The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Poul-Henning Kamp
    3  * Copyright (c) 1994,1997 John S. Dyson
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * this file contains a new buffer I/O scheme implementing a coherent
   30  * VM object and buffer cache scheme.  Pains have been taken to make
   31  * sure that the performance degradation associated with schemes such
   32  * as this is not realized.
   33  *
   34  * Author:  John S. Dyson
   35  * Significant help during the development and debugging phases
   36  * had been provided by David Greenman, also of the FreeBSD core team.
   37  *
   38  * see man buf(9) for more info.
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/9.1/sys/kern/vfs_bio.c 237949 2012-07-02 03:49:52Z alc $");
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/bio.h>
   47 #include <sys/conf.h>
   48 #include <sys/buf.h>
   49 #include <sys/devicestat.h>
   50 #include <sys/eventhandler.h>
   51 #include <sys/fail.h>
   52 #include <sys/limits.h>
   53 #include <sys/lock.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mount.h>
   56 #include <sys/mutex.h>
   57 #include <sys/kernel.h>
   58 #include <sys/kthread.h>
   59 #include <sys/proc.h>
   60 #include <sys/resourcevar.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/vmmeter.h>
   63 #include <sys/vnode.h>
   64 #include <geom/geom.h>
   65 #include <vm/vm.h>
   66 #include <vm/vm_param.h>
   67 #include <vm/vm_kern.h>
   68 #include <vm/vm_pageout.h>
   69 #include <vm/vm_page.h>
   70 #include <vm/vm_object.h>
   71 #include <vm/vm_extern.h>
   72 #include <vm/vm_map.h>
   73 #include "opt_compat.h"
   74 #include "opt_directio.h"
   75 #include "opt_swap.h"
   76 
   77 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
   78 
   79 struct  bio_ops bioops;         /* I/O operation notification */
   80 
   81 struct  buf_ops buf_ops_bio = {
   82         .bop_name       =       "buf_ops_bio",
   83         .bop_write      =       bufwrite,
   84         .bop_strategy   =       bufstrategy,
   85         .bop_sync       =       bufsync,
   86         .bop_bdflush    =       bufbdflush,
   87 };
   88 
   89 /*
   90  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
   91  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
   92  */
   93 struct buf *buf;                /* buffer header pool */
   94 
   95 static struct proc *bufdaemonproc;
   96 
   97 static int inmem(struct vnode *vp, daddr_t blkno);
   98 static void vm_hold_free_pages(struct buf *bp, int newbsize);
   99 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
  100                 vm_offset_t to);
  101 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
  102 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
  103                 vm_page_t m);
  104 static void vfs_drain_busy_pages(struct buf *bp);
  105 static void vfs_clean_pages_dirty_buf(struct buf *bp);
  106 static void vfs_setdirty_locked_object(struct buf *bp);
  107 static void vfs_vmio_release(struct buf *bp);
  108 static int vfs_bio_clcheck(struct vnode *vp, int size,
  109                 daddr_t lblkno, daddr_t blkno);
  110 static int buf_do_flush(struct vnode *vp);
  111 static int flushbufqueues(struct vnode *, int, int);
  112 static void buf_daemon(void);
  113 static void bremfreel(struct buf *bp);
  114 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  115     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  116 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
  117 #endif
  118 
  119 int vmiodirenable = TRUE;
  120 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
  121     "Use the VM system for directory writes");
  122 long runningbufspace;
  123 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
  124     "Amount of presently outstanding async buffer io");
  125 static long bufspace;
  126 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  127     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  128 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
  129     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
  130 #else
  131 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
  132     "Virtual memory used for buffers");
  133 #endif
  134 static long maxbufspace;
  135 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
  136     "Maximum allowed value of bufspace (including buf_daemon)");
  137 static long bufmallocspace;
  138 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
  139     "Amount of malloced memory for buffers");
  140 static long maxbufmallocspace;
  141 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
  142     "Maximum amount of malloced memory for buffers");
  143 static long lobufspace;
  144 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
  145     "Minimum amount of buffers we want to have");
  146 long hibufspace;
  147 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
  148     "Maximum allowed value of bufspace (excluding buf_daemon)");
  149 static int bufreusecnt;
  150 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
  151     "Number of times we have reused a buffer");
  152 static int buffreekvacnt;
  153 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
  154     "Number of times we have freed the KVA space from some buffer");
  155 static int bufdefragcnt;
  156 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
  157     "Number of times we have had to repeat buffer allocation to defragment");
  158 static long lorunningspace;
  159 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
  160     "Minimum preferred space used for in-progress I/O");
  161 static long hirunningspace;
  162 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
  163     "Maximum amount of space to use for in-progress I/O");
  164 int dirtybufferflushes;
  165 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
  166     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
  167 int bdwriteskip;
  168 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
  169     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
  170 int altbufferflushes;
  171 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
  172     0, "Number of fsync flushes to limit dirty buffers");
  173 static int recursiveflushes;
  174 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
  175     0, "Number of flushes skipped due to being recursive");
  176 static int numdirtybuffers;
  177 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
  178     "Number of buffers that are dirty (has unwritten changes) at the moment");
  179 static int lodirtybuffers;
  180 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
  181     "How many buffers we want to have free before bufdaemon can sleep");
  182 static int hidirtybuffers;
  183 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
  184     "When the number of dirty buffers is considered severe");
  185 int dirtybufthresh;
  186 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
  187     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
  188 static int numfreebuffers;
  189 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
  190     "Number of free buffers");
  191 static int lofreebuffers;
  192 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
  193    "XXX Unused");
  194 static int hifreebuffers;
  195 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
  196    "XXX Complicatedly unused");
  197 static int getnewbufcalls;
  198 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
  199    "Number of calls to getnewbuf");
  200 static int getnewbufrestarts;
  201 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
  202     "Number of times getnewbuf has had to restart a buffer aquisition");
  203 static int flushbufqtarget = 100;
  204 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
  205     "Amount of work to do in flushbufqueues when helping bufdaemon");
  206 static long notbufdflashes;
  207 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
  208     "Number of dirty buffer flushes done by the bufdaemon helpers");
  209 
  210 /*
  211  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  212  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  213  * is idling.
  214  */
  215 static int bd_request;
  216 
  217 /*
  218  * Request for the buf daemon to write more buffers than is indicated by
  219  * lodirtybuf.  This may be necessary to push out excess dependencies or
  220  * defragment the address space where a simple count of the number of dirty
  221  * buffers is insufficient to characterize the demand for flushing them.
  222  */
  223 static int bd_speedupreq;
  224 
  225 /*
  226  * This lock synchronizes access to bd_request.
  227  */
  228 static struct mtx bdlock;
  229 
  230 /*
  231  * bogus page -- for I/O to/from partially complete buffers
  232  * this is a temporary solution to the problem, but it is not
  233  * really that bad.  it would be better to split the buffer
  234  * for input in the case of buffers partially already in memory,
  235  * but the code is intricate enough already.
  236  */
  237 vm_page_t bogus_page;
  238 
  239 /*
  240  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  241  * Set when wait starts, cleared prior to wakeup().
  242  * Used in runningbufwakeup() and waitrunningbufspace().
  243  */
  244 static int runningbufreq;
  245 
  246 /*
  247  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  248  * waitrunningbufspace().
  249  */
  250 static struct mtx rbreqlock;
  251 
  252 /* 
  253  * Synchronization (sleep/wakeup) variable for buffer requests.
  254  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
  255  * by and/or.
  256  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
  257  * getnewbuf(), and getblk().
  258  */
  259 static int needsbuffer;
  260 
  261 /*
  262  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
  263  */
  264 static struct mtx nblock;
  265 
  266 /*
  267  * Definitions for the buffer free lists.
  268  */
  269 #define BUFFER_QUEUES   6       /* number of free buffer queues */
  270 
  271 #define QUEUE_NONE      0       /* on no queue */
  272 #define QUEUE_CLEAN     1       /* non-B_DELWRI buffers */
  273 #define QUEUE_DIRTY     2       /* B_DELWRI buffers */
  274 #define QUEUE_DIRTY_GIANT 3     /* B_DELWRI buffers that need giant */
  275 #define QUEUE_EMPTYKVA  4       /* empty buffer headers w/KVA assignment */
  276 #define QUEUE_EMPTY     5       /* empty buffer headers */
  277 #define QUEUE_SENTINEL  1024    /* not an queue index, but mark for sentinel */
  278 
  279 /* Queues for free buffers with various properties */
  280 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
  281 
  282 /* Lock for the bufqueues */
  283 static struct mtx bqlock;
  284 
  285 /*
  286  * Single global constant for BUF_WMESG, to avoid getting multiple references.
  287  * buf_wmesg is referred from macros.
  288  */
  289 const char *buf_wmesg = BUF_WMESG;
  290 
  291 #define VFS_BIO_NEED_ANY        0x01    /* any freeable buffer */
  292 #define VFS_BIO_NEED_DIRTYFLUSH 0x02    /* waiting for dirty buffer flush */
  293 #define VFS_BIO_NEED_FREE       0x04    /* wait for free bufs, hi hysteresis */
  294 #define VFS_BIO_NEED_BUFSPACE   0x08    /* wait for buf space, lo hysteresis */
  295 
  296 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  297     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  298 static int
  299 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
  300 {
  301         long lvalue;
  302         int ivalue;
  303 
  304         if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
  305                 return (sysctl_handle_long(oidp, arg1, arg2, req));
  306         lvalue = *(long *)arg1;
  307         if (lvalue > INT_MAX)
  308                 /* On overflow, still write out a long to trigger ENOMEM. */
  309                 return (sysctl_handle_long(oidp, &lvalue, 0, req));
  310         ivalue = lvalue;
  311         return (sysctl_handle_int(oidp, &ivalue, 0, req));
  312 }
  313 #endif
  314 
  315 #ifdef DIRECTIO
  316 extern void ffs_rawread_setup(void);
  317 #endif /* DIRECTIO */
  318 /*
  319  *      numdirtywakeup:
  320  *
  321  *      If someone is blocked due to there being too many dirty buffers,
  322  *      and numdirtybuffers is now reasonable, wake them up.
  323  */
  324 
  325 static __inline void
  326 numdirtywakeup(int level)
  327 {
  328 
  329         if (numdirtybuffers <= level) {
  330                 mtx_lock(&nblock);
  331                 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
  332                         needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
  333                         wakeup(&needsbuffer);
  334                 }
  335                 mtx_unlock(&nblock);
  336         }
  337 }
  338 
  339 /*
  340  *      bufspacewakeup:
  341  *
  342  *      Called when buffer space is potentially available for recovery.
  343  *      getnewbuf() will block on this flag when it is unable to free 
  344  *      sufficient buffer space.  Buffer space becomes recoverable when 
  345  *      bp's get placed back in the queues.
  346  */
  347 
  348 static __inline void
  349 bufspacewakeup(void)
  350 {
  351 
  352         /*
  353          * If someone is waiting for BUF space, wake them up.  Even
  354          * though we haven't freed the kva space yet, the waiting
  355          * process will be able to now.
  356          */
  357         mtx_lock(&nblock);
  358         if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
  359                 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
  360                 wakeup(&needsbuffer);
  361         }
  362         mtx_unlock(&nblock);
  363 }
  364 
  365 /*
  366  * runningbufwakeup() - in-progress I/O accounting.
  367  *
  368  */
  369 void
  370 runningbufwakeup(struct buf *bp)
  371 {
  372 
  373         if (bp->b_runningbufspace) {
  374                 atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
  375                 bp->b_runningbufspace = 0;
  376                 mtx_lock(&rbreqlock);
  377                 if (runningbufreq && runningbufspace <= lorunningspace) {
  378                         runningbufreq = 0;
  379                         wakeup(&runningbufreq);
  380                 }
  381                 mtx_unlock(&rbreqlock);
  382         }
  383 }
  384 
  385 /*
  386  *      bufcountwakeup:
  387  *
  388  *      Called when a buffer has been added to one of the free queues to
  389  *      account for the buffer and to wakeup anyone waiting for free buffers.
  390  *      This typically occurs when large amounts of metadata are being handled
  391  *      by the buffer cache ( else buffer space runs out first, usually ).
  392  */
  393 
  394 static __inline void
  395 bufcountwakeup(struct buf *bp) 
  396 {
  397         int old;
  398 
  399         KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
  400             ("buf %p already counted as free", bp));
  401         if (bp->b_bufobj != NULL)
  402                 mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
  403         bp->b_vflags |= BV_INFREECNT;
  404         old = atomic_fetchadd_int(&numfreebuffers, 1);
  405         KASSERT(old >= 0 && old < nbuf,
  406             ("numfreebuffers climbed to %d", old + 1));
  407         mtx_lock(&nblock);
  408         if (needsbuffer) {
  409                 needsbuffer &= ~VFS_BIO_NEED_ANY;
  410                 if (numfreebuffers >= hifreebuffers)
  411                         needsbuffer &= ~VFS_BIO_NEED_FREE;
  412                 wakeup(&needsbuffer);
  413         }
  414         mtx_unlock(&nblock);
  415 }
  416 
  417 /*
  418  *      waitrunningbufspace()
  419  *
  420  *      runningbufspace is a measure of the amount of I/O currently
  421  *      running.  This routine is used in async-write situations to
  422  *      prevent creating huge backups of pending writes to a device.
  423  *      Only asynchronous writes are governed by this function.
  424  *
  425  *      Reads will adjust runningbufspace, but will not block based on it.
  426  *      The read load has a side effect of reducing the allowed write load.
  427  *
  428  *      This does NOT turn an async write into a sync write.  It waits  
  429  *      for earlier writes to complete and generally returns before the
  430  *      caller's write has reached the device.
  431  */
  432 void
  433 waitrunningbufspace(void)
  434 {
  435 
  436         mtx_lock(&rbreqlock);
  437         while (runningbufspace > hirunningspace) {
  438                 ++runningbufreq;
  439                 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
  440         }
  441         mtx_unlock(&rbreqlock);
  442 }
  443 
  444 
  445 /*
  446  *      vfs_buf_test_cache:
  447  *
  448  *      Called when a buffer is extended.  This function clears the B_CACHE
  449  *      bit if the newly extended portion of the buffer does not contain
  450  *      valid data.
  451  */
  452 static __inline
  453 void
  454 vfs_buf_test_cache(struct buf *bp,
  455                   vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
  456                   vm_page_t m)
  457 {
  458 
  459         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  460         if (bp->b_flags & B_CACHE) {
  461                 int base = (foff + off) & PAGE_MASK;
  462                 if (vm_page_is_valid(m, base, size) == 0)
  463                         bp->b_flags &= ~B_CACHE;
  464         }
  465 }
  466 
  467 /* Wake up the buffer daemon if necessary */
  468 static __inline
  469 void
  470 bd_wakeup(int dirtybuflevel)
  471 {
  472 
  473         mtx_lock(&bdlock);
  474         if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
  475                 bd_request = 1;
  476                 wakeup(&bd_request);
  477         }
  478         mtx_unlock(&bdlock);
  479 }
  480 
  481 /*
  482  * bd_speedup - speedup the buffer cache flushing code
  483  */
  484 
  485 void
  486 bd_speedup(void)
  487 {
  488         int needwake;
  489 
  490         mtx_lock(&bdlock);
  491         needwake = 0;
  492         if (bd_speedupreq == 0 || bd_request == 0)
  493                 needwake = 1;
  494         bd_speedupreq = 1;
  495         bd_request = 1;
  496         if (needwake)
  497                 wakeup(&bd_request);
  498         mtx_unlock(&bdlock);
  499 }
  500 
  501 /*
  502  * Calculating buffer cache scaling values and reserve space for buffer
  503  * headers.  This is called during low level kernel initialization and
  504  * may be called more then once.  We CANNOT write to the memory area
  505  * being reserved at this time.
  506  */
  507 caddr_t
  508 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
  509 {
  510         int tuned_nbuf;
  511         long maxbuf;
  512 
  513         /*
  514          * physmem_est is in pages.  Convert it to kilobytes (assumes
  515          * PAGE_SIZE is >= 1K)
  516          */
  517         physmem_est = physmem_est * (PAGE_SIZE / 1024);
  518 
  519         /*
  520          * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
  521          * For the first 64MB of ram nominally allocate sufficient buffers to
  522          * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
  523          * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
  524          * the buffer cache we limit the eventual kva reservation to
  525          * maxbcache bytes.
  526          *
  527          * factor represents the 1/4 x ram conversion.
  528          */
  529         if (nbuf == 0) {
  530                 int factor = 4 * BKVASIZE / 1024;
  531 
  532                 nbuf = 50;
  533                 if (physmem_est > 4096)
  534                         nbuf += min((physmem_est - 4096) / factor,
  535                             65536 / factor);
  536                 if (physmem_est > 65536)
  537                         nbuf += (physmem_est - 65536) * 2 / (factor * 5);
  538 
  539                 if (maxbcache && nbuf > maxbcache / BKVASIZE)
  540                         nbuf = maxbcache / BKVASIZE;
  541                 tuned_nbuf = 1;
  542         } else
  543                 tuned_nbuf = 0;
  544 
  545         /* XXX Avoid unsigned long overflows later on with maxbufspace. */
  546         maxbuf = (LONG_MAX / 3) / BKVASIZE;
  547         if (nbuf > maxbuf) {
  548                 if (!tuned_nbuf)
  549                         printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
  550                             maxbuf);
  551                 nbuf = maxbuf;
  552         }
  553 
  554         /*
  555          * swbufs are used as temporary holders for I/O, such as paging I/O.
  556          * We have no less then 16 and no more then 256.
  557          */
  558         nswbuf = max(min(nbuf/4, 256), 16);
  559 #ifdef NSWBUF_MIN
  560         if (nswbuf < NSWBUF_MIN)
  561                 nswbuf = NSWBUF_MIN;
  562 #endif
  563 #ifdef DIRECTIO
  564         ffs_rawread_setup();
  565 #endif
  566 
  567         /*
  568          * Reserve space for the buffer cache buffers
  569          */
  570         swbuf = (void *)v;
  571         v = (caddr_t)(swbuf + nswbuf);
  572         buf = (void *)v;
  573         v = (caddr_t)(buf + nbuf);
  574 
  575         return(v);
  576 }
  577 
  578 /* Initialize the buffer subsystem.  Called before use of any buffers. */
  579 void
  580 bufinit(void)
  581 {
  582         struct buf *bp;
  583         int i;
  584 
  585         mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
  586         mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
  587         mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
  588         mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
  589 
  590         /* next, make a null set of free lists */
  591         for (i = 0; i < BUFFER_QUEUES; i++)
  592                 TAILQ_INIT(&bufqueues[i]);
  593 
  594         /* finally, initialize each buffer header and stick on empty q */
  595         for (i = 0; i < nbuf; i++) {
  596                 bp = &buf[i];
  597                 bzero(bp, sizeof *bp);
  598                 bp->b_flags = B_INVAL;  /* we're just an empty header */
  599                 bp->b_rcred = NOCRED;
  600                 bp->b_wcred = NOCRED;
  601                 bp->b_qindex = QUEUE_EMPTY;
  602                 bp->b_vflags = BV_INFREECNT;    /* buf is counted as free */
  603                 bp->b_xflags = 0;
  604                 LIST_INIT(&bp->b_dep);
  605                 BUF_LOCKINIT(bp);
  606                 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
  607         }
  608 
  609         /*
  610          * maxbufspace is the absolute maximum amount of buffer space we are 
  611          * allowed to reserve in KVM and in real terms.  The absolute maximum
  612          * is nominally used by buf_daemon.  hibufspace is the nominal maximum
  613          * used by most other processes.  The differential is required to 
  614          * ensure that buf_daemon is able to run when other processes might 
  615          * be blocked waiting for buffer space.
  616          *
  617          * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
  618          * this may result in KVM fragmentation which is not handled optimally
  619          * by the system.
  620          */
  621         maxbufspace = (long)nbuf * BKVASIZE;
  622         hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
  623         lobufspace = hibufspace - MAXBSIZE;
  624 
  625         /*
  626          * Note: The 16 MiB upper limit for hirunningspace was chosen
  627          * arbitrarily and may need further tuning. It corresponds to
  628          * 128 outstanding write IO requests (if IO size is 128 KiB),
  629          * which fits with many RAID controllers' tagged queuing limits.
  630          * The lower 1 MiB limit is the historical upper limit for
  631          * hirunningspace.
  632          */
  633         hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
  634             16 * 1024 * 1024), 1024 * 1024);
  635         lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE);
  636 
  637 /*
  638  * Limit the amount of malloc memory since it is wired permanently into
  639  * the kernel space.  Even though this is accounted for in the buffer
  640  * allocation, we don't want the malloced region to grow uncontrolled.
  641  * The malloc scheme improves memory utilization significantly on average
  642  * (small) directories.
  643  */
  644         maxbufmallocspace = hibufspace / 20;
  645 
  646 /*
  647  * Reduce the chance of a deadlock occuring by limiting the number
  648  * of delayed-write dirty buffers we allow to stack up.
  649  */
  650         hidirtybuffers = nbuf / 4 + 20;
  651         dirtybufthresh = hidirtybuffers * 9 / 10;
  652         numdirtybuffers = 0;
  653 /*
  654  * To support extreme low-memory systems, make sure hidirtybuffers cannot
  655  * eat up all available buffer space.  This occurs when our minimum cannot
  656  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
  657  * BKVASIZE'd buffers.
  658  */
  659         while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
  660                 hidirtybuffers >>= 1;
  661         }
  662         lodirtybuffers = hidirtybuffers / 2;
  663 
  664 /*
  665  * Try to keep the number of free buffers in the specified range,
  666  * and give special processes (e.g. like buf_daemon) access to an 
  667  * emergency reserve.
  668  */
  669         lofreebuffers = nbuf / 18 + 5;
  670         hifreebuffers = 2 * lofreebuffers;
  671         numfreebuffers = nbuf;
  672 
  673         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
  674             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
  675 }
  676 
  677 /*
  678  * bfreekva() - free the kva allocation for a buffer.
  679  *
  680  *      Since this call frees up buffer space, we call bufspacewakeup().
  681  */
  682 static void
  683 bfreekva(struct buf *bp)
  684 {
  685 
  686         if (bp->b_kvasize) {
  687                 atomic_add_int(&buffreekvacnt, 1);
  688                 atomic_subtract_long(&bufspace, bp->b_kvasize);
  689                 vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
  690                     (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
  691                 bp->b_kvasize = 0;
  692                 bufspacewakeup();
  693         }
  694 }
  695 
  696 /*
  697  *      bremfree:
  698  *
  699  *      Mark the buffer for removal from the appropriate free list in brelse.
  700  *      
  701  */
  702 void
  703 bremfree(struct buf *bp)
  704 {
  705         int old;
  706 
  707         CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  708         KASSERT((bp->b_flags & B_REMFREE) == 0,
  709             ("bremfree: buffer %p already marked for delayed removal.", bp));
  710         KASSERT(bp->b_qindex != QUEUE_NONE,
  711             ("bremfree: buffer %p not on a queue.", bp));
  712         BUF_ASSERT_HELD(bp);
  713 
  714         bp->b_flags |= B_REMFREE;
  715         /* Fixup numfreebuffers count.  */
  716         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
  717                 KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
  718                     ("buf %p not counted in numfreebuffers", bp));
  719                 if (bp->b_bufobj != NULL)
  720                         mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
  721                 bp->b_vflags &= ~BV_INFREECNT;
  722                 old = atomic_fetchadd_int(&numfreebuffers, -1);
  723                 KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
  724         }
  725 }
  726 
  727 /*
  728  *      bremfreef:
  729  *
  730  *      Force an immediate removal from a free list.  Used only in nfs when
  731  *      it abuses the b_freelist pointer.
  732  */
  733 void
  734 bremfreef(struct buf *bp)
  735 {
  736         mtx_lock(&bqlock);
  737         bremfreel(bp);
  738         mtx_unlock(&bqlock);
  739 }
  740 
  741 /*
  742  *      bremfreel:
  743  *
  744  *      Removes a buffer from the free list, must be called with the
  745  *      bqlock held.
  746  */
  747 static void
  748 bremfreel(struct buf *bp)
  749 {
  750         int old;
  751 
  752         CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
  753             bp, bp->b_vp, bp->b_flags);
  754         KASSERT(bp->b_qindex != QUEUE_NONE,
  755             ("bremfreel: buffer %p not on a queue.", bp));
  756         BUF_ASSERT_HELD(bp);
  757         mtx_assert(&bqlock, MA_OWNED);
  758 
  759         TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
  760         bp->b_qindex = QUEUE_NONE;
  761         /*
  762          * If this was a delayed bremfree() we only need to remove the buffer
  763          * from the queue and return the stats are already done.
  764          */
  765         if (bp->b_flags & B_REMFREE) {
  766                 bp->b_flags &= ~B_REMFREE;
  767                 return;
  768         }
  769         /*
  770          * Fixup numfreebuffers count.  If the buffer is invalid or not
  771          * delayed-write, the buffer was free and we must decrement
  772          * numfreebuffers.
  773          */
  774         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
  775                 KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
  776                     ("buf %p not counted in numfreebuffers", bp));
  777                 if (bp->b_bufobj != NULL)
  778                         mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
  779                 bp->b_vflags &= ~BV_INFREECNT;
  780                 old = atomic_fetchadd_int(&numfreebuffers, -1);
  781                 KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
  782         }
  783 }
  784 
  785 /*
  786  * Get a buffer with the specified data.
  787  */
  788 int
  789 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
  790     struct buf **bpp)
  791 {
  792 
  793         return (breadn_flags(vp, blkno, size, 0, 0, 0, cred, 0, bpp));
  794 }
  795 
  796 /*
  797  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
  798  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
  799  * the buffer is valid and we do not have to do anything.
  800  */
  801 void
  802 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
  803     int cnt, struct ucred * cred)
  804 {
  805         struct buf *rabp;
  806         int i;
  807 
  808         for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
  809                 if (inmem(vp, *rablkno))
  810                         continue;
  811                 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
  812 
  813                 if ((rabp->b_flags & B_CACHE) == 0) {
  814                         if (!TD_IS_IDLETHREAD(curthread))
  815                                 curthread->td_ru.ru_inblock++;
  816                         rabp->b_flags |= B_ASYNC;
  817                         rabp->b_flags &= ~B_INVAL;
  818                         rabp->b_ioflags &= ~BIO_ERROR;
  819                         rabp->b_iocmd = BIO_READ;
  820                         if (rabp->b_rcred == NOCRED && cred != NOCRED)
  821                                 rabp->b_rcred = crhold(cred);
  822                         vfs_busy_pages(rabp, 0);
  823                         BUF_KERNPROC(rabp);
  824                         rabp->b_iooffset = dbtob(rabp->b_blkno);
  825                         bstrategy(rabp);
  826                 } else {
  827                         brelse(rabp);
  828                 }
  829         }
  830 }
  831 
  832 /*
  833  * Operates like bread, but also starts asynchronous I/O on
  834  * read-ahead blocks.
  835  */
  836 int
  837 breadn(struct vnode * vp, daddr_t blkno, int size,
  838     daddr_t * rablkno, int *rabsize,
  839     int cnt, struct ucred * cred, struct buf **bpp)
  840 {
  841 
  842         return (breadn_flags(vp, blkno, size, rablkno, rabsize, cnt,
  843                     cred, 0, bpp));
  844 }
  845 
  846 /*
  847  * Entry point for bread() and breadn().
  848  *
  849  * Get a buffer with the specified data.  Look in the cache first.  We
  850  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
  851  * is set, the buffer is valid and we do not have to do anything, see
  852  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
  853  */
  854 int
  855 breadn_flags(struct vnode * vp, daddr_t blkno, int size,
  856     daddr_t * rablkno, int *rabsize, int cnt,
  857     struct ucred * cred, int flags, struct buf **bpp)
  858 {
  859         struct buf *bp;
  860         int rv = 0, readwait = 0;
  861 
  862         CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
  863         /*
  864          * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
  865          */
  866         *bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
  867         if (bp == NULL)
  868                 return (EBUSY);
  869 
  870         /* if not found in cache, do some I/O */
  871         if ((bp->b_flags & B_CACHE) == 0) {
  872                 if (!TD_IS_IDLETHREAD(curthread))
  873                         curthread->td_ru.ru_inblock++;
  874                 bp->b_iocmd = BIO_READ;
  875                 bp->b_flags &= ~B_INVAL;
  876                 bp->b_ioflags &= ~BIO_ERROR;
  877                 if (bp->b_rcred == NOCRED && cred != NOCRED)
  878                         bp->b_rcred = crhold(cred);
  879                 vfs_busy_pages(bp, 0);
  880                 bp->b_iooffset = dbtob(bp->b_blkno);
  881                 bstrategy(bp);
  882                 ++readwait;
  883         }
  884 
  885         breada(vp, rablkno, rabsize, cnt, cred);
  886 
  887         if (readwait) {
  888                 rv = bufwait(bp);
  889         }
  890         return (rv);
  891 }
  892 
  893 /*
  894  * Write, release buffer on completion.  (Done by iodone
  895  * if async).  Do not bother writing anything if the buffer
  896  * is invalid.
  897  *
  898  * Note that we set B_CACHE here, indicating that buffer is
  899  * fully valid and thus cacheable.  This is true even of NFS
  900  * now so we set it generally.  This could be set either here 
  901  * or in biodone() since the I/O is synchronous.  We put it
  902  * here.
  903  */
  904 int
  905 bufwrite(struct buf *bp)
  906 {
  907         int oldflags;
  908         struct vnode *vp;
  909         int vp_md;
  910 
  911         CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  912         if (bp->b_flags & B_INVAL) {
  913                 brelse(bp);
  914                 return (0);
  915         }
  916 
  917         oldflags = bp->b_flags;
  918 
  919         BUF_ASSERT_HELD(bp);
  920 
  921         if (bp->b_pin_count > 0)
  922                 bunpin_wait(bp);
  923 
  924         KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
  925             ("FFS background buffer should not get here %p", bp));
  926 
  927         vp = bp->b_vp;
  928         if (vp)
  929                 vp_md = vp->v_vflag & VV_MD;
  930         else
  931                 vp_md = 0;
  932 
  933         /* Mark the buffer clean */
  934         bundirty(bp);
  935 
  936         bp->b_flags &= ~B_DONE;
  937         bp->b_ioflags &= ~BIO_ERROR;
  938         bp->b_flags |= B_CACHE;
  939         bp->b_iocmd = BIO_WRITE;
  940 
  941         bufobj_wref(bp->b_bufobj);
  942         vfs_busy_pages(bp, 1);
  943 
  944         /*
  945          * Normal bwrites pipeline writes
  946          */
  947         bp->b_runningbufspace = bp->b_bufsize;
  948         atomic_add_long(&runningbufspace, bp->b_runningbufspace);
  949 
  950         if (!TD_IS_IDLETHREAD(curthread))
  951                 curthread->td_ru.ru_oublock++;
  952         if (oldflags & B_ASYNC)
  953                 BUF_KERNPROC(bp);
  954         bp->b_iooffset = dbtob(bp->b_blkno);
  955         bstrategy(bp);
  956 
  957         if ((oldflags & B_ASYNC) == 0) {
  958                 int rtval = bufwait(bp);
  959                 brelse(bp);
  960                 return (rtval);
  961         } else {
  962                 /*
  963                  * don't allow the async write to saturate the I/O
  964                  * system.  We will not deadlock here because
  965                  * we are blocking waiting for I/O that is already in-progress
  966                  * to complete. We do not block here if it is the update
  967                  * or syncer daemon trying to clean up as that can lead
  968                  * to deadlock.
  969                  */
  970                 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
  971                         waitrunningbufspace();
  972         }
  973 
  974         return (0);
  975 }
  976 
  977 void
  978 bufbdflush(struct bufobj *bo, struct buf *bp)
  979 {
  980         struct buf *nbp;
  981 
  982         if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
  983                 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
  984                 altbufferflushes++;
  985         } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
  986                 BO_LOCK(bo);
  987                 /*
  988                  * Try to find a buffer to flush.
  989                  */
  990                 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
  991                         if ((nbp->b_vflags & BV_BKGRDINPROG) ||
  992                             BUF_LOCK(nbp,
  993                                      LK_EXCLUSIVE | LK_NOWAIT, NULL))
  994                                 continue;
  995                         if (bp == nbp)
  996                                 panic("bdwrite: found ourselves");
  997                         BO_UNLOCK(bo);
  998                         /* Don't countdeps with the bo lock held. */
  999                         if (buf_countdeps(nbp, 0)) {
 1000                                 BO_LOCK(bo);
 1001                                 BUF_UNLOCK(nbp);
 1002                                 continue;
 1003                         }
 1004                         if (nbp->b_flags & B_CLUSTEROK) {
 1005                                 vfs_bio_awrite(nbp);
 1006                         } else {
 1007                                 bremfree(nbp);
 1008                                 bawrite(nbp);
 1009                         }
 1010                         dirtybufferflushes++;
 1011                         break;
 1012                 }
 1013                 if (nbp == NULL)
 1014                         BO_UNLOCK(bo);
 1015         }
 1016 }
 1017 
 1018 /*
 1019  * Delayed write. (Buffer is marked dirty).  Do not bother writing
 1020  * anything if the buffer is marked invalid.
 1021  *
 1022  * Note that since the buffer must be completely valid, we can safely
 1023  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
 1024  * biodone() in order to prevent getblk from writing the buffer
 1025  * out synchronously.
 1026  */
 1027 void
 1028 bdwrite(struct buf *bp)
 1029 {
 1030         struct thread *td = curthread;
 1031         struct vnode *vp;
 1032         struct bufobj *bo;
 1033 
 1034         CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1035         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1036         BUF_ASSERT_HELD(bp);
 1037 
 1038         if (bp->b_flags & B_INVAL) {
 1039                 brelse(bp);
 1040                 return;
 1041         }
 1042 
 1043         /*
 1044          * If we have too many dirty buffers, don't create any more.
 1045          * If we are wildly over our limit, then force a complete
 1046          * cleanup. Otherwise, just keep the situation from getting
 1047          * out of control. Note that we have to avoid a recursive
 1048          * disaster and not try to clean up after our own cleanup!
 1049          */
 1050         vp = bp->b_vp;
 1051         bo = bp->b_bufobj;
 1052         if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
 1053                 td->td_pflags |= TDP_INBDFLUSH;
 1054                 BO_BDFLUSH(bo, bp);
 1055                 td->td_pflags &= ~TDP_INBDFLUSH;
 1056         } else
 1057                 recursiveflushes++;
 1058 
 1059         bdirty(bp);
 1060         /*
 1061          * Set B_CACHE, indicating that the buffer is fully valid.  This is
 1062          * true even of NFS now.
 1063          */
 1064         bp->b_flags |= B_CACHE;
 1065 
 1066         /*
 1067          * This bmap keeps the system from needing to do the bmap later,
 1068          * perhaps when the system is attempting to do a sync.  Since it
 1069          * is likely that the indirect block -- or whatever other datastructure
 1070          * that the filesystem needs is still in memory now, it is a good
 1071          * thing to do this.  Note also, that if the pageout daemon is
 1072          * requesting a sync -- there might not be enough memory to do
 1073          * the bmap then...  So, this is important to do.
 1074          */
 1075         if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
 1076                 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
 1077         }
 1078 
 1079         /*
 1080          * Set the *dirty* buffer range based upon the VM system dirty
 1081          * pages.
 1082          *
 1083          * Mark the buffer pages as clean.  We need to do this here to
 1084          * satisfy the vnode_pager and the pageout daemon, so that it
 1085          * thinks that the pages have been "cleaned".  Note that since
 1086          * the pages are in a delayed write buffer -- the VFS layer
 1087          * "will" see that the pages get written out on the next sync,
 1088          * or perhaps the cluster will be completed.
 1089          */
 1090         vfs_clean_pages_dirty_buf(bp);
 1091         bqrelse(bp);
 1092 
 1093         /*
 1094          * Wakeup the buffer flushing daemon if we have a lot of dirty
 1095          * buffers (midpoint between our recovery point and our stall
 1096          * point).
 1097          */
 1098         bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1099 
 1100         /*
 1101          * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 1102          * due to the softdep code.
 1103          */
 1104 }
 1105 
 1106 /*
 1107  *      bdirty:
 1108  *
 1109  *      Turn buffer into delayed write request.  We must clear BIO_READ and
 1110  *      B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
 1111  *      itself to properly update it in the dirty/clean lists.  We mark it
 1112  *      B_DONE to ensure that any asynchronization of the buffer properly
 1113  *      clears B_DONE ( else a panic will occur later ).  
 1114  *
 1115  *      bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
 1116  *      might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
 1117  *      should only be called if the buffer is known-good.
 1118  *
 1119  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1120  *      count.
 1121  *
 1122  *      The buffer must be on QUEUE_NONE.
 1123  */
 1124 void
 1125 bdirty(struct buf *bp)
 1126 {
 1127 
 1128         CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
 1129             bp, bp->b_vp, bp->b_flags);
 1130         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1131         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1132             ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1133         BUF_ASSERT_HELD(bp);
 1134         bp->b_flags &= ~(B_RELBUF);
 1135         bp->b_iocmd = BIO_WRITE;
 1136 
 1137         if ((bp->b_flags & B_DELWRI) == 0) {
 1138                 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
 1139                 reassignbuf(bp);
 1140                 atomic_add_int(&numdirtybuffers, 1);
 1141                 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1142         }
 1143 }
 1144 
 1145 /*
 1146  *      bundirty:
 1147  *
 1148  *      Clear B_DELWRI for buffer.
 1149  *
 1150  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1151  *      count.
 1152  *      
 1153  *      The buffer must be on QUEUE_NONE.
 1154  */
 1155 
 1156 void
 1157 bundirty(struct buf *bp)
 1158 {
 1159 
 1160         CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1161         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1162         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1163             ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1164         BUF_ASSERT_HELD(bp);
 1165 
 1166         if (bp->b_flags & B_DELWRI) {
 1167                 bp->b_flags &= ~B_DELWRI;
 1168                 reassignbuf(bp);
 1169                 atomic_subtract_int(&numdirtybuffers, 1);
 1170                 numdirtywakeup(lodirtybuffers);
 1171         }
 1172         /*
 1173          * Since it is now being written, we can clear its deferred write flag.
 1174          */
 1175         bp->b_flags &= ~B_DEFERRED;
 1176 }
 1177 
 1178 /*
 1179  *      bawrite:
 1180  *
 1181  *      Asynchronous write.  Start output on a buffer, but do not wait for
 1182  *      it to complete.  The buffer is released when the output completes.
 1183  *
 1184  *      bwrite() ( or the VOP routine anyway ) is responsible for handling 
 1185  *      B_INVAL buffers.  Not us.
 1186  */
 1187 void
 1188 bawrite(struct buf *bp)
 1189 {
 1190 
 1191         bp->b_flags |= B_ASYNC;
 1192         (void) bwrite(bp);
 1193 }
 1194 
 1195 /*
 1196  *      bwillwrite:
 1197  *
 1198  *      Called prior to the locking of any vnodes when we are expecting to
 1199  *      write.  We do not want to starve the buffer cache with too many
 1200  *      dirty buffers so we block here.  By blocking prior to the locking
 1201  *      of any vnodes we attempt to avoid the situation where a locked vnode
 1202  *      prevents the various system daemons from flushing related buffers.
 1203  */
 1204 
 1205 void
 1206 bwillwrite(void)
 1207 {
 1208 
 1209         if (numdirtybuffers >= hidirtybuffers) {
 1210                 mtx_lock(&nblock);
 1211                 while (numdirtybuffers >= hidirtybuffers) {
 1212                         bd_wakeup(1);
 1213                         needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
 1214                         msleep(&needsbuffer, &nblock,
 1215                             (PRIBIO + 4), "flswai", 0);
 1216                 }
 1217                 mtx_unlock(&nblock);
 1218         }
 1219 }
 1220 
 1221 /*
 1222  * Return true if we have too many dirty buffers.
 1223  */
 1224 int
 1225 buf_dirty_count_severe(void)
 1226 {
 1227 
 1228         return(numdirtybuffers >= hidirtybuffers);
 1229 }
 1230 
 1231 static __noinline int
 1232 buf_vm_page_count_severe(void)
 1233 {
 1234 
 1235         KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
 1236 
 1237         return vm_page_count_severe();
 1238 }
 1239 
 1240 /*
 1241  *      brelse:
 1242  *
 1243  *      Release a busy buffer and, if requested, free its resources.  The
 1244  *      buffer will be stashed in the appropriate bufqueue[] allowing it
 1245  *      to be accessed later as a cache entity or reused for other purposes.
 1246  */
 1247 void
 1248 brelse(struct buf *bp)
 1249 {
 1250         CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
 1251             bp, bp->b_vp, bp->b_flags);
 1252         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1253             ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1254 
 1255         if (bp->b_flags & B_MANAGED) {
 1256                 bqrelse(bp);
 1257                 return;
 1258         }
 1259 
 1260         if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
 1261             bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
 1262                 /*
 1263                  * Failed write, redirty.  Must clear BIO_ERROR to prevent
 1264                  * pages from being scrapped.  If the error is anything
 1265                  * other than an I/O error (EIO), assume that retrying
 1266                  * is futile.
 1267                  */
 1268                 bp->b_ioflags &= ~BIO_ERROR;
 1269                 bdirty(bp);
 1270         } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 1271             (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
 1272                 /*
 1273                  * Either a failed I/O or we were asked to free or not
 1274                  * cache the buffer.
 1275                  */
 1276                 bp->b_flags |= B_INVAL;
 1277                 if (!LIST_EMPTY(&bp->b_dep))
 1278                         buf_deallocate(bp);
 1279                 if (bp->b_flags & B_DELWRI) {
 1280                         atomic_subtract_int(&numdirtybuffers, 1);
 1281                         numdirtywakeup(lodirtybuffers);
 1282                 }
 1283                 bp->b_flags &= ~(B_DELWRI | B_CACHE);
 1284                 if ((bp->b_flags & B_VMIO) == 0) {
 1285                         if (bp->b_bufsize)
 1286                                 allocbuf(bp, 0);
 1287                         if (bp->b_vp)
 1288                                 brelvp(bp);
 1289                 }
 1290         }
 1291 
 1292         /*
 1293          * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release() 
 1294          * is called with B_DELWRI set, the underlying pages may wind up
 1295          * getting freed causing a previous write (bdwrite()) to get 'lost'
 1296          * because pages associated with a B_DELWRI bp are marked clean.
 1297          * 
 1298          * We still allow the B_INVAL case to call vfs_vmio_release(), even
 1299          * if B_DELWRI is set.
 1300          *
 1301          * If B_DELWRI is not set we may have to set B_RELBUF if we are low
 1302          * on pages to return pages to the VM page queues.
 1303          */
 1304         if (bp->b_flags & B_DELWRI)
 1305                 bp->b_flags &= ~B_RELBUF;
 1306         else if (buf_vm_page_count_severe()) {
 1307                 /*
 1308                  * The locking of the BO_LOCK is not necessary since
 1309                  * BKGRDINPROG cannot be set while we hold the buf
 1310                  * lock, it can only be cleared if it is already
 1311                  * pending.
 1312                  */
 1313                 if (bp->b_vp) {
 1314                         if (!(bp->b_vflags & BV_BKGRDINPROG))
 1315                                 bp->b_flags |= B_RELBUF;
 1316                 } else
 1317                         bp->b_flags |= B_RELBUF;
 1318         }
 1319 
 1320         /*
 1321          * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 1322          * constituted, not even NFS buffers now.  Two flags effect this.  If
 1323          * B_INVAL, the struct buf is invalidated but the VM object is kept
 1324          * around ( i.e. so it is trivial to reconstitute the buffer later ).
 1325          *
 1326          * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 1327          * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 1328          * buffer is also B_INVAL because it hits the re-dirtying code above.
 1329          *
 1330          * Normally we can do this whether a buffer is B_DELWRI or not.  If
 1331          * the buffer is an NFS buffer, it is tracking piecemeal writes or
 1332          * the commit state and we cannot afford to lose the buffer. If the
 1333          * buffer has a background write in progress, we need to keep it
 1334          * around to prevent it from being reconstituted and starting a second
 1335          * background write.
 1336          */
 1337         if ((bp->b_flags & B_VMIO)
 1338             && !(bp->b_vp->v_mount != NULL &&
 1339                  (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 1340                  !vn_isdisk(bp->b_vp, NULL) &&
 1341                  (bp->b_flags & B_DELWRI))
 1342             ) {
 1343 
 1344                 int i, j, resid;
 1345                 vm_page_t m;
 1346                 off_t foff;
 1347                 vm_pindex_t poff;
 1348                 vm_object_t obj;
 1349 
 1350                 obj = bp->b_bufobj->bo_object;
 1351 
 1352                 /*
 1353                  * Get the base offset and length of the buffer.  Note that 
 1354                  * in the VMIO case if the buffer block size is not
 1355                  * page-aligned then b_data pointer may not be page-aligned.
 1356                  * But our b_pages[] array *IS* page aligned.
 1357                  *
 1358                  * block sizes less then DEV_BSIZE (usually 512) are not 
 1359                  * supported due to the page granularity bits (m->valid,
 1360                  * m->dirty, etc...). 
 1361                  *
 1362                  * See man buf(9) for more information
 1363                  */
 1364                 resid = bp->b_bufsize;
 1365                 foff = bp->b_offset;
 1366                 VM_OBJECT_LOCK(obj);
 1367                 for (i = 0; i < bp->b_npages; i++) {
 1368                         int had_bogus = 0;
 1369 
 1370                         m = bp->b_pages[i];
 1371 
 1372                         /*
 1373                          * If we hit a bogus page, fixup *all* the bogus pages
 1374                          * now.
 1375                          */
 1376                         if (m == bogus_page) {
 1377                                 poff = OFF_TO_IDX(bp->b_offset);
 1378                                 had_bogus = 1;
 1379 
 1380                                 for (j = i; j < bp->b_npages; j++) {
 1381                                         vm_page_t mtmp;
 1382                                         mtmp = bp->b_pages[j];
 1383                                         if (mtmp == bogus_page) {
 1384                                                 mtmp = vm_page_lookup(obj, poff + j);
 1385                                                 if (!mtmp) {
 1386                                                         panic("brelse: page missing\n");
 1387                                                 }
 1388                                                 bp->b_pages[j] = mtmp;
 1389                                         }
 1390                                 }
 1391 
 1392                                 if ((bp->b_flags & B_INVAL) == 0) {
 1393                                         pmap_qenter(
 1394                                             trunc_page((vm_offset_t)bp->b_data),
 1395                                             bp->b_pages, bp->b_npages);
 1396                                 }
 1397                                 m = bp->b_pages[i];
 1398                         }
 1399                         if ((bp->b_flags & B_NOCACHE) ||
 1400                             (bp->b_ioflags & BIO_ERROR &&
 1401                              bp->b_iocmd == BIO_READ)) {
 1402                                 int poffset = foff & PAGE_MASK;
 1403                                 int presid = resid > (PAGE_SIZE - poffset) ?
 1404                                         (PAGE_SIZE - poffset) : resid;
 1405 
 1406                                 KASSERT(presid >= 0, ("brelse: extra page"));
 1407                                 vm_page_set_invalid(m, poffset, presid);
 1408                                 if (had_bogus)
 1409                                         printf("avoided corruption bug in bogus_page/brelse code\n");
 1410                         }
 1411                         resid -= PAGE_SIZE - (foff & PAGE_MASK);
 1412                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 1413                 }
 1414                 VM_OBJECT_UNLOCK(obj);
 1415                 if (bp->b_flags & (B_INVAL | B_RELBUF))
 1416                         vfs_vmio_release(bp);
 1417 
 1418         } else if (bp->b_flags & B_VMIO) {
 1419 
 1420                 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
 1421                         vfs_vmio_release(bp);
 1422                 }
 1423 
 1424         } else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
 1425                 if (bp->b_bufsize != 0)
 1426                         allocbuf(bp, 0);
 1427                 if (bp->b_vp != NULL)
 1428                         brelvp(bp);
 1429         }
 1430                         
 1431         if (BUF_LOCKRECURSED(bp)) {
 1432                 /* do not release to free list */
 1433                 BUF_UNLOCK(bp);
 1434                 return;
 1435         }
 1436 
 1437         /* enqueue */
 1438         mtx_lock(&bqlock);
 1439         /* Handle delayed bremfree() processing. */
 1440         if (bp->b_flags & B_REMFREE) {
 1441                 struct bufobj *bo;
 1442 
 1443                 bo = bp->b_bufobj;
 1444                 if (bo != NULL)
 1445                         BO_LOCK(bo);
 1446                 bremfreel(bp);
 1447                 if (bo != NULL)
 1448                         BO_UNLOCK(bo);
 1449         }
 1450         if (bp->b_qindex != QUEUE_NONE)
 1451                 panic("brelse: free buffer onto another queue???");
 1452 
 1453         /*
 1454          * If the buffer has junk contents signal it and eventually
 1455          * clean up B_DELWRI and diassociate the vnode so that gbincore()
 1456          * doesn't find it.
 1457          */
 1458         if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
 1459             (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
 1460                 bp->b_flags |= B_INVAL;
 1461         if (bp->b_flags & B_INVAL) {
 1462                 if (bp->b_flags & B_DELWRI)
 1463                         bundirty(bp);
 1464                 if (bp->b_vp)
 1465                         brelvp(bp);
 1466         }
 1467 
 1468         /* buffers with no memory */
 1469         if (bp->b_bufsize == 0) {
 1470                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1471                 if (bp->b_vflags & BV_BKGRDINPROG)
 1472                         panic("losing buffer 1");
 1473                 if (bp->b_kvasize) {
 1474                         bp->b_qindex = QUEUE_EMPTYKVA;
 1475                 } else {
 1476                         bp->b_qindex = QUEUE_EMPTY;
 1477                 }
 1478                 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1479         /* buffers with junk contents */
 1480         } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 1481             (bp->b_ioflags & BIO_ERROR)) {
 1482                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1483                 if (bp->b_vflags & BV_BKGRDINPROG)
 1484                         panic("losing buffer 2");
 1485                 bp->b_qindex = QUEUE_CLEAN;
 1486                 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
 1487         /* remaining buffers */
 1488         } else {
 1489                 if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
 1490                     (B_DELWRI|B_NEEDSGIANT))
 1491                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1492                 else if (bp->b_flags & B_DELWRI)
 1493                         bp->b_qindex = QUEUE_DIRTY;
 1494                 else
 1495                         bp->b_qindex = QUEUE_CLEAN;
 1496                 if (bp->b_flags & B_AGE)
 1497                         TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1498                 else
 1499                         TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1500         }
 1501         mtx_unlock(&bqlock);
 1502 
 1503         /*
 1504          * Fixup numfreebuffers count.  The bp is on an appropriate queue
 1505          * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
 1506          * We've already handled the B_INVAL case ( B_DELWRI will be clear
 1507          * if B_INVAL is set ).
 1508          */
 1509 
 1510         if (!(bp->b_flags & B_DELWRI)) {
 1511                 struct bufobj *bo;
 1512 
 1513                 bo = bp->b_bufobj;
 1514                 if (bo != NULL)
 1515                         BO_LOCK(bo);
 1516                 bufcountwakeup(bp);
 1517                 if (bo != NULL)
 1518                         BO_UNLOCK(bo);
 1519         }
 1520 
 1521         /*
 1522          * Something we can maybe free or reuse
 1523          */
 1524         if (bp->b_bufsize || bp->b_kvasize)
 1525                 bufspacewakeup();
 1526 
 1527         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
 1528         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1529                 panic("brelse: not dirty");
 1530         /* unlock */
 1531         BUF_UNLOCK(bp);
 1532 }
 1533 
 1534 /*
 1535  * Release a buffer back to the appropriate queue but do not try to free
 1536  * it.  The buffer is expected to be used again soon.
 1537  *
 1538  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
 1539  * biodone() to requeue an async I/O on completion.  It is also used when
 1540  * known good buffers need to be requeued but we think we may need the data
 1541  * again soon.
 1542  *
 1543  * XXX we should be able to leave the B_RELBUF hint set on completion.
 1544  */
 1545 void
 1546 bqrelse(struct buf *bp)
 1547 {
 1548         struct bufobj *bo;
 1549 
 1550         CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1551         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1552             ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1553 
 1554         if (BUF_LOCKRECURSED(bp)) {
 1555                 /* do not release to free list */
 1556                 BUF_UNLOCK(bp);
 1557                 return;
 1558         }
 1559 
 1560         bo = bp->b_bufobj;
 1561         if (bp->b_flags & B_MANAGED) {
 1562                 if (bp->b_flags & B_REMFREE) {
 1563                         mtx_lock(&bqlock);
 1564                         if (bo != NULL)
 1565                                 BO_LOCK(bo);
 1566                         bremfreel(bp);
 1567                         if (bo != NULL)
 1568                                 BO_UNLOCK(bo);
 1569                         mtx_unlock(&bqlock);
 1570                 }
 1571                 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1572                 BUF_UNLOCK(bp);
 1573                 return;
 1574         }
 1575 
 1576         mtx_lock(&bqlock);
 1577         /* Handle delayed bremfree() processing. */
 1578         if (bp->b_flags & B_REMFREE) {
 1579                 if (bo != NULL)
 1580                         BO_LOCK(bo);
 1581                 bremfreel(bp);
 1582                 if (bo != NULL)
 1583                         BO_UNLOCK(bo);
 1584         }
 1585         if (bp->b_qindex != QUEUE_NONE)
 1586                 panic("bqrelse: free buffer onto another queue???");
 1587         /* buffers with stale but valid contents */
 1588         if (bp->b_flags & B_DELWRI) {
 1589                 if (bp->b_flags & B_NEEDSGIANT)
 1590                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1591                 else
 1592                         bp->b_qindex = QUEUE_DIRTY;
 1593                 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1594         } else {
 1595                 /*
 1596                  * The locking of the BO_LOCK for checking of the
 1597                  * BV_BKGRDINPROG is not necessary since the
 1598                  * BV_BKGRDINPROG cannot be set while we hold the buf
 1599                  * lock, it can only be cleared if it is already
 1600                  * pending.
 1601                  */
 1602                 if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
 1603                         bp->b_qindex = QUEUE_CLEAN;
 1604                         TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
 1605                             b_freelist);
 1606                 } else {
 1607                         /*
 1608                          * We are too low on memory, we have to try to free
 1609                          * the buffer (most importantly: the wired pages
 1610                          * making up its backing store) *now*.
 1611                          */
 1612                         mtx_unlock(&bqlock);
 1613                         brelse(bp);
 1614                         return;
 1615                 }
 1616         }
 1617         mtx_unlock(&bqlock);
 1618 
 1619         if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI)) {
 1620                 if (bo != NULL)
 1621                         BO_LOCK(bo);
 1622                 bufcountwakeup(bp);
 1623                 if (bo != NULL)
 1624                         BO_UNLOCK(bo);
 1625         }
 1626 
 1627         /*
 1628          * Something we can maybe free or reuse.
 1629          */
 1630         if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
 1631                 bufspacewakeup();
 1632 
 1633         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1634         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1635                 panic("bqrelse: not dirty");
 1636         /* unlock */
 1637         BUF_UNLOCK(bp);
 1638 }
 1639 
 1640 /* Give pages used by the bp back to the VM system (where possible) */
 1641 static void
 1642 vfs_vmio_release(struct buf *bp)
 1643 {
 1644         int i;
 1645         vm_page_t m;
 1646 
 1647         pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
 1648         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 1649         for (i = 0; i < bp->b_npages; i++) {
 1650                 m = bp->b_pages[i];
 1651                 bp->b_pages[i] = NULL;
 1652                 /*
 1653                  * In order to keep page LRU ordering consistent, put
 1654                  * everything on the inactive queue.
 1655                  */
 1656                 vm_page_lock(m);
 1657                 vm_page_unwire(m, 0);
 1658                 /*
 1659                  * We don't mess with busy pages, it is
 1660                  * the responsibility of the process that
 1661                  * busied the pages to deal with them.
 1662                  */
 1663                 if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
 1664                     m->wire_count == 0) {
 1665                         /*
 1666                          * Might as well free the page if we can and it has
 1667                          * no valid data.  We also free the page if the
 1668                          * buffer was used for direct I/O
 1669                          */
 1670                         if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
 1671                                 vm_page_free(m);
 1672                         } else if (bp->b_flags & B_DIRECT) {
 1673                                 vm_page_try_to_free(m);
 1674                         } else if (buf_vm_page_count_severe()) {
 1675                                 vm_page_try_to_cache(m);
 1676                         }
 1677                 }
 1678                 vm_page_unlock(m);
 1679         }
 1680         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 1681         
 1682         if (bp->b_bufsize) {
 1683                 bufspacewakeup();
 1684                 bp->b_bufsize = 0;
 1685         }
 1686         bp->b_npages = 0;
 1687         bp->b_flags &= ~B_VMIO;
 1688         if (bp->b_vp)
 1689                 brelvp(bp);
 1690 }
 1691 
 1692 /*
 1693  * Check to see if a block at a particular lbn is available for a clustered
 1694  * write.
 1695  */
 1696 static int
 1697 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 1698 {
 1699         struct buf *bpa;
 1700         int match;
 1701 
 1702         match = 0;
 1703 
 1704         /* If the buf isn't in core skip it */
 1705         if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
 1706                 return (0);
 1707 
 1708         /* If the buf is busy we don't want to wait for it */
 1709         if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1710                 return (0);
 1711 
 1712         /* Only cluster with valid clusterable delayed write buffers */
 1713         if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 1714             (B_DELWRI | B_CLUSTEROK))
 1715                 goto done;
 1716 
 1717         if (bpa->b_bufsize != size)
 1718                 goto done;
 1719 
 1720         /*
 1721          * Check to see if it is in the expected place on disk and that the
 1722          * block has been mapped.
 1723          */
 1724         if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 1725                 match = 1;
 1726 done:
 1727         BUF_UNLOCK(bpa);
 1728         return (match);
 1729 }
 1730 
 1731 /*
 1732  *      vfs_bio_awrite:
 1733  *
 1734  *      Implement clustered async writes for clearing out B_DELWRI buffers.
 1735  *      This is much better then the old way of writing only one buffer at
 1736  *      a time.  Note that we may not be presented with the buffers in the 
 1737  *      correct order, so we search for the cluster in both directions.
 1738  */
 1739 int
 1740 vfs_bio_awrite(struct buf *bp)
 1741 {
 1742         struct bufobj *bo;
 1743         int i;
 1744         int j;
 1745         daddr_t lblkno = bp->b_lblkno;
 1746         struct vnode *vp = bp->b_vp;
 1747         int ncl;
 1748         int nwritten;
 1749         int size;
 1750         int maxcl;
 1751 
 1752         bo = &vp->v_bufobj;
 1753         /*
 1754          * right now we support clustered writing only to regular files.  If
 1755          * we find a clusterable block we could be in the middle of a cluster
 1756          * rather then at the beginning.
 1757          */
 1758         if ((vp->v_type == VREG) && 
 1759             (vp->v_mount != 0) && /* Only on nodes that have the size info */
 1760             (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 1761 
 1762                 size = vp->v_mount->mnt_stat.f_iosize;
 1763                 maxcl = MAXPHYS / size;
 1764 
 1765                 BO_LOCK(bo);
 1766                 for (i = 1; i < maxcl; i++)
 1767                         if (vfs_bio_clcheck(vp, size, lblkno + i,
 1768                             bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 1769                                 break;
 1770 
 1771                 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 1772                         if (vfs_bio_clcheck(vp, size, lblkno - j,
 1773                             bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 1774                                 break;
 1775                 BO_UNLOCK(bo);
 1776                 --j;
 1777                 ncl = i + j;
 1778                 /*
 1779                  * this is a possible cluster write
 1780                  */
 1781                 if (ncl != 1) {
 1782                         BUF_UNLOCK(bp);
 1783                         nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
 1784                         return nwritten;
 1785                 }
 1786         }
 1787         bremfree(bp);
 1788         bp->b_flags |= B_ASYNC;
 1789         /*
 1790          * default (old) behavior, writing out only one block
 1791          *
 1792          * XXX returns b_bufsize instead of b_bcount for nwritten?
 1793          */
 1794         nwritten = bp->b_bufsize;
 1795         (void) bwrite(bp);
 1796 
 1797         return nwritten;
 1798 }
 1799 
 1800 /*
 1801  *      getnewbuf:
 1802  *
 1803  *      Find and initialize a new buffer header, freeing up existing buffers 
 1804  *      in the bufqueues as necessary.  The new buffer is returned locked.
 1805  *
 1806  *      Important:  B_INVAL is not set.  If the caller wishes to throw the
 1807  *      buffer away, the caller must set B_INVAL prior to calling brelse().
 1808  *
 1809  *      We block if:
 1810  *              We have insufficient buffer headers
 1811  *              We have insufficient buffer space
 1812  *              buffer_map is too fragmented ( space reservation fails )
 1813  *              If we have to flush dirty buffers ( but we try to avoid this )
 1814  *
 1815  *      To avoid VFS layer recursion we do not flush dirty buffers ourselves.
 1816  *      Instead we ask the buf daemon to do it for us.  We attempt to
 1817  *      avoid piecemeal wakeups of the pageout daemon.
 1818  */
 1819 
 1820 static struct buf *
 1821 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
 1822     int gbflags)
 1823 {
 1824         struct thread *td;
 1825         struct buf *bp;
 1826         struct buf *nbp;
 1827         int defrag = 0;
 1828         int nqindex;
 1829         static int flushingbufs;
 1830 
 1831         td = curthread;
 1832         /*
 1833          * We can't afford to block since we might be holding a vnode lock,
 1834          * which may prevent system daemons from running.  We deal with
 1835          * low-memory situations by proactively returning memory and running
 1836          * async I/O rather then sync I/O.
 1837          */
 1838         atomic_add_int(&getnewbufcalls, 1);
 1839         atomic_subtract_int(&getnewbufrestarts, 1);
 1840 restart:
 1841         atomic_add_int(&getnewbufrestarts, 1);
 1842 
 1843         /*
 1844          * Setup for scan.  If we do not have enough free buffers,
 1845          * we setup a degenerate case that immediately fails.  Note
 1846          * that if we are specially marked process, we are allowed to
 1847          * dip into our reserves.
 1848          *
 1849          * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
 1850          *
 1851          * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
 1852          * However, there are a number of cases (defragging, reusing, ...)
 1853          * where we cannot backup.
 1854          */
 1855         mtx_lock(&bqlock);
 1856         nqindex = QUEUE_EMPTYKVA;
 1857         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
 1858 
 1859         if (nbp == NULL) {
 1860                 /*
 1861                  * If no EMPTYKVA buffers and we are either
 1862                  * defragging or reusing, locate a CLEAN buffer
 1863                  * to free or reuse.  If bufspace useage is low
 1864                  * skip this step so we can allocate a new buffer.
 1865                  */
 1866                 if (defrag || bufspace >= lobufspace) {
 1867                         nqindex = QUEUE_CLEAN;
 1868                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
 1869                 }
 1870 
 1871                 /*
 1872                  * If we could not find or were not allowed to reuse a
 1873                  * CLEAN buffer, check to see if it is ok to use an EMPTY
 1874                  * buffer.  We can only use an EMPTY buffer if allocating
 1875                  * its KVA would not otherwise run us out of buffer space.
 1876                  */
 1877                 if (nbp == NULL && defrag == 0 &&
 1878                     bufspace + maxsize < hibufspace) {
 1879                         nqindex = QUEUE_EMPTY;
 1880                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
 1881                 }
 1882         }
 1883 
 1884         /*
 1885          * Run scan, possibly freeing data and/or kva mappings on the fly
 1886          * depending.
 1887          */
 1888 
 1889         while ((bp = nbp) != NULL) {
 1890                 int qindex = nqindex;
 1891 
 1892                 /*
 1893                  * Calculate next bp ( we can only use it if we do not block
 1894                  * or do other fancy things ).
 1895                  */
 1896                 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
 1897                         switch(qindex) {
 1898                         case QUEUE_EMPTY:
 1899                                 nqindex = QUEUE_EMPTYKVA;
 1900                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
 1901                                         break;
 1902                                 /* FALLTHROUGH */
 1903                         case QUEUE_EMPTYKVA:
 1904                                 nqindex = QUEUE_CLEAN;
 1905                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
 1906                                         break;
 1907                                 /* FALLTHROUGH */
 1908                         case QUEUE_CLEAN:
 1909                                 /*
 1910                                  * nbp is NULL. 
 1911                                  */
 1912                                 break;
 1913                         }
 1914                 }
 1915                 /*
 1916                  * If we are defragging then we need a buffer with 
 1917                  * b_kvasize != 0.  XXX this situation should no longer
 1918                  * occur, if defrag is non-zero the buffer's b_kvasize
 1919                  * should also be non-zero at this point.  XXX
 1920                  */
 1921                 if (defrag && bp->b_kvasize == 0) {
 1922                         printf("Warning: defrag empty buffer %p\n", bp);
 1923                         continue;
 1924                 }
 1925 
 1926                 /*
 1927                  * Start freeing the bp.  This is somewhat involved.  nbp
 1928                  * remains valid only for QUEUE_EMPTY[KVA] bp's.
 1929                  */
 1930                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1931                         continue;
 1932                 if (bp->b_vp) {
 1933                         BO_LOCK(bp->b_bufobj);
 1934                         if (bp->b_vflags & BV_BKGRDINPROG) {
 1935                                 BO_UNLOCK(bp->b_bufobj);
 1936                                 BUF_UNLOCK(bp);
 1937                                 continue;
 1938                         }
 1939                         BO_UNLOCK(bp->b_bufobj);
 1940                 }
 1941                 CTR6(KTR_BUF,
 1942                     "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
 1943                     "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
 1944                     bp->b_kvasize, bp->b_bufsize, qindex);
 1945 
 1946                 /*
 1947                  * Sanity Checks
 1948                  */
 1949                 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
 1950 
 1951                 /*
 1952                  * Note: we no longer distinguish between VMIO and non-VMIO
 1953                  * buffers.
 1954                  */
 1955 
 1956                 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
 1957 
 1958                 if (bp->b_bufobj != NULL)
 1959                         BO_LOCK(bp->b_bufobj);
 1960                 bremfreel(bp);
 1961                 if (bp->b_bufobj != NULL)
 1962                         BO_UNLOCK(bp->b_bufobj);
 1963                 mtx_unlock(&bqlock);
 1964 
 1965                 if (qindex == QUEUE_CLEAN) {
 1966                         if (bp->b_flags & B_VMIO) {
 1967                                 bp->b_flags &= ~B_ASYNC;
 1968                                 vfs_vmio_release(bp);
 1969                         }
 1970                         if (bp->b_vp)
 1971                                 brelvp(bp);
 1972                 }
 1973 
 1974                 /*
 1975                  * NOTE:  nbp is now entirely invalid.  We can only restart
 1976                  * the scan from this point on.
 1977                  *
 1978                  * Get the rest of the buffer freed up.  b_kva* is still
 1979                  * valid after this operation.
 1980                  */
 1981 
 1982                 if (bp->b_rcred != NOCRED) {
 1983                         crfree(bp->b_rcred);
 1984                         bp->b_rcred = NOCRED;
 1985                 }
 1986                 if (bp->b_wcred != NOCRED) {
 1987                         crfree(bp->b_wcred);
 1988                         bp->b_wcred = NOCRED;
 1989                 }
 1990                 if (!LIST_EMPTY(&bp->b_dep))
 1991                         buf_deallocate(bp);
 1992                 if (bp->b_vflags & BV_BKGRDINPROG)
 1993                         panic("losing buffer 3");
 1994                 KASSERT(bp->b_vp == NULL,
 1995                     ("bp: %p still has vnode %p.  qindex: %d",
 1996                     bp, bp->b_vp, qindex));
 1997                 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
 1998                    ("bp: %p still on a buffer list. xflags %X",
 1999                     bp, bp->b_xflags));
 2000 
 2001                 if (bp->b_bufsize)
 2002                         allocbuf(bp, 0);
 2003 
 2004                 bp->b_flags = 0;
 2005                 bp->b_ioflags = 0;
 2006                 bp->b_xflags = 0;
 2007                 KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
 2008                     ("buf %p still counted as free?", bp));
 2009                 bp->b_vflags = 0;
 2010                 bp->b_vp = NULL;
 2011                 bp->b_blkno = bp->b_lblkno = 0;
 2012                 bp->b_offset = NOOFFSET;
 2013                 bp->b_iodone = 0;
 2014                 bp->b_error = 0;
 2015                 bp->b_resid = 0;
 2016                 bp->b_bcount = 0;
 2017                 bp->b_npages = 0;
 2018                 bp->b_dirtyoff = bp->b_dirtyend = 0;
 2019                 bp->b_bufobj = NULL;
 2020                 bp->b_pin_count = 0;
 2021                 bp->b_fsprivate1 = NULL;
 2022                 bp->b_fsprivate2 = NULL;
 2023                 bp->b_fsprivate3 = NULL;
 2024 
 2025                 LIST_INIT(&bp->b_dep);
 2026 
 2027                 /*
 2028                  * If we are defragging then free the buffer.
 2029                  */
 2030                 if (defrag) {
 2031                         bp->b_flags |= B_INVAL;
 2032                         bfreekva(bp);
 2033                         brelse(bp);
 2034                         defrag = 0;
 2035                         goto restart;
 2036                 }
 2037 
 2038                 /*
 2039                  * Notify any waiters for the buffer lock about
 2040                  * identity change by freeing the buffer.
 2041                  */
 2042                 if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
 2043                         bp->b_flags |= B_INVAL;
 2044                         bfreekva(bp);
 2045                         brelse(bp);
 2046                         goto restart;
 2047                 }
 2048 
 2049                 /*
 2050                  * If we are overcomitted then recover the buffer and its
 2051                  * KVM space.  This occurs in rare situations when multiple
 2052                  * processes are blocked in getnewbuf() or allocbuf().
 2053                  */
 2054                 if (bufspace >= hibufspace)
 2055                         flushingbufs = 1;
 2056                 if (flushingbufs && bp->b_kvasize != 0) {
 2057                         bp->b_flags |= B_INVAL;
 2058                         bfreekva(bp);
 2059                         brelse(bp);
 2060                         goto restart;
 2061                 }
 2062                 if (bufspace < lobufspace)
 2063                         flushingbufs = 0;
 2064                 break;
 2065         }
 2066 
 2067         /*
 2068          * If we exhausted our list, sleep as appropriate.  We may have to
 2069          * wakeup various daemons and write out some dirty buffers.
 2070          *
 2071          * Generally we are sleeping due to insufficient buffer space.
 2072          */
 2073 
 2074         if (bp == NULL) {
 2075                 int flags, norunbuf;
 2076                 char *waitmsg;
 2077                 int fl;
 2078 
 2079                 if (defrag) {
 2080                         flags = VFS_BIO_NEED_BUFSPACE;
 2081                         waitmsg = "nbufkv";
 2082                 } else if (bufspace >= hibufspace) {
 2083                         waitmsg = "nbufbs";
 2084                         flags = VFS_BIO_NEED_BUFSPACE;
 2085                 } else {
 2086                         waitmsg = "newbuf";
 2087                         flags = VFS_BIO_NEED_ANY;
 2088                 }
 2089                 mtx_lock(&nblock);
 2090                 needsbuffer |= flags;
 2091                 mtx_unlock(&nblock);
 2092                 mtx_unlock(&bqlock);
 2093 
 2094                 bd_speedup();   /* heeeelp */
 2095                 if (gbflags & GB_NOWAIT_BD)
 2096                         return (NULL);
 2097 
 2098                 mtx_lock(&nblock);
 2099                 while (needsbuffer & flags) {
 2100                         if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
 2101                                 mtx_unlock(&nblock);
 2102                                 /*
 2103                                  * getblk() is called with a vnode
 2104                                  * locked, and some majority of the
 2105                                  * dirty buffers may as well belong to
 2106                                  * the vnode. Flushing the buffers
 2107                                  * there would make a progress that
 2108                                  * cannot be achieved by the
 2109                                  * buf_daemon, that cannot lock the
 2110                                  * vnode.
 2111                                  */
 2112                                 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
 2113                                     (td->td_pflags & TDP_NORUNNINGBUF);
 2114                                 /* play bufdaemon */
 2115                                 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
 2116                                 fl = buf_do_flush(vp);
 2117                                 td->td_pflags &= norunbuf;
 2118                                 mtx_lock(&nblock);
 2119                                 if (fl != 0)
 2120                                         continue;
 2121                                 if ((needsbuffer & flags) == 0)
 2122                                         break;
 2123                         }
 2124                         if (msleep(&needsbuffer, &nblock,
 2125                             (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
 2126                                 mtx_unlock(&nblock);
 2127                                 return (NULL);
 2128                         }
 2129                 }
 2130                 mtx_unlock(&nblock);
 2131         } else {
 2132                 /*
 2133                  * We finally have a valid bp.  We aren't quite out of the
 2134                  * woods, we still have to reserve kva space.  In order
 2135                  * to keep fragmentation sane we only allocate kva in
 2136                  * BKVASIZE chunks.
 2137                  */
 2138                 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 2139 
 2140                 if (maxsize != bp->b_kvasize) {
 2141                         vm_offset_t addr = 0;
 2142 
 2143                         bfreekva(bp);
 2144 
 2145                         vm_map_lock(buffer_map);
 2146                         if (vm_map_findspace(buffer_map,
 2147                                 vm_map_min(buffer_map), maxsize, &addr)) {
 2148                                 /*
 2149                                  * Uh oh.  Buffer map is to fragmented.  We
 2150                                  * must defragment the map.
 2151                                  */
 2152                                 atomic_add_int(&bufdefragcnt, 1);
 2153                                 vm_map_unlock(buffer_map);
 2154                                 defrag = 1;
 2155                                 bp->b_flags |= B_INVAL;
 2156                                 brelse(bp);
 2157                                 goto restart;
 2158                         }
 2159                         if (addr) {
 2160                                 vm_map_insert(buffer_map, NULL, 0,
 2161                                         addr, addr + maxsize,
 2162                                         VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
 2163 
 2164                                 bp->b_kvabase = (caddr_t) addr;
 2165                                 bp->b_kvasize = maxsize;
 2166                                 atomic_add_long(&bufspace, bp->b_kvasize);
 2167                                 atomic_add_int(&bufreusecnt, 1);
 2168                         }
 2169                         vm_map_unlock(buffer_map);
 2170                 }
 2171                 bp->b_saveaddr = bp->b_kvabase;
 2172                 bp->b_data = bp->b_saveaddr;
 2173         }
 2174         return(bp);
 2175 }
 2176 
 2177 /*
 2178  *      buf_daemon:
 2179  *
 2180  *      buffer flushing daemon.  Buffers are normally flushed by the
 2181  *      update daemon but if it cannot keep up this process starts to
 2182  *      take the load in an attempt to prevent getnewbuf() from blocking.
 2183  */
 2184 
 2185 static struct kproc_desc buf_kp = {
 2186         "bufdaemon",
 2187         buf_daemon,
 2188         &bufdaemonproc
 2189 };
 2190 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
 2191 
 2192 static int
 2193 buf_do_flush(struct vnode *vp)
 2194 {
 2195         int flushed;
 2196 
 2197         flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
 2198         /* The list empty check here is slightly racy */
 2199         if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
 2200                 mtx_lock(&Giant);
 2201                 flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
 2202                 mtx_unlock(&Giant);
 2203         }
 2204         if (flushed == 0) {
 2205                 /*
 2206                  * Could not find any buffers without rollback
 2207                  * dependencies, so just write the first one
 2208                  * in the hopes of eventually making progress.
 2209                  */
 2210                 flushbufqueues(vp, QUEUE_DIRTY, 1);
 2211                 if (!TAILQ_EMPTY(
 2212                             &bufqueues[QUEUE_DIRTY_GIANT])) {
 2213                         mtx_lock(&Giant);
 2214                         flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
 2215                         mtx_unlock(&Giant);
 2216                 }
 2217         }
 2218         return (flushed);
 2219 }
 2220 
 2221 static void
 2222 buf_daemon()
 2223 {
 2224         int lodirtysave;
 2225 
 2226         /*
 2227          * This process needs to be suspended prior to shutdown sync.
 2228          */
 2229         EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
 2230             SHUTDOWN_PRI_LAST);
 2231 
 2232         /*
 2233          * This process is allowed to take the buffer cache to the limit
 2234          */
 2235         curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
 2236         mtx_lock(&bdlock);
 2237         for (;;) {
 2238                 bd_request = 0;
 2239                 mtx_unlock(&bdlock);
 2240 
 2241                 kproc_suspend_check(bufdaemonproc);
 2242                 lodirtysave = lodirtybuffers;
 2243                 if (bd_speedupreq) {
 2244                         lodirtybuffers = numdirtybuffers / 2;
 2245                         bd_speedupreq = 0;
 2246                 }
 2247                 /*
 2248                  * Do the flush.  Limit the amount of in-transit I/O we
 2249                  * allow to build up, otherwise we would completely saturate
 2250                  * the I/O system.  Wakeup any waiting processes before we
 2251                  * normally would so they can run in parallel with our drain.
 2252                  */
 2253                 while (numdirtybuffers > lodirtybuffers) {
 2254                         if (buf_do_flush(NULL) == 0)
 2255                                 break;
 2256                         kern_yield(PRI_UNCHANGED);
 2257                 }
 2258                 lodirtybuffers = lodirtysave;
 2259 
 2260                 /*
 2261                  * Only clear bd_request if we have reached our low water
 2262                  * mark.  The buf_daemon normally waits 1 second and
 2263                  * then incrementally flushes any dirty buffers that have
 2264                  * built up, within reason.
 2265                  *
 2266                  * If we were unable to hit our low water mark and couldn't
 2267                  * find any flushable buffers, we sleep half a second.
 2268                  * Otherwise we loop immediately.
 2269                  */
 2270                 mtx_lock(&bdlock);
 2271                 if (numdirtybuffers <= lodirtybuffers) {
 2272                         /*
 2273                          * We reached our low water mark, reset the
 2274                          * request and sleep until we are needed again.
 2275                          * The sleep is just so the suspend code works.
 2276                          */
 2277                         bd_request = 0;
 2278                         msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 2279                 } else {
 2280                         /*
 2281                          * We couldn't find any flushable dirty buffers but
 2282                          * still have too many dirty buffers, we
 2283                          * have to sleep and try again.  (rare)
 2284                          */
 2285                         msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 2286                 }
 2287         }
 2288 }
 2289 
 2290 /*
 2291  *      flushbufqueues:
 2292  *
 2293  *      Try to flush a buffer in the dirty queue.  We must be careful to
 2294  *      free up B_INVAL buffers instead of write them, which NFS is 
 2295  *      particularly sensitive to.
 2296  */
 2297 static int flushwithdeps = 0;
 2298 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
 2299     0, "Number of buffers flushed with dependecies that require rollbacks");
 2300 
 2301 static int
 2302 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
 2303 {
 2304         struct buf *sentinel;
 2305         struct vnode *vp;
 2306         struct mount *mp;
 2307         struct buf *bp;
 2308         int hasdeps;
 2309         int flushed;
 2310         int target;
 2311 
 2312         if (lvp == NULL) {
 2313                 target = numdirtybuffers - lodirtybuffers;
 2314                 if (flushdeps && target > 2)
 2315                         target /= 2;
 2316         } else
 2317                 target = flushbufqtarget;
 2318         flushed = 0;
 2319         bp = NULL;
 2320         sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
 2321         sentinel->b_qindex = QUEUE_SENTINEL;
 2322         mtx_lock(&bqlock);
 2323         TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
 2324         while (flushed != target) {
 2325                 bp = TAILQ_NEXT(sentinel, b_freelist);
 2326                 if (bp != NULL) {
 2327                         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2328                         TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
 2329                             b_freelist);
 2330                 } else
 2331                         break;
 2332                 /*
 2333                  * Skip sentinels inserted by other invocations of the
 2334                  * flushbufqueues(), taking care to not reorder them.
 2335                  */
 2336                 if (bp->b_qindex == QUEUE_SENTINEL)
 2337                         continue;
 2338                 /*
 2339                  * Only flush the buffers that belong to the
 2340                  * vnode locked by the curthread.
 2341                  */
 2342                 if (lvp != NULL && bp->b_vp != lvp)
 2343                         continue;
 2344                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 2345                         continue;
 2346                 if (bp->b_pin_count > 0) {
 2347                         BUF_UNLOCK(bp);
 2348                         continue;
 2349                 }
 2350                 BO_LOCK(bp->b_bufobj);
 2351                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
 2352                     (bp->b_flags & B_DELWRI) == 0) {
 2353                         BO_UNLOCK(bp->b_bufobj);
 2354                         BUF_UNLOCK(bp);
 2355                         continue;
 2356                 }
 2357                 BO_UNLOCK(bp->b_bufobj);
 2358                 if (bp->b_flags & B_INVAL) {
 2359                         bremfreel(bp);
 2360                         mtx_unlock(&bqlock);
 2361                         brelse(bp);
 2362                         flushed++;
 2363                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2364                         mtx_lock(&bqlock);
 2365                         continue;
 2366                 }
 2367 
 2368                 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
 2369                         if (flushdeps == 0) {
 2370                                 BUF_UNLOCK(bp);
 2371                                 continue;
 2372                         }
 2373                         hasdeps = 1;
 2374                 } else
 2375                         hasdeps = 0;
 2376                 /*
 2377                  * We must hold the lock on a vnode before writing
 2378                  * one of its buffers. Otherwise we may confuse, or
 2379                  * in the case of a snapshot vnode, deadlock the
 2380                  * system.
 2381                  *
 2382                  * The lock order here is the reverse of the normal
 2383                  * of vnode followed by buf lock.  This is ok because
 2384                  * the NOWAIT will prevent deadlock.
 2385                  */
 2386                 vp = bp->b_vp;
 2387                 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 2388                         BUF_UNLOCK(bp);
 2389                         continue;
 2390                 }
 2391                 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
 2392                         mtx_unlock(&bqlock);
 2393                         CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
 2394                             bp, bp->b_vp, bp->b_flags);
 2395                         if (curproc == bufdaemonproc)
 2396                                 vfs_bio_awrite(bp);
 2397                         else {
 2398                                 bremfree(bp);
 2399                                 bwrite(bp);
 2400                                 notbufdflashes++;
 2401                         }
 2402                         vn_finished_write(mp);
 2403                         VOP_UNLOCK(vp, 0);
 2404                         flushwithdeps += hasdeps;
 2405                         flushed++;
 2406 
 2407                         /*
 2408                          * Sleeping on runningbufspace while holding
 2409                          * vnode lock leads to deadlock.
 2410                          */
 2411                         if (curproc == bufdaemonproc)
 2412                                 waitrunningbufspace();
 2413                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2414                         mtx_lock(&bqlock);
 2415                         continue;
 2416                 }
 2417                 vn_finished_write(mp);
 2418                 BUF_UNLOCK(bp);
 2419         }
 2420         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2421         mtx_unlock(&bqlock);
 2422         free(sentinel, M_TEMP);
 2423         return (flushed);
 2424 }
 2425 
 2426 /*
 2427  * Check to see if a block is currently memory resident.
 2428  */
 2429 struct buf *
 2430 incore(struct bufobj *bo, daddr_t blkno)
 2431 {
 2432         struct buf *bp;
 2433 
 2434         BO_LOCK(bo);
 2435         bp = gbincore(bo, blkno);
 2436         BO_UNLOCK(bo);
 2437         return (bp);
 2438 }
 2439 
 2440 /*
 2441  * Returns true if no I/O is needed to access the
 2442  * associated VM object.  This is like incore except
 2443  * it also hunts around in the VM system for the data.
 2444  */
 2445 
 2446 static int
 2447 inmem(struct vnode * vp, daddr_t blkno)
 2448 {
 2449         vm_object_t obj;
 2450         vm_offset_t toff, tinc, size;
 2451         vm_page_t m;
 2452         vm_ooffset_t off;
 2453 
 2454         ASSERT_VOP_LOCKED(vp, "inmem");
 2455 
 2456         if (incore(&vp->v_bufobj, blkno))
 2457                 return 1;
 2458         if (vp->v_mount == NULL)
 2459                 return 0;
 2460         obj = vp->v_object;
 2461         if (obj == NULL)
 2462                 return (0);
 2463 
 2464         size = PAGE_SIZE;
 2465         if (size > vp->v_mount->mnt_stat.f_iosize)
 2466                 size = vp->v_mount->mnt_stat.f_iosize;
 2467         off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 2468 
 2469         VM_OBJECT_LOCK(obj);
 2470         for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 2471                 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
 2472                 if (!m)
 2473                         goto notinmem;
 2474                 tinc = size;
 2475                 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 2476                         tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 2477                 if (vm_page_is_valid(m,
 2478                     (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
 2479                         goto notinmem;
 2480         }
 2481         VM_OBJECT_UNLOCK(obj);
 2482         return 1;
 2483 
 2484 notinmem:
 2485         VM_OBJECT_UNLOCK(obj);
 2486         return (0);
 2487 }
 2488 
 2489 /*
 2490  * Set the dirty range for a buffer based on the status of the dirty
 2491  * bits in the pages comprising the buffer.  The range is limited
 2492  * to the size of the buffer.
 2493  *
 2494  * Tell the VM system that the pages associated with this buffer
 2495  * are clean.  This is used for delayed writes where the data is
 2496  * going to go to disk eventually without additional VM intevention.
 2497  *
 2498  * Note that while we only really need to clean through to b_bcount, we
 2499  * just go ahead and clean through to b_bufsize.
 2500  */
 2501 static void
 2502 vfs_clean_pages_dirty_buf(struct buf *bp)
 2503 {
 2504         vm_ooffset_t foff, noff, eoff;
 2505         vm_page_t m;
 2506         int i;
 2507 
 2508         if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
 2509                 return;
 2510 
 2511         foff = bp->b_offset;
 2512         KASSERT(bp->b_offset != NOOFFSET,
 2513             ("vfs_clean_pages_dirty_buf: no buffer offset"));
 2514 
 2515         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 2516         vfs_drain_busy_pages(bp);
 2517         vfs_setdirty_locked_object(bp);
 2518         for (i = 0; i < bp->b_npages; i++) {
 2519                 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 2520                 eoff = noff;
 2521                 if (eoff > bp->b_offset + bp->b_bufsize)
 2522                         eoff = bp->b_offset + bp->b_bufsize;
 2523                 m = bp->b_pages[i];
 2524                 vfs_page_set_validclean(bp, foff, m);
 2525                 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 2526                 foff = noff;
 2527         }
 2528         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 2529 }
 2530 
 2531 static void
 2532 vfs_setdirty_locked_object(struct buf *bp)
 2533 {
 2534         vm_object_t object;
 2535         int i;
 2536 
 2537         object = bp->b_bufobj->bo_object;
 2538         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2539 
 2540         /*
 2541          * We qualify the scan for modified pages on whether the
 2542          * object has been flushed yet.
 2543          */
 2544         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
 2545                 vm_offset_t boffset;
 2546                 vm_offset_t eoffset;
 2547 
 2548                 /*
 2549                  * test the pages to see if they have been modified directly
 2550                  * by users through the VM system.
 2551                  */
 2552                 for (i = 0; i < bp->b_npages; i++)
 2553                         vm_page_test_dirty(bp->b_pages[i]);
 2554 
 2555                 /*
 2556                  * Calculate the encompassing dirty range, boffset and eoffset,
 2557                  * (eoffset - boffset) bytes.
 2558                  */
 2559 
 2560                 for (i = 0; i < bp->b_npages; i++) {
 2561                         if (bp->b_pages[i]->dirty)
 2562                                 break;
 2563                 }
 2564                 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2565 
 2566                 for (i = bp->b_npages - 1; i >= 0; --i) {
 2567                         if (bp->b_pages[i]->dirty) {
 2568                                 break;
 2569                         }
 2570                 }
 2571                 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2572 
 2573                 /*
 2574                  * Fit it to the buffer.
 2575                  */
 2576 
 2577                 if (eoffset > bp->b_bcount)
 2578                         eoffset = bp->b_bcount;
 2579 
 2580                 /*
 2581                  * If we have a good dirty range, merge with the existing
 2582                  * dirty range.
 2583                  */
 2584 
 2585                 if (boffset < eoffset) {
 2586                         if (bp->b_dirtyoff > boffset)
 2587                                 bp->b_dirtyoff = boffset;
 2588                         if (bp->b_dirtyend < eoffset)
 2589                                 bp->b_dirtyend = eoffset;
 2590                 }
 2591         }
 2592 }
 2593 
 2594 /*
 2595  *      getblk:
 2596  *
 2597  *      Get a block given a specified block and offset into a file/device.
 2598  *      The buffers B_DONE bit will be cleared on return, making it almost
 2599  *      ready for an I/O initiation.  B_INVAL may or may not be set on 
 2600  *      return.  The caller should clear B_INVAL prior to initiating a
 2601  *      READ.
 2602  *
 2603  *      For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
 2604  *      an existing buffer.
 2605  *
 2606  *      For a VMIO buffer, B_CACHE is modified according to the backing VM.
 2607  *      If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
 2608  *      and then cleared based on the backing VM.  If the previous buffer is
 2609  *      non-0-sized but invalid, B_CACHE will be cleared.
 2610  *
 2611  *      If getblk() must create a new buffer, the new buffer is returned with
 2612  *      both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
 2613  *      case it is returned with B_INVAL clear and B_CACHE set based on the
 2614  *      backing VM.
 2615  *
 2616  *      getblk() also forces a bwrite() for any B_DELWRI buffer whos
 2617  *      B_CACHE bit is clear.
 2618  *      
 2619  *      What this means, basically, is that the caller should use B_CACHE to
 2620  *      determine whether the buffer is fully valid or not and should clear
 2621  *      B_INVAL prior to issuing a read.  If the caller intends to validate
 2622  *      the buffer by loading its data area with something, the caller needs
 2623  *      to clear B_INVAL.  If the caller does this without issuing an I/O, 
 2624  *      the caller should set B_CACHE ( as an optimization ), else the caller
 2625  *      should issue the I/O and biodone() will set B_CACHE if the I/O was
 2626  *      a write attempt or if it was a successfull read.  If the caller 
 2627  *      intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
 2628  *      prior to issuing the READ.  biodone() will *not* clear B_INVAL.
 2629  */
 2630 struct buf *
 2631 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
 2632     int flags)
 2633 {
 2634         struct buf *bp;
 2635         struct bufobj *bo;
 2636         int error;
 2637 
 2638         CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
 2639         ASSERT_VOP_LOCKED(vp, "getblk");
 2640         if (size > MAXBSIZE)
 2641                 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
 2642 
 2643         bo = &vp->v_bufobj;
 2644 loop:
 2645         /*
 2646          * Block if we are low on buffers.   Certain processes are allowed
 2647          * to completely exhaust the buffer cache.
 2648          *
 2649          * If this check ever becomes a bottleneck it may be better to
 2650          * move it into the else, when gbincore() fails.  At the moment
 2651          * it isn't a problem.
 2652          *
 2653          * XXX remove if 0 sections (clean this up after its proven)
 2654          */
 2655         if (numfreebuffers == 0) {
 2656                 if (TD_IS_IDLETHREAD(curthread))
 2657                         return NULL;
 2658                 mtx_lock(&nblock);
 2659                 needsbuffer |= VFS_BIO_NEED_ANY;
 2660                 mtx_unlock(&nblock);
 2661         }
 2662 
 2663         BO_LOCK(bo);
 2664         bp = gbincore(bo, blkno);
 2665         if (bp != NULL) {
 2666                 int lockflags;
 2667                 /*
 2668                  * Buffer is in-core.  If the buffer is not busy, it must
 2669                  * be on a queue.
 2670                  */
 2671                 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
 2672 
 2673                 if (flags & GB_LOCK_NOWAIT)
 2674                         lockflags |= LK_NOWAIT;
 2675 
 2676                 error = BUF_TIMELOCK(bp, lockflags,
 2677                     BO_MTX(bo), "getblk", slpflag, slptimeo);
 2678 
 2679                 /*
 2680                  * If we slept and got the lock we have to restart in case
 2681                  * the buffer changed identities.
 2682                  */
 2683                 if (error == ENOLCK)
 2684                         goto loop;
 2685                 /* We timed out or were interrupted. */
 2686                 else if (error)
 2687                         return (NULL);
 2688 
 2689                 /*
 2690                  * The buffer is locked.  B_CACHE is cleared if the buffer is 
 2691                  * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 2692                  * and for a VMIO buffer B_CACHE is adjusted according to the
 2693                  * backing VM cache.
 2694                  */
 2695                 if (bp->b_flags & B_INVAL)
 2696                         bp->b_flags &= ~B_CACHE;
 2697                 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 2698                         bp->b_flags |= B_CACHE;
 2699                 BO_LOCK(bo);
 2700                 bremfree(bp);
 2701                 BO_UNLOCK(bo);
 2702 
 2703                 /*
 2704                  * check for size inconsistancies for non-VMIO case.
 2705                  */
 2706 
 2707                 if (bp->b_bcount != size) {
 2708                         if ((bp->b_flags & B_VMIO) == 0 ||
 2709                             (size > bp->b_kvasize)) {
 2710                                 if (bp->b_flags & B_DELWRI) {
 2711                                         /*
 2712                                          * If buffer is pinned and caller does
 2713                                          * not want sleep  waiting for it to be
 2714                                          * unpinned, bail out
 2715                                          * */
 2716                                         if (bp->b_pin_count > 0) {
 2717                                                 if (flags & GB_LOCK_NOWAIT) {
 2718                                                         bqrelse(bp);
 2719                                                         return (NULL);
 2720                                                 } else {
 2721                                                         bunpin_wait(bp);
 2722                                                 }
 2723                                         }
 2724                                         bp->b_flags |= B_NOCACHE;
 2725                                         bwrite(bp);
 2726                                 } else {
 2727                                         if (LIST_EMPTY(&bp->b_dep)) {
 2728                                                 bp->b_flags |= B_RELBUF;
 2729                                                 brelse(bp);
 2730                                         } else {
 2731                                                 bp->b_flags |= B_NOCACHE;
 2732                                                 bwrite(bp);
 2733                                         }
 2734                                 }
 2735                                 goto loop;
 2736                         }
 2737                 }
 2738 
 2739                 /*
 2740                  * If the size is inconsistant in the VMIO case, we can resize
 2741                  * the buffer.  This might lead to B_CACHE getting set or
 2742                  * cleared.  If the size has not changed, B_CACHE remains
 2743                  * unchanged from its previous state.
 2744                  */
 2745 
 2746                 if (bp->b_bcount != size)
 2747                         allocbuf(bp, size);
 2748 
 2749                 KASSERT(bp->b_offset != NOOFFSET, 
 2750                     ("getblk: no buffer offset"));
 2751 
 2752                 /*
 2753                  * A buffer with B_DELWRI set and B_CACHE clear must
 2754                  * be committed before we can return the buffer in
 2755                  * order to prevent the caller from issuing a read
 2756                  * ( due to B_CACHE not being set ) and overwriting
 2757                  * it.
 2758                  *
 2759                  * Most callers, including NFS and FFS, need this to
 2760                  * operate properly either because they assume they
 2761                  * can issue a read if B_CACHE is not set, or because
 2762                  * ( for example ) an uncached B_DELWRI might loop due 
 2763                  * to softupdates re-dirtying the buffer.  In the latter
 2764                  * case, B_CACHE is set after the first write completes,
 2765                  * preventing further loops.
 2766                  * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 2767                  * above while extending the buffer, we cannot allow the
 2768                  * buffer to remain with B_CACHE set after the write
 2769                  * completes or it will represent a corrupt state.  To
 2770                  * deal with this we set B_NOCACHE to scrap the buffer
 2771                  * after the write.
 2772                  *
 2773                  * We might be able to do something fancy, like setting
 2774                  * B_CACHE in bwrite() except if B_DELWRI is already set,
 2775                  * so the below call doesn't set B_CACHE, but that gets real
 2776                  * confusing.  This is much easier.
 2777                  */
 2778 
 2779                 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 2780                         bp->b_flags |= B_NOCACHE;
 2781                         bwrite(bp);
 2782                         goto loop;
 2783                 }
 2784                 bp->b_flags &= ~B_DONE;
 2785         } else {
 2786                 int bsize, maxsize, vmio;
 2787                 off_t offset;
 2788 
 2789                 /*
 2790                  * Buffer is not in-core, create new buffer.  The buffer
 2791                  * returned by getnewbuf() is locked.  Note that the returned
 2792                  * buffer is also considered valid (not marked B_INVAL).
 2793                  */
 2794                 BO_UNLOCK(bo);
 2795                 /*
 2796                  * If the user does not want us to create the buffer, bail out
 2797                  * here.
 2798                  */
 2799                 if (flags & GB_NOCREAT)
 2800                         return NULL;
 2801                 bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
 2802                 offset = blkno * bsize;
 2803                 vmio = vp->v_object != NULL;
 2804                 maxsize = vmio ? size + (offset & PAGE_MASK) : size;
 2805                 maxsize = imax(maxsize, bsize);
 2806 
 2807                 bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
 2808                 if (bp == NULL) {
 2809                         if (slpflag || slptimeo)
 2810                                 return NULL;
 2811                         goto loop;
 2812                 }
 2813 
 2814                 /*
 2815                  * This code is used to make sure that a buffer is not
 2816                  * created while the getnewbuf routine is blocked.
 2817                  * This can be a problem whether the vnode is locked or not.
 2818                  * If the buffer is created out from under us, we have to
 2819                  * throw away the one we just created.
 2820                  *
 2821                  * Note: this must occur before we associate the buffer
 2822                  * with the vp especially considering limitations in
 2823                  * the splay tree implementation when dealing with duplicate
 2824                  * lblkno's.
 2825                  */
 2826                 BO_LOCK(bo);
 2827                 if (gbincore(bo, blkno)) {
 2828                         BO_UNLOCK(bo);
 2829                         bp->b_flags |= B_INVAL;
 2830                         brelse(bp);
 2831                         goto loop;
 2832                 }
 2833 
 2834                 /*
 2835                  * Insert the buffer into the hash, so that it can
 2836                  * be found by incore.
 2837                  */
 2838                 bp->b_blkno = bp->b_lblkno = blkno;
 2839                 bp->b_offset = offset;
 2840                 bgetvp(vp, bp);
 2841                 BO_UNLOCK(bo);
 2842 
 2843                 /*
 2844                  * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 2845                  * buffer size starts out as 0, B_CACHE will be set by
 2846                  * allocbuf() for the VMIO case prior to it testing the
 2847                  * backing store for validity.
 2848                  */
 2849 
 2850                 if (vmio) {
 2851                         bp->b_flags |= B_VMIO;
 2852                         KASSERT(vp->v_object == bp->b_bufobj->bo_object,
 2853                             ("ARGH! different b_bufobj->bo_object %p %p %p\n",
 2854                             bp, vp->v_object, bp->b_bufobj->bo_object));
 2855                 } else {
 2856                         bp->b_flags &= ~B_VMIO;
 2857                         KASSERT(bp->b_bufobj->bo_object == NULL,
 2858                             ("ARGH! has b_bufobj->bo_object %p %p\n",
 2859                             bp, bp->b_bufobj->bo_object));
 2860                 }
 2861 
 2862                 allocbuf(bp, size);
 2863                 bp->b_flags &= ~B_DONE;
 2864         }
 2865         CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
 2866         BUF_ASSERT_HELD(bp);
 2867         KASSERT(bp->b_bufobj == bo,
 2868             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 2869         return (bp);
 2870 }
 2871 
 2872 /*
 2873  * Get an empty, disassociated buffer of given size.  The buffer is initially
 2874  * set to B_INVAL.
 2875  */
 2876 struct buf *
 2877 geteblk(int size, int flags)
 2878 {
 2879         struct buf *bp;
 2880         int maxsize;
 2881 
 2882         maxsize = (size + BKVAMASK) & ~BKVAMASK;
 2883         while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
 2884                 if ((flags & GB_NOWAIT_BD) &&
 2885                     (curthread->td_pflags & TDP_BUFNEED) != 0)
 2886                         return (NULL);
 2887         }
 2888         allocbuf(bp, size);
 2889         bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
 2890         BUF_ASSERT_HELD(bp);
 2891         return (bp);
 2892 }
 2893 
 2894 
 2895 /*
 2896  * This code constitutes the buffer memory from either anonymous system
 2897  * memory (in the case of non-VMIO operations) or from an associated
 2898  * VM object (in the case of VMIO operations).  This code is able to
 2899  * resize a buffer up or down.
 2900  *
 2901  * Note that this code is tricky, and has many complications to resolve
 2902  * deadlock or inconsistant data situations.  Tread lightly!!! 
 2903  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
 2904  * the caller.  Calling this code willy nilly can result in the loss of data.
 2905  *
 2906  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
 2907  * B_CACHE for the non-VMIO case.
 2908  */
 2909 
 2910 int
 2911 allocbuf(struct buf *bp, int size)
 2912 {
 2913         int newbsize, mbsize;
 2914         int i;
 2915 
 2916         BUF_ASSERT_HELD(bp);
 2917 
 2918         if (bp->b_kvasize < size)
 2919                 panic("allocbuf: buffer too small");
 2920 
 2921         if ((bp->b_flags & B_VMIO) == 0) {
 2922                 caddr_t origbuf;
 2923                 int origbufsize;
 2924                 /*
 2925                  * Just get anonymous memory from the kernel.  Don't
 2926                  * mess with B_CACHE.
 2927                  */
 2928                 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2929                 if (bp->b_flags & B_MALLOC)
 2930                         newbsize = mbsize;
 2931                 else
 2932                         newbsize = round_page(size);
 2933 
 2934                 if (newbsize < bp->b_bufsize) {
 2935                         /*
 2936                          * malloced buffers are not shrunk
 2937                          */
 2938                         if (bp->b_flags & B_MALLOC) {
 2939                                 if (newbsize) {
 2940                                         bp->b_bcount = size;
 2941                                 } else {
 2942                                         free(bp->b_data, M_BIOBUF);
 2943                                         if (bp->b_bufsize) {
 2944                                                 atomic_subtract_long(
 2945                                                     &bufmallocspace,
 2946                                                     bp->b_bufsize);
 2947                                                 bufspacewakeup();
 2948                                                 bp->b_bufsize = 0;
 2949                                         }
 2950                                         bp->b_saveaddr = bp->b_kvabase;
 2951                                         bp->b_data = bp->b_saveaddr;
 2952                                         bp->b_bcount = 0;
 2953                                         bp->b_flags &= ~B_MALLOC;
 2954                                 }
 2955                                 return 1;
 2956                         }               
 2957                         vm_hold_free_pages(bp, newbsize);
 2958                 } else if (newbsize > bp->b_bufsize) {
 2959                         /*
 2960                          * We only use malloced memory on the first allocation.
 2961                          * and revert to page-allocated memory when the buffer
 2962                          * grows.
 2963                          */
 2964                         /*
 2965                          * There is a potential smp race here that could lead
 2966                          * to bufmallocspace slightly passing the max.  It
 2967                          * is probably extremely rare and not worth worrying
 2968                          * over.
 2969                          */
 2970                         if ( (bufmallocspace < maxbufmallocspace) &&
 2971                                 (bp->b_bufsize == 0) &&
 2972                                 (mbsize <= PAGE_SIZE/2)) {
 2973 
 2974                                 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
 2975                                 bp->b_bufsize = mbsize;
 2976                                 bp->b_bcount = size;
 2977                                 bp->b_flags |= B_MALLOC;
 2978                                 atomic_add_long(&bufmallocspace, mbsize);
 2979                                 return 1;
 2980                         }
 2981                         origbuf = NULL;
 2982                         origbufsize = 0;
 2983                         /*
 2984                          * If the buffer is growing on its other-than-first allocation,
 2985                          * then we revert to the page-allocation scheme.
 2986                          */
 2987                         if (bp->b_flags & B_MALLOC) {
 2988                                 origbuf = bp->b_data;
 2989                                 origbufsize = bp->b_bufsize;
 2990                                 bp->b_data = bp->b_kvabase;
 2991                                 if (bp->b_bufsize) {
 2992                                         atomic_subtract_long(&bufmallocspace,
 2993                                             bp->b_bufsize);
 2994                                         bufspacewakeup();
 2995                                         bp->b_bufsize = 0;
 2996                                 }
 2997                                 bp->b_flags &= ~B_MALLOC;
 2998                                 newbsize = round_page(newbsize);
 2999                         }
 3000                         vm_hold_load_pages(
 3001                             bp,
 3002                             (vm_offset_t) bp->b_data + bp->b_bufsize,
 3003                             (vm_offset_t) bp->b_data + newbsize);
 3004                         if (origbuf) {
 3005                                 bcopy(origbuf, bp->b_data, origbufsize);
 3006                                 free(origbuf, M_BIOBUF);
 3007                         }
 3008                 }
 3009         } else {
 3010                 int desiredpages;
 3011 
 3012                 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 3013                 desiredpages = (size == 0) ? 0 :
 3014                         num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 3015 
 3016                 if (bp->b_flags & B_MALLOC)
 3017                         panic("allocbuf: VMIO buffer can't be malloced");
 3018                 /*
 3019                  * Set B_CACHE initially if buffer is 0 length or will become
 3020                  * 0-length.
 3021                  */
 3022                 if (size == 0 || bp->b_bufsize == 0)
 3023                         bp->b_flags |= B_CACHE;
 3024 
 3025                 if (newbsize < bp->b_bufsize) {
 3026                         /*
 3027                          * DEV_BSIZE aligned new buffer size is less then the
 3028                          * DEV_BSIZE aligned existing buffer size.  Figure out
 3029                          * if we have to remove any pages.
 3030                          */
 3031                         if (desiredpages < bp->b_npages) {
 3032                                 vm_page_t m;
 3033 
 3034                                 pmap_qremove((vm_offset_t)trunc_page(
 3035                                     (vm_offset_t)bp->b_data) +
 3036                                     (desiredpages << PAGE_SHIFT),
 3037                                     (bp->b_npages - desiredpages));
 3038                                 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3039                                 for (i = desiredpages; i < bp->b_npages; i++) {
 3040                                         /*
 3041                                          * the page is not freed here -- it
 3042                                          * is the responsibility of 
 3043                                          * vnode_pager_setsize
 3044                                          */
 3045                                         m = bp->b_pages[i];
 3046                                         KASSERT(m != bogus_page,
 3047                                             ("allocbuf: bogus page found"));
 3048                                         while (vm_page_sleep_if_busy(m, TRUE,
 3049                                             "biodep"))
 3050                                                 continue;
 3051 
 3052                                         bp->b_pages[i] = NULL;
 3053                                         vm_page_lock(m);
 3054                                         vm_page_unwire(m, 0);
 3055                                         vm_page_unlock(m);
 3056                                 }
 3057                                 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3058                                 bp->b_npages = desiredpages;
 3059                         }
 3060                 } else if (size > bp->b_bcount) {
 3061                         /*
 3062                          * We are growing the buffer, possibly in a 
 3063                          * byte-granular fashion.
 3064                          */
 3065                         vm_object_t obj;
 3066                         vm_offset_t toff;
 3067                         vm_offset_t tinc;
 3068 
 3069                         /*
 3070                          * Step 1, bring in the VM pages from the object, 
 3071                          * allocating them if necessary.  We must clear
 3072                          * B_CACHE if these pages are not valid for the 
 3073                          * range covered by the buffer.
 3074                          */
 3075 
 3076                         obj = bp->b_bufobj->bo_object;
 3077 
 3078                         VM_OBJECT_LOCK(obj);
 3079                         while (bp->b_npages < desiredpages) {
 3080                                 vm_page_t m;
 3081 
 3082                                 /*
 3083                                  * We must allocate system pages since blocking
 3084                                  * here could interfere with paging I/O, no
 3085                                  * matter which process we are.
 3086                                  *
 3087                                  * We can only test VPO_BUSY here.  Blocking on
 3088                                  * m->busy might lead to a deadlock:
 3089                                  *  vm_fault->getpages->cluster_read->allocbuf
 3090                                  * Thus, we specify VM_ALLOC_IGN_SBUSY.
 3091                                  */
 3092                                 m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
 3093                                     bp->b_npages, VM_ALLOC_NOBUSY |
 3094                                     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
 3095                                     VM_ALLOC_RETRY | VM_ALLOC_IGN_SBUSY |
 3096                                     VM_ALLOC_COUNT(desiredpages - bp->b_npages));
 3097                                 if (m->valid == 0)
 3098                                         bp->b_flags &= ~B_CACHE;
 3099                                 bp->b_pages[bp->b_npages] = m;
 3100                                 ++bp->b_npages;
 3101                         }
 3102 
 3103                         /*
 3104                          * Step 2.  We've loaded the pages into the buffer,
 3105                          * we have to figure out if we can still have B_CACHE
 3106                          * set.  Note that B_CACHE is set according to the
 3107                          * byte-granular range ( bcount and size ), new the
 3108                          * aligned range ( newbsize ).
 3109                          *
 3110                          * The VM test is against m->valid, which is DEV_BSIZE
 3111                          * aligned.  Needless to say, the validity of the data
 3112                          * needs to also be DEV_BSIZE aligned.  Note that this
 3113                          * fails with NFS if the server or some other client
 3114                          * extends the file's EOF.  If our buffer is resized, 
 3115                          * B_CACHE may remain set! XXX
 3116                          */
 3117 
 3118                         toff = bp->b_bcount;
 3119                         tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 3120 
 3121                         while ((bp->b_flags & B_CACHE) && toff < size) {
 3122                                 vm_pindex_t pi;
 3123 
 3124                                 if (tinc > (size - toff))
 3125                                         tinc = size - toff;
 3126 
 3127                                 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 
 3128                                     PAGE_SHIFT;
 3129 
 3130                                 vfs_buf_test_cache(
 3131                                     bp, 
 3132                                     bp->b_offset,
 3133                                     toff, 
 3134                                     tinc, 
 3135                                     bp->b_pages[pi]
 3136                                 );
 3137                                 toff += tinc;
 3138                                 tinc = PAGE_SIZE;
 3139                         }
 3140                         VM_OBJECT_UNLOCK(obj);
 3141 
 3142                         /*
 3143                          * Step 3, fixup the KVM pmap.  Remember that
 3144                          * bp->b_data is relative to bp->b_offset, but 
 3145                          * bp->b_offset may be offset into the first page.
 3146                          */
 3147 
 3148                         bp->b_data = (caddr_t)
 3149                             trunc_page((vm_offset_t)bp->b_data);
 3150                         pmap_qenter(
 3151                             (vm_offset_t)bp->b_data,
 3152                             bp->b_pages, 
 3153                             bp->b_npages
 3154                         );
 3155                         
 3156                         bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 
 3157                             (vm_offset_t)(bp->b_offset & PAGE_MASK));
 3158                 }
 3159         }
 3160         if (newbsize < bp->b_bufsize)
 3161                 bufspacewakeup();
 3162         bp->b_bufsize = newbsize;       /* actual buffer allocation     */
 3163         bp->b_bcount = size;            /* requested buffer size        */
 3164         return 1;
 3165 }
 3166 
 3167 void
 3168 biodone(struct bio *bp)
 3169 {
 3170         struct mtx *mtxp;
 3171         void (*done)(struct bio *);
 3172 
 3173         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3174         mtx_lock(mtxp);
 3175         bp->bio_flags |= BIO_DONE;
 3176         done = bp->bio_done;
 3177         if (done == NULL)
 3178                 wakeup(bp);
 3179         mtx_unlock(mtxp);
 3180         if (done != NULL)
 3181                 done(bp);
 3182 }
 3183 
 3184 /*
 3185  * Wait for a BIO to finish.
 3186  *
 3187  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
 3188  * case is not yet clear.
 3189  */
 3190 int
 3191 biowait(struct bio *bp, const char *wchan)
 3192 {
 3193         struct mtx *mtxp;
 3194 
 3195         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3196         mtx_lock(mtxp);
 3197         while ((bp->bio_flags & BIO_DONE) == 0)
 3198                 msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
 3199         mtx_unlock(mtxp);
 3200         if (bp->bio_error != 0)
 3201                 return (bp->bio_error);
 3202         if (!(bp->bio_flags & BIO_ERROR))
 3203                 return (0);
 3204         return (EIO);
 3205 }
 3206 
 3207 void
 3208 biofinish(struct bio *bp, struct devstat *stat, int error)
 3209 {
 3210         
 3211         if (error) {
 3212                 bp->bio_error = error;
 3213                 bp->bio_flags |= BIO_ERROR;
 3214         }
 3215         if (stat != NULL)
 3216                 devstat_end_transaction_bio(stat, bp);
 3217         biodone(bp);
 3218 }
 3219 
 3220 /*
 3221  *      bufwait:
 3222  *
 3223  *      Wait for buffer I/O completion, returning error status.  The buffer
 3224  *      is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
 3225  *      error and cleared.
 3226  */
 3227 int
 3228 bufwait(struct buf *bp)
 3229 {
 3230         if (bp->b_iocmd == BIO_READ)
 3231                 bwait(bp, PRIBIO, "biord");
 3232         else
 3233                 bwait(bp, PRIBIO, "biowr");
 3234         if (bp->b_flags & B_EINTR) {
 3235                 bp->b_flags &= ~B_EINTR;
 3236                 return (EINTR);
 3237         }
 3238         if (bp->b_ioflags & BIO_ERROR) {
 3239                 return (bp->b_error ? bp->b_error : EIO);
 3240         } else {
 3241                 return (0);
 3242         }
 3243 }
 3244 
 3245  /*
 3246   * Call back function from struct bio back up to struct buf.
 3247   */
 3248 static void
 3249 bufdonebio(struct bio *bip)
 3250 {
 3251         struct buf *bp;
 3252 
 3253         bp = bip->bio_caller2;
 3254         bp->b_resid = bp->b_bcount - bip->bio_completed;
 3255         bp->b_resid = bip->bio_resid;   /* XXX: remove */
 3256         bp->b_ioflags = bip->bio_flags;
 3257         bp->b_error = bip->bio_error;
 3258         if (bp->b_error)
 3259                 bp->b_ioflags |= BIO_ERROR;
 3260         bufdone(bp);
 3261         g_destroy_bio(bip);
 3262 }
 3263 
 3264 void
 3265 dev_strategy(struct cdev *dev, struct buf *bp)
 3266 {
 3267         struct cdevsw *csw;
 3268         struct bio *bip;
 3269         int ref;
 3270 
 3271         if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
 3272                 panic("b_iocmd botch");
 3273         for (;;) {
 3274                 bip = g_new_bio();
 3275                 if (bip != NULL)
 3276                         break;
 3277                 /* Try again later */
 3278                 tsleep(&bp, PRIBIO, "dev_strat", hz/10);
 3279         }
 3280         bip->bio_cmd = bp->b_iocmd;
 3281         bip->bio_offset = bp->b_iooffset;
 3282         bip->bio_length = bp->b_bcount;
 3283         bip->bio_bcount = bp->b_bcount; /* XXX: remove */
 3284         bip->bio_data = bp->b_data;
 3285         bip->bio_done = bufdonebio;
 3286         bip->bio_caller2 = bp;
 3287         bip->bio_dev = dev;
 3288         KASSERT(dev->si_refcount > 0,
 3289             ("dev_strategy on un-referenced struct cdev *(%s)",
 3290             devtoname(dev)));
 3291         csw = dev_refthread(dev, &ref);
 3292         if (csw == NULL) {
 3293                 g_destroy_bio(bip);
 3294                 bp->b_error = ENXIO;
 3295                 bp->b_ioflags = BIO_ERROR;
 3296                 bufdone(bp);
 3297                 return;
 3298         }
 3299         (*csw->d_strategy)(bip);
 3300         dev_relthread(dev, ref);
 3301 }
 3302 
 3303 /*
 3304  *      bufdone:
 3305  *
 3306  *      Finish I/O on a buffer, optionally calling a completion function.
 3307  *      This is usually called from an interrupt so process blocking is
 3308  *      not allowed.
 3309  *
 3310  *      biodone is also responsible for setting B_CACHE in a B_VMIO bp.
 3311  *      In a non-VMIO bp, B_CACHE will be set on the next getblk() 
 3312  *      assuming B_INVAL is clear.
 3313  *
 3314  *      For the VMIO case, we set B_CACHE if the op was a read and no
 3315  *      read error occured, or if the op was a write.  B_CACHE is never
 3316  *      set if the buffer is invalid or otherwise uncacheable.
 3317  *
 3318  *      biodone does not mess with B_INVAL, allowing the I/O routine or the
 3319  *      initiator to leave B_INVAL set to brelse the buffer out of existance
 3320  *      in the biodone routine.
 3321  */
 3322 void
 3323 bufdone(struct buf *bp)
 3324 {
 3325         struct bufobj *dropobj;
 3326         void    (*biodone)(struct buf *);
 3327 
 3328         CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 3329         dropobj = NULL;
 3330 
 3331         KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 3332         BUF_ASSERT_HELD(bp);
 3333 
 3334         runningbufwakeup(bp);
 3335         if (bp->b_iocmd == BIO_WRITE)
 3336                 dropobj = bp->b_bufobj;
 3337         /* call optional completion function if requested */
 3338         if (bp->b_iodone != NULL) {
 3339                 biodone = bp->b_iodone;
 3340                 bp->b_iodone = NULL;
 3341                 (*biodone) (bp);
 3342                 if (dropobj)
 3343                         bufobj_wdrop(dropobj);
 3344                 return;
 3345         }
 3346 
 3347         bufdone_finish(bp);
 3348 
 3349         if (dropobj)
 3350                 bufobj_wdrop(dropobj);
 3351 }
 3352 
 3353 void
 3354 bufdone_finish(struct buf *bp)
 3355 {
 3356         BUF_ASSERT_HELD(bp);
 3357 
 3358         if (!LIST_EMPTY(&bp->b_dep))
 3359                 buf_complete(bp);
 3360 
 3361         if (bp->b_flags & B_VMIO) {
 3362                 vm_ooffset_t foff;
 3363                 vm_page_t m;
 3364                 vm_object_t obj;
 3365                 struct vnode *vp;
 3366                 int bogus, i, iosize;
 3367 
 3368                 obj = bp->b_bufobj->bo_object;
 3369                 KASSERT(obj->paging_in_progress >= bp->b_npages,
 3370                     ("biodone_finish: paging in progress(%d) < b_npages(%d)",
 3371                     obj->paging_in_progress, bp->b_npages));
 3372 
 3373                 vp = bp->b_vp;
 3374                 KASSERT(vp->v_holdcnt > 0,
 3375                     ("biodone_finish: vnode %p has zero hold count", vp));
 3376                 KASSERT(vp->v_object != NULL,
 3377                     ("biodone_finish: vnode %p has no vm_object", vp));
 3378 
 3379                 foff = bp->b_offset;
 3380                 KASSERT(bp->b_offset != NOOFFSET,
 3381                     ("biodone_finish: bp %p has no buffer offset", bp));
 3382 
 3383                 /*
 3384                  * Set B_CACHE if the op was a normal read and no error
 3385                  * occured.  B_CACHE is set for writes in the b*write()
 3386                  * routines.
 3387                  */
 3388                 iosize = bp->b_bcount - bp->b_resid;
 3389                 if (bp->b_iocmd == BIO_READ &&
 3390                     !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 3391                     !(bp->b_ioflags & BIO_ERROR)) {
 3392                         bp->b_flags |= B_CACHE;
 3393                 }
 3394                 bogus = 0;
 3395                 VM_OBJECT_LOCK(obj);
 3396                 for (i = 0; i < bp->b_npages; i++) {
 3397                         int bogusflag = 0;
 3398                         int resid;
 3399 
 3400                         resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 3401                         if (resid > iosize)
 3402                                 resid = iosize;
 3403 
 3404                         /*
 3405                          * cleanup bogus pages, restoring the originals
 3406                          */
 3407                         m = bp->b_pages[i];
 3408                         if (m == bogus_page) {
 3409                                 bogus = bogusflag = 1;
 3410                                 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
 3411                                 if (m == NULL)
 3412                                         panic("biodone: page disappeared!");
 3413                                 bp->b_pages[i] = m;
 3414                         }
 3415                         KASSERT(OFF_TO_IDX(foff) == m->pindex,
 3416                             ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
 3417                             (intmax_t)foff, (uintmax_t)m->pindex));
 3418 
 3419                         /*
 3420                          * In the write case, the valid and clean bits are
 3421                          * already changed correctly ( see bdwrite() ), so we 
 3422                          * only need to do this here in the read case.
 3423                          */
 3424                         if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
 3425                                 KASSERT((m->dirty & vm_page_bits(foff &
 3426                                     PAGE_MASK, resid)) == 0, ("bufdone_finish:"
 3427                                     " page %p has unexpected dirty bits", m));
 3428                                 vfs_page_set_valid(bp, foff, m);
 3429                         }
 3430 
 3431                         vm_page_io_finish(m);
 3432                         vm_object_pip_subtract(obj, 1);
 3433                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3434                         iosize -= resid;
 3435                 }
 3436                 vm_object_pip_wakeupn(obj, 0);
 3437                 VM_OBJECT_UNLOCK(obj);
 3438                 if (bogus)
 3439                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3440                             bp->b_pages, bp->b_npages);
 3441         }
 3442 
 3443         /*
 3444          * For asynchronous completions, release the buffer now. The brelse
 3445          * will do a wakeup there if necessary - so no need to do a wakeup
 3446          * here in the async case. The sync case always needs to do a wakeup.
 3447          */
 3448 
 3449         if (bp->b_flags & B_ASYNC) {
 3450                 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
 3451                         brelse(bp);
 3452                 else
 3453                         bqrelse(bp);
 3454         } else
 3455                 bdone(bp);
 3456 }
 3457 
 3458 /*
 3459  * This routine is called in lieu of iodone in the case of
 3460  * incomplete I/O.  This keeps the busy status for pages
 3461  * consistant.
 3462  */
 3463 void
 3464 vfs_unbusy_pages(struct buf *bp)
 3465 {
 3466         int i;
 3467         vm_object_t obj;
 3468         vm_page_t m;
 3469 
 3470         runningbufwakeup(bp);
 3471         if (!(bp->b_flags & B_VMIO))
 3472                 return;
 3473 
 3474         obj = bp->b_bufobj->bo_object;
 3475         VM_OBJECT_LOCK(obj);
 3476         for (i = 0; i < bp->b_npages; i++) {
 3477                 m = bp->b_pages[i];
 3478                 if (m == bogus_page) {
 3479                         m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 3480                         if (!m)
 3481                                 panic("vfs_unbusy_pages: page missing\n");
 3482                         bp->b_pages[i] = m;
 3483                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3484                             bp->b_pages, bp->b_npages);
 3485                 }
 3486                 vm_object_pip_subtract(obj, 1);
 3487                 vm_page_io_finish(m);
 3488         }
 3489         vm_object_pip_wakeupn(obj, 0);
 3490         VM_OBJECT_UNLOCK(obj);
 3491 }
 3492 
 3493 /*
 3494  * vfs_page_set_valid:
 3495  *
 3496  *      Set the valid bits in a page based on the supplied offset.   The
 3497  *      range is restricted to the buffer's size.
 3498  *
 3499  *      This routine is typically called after a read completes.
 3500  */
 3501 static void
 3502 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 3503 {
 3504         vm_ooffset_t eoff;
 3505 
 3506         /*
 3507          * Compute the end offset, eoff, such that [off, eoff) does not span a
 3508          * page boundary and eoff is not greater than the end of the buffer.
 3509          * The end of the buffer, in this case, is our file EOF, not the
 3510          * allocation size of the buffer.
 3511          */
 3512         eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
 3513         if (eoff > bp->b_offset + bp->b_bcount)
 3514                 eoff = bp->b_offset + bp->b_bcount;
 3515 
 3516         /*
 3517          * Set valid range.  This is typically the entire buffer and thus the
 3518          * entire page.
 3519          */
 3520         if (eoff > off)
 3521                 vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
 3522 }
 3523 
 3524 /*
 3525  * vfs_page_set_validclean:
 3526  *
 3527  *      Set the valid bits and clear the dirty bits in a page based on the
 3528  *      supplied offset.   The range is restricted to the buffer's size.
 3529  */
 3530 static void
 3531 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 3532 {
 3533         vm_ooffset_t soff, eoff;
 3534 
 3535         /*
 3536          * Start and end offsets in buffer.  eoff - soff may not cross a
 3537          * page boundry or cross the end of the buffer.  The end of the
 3538          * buffer, in this case, is our file EOF, not the allocation size
 3539          * of the buffer.
 3540          */
 3541         soff = off;
 3542         eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3543         if (eoff > bp->b_offset + bp->b_bcount)
 3544                 eoff = bp->b_offset + bp->b_bcount;
 3545 
 3546         /*
 3547          * Set valid range.  This is typically the entire buffer and thus the
 3548          * entire page.
 3549          */
 3550         if (eoff > soff) {
 3551                 vm_page_set_validclean(
 3552                     m,
 3553                    (vm_offset_t) (soff & PAGE_MASK),
 3554                    (vm_offset_t) (eoff - soff)
 3555                 );
 3556         }
 3557 }
 3558 
 3559 /*
 3560  * Ensure that all buffer pages are not busied by VPO_BUSY flag. If
 3561  * any page is busy, drain the flag.
 3562  */
 3563 static void
 3564 vfs_drain_busy_pages(struct buf *bp)
 3565 {
 3566         vm_page_t m;
 3567         int i, last_busied;
 3568 
 3569         VM_OBJECT_LOCK_ASSERT(bp->b_bufobj->bo_object, MA_OWNED);
 3570         last_busied = 0;
 3571         for (i = 0; i < bp->b_npages; i++) {
 3572                 m = bp->b_pages[i];
 3573                 if ((m->oflags & VPO_BUSY) != 0) {
 3574                         for (; last_busied < i; last_busied++)
 3575                                 vm_page_busy(bp->b_pages[last_busied]);
 3576                         while ((m->oflags & VPO_BUSY) != 0)
 3577                                 vm_page_sleep(m, "vbpage");
 3578                 }
 3579         }
 3580         for (i = 0; i < last_busied; i++)
 3581                 vm_page_wakeup(bp->b_pages[i]);
 3582 }
 3583 
 3584 /*
 3585  * This routine is called before a device strategy routine.
 3586  * It is used to tell the VM system that paging I/O is in
 3587  * progress, and treat the pages associated with the buffer
 3588  * almost as being VPO_BUSY.  Also the object paging_in_progress
 3589  * flag is handled to make sure that the object doesn't become
 3590  * inconsistant.
 3591  *
 3592  * Since I/O has not been initiated yet, certain buffer flags
 3593  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
 3594  * and should be ignored.
 3595  */
 3596 void
 3597 vfs_busy_pages(struct buf *bp, int clear_modify)
 3598 {
 3599         int i, bogus;
 3600         vm_object_t obj;
 3601         vm_ooffset_t foff;
 3602         vm_page_t m;
 3603 
 3604         if (!(bp->b_flags & B_VMIO))
 3605                 return;
 3606 
 3607         obj = bp->b_bufobj->bo_object;
 3608         foff = bp->b_offset;
 3609         KASSERT(bp->b_offset != NOOFFSET,
 3610             ("vfs_busy_pages: no buffer offset"));
 3611         VM_OBJECT_LOCK(obj);
 3612         vfs_drain_busy_pages(bp);
 3613         if (bp->b_bufsize != 0)
 3614                 vfs_setdirty_locked_object(bp);
 3615         bogus = 0;
 3616         for (i = 0; i < bp->b_npages; i++) {
 3617                 m = bp->b_pages[i];
 3618 
 3619                 if ((bp->b_flags & B_CLUSTER) == 0) {
 3620                         vm_object_pip_add(obj, 1);
 3621                         vm_page_io_start(m);
 3622                 }
 3623                 /*
 3624                  * When readying a buffer for a read ( i.e
 3625                  * clear_modify == 0 ), it is important to do
 3626                  * bogus_page replacement for valid pages in 
 3627                  * partially instantiated buffers.  Partially 
 3628                  * instantiated buffers can, in turn, occur when
 3629                  * reconstituting a buffer from its VM backing store
 3630                  * base.  We only have to do this if B_CACHE is
 3631                  * clear ( which causes the I/O to occur in the
 3632                  * first place ).  The replacement prevents the read
 3633                  * I/O from overwriting potentially dirty VM-backed
 3634                  * pages.  XXX bogus page replacement is, uh, bogus.
 3635                  * It may not work properly with small-block devices.
 3636                  * We need to find a better way.
 3637                  */
 3638                 if (clear_modify) {
 3639                         pmap_remove_write(m);
 3640                         vfs_page_set_validclean(bp, foff, m);
 3641                 } else if (m->valid == VM_PAGE_BITS_ALL &&
 3642                     (bp->b_flags & B_CACHE) == 0) {
 3643                         bp->b_pages[i] = bogus_page;
 3644                         bogus++;
 3645                 }
 3646                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3647         }
 3648         VM_OBJECT_UNLOCK(obj);
 3649         if (bogus)
 3650                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3651                     bp->b_pages, bp->b_npages);
 3652 }
 3653 
 3654 /*
 3655  *      vfs_bio_set_valid:
 3656  *
 3657  *      Set the range within the buffer to valid.  The range is
 3658  *      relative to the beginning of the buffer, b_offset.  Note that
 3659  *      b_offset itself may be offset from the beginning of the first
 3660  *      page.
 3661  */
 3662 void   
 3663 vfs_bio_set_valid(struct buf *bp, int base, int size)
 3664 {
 3665         int i, n;
 3666         vm_page_t m;
 3667 
 3668         if (!(bp->b_flags & B_VMIO))
 3669                 return;
 3670 
 3671         /*
 3672          * Fixup base to be relative to beginning of first page.
 3673          * Set initial n to be the maximum number of bytes in the
 3674          * first page that can be validated.
 3675          */
 3676         base += (bp->b_offset & PAGE_MASK);
 3677         n = PAGE_SIZE - (base & PAGE_MASK);
 3678 
 3679         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3680         for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 3681                 m = bp->b_pages[i];
 3682                 if (n > size)
 3683                         n = size;
 3684                 vm_page_set_valid(m, base & PAGE_MASK, n);
 3685                 base += n;
 3686                 size -= n;
 3687                 n = PAGE_SIZE;
 3688         }
 3689         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3690 }
 3691 
 3692 /*
 3693  *      vfs_bio_clrbuf:
 3694  *
 3695  *      If the specified buffer is a non-VMIO buffer, clear the entire
 3696  *      buffer.  If the specified buffer is a VMIO buffer, clear and
 3697  *      validate only the previously invalid portions of the buffer.
 3698  *      This routine essentially fakes an I/O, so we need to clear
 3699  *      BIO_ERROR and B_INVAL.
 3700  *
 3701  *      Note that while we only theoretically need to clear through b_bcount,
 3702  *      we go ahead and clear through b_bufsize.
 3703  */
 3704 void
 3705 vfs_bio_clrbuf(struct buf *bp) 
 3706 {
 3707         int i, j, mask;
 3708         caddr_t sa, ea;
 3709 
 3710         if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
 3711                 clrbuf(bp);
 3712                 return;
 3713         }
 3714         bp->b_flags &= ~B_INVAL;
 3715         bp->b_ioflags &= ~BIO_ERROR;
 3716         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3717         if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
 3718             (bp->b_offset & PAGE_MASK) == 0) {
 3719                 if (bp->b_pages[0] == bogus_page)
 3720                         goto unlock;
 3721                 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
 3722                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
 3723                 if ((bp->b_pages[0]->valid & mask) == mask)
 3724                         goto unlock;
 3725                 if ((bp->b_pages[0]->valid & mask) == 0) {
 3726                         bzero(bp->b_data, bp->b_bufsize);
 3727                         bp->b_pages[0]->valid |= mask;
 3728                         goto unlock;
 3729                 }
 3730         }
 3731         ea = sa = bp->b_data;
 3732         for(i = 0; i < bp->b_npages; i++, sa = ea) {
 3733                 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
 3734                 ea = (caddr_t)(vm_offset_t)ulmin(
 3735                     (u_long)(vm_offset_t)ea,
 3736                     (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
 3737                 if (bp->b_pages[i] == bogus_page)
 3738                         continue;
 3739                 j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
 3740                 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
 3741                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
 3742                 if ((bp->b_pages[i]->valid & mask) == mask)
 3743                         continue;
 3744                 if ((bp->b_pages[i]->valid & mask) == 0)
 3745                         bzero(sa, ea - sa);
 3746                 else {
 3747                         for (; sa < ea; sa += DEV_BSIZE, j++) {
 3748                                 if ((bp->b_pages[i]->valid & (1 << j)) == 0)
 3749                                         bzero(sa, DEV_BSIZE);
 3750                         }
 3751                 }
 3752                 bp->b_pages[i]->valid |= mask;
 3753         }
 3754 unlock:
 3755         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3756         bp->b_resid = 0;
 3757 }
 3758 
 3759 /*
 3760  * vm_hold_load_pages and vm_hold_free_pages get pages into
 3761  * a buffers address space.  The pages are anonymous and are
 3762  * not associated with a file object.
 3763  */
 3764 static void
 3765 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 3766 {
 3767         vm_offset_t pg;
 3768         vm_page_t p;
 3769         int index;
 3770 
 3771         to = round_page(to);
 3772         from = round_page(from);
 3773         index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3774 
 3775         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3776 tryagain:
 3777                 /*
 3778                  * note: must allocate system pages since blocking here
 3779                  * could interfere with paging I/O, no matter which
 3780                  * process we are.
 3781                  */
 3782                 p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
 3783                     VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
 3784                 if (p == NULL) {
 3785                         VM_WAIT;
 3786                         goto tryagain;
 3787                 }
 3788                 pmap_qenter(pg, &p, 1);
 3789                 bp->b_pages[index] = p;
 3790         }
 3791         bp->b_npages = index;
 3792 }
 3793 
 3794 /* Return pages associated with this buf to the vm system */
 3795 static void
 3796 vm_hold_free_pages(struct buf *bp, int newbsize)
 3797 {
 3798         vm_offset_t from;
 3799         vm_page_t p;
 3800         int index, newnpages;
 3801 
 3802         from = round_page((vm_offset_t)bp->b_data + newbsize);
 3803         newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3804         if (bp->b_npages > newnpages)
 3805                 pmap_qremove(from, bp->b_npages - newnpages);
 3806         for (index = newnpages; index < bp->b_npages; index++) {
 3807                 p = bp->b_pages[index];
 3808                 bp->b_pages[index] = NULL;
 3809                 if (p->busy != 0)
 3810                         printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
 3811                             (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
 3812                 p->wire_count--;
 3813                 vm_page_free(p);
 3814                 atomic_subtract_int(&cnt.v_wire_count, 1);
 3815         }
 3816         bp->b_npages = newnpages;
 3817 }
 3818 
 3819 /*
 3820  * Map an IO request into kernel virtual address space.
 3821  *
 3822  * All requests are (re)mapped into kernel VA space.
 3823  * Notice that we use b_bufsize for the size of the buffer
 3824  * to be mapped.  b_bcount might be modified by the driver.
 3825  *
 3826  * Note that even if the caller determines that the address space should
 3827  * be valid, a race or a smaller-file mapped into a larger space may
 3828  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
 3829  * check the return value.
 3830  */
 3831 int
 3832 vmapbuf(struct buf *bp)
 3833 {
 3834         caddr_t kva;
 3835         vm_prot_t prot;
 3836         int pidx;
 3837 
 3838         if (bp->b_bufsize < 0)
 3839                 return (-1);
 3840         prot = VM_PROT_READ;
 3841         if (bp->b_iocmd == BIO_READ)
 3842                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 3843         if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 3844             (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
 3845             btoc(MAXPHYS))) < 0)
 3846                 return (-1);
 3847         pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
 3848         
 3849         kva = bp->b_saveaddr;
 3850         bp->b_npages = pidx;
 3851         bp->b_saveaddr = bp->b_data;
 3852         bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
 3853         return(0);
 3854 }
 3855 
 3856 /*
 3857  * Free the io map PTEs associated with this IO operation.
 3858  * We also invalidate the TLB entries and restore the original b_addr.
 3859  */
 3860 void
 3861 vunmapbuf(struct buf *bp)
 3862 {
 3863         int npages;
 3864 
 3865         npages = bp->b_npages;
 3866         pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
 3867         vm_page_unhold_pages(bp->b_pages, npages);
 3868         
 3869         bp->b_data = bp->b_saveaddr;
 3870 }
 3871 
 3872 void
 3873 bdone(struct buf *bp)
 3874 {
 3875         struct mtx *mtxp;
 3876 
 3877         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3878         mtx_lock(mtxp);
 3879         bp->b_flags |= B_DONE;
 3880         wakeup(bp);
 3881         mtx_unlock(mtxp);
 3882 }
 3883 
 3884 void
 3885 bwait(struct buf *bp, u_char pri, const char *wchan)
 3886 {
 3887         struct mtx *mtxp;
 3888 
 3889         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3890         mtx_lock(mtxp);
 3891         while ((bp->b_flags & B_DONE) == 0)
 3892                 msleep(bp, mtxp, pri, wchan, 0);
 3893         mtx_unlock(mtxp);
 3894 }
 3895 
 3896 int
 3897 bufsync(struct bufobj *bo, int waitfor)
 3898 {
 3899 
 3900         return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
 3901 }
 3902 
 3903 void
 3904 bufstrategy(struct bufobj *bo, struct buf *bp)
 3905 {
 3906         int i = 0;
 3907         struct vnode *vp;
 3908 
 3909         vp = bp->b_vp;
 3910         KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
 3911         KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
 3912             ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
 3913         i = VOP_STRATEGY(vp, bp);
 3914         KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
 3915 }
 3916 
 3917 void
 3918 bufobj_wrefl(struct bufobj *bo)
 3919 {
 3920 
 3921         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 3922         ASSERT_BO_LOCKED(bo);
 3923         bo->bo_numoutput++;
 3924 }
 3925 
 3926 void
 3927 bufobj_wref(struct bufobj *bo)
 3928 {
 3929 
 3930         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 3931         BO_LOCK(bo);
 3932         bo->bo_numoutput++;
 3933         BO_UNLOCK(bo);
 3934 }
 3935 
 3936 void
 3937 bufobj_wdrop(struct bufobj *bo)
 3938 {
 3939 
 3940         KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
 3941         BO_LOCK(bo);
 3942         KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
 3943         if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
 3944                 bo->bo_flag &= ~BO_WWAIT;
 3945                 wakeup(&bo->bo_numoutput);
 3946         }
 3947         BO_UNLOCK(bo);
 3948 }
 3949 
 3950 int
 3951 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
 3952 {
 3953         int error;
 3954 
 3955         KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
 3956         ASSERT_BO_LOCKED(bo);
 3957         error = 0;
 3958         while (bo->bo_numoutput) {
 3959                 bo->bo_flag |= BO_WWAIT;
 3960                 error = msleep(&bo->bo_numoutput, BO_MTX(bo),
 3961                     slpflag | (PRIBIO + 1), "bo_wwait", timeo);
 3962                 if (error)
 3963                         break;
 3964         }
 3965         return (error);
 3966 }
 3967 
 3968 void
 3969 bpin(struct buf *bp)
 3970 {
 3971         struct mtx *mtxp;
 3972 
 3973         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3974         mtx_lock(mtxp);
 3975         bp->b_pin_count++;
 3976         mtx_unlock(mtxp);
 3977 }
 3978 
 3979 void
 3980 bunpin(struct buf *bp)
 3981 {
 3982         struct mtx *mtxp;
 3983 
 3984         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3985         mtx_lock(mtxp);
 3986         if (--bp->b_pin_count == 0)
 3987                 wakeup(bp);
 3988         mtx_unlock(mtxp);
 3989 }
 3990 
 3991 void
 3992 bunpin_wait(struct buf *bp)
 3993 {
 3994         struct mtx *mtxp;
 3995 
 3996         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3997         mtx_lock(mtxp);
 3998         while (bp->b_pin_count > 0)
 3999                 msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
 4000         mtx_unlock(mtxp);
 4001 }
 4002 
 4003 #include "opt_ddb.h"
 4004 #ifdef DDB
 4005 #include <ddb/ddb.h>
 4006 
 4007 /* DDB command to show buffer data */
 4008 DB_SHOW_COMMAND(buffer, db_show_buffer)
 4009 {
 4010         /* get args */
 4011         struct buf *bp = (struct buf *)addr;
 4012 
 4013         if (!have_addr) {
 4014                 db_printf("usage: show buffer <addr>\n");
 4015                 return;
 4016         }
 4017 
 4018         db_printf("buf at %p\n", bp);
 4019         db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
 4020             (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
 4021             PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
 4022         db_printf(
 4023             "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 4024             "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
 4025             "b_dep = %p\n",
 4026             bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 4027             bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
 4028             (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
 4029         if (bp->b_npages) {
 4030                 int i;
 4031                 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 4032                 for (i = 0; i < bp->b_npages; i++) {
 4033                         vm_page_t m;
 4034                         m = bp->b_pages[i];
 4035                         db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
 4036                             (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
 4037                         if ((i + 1) < bp->b_npages)
 4038                                 db_printf(",");
 4039                 }
 4040                 db_printf("\n");
 4041         }
 4042         db_printf(" ");
 4043         BUF_LOCKPRINTINFO(bp);
 4044 }
 4045 
 4046 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
 4047 {
 4048         struct buf *bp;
 4049         int i;
 4050 
 4051         for (i = 0; i < nbuf; i++) {
 4052                 bp = &buf[i];
 4053                 if (BUF_ISLOCKED(bp)) {
 4054                         db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4055                         db_printf("\n");
 4056                 }
 4057         }
 4058 }
 4059 
 4060 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
 4061 {
 4062         struct vnode *vp;
 4063         struct buf *bp;
 4064 
 4065         if (!have_addr) {
 4066                 db_printf("usage: show vnodebufs <addr>\n");
 4067                 return;
 4068         }
 4069         vp = (struct vnode *)addr;
 4070         db_printf("Clean buffers:\n");
 4071         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
 4072                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4073                 db_printf("\n");
 4074         }
 4075         db_printf("Dirty buffers:\n");
 4076         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
 4077                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4078                 db_printf("\n");
 4079         }
 4080 }
 4081 
 4082 DB_COMMAND(countfreebufs, db_coundfreebufs)
 4083 {
 4084         struct buf *bp;
 4085         int i, used = 0, nfree = 0;
 4086 
 4087         if (have_addr) {
 4088                 db_printf("usage: countfreebufs\n");
 4089                 return;
 4090         }
 4091 
 4092         for (i = 0; i < nbuf; i++) {
 4093                 bp = &buf[i];
 4094                 if ((bp->b_vflags & BV_INFREECNT) != 0)
 4095                         nfree++;
 4096                 else
 4097                         used++;
 4098         }
 4099 
 4100         db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
 4101             nfree + used);
 4102         db_printf("numfreebuffers is %d\n", numfreebuffers);
 4103 }
 4104 #endif /* DDB */

Cache object: f37909774ea8681dc6ed8ae18b1ada02


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.