The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Poul-Henning Kamp
    3  * Copyright (c) 1994,1997 John S. Dyson
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 
   28 /*
   29  * this file contains a new buffer I/O scheme implementing a coherent
   30  * VM object and buffer cache scheme.  Pains have been taken to make
   31  * sure that the performance degradation associated with schemes such
   32  * as this is not realized.
   33  *
   34  * Author:  John S. Dyson
   35  * Significant help during the development and debugging phases
   36  * had been provided by David Greenman, also of the FreeBSD core team.
   37  *
   38  * see man buf(9) for more info.
   39  */
   40 
   41 #include <sys/cdefs.h>
   42 __FBSDID("$FreeBSD: releng/9.0/sys/kern/vfs_bio.c 225448 2011-09-08 12:56:26Z attilio $");
   43 
   44 #include <sys/param.h>
   45 #include <sys/systm.h>
   46 #include <sys/bio.h>
   47 #include <sys/conf.h>
   48 #include <sys/buf.h>
   49 #include <sys/devicestat.h>
   50 #include <sys/eventhandler.h>
   51 #include <sys/fail.h>
   52 #include <sys/limits.h>
   53 #include <sys/lock.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mount.h>
   56 #include <sys/mutex.h>
   57 #include <sys/kernel.h>
   58 #include <sys/kthread.h>
   59 #include <sys/proc.h>
   60 #include <sys/resourcevar.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/vmmeter.h>
   63 #include <sys/vnode.h>
   64 #include <geom/geom.h>
   65 #include <vm/vm.h>
   66 #include <vm/vm_param.h>
   67 #include <vm/vm_kern.h>
   68 #include <vm/vm_pageout.h>
   69 #include <vm/vm_page.h>
   70 #include <vm/vm_object.h>
   71 #include <vm/vm_extern.h>
   72 #include <vm/vm_map.h>
   73 #include "opt_compat.h"
   74 #include "opt_directio.h"
   75 #include "opt_swap.h"
   76 
   77 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
   78 
   79 struct  bio_ops bioops;         /* I/O operation notification */
   80 
   81 struct  buf_ops buf_ops_bio = {
   82         .bop_name       =       "buf_ops_bio",
   83         .bop_write      =       bufwrite,
   84         .bop_strategy   =       bufstrategy,
   85         .bop_sync       =       bufsync,
   86         .bop_bdflush    =       bufbdflush,
   87 };
   88 
   89 /*
   90  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
   91  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
   92  */
   93 struct buf *buf;                /* buffer header pool */
   94 
   95 static struct proc *bufdaemonproc;
   96 
   97 static int inmem(struct vnode *vp, daddr_t blkno);
   98 static void vm_hold_free_pages(struct buf *bp, int newbsize);
   99 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
  100                 vm_offset_t to);
  101 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
  102 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
  103                 vm_page_t m);
  104 static void vfs_drain_busy_pages(struct buf *bp);
  105 static void vfs_clean_pages_dirty_buf(struct buf *bp);
  106 static void vfs_setdirty_locked_object(struct buf *bp);
  107 static void vfs_vmio_release(struct buf *bp);
  108 static int vfs_bio_clcheck(struct vnode *vp, int size,
  109                 daddr_t lblkno, daddr_t blkno);
  110 static int buf_do_flush(struct vnode *vp);
  111 static int flushbufqueues(struct vnode *, int, int);
  112 static void buf_daemon(void);
  113 static void bremfreel(struct buf *bp);
  114 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  115     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  116 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
  117 #endif
  118 
  119 int vmiodirenable = TRUE;
  120 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
  121     "Use the VM system for directory writes");
  122 long runningbufspace;
  123 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
  124     "Amount of presently outstanding async buffer io");
  125 static long bufspace;
  126 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  127     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  128 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
  129     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
  130 #else
  131 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
  132     "Virtual memory used for buffers");
  133 #endif
  134 static long maxbufspace;
  135 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
  136     "Maximum allowed value of bufspace (including buf_daemon)");
  137 static long bufmallocspace;
  138 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
  139     "Amount of malloced memory for buffers");
  140 static long maxbufmallocspace;
  141 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
  142     "Maximum amount of malloced memory for buffers");
  143 static long lobufspace;
  144 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
  145     "Minimum amount of buffers we want to have");
  146 long hibufspace;
  147 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
  148     "Maximum allowed value of bufspace (excluding buf_daemon)");
  149 static int bufreusecnt;
  150 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
  151     "Number of times we have reused a buffer");
  152 static int buffreekvacnt;
  153 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
  154     "Number of times we have freed the KVA space from some buffer");
  155 static int bufdefragcnt;
  156 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
  157     "Number of times we have had to repeat buffer allocation to defragment");
  158 static long lorunningspace;
  159 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
  160     "Minimum preferred space used for in-progress I/O");
  161 static long hirunningspace;
  162 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
  163     "Maximum amount of space to use for in-progress I/O");
  164 int dirtybufferflushes;
  165 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
  166     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
  167 int bdwriteskip;
  168 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
  169     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
  170 int altbufferflushes;
  171 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
  172     0, "Number of fsync flushes to limit dirty buffers");
  173 static int recursiveflushes;
  174 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
  175     0, "Number of flushes skipped due to being recursive");
  176 static int numdirtybuffers;
  177 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
  178     "Number of buffers that are dirty (has unwritten changes) at the moment");
  179 static int lodirtybuffers;
  180 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
  181     "How many buffers we want to have free before bufdaemon can sleep");
  182 static int hidirtybuffers;
  183 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
  184     "When the number of dirty buffers is considered severe");
  185 int dirtybufthresh;
  186 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
  187     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
  188 static int numfreebuffers;
  189 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
  190     "Number of free buffers");
  191 static int lofreebuffers;
  192 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
  193    "XXX Unused");
  194 static int hifreebuffers;
  195 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
  196    "XXX Complicatedly unused");
  197 static int getnewbufcalls;
  198 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
  199    "Number of calls to getnewbuf");
  200 static int getnewbufrestarts;
  201 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
  202     "Number of times getnewbuf has had to restart a buffer aquisition");
  203 static int flushbufqtarget = 100;
  204 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
  205     "Amount of work to do in flushbufqueues when helping bufdaemon");
  206 static long notbufdflashes;
  207 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
  208     "Number of dirty buffer flushes done by the bufdaemon helpers");
  209 
  210 /*
  211  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  212  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  213  * is idling.
  214  */
  215 static int bd_request;
  216 
  217 /*
  218  * Request for the buf daemon to write more buffers than is indicated by
  219  * lodirtybuf.  This may be necessary to push out excess dependencies or
  220  * defragment the address space where a simple count of the number of dirty
  221  * buffers is insufficient to characterize the demand for flushing them.
  222  */
  223 static int bd_speedupreq;
  224 
  225 /*
  226  * This lock synchronizes access to bd_request.
  227  */
  228 static struct mtx bdlock;
  229 
  230 /*
  231  * bogus page -- for I/O to/from partially complete buffers
  232  * this is a temporary solution to the problem, but it is not
  233  * really that bad.  it would be better to split the buffer
  234  * for input in the case of buffers partially already in memory,
  235  * but the code is intricate enough already.
  236  */
  237 vm_page_t bogus_page;
  238 
  239 /*
  240  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  241  * Set when wait starts, cleared prior to wakeup().
  242  * Used in runningbufwakeup() and waitrunningbufspace().
  243  */
  244 static int runningbufreq;
  245 
  246 /*
  247  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  248  * waitrunningbufspace().
  249  */
  250 static struct mtx rbreqlock;
  251 
  252 /* 
  253  * Synchronization (sleep/wakeup) variable for buffer requests.
  254  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
  255  * by and/or.
  256  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
  257  * getnewbuf(), and getblk().
  258  */
  259 static int needsbuffer;
  260 
  261 /*
  262  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
  263  */
  264 static struct mtx nblock;
  265 
  266 /*
  267  * Definitions for the buffer free lists.
  268  */
  269 #define BUFFER_QUEUES   6       /* number of free buffer queues */
  270 
  271 #define QUEUE_NONE      0       /* on no queue */
  272 #define QUEUE_CLEAN     1       /* non-B_DELWRI buffers */
  273 #define QUEUE_DIRTY     2       /* B_DELWRI buffers */
  274 #define QUEUE_DIRTY_GIANT 3     /* B_DELWRI buffers that need giant */
  275 #define QUEUE_EMPTYKVA  4       /* empty buffer headers w/KVA assignment */
  276 #define QUEUE_EMPTY     5       /* empty buffer headers */
  277 #define QUEUE_SENTINEL  1024    /* not an queue index, but mark for sentinel */
  278 
  279 /* Queues for free buffers with various properties */
  280 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
  281 
  282 /* Lock for the bufqueues */
  283 static struct mtx bqlock;
  284 
  285 /*
  286  * Single global constant for BUF_WMESG, to avoid getting multiple references.
  287  * buf_wmesg is referred from macros.
  288  */
  289 const char *buf_wmesg = BUF_WMESG;
  290 
  291 #define VFS_BIO_NEED_ANY        0x01    /* any freeable buffer */
  292 #define VFS_BIO_NEED_DIRTYFLUSH 0x02    /* waiting for dirty buffer flush */
  293 #define VFS_BIO_NEED_FREE       0x04    /* wait for free bufs, hi hysteresis */
  294 #define VFS_BIO_NEED_BUFSPACE   0x08    /* wait for buf space, lo hysteresis */
  295 
  296 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  297     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  298 static int
  299 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
  300 {
  301         long lvalue;
  302         int ivalue;
  303 
  304         if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
  305                 return (sysctl_handle_long(oidp, arg1, arg2, req));
  306         lvalue = *(long *)arg1;
  307         if (lvalue > INT_MAX)
  308                 /* On overflow, still write out a long to trigger ENOMEM. */
  309                 return (sysctl_handle_long(oidp, &lvalue, 0, req));
  310         ivalue = lvalue;
  311         return (sysctl_handle_int(oidp, &ivalue, 0, req));
  312 }
  313 #endif
  314 
  315 #ifdef DIRECTIO
  316 extern void ffs_rawread_setup(void);
  317 #endif /* DIRECTIO */
  318 /*
  319  *      numdirtywakeup:
  320  *
  321  *      If someone is blocked due to there being too many dirty buffers,
  322  *      and numdirtybuffers is now reasonable, wake them up.
  323  */
  324 
  325 static __inline void
  326 numdirtywakeup(int level)
  327 {
  328 
  329         if (numdirtybuffers <= level) {
  330                 mtx_lock(&nblock);
  331                 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
  332                         needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
  333                         wakeup(&needsbuffer);
  334                 }
  335                 mtx_unlock(&nblock);
  336         }
  337 }
  338 
  339 /*
  340  *      bufspacewakeup:
  341  *
  342  *      Called when buffer space is potentially available for recovery.
  343  *      getnewbuf() will block on this flag when it is unable to free 
  344  *      sufficient buffer space.  Buffer space becomes recoverable when 
  345  *      bp's get placed back in the queues.
  346  */
  347 
  348 static __inline void
  349 bufspacewakeup(void)
  350 {
  351 
  352         /*
  353          * If someone is waiting for BUF space, wake them up.  Even
  354          * though we haven't freed the kva space yet, the waiting
  355          * process will be able to now.
  356          */
  357         mtx_lock(&nblock);
  358         if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
  359                 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
  360                 wakeup(&needsbuffer);
  361         }
  362         mtx_unlock(&nblock);
  363 }
  364 
  365 /*
  366  * runningbufwakeup() - in-progress I/O accounting.
  367  *
  368  */
  369 void
  370 runningbufwakeup(struct buf *bp)
  371 {
  372 
  373         if (bp->b_runningbufspace) {
  374                 atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
  375                 bp->b_runningbufspace = 0;
  376                 mtx_lock(&rbreqlock);
  377                 if (runningbufreq && runningbufspace <= lorunningspace) {
  378                         runningbufreq = 0;
  379                         wakeup(&runningbufreq);
  380                 }
  381                 mtx_unlock(&rbreqlock);
  382         }
  383 }
  384 
  385 /*
  386  *      bufcountwakeup:
  387  *
  388  *      Called when a buffer has been added to one of the free queues to
  389  *      account for the buffer and to wakeup anyone waiting for free buffers.
  390  *      This typically occurs when large amounts of metadata are being handled
  391  *      by the buffer cache ( else buffer space runs out first, usually ).
  392  */
  393 
  394 static __inline void
  395 bufcountwakeup(struct buf *bp) 
  396 {
  397         int old;
  398 
  399         KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
  400             ("buf %p already counted as free", bp));
  401         if (bp->b_bufobj != NULL)
  402                 mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
  403         bp->b_vflags |= BV_INFREECNT;
  404         old = atomic_fetchadd_int(&numfreebuffers, 1);
  405         KASSERT(old >= 0 && old < nbuf,
  406             ("numfreebuffers climbed to %d", old + 1));
  407         mtx_lock(&nblock);
  408         if (needsbuffer) {
  409                 needsbuffer &= ~VFS_BIO_NEED_ANY;
  410                 if (numfreebuffers >= hifreebuffers)
  411                         needsbuffer &= ~VFS_BIO_NEED_FREE;
  412                 wakeup(&needsbuffer);
  413         }
  414         mtx_unlock(&nblock);
  415 }
  416 
  417 /*
  418  *      waitrunningbufspace()
  419  *
  420  *      runningbufspace is a measure of the amount of I/O currently
  421  *      running.  This routine is used in async-write situations to
  422  *      prevent creating huge backups of pending writes to a device.
  423  *      Only asynchronous writes are governed by this function.
  424  *
  425  *      Reads will adjust runningbufspace, but will not block based on it.
  426  *      The read load has a side effect of reducing the allowed write load.
  427  *
  428  *      This does NOT turn an async write into a sync write.  It waits  
  429  *      for earlier writes to complete and generally returns before the
  430  *      caller's write has reached the device.
  431  */
  432 void
  433 waitrunningbufspace(void)
  434 {
  435 
  436         mtx_lock(&rbreqlock);
  437         while (runningbufspace > hirunningspace) {
  438                 ++runningbufreq;
  439                 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
  440         }
  441         mtx_unlock(&rbreqlock);
  442 }
  443 
  444 
  445 /*
  446  *      vfs_buf_test_cache:
  447  *
  448  *      Called when a buffer is extended.  This function clears the B_CACHE
  449  *      bit if the newly extended portion of the buffer does not contain
  450  *      valid data.
  451  */
  452 static __inline
  453 void
  454 vfs_buf_test_cache(struct buf *bp,
  455                   vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
  456                   vm_page_t m)
  457 {
  458 
  459         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  460         if (bp->b_flags & B_CACHE) {
  461                 int base = (foff + off) & PAGE_MASK;
  462                 if (vm_page_is_valid(m, base, size) == 0)
  463                         bp->b_flags &= ~B_CACHE;
  464         }
  465 }
  466 
  467 /* Wake up the buffer daemon if necessary */
  468 static __inline
  469 void
  470 bd_wakeup(int dirtybuflevel)
  471 {
  472 
  473         mtx_lock(&bdlock);
  474         if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
  475                 bd_request = 1;
  476                 wakeup(&bd_request);
  477         }
  478         mtx_unlock(&bdlock);
  479 }
  480 
  481 /*
  482  * bd_speedup - speedup the buffer cache flushing code
  483  */
  484 
  485 void
  486 bd_speedup(void)
  487 {
  488         int needwake;
  489 
  490         mtx_lock(&bdlock);
  491         needwake = 0;
  492         if (bd_speedupreq == 0 || bd_request == 0)
  493                 needwake = 1;
  494         bd_speedupreq = 1;
  495         bd_request = 1;
  496         if (needwake)
  497                 wakeup(&bd_request);
  498         mtx_unlock(&bdlock);
  499 }
  500 
  501 /*
  502  * Calculating buffer cache scaling values and reserve space for buffer
  503  * headers.  This is called during low level kernel initialization and
  504  * may be called more then once.  We CANNOT write to the memory area
  505  * being reserved at this time.
  506  */
  507 caddr_t
  508 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
  509 {
  510         int tuned_nbuf;
  511         long maxbuf;
  512 
  513         /*
  514          * physmem_est is in pages.  Convert it to kilobytes (assumes
  515          * PAGE_SIZE is >= 1K)
  516          */
  517         physmem_est = physmem_est * (PAGE_SIZE / 1024);
  518 
  519         /*
  520          * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
  521          * For the first 64MB of ram nominally allocate sufficient buffers to
  522          * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
  523          * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
  524          * the buffer cache we limit the eventual kva reservation to
  525          * maxbcache bytes.
  526          *
  527          * factor represents the 1/4 x ram conversion.
  528          */
  529         if (nbuf == 0) {
  530                 int factor = 4 * BKVASIZE / 1024;
  531 
  532                 nbuf = 50;
  533                 if (physmem_est > 4096)
  534                         nbuf += min((physmem_est - 4096) / factor,
  535                             65536 / factor);
  536                 if (physmem_est > 65536)
  537                         nbuf += (physmem_est - 65536) * 2 / (factor * 5);
  538 
  539                 if (maxbcache && nbuf > maxbcache / BKVASIZE)
  540                         nbuf = maxbcache / BKVASIZE;
  541                 tuned_nbuf = 1;
  542         } else
  543                 tuned_nbuf = 0;
  544 
  545         /* XXX Avoid unsigned long overflows later on with maxbufspace. */
  546         maxbuf = (LONG_MAX / 3) / BKVASIZE;
  547         if (nbuf > maxbuf) {
  548                 if (!tuned_nbuf)
  549                         printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
  550                             maxbuf);
  551                 nbuf = maxbuf;
  552         }
  553 
  554         /*
  555          * swbufs are used as temporary holders for I/O, such as paging I/O.
  556          * We have no less then 16 and no more then 256.
  557          */
  558         nswbuf = max(min(nbuf/4, 256), 16);
  559 #ifdef NSWBUF_MIN
  560         if (nswbuf < NSWBUF_MIN)
  561                 nswbuf = NSWBUF_MIN;
  562 #endif
  563 #ifdef DIRECTIO
  564         ffs_rawread_setup();
  565 #endif
  566 
  567         /*
  568          * Reserve space for the buffer cache buffers
  569          */
  570         swbuf = (void *)v;
  571         v = (caddr_t)(swbuf + nswbuf);
  572         buf = (void *)v;
  573         v = (caddr_t)(buf + nbuf);
  574 
  575         return(v);
  576 }
  577 
  578 /* Initialize the buffer subsystem.  Called before use of any buffers. */
  579 void
  580 bufinit(void)
  581 {
  582         struct buf *bp;
  583         int i;
  584 
  585         mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
  586         mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
  587         mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
  588         mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
  589 
  590         /* next, make a null set of free lists */
  591         for (i = 0; i < BUFFER_QUEUES; i++)
  592                 TAILQ_INIT(&bufqueues[i]);
  593 
  594         /* finally, initialize each buffer header and stick on empty q */
  595         for (i = 0; i < nbuf; i++) {
  596                 bp = &buf[i];
  597                 bzero(bp, sizeof *bp);
  598                 bp->b_flags = B_INVAL;  /* we're just an empty header */
  599                 bp->b_rcred = NOCRED;
  600                 bp->b_wcred = NOCRED;
  601                 bp->b_qindex = QUEUE_EMPTY;
  602                 bp->b_vflags = BV_INFREECNT;    /* buf is counted as free */
  603                 bp->b_xflags = 0;
  604                 LIST_INIT(&bp->b_dep);
  605                 BUF_LOCKINIT(bp);
  606                 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
  607         }
  608 
  609         /*
  610          * maxbufspace is the absolute maximum amount of buffer space we are 
  611          * allowed to reserve in KVM and in real terms.  The absolute maximum
  612          * is nominally used by buf_daemon.  hibufspace is the nominal maximum
  613          * used by most other processes.  The differential is required to 
  614          * ensure that buf_daemon is able to run when other processes might 
  615          * be blocked waiting for buffer space.
  616          *
  617          * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
  618          * this may result in KVM fragmentation which is not handled optimally
  619          * by the system.
  620          */
  621         maxbufspace = (long)nbuf * BKVASIZE;
  622         hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
  623         lobufspace = hibufspace - MAXBSIZE;
  624 
  625         /*
  626          * Note: The 16 MiB upper limit for hirunningspace was chosen
  627          * arbitrarily and may need further tuning. It corresponds to
  628          * 128 outstanding write IO requests (if IO size is 128 KiB),
  629          * which fits with many RAID controllers' tagged queuing limits.
  630          * The lower 1 MiB limit is the historical upper limit for
  631          * hirunningspace.
  632          */
  633         hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
  634             16 * 1024 * 1024), 1024 * 1024);
  635         lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE);
  636 
  637 /*
  638  * Limit the amount of malloc memory since it is wired permanently into
  639  * the kernel space.  Even though this is accounted for in the buffer
  640  * allocation, we don't want the malloced region to grow uncontrolled.
  641  * The malloc scheme improves memory utilization significantly on average
  642  * (small) directories.
  643  */
  644         maxbufmallocspace = hibufspace / 20;
  645 
  646 /*
  647  * Reduce the chance of a deadlock occuring by limiting the number
  648  * of delayed-write dirty buffers we allow to stack up.
  649  */
  650         hidirtybuffers = nbuf / 4 + 20;
  651         dirtybufthresh = hidirtybuffers * 9 / 10;
  652         numdirtybuffers = 0;
  653 /*
  654  * To support extreme low-memory systems, make sure hidirtybuffers cannot
  655  * eat up all available buffer space.  This occurs when our minimum cannot
  656  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
  657  * BKVASIZE'd buffers.
  658  */
  659         while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
  660                 hidirtybuffers >>= 1;
  661         }
  662         lodirtybuffers = hidirtybuffers / 2;
  663 
  664 /*
  665  * Try to keep the number of free buffers in the specified range,
  666  * and give special processes (e.g. like buf_daemon) access to an 
  667  * emergency reserve.
  668  */
  669         lofreebuffers = nbuf / 18 + 5;
  670         hifreebuffers = 2 * lofreebuffers;
  671         numfreebuffers = nbuf;
  672 
  673         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
  674             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
  675 }
  676 
  677 /*
  678  * bfreekva() - free the kva allocation for a buffer.
  679  *
  680  *      Since this call frees up buffer space, we call bufspacewakeup().
  681  */
  682 static void
  683 bfreekva(struct buf *bp)
  684 {
  685 
  686         if (bp->b_kvasize) {
  687                 atomic_add_int(&buffreekvacnt, 1);
  688                 atomic_subtract_long(&bufspace, bp->b_kvasize);
  689                 vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
  690                     (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
  691                 bp->b_kvasize = 0;
  692                 bufspacewakeup();
  693         }
  694 }
  695 
  696 /*
  697  *      bremfree:
  698  *
  699  *      Mark the buffer for removal from the appropriate free list in brelse.
  700  *      
  701  */
  702 void
  703 bremfree(struct buf *bp)
  704 {
  705         int old;
  706 
  707         CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  708         KASSERT((bp->b_flags & B_REMFREE) == 0,
  709             ("bremfree: buffer %p already marked for delayed removal.", bp));
  710         KASSERT(bp->b_qindex != QUEUE_NONE,
  711             ("bremfree: buffer %p not on a queue.", bp));
  712         BUF_ASSERT_HELD(bp);
  713 
  714         bp->b_flags |= B_REMFREE;
  715         /* Fixup numfreebuffers count.  */
  716         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
  717                 KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
  718                     ("buf %p not counted in numfreebuffers", bp));
  719                 if (bp->b_bufobj != NULL)
  720                         mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
  721                 bp->b_vflags &= ~BV_INFREECNT;
  722                 old = atomic_fetchadd_int(&numfreebuffers, -1);
  723                 KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
  724         }
  725 }
  726 
  727 /*
  728  *      bremfreef:
  729  *
  730  *      Force an immediate removal from a free list.  Used only in nfs when
  731  *      it abuses the b_freelist pointer.
  732  */
  733 void
  734 bremfreef(struct buf *bp)
  735 {
  736         mtx_lock(&bqlock);
  737         bremfreel(bp);
  738         mtx_unlock(&bqlock);
  739 }
  740 
  741 /*
  742  *      bremfreel:
  743  *
  744  *      Removes a buffer from the free list, must be called with the
  745  *      bqlock held.
  746  */
  747 static void
  748 bremfreel(struct buf *bp)
  749 {
  750         int old;
  751 
  752         CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
  753             bp, bp->b_vp, bp->b_flags);
  754         KASSERT(bp->b_qindex != QUEUE_NONE,
  755             ("bremfreel: buffer %p not on a queue.", bp));
  756         BUF_ASSERT_HELD(bp);
  757         mtx_assert(&bqlock, MA_OWNED);
  758 
  759         TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
  760         bp->b_qindex = QUEUE_NONE;
  761         /*
  762          * If this was a delayed bremfree() we only need to remove the buffer
  763          * from the queue and return the stats are already done.
  764          */
  765         if (bp->b_flags & B_REMFREE) {
  766                 bp->b_flags &= ~B_REMFREE;
  767                 return;
  768         }
  769         /*
  770          * Fixup numfreebuffers count.  If the buffer is invalid or not
  771          * delayed-write, the buffer was free and we must decrement
  772          * numfreebuffers.
  773          */
  774         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
  775                 KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
  776                     ("buf %p not counted in numfreebuffers", bp));
  777                 if (bp->b_bufobj != NULL)
  778                         mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
  779                 bp->b_vflags &= ~BV_INFREECNT;
  780                 old = atomic_fetchadd_int(&numfreebuffers, -1);
  781                 KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
  782         }
  783 }
  784 
  785 
  786 /*
  787  * Get a buffer with the specified data.  Look in the cache first.  We
  788  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
  789  * is set, the buffer is valid and we do not have to do anything ( see
  790  * getblk() ).  This is really just a special case of breadn().
  791  */
  792 int
  793 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
  794     struct buf **bpp)
  795 {
  796 
  797         return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
  798 }
  799 
  800 /*
  801  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
  802  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
  803  * the buffer is valid and we do not have to do anything.
  804  */
  805 void
  806 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
  807     int cnt, struct ucred * cred)
  808 {
  809         struct buf *rabp;
  810         int i;
  811 
  812         for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
  813                 if (inmem(vp, *rablkno))
  814                         continue;
  815                 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
  816 
  817                 if ((rabp->b_flags & B_CACHE) == 0) {
  818                         if (!TD_IS_IDLETHREAD(curthread))
  819                                 curthread->td_ru.ru_inblock++;
  820                         rabp->b_flags |= B_ASYNC;
  821                         rabp->b_flags &= ~B_INVAL;
  822                         rabp->b_ioflags &= ~BIO_ERROR;
  823                         rabp->b_iocmd = BIO_READ;
  824                         if (rabp->b_rcred == NOCRED && cred != NOCRED)
  825                                 rabp->b_rcred = crhold(cred);
  826                         vfs_busy_pages(rabp, 0);
  827                         BUF_KERNPROC(rabp);
  828                         rabp->b_iooffset = dbtob(rabp->b_blkno);
  829                         bstrategy(rabp);
  830                 } else {
  831                         brelse(rabp);
  832                 }
  833         }
  834 }
  835 
  836 /*
  837  * Operates like bread, but also starts asynchronous I/O on
  838  * read-ahead blocks.
  839  */
  840 int
  841 breadn(struct vnode * vp, daddr_t blkno, int size,
  842     daddr_t * rablkno, int *rabsize,
  843     int cnt, struct ucred * cred, struct buf **bpp)
  844 {
  845         struct buf *bp;
  846         int rv = 0, readwait = 0;
  847 
  848         CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
  849         *bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
  850 
  851         /* if not found in cache, do some I/O */
  852         if ((bp->b_flags & B_CACHE) == 0) {
  853                 if (!TD_IS_IDLETHREAD(curthread))
  854                         curthread->td_ru.ru_inblock++;
  855                 bp->b_iocmd = BIO_READ;
  856                 bp->b_flags &= ~B_INVAL;
  857                 bp->b_ioflags &= ~BIO_ERROR;
  858                 if (bp->b_rcred == NOCRED && cred != NOCRED)
  859                         bp->b_rcred = crhold(cred);
  860                 vfs_busy_pages(bp, 0);
  861                 bp->b_iooffset = dbtob(bp->b_blkno);
  862                 bstrategy(bp);
  863                 ++readwait;
  864         }
  865 
  866         breada(vp, rablkno, rabsize, cnt, cred);
  867 
  868         if (readwait) {
  869                 rv = bufwait(bp);
  870         }
  871         return (rv);
  872 }
  873 
  874 /*
  875  * Write, release buffer on completion.  (Done by iodone
  876  * if async).  Do not bother writing anything if the buffer
  877  * is invalid.
  878  *
  879  * Note that we set B_CACHE here, indicating that buffer is
  880  * fully valid and thus cacheable.  This is true even of NFS
  881  * now so we set it generally.  This could be set either here 
  882  * or in biodone() since the I/O is synchronous.  We put it
  883  * here.
  884  */
  885 int
  886 bufwrite(struct buf *bp)
  887 {
  888         int oldflags;
  889         struct vnode *vp;
  890         int vp_md;
  891 
  892         CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  893         if (bp->b_flags & B_INVAL) {
  894                 brelse(bp);
  895                 return (0);
  896         }
  897 
  898         oldflags = bp->b_flags;
  899 
  900         BUF_ASSERT_HELD(bp);
  901 
  902         if (bp->b_pin_count > 0)
  903                 bunpin_wait(bp);
  904 
  905         KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
  906             ("FFS background buffer should not get here %p", bp));
  907 
  908         vp = bp->b_vp;
  909         if (vp)
  910                 vp_md = vp->v_vflag & VV_MD;
  911         else
  912                 vp_md = 0;
  913 
  914         /* Mark the buffer clean */
  915         bundirty(bp);
  916 
  917         bp->b_flags &= ~B_DONE;
  918         bp->b_ioflags &= ~BIO_ERROR;
  919         bp->b_flags |= B_CACHE;
  920         bp->b_iocmd = BIO_WRITE;
  921 
  922         bufobj_wref(bp->b_bufobj);
  923         vfs_busy_pages(bp, 1);
  924 
  925         /*
  926          * Normal bwrites pipeline writes
  927          */
  928         bp->b_runningbufspace = bp->b_bufsize;
  929         atomic_add_long(&runningbufspace, bp->b_runningbufspace);
  930 
  931         if (!TD_IS_IDLETHREAD(curthread))
  932                 curthread->td_ru.ru_oublock++;
  933         if (oldflags & B_ASYNC)
  934                 BUF_KERNPROC(bp);
  935         bp->b_iooffset = dbtob(bp->b_blkno);
  936         bstrategy(bp);
  937 
  938         if ((oldflags & B_ASYNC) == 0) {
  939                 int rtval = bufwait(bp);
  940                 brelse(bp);
  941                 return (rtval);
  942         } else {
  943                 /*
  944                  * don't allow the async write to saturate the I/O
  945                  * system.  We will not deadlock here because
  946                  * we are blocking waiting for I/O that is already in-progress
  947                  * to complete. We do not block here if it is the update
  948                  * or syncer daemon trying to clean up as that can lead
  949                  * to deadlock.
  950                  */
  951                 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
  952                         waitrunningbufspace();
  953         }
  954 
  955         return (0);
  956 }
  957 
  958 void
  959 bufbdflush(struct bufobj *bo, struct buf *bp)
  960 {
  961         struct buf *nbp;
  962 
  963         if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
  964                 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
  965                 altbufferflushes++;
  966         } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
  967                 BO_LOCK(bo);
  968                 /*
  969                  * Try to find a buffer to flush.
  970                  */
  971                 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
  972                         if ((nbp->b_vflags & BV_BKGRDINPROG) ||
  973                             BUF_LOCK(nbp,
  974                                      LK_EXCLUSIVE | LK_NOWAIT, NULL))
  975                                 continue;
  976                         if (bp == nbp)
  977                                 panic("bdwrite: found ourselves");
  978                         BO_UNLOCK(bo);
  979                         /* Don't countdeps with the bo lock held. */
  980                         if (buf_countdeps(nbp, 0)) {
  981                                 BO_LOCK(bo);
  982                                 BUF_UNLOCK(nbp);
  983                                 continue;
  984                         }
  985                         if (nbp->b_flags & B_CLUSTEROK) {
  986                                 vfs_bio_awrite(nbp);
  987                         } else {
  988                                 bremfree(nbp);
  989                                 bawrite(nbp);
  990                         }
  991                         dirtybufferflushes++;
  992                         break;
  993                 }
  994                 if (nbp == NULL)
  995                         BO_UNLOCK(bo);
  996         }
  997 }
  998 
  999 /*
 1000  * Delayed write. (Buffer is marked dirty).  Do not bother writing
 1001  * anything if the buffer is marked invalid.
 1002  *
 1003  * Note that since the buffer must be completely valid, we can safely
 1004  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
 1005  * biodone() in order to prevent getblk from writing the buffer
 1006  * out synchronously.
 1007  */
 1008 void
 1009 bdwrite(struct buf *bp)
 1010 {
 1011         struct thread *td = curthread;
 1012         struct vnode *vp;
 1013         struct bufobj *bo;
 1014 
 1015         CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1016         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1017         BUF_ASSERT_HELD(bp);
 1018 
 1019         if (bp->b_flags & B_INVAL) {
 1020                 brelse(bp);
 1021                 return;
 1022         }
 1023 
 1024         /*
 1025          * If we have too many dirty buffers, don't create any more.
 1026          * If we are wildly over our limit, then force a complete
 1027          * cleanup. Otherwise, just keep the situation from getting
 1028          * out of control. Note that we have to avoid a recursive
 1029          * disaster and not try to clean up after our own cleanup!
 1030          */
 1031         vp = bp->b_vp;
 1032         bo = bp->b_bufobj;
 1033         if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
 1034                 td->td_pflags |= TDP_INBDFLUSH;
 1035                 BO_BDFLUSH(bo, bp);
 1036                 td->td_pflags &= ~TDP_INBDFLUSH;
 1037         } else
 1038                 recursiveflushes++;
 1039 
 1040         bdirty(bp);
 1041         /*
 1042          * Set B_CACHE, indicating that the buffer is fully valid.  This is
 1043          * true even of NFS now.
 1044          */
 1045         bp->b_flags |= B_CACHE;
 1046 
 1047         /*
 1048          * This bmap keeps the system from needing to do the bmap later,
 1049          * perhaps when the system is attempting to do a sync.  Since it
 1050          * is likely that the indirect block -- or whatever other datastructure
 1051          * that the filesystem needs is still in memory now, it is a good
 1052          * thing to do this.  Note also, that if the pageout daemon is
 1053          * requesting a sync -- there might not be enough memory to do
 1054          * the bmap then...  So, this is important to do.
 1055          */
 1056         if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
 1057                 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
 1058         }
 1059 
 1060         /*
 1061          * Set the *dirty* buffer range based upon the VM system dirty
 1062          * pages.
 1063          *
 1064          * Mark the buffer pages as clean.  We need to do this here to
 1065          * satisfy the vnode_pager and the pageout daemon, so that it
 1066          * thinks that the pages have been "cleaned".  Note that since
 1067          * the pages are in a delayed write buffer -- the VFS layer
 1068          * "will" see that the pages get written out on the next sync,
 1069          * or perhaps the cluster will be completed.
 1070          */
 1071         vfs_clean_pages_dirty_buf(bp);
 1072         bqrelse(bp);
 1073 
 1074         /*
 1075          * Wakeup the buffer flushing daemon if we have a lot of dirty
 1076          * buffers (midpoint between our recovery point and our stall
 1077          * point).
 1078          */
 1079         bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1080 
 1081         /*
 1082          * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 1083          * due to the softdep code.
 1084          */
 1085 }
 1086 
 1087 /*
 1088  *      bdirty:
 1089  *
 1090  *      Turn buffer into delayed write request.  We must clear BIO_READ and
 1091  *      B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
 1092  *      itself to properly update it in the dirty/clean lists.  We mark it
 1093  *      B_DONE to ensure that any asynchronization of the buffer properly
 1094  *      clears B_DONE ( else a panic will occur later ).  
 1095  *
 1096  *      bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
 1097  *      might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
 1098  *      should only be called if the buffer is known-good.
 1099  *
 1100  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1101  *      count.
 1102  *
 1103  *      The buffer must be on QUEUE_NONE.
 1104  */
 1105 void
 1106 bdirty(struct buf *bp)
 1107 {
 1108 
 1109         CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
 1110             bp, bp->b_vp, bp->b_flags);
 1111         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1112         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1113             ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1114         BUF_ASSERT_HELD(bp);
 1115         bp->b_flags &= ~(B_RELBUF);
 1116         bp->b_iocmd = BIO_WRITE;
 1117 
 1118         if ((bp->b_flags & B_DELWRI) == 0) {
 1119                 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
 1120                 reassignbuf(bp);
 1121                 atomic_add_int(&numdirtybuffers, 1);
 1122                 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1123         }
 1124 }
 1125 
 1126 /*
 1127  *      bundirty:
 1128  *
 1129  *      Clear B_DELWRI for buffer.
 1130  *
 1131  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1132  *      count.
 1133  *      
 1134  *      The buffer must be on QUEUE_NONE.
 1135  */
 1136 
 1137 void
 1138 bundirty(struct buf *bp)
 1139 {
 1140 
 1141         CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1142         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1143         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1144             ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1145         BUF_ASSERT_HELD(bp);
 1146 
 1147         if (bp->b_flags & B_DELWRI) {
 1148                 bp->b_flags &= ~B_DELWRI;
 1149                 reassignbuf(bp);
 1150                 atomic_subtract_int(&numdirtybuffers, 1);
 1151                 numdirtywakeup(lodirtybuffers);
 1152         }
 1153         /*
 1154          * Since it is now being written, we can clear its deferred write flag.
 1155          */
 1156         bp->b_flags &= ~B_DEFERRED;
 1157 }
 1158 
 1159 /*
 1160  *      bawrite:
 1161  *
 1162  *      Asynchronous write.  Start output on a buffer, but do not wait for
 1163  *      it to complete.  The buffer is released when the output completes.
 1164  *
 1165  *      bwrite() ( or the VOP routine anyway ) is responsible for handling 
 1166  *      B_INVAL buffers.  Not us.
 1167  */
 1168 void
 1169 bawrite(struct buf *bp)
 1170 {
 1171 
 1172         bp->b_flags |= B_ASYNC;
 1173         (void) bwrite(bp);
 1174 }
 1175 
 1176 /*
 1177  *      bwillwrite:
 1178  *
 1179  *      Called prior to the locking of any vnodes when we are expecting to
 1180  *      write.  We do not want to starve the buffer cache with too many
 1181  *      dirty buffers so we block here.  By blocking prior to the locking
 1182  *      of any vnodes we attempt to avoid the situation where a locked vnode
 1183  *      prevents the various system daemons from flushing related buffers.
 1184  */
 1185 
 1186 void
 1187 bwillwrite(void)
 1188 {
 1189 
 1190         if (numdirtybuffers >= hidirtybuffers) {
 1191                 mtx_lock(&nblock);
 1192                 while (numdirtybuffers >= hidirtybuffers) {
 1193                         bd_wakeup(1);
 1194                         needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
 1195                         msleep(&needsbuffer, &nblock,
 1196                             (PRIBIO + 4), "flswai", 0);
 1197                 }
 1198                 mtx_unlock(&nblock);
 1199         }
 1200 }
 1201 
 1202 /*
 1203  * Return true if we have too many dirty buffers.
 1204  */
 1205 int
 1206 buf_dirty_count_severe(void)
 1207 {
 1208 
 1209         return(numdirtybuffers >= hidirtybuffers);
 1210 }
 1211 
 1212 static __noinline int
 1213 buf_vm_page_count_severe(void)
 1214 {
 1215 
 1216         KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
 1217 
 1218         return vm_page_count_severe();
 1219 }
 1220 
 1221 /*
 1222  *      brelse:
 1223  *
 1224  *      Release a busy buffer and, if requested, free its resources.  The
 1225  *      buffer will be stashed in the appropriate bufqueue[] allowing it
 1226  *      to be accessed later as a cache entity or reused for other purposes.
 1227  */
 1228 void
 1229 brelse(struct buf *bp)
 1230 {
 1231         CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
 1232             bp, bp->b_vp, bp->b_flags);
 1233         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1234             ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1235 
 1236         if (bp->b_flags & B_MANAGED) {
 1237                 bqrelse(bp);
 1238                 return;
 1239         }
 1240 
 1241         if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
 1242             bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
 1243                 /*
 1244                  * Failed write, redirty.  Must clear BIO_ERROR to prevent
 1245                  * pages from being scrapped.  If the error is anything
 1246                  * other than an I/O error (EIO), assume that retrying
 1247                  * is futile.
 1248                  */
 1249                 bp->b_ioflags &= ~BIO_ERROR;
 1250                 bdirty(bp);
 1251         } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 1252             (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
 1253                 /*
 1254                  * Either a failed I/O or we were asked to free or not
 1255                  * cache the buffer.
 1256                  */
 1257                 bp->b_flags |= B_INVAL;
 1258                 if (!LIST_EMPTY(&bp->b_dep))
 1259                         buf_deallocate(bp);
 1260                 if (bp->b_flags & B_DELWRI) {
 1261                         atomic_subtract_int(&numdirtybuffers, 1);
 1262                         numdirtywakeup(lodirtybuffers);
 1263                 }
 1264                 bp->b_flags &= ~(B_DELWRI | B_CACHE);
 1265                 if ((bp->b_flags & B_VMIO) == 0) {
 1266                         if (bp->b_bufsize)
 1267                                 allocbuf(bp, 0);
 1268                         if (bp->b_vp)
 1269                                 brelvp(bp);
 1270                 }
 1271         }
 1272 
 1273         /*
 1274          * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release() 
 1275          * is called with B_DELWRI set, the underlying pages may wind up
 1276          * getting freed causing a previous write (bdwrite()) to get 'lost'
 1277          * because pages associated with a B_DELWRI bp are marked clean.
 1278          * 
 1279          * We still allow the B_INVAL case to call vfs_vmio_release(), even
 1280          * if B_DELWRI is set.
 1281          *
 1282          * If B_DELWRI is not set we may have to set B_RELBUF if we are low
 1283          * on pages to return pages to the VM page queues.
 1284          */
 1285         if (bp->b_flags & B_DELWRI)
 1286                 bp->b_flags &= ~B_RELBUF;
 1287         else if (buf_vm_page_count_severe()) {
 1288                 /*
 1289                  * The locking of the BO_LOCK is not necessary since
 1290                  * BKGRDINPROG cannot be set while we hold the buf
 1291                  * lock, it can only be cleared if it is already
 1292                  * pending.
 1293                  */
 1294                 if (bp->b_vp) {
 1295                         if (!(bp->b_vflags & BV_BKGRDINPROG))
 1296                                 bp->b_flags |= B_RELBUF;
 1297                 } else
 1298                         bp->b_flags |= B_RELBUF;
 1299         }
 1300 
 1301         /*
 1302          * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 1303          * constituted, not even NFS buffers now.  Two flags effect this.  If
 1304          * B_INVAL, the struct buf is invalidated but the VM object is kept
 1305          * around ( i.e. so it is trivial to reconstitute the buffer later ).
 1306          *
 1307          * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 1308          * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 1309          * buffer is also B_INVAL because it hits the re-dirtying code above.
 1310          *
 1311          * Normally we can do this whether a buffer is B_DELWRI or not.  If
 1312          * the buffer is an NFS buffer, it is tracking piecemeal writes or
 1313          * the commit state and we cannot afford to lose the buffer. If the
 1314          * buffer has a background write in progress, we need to keep it
 1315          * around to prevent it from being reconstituted and starting a second
 1316          * background write.
 1317          */
 1318         if ((bp->b_flags & B_VMIO)
 1319             && !(bp->b_vp->v_mount != NULL &&
 1320                  (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 1321                  !vn_isdisk(bp->b_vp, NULL) &&
 1322                  (bp->b_flags & B_DELWRI))
 1323             ) {
 1324 
 1325                 int i, j, resid;
 1326                 vm_page_t m;
 1327                 off_t foff;
 1328                 vm_pindex_t poff;
 1329                 vm_object_t obj;
 1330 
 1331                 obj = bp->b_bufobj->bo_object;
 1332 
 1333                 /*
 1334                  * Get the base offset and length of the buffer.  Note that 
 1335                  * in the VMIO case if the buffer block size is not
 1336                  * page-aligned then b_data pointer may not be page-aligned.
 1337                  * But our b_pages[] array *IS* page aligned.
 1338                  *
 1339                  * block sizes less then DEV_BSIZE (usually 512) are not 
 1340                  * supported due to the page granularity bits (m->valid,
 1341                  * m->dirty, etc...). 
 1342                  *
 1343                  * See man buf(9) for more information
 1344                  */
 1345                 resid = bp->b_bufsize;
 1346                 foff = bp->b_offset;
 1347                 VM_OBJECT_LOCK(obj);
 1348                 for (i = 0; i < bp->b_npages; i++) {
 1349                         int had_bogus = 0;
 1350 
 1351                         m = bp->b_pages[i];
 1352 
 1353                         /*
 1354                          * If we hit a bogus page, fixup *all* the bogus pages
 1355                          * now.
 1356                          */
 1357                         if (m == bogus_page) {
 1358                                 poff = OFF_TO_IDX(bp->b_offset);
 1359                                 had_bogus = 1;
 1360 
 1361                                 for (j = i; j < bp->b_npages; j++) {
 1362                                         vm_page_t mtmp;
 1363                                         mtmp = bp->b_pages[j];
 1364                                         if (mtmp == bogus_page) {
 1365                                                 mtmp = vm_page_lookup(obj, poff + j);
 1366                                                 if (!mtmp) {
 1367                                                         panic("brelse: page missing\n");
 1368                                                 }
 1369                                                 bp->b_pages[j] = mtmp;
 1370                                         }
 1371                                 }
 1372 
 1373                                 if ((bp->b_flags & B_INVAL) == 0) {
 1374                                         pmap_qenter(
 1375                                             trunc_page((vm_offset_t)bp->b_data),
 1376                                             bp->b_pages, bp->b_npages);
 1377                                 }
 1378                                 m = bp->b_pages[i];
 1379                         }
 1380                         if ((bp->b_flags & B_NOCACHE) ||
 1381                             (bp->b_ioflags & BIO_ERROR &&
 1382                              bp->b_iocmd == BIO_READ)) {
 1383                                 int poffset = foff & PAGE_MASK;
 1384                                 int presid = resid > (PAGE_SIZE - poffset) ?
 1385                                         (PAGE_SIZE - poffset) : resid;
 1386 
 1387                                 KASSERT(presid >= 0, ("brelse: extra page"));
 1388                                 vm_page_set_invalid(m, poffset, presid);
 1389                                 if (had_bogus)
 1390                                         printf("avoided corruption bug in bogus_page/brelse code\n");
 1391                         }
 1392                         resid -= PAGE_SIZE - (foff & PAGE_MASK);
 1393                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 1394                 }
 1395                 VM_OBJECT_UNLOCK(obj);
 1396                 if (bp->b_flags & (B_INVAL | B_RELBUF))
 1397                         vfs_vmio_release(bp);
 1398 
 1399         } else if (bp->b_flags & B_VMIO) {
 1400 
 1401                 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
 1402                         vfs_vmio_release(bp);
 1403                 }
 1404 
 1405         } else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
 1406                 if (bp->b_bufsize != 0)
 1407                         allocbuf(bp, 0);
 1408                 if (bp->b_vp != NULL)
 1409                         brelvp(bp);
 1410         }
 1411                         
 1412         if (BUF_LOCKRECURSED(bp)) {
 1413                 /* do not release to free list */
 1414                 BUF_UNLOCK(bp);
 1415                 return;
 1416         }
 1417 
 1418         /* enqueue */
 1419         mtx_lock(&bqlock);
 1420         /* Handle delayed bremfree() processing. */
 1421         if (bp->b_flags & B_REMFREE) {
 1422                 struct bufobj *bo;
 1423 
 1424                 bo = bp->b_bufobj;
 1425                 if (bo != NULL)
 1426                         BO_LOCK(bo);
 1427                 bremfreel(bp);
 1428                 if (bo != NULL)
 1429                         BO_UNLOCK(bo);
 1430         }
 1431         if (bp->b_qindex != QUEUE_NONE)
 1432                 panic("brelse: free buffer onto another queue???");
 1433 
 1434         /*
 1435          * If the buffer has junk contents signal it and eventually
 1436          * clean up B_DELWRI and diassociate the vnode so that gbincore()
 1437          * doesn't find it.
 1438          */
 1439         if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
 1440             (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
 1441                 bp->b_flags |= B_INVAL;
 1442         if (bp->b_flags & B_INVAL) {
 1443                 if (bp->b_flags & B_DELWRI)
 1444                         bundirty(bp);
 1445                 if (bp->b_vp)
 1446                         brelvp(bp);
 1447         }
 1448 
 1449         /* buffers with no memory */
 1450         if (bp->b_bufsize == 0) {
 1451                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1452                 if (bp->b_vflags & BV_BKGRDINPROG)
 1453                         panic("losing buffer 1");
 1454                 if (bp->b_kvasize) {
 1455                         bp->b_qindex = QUEUE_EMPTYKVA;
 1456                 } else {
 1457                         bp->b_qindex = QUEUE_EMPTY;
 1458                 }
 1459                 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1460         /* buffers with junk contents */
 1461         } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 1462             (bp->b_ioflags & BIO_ERROR)) {
 1463                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1464                 if (bp->b_vflags & BV_BKGRDINPROG)
 1465                         panic("losing buffer 2");
 1466                 bp->b_qindex = QUEUE_CLEAN;
 1467                 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
 1468         /* remaining buffers */
 1469         } else {
 1470                 if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
 1471                     (B_DELWRI|B_NEEDSGIANT))
 1472                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1473                 else if (bp->b_flags & B_DELWRI)
 1474                         bp->b_qindex = QUEUE_DIRTY;
 1475                 else
 1476                         bp->b_qindex = QUEUE_CLEAN;
 1477                 if (bp->b_flags & B_AGE)
 1478                         TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1479                 else
 1480                         TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1481         }
 1482         mtx_unlock(&bqlock);
 1483 
 1484         /*
 1485          * Fixup numfreebuffers count.  The bp is on an appropriate queue
 1486          * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
 1487          * We've already handled the B_INVAL case ( B_DELWRI will be clear
 1488          * if B_INVAL is set ).
 1489          */
 1490 
 1491         if (!(bp->b_flags & B_DELWRI)) {
 1492                 struct bufobj *bo;
 1493 
 1494                 bo = bp->b_bufobj;
 1495                 if (bo != NULL)
 1496                         BO_LOCK(bo);
 1497                 bufcountwakeup(bp);
 1498                 if (bo != NULL)
 1499                         BO_UNLOCK(bo);
 1500         }
 1501 
 1502         /*
 1503          * Something we can maybe free or reuse
 1504          */
 1505         if (bp->b_bufsize || bp->b_kvasize)
 1506                 bufspacewakeup();
 1507 
 1508         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
 1509         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1510                 panic("brelse: not dirty");
 1511         /* unlock */
 1512         BUF_UNLOCK(bp);
 1513 }
 1514 
 1515 /*
 1516  * Release a buffer back to the appropriate queue but do not try to free
 1517  * it.  The buffer is expected to be used again soon.
 1518  *
 1519  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
 1520  * biodone() to requeue an async I/O on completion.  It is also used when
 1521  * known good buffers need to be requeued but we think we may need the data
 1522  * again soon.
 1523  *
 1524  * XXX we should be able to leave the B_RELBUF hint set on completion.
 1525  */
 1526 void
 1527 bqrelse(struct buf *bp)
 1528 {
 1529         struct bufobj *bo;
 1530 
 1531         CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1532         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1533             ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1534 
 1535         if (BUF_LOCKRECURSED(bp)) {
 1536                 /* do not release to free list */
 1537                 BUF_UNLOCK(bp);
 1538                 return;
 1539         }
 1540 
 1541         bo = bp->b_bufobj;
 1542         if (bp->b_flags & B_MANAGED) {
 1543                 if (bp->b_flags & B_REMFREE) {
 1544                         mtx_lock(&bqlock);
 1545                         if (bo != NULL)
 1546                                 BO_LOCK(bo);
 1547                         bremfreel(bp);
 1548                         if (bo != NULL)
 1549                                 BO_UNLOCK(bo);
 1550                         mtx_unlock(&bqlock);
 1551                 }
 1552                 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1553                 BUF_UNLOCK(bp);
 1554                 return;
 1555         }
 1556 
 1557         mtx_lock(&bqlock);
 1558         /* Handle delayed bremfree() processing. */
 1559         if (bp->b_flags & B_REMFREE) {
 1560                 if (bo != NULL)
 1561                         BO_LOCK(bo);
 1562                 bremfreel(bp);
 1563                 if (bo != NULL)
 1564                         BO_UNLOCK(bo);
 1565         }
 1566         if (bp->b_qindex != QUEUE_NONE)
 1567                 panic("bqrelse: free buffer onto another queue???");
 1568         /* buffers with stale but valid contents */
 1569         if (bp->b_flags & B_DELWRI) {
 1570                 if (bp->b_flags & B_NEEDSGIANT)
 1571                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1572                 else
 1573                         bp->b_qindex = QUEUE_DIRTY;
 1574                 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1575         } else {
 1576                 /*
 1577                  * The locking of the BO_LOCK for checking of the
 1578                  * BV_BKGRDINPROG is not necessary since the
 1579                  * BV_BKGRDINPROG cannot be set while we hold the buf
 1580                  * lock, it can only be cleared if it is already
 1581                  * pending.
 1582                  */
 1583                 if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
 1584                         bp->b_qindex = QUEUE_CLEAN;
 1585                         TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
 1586                             b_freelist);
 1587                 } else {
 1588                         /*
 1589                          * We are too low on memory, we have to try to free
 1590                          * the buffer (most importantly: the wired pages
 1591                          * making up its backing store) *now*.
 1592                          */
 1593                         mtx_unlock(&bqlock);
 1594                         brelse(bp);
 1595                         return;
 1596                 }
 1597         }
 1598         mtx_unlock(&bqlock);
 1599 
 1600         if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI)) {
 1601                 if (bo != NULL)
 1602                         BO_LOCK(bo);
 1603                 bufcountwakeup(bp);
 1604                 if (bo != NULL)
 1605                         BO_UNLOCK(bo);
 1606         }
 1607 
 1608         /*
 1609          * Something we can maybe free or reuse.
 1610          */
 1611         if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
 1612                 bufspacewakeup();
 1613 
 1614         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1615         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1616                 panic("bqrelse: not dirty");
 1617         /* unlock */
 1618         BUF_UNLOCK(bp);
 1619 }
 1620 
 1621 /* Give pages used by the bp back to the VM system (where possible) */
 1622 static void
 1623 vfs_vmio_release(struct buf *bp)
 1624 {
 1625         int i;
 1626         vm_page_t m;
 1627 
 1628         pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
 1629         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 1630         for (i = 0; i < bp->b_npages; i++) {
 1631                 m = bp->b_pages[i];
 1632                 bp->b_pages[i] = NULL;
 1633                 /*
 1634                  * In order to keep page LRU ordering consistent, put
 1635                  * everything on the inactive queue.
 1636                  */
 1637                 vm_page_lock(m);
 1638                 vm_page_unwire(m, 0);
 1639                 /*
 1640                  * We don't mess with busy pages, it is
 1641                  * the responsibility of the process that
 1642                  * busied the pages to deal with them.
 1643                  */
 1644                 if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
 1645                     m->wire_count == 0) {
 1646                         /*
 1647                          * Might as well free the page if we can and it has
 1648                          * no valid data.  We also free the page if the
 1649                          * buffer was used for direct I/O
 1650                          */
 1651                         if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
 1652                                 vm_page_free(m);
 1653                         } else if (bp->b_flags & B_DIRECT) {
 1654                                 vm_page_try_to_free(m);
 1655                         } else if (buf_vm_page_count_severe()) {
 1656                                 vm_page_try_to_cache(m);
 1657                         }
 1658                 }
 1659                 vm_page_unlock(m);
 1660         }
 1661         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 1662         
 1663         if (bp->b_bufsize) {
 1664                 bufspacewakeup();
 1665                 bp->b_bufsize = 0;
 1666         }
 1667         bp->b_npages = 0;
 1668         bp->b_flags &= ~B_VMIO;
 1669         if (bp->b_vp)
 1670                 brelvp(bp);
 1671 }
 1672 
 1673 /*
 1674  * Check to see if a block at a particular lbn is available for a clustered
 1675  * write.
 1676  */
 1677 static int
 1678 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 1679 {
 1680         struct buf *bpa;
 1681         int match;
 1682 
 1683         match = 0;
 1684 
 1685         /* If the buf isn't in core skip it */
 1686         if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
 1687                 return (0);
 1688 
 1689         /* If the buf is busy we don't want to wait for it */
 1690         if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1691                 return (0);
 1692 
 1693         /* Only cluster with valid clusterable delayed write buffers */
 1694         if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 1695             (B_DELWRI | B_CLUSTEROK))
 1696                 goto done;
 1697 
 1698         if (bpa->b_bufsize != size)
 1699                 goto done;
 1700 
 1701         /*
 1702          * Check to see if it is in the expected place on disk and that the
 1703          * block has been mapped.
 1704          */
 1705         if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 1706                 match = 1;
 1707 done:
 1708         BUF_UNLOCK(bpa);
 1709         return (match);
 1710 }
 1711 
 1712 /*
 1713  *      vfs_bio_awrite:
 1714  *
 1715  *      Implement clustered async writes for clearing out B_DELWRI buffers.
 1716  *      This is much better then the old way of writing only one buffer at
 1717  *      a time.  Note that we may not be presented with the buffers in the 
 1718  *      correct order, so we search for the cluster in both directions.
 1719  */
 1720 int
 1721 vfs_bio_awrite(struct buf *bp)
 1722 {
 1723         struct bufobj *bo;
 1724         int i;
 1725         int j;
 1726         daddr_t lblkno = bp->b_lblkno;
 1727         struct vnode *vp = bp->b_vp;
 1728         int ncl;
 1729         int nwritten;
 1730         int size;
 1731         int maxcl;
 1732 
 1733         bo = &vp->v_bufobj;
 1734         /*
 1735          * right now we support clustered writing only to regular files.  If
 1736          * we find a clusterable block we could be in the middle of a cluster
 1737          * rather then at the beginning.
 1738          */
 1739         if ((vp->v_type == VREG) && 
 1740             (vp->v_mount != 0) && /* Only on nodes that have the size info */
 1741             (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 1742 
 1743                 size = vp->v_mount->mnt_stat.f_iosize;
 1744                 maxcl = MAXPHYS / size;
 1745 
 1746                 BO_LOCK(bo);
 1747                 for (i = 1; i < maxcl; i++)
 1748                         if (vfs_bio_clcheck(vp, size, lblkno + i,
 1749                             bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 1750                                 break;
 1751 
 1752                 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 1753                         if (vfs_bio_clcheck(vp, size, lblkno - j,
 1754                             bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 1755                                 break;
 1756                 BO_UNLOCK(bo);
 1757                 --j;
 1758                 ncl = i + j;
 1759                 /*
 1760                  * this is a possible cluster write
 1761                  */
 1762                 if (ncl != 1) {
 1763                         BUF_UNLOCK(bp);
 1764                         nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
 1765                         return nwritten;
 1766                 }
 1767         }
 1768         bremfree(bp);
 1769         bp->b_flags |= B_ASYNC;
 1770         /*
 1771          * default (old) behavior, writing out only one block
 1772          *
 1773          * XXX returns b_bufsize instead of b_bcount for nwritten?
 1774          */
 1775         nwritten = bp->b_bufsize;
 1776         (void) bwrite(bp);
 1777 
 1778         return nwritten;
 1779 }
 1780 
 1781 /*
 1782  *      getnewbuf:
 1783  *
 1784  *      Find and initialize a new buffer header, freeing up existing buffers 
 1785  *      in the bufqueues as necessary.  The new buffer is returned locked.
 1786  *
 1787  *      Important:  B_INVAL is not set.  If the caller wishes to throw the
 1788  *      buffer away, the caller must set B_INVAL prior to calling brelse().
 1789  *
 1790  *      We block if:
 1791  *              We have insufficient buffer headers
 1792  *              We have insufficient buffer space
 1793  *              buffer_map is too fragmented ( space reservation fails )
 1794  *              If we have to flush dirty buffers ( but we try to avoid this )
 1795  *
 1796  *      To avoid VFS layer recursion we do not flush dirty buffers ourselves.
 1797  *      Instead we ask the buf daemon to do it for us.  We attempt to
 1798  *      avoid piecemeal wakeups of the pageout daemon.
 1799  */
 1800 
 1801 static struct buf *
 1802 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
 1803     int gbflags)
 1804 {
 1805         struct thread *td;
 1806         struct buf *bp;
 1807         struct buf *nbp;
 1808         int defrag = 0;
 1809         int nqindex;
 1810         static int flushingbufs;
 1811 
 1812         td = curthread;
 1813         /*
 1814          * We can't afford to block since we might be holding a vnode lock,
 1815          * which may prevent system daemons from running.  We deal with
 1816          * low-memory situations by proactively returning memory and running
 1817          * async I/O rather then sync I/O.
 1818          */
 1819         atomic_add_int(&getnewbufcalls, 1);
 1820         atomic_subtract_int(&getnewbufrestarts, 1);
 1821 restart:
 1822         atomic_add_int(&getnewbufrestarts, 1);
 1823 
 1824         /*
 1825          * Setup for scan.  If we do not have enough free buffers,
 1826          * we setup a degenerate case that immediately fails.  Note
 1827          * that if we are specially marked process, we are allowed to
 1828          * dip into our reserves.
 1829          *
 1830          * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
 1831          *
 1832          * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
 1833          * However, there are a number of cases (defragging, reusing, ...)
 1834          * where we cannot backup.
 1835          */
 1836         mtx_lock(&bqlock);
 1837         nqindex = QUEUE_EMPTYKVA;
 1838         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
 1839 
 1840         if (nbp == NULL) {
 1841                 /*
 1842                  * If no EMPTYKVA buffers and we are either
 1843                  * defragging or reusing, locate a CLEAN buffer
 1844                  * to free or reuse.  If bufspace useage is low
 1845                  * skip this step so we can allocate a new buffer.
 1846                  */
 1847                 if (defrag || bufspace >= lobufspace) {
 1848                         nqindex = QUEUE_CLEAN;
 1849                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
 1850                 }
 1851 
 1852                 /*
 1853                  * If we could not find or were not allowed to reuse a
 1854                  * CLEAN buffer, check to see if it is ok to use an EMPTY
 1855                  * buffer.  We can only use an EMPTY buffer if allocating
 1856                  * its KVA would not otherwise run us out of buffer space.
 1857                  */
 1858                 if (nbp == NULL && defrag == 0 &&
 1859                     bufspace + maxsize < hibufspace) {
 1860                         nqindex = QUEUE_EMPTY;
 1861                         nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
 1862                 }
 1863         }
 1864 
 1865         /*
 1866          * Run scan, possibly freeing data and/or kva mappings on the fly
 1867          * depending.
 1868          */
 1869 
 1870         while ((bp = nbp) != NULL) {
 1871                 int qindex = nqindex;
 1872 
 1873                 /*
 1874                  * Calculate next bp ( we can only use it if we do not block
 1875                  * or do other fancy things ).
 1876                  */
 1877                 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
 1878                         switch(qindex) {
 1879                         case QUEUE_EMPTY:
 1880                                 nqindex = QUEUE_EMPTYKVA;
 1881                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
 1882                                         break;
 1883                                 /* FALLTHROUGH */
 1884                         case QUEUE_EMPTYKVA:
 1885                                 nqindex = QUEUE_CLEAN;
 1886                                 if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
 1887                                         break;
 1888                                 /* FALLTHROUGH */
 1889                         case QUEUE_CLEAN:
 1890                                 /*
 1891                                  * nbp is NULL. 
 1892                                  */
 1893                                 break;
 1894                         }
 1895                 }
 1896                 /*
 1897                  * If we are defragging then we need a buffer with 
 1898                  * b_kvasize != 0.  XXX this situation should no longer
 1899                  * occur, if defrag is non-zero the buffer's b_kvasize
 1900                  * should also be non-zero at this point.  XXX
 1901                  */
 1902                 if (defrag && bp->b_kvasize == 0) {
 1903                         printf("Warning: defrag empty buffer %p\n", bp);
 1904                         continue;
 1905                 }
 1906 
 1907                 /*
 1908                  * Start freeing the bp.  This is somewhat involved.  nbp
 1909                  * remains valid only for QUEUE_EMPTY[KVA] bp's.
 1910                  */
 1911                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1912                         continue;
 1913                 if (bp->b_vp) {
 1914                         BO_LOCK(bp->b_bufobj);
 1915                         if (bp->b_vflags & BV_BKGRDINPROG) {
 1916                                 BO_UNLOCK(bp->b_bufobj);
 1917                                 BUF_UNLOCK(bp);
 1918                                 continue;
 1919                         }
 1920                         BO_UNLOCK(bp->b_bufobj);
 1921                 }
 1922                 CTR6(KTR_BUF,
 1923                     "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
 1924                     "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
 1925                     bp->b_kvasize, bp->b_bufsize, qindex);
 1926 
 1927                 /*
 1928                  * Sanity Checks
 1929                  */
 1930                 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
 1931 
 1932                 /*
 1933                  * Note: we no longer distinguish between VMIO and non-VMIO
 1934                  * buffers.
 1935                  */
 1936 
 1937                 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
 1938 
 1939                 if (bp->b_bufobj != NULL)
 1940                         BO_LOCK(bp->b_bufobj);
 1941                 bremfreel(bp);
 1942                 if (bp->b_bufobj != NULL)
 1943                         BO_UNLOCK(bp->b_bufobj);
 1944                 mtx_unlock(&bqlock);
 1945 
 1946                 if (qindex == QUEUE_CLEAN) {
 1947                         if (bp->b_flags & B_VMIO) {
 1948                                 bp->b_flags &= ~B_ASYNC;
 1949                                 vfs_vmio_release(bp);
 1950                         }
 1951                         if (bp->b_vp)
 1952                                 brelvp(bp);
 1953                 }
 1954 
 1955                 /*
 1956                  * NOTE:  nbp is now entirely invalid.  We can only restart
 1957                  * the scan from this point on.
 1958                  *
 1959                  * Get the rest of the buffer freed up.  b_kva* is still
 1960                  * valid after this operation.
 1961                  */
 1962 
 1963                 if (bp->b_rcred != NOCRED) {
 1964                         crfree(bp->b_rcred);
 1965                         bp->b_rcred = NOCRED;
 1966                 }
 1967                 if (bp->b_wcred != NOCRED) {
 1968                         crfree(bp->b_wcred);
 1969                         bp->b_wcred = NOCRED;
 1970                 }
 1971                 if (!LIST_EMPTY(&bp->b_dep))
 1972                         buf_deallocate(bp);
 1973                 if (bp->b_vflags & BV_BKGRDINPROG)
 1974                         panic("losing buffer 3");
 1975                 KASSERT(bp->b_vp == NULL,
 1976                     ("bp: %p still has vnode %p.  qindex: %d",
 1977                     bp, bp->b_vp, qindex));
 1978                 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
 1979                    ("bp: %p still on a buffer list. xflags %X",
 1980                     bp, bp->b_xflags));
 1981 
 1982                 if (bp->b_bufsize)
 1983                         allocbuf(bp, 0);
 1984 
 1985                 bp->b_flags = 0;
 1986                 bp->b_ioflags = 0;
 1987                 bp->b_xflags = 0;
 1988                 KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
 1989                     ("buf %p still counted as free?", bp));
 1990                 bp->b_vflags = 0;
 1991                 bp->b_vp = NULL;
 1992                 bp->b_blkno = bp->b_lblkno = 0;
 1993                 bp->b_offset = NOOFFSET;
 1994                 bp->b_iodone = 0;
 1995                 bp->b_error = 0;
 1996                 bp->b_resid = 0;
 1997                 bp->b_bcount = 0;
 1998                 bp->b_npages = 0;
 1999                 bp->b_dirtyoff = bp->b_dirtyend = 0;
 2000                 bp->b_bufobj = NULL;
 2001                 bp->b_pin_count = 0;
 2002                 bp->b_fsprivate1 = NULL;
 2003                 bp->b_fsprivate2 = NULL;
 2004                 bp->b_fsprivate3 = NULL;
 2005 
 2006                 LIST_INIT(&bp->b_dep);
 2007 
 2008                 /*
 2009                  * If we are defragging then free the buffer.
 2010                  */
 2011                 if (defrag) {
 2012                         bp->b_flags |= B_INVAL;
 2013                         bfreekva(bp);
 2014                         brelse(bp);
 2015                         defrag = 0;
 2016                         goto restart;
 2017                 }
 2018 
 2019                 /*
 2020                  * Notify any waiters for the buffer lock about
 2021                  * identity change by freeing the buffer.
 2022                  */
 2023                 if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
 2024                         bp->b_flags |= B_INVAL;
 2025                         bfreekva(bp);
 2026                         brelse(bp);
 2027                         goto restart;
 2028                 }
 2029 
 2030                 /*
 2031                  * If we are overcomitted then recover the buffer and its
 2032                  * KVM space.  This occurs in rare situations when multiple
 2033                  * processes are blocked in getnewbuf() or allocbuf().
 2034                  */
 2035                 if (bufspace >= hibufspace)
 2036                         flushingbufs = 1;
 2037                 if (flushingbufs && bp->b_kvasize != 0) {
 2038                         bp->b_flags |= B_INVAL;
 2039                         bfreekva(bp);
 2040                         brelse(bp);
 2041                         goto restart;
 2042                 }
 2043                 if (bufspace < lobufspace)
 2044                         flushingbufs = 0;
 2045                 break;
 2046         }
 2047 
 2048         /*
 2049          * If we exhausted our list, sleep as appropriate.  We may have to
 2050          * wakeup various daemons and write out some dirty buffers.
 2051          *
 2052          * Generally we are sleeping due to insufficient buffer space.
 2053          */
 2054 
 2055         if (bp == NULL) {
 2056                 int flags, norunbuf;
 2057                 char *waitmsg;
 2058                 int fl;
 2059 
 2060                 if (defrag) {
 2061                         flags = VFS_BIO_NEED_BUFSPACE;
 2062                         waitmsg = "nbufkv";
 2063                 } else if (bufspace >= hibufspace) {
 2064                         waitmsg = "nbufbs";
 2065                         flags = VFS_BIO_NEED_BUFSPACE;
 2066                 } else {
 2067                         waitmsg = "newbuf";
 2068                         flags = VFS_BIO_NEED_ANY;
 2069                 }
 2070                 mtx_lock(&nblock);
 2071                 needsbuffer |= flags;
 2072                 mtx_unlock(&nblock);
 2073                 mtx_unlock(&bqlock);
 2074 
 2075                 bd_speedup();   /* heeeelp */
 2076                 if (gbflags & GB_NOWAIT_BD)
 2077                         return (NULL);
 2078 
 2079                 mtx_lock(&nblock);
 2080                 while (needsbuffer & flags) {
 2081                         if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
 2082                                 mtx_unlock(&nblock);
 2083                                 /*
 2084                                  * getblk() is called with a vnode
 2085                                  * locked, and some majority of the
 2086                                  * dirty buffers may as well belong to
 2087                                  * the vnode. Flushing the buffers
 2088                                  * there would make a progress that
 2089                                  * cannot be achieved by the
 2090                                  * buf_daemon, that cannot lock the
 2091                                  * vnode.
 2092                                  */
 2093                                 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
 2094                                     (td->td_pflags & TDP_NORUNNINGBUF);
 2095                                 /* play bufdaemon */
 2096                                 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
 2097                                 fl = buf_do_flush(vp);
 2098                                 td->td_pflags &= norunbuf;
 2099                                 mtx_lock(&nblock);
 2100                                 if (fl != 0)
 2101                                         continue;
 2102                                 if ((needsbuffer & flags) == 0)
 2103                                         break;
 2104                         }
 2105                         if (msleep(&needsbuffer, &nblock,
 2106                             (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
 2107                                 mtx_unlock(&nblock);
 2108                                 return (NULL);
 2109                         }
 2110                 }
 2111                 mtx_unlock(&nblock);
 2112         } else {
 2113                 /*
 2114                  * We finally have a valid bp.  We aren't quite out of the
 2115                  * woods, we still have to reserve kva space.  In order
 2116                  * to keep fragmentation sane we only allocate kva in
 2117                  * BKVASIZE chunks.
 2118                  */
 2119                 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 2120 
 2121                 if (maxsize != bp->b_kvasize) {
 2122                         vm_offset_t addr = 0;
 2123 
 2124                         bfreekva(bp);
 2125 
 2126                         vm_map_lock(buffer_map);
 2127                         if (vm_map_findspace(buffer_map,
 2128                                 vm_map_min(buffer_map), maxsize, &addr)) {
 2129                                 /*
 2130                                  * Uh oh.  Buffer map is to fragmented.  We
 2131                                  * must defragment the map.
 2132                                  */
 2133                                 atomic_add_int(&bufdefragcnt, 1);
 2134                                 vm_map_unlock(buffer_map);
 2135                                 defrag = 1;
 2136                                 bp->b_flags |= B_INVAL;
 2137                                 brelse(bp);
 2138                                 goto restart;
 2139                         }
 2140                         if (addr) {
 2141                                 vm_map_insert(buffer_map, NULL, 0,
 2142                                         addr, addr + maxsize,
 2143                                         VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
 2144 
 2145                                 bp->b_kvabase = (caddr_t) addr;
 2146                                 bp->b_kvasize = maxsize;
 2147                                 atomic_add_long(&bufspace, bp->b_kvasize);
 2148                                 atomic_add_int(&bufreusecnt, 1);
 2149                         }
 2150                         vm_map_unlock(buffer_map);
 2151                 }
 2152                 bp->b_saveaddr = bp->b_kvabase;
 2153                 bp->b_data = bp->b_saveaddr;
 2154         }
 2155         return(bp);
 2156 }
 2157 
 2158 /*
 2159  *      buf_daemon:
 2160  *
 2161  *      buffer flushing daemon.  Buffers are normally flushed by the
 2162  *      update daemon but if it cannot keep up this process starts to
 2163  *      take the load in an attempt to prevent getnewbuf() from blocking.
 2164  */
 2165 
 2166 static struct kproc_desc buf_kp = {
 2167         "bufdaemon",
 2168         buf_daemon,
 2169         &bufdaemonproc
 2170 };
 2171 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
 2172 
 2173 static int
 2174 buf_do_flush(struct vnode *vp)
 2175 {
 2176         int flushed;
 2177 
 2178         flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
 2179         /* The list empty check here is slightly racy */
 2180         if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
 2181                 mtx_lock(&Giant);
 2182                 flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
 2183                 mtx_unlock(&Giant);
 2184         }
 2185         if (flushed == 0) {
 2186                 /*
 2187                  * Could not find any buffers without rollback
 2188                  * dependencies, so just write the first one
 2189                  * in the hopes of eventually making progress.
 2190                  */
 2191                 flushbufqueues(vp, QUEUE_DIRTY, 1);
 2192                 if (!TAILQ_EMPTY(
 2193                             &bufqueues[QUEUE_DIRTY_GIANT])) {
 2194                         mtx_lock(&Giant);
 2195                         flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
 2196                         mtx_unlock(&Giant);
 2197                 }
 2198         }
 2199         return (flushed);
 2200 }
 2201 
 2202 static void
 2203 buf_daemon()
 2204 {
 2205         int lodirtysave;
 2206 
 2207         /*
 2208          * This process needs to be suspended prior to shutdown sync.
 2209          */
 2210         EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
 2211             SHUTDOWN_PRI_LAST);
 2212 
 2213         /*
 2214          * This process is allowed to take the buffer cache to the limit
 2215          */
 2216         curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
 2217         mtx_lock(&bdlock);
 2218         for (;;) {
 2219                 bd_request = 0;
 2220                 mtx_unlock(&bdlock);
 2221 
 2222                 kproc_suspend_check(bufdaemonproc);
 2223                 lodirtysave = lodirtybuffers;
 2224                 if (bd_speedupreq) {
 2225                         lodirtybuffers = numdirtybuffers / 2;
 2226                         bd_speedupreq = 0;
 2227                 }
 2228                 /*
 2229                  * Do the flush.  Limit the amount of in-transit I/O we
 2230                  * allow to build up, otherwise we would completely saturate
 2231                  * the I/O system.  Wakeup any waiting processes before we
 2232                  * normally would so they can run in parallel with our drain.
 2233                  */
 2234                 while (numdirtybuffers > lodirtybuffers) {
 2235                         if (buf_do_flush(NULL) == 0)
 2236                                 break;
 2237                         kern_yield(PRI_UNCHANGED);
 2238                 }
 2239                 lodirtybuffers = lodirtysave;
 2240 
 2241                 /*
 2242                  * Only clear bd_request if we have reached our low water
 2243                  * mark.  The buf_daemon normally waits 1 second and
 2244                  * then incrementally flushes any dirty buffers that have
 2245                  * built up, within reason.
 2246                  *
 2247                  * If we were unable to hit our low water mark and couldn't
 2248                  * find any flushable buffers, we sleep half a second.
 2249                  * Otherwise we loop immediately.
 2250                  */
 2251                 mtx_lock(&bdlock);
 2252                 if (numdirtybuffers <= lodirtybuffers) {
 2253                         /*
 2254                          * We reached our low water mark, reset the
 2255                          * request and sleep until we are needed again.
 2256                          * The sleep is just so the suspend code works.
 2257                          */
 2258                         bd_request = 0;
 2259                         msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 2260                 } else {
 2261                         /*
 2262                          * We couldn't find any flushable dirty buffers but
 2263                          * still have too many dirty buffers, we
 2264                          * have to sleep and try again.  (rare)
 2265                          */
 2266                         msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 2267                 }
 2268         }
 2269 }
 2270 
 2271 /*
 2272  *      flushbufqueues:
 2273  *
 2274  *      Try to flush a buffer in the dirty queue.  We must be careful to
 2275  *      free up B_INVAL buffers instead of write them, which NFS is 
 2276  *      particularly sensitive to.
 2277  */
 2278 static int flushwithdeps = 0;
 2279 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
 2280     0, "Number of buffers flushed with dependecies that require rollbacks");
 2281 
 2282 static int
 2283 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
 2284 {
 2285         struct buf *sentinel;
 2286         struct vnode *vp;
 2287         struct mount *mp;
 2288         struct buf *bp;
 2289         int hasdeps;
 2290         int flushed;
 2291         int target;
 2292 
 2293         if (lvp == NULL) {
 2294                 target = numdirtybuffers - lodirtybuffers;
 2295                 if (flushdeps && target > 2)
 2296                         target /= 2;
 2297         } else
 2298                 target = flushbufqtarget;
 2299         flushed = 0;
 2300         bp = NULL;
 2301         sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
 2302         sentinel->b_qindex = QUEUE_SENTINEL;
 2303         mtx_lock(&bqlock);
 2304         TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
 2305         while (flushed != target) {
 2306                 bp = TAILQ_NEXT(sentinel, b_freelist);
 2307                 if (bp != NULL) {
 2308                         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2309                         TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
 2310                             b_freelist);
 2311                 } else
 2312                         break;
 2313                 /*
 2314                  * Skip sentinels inserted by other invocations of the
 2315                  * flushbufqueues(), taking care to not reorder them.
 2316                  */
 2317                 if (bp->b_qindex == QUEUE_SENTINEL)
 2318                         continue;
 2319                 /*
 2320                  * Only flush the buffers that belong to the
 2321                  * vnode locked by the curthread.
 2322                  */
 2323                 if (lvp != NULL && bp->b_vp != lvp)
 2324                         continue;
 2325                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 2326                         continue;
 2327                 if (bp->b_pin_count > 0) {
 2328                         BUF_UNLOCK(bp);
 2329                         continue;
 2330                 }
 2331                 BO_LOCK(bp->b_bufobj);
 2332                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
 2333                     (bp->b_flags & B_DELWRI) == 0) {
 2334                         BO_UNLOCK(bp->b_bufobj);
 2335                         BUF_UNLOCK(bp);
 2336                         continue;
 2337                 }
 2338                 BO_UNLOCK(bp->b_bufobj);
 2339                 if (bp->b_flags & B_INVAL) {
 2340                         bremfreel(bp);
 2341                         mtx_unlock(&bqlock);
 2342                         brelse(bp);
 2343                         flushed++;
 2344                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2345                         mtx_lock(&bqlock);
 2346                         continue;
 2347                 }
 2348 
 2349                 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
 2350                         if (flushdeps == 0) {
 2351                                 BUF_UNLOCK(bp);
 2352                                 continue;
 2353                         }
 2354                         hasdeps = 1;
 2355                 } else
 2356                         hasdeps = 0;
 2357                 /*
 2358                  * We must hold the lock on a vnode before writing
 2359                  * one of its buffers. Otherwise we may confuse, or
 2360                  * in the case of a snapshot vnode, deadlock the
 2361                  * system.
 2362                  *
 2363                  * The lock order here is the reverse of the normal
 2364                  * of vnode followed by buf lock.  This is ok because
 2365                  * the NOWAIT will prevent deadlock.
 2366                  */
 2367                 vp = bp->b_vp;
 2368                 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 2369                         BUF_UNLOCK(bp);
 2370                         continue;
 2371                 }
 2372                 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
 2373                         mtx_unlock(&bqlock);
 2374                         CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
 2375                             bp, bp->b_vp, bp->b_flags);
 2376                         if (curproc == bufdaemonproc)
 2377                                 vfs_bio_awrite(bp);
 2378                         else {
 2379                                 bremfree(bp);
 2380                                 bwrite(bp);
 2381                                 notbufdflashes++;
 2382                         }
 2383                         vn_finished_write(mp);
 2384                         VOP_UNLOCK(vp, 0);
 2385                         flushwithdeps += hasdeps;
 2386                         flushed++;
 2387 
 2388                         /*
 2389                          * Sleeping on runningbufspace while holding
 2390                          * vnode lock leads to deadlock.
 2391                          */
 2392                         if (curproc == bufdaemonproc)
 2393                                 waitrunningbufspace();
 2394                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2395                         mtx_lock(&bqlock);
 2396                         continue;
 2397                 }
 2398                 vn_finished_write(mp);
 2399                 BUF_UNLOCK(bp);
 2400         }
 2401         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2402         mtx_unlock(&bqlock);
 2403         free(sentinel, M_TEMP);
 2404         return (flushed);
 2405 }
 2406 
 2407 /*
 2408  * Check to see if a block is currently memory resident.
 2409  */
 2410 struct buf *
 2411 incore(struct bufobj *bo, daddr_t blkno)
 2412 {
 2413         struct buf *bp;
 2414 
 2415         BO_LOCK(bo);
 2416         bp = gbincore(bo, blkno);
 2417         BO_UNLOCK(bo);
 2418         return (bp);
 2419 }
 2420 
 2421 /*
 2422  * Returns true if no I/O is needed to access the
 2423  * associated VM object.  This is like incore except
 2424  * it also hunts around in the VM system for the data.
 2425  */
 2426 
 2427 static int
 2428 inmem(struct vnode * vp, daddr_t blkno)
 2429 {
 2430         vm_object_t obj;
 2431         vm_offset_t toff, tinc, size;
 2432         vm_page_t m;
 2433         vm_ooffset_t off;
 2434 
 2435         ASSERT_VOP_LOCKED(vp, "inmem");
 2436 
 2437         if (incore(&vp->v_bufobj, blkno))
 2438                 return 1;
 2439         if (vp->v_mount == NULL)
 2440                 return 0;
 2441         obj = vp->v_object;
 2442         if (obj == NULL)
 2443                 return (0);
 2444 
 2445         size = PAGE_SIZE;
 2446         if (size > vp->v_mount->mnt_stat.f_iosize)
 2447                 size = vp->v_mount->mnt_stat.f_iosize;
 2448         off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 2449 
 2450         VM_OBJECT_LOCK(obj);
 2451         for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 2452                 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
 2453                 if (!m)
 2454                         goto notinmem;
 2455                 tinc = size;
 2456                 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 2457                         tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 2458                 if (vm_page_is_valid(m,
 2459                     (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
 2460                         goto notinmem;
 2461         }
 2462         VM_OBJECT_UNLOCK(obj);
 2463         return 1;
 2464 
 2465 notinmem:
 2466         VM_OBJECT_UNLOCK(obj);
 2467         return (0);
 2468 }
 2469 
 2470 /*
 2471  * Set the dirty range for a buffer based on the status of the dirty
 2472  * bits in the pages comprising the buffer.  The range is limited
 2473  * to the size of the buffer.
 2474  *
 2475  * Tell the VM system that the pages associated with this buffer
 2476  * are clean.  This is used for delayed writes where the data is
 2477  * going to go to disk eventually without additional VM intevention.
 2478  *
 2479  * Note that while we only really need to clean through to b_bcount, we
 2480  * just go ahead and clean through to b_bufsize.
 2481  */
 2482 static void
 2483 vfs_clean_pages_dirty_buf(struct buf *bp)
 2484 {
 2485         vm_ooffset_t foff, noff, eoff;
 2486         vm_page_t m;
 2487         int i;
 2488 
 2489         if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
 2490                 return;
 2491 
 2492         foff = bp->b_offset;
 2493         KASSERT(bp->b_offset != NOOFFSET,
 2494             ("vfs_clean_pages_dirty_buf: no buffer offset"));
 2495 
 2496         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 2497         vfs_drain_busy_pages(bp);
 2498         vfs_setdirty_locked_object(bp);
 2499         for (i = 0; i < bp->b_npages; i++) {
 2500                 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 2501                 eoff = noff;
 2502                 if (eoff > bp->b_offset + bp->b_bufsize)
 2503                         eoff = bp->b_offset + bp->b_bufsize;
 2504                 m = bp->b_pages[i];
 2505                 vfs_page_set_validclean(bp, foff, m);
 2506                 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 2507                 foff = noff;
 2508         }
 2509         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 2510 }
 2511 
 2512 static void
 2513 vfs_setdirty_locked_object(struct buf *bp)
 2514 {
 2515         vm_object_t object;
 2516         int i;
 2517 
 2518         object = bp->b_bufobj->bo_object;
 2519         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2520 
 2521         /*
 2522          * We qualify the scan for modified pages on whether the
 2523          * object has been flushed yet.
 2524          */
 2525         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
 2526                 vm_offset_t boffset;
 2527                 vm_offset_t eoffset;
 2528 
 2529                 /*
 2530                  * test the pages to see if they have been modified directly
 2531                  * by users through the VM system.
 2532                  */
 2533                 for (i = 0; i < bp->b_npages; i++)
 2534                         vm_page_test_dirty(bp->b_pages[i]);
 2535 
 2536                 /*
 2537                  * Calculate the encompassing dirty range, boffset and eoffset,
 2538                  * (eoffset - boffset) bytes.
 2539                  */
 2540 
 2541                 for (i = 0; i < bp->b_npages; i++) {
 2542                         if (bp->b_pages[i]->dirty)
 2543                                 break;
 2544                 }
 2545                 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2546 
 2547                 for (i = bp->b_npages - 1; i >= 0; --i) {
 2548                         if (bp->b_pages[i]->dirty) {
 2549                                 break;
 2550                         }
 2551                 }
 2552                 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2553 
 2554                 /*
 2555                  * Fit it to the buffer.
 2556                  */
 2557 
 2558                 if (eoffset > bp->b_bcount)
 2559                         eoffset = bp->b_bcount;
 2560 
 2561                 /*
 2562                  * If we have a good dirty range, merge with the existing
 2563                  * dirty range.
 2564                  */
 2565 
 2566                 if (boffset < eoffset) {
 2567                         if (bp->b_dirtyoff > boffset)
 2568                                 bp->b_dirtyoff = boffset;
 2569                         if (bp->b_dirtyend < eoffset)
 2570                                 bp->b_dirtyend = eoffset;
 2571                 }
 2572         }
 2573 }
 2574 
 2575 /*
 2576  *      getblk:
 2577  *
 2578  *      Get a block given a specified block and offset into a file/device.
 2579  *      The buffers B_DONE bit will be cleared on return, making it almost
 2580  *      ready for an I/O initiation.  B_INVAL may or may not be set on 
 2581  *      return.  The caller should clear B_INVAL prior to initiating a
 2582  *      READ.
 2583  *
 2584  *      For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
 2585  *      an existing buffer.
 2586  *
 2587  *      For a VMIO buffer, B_CACHE is modified according to the backing VM.
 2588  *      If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
 2589  *      and then cleared based on the backing VM.  If the previous buffer is
 2590  *      non-0-sized but invalid, B_CACHE will be cleared.
 2591  *
 2592  *      If getblk() must create a new buffer, the new buffer is returned with
 2593  *      both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
 2594  *      case it is returned with B_INVAL clear and B_CACHE set based on the
 2595  *      backing VM.
 2596  *
 2597  *      getblk() also forces a bwrite() for any B_DELWRI buffer whos
 2598  *      B_CACHE bit is clear.
 2599  *      
 2600  *      What this means, basically, is that the caller should use B_CACHE to
 2601  *      determine whether the buffer is fully valid or not and should clear
 2602  *      B_INVAL prior to issuing a read.  If the caller intends to validate
 2603  *      the buffer by loading its data area with something, the caller needs
 2604  *      to clear B_INVAL.  If the caller does this without issuing an I/O, 
 2605  *      the caller should set B_CACHE ( as an optimization ), else the caller
 2606  *      should issue the I/O and biodone() will set B_CACHE if the I/O was
 2607  *      a write attempt or if it was a successfull read.  If the caller 
 2608  *      intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
 2609  *      prior to issuing the READ.  biodone() will *not* clear B_INVAL.
 2610  */
 2611 struct buf *
 2612 getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
 2613     int flags)
 2614 {
 2615         struct buf *bp;
 2616         struct bufobj *bo;
 2617         int error;
 2618 
 2619         CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
 2620         ASSERT_VOP_LOCKED(vp, "getblk");
 2621         if (size > MAXBSIZE)
 2622                 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
 2623 
 2624         bo = &vp->v_bufobj;
 2625 loop:
 2626         /*
 2627          * Block if we are low on buffers.   Certain processes are allowed
 2628          * to completely exhaust the buffer cache.
 2629          *
 2630          * If this check ever becomes a bottleneck it may be better to
 2631          * move it into the else, when gbincore() fails.  At the moment
 2632          * it isn't a problem.
 2633          *
 2634          * XXX remove if 0 sections (clean this up after its proven)
 2635          */
 2636         if (numfreebuffers == 0) {
 2637                 if (TD_IS_IDLETHREAD(curthread))
 2638                         return NULL;
 2639                 mtx_lock(&nblock);
 2640                 needsbuffer |= VFS_BIO_NEED_ANY;
 2641                 mtx_unlock(&nblock);
 2642         }
 2643 
 2644         BO_LOCK(bo);
 2645         bp = gbincore(bo, blkno);
 2646         if (bp != NULL) {
 2647                 int lockflags;
 2648                 /*
 2649                  * Buffer is in-core.  If the buffer is not busy, it must
 2650                  * be on a queue.
 2651                  */
 2652                 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
 2653 
 2654                 if (flags & GB_LOCK_NOWAIT)
 2655                         lockflags |= LK_NOWAIT;
 2656 
 2657                 error = BUF_TIMELOCK(bp, lockflags,
 2658                     BO_MTX(bo), "getblk", slpflag, slptimeo);
 2659 
 2660                 /*
 2661                  * If we slept and got the lock we have to restart in case
 2662                  * the buffer changed identities.
 2663                  */
 2664                 if (error == ENOLCK)
 2665                         goto loop;
 2666                 /* We timed out or were interrupted. */
 2667                 else if (error)
 2668                         return (NULL);
 2669 
 2670                 /*
 2671                  * The buffer is locked.  B_CACHE is cleared if the buffer is 
 2672                  * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 2673                  * and for a VMIO buffer B_CACHE is adjusted according to the
 2674                  * backing VM cache.
 2675                  */
 2676                 if (bp->b_flags & B_INVAL)
 2677                         bp->b_flags &= ~B_CACHE;
 2678                 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 2679                         bp->b_flags |= B_CACHE;
 2680                 BO_LOCK(bo);
 2681                 bremfree(bp);
 2682                 BO_UNLOCK(bo);
 2683 
 2684                 /*
 2685                  * check for size inconsistancies for non-VMIO case.
 2686                  */
 2687 
 2688                 if (bp->b_bcount != size) {
 2689                         if ((bp->b_flags & B_VMIO) == 0 ||
 2690                             (size > bp->b_kvasize)) {
 2691                                 if (bp->b_flags & B_DELWRI) {
 2692                                         /*
 2693                                          * If buffer is pinned and caller does
 2694                                          * not want sleep  waiting for it to be
 2695                                          * unpinned, bail out
 2696                                          * */
 2697                                         if (bp->b_pin_count > 0) {
 2698                                                 if (flags & GB_LOCK_NOWAIT) {
 2699                                                         bqrelse(bp);
 2700                                                         return (NULL);
 2701                                                 } else {
 2702                                                         bunpin_wait(bp);
 2703                                                 }
 2704                                         }
 2705                                         bp->b_flags |= B_NOCACHE;
 2706                                         bwrite(bp);
 2707                                 } else {
 2708                                         if (LIST_EMPTY(&bp->b_dep)) {
 2709                                                 bp->b_flags |= B_RELBUF;
 2710                                                 brelse(bp);
 2711                                         } else {
 2712                                                 bp->b_flags |= B_NOCACHE;
 2713                                                 bwrite(bp);
 2714                                         }
 2715                                 }
 2716                                 goto loop;
 2717                         }
 2718                 }
 2719 
 2720                 /*
 2721                  * If the size is inconsistant in the VMIO case, we can resize
 2722                  * the buffer.  This might lead to B_CACHE getting set or
 2723                  * cleared.  If the size has not changed, B_CACHE remains
 2724                  * unchanged from its previous state.
 2725                  */
 2726 
 2727                 if (bp->b_bcount != size)
 2728                         allocbuf(bp, size);
 2729 
 2730                 KASSERT(bp->b_offset != NOOFFSET, 
 2731                     ("getblk: no buffer offset"));
 2732 
 2733                 /*
 2734                  * A buffer with B_DELWRI set and B_CACHE clear must
 2735                  * be committed before we can return the buffer in
 2736                  * order to prevent the caller from issuing a read
 2737                  * ( due to B_CACHE not being set ) and overwriting
 2738                  * it.
 2739                  *
 2740                  * Most callers, including NFS and FFS, need this to
 2741                  * operate properly either because they assume they
 2742                  * can issue a read if B_CACHE is not set, or because
 2743                  * ( for example ) an uncached B_DELWRI might loop due 
 2744                  * to softupdates re-dirtying the buffer.  In the latter
 2745                  * case, B_CACHE is set after the first write completes,
 2746                  * preventing further loops.
 2747                  * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 2748                  * above while extending the buffer, we cannot allow the
 2749                  * buffer to remain with B_CACHE set after the write
 2750                  * completes or it will represent a corrupt state.  To
 2751                  * deal with this we set B_NOCACHE to scrap the buffer
 2752                  * after the write.
 2753                  *
 2754                  * We might be able to do something fancy, like setting
 2755                  * B_CACHE in bwrite() except if B_DELWRI is already set,
 2756                  * so the below call doesn't set B_CACHE, but that gets real
 2757                  * confusing.  This is much easier.
 2758                  */
 2759 
 2760                 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 2761                         bp->b_flags |= B_NOCACHE;
 2762                         bwrite(bp);
 2763                         goto loop;
 2764                 }
 2765                 bp->b_flags &= ~B_DONE;
 2766         } else {
 2767                 int bsize, maxsize, vmio;
 2768                 off_t offset;
 2769 
 2770                 /*
 2771                  * Buffer is not in-core, create new buffer.  The buffer
 2772                  * returned by getnewbuf() is locked.  Note that the returned
 2773                  * buffer is also considered valid (not marked B_INVAL).
 2774                  */
 2775                 BO_UNLOCK(bo);
 2776                 /*
 2777                  * If the user does not want us to create the buffer, bail out
 2778                  * here.
 2779                  */
 2780                 if (flags & GB_NOCREAT)
 2781                         return NULL;
 2782                 bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
 2783                 offset = blkno * bsize;
 2784                 vmio = vp->v_object != NULL;
 2785                 maxsize = vmio ? size + (offset & PAGE_MASK) : size;
 2786                 maxsize = imax(maxsize, bsize);
 2787 
 2788                 bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
 2789                 if (bp == NULL) {
 2790                         if (slpflag || slptimeo)
 2791                                 return NULL;
 2792                         goto loop;
 2793                 }
 2794 
 2795                 /*
 2796                  * This code is used to make sure that a buffer is not
 2797                  * created while the getnewbuf routine is blocked.
 2798                  * This can be a problem whether the vnode is locked or not.
 2799                  * If the buffer is created out from under us, we have to
 2800                  * throw away the one we just created.
 2801                  *
 2802                  * Note: this must occur before we associate the buffer
 2803                  * with the vp especially considering limitations in
 2804                  * the splay tree implementation when dealing with duplicate
 2805                  * lblkno's.
 2806                  */
 2807                 BO_LOCK(bo);
 2808                 if (gbincore(bo, blkno)) {
 2809                         BO_UNLOCK(bo);
 2810                         bp->b_flags |= B_INVAL;
 2811                         brelse(bp);
 2812                         goto loop;
 2813                 }
 2814 
 2815                 /*
 2816                  * Insert the buffer into the hash, so that it can
 2817                  * be found by incore.
 2818                  */
 2819                 bp->b_blkno = bp->b_lblkno = blkno;
 2820                 bp->b_offset = offset;
 2821                 bgetvp(vp, bp);
 2822                 BO_UNLOCK(bo);
 2823 
 2824                 /*
 2825                  * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 2826                  * buffer size starts out as 0, B_CACHE will be set by
 2827                  * allocbuf() for the VMIO case prior to it testing the
 2828                  * backing store for validity.
 2829                  */
 2830 
 2831                 if (vmio) {
 2832                         bp->b_flags |= B_VMIO;
 2833                         KASSERT(vp->v_object == bp->b_bufobj->bo_object,
 2834                             ("ARGH! different b_bufobj->bo_object %p %p %p\n",
 2835                             bp, vp->v_object, bp->b_bufobj->bo_object));
 2836                 } else {
 2837                         bp->b_flags &= ~B_VMIO;
 2838                         KASSERT(bp->b_bufobj->bo_object == NULL,
 2839                             ("ARGH! has b_bufobj->bo_object %p %p\n",
 2840                             bp, bp->b_bufobj->bo_object));
 2841                 }
 2842 
 2843                 allocbuf(bp, size);
 2844                 bp->b_flags &= ~B_DONE;
 2845         }
 2846         CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
 2847         BUF_ASSERT_HELD(bp);
 2848         KASSERT(bp->b_bufobj == bo,
 2849             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 2850         return (bp);
 2851 }
 2852 
 2853 /*
 2854  * Get an empty, disassociated buffer of given size.  The buffer is initially
 2855  * set to B_INVAL.
 2856  */
 2857 struct buf *
 2858 geteblk(int size, int flags)
 2859 {
 2860         struct buf *bp;
 2861         int maxsize;
 2862 
 2863         maxsize = (size + BKVAMASK) & ~BKVAMASK;
 2864         while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
 2865                 if ((flags & GB_NOWAIT_BD) &&
 2866                     (curthread->td_pflags & TDP_BUFNEED) != 0)
 2867                         return (NULL);
 2868         }
 2869         allocbuf(bp, size);
 2870         bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
 2871         BUF_ASSERT_HELD(bp);
 2872         return (bp);
 2873 }
 2874 
 2875 
 2876 /*
 2877  * This code constitutes the buffer memory from either anonymous system
 2878  * memory (in the case of non-VMIO operations) or from an associated
 2879  * VM object (in the case of VMIO operations).  This code is able to
 2880  * resize a buffer up or down.
 2881  *
 2882  * Note that this code is tricky, and has many complications to resolve
 2883  * deadlock or inconsistant data situations.  Tread lightly!!! 
 2884  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
 2885  * the caller.  Calling this code willy nilly can result in the loss of data.
 2886  *
 2887  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
 2888  * B_CACHE for the non-VMIO case.
 2889  */
 2890 
 2891 int
 2892 allocbuf(struct buf *bp, int size)
 2893 {
 2894         int newbsize, mbsize;
 2895         int i;
 2896 
 2897         BUF_ASSERT_HELD(bp);
 2898 
 2899         if (bp->b_kvasize < size)
 2900                 panic("allocbuf: buffer too small");
 2901 
 2902         if ((bp->b_flags & B_VMIO) == 0) {
 2903                 caddr_t origbuf;
 2904                 int origbufsize;
 2905                 /*
 2906                  * Just get anonymous memory from the kernel.  Don't
 2907                  * mess with B_CACHE.
 2908                  */
 2909                 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2910                 if (bp->b_flags & B_MALLOC)
 2911                         newbsize = mbsize;
 2912                 else
 2913                         newbsize = round_page(size);
 2914 
 2915                 if (newbsize < bp->b_bufsize) {
 2916                         /*
 2917                          * malloced buffers are not shrunk
 2918                          */
 2919                         if (bp->b_flags & B_MALLOC) {
 2920                                 if (newbsize) {
 2921                                         bp->b_bcount = size;
 2922                                 } else {
 2923                                         free(bp->b_data, M_BIOBUF);
 2924                                         if (bp->b_bufsize) {
 2925                                                 atomic_subtract_long(
 2926                                                     &bufmallocspace,
 2927                                                     bp->b_bufsize);
 2928                                                 bufspacewakeup();
 2929                                                 bp->b_bufsize = 0;
 2930                                         }
 2931                                         bp->b_saveaddr = bp->b_kvabase;
 2932                                         bp->b_data = bp->b_saveaddr;
 2933                                         bp->b_bcount = 0;
 2934                                         bp->b_flags &= ~B_MALLOC;
 2935                                 }
 2936                                 return 1;
 2937                         }               
 2938                         vm_hold_free_pages(bp, newbsize);
 2939                 } else if (newbsize > bp->b_bufsize) {
 2940                         /*
 2941                          * We only use malloced memory on the first allocation.
 2942                          * and revert to page-allocated memory when the buffer
 2943                          * grows.
 2944                          */
 2945                         /*
 2946                          * There is a potential smp race here that could lead
 2947                          * to bufmallocspace slightly passing the max.  It
 2948                          * is probably extremely rare and not worth worrying
 2949                          * over.
 2950                          */
 2951                         if ( (bufmallocspace < maxbufmallocspace) &&
 2952                                 (bp->b_bufsize == 0) &&
 2953                                 (mbsize <= PAGE_SIZE/2)) {
 2954 
 2955                                 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
 2956                                 bp->b_bufsize = mbsize;
 2957                                 bp->b_bcount = size;
 2958                                 bp->b_flags |= B_MALLOC;
 2959                                 atomic_add_long(&bufmallocspace, mbsize);
 2960                                 return 1;
 2961                         }
 2962                         origbuf = NULL;
 2963                         origbufsize = 0;
 2964                         /*
 2965                          * If the buffer is growing on its other-than-first allocation,
 2966                          * then we revert to the page-allocation scheme.
 2967                          */
 2968                         if (bp->b_flags & B_MALLOC) {
 2969                                 origbuf = bp->b_data;
 2970                                 origbufsize = bp->b_bufsize;
 2971                                 bp->b_data = bp->b_kvabase;
 2972                                 if (bp->b_bufsize) {
 2973                                         atomic_subtract_long(&bufmallocspace,
 2974                                             bp->b_bufsize);
 2975                                         bufspacewakeup();
 2976                                         bp->b_bufsize = 0;
 2977                                 }
 2978                                 bp->b_flags &= ~B_MALLOC;
 2979                                 newbsize = round_page(newbsize);
 2980                         }
 2981                         vm_hold_load_pages(
 2982                             bp,
 2983                             (vm_offset_t) bp->b_data + bp->b_bufsize,
 2984                             (vm_offset_t) bp->b_data + newbsize);
 2985                         if (origbuf) {
 2986                                 bcopy(origbuf, bp->b_data, origbufsize);
 2987                                 free(origbuf, M_BIOBUF);
 2988                         }
 2989                 }
 2990         } else {
 2991                 int desiredpages;
 2992 
 2993                 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 2994                 desiredpages = (size == 0) ? 0 :
 2995                         num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 2996 
 2997                 if (bp->b_flags & B_MALLOC)
 2998                         panic("allocbuf: VMIO buffer can't be malloced");
 2999                 /*
 3000                  * Set B_CACHE initially if buffer is 0 length or will become
 3001                  * 0-length.
 3002                  */
 3003                 if (size == 0 || bp->b_bufsize == 0)
 3004                         bp->b_flags |= B_CACHE;
 3005 
 3006                 if (newbsize < bp->b_bufsize) {
 3007                         /*
 3008                          * DEV_BSIZE aligned new buffer size is less then the
 3009                          * DEV_BSIZE aligned existing buffer size.  Figure out
 3010                          * if we have to remove any pages.
 3011                          */
 3012                         if (desiredpages < bp->b_npages) {
 3013                                 vm_page_t m;
 3014 
 3015                                 pmap_qremove((vm_offset_t)trunc_page(
 3016                                     (vm_offset_t)bp->b_data) +
 3017                                     (desiredpages << PAGE_SHIFT),
 3018                                     (bp->b_npages - desiredpages));
 3019                                 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3020                                 for (i = desiredpages; i < bp->b_npages; i++) {
 3021                                         /*
 3022                                          * the page is not freed here -- it
 3023                                          * is the responsibility of 
 3024                                          * vnode_pager_setsize
 3025                                          */
 3026                                         m = bp->b_pages[i];
 3027                                         KASSERT(m != bogus_page,
 3028                                             ("allocbuf: bogus page found"));
 3029                                         while (vm_page_sleep_if_busy(m, TRUE,
 3030                                             "biodep"))
 3031                                                 continue;
 3032 
 3033                                         bp->b_pages[i] = NULL;
 3034                                         vm_page_lock(m);
 3035                                         vm_page_unwire(m, 0);
 3036                                         vm_page_unlock(m);
 3037                                 }
 3038                                 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3039                                 bp->b_npages = desiredpages;
 3040                         }
 3041                 } else if (size > bp->b_bcount) {
 3042                         /*
 3043                          * We are growing the buffer, possibly in a 
 3044                          * byte-granular fashion.
 3045                          */
 3046                         vm_object_t obj;
 3047                         vm_offset_t toff;
 3048                         vm_offset_t tinc;
 3049 
 3050                         /*
 3051                          * Step 1, bring in the VM pages from the object, 
 3052                          * allocating them if necessary.  We must clear
 3053                          * B_CACHE if these pages are not valid for the 
 3054                          * range covered by the buffer.
 3055                          */
 3056 
 3057                         obj = bp->b_bufobj->bo_object;
 3058 
 3059                         VM_OBJECT_LOCK(obj);
 3060                         while (bp->b_npages < desiredpages) {
 3061                                 vm_page_t m;
 3062 
 3063                                 /*
 3064                                  * We must allocate system pages since blocking
 3065                                  * here could intefere with paging I/O, no
 3066                                  * matter which process we are.
 3067                                  *
 3068                                  * We can only test VPO_BUSY here.  Blocking on
 3069                                  * m->busy might lead to a deadlock:
 3070                                  *  vm_fault->getpages->cluster_read->allocbuf
 3071                                  * Thus, we specify VM_ALLOC_IGN_SBUSY.
 3072                                  */
 3073                                 m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
 3074                                     bp->b_npages, VM_ALLOC_NOBUSY |
 3075                                     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
 3076                                     VM_ALLOC_RETRY | VM_ALLOC_IGN_SBUSY |
 3077                                     VM_ALLOC_COUNT(desiredpages - bp->b_npages));
 3078                                 if (m->valid == 0)
 3079                                         bp->b_flags &= ~B_CACHE;
 3080                                 bp->b_pages[bp->b_npages] = m;
 3081                                 ++bp->b_npages;
 3082                         }
 3083 
 3084                         /*
 3085                          * Step 2.  We've loaded the pages into the buffer,
 3086                          * we have to figure out if we can still have B_CACHE
 3087                          * set.  Note that B_CACHE is set according to the
 3088                          * byte-granular range ( bcount and size ), new the
 3089                          * aligned range ( newbsize ).
 3090                          *
 3091                          * The VM test is against m->valid, which is DEV_BSIZE
 3092                          * aligned.  Needless to say, the validity of the data
 3093                          * needs to also be DEV_BSIZE aligned.  Note that this
 3094                          * fails with NFS if the server or some other client
 3095                          * extends the file's EOF.  If our buffer is resized, 
 3096                          * B_CACHE may remain set! XXX
 3097                          */
 3098 
 3099                         toff = bp->b_bcount;
 3100                         tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 3101 
 3102                         while ((bp->b_flags & B_CACHE) && toff < size) {
 3103                                 vm_pindex_t pi;
 3104 
 3105                                 if (tinc > (size - toff))
 3106                                         tinc = size - toff;
 3107 
 3108                                 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 
 3109                                     PAGE_SHIFT;
 3110 
 3111                                 vfs_buf_test_cache(
 3112                                     bp, 
 3113                                     bp->b_offset,
 3114                                     toff, 
 3115                                     tinc, 
 3116                                     bp->b_pages[pi]
 3117                                 );
 3118                                 toff += tinc;
 3119                                 tinc = PAGE_SIZE;
 3120                         }
 3121                         VM_OBJECT_UNLOCK(obj);
 3122 
 3123                         /*
 3124                          * Step 3, fixup the KVM pmap.  Remember that
 3125                          * bp->b_data is relative to bp->b_offset, but 
 3126                          * bp->b_offset may be offset into the first page.
 3127                          */
 3128 
 3129                         bp->b_data = (caddr_t)
 3130                             trunc_page((vm_offset_t)bp->b_data);
 3131                         pmap_qenter(
 3132                             (vm_offset_t)bp->b_data,
 3133                             bp->b_pages, 
 3134                             bp->b_npages
 3135                         );
 3136                         
 3137                         bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | 
 3138                             (vm_offset_t)(bp->b_offset & PAGE_MASK));
 3139                 }
 3140         }
 3141         if (newbsize < bp->b_bufsize)
 3142                 bufspacewakeup();
 3143         bp->b_bufsize = newbsize;       /* actual buffer allocation     */
 3144         bp->b_bcount = size;            /* requested buffer size        */
 3145         return 1;
 3146 }
 3147 
 3148 void
 3149 biodone(struct bio *bp)
 3150 {
 3151         struct mtx *mtxp;
 3152         void (*done)(struct bio *);
 3153 
 3154         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3155         mtx_lock(mtxp);
 3156         bp->bio_flags |= BIO_DONE;
 3157         done = bp->bio_done;
 3158         if (done == NULL)
 3159                 wakeup(bp);
 3160         mtx_unlock(mtxp);
 3161         if (done != NULL)
 3162                 done(bp);
 3163 }
 3164 
 3165 /*
 3166  * Wait for a BIO to finish.
 3167  *
 3168  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
 3169  * case is not yet clear.
 3170  */
 3171 int
 3172 biowait(struct bio *bp, const char *wchan)
 3173 {
 3174         struct mtx *mtxp;
 3175 
 3176         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3177         mtx_lock(mtxp);
 3178         while ((bp->bio_flags & BIO_DONE) == 0)
 3179                 msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
 3180         mtx_unlock(mtxp);
 3181         if (bp->bio_error != 0)
 3182                 return (bp->bio_error);
 3183         if (!(bp->bio_flags & BIO_ERROR))
 3184                 return (0);
 3185         return (EIO);
 3186 }
 3187 
 3188 void
 3189 biofinish(struct bio *bp, struct devstat *stat, int error)
 3190 {
 3191         
 3192         if (error) {
 3193                 bp->bio_error = error;
 3194                 bp->bio_flags |= BIO_ERROR;
 3195         }
 3196         if (stat != NULL)
 3197                 devstat_end_transaction_bio(stat, bp);
 3198         biodone(bp);
 3199 }
 3200 
 3201 /*
 3202  *      bufwait:
 3203  *
 3204  *      Wait for buffer I/O completion, returning error status.  The buffer
 3205  *      is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
 3206  *      error and cleared.
 3207  */
 3208 int
 3209 bufwait(struct buf *bp)
 3210 {
 3211         if (bp->b_iocmd == BIO_READ)
 3212                 bwait(bp, PRIBIO, "biord");
 3213         else
 3214                 bwait(bp, PRIBIO, "biowr");
 3215         if (bp->b_flags & B_EINTR) {
 3216                 bp->b_flags &= ~B_EINTR;
 3217                 return (EINTR);
 3218         }
 3219         if (bp->b_ioflags & BIO_ERROR) {
 3220                 return (bp->b_error ? bp->b_error : EIO);
 3221         } else {
 3222                 return (0);
 3223         }
 3224 }
 3225 
 3226  /*
 3227   * Call back function from struct bio back up to struct buf.
 3228   */
 3229 static void
 3230 bufdonebio(struct bio *bip)
 3231 {
 3232         struct buf *bp;
 3233 
 3234         bp = bip->bio_caller2;
 3235         bp->b_resid = bp->b_bcount - bip->bio_completed;
 3236         bp->b_resid = bip->bio_resid;   /* XXX: remove */
 3237         bp->b_ioflags = bip->bio_flags;
 3238         bp->b_error = bip->bio_error;
 3239         if (bp->b_error)
 3240                 bp->b_ioflags |= BIO_ERROR;
 3241         bufdone(bp);
 3242         g_destroy_bio(bip);
 3243 }
 3244 
 3245 void
 3246 dev_strategy(struct cdev *dev, struct buf *bp)
 3247 {
 3248         struct cdevsw *csw;
 3249         struct bio *bip;
 3250         int ref;
 3251 
 3252         if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
 3253                 panic("b_iocmd botch");
 3254         for (;;) {
 3255                 bip = g_new_bio();
 3256                 if (bip != NULL)
 3257                         break;
 3258                 /* Try again later */
 3259                 tsleep(&bp, PRIBIO, "dev_strat", hz/10);
 3260         }
 3261         bip->bio_cmd = bp->b_iocmd;
 3262         bip->bio_offset = bp->b_iooffset;
 3263         bip->bio_length = bp->b_bcount;
 3264         bip->bio_bcount = bp->b_bcount; /* XXX: remove */
 3265         bip->bio_data = bp->b_data;
 3266         bip->bio_done = bufdonebio;
 3267         bip->bio_caller2 = bp;
 3268         bip->bio_dev = dev;
 3269         KASSERT(dev->si_refcount > 0,
 3270             ("dev_strategy on un-referenced struct cdev *(%s)",
 3271             devtoname(dev)));
 3272         csw = dev_refthread(dev, &ref);
 3273         if (csw == NULL) {
 3274                 g_destroy_bio(bip);
 3275                 bp->b_error = ENXIO;
 3276                 bp->b_ioflags = BIO_ERROR;
 3277                 bufdone(bp);
 3278                 return;
 3279         }
 3280         (*csw->d_strategy)(bip);
 3281         dev_relthread(dev, ref);
 3282 }
 3283 
 3284 /*
 3285  *      bufdone:
 3286  *
 3287  *      Finish I/O on a buffer, optionally calling a completion function.
 3288  *      This is usually called from an interrupt so process blocking is
 3289  *      not allowed.
 3290  *
 3291  *      biodone is also responsible for setting B_CACHE in a B_VMIO bp.
 3292  *      In a non-VMIO bp, B_CACHE will be set on the next getblk() 
 3293  *      assuming B_INVAL is clear.
 3294  *
 3295  *      For the VMIO case, we set B_CACHE if the op was a read and no
 3296  *      read error occured, or if the op was a write.  B_CACHE is never
 3297  *      set if the buffer is invalid or otherwise uncacheable.
 3298  *
 3299  *      biodone does not mess with B_INVAL, allowing the I/O routine or the
 3300  *      initiator to leave B_INVAL set to brelse the buffer out of existance
 3301  *      in the biodone routine.
 3302  */
 3303 void
 3304 bufdone(struct buf *bp)
 3305 {
 3306         struct bufobj *dropobj;
 3307         void    (*biodone)(struct buf *);
 3308 
 3309         CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 3310         dropobj = NULL;
 3311 
 3312         KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 3313         BUF_ASSERT_HELD(bp);
 3314 
 3315         runningbufwakeup(bp);
 3316         if (bp->b_iocmd == BIO_WRITE)
 3317                 dropobj = bp->b_bufobj;
 3318         /* call optional completion function if requested */
 3319         if (bp->b_iodone != NULL) {
 3320                 biodone = bp->b_iodone;
 3321                 bp->b_iodone = NULL;
 3322                 (*biodone) (bp);
 3323                 if (dropobj)
 3324                         bufobj_wdrop(dropobj);
 3325                 return;
 3326         }
 3327 
 3328         bufdone_finish(bp);
 3329 
 3330         if (dropobj)
 3331                 bufobj_wdrop(dropobj);
 3332 }
 3333 
 3334 void
 3335 bufdone_finish(struct buf *bp)
 3336 {
 3337         BUF_ASSERT_HELD(bp);
 3338 
 3339         if (!LIST_EMPTY(&bp->b_dep))
 3340                 buf_complete(bp);
 3341 
 3342         if (bp->b_flags & B_VMIO) {
 3343                 vm_ooffset_t foff;
 3344                 vm_page_t m;
 3345                 vm_object_t obj;
 3346                 struct vnode *vp;
 3347                 int bogus, i, iosize;
 3348 
 3349                 obj = bp->b_bufobj->bo_object;
 3350                 KASSERT(obj->paging_in_progress >= bp->b_npages,
 3351                     ("biodone_finish: paging in progress(%d) < b_npages(%d)",
 3352                     obj->paging_in_progress, bp->b_npages));
 3353 
 3354                 vp = bp->b_vp;
 3355                 KASSERT(vp->v_holdcnt > 0,
 3356                     ("biodone_finish: vnode %p has zero hold count", vp));
 3357                 KASSERT(vp->v_object != NULL,
 3358                     ("biodone_finish: vnode %p has no vm_object", vp));
 3359 
 3360                 foff = bp->b_offset;
 3361                 KASSERT(bp->b_offset != NOOFFSET,
 3362                     ("biodone_finish: bp %p has no buffer offset", bp));
 3363 
 3364                 /*
 3365                  * Set B_CACHE if the op was a normal read and no error
 3366                  * occured.  B_CACHE is set for writes in the b*write()
 3367                  * routines.
 3368                  */
 3369                 iosize = bp->b_bcount - bp->b_resid;
 3370                 if (bp->b_iocmd == BIO_READ &&
 3371                     !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 3372                     !(bp->b_ioflags & BIO_ERROR)) {
 3373                         bp->b_flags |= B_CACHE;
 3374                 }
 3375                 bogus = 0;
 3376                 VM_OBJECT_LOCK(obj);
 3377                 for (i = 0; i < bp->b_npages; i++) {
 3378                         int bogusflag = 0;
 3379                         int resid;
 3380 
 3381                         resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 3382                         if (resid > iosize)
 3383                                 resid = iosize;
 3384 
 3385                         /*
 3386                          * cleanup bogus pages, restoring the originals
 3387                          */
 3388                         m = bp->b_pages[i];
 3389                         if (m == bogus_page) {
 3390                                 bogus = bogusflag = 1;
 3391                                 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
 3392                                 if (m == NULL)
 3393                                         panic("biodone: page disappeared!");
 3394                                 bp->b_pages[i] = m;
 3395                         }
 3396                         KASSERT(OFF_TO_IDX(foff) == m->pindex,
 3397                             ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
 3398                             (intmax_t)foff, (uintmax_t)m->pindex));
 3399 
 3400                         /*
 3401                          * In the write case, the valid and clean bits are
 3402                          * already changed correctly ( see bdwrite() ), so we 
 3403                          * only need to do this here in the read case.
 3404                          */
 3405                         if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
 3406                                 KASSERT((m->dirty & vm_page_bits(foff &
 3407                                     PAGE_MASK, resid)) == 0, ("bufdone_finish:"
 3408                                     " page %p has unexpected dirty bits", m));
 3409                                 vfs_page_set_valid(bp, foff, m);
 3410                         }
 3411 
 3412                         vm_page_io_finish(m);
 3413                         vm_object_pip_subtract(obj, 1);
 3414                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3415                         iosize -= resid;
 3416                 }
 3417                 vm_object_pip_wakeupn(obj, 0);
 3418                 VM_OBJECT_UNLOCK(obj);
 3419                 if (bogus)
 3420                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3421                             bp->b_pages, bp->b_npages);
 3422         }
 3423 
 3424         /*
 3425          * For asynchronous completions, release the buffer now. The brelse
 3426          * will do a wakeup there if necessary - so no need to do a wakeup
 3427          * here in the async case. The sync case always needs to do a wakeup.
 3428          */
 3429 
 3430         if (bp->b_flags & B_ASYNC) {
 3431                 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
 3432                         brelse(bp);
 3433                 else
 3434                         bqrelse(bp);
 3435         } else
 3436                 bdone(bp);
 3437 }
 3438 
 3439 /*
 3440  * This routine is called in lieu of iodone in the case of
 3441  * incomplete I/O.  This keeps the busy status for pages
 3442  * consistant.
 3443  */
 3444 void
 3445 vfs_unbusy_pages(struct buf *bp)
 3446 {
 3447         int i;
 3448         vm_object_t obj;
 3449         vm_page_t m;
 3450 
 3451         runningbufwakeup(bp);
 3452         if (!(bp->b_flags & B_VMIO))
 3453                 return;
 3454 
 3455         obj = bp->b_bufobj->bo_object;
 3456         VM_OBJECT_LOCK(obj);
 3457         for (i = 0; i < bp->b_npages; i++) {
 3458                 m = bp->b_pages[i];
 3459                 if (m == bogus_page) {
 3460                         m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 3461                         if (!m)
 3462                                 panic("vfs_unbusy_pages: page missing\n");
 3463                         bp->b_pages[i] = m;
 3464                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3465                             bp->b_pages, bp->b_npages);
 3466                 }
 3467                 vm_object_pip_subtract(obj, 1);
 3468                 vm_page_io_finish(m);
 3469         }
 3470         vm_object_pip_wakeupn(obj, 0);
 3471         VM_OBJECT_UNLOCK(obj);
 3472 }
 3473 
 3474 /*
 3475  * vfs_page_set_valid:
 3476  *
 3477  *      Set the valid bits in a page based on the supplied offset.   The
 3478  *      range is restricted to the buffer's size.
 3479  *
 3480  *      This routine is typically called after a read completes.
 3481  */
 3482 static void
 3483 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 3484 {
 3485         vm_ooffset_t eoff;
 3486 
 3487         /*
 3488          * Compute the end offset, eoff, such that [off, eoff) does not span a
 3489          * page boundary and eoff is not greater than the end of the buffer.
 3490          * The end of the buffer, in this case, is our file EOF, not the
 3491          * allocation size of the buffer.
 3492          */
 3493         eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
 3494         if (eoff > bp->b_offset + bp->b_bcount)
 3495                 eoff = bp->b_offset + bp->b_bcount;
 3496 
 3497         /*
 3498          * Set valid range.  This is typically the entire buffer and thus the
 3499          * entire page.
 3500          */
 3501         if (eoff > off)
 3502                 vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
 3503 }
 3504 
 3505 /*
 3506  * vfs_page_set_validclean:
 3507  *
 3508  *      Set the valid bits and clear the dirty bits in a page based on the
 3509  *      supplied offset.   The range is restricted to the buffer's size.
 3510  */
 3511 static void
 3512 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 3513 {
 3514         vm_ooffset_t soff, eoff;
 3515 
 3516         /*
 3517          * Start and end offsets in buffer.  eoff - soff may not cross a
 3518          * page boundry or cross the end of the buffer.  The end of the
 3519          * buffer, in this case, is our file EOF, not the allocation size
 3520          * of the buffer.
 3521          */
 3522         soff = off;
 3523         eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3524         if (eoff > bp->b_offset + bp->b_bcount)
 3525                 eoff = bp->b_offset + bp->b_bcount;
 3526 
 3527         /*
 3528          * Set valid range.  This is typically the entire buffer and thus the
 3529          * entire page.
 3530          */
 3531         if (eoff > soff) {
 3532                 vm_page_set_validclean(
 3533                     m,
 3534                    (vm_offset_t) (soff & PAGE_MASK),
 3535                    (vm_offset_t) (eoff - soff)
 3536                 );
 3537         }
 3538 }
 3539 
 3540 /*
 3541  * Ensure that all buffer pages are not busied by VPO_BUSY flag. If
 3542  * any page is busy, drain the flag.
 3543  */
 3544 static void
 3545 vfs_drain_busy_pages(struct buf *bp)
 3546 {
 3547         vm_page_t m;
 3548         int i, last_busied;
 3549 
 3550         VM_OBJECT_LOCK_ASSERT(bp->b_bufobj->bo_object, MA_OWNED);
 3551         last_busied = 0;
 3552         for (i = 0; i < bp->b_npages; i++) {
 3553                 m = bp->b_pages[i];
 3554                 if ((m->oflags & VPO_BUSY) != 0) {
 3555                         for (; last_busied < i; last_busied++)
 3556                                 vm_page_busy(bp->b_pages[last_busied]);
 3557                         while ((m->oflags & VPO_BUSY) != 0)
 3558                                 vm_page_sleep(m, "vbpage");
 3559                 }
 3560         }
 3561         for (i = 0; i < last_busied; i++)
 3562                 vm_page_wakeup(bp->b_pages[i]);
 3563 }
 3564 
 3565 /*
 3566  * This routine is called before a device strategy routine.
 3567  * It is used to tell the VM system that paging I/O is in
 3568  * progress, and treat the pages associated with the buffer
 3569  * almost as being VPO_BUSY.  Also the object paging_in_progress
 3570  * flag is handled to make sure that the object doesn't become
 3571  * inconsistant.
 3572  *
 3573  * Since I/O has not been initiated yet, certain buffer flags
 3574  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
 3575  * and should be ignored.
 3576  */
 3577 void
 3578 vfs_busy_pages(struct buf *bp, int clear_modify)
 3579 {
 3580         int i, bogus;
 3581         vm_object_t obj;
 3582         vm_ooffset_t foff;
 3583         vm_page_t m;
 3584 
 3585         if (!(bp->b_flags & B_VMIO))
 3586                 return;
 3587 
 3588         obj = bp->b_bufobj->bo_object;
 3589         foff = bp->b_offset;
 3590         KASSERT(bp->b_offset != NOOFFSET,
 3591             ("vfs_busy_pages: no buffer offset"));
 3592         VM_OBJECT_LOCK(obj);
 3593         vfs_drain_busy_pages(bp);
 3594         if (bp->b_bufsize != 0)
 3595                 vfs_setdirty_locked_object(bp);
 3596         bogus = 0;
 3597         for (i = 0; i < bp->b_npages; i++) {
 3598                 m = bp->b_pages[i];
 3599 
 3600                 if ((bp->b_flags & B_CLUSTER) == 0) {
 3601                         vm_object_pip_add(obj, 1);
 3602                         vm_page_io_start(m);
 3603                 }
 3604                 /*
 3605                  * When readying a buffer for a read ( i.e
 3606                  * clear_modify == 0 ), it is important to do
 3607                  * bogus_page replacement for valid pages in 
 3608                  * partially instantiated buffers.  Partially 
 3609                  * instantiated buffers can, in turn, occur when
 3610                  * reconstituting a buffer from its VM backing store
 3611                  * base.  We only have to do this if B_CACHE is
 3612                  * clear ( which causes the I/O to occur in the
 3613                  * first place ).  The replacement prevents the read
 3614                  * I/O from overwriting potentially dirty VM-backed
 3615                  * pages.  XXX bogus page replacement is, uh, bogus.
 3616                  * It may not work properly with small-block devices.
 3617                  * We need to find a better way.
 3618                  */
 3619                 if (clear_modify) {
 3620                         pmap_remove_write(m);
 3621                         vfs_page_set_validclean(bp, foff, m);
 3622                 } else if (m->valid == VM_PAGE_BITS_ALL &&
 3623                     (bp->b_flags & B_CACHE) == 0) {
 3624                         bp->b_pages[i] = bogus_page;
 3625                         bogus++;
 3626                 }
 3627                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3628         }
 3629         VM_OBJECT_UNLOCK(obj);
 3630         if (bogus)
 3631                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3632                     bp->b_pages, bp->b_npages);
 3633 }
 3634 
 3635 /*
 3636  *      vfs_bio_set_valid:
 3637  *
 3638  *      Set the range within the buffer to valid.  The range is
 3639  *      relative to the beginning of the buffer, b_offset.  Note that
 3640  *      b_offset itself may be offset from the beginning of the first
 3641  *      page.
 3642  */
 3643 void   
 3644 vfs_bio_set_valid(struct buf *bp, int base, int size)
 3645 {
 3646         int i, n;
 3647         vm_page_t m;
 3648 
 3649         if (!(bp->b_flags & B_VMIO))
 3650                 return;
 3651 
 3652         /*
 3653          * Fixup base to be relative to beginning of first page.
 3654          * Set initial n to be the maximum number of bytes in the
 3655          * first page that can be validated.
 3656          */
 3657         base += (bp->b_offset & PAGE_MASK);
 3658         n = PAGE_SIZE - (base & PAGE_MASK);
 3659 
 3660         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3661         for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 3662                 m = bp->b_pages[i];
 3663                 if (n > size)
 3664                         n = size;
 3665                 vm_page_set_valid(m, base & PAGE_MASK, n);
 3666                 base += n;
 3667                 size -= n;
 3668                 n = PAGE_SIZE;
 3669         }
 3670         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3671 }
 3672 
 3673 /*
 3674  *      vfs_bio_clrbuf:
 3675  *
 3676  *      If the specified buffer is a non-VMIO buffer, clear the entire
 3677  *      buffer.  If the specified buffer is a VMIO buffer, clear and
 3678  *      validate only the previously invalid portions of the buffer.
 3679  *      This routine essentially fakes an I/O, so we need to clear
 3680  *      BIO_ERROR and B_INVAL.
 3681  *
 3682  *      Note that while we only theoretically need to clear through b_bcount,
 3683  *      we go ahead and clear through b_bufsize.
 3684  */
 3685 void
 3686 vfs_bio_clrbuf(struct buf *bp) 
 3687 {
 3688         int i, j, mask;
 3689         caddr_t sa, ea;
 3690 
 3691         if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
 3692                 clrbuf(bp);
 3693                 return;
 3694         }
 3695         bp->b_flags &= ~B_INVAL;
 3696         bp->b_ioflags &= ~BIO_ERROR;
 3697         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3698         if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
 3699             (bp->b_offset & PAGE_MASK) == 0) {
 3700                 if (bp->b_pages[0] == bogus_page)
 3701                         goto unlock;
 3702                 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
 3703                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
 3704                 if ((bp->b_pages[0]->valid & mask) == mask)
 3705                         goto unlock;
 3706                 if ((bp->b_pages[0]->valid & mask) == 0) {
 3707                         bzero(bp->b_data, bp->b_bufsize);
 3708                         bp->b_pages[0]->valid |= mask;
 3709                         goto unlock;
 3710                 }
 3711         }
 3712         ea = sa = bp->b_data;
 3713         for(i = 0; i < bp->b_npages; i++, sa = ea) {
 3714                 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
 3715                 ea = (caddr_t)(vm_offset_t)ulmin(
 3716                     (u_long)(vm_offset_t)ea,
 3717                     (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
 3718                 if (bp->b_pages[i] == bogus_page)
 3719                         continue;
 3720                 j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
 3721                 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
 3722                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
 3723                 if ((bp->b_pages[i]->valid & mask) == mask)
 3724                         continue;
 3725                 if ((bp->b_pages[i]->valid & mask) == 0)
 3726                         bzero(sa, ea - sa);
 3727                 else {
 3728                         for (; sa < ea; sa += DEV_BSIZE, j++) {
 3729                                 if ((bp->b_pages[i]->valid & (1 << j)) == 0)
 3730                                         bzero(sa, DEV_BSIZE);
 3731                         }
 3732                 }
 3733                 bp->b_pages[i]->valid |= mask;
 3734         }
 3735 unlock:
 3736         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3737         bp->b_resid = 0;
 3738 }
 3739 
 3740 /*
 3741  * vm_hold_load_pages and vm_hold_free_pages get pages into
 3742  * a buffers address space.  The pages are anonymous and are
 3743  * not associated with a file object.
 3744  */
 3745 static void
 3746 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 3747 {
 3748         vm_offset_t pg;
 3749         vm_page_t p;
 3750         int index;
 3751 
 3752         to = round_page(to);
 3753         from = round_page(from);
 3754         index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3755 
 3756         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 3757 tryagain:
 3758                 /*
 3759                  * note: must allocate system pages since blocking here
 3760                  * could interfere with paging I/O, no matter which
 3761                  * process we are.
 3762                  */
 3763                 p = vm_page_alloc(NULL, pg >> PAGE_SHIFT, VM_ALLOC_NOOBJ |
 3764                     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
 3765                     VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
 3766                 if (!p) {
 3767                         VM_WAIT;
 3768                         goto tryagain;
 3769                 }
 3770                 pmap_qenter(pg, &p, 1);
 3771                 bp->b_pages[index] = p;
 3772         }
 3773         bp->b_npages = index;
 3774 }
 3775 
 3776 /* Return pages associated with this buf to the vm system */
 3777 static void
 3778 vm_hold_free_pages(struct buf *bp, int newbsize)
 3779 {
 3780         vm_offset_t from;
 3781         vm_page_t p;
 3782         int index, newnpages;
 3783 
 3784         from = round_page((vm_offset_t)bp->b_data + newbsize);
 3785         newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 3786         if (bp->b_npages > newnpages)
 3787                 pmap_qremove(from, bp->b_npages - newnpages);
 3788         for (index = newnpages; index < bp->b_npages; index++) {
 3789                 p = bp->b_pages[index];
 3790                 bp->b_pages[index] = NULL;
 3791                 if (p->busy != 0)
 3792                         printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
 3793                             (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
 3794                 p->wire_count--;
 3795                 vm_page_free(p);
 3796                 atomic_subtract_int(&cnt.v_wire_count, 1);
 3797         }
 3798         bp->b_npages = newnpages;
 3799 }
 3800 
 3801 /*
 3802  * Map an IO request into kernel virtual address space.
 3803  *
 3804  * All requests are (re)mapped into kernel VA space.
 3805  * Notice that we use b_bufsize for the size of the buffer
 3806  * to be mapped.  b_bcount might be modified by the driver.
 3807  *
 3808  * Note that even if the caller determines that the address space should
 3809  * be valid, a race or a smaller-file mapped into a larger space may
 3810  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
 3811  * check the return value.
 3812  */
 3813 int
 3814 vmapbuf(struct buf *bp)
 3815 {
 3816         caddr_t kva;
 3817         vm_prot_t prot;
 3818         int pidx;
 3819 
 3820         if (bp->b_bufsize < 0)
 3821                 return (-1);
 3822         prot = VM_PROT_READ;
 3823         if (bp->b_iocmd == BIO_READ)
 3824                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 3825         if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 3826             (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
 3827             btoc(MAXPHYS))) < 0)
 3828                 return (-1);
 3829         pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
 3830         
 3831         kva = bp->b_saveaddr;
 3832         bp->b_npages = pidx;
 3833         bp->b_saveaddr = bp->b_data;
 3834         bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
 3835         return(0);
 3836 }
 3837 
 3838 /*
 3839  * Free the io map PTEs associated with this IO operation.
 3840  * We also invalidate the TLB entries and restore the original b_addr.
 3841  */
 3842 void
 3843 vunmapbuf(struct buf *bp)
 3844 {
 3845         int npages;
 3846 
 3847         npages = bp->b_npages;
 3848         pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
 3849         vm_page_unhold_pages(bp->b_pages, npages);
 3850         
 3851         bp->b_data = bp->b_saveaddr;
 3852 }
 3853 
 3854 void
 3855 bdone(struct buf *bp)
 3856 {
 3857         struct mtx *mtxp;
 3858 
 3859         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3860         mtx_lock(mtxp);
 3861         bp->b_flags |= B_DONE;
 3862         wakeup(bp);
 3863         mtx_unlock(mtxp);
 3864 }
 3865 
 3866 void
 3867 bwait(struct buf *bp, u_char pri, const char *wchan)
 3868 {
 3869         struct mtx *mtxp;
 3870 
 3871         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3872         mtx_lock(mtxp);
 3873         while ((bp->b_flags & B_DONE) == 0)
 3874                 msleep(bp, mtxp, pri, wchan, 0);
 3875         mtx_unlock(mtxp);
 3876 }
 3877 
 3878 int
 3879 bufsync(struct bufobj *bo, int waitfor)
 3880 {
 3881 
 3882         return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
 3883 }
 3884 
 3885 void
 3886 bufstrategy(struct bufobj *bo, struct buf *bp)
 3887 {
 3888         int i = 0;
 3889         struct vnode *vp;
 3890 
 3891         vp = bp->b_vp;
 3892         KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
 3893         KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
 3894             ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
 3895         i = VOP_STRATEGY(vp, bp);
 3896         KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
 3897 }
 3898 
 3899 void
 3900 bufobj_wrefl(struct bufobj *bo)
 3901 {
 3902 
 3903         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 3904         ASSERT_BO_LOCKED(bo);
 3905         bo->bo_numoutput++;
 3906 }
 3907 
 3908 void
 3909 bufobj_wref(struct bufobj *bo)
 3910 {
 3911 
 3912         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 3913         BO_LOCK(bo);
 3914         bo->bo_numoutput++;
 3915         BO_UNLOCK(bo);
 3916 }
 3917 
 3918 void
 3919 bufobj_wdrop(struct bufobj *bo)
 3920 {
 3921 
 3922         KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
 3923         BO_LOCK(bo);
 3924         KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
 3925         if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
 3926                 bo->bo_flag &= ~BO_WWAIT;
 3927                 wakeup(&bo->bo_numoutput);
 3928         }
 3929         BO_UNLOCK(bo);
 3930 }
 3931 
 3932 int
 3933 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
 3934 {
 3935         int error;
 3936 
 3937         KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
 3938         ASSERT_BO_LOCKED(bo);
 3939         error = 0;
 3940         while (bo->bo_numoutput) {
 3941                 bo->bo_flag |= BO_WWAIT;
 3942                 error = msleep(&bo->bo_numoutput, BO_MTX(bo),
 3943                     slpflag | (PRIBIO + 1), "bo_wwait", timeo);
 3944                 if (error)
 3945                         break;
 3946         }
 3947         return (error);
 3948 }
 3949 
 3950 void
 3951 bpin(struct buf *bp)
 3952 {
 3953         struct mtx *mtxp;
 3954 
 3955         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3956         mtx_lock(mtxp);
 3957         bp->b_pin_count++;
 3958         mtx_unlock(mtxp);
 3959 }
 3960 
 3961 void
 3962 bunpin(struct buf *bp)
 3963 {
 3964         struct mtx *mtxp;
 3965 
 3966         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3967         mtx_lock(mtxp);
 3968         if (--bp->b_pin_count == 0)
 3969                 wakeup(bp);
 3970         mtx_unlock(mtxp);
 3971 }
 3972 
 3973 void
 3974 bunpin_wait(struct buf *bp)
 3975 {
 3976         struct mtx *mtxp;
 3977 
 3978         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3979         mtx_lock(mtxp);
 3980         while (bp->b_pin_count > 0)
 3981                 msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
 3982         mtx_unlock(mtxp);
 3983 }
 3984 
 3985 #include "opt_ddb.h"
 3986 #ifdef DDB
 3987 #include <ddb/ddb.h>
 3988 
 3989 /* DDB command to show buffer data */
 3990 DB_SHOW_COMMAND(buffer, db_show_buffer)
 3991 {
 3992         /* get args */
 3993         struct buf *bp = (struct buf *)addr;
 3994 
 3995         if (!have_addr) {
 3996                 db_printf("usage: show buffer <addr>\n");
 3997                 return;
 3998         }
 3999 
 4000         db_printf("buf at %p\n", bp);
 4001         db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
 4002         db_printf(
 4003             "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 4004             "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
 4005             "b_dep = %p\n",
 4006             bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 4007             bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
 4008             (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
 4009         if (bp->b_npages) {
 4010                 int i;
 4011                 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 4012                 for (i = 0; i < bp->b_npages; i++) {
 4013                         vm_page_t m;
 4014                         m = bp->b_pages[i];
 4015                         db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
 4016                             (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
 4017                         if ((i + 1) < bp->b_npages)
 4018                                 db_printf(",");
 4019                 }
 4020                 db_printf("\n");
 4021         }
 4022         db_printf(" ");
 4023         BUF_LOCKPRINTINFO(bp);
 4024 }
 4025 
 4026 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
 4027 {
 4028         struct buf *bp;
 4029         int i;
 4030 
 4031         for (i = 0; i < nbuf; i++) {
 4032                 bp = &buf[i];
 4033                 if (BUF_ISLOCKED(bp)) {
 4034                         db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4035                         db_printf("\n");
 4036                 }
 4037         }
 4038 }
 4039 
 4040 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
 4041 {
 4042         struct vnode *vp;
 4043         struct buf *bp;
 4044 
 4045         if (!have_addr) {
 4046                 db_printf("usage: show vnodebufs <addr>\n");
 4047                 return;
 4048         }
 4049         vp = (struct vnode *)addr;
 4050         db_printf("Clean buffers:\n");
 4051         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
 4052                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4053                 db_printf("\n");
 4054         }
 4055         db_printf("Dirty buffers:\n");
 4056         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
 4057                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4058                 db_printf("\n");
 4059         }
 4060 }
 4061 
 4062 DB_COMMAND(countfreebufs, db_coundfreebufs)
 4063 {
 4064         struct buf *bp;
 4065         int i, used = 0, nfree = 0;
 4066 
 4067         if (have_addr) {
 4068                 db_printf("usage: countfreebufs\n");
 4069                 return;
 4070         }
 4071 
 4072         for (i = 0; i < nbuf; i++) {
 4073                 bp = &buf[i];
 4074                 if ((bp->b_vflags & BV_INFREECNT) != 0)
 4075                         nfree++;
 4076                 else
 4077                         used++;
 4078         }
 4079 
 4080         db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
 4081             nfree + used);
 4082         db_printf("numfreebuffers is %d\n", numfreebuffers);
 4083 }
 4084 #endif /* DDB */

Cache object: 3e2b2624c6c8e941d97897db2c778260


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.