 p->wire_count--;
 3898                 vm_page_free(p);
 3899                 atomic_subtract_int(&cnt.v_wire_count, 1);
 3900         }
 3901         bp->b_npages = newnpages;
 3902 }
 3903 
 3904 /*
 3905  * Map an IO request into kernel virtual address space.
 3906  *
 3907  * All requests are (re)mapped into kernel VA space.
 3908  * Notice that we use b_bufsize for the size of the buffer
 3909  * to be mapped.  b_bcount might be modified by the driver.
 3910  *
 3911  * Note that even if the caller determines that the address space should
 3912  * be valid, a race or a smaller-file mapped into a larger space may
 3913  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
 3914  * check the return value.
 3915  */
 3916 int
 3917 vmapbuf(struct buf *bp)
 3918 {
 3919         caddr_t addr, kva;
 3920         vm_prot_t prot;
 3921         int pidx, i;
 3922         struct vm_page *m;
 3923         struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
 3924 
 3925         if (bp->b_bufsize < 0)
 3926                 return (-1);
 3927         prot = VM_PROT_READ;
 3928         if (bp->b_iocmd == BIO_READ)
 3929                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 3930         for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
 3931              addr < bp->b_data + bp->b_bufsize;
 3932              addr += PAGE_SIZE, pidx++) {
 3933                 /*
 3934                  * Do the vm_fault if needed; do the copy-on-write thing
 3935                  * when reading stuff off device into memory.
 3936                  *
 3937                  * NOTE! Must use pmap_extract() because addr may be in
 3938                  * the userland address space, and kextract is only guarenteed
 3939                  * to work for the kernland address space (see: sparc64 port).
 3940                  */
 3941 retry:
 3942                 if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
 3943                     prot) < 0) {
 3944                         vm_page_lock_queues();
 3945                         for (i = 0; i < pidx; ++i) {
 3946                                 vm_page_unhold(bp->b_pages[i]);
 3947                                 bp->b_pages[i] = NULL;
 3948                         }
 3949                         vm_page_unlock_queues();
 3950                         return(-1);
 3951                 }
 3952                 m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
 3953                 if (m == NULL)
 3954                         goto retry;
 3955                 bp->b_pages[pidx] = m;
 3956         }
 3957         if (pidx > btoc(MAXPHYS))
 3958                 panic("vmapbuf: mapped more than MAXPHYS");
 3959         pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
 3960         
 3961         kva = bp->b_saveaddr;
 3962         bp->b_npages = pidx;
 3963         bp->b_saveaddr = bp->b_data;
 3964         bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
 3965         return(0);
 3966 }
 3967 
 3968 /*
 3969  * Free the io map PTEs associated with this IO operation.
 3970  * We also invalidate the TLB entries and restore the original b_addr.
 3971  */
 3972 void
 3973 vunmapbuf(struct buf *bp)
 3974 {
 3975         int pidx;
 3976         int npages;
 3977 
 3978         npages = bp->b_npages;
 3979         pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
 3980         vm_page_lock_queues();
 3981         for (pidx = 0; pidx < npages; pidx++)
 3982                 vm_page_unhold(bp->b_pages[pidx]);
 3983         vm_page_unlock_queues();
 3984 
 3985         bp->b_data = bp->b_saveaddr;
 3986 }
 3987 
 3988 void
 3989 bdone(struct buf *bp)
 3990 {
 3991         struct mtx *mtxp;
 3992 
 3993         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3994         mtx_lock(mtxp);
 3995         bp->b_flags |= B_DONE;
 3996         wakeup(bp);
 3997         mtx_unlock(mtxp);
 3998 }
 3999 
 4000 void
 4001 bwait(struct buf *bp, u_char pri, const char *wchan)
 4002 {
 4003         struct mtx *mtxp;
 4004 
 4005         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4006         mtx_lock(mtxp);
 4007         while ((bp->b_flags & B_DONE) == 0)
 4008                 msleep(bp, mtxp, pri, wchan, 0);
 4009         mtx_unlock(mtxp);
 4010 }
 4011 
 4012 int
 4013 bufsync(struct bufobj *bo, int waitfor)
 4014 {
 4015 
 4016         return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
 4017 }
 4018 
 4019 void
 4020 bufstrategy(struct bufobj *bo, struct buf *bp)
 4021 {
 4022         int i = 0;
 4023         struct vnode *vp;
 4024 
 4025         vp = bp->b_vp;
 4026         KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
 4027         KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
 4028             ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
 4029         i = VOP_STRATEGY(vp, bp);
 4030         KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
 4031 }
 4032 
 4033 void
 4034 bufobj_wrefl(struct bufobj *bo)
 4035 {
 4036 
 4037         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 4038         ASSERT_BO_LOCKED(bo);
 4039         bo->bo_numoutput++;
 4040 }
 4041 
 4042 void
 4043 bufobj_wref(struct bufobj *bo)
 4044 {
 4045 
 4046         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 4047         BO_LOCK(bo);
 4048         bo->bo_numoutput++;
 4049         BO_UNLOCK(bo);
 4050 }
 4051 
 4052 void
 4053 bufobj_wdrop(struct bufobj *bo)
 4054 {
 4055 
 4056         KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
 4057         BO_LOCK(bo);
 4058         KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
 4059         if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
 4060                 bo->bo_flag &= ~BO_WWAIT;
 4061                 wakeup(&bo->bo_numoutput);
 4062         }
 4063         BO_UNLOCK(bo);
 4064 }
 4065 
 4066 int
 4067 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
 4068 {
 4069         int error;
 4070 
 4071         KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
 4072         ASSERT_BO_LOCKED(bo);
 4073         error = 0;
 4074         while (bo->bo_numoutput) {
 4075                 bo->bo_flag |= BO_WWAIT;
 4076                 error = msleep(&bo->bo_numoutput, BO_MTX(bo),
 4077                     slpflag | (PRIBIO + 1), "bo_wwait", timeo);
 4078                 if (error)
 4079                         break;
 4080         }
 4081         return (error);
 4082 }
 4083 
 4084 void
 4085 bpin(struct buf *bp)
 4086 {
 4087         struct mtx *mtxp;
 4088 
 4089         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4090         mtx_lock(mtxp);
 4091         bp->b_pin_count++;
 4092         mtx_unlock(mtxp);
 4093 }
 4094 
 4095 void
 4096 bunpin(struct buf *bp)
 4097 {
 4098         struct mtx *mtxp;
 4099 
 4100         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4101         mtx_lock(mtxp);
 4102         if (--bp->b_pin_count == 0)
 4103                 wakeup(bp);
 4104         mtx_unlock(mtxp);
 4105 }
 4106 
 4107 void
 4108 bunpin_wait(struct buf *bp)
 4109 {
 4110         struct mtx *mtxp;
 4111 
 4112         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4113         mtx_lock(mtxp);
 4114         while (bp->b_pin_count > 0)
 4115                 msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
 4116         mtx_unlock(mtxp);
 4117 }
 4118 
 4119 #include "opt_ddb.h"
 4120 #ifdef DDB
 4121 #include <ddb/ddb.h>
 4122 
 4123 /* DDB command to show buffer data */
 4124 DB_SHOW_COMMAND(buffer, db_show_buffer)
 4125 {
 4126         /* get args */
 4127         struct buf *bp = (struct buf *)addr;
 4128 
 4129         if (!have_addr) {
 4130                 db_printf("usage: show buffer <addr>\n");
 4131                 return;
 4132         }
 4133 
 4134         db_printf("buf at %p\n", bp);
 4135         db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
 4136         db_printf(
 4137             "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 4138             "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
 4139             bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 4140             bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
 4141             bp->b_dep.lh_first);
 4142         if (bp->b_npages) {
 4143                 int i;
 4144                 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 4145                 for (i = 0; i < bp->b_npages; i++) {
 4146                         vm_page_t m;
 4147                         m = bp->b_pages[i];
 4148                         db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
 4149                             (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
 4150                         if ((i + 1) < bp->b_npages)
 4151                                 db_printf(",");
 4152                 }
 4153                 db_printf("\n");
 4154         }
 4155         db_printf(" ");
 4156         BUF_LOCKPRINTINFO(bp);
 4157 }
 4158 
 4159 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
 4160 {
 4161         struct buf *bp;
 4162         int i;
 4163 
 4164         for (i = 0; i < nbuf; i++) {
 4165                 bp = &buf[i];
 4166                 if (BUF_ISLOCKED(bp)) {
 4167                         db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4168                         db_printf("\n");
 4169                 }
 4170         }
 4171 }
 4172 
 4173 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
 4174 {
 4175         struct vnode *vp;
 4176         struct buf *bp;
 4177 
 4178         if (!have_addr) {
 4179                 db_printf("usage: show vnodebufs <addr>\n");
 4180                 return;
 4181         }
 4182         vp = (struct vnode *)addr;
 4183         db_printf("Clean buffers:\n");
 4184         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
 4185                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4186                 db_printf("\n");
 4187         }
 4188         db_printf("Dirty buffers:\n");
 4189         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
 4190                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4191                 db_printf("\n");
 4192         }
 4193 }
 4194 
 4195 DB_COMMAND(countfreebufs, db_coundfreebufs)
 4196 {
 4197         struct buf *bp;
 4198         int i, used = 0, nfree = 0;
 4199 
 4200         if (have_addr) {
 4201                 db_printf("usage: countfreebufs\n");
 4202                 return;
 4203         }
 4204 
 4205         for (i = 0; i < nbuf; i++) {
 4206                 bp = &buf[i];
 4207                 if ((bp->b_vflags & BV_INFREECNT) != 0)
 4208                         nfree++;
 4209                 else
 4210                         used++;
 4211         }
 4212 
 4213         db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
 4214             nfree + used);
 4215         db_printf("numfreebuffers is %d\n", numfreebuffers);
 4216 }
 4217 #endif /* DDB */

Cache object: d4163623c53f8c757c6bf799f3465981


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.