The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2004 Poul-Henning Kamp
    3  * Copyright (c) 1994,1997 John S. Dyson
    4  * Copyright (c) 2013 The FreeBSD Foundation
    5  * All rights reserved.
    6  *
    7  * Portions of this software were developed by Konstantin Belousov
    8  * under sponsorship from the FreeBSD Foundation.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  */
   31 
   32 /*
   33  * this file contains a new buffer I/O scheme implementing a coherent
   34  * VM object and buffer cache scheme.  Pains have been taken to make
   35  * sure that the performance degradation associated with schemes such
   36  * as this is not realized.
   37  *
   38  * Author:  John S. Dyson
   39  * Significant help during the development and debugging phases
   40  * had been provided by David Greenman, also of the FreeBSD core team.
   41  *
   42  * see man buf(9) for more info.
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD$");
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/bio.h>
   51 #include <sys/conf.h>
   52 #include <sys/buf.h>
   53 #include <sys/devicestat.h>
   54 #include <sys/eventhandler.h>
   55 #include <sys/fail.h>
   56 #include <sys/limits.h>
   57 #include <sys/lock.h>
   58 #include <sys/malloc.h>
   59 #include <sys/mount.h>
   60 #include <sys/mutex.h>
   61 #include <sys/kernel.h>
   62 #include <sys/kthread.h>
   63 #include <sys/proc.h>
   64 #include <sys/resourcevar.h>
   65 #include <sys/sysctl.h>
   66 #include <sys/vmmeter.h>
   67 #include <sys/vnode.h>
   68 #include <geom/geom.h>
   69 #include <vm/vm.h>
   70 #include <vm/vm_param.h>
   71 #include <vm/vm_kern.h>
   72 #include <vm/vm_pageout.h>
   73 #include <vm/vm_page.h>
   74 #include <vm/vm_object.h>
   75 #include <vm/vm_extern.h>
   76 #include <vm/vm_map.h>
   77 #include "opt_compat.h"
   78 #include "opt_directio.h"
   79 #include "opt_swap.h"
   80 
   81 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
   82 
   83 struct  bio_ops bioops;         /* I/O operation notification */
   84 
   85 struct  buf_ops buf_ops_bio = {
   86         .bop_name       =       "buf_ops_bio",
   87         .bop_write      =       bufwrite,
   88         .bop_strategy   =       bufstrategy,
   89         .bop_sync       =       bufsync,
   90         .bop_bdflush    =       bufbdflush,
   91 };
   92 
   93 /*
   94  * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
   95  * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
   96  */
   97 struct buf *buf;                /* buffer header pool */
   98 caddr_t unmapped_buf;
   99 
  100 static struct proc *bufdaemonproc;
  101 
  102 static int inmem(struct vnode *vp, daddr_t blkno);
  103 static void vm_hold_free_pages(struct buf *bp, int newbsize);
  104 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
  105                 vm_offset_t to);
  106 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
  107 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
  108                 vm_page_t m);
  109 static void vfs_drain_busy_pages(struct buf *bp);
  110 static void vfs_clean_pages_dirty_buf(struct buf *bp);
  111 static void vfs_setdirty_locked_object(struct buf *bp);
  112 static void vfs_vmio_release(struct buf *bp);
  113 static int vfs_bio_clcheck(struct vnode *vp, int size,
  114                 daddr_t lblkno, daddr_t blkno);
  115 static int buf_do_flush(struct vnode *vp);
  116 static int flushbufqueues(struct vnode *, int, int);
  117 static void buf_daemon(void);
  118 static void bremfreel(struct buf *bp);
  119 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  120     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  121 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
  122 #endif
  123 
  124 int vmiodirenable = TRUE;
  125 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
  126     "Use the VM system for directory writes");
  127 long runningbufspace;
  128 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
  129     "Amount of presently outstanding async buffer io");
  130 static long bufspace;
  131 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  132     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  133 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
  134     &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
  135 #else
  136 SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
  137     "Virtual memory used for buffers");
  138 #endif
  139 static long unmapped_bufspace;
  140 SYSCTL_LONG(_vfs, OID_AUTO, unmapped_bufspace, CTLFLAG_RD,
  141     &unmapped_bufspace, 0,
  142     "Amount of unmapped buffers, inclusive in the bufspace");
  143 static long maxbufspace;
  144 SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
  145     "Maximum allowed value of bufspace (including buf_daemon)");
  146 static long bufmallocspace;
  147 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
  148     "Amount of malloced memory for buffers");
  149 static long maxbufmallocspace;
  150 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
  151     "Maximum amount of malloced memory for buffers");
  152 static long lobufspace;
  153 SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
  154     "Minimum amount of buffers we want to have");
  155 long hibufspace;
  156 SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
  157     "Maximum allowed value of bufspace (excluding buf_daemon)");
  158 static int bufreusecnt;
  159 SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
  160     "Number of times we have reused a buffer");
  161 static int buffreekvacnt;
  162 SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
  163     "Number of times we have freed the KVA space from some buffer");
  164 static int bufdefragcnt;
  165 SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
  166     "Number of times we have had to repeat buffer allocation to defragment");
  167 static long lorunningspace;
  168 SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
  169     "Minimum preferred space used for in-progress I/O");
  170 static long hirunningspace;
  171 SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
  172     "Maximum amount of space to use for in-progress I/O");
  173 int dirtybufferflushes;
  174 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
  175     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
  176 int bdwriteskip;
  177 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
  178     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
  179 int altbufferflushes;
  180 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
  181     0, "Number of fsync flushes to limit dirty buffers");
  182 static int recursiveflushes;
  183 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
  184     0, "Number of flushes skipped due to being recursive");
  185 static int numdirtybuffers;
  186 SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
  187     "Number of buffers that are dirty (has unwritten changes) at the moment");
  188 static int lodirtybuffers;
  189 SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
  190     "How many buffers we want to have free before bufdaemon can sleep");
  191 static int hidirtybuffers;
  192 SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
  193     "When the number of dirty buffers is considered severe");
  194 int dirtybufthresh;
  195 SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
  196     0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
  197 static int numfreebuffers;
  198 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
  199     "Number of free buffers");
  200 static int lofreebuffers;
  201 SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
  202    "XXX Unused");
  203 static int hifreebuffers;
  204 SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
  205    "XXX Complicatedly unused");
  206 static int getnewbufcalls;
  207 SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
  208    "Number of calls to getnewbuf");
  209 static int getnewbufrestarts;
  210 SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
  211     "Number of times getnewbuf has had to restart a buffer aquisition");
  212 static int mappingrestarts;
  213 SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
  214     "Number of times getblk has had to restart a buffer mapping for "
  215     "unmapped buffer");
  216 static int flushbufqtarget = 100;
  217 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
  218     "Amount of work to do in flushbufqueues when helping bufdaemon");
  219 static long notbufdflashes;
  220 SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
  221     "Number of dirty buffer flushes done by the bufdaemon helpers");
  222 static long barrierwrites;
  223 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
  224     "Number of barrier writes");
  225 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
  226     &unmapped_buf_allowed, 0,
  227     "Permit the use of the unmapped i/o");
  228 
  229 /*
  230  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  231  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  232  * is idling.
  233  */
  234 static int bd_request;
  235 
  236 /*
  237  * Request for the buf daemon to write more buffers than is indicated by
  238  * lodirtybuf.  This may be necessary to push out excess dependencies or
  239  * defragment the address space where a simple count of the number of dirty
  240  * buffers is insufficient to characterize the demand for flushing them.
  241  */
  242 static int bd_speedupreq;
  243 
  244 /*
  245  * This lock synchronizes access to bd_request.
  246  */
  247 static struct mtx bdlock;
  248 
  249 /*
  250  * bogus page -- for I/O to/from partially complete buffers
  251  * this is a temporary solution to the problem, but it is not
  252  * really that bad.  it would be better to split the buffer
  253  * for input in the case of buffers partially already in memory,
  254  * but the code is intricate enough already.
  255  */
  256 vm_page_t bogus_page;
  257 
  258 /*
  259  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  260  * Set when wait starts, cleared prior to wakeup().
  261  * Used in runningbufwakeup() and waitrunningbufspace().
  262  */
  263 static int runningbufreq;
  264 
  265 /*
  266  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  267  * waitrunningbufspace().
  268  */
  269 static struct mtx rbreqlock;
  270 
  271 /* 
  272  * Synchronization (sleep/wakeup) variable for buffer requests.
  273  * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
  274  * by and/or.
  275  * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
  276  * getnewbuf(), and getblk().
  277  */
  278 static int needsbuffer;
  279 
  280 /*
  281  * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
  282  */
  283 static struct mtx nblock;
  284 
  285 /*
  286  * Definitions for the buffer free lists.
  287  */
  288 #define BUFFER_QUEUES   6       /* number of free buffer queues */
  289 
  290 #define QUEUE_NONE      0       /* on no queue */
  291 #define QUEUE_CLEAN     1       /* non-B_DELWRI buffers */
  292 #define QUEUE_DIRTY     2       /* B_DELWRI buffers */
  293 #define QUEUE_DIRTY_GIANT 3     /* B_DELWRI buffers that need giant */
  294 #define QUEUE_EMPTYKVA  4       /* empty buffer headers w/KVA assignment */
  295 #define QUEUE_EMPTY     5       /* empty buffer headers */
  296 #define QUEUE_SENTINEL  1024    /* not an queue index, but mark for sentinel */
  297 
  298 /* Queues for free buffers with various properties */
  299 static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
  300 #ifdef INVARIANTS
  301 static int bq_len[BUFFER_QUEUES];
  302 #endif
  303 
  304 /* Lock for the bufqueues */
  305 static struct mtx bqlock;
  306 
  307 /*
  308  * Single global constant for BUF_WMESG, to avoid getting multiple references.
  309  * buf_wmesg is referred from macros.
  310  */
  311 const char *buf_wmesg = BUF_WMESG;
  312 
  313 #define VFS_BIO_NEED_ANY        0x01    /* any freeable buffer */
  314 #define VFS_BIO_NEED_DIRTYFLUSH 0x02    /* waiting for dirty buffer flush */
  315 #define VFS_BIO_NEED_FREE       0x04    /* wait for free bufs, hi hysteresis */
  316 #define VFS_BIO_NEED_BUFSPACE   0x08    /* wait for buf space, lo hysteresis */
  317 
  318 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
  319     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
  320 static int
  321 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
  322 {
  323         long lvalue;
  324         int ivalue;
  325 
  326         if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
  327                 return (sysctl_handle_long(oidp, arg1, arg2, req));
  328         lvalue = *(long *)arg1;
  329         if (lvalue > INT_MAX)
  330                 /* On overflow, still write out a long to trigger ENOMEM. */
  331                 return (sysctl_handle_long(oidp, &lvalue, 0, req));
  332         ivalue = lvalue;
  333         return (sysctl_handle_int(oidp, &ivalue, 0, req));
  334 }
  335 #endif
  336 
  337 #ifdef DIRECTIO
  338 extern void ffs_rawread_setup(void);
  339 #endif /* DIRECTIO */
  340 /*
  341  *      numdirtywakeup:
  342  *
  343  *      If someone is blocked due to there being too many dirty buffers,
  344  *      and numdirtybuffers is now reasonable, wake them up.
  345  */
  346 
  347 static __inline void
  348 numdirtywakeup(int level)
  349 {
  350 
  351         if (numdirtybuffers <= level) {
  352                 mtx_lock(&nblock);
  353                 if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
  354                         needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
  355                         wakeup(&needsbuffer);
  356                 }
  357                 mtx_unlock(&nblock);
  358         }
  359 }
  360 
  361 /*
  362  *      bufspacewakeup:
  363  *
  364  *      Called when buffer space is potentially available for recovery.
  365  *      getnewbuf() will block on this flag when it is unable to free 
  366  *      sufficient buffer space.  Buffer space becomes recoverable when 
  367  *      bp's get placed back in the queues.
  368  */
  369 
  370 static __inline void
  371 bufspacewakeup(void)
  372 {
  373 
  374         /*
  375          * If someone is waiting for BUF space, wake them up.  Even
  376          * though we haven't freed the kva space yet, the waiting
  377          * process will be able to now.
  378          */
  379         mtx_lock(&nblock);
  380         if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
  381                 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
  382                 wakeup(&needsbuffer);
  383         }
  384         mtx_unlock(&nblock);
  385 }
  386 
  387 /*
  388  * runningbufwakeup() - in-progress I/O accounting.
  389  *
  390  */
  391 void
  392 runningbufwakeup(struct buf *bp)
  393 {
  394 
  395         if (bp->b_runningbufspace) {
  396                 atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
  397                 bp->b_runningbufspace = 0;
  398                 mtx_lock(&rbreqlock);
  399                 if (runningbufreq && runningbufspace <= lorunningspace) {
  400                         runningbufreq = 0;
  401                         wakeup(&runningbufreq);
  402                 }
  403                 mtx_unlock(&rbreqlock);
  404         }
  405 }
  406 
  407 /*
  408  *      bufcountwakeup:
  409  *
  410  *      Called when a buffer has been added to one of the free queues to
  411  *      account for the buffer and to wakeup anyone waiting for free buffers.
  412  *      This typically occurs when large amounts of metadata are being handled
  413  *      by the buffer cache ( else buffer space runs out first, usually ).
  414  */
  415 
  416 static __inline void
  417 bufcountwakeup(struct buf *bp) 
  418 {
  419         int old;
  420 
  421         KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
  422             ("buf %p already counted as free", bp));
  423         if (bp->b_bufobj != NULL)
  424                 mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
  425         bp->b_vflags |= BV_INFREECNT;
  426         old = atomic_fetchadd_int(&numfreebuffers, 1);
  427         KASSERT(old >= 0 && old < nbuf,
  428             ("numfreebuffers climbed to %d", old + 1));
  429         mtx_lock(&nblock);
  430         if (needsbuffer) {
  431                 needsbuffer &= ~VFS_BIO_NEED_ANY;
  432                 if (numfreebuffers >= hifreebuffers)
  433                         needsbuffer &= ~VFS_BIO_NEED_FREE;
  434                 wakeup(&needsbuffer);
  435         }
  436         mtx_unlock(&nblock);
  437 }
  438 
  439 /*
  440  *      waitrunningbufspace()
  441  *
  442  *      runningbufspace is a measure of the amount of I/O currently
  443  *      running.  This routine is used in async-write situations to
  444  *      prevent creating huge backups of pending writes to a device.
  445  *      Only asynchronous writes are governed by this function.
  446  *
  447  *      Reads will adjust runningbufspace, but will not block based on it.
  448  *      The read load has a side effect of reducing the allowed write load.
  449  *
  450  *      This does NOT turn an async write into a sync write.  It waits  
  451  *      for earlier writes to complete and generally returns before the
  452  *      caller's write has reached the device.
  453  */
  454 void
  455 waitrunningbufspace(void)
  456 {
  457 
  458         mtx_lock(&rbreqlock);
  459         while (runningbufspace > hirunningspace) {
  460                 ++runningbufreq;
  461                 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
  462         }
  463         mtx_unlock(&rbreqlock);
  464 }
  465 
  466 
  467 /*
  468  *      vfs_buf_test_cache:
  469  *
  470  *      Called when a buffer is extended.  This function clears the B_CACHE
  471  *      bit if the newly extended portion of the buffer does not contain
  472  *      valid data.
  473  */
  474 static __inline
  475 void
  476 vfs_buf_test_cache(struct buf *bp,
  477                   vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
  478                   vm_page_t m)
  479 {
  480 
  481         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
  482         if (bp->b_flags & B_CACHE) {
  483                 int base = (foff + off) & PAGE_MASK;
  484                 if (vm_page_is_valid(m, base, size) == 0)
  485                         bp->b_flags &= ~B_CACHE;
  486         }
  487 }
  488 
  489 /* Wake up the buffer daemon if necessary */
  490 static __inline
  491 void
  492 bd_wakeup(int dirtybuflevel)
  493 {
  494 
  495         mtx_lock(&bdlock);
  496         if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
  497                 bd_request = 1;
  498                 wakeup(&bd_request);
  499         }
  500         mtx_unlock(&bdlock);
  501 }
  502 
  503 /*
  504  * bd_speedup - speedup the buffer cache flushing code
  505  */
  506 
  507 void
  508 bd_speedup(void)
  509 {
  510         int needwake;
  511 
  512         mtx_lock(&bdlock);
  513         needwake = 0;
  514         if (bd_speedupreq == 0 || bd_request == 0)
  515                 needwake = 1;
  516         bd_speedupreq = 1;
  517         bd_request = 1;
  518         if (needwake)
  519                 wakeup(&bd_request);
  520         mtx_unlock(&bdlock);
  521 }
  522 
  523 #ifndef NSWBUF_MIN
  524 #define NSWBUF_MIN      16
  525 #endif
  526 
  527 #ifdef __i386__
  528 #define TRANSIENT_DENOM 5
  529 #else
  530 #define TRANSIENT_DENOM 10
  531 #endif
  532 
  533 /*
  534  * Calculating buffer cache scaling values and reserve space for buffer
  535  * headers.  This is called during low level kernel initialization and
  536  * may be called more then once.  We CANNOT write to the memory area
  537  * being reserved at this time.
  538  */
  539 caddr_t
  540 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
  541 {
  542         int tuned_nbuf;
  543         long maxbuf, maxbuf_sz, buf_sz, biotmap_sz;
  544 
  545         /*
  546          * physmem_est is in pages.  Convert it to kilobytes (assumes
  547          * PAGE_SIZE is >= 1K)
  548          */
  549         physmem_est = physmem_est * (PAGE_SIZE / 1024);
  550 
  551         /*
  552          * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
  553          * For the first 64MB of ram nominally allocate sufficient buffers to
  554          * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
  555          * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
  556          * the buffer cache we limit the eventual kva reservation to
  557          * maxbcache bytes.
  558          *
  559          * factor represents the 1/4 x ram conversion.
  560          */
  561         if (nbuf == 0) {
  562                 int factor = 4 * BKVASIZE / 1024;
  563 
  564                 nbuf = 50;
  565                 if (physmem_est > 4096)
  566                         nbuf += min((physmem_est - 4096) / factor,
  567                             65536 / factor);
  568                 if (physmem_est > 65536)
  569                         nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
  570                             32 * 1024 * 1024 / (factor * 5));
  571 
  572                 if (maxbcache && nbuf > maxbcache / BKVASIZE)
  573                         nbuf = maxbcache / BKVASIZE;
  574                 tuned_nbuf = 1;
  575         } else
  576                 tuned_nbuf = 0;
  577 
  578         /* XXX Avoid unsigned long overflows later on with maxbufspace. */
  579         maxbuf = (LONG_MAX / 3) / BKVASIZE;
  580         if (nbuf > maxbuf) {
  581                 if (!tuned_nbuf)
  582                         printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
  583                             maxbuf);
  584                 nbuf = maxbuf;
  585         }
  586 
  587         /*
  588          * Ideal allocation size for the transient bio submap if 10%
  589          * of the maximal space buffer map.  This roughly corresponds
  590          * to the amount of the buffer mapped for typical UFS load.
  591          *
  592          * Clip the buffer map to reserve space for the transient
  593          * BIOs, if its extent is bigger than 90% (80% on i386) of the
  594          * maximum buffer map extent on the platform.
  595          *
  596          * The fall-back to the maxbuf in case of maxbcache unset,
  597          * allows to not trim the buffer KVA for the architectures
  598          * with ample KVA space.
  599          */
  600         if (bio_transient_maxcnt == 0) {
  601                 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
  602                 buf_sz = (long)nbuf * BKVASIZE;
  603                 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
  604                     (TRANSIENT_DENOM - 1)) {
  605                         /*
  606                          * There is more KVA than memory.  Do not
  607                          * adjust buffer map size, and assign the rest
  608                          * of maxbuf to transient map.
  609                          */
  610                         biotmap_sz = maxbuf_sz - buf_sz;
  611                 } else {
  612                         /*
  613                          * Buffer map spans all KVA we could afford on
  614                          * this platform.  Give 10% (20% on i386) of
  615                          * the buffer map to the transient bio map.
  616                          */
  617                         biotmap_sz = buf_sz / TRANSIENT_DENOM;
  618                         buf_sz -= biotmap_sz;
  619                 }
  620                 if (biotmap_sz / INT_MAX > MAXPHYS)
  621                         bio_transient_maxcnt = INT_MAX;
  622                 else
  623                         bio_transient_maxcnt = biotmap_sz / MAXPHYS;
  624                 /*
  625                  * Artifically limit to 1024 simultaneous in-flight I/Os
  626                  * using the transient mapping.
  627                  */
  628                 if (bio_transient_maxcnt > 1024)
  629                         bio_transient_maxcnt = 1024;
  630                 if (tuned_nbuf)
  631                         nbuf = buf_sz / BKVASIZE;
  632         }
  633 
  634         /*
  635          * swbufs are used as temporary holders for I/O, such as paging I/O.
  636          * We have no less then 16 and no more then 256.
  637          */
  638         nswbuf = min(nbuf / 4, 256);
  639         TUNABLE_INT_FETCH("kern.nswbuf", &nswbuf);
  640         if (nswbuf < NSWBUF_MIN)
  641                 nswbuf = NSWBUF_MIN;
  642 #ifdef DIRECTIO
  643         ffs_rawread_setup();
  644 #endif
  645 
  646         /*
  647          * Reserve space for the buffer cache buffers
  648          */
  649         swbuf = (void *)v;
  650         v = (caddr_t)(swbuf + nswbuf);
  651         buf = (void *)v;
  652         v = (caddr_t)(buf + nbuf);
  653 
  654         return(v);
  655 }
  656 
  657 /* Initialize the buffer subsystem.  Called before use of any buffers. */
  658 void
  659 bufinit(void)
  660 {
  661         struct buf *bp;
  662         int i;
  663 
  664         mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
  665         mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
  666         mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
  667         mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
  668 
  669         /* next, make a null set of free lists */
  670         for (i = 0; i < BUFFER_QUEUES; i++)
  671                 TAILQ_INIT(&bufqueues[i]);
  672 
  673         /* finally, initialize each buffer header and stick on empty q */
  674         for (i = 0; i < nbuf; i++) {
  675                 bp = &buf[i];
  676                 bzero(bp, sizeof *bp);
  677                 bp->b_flags = B_INVAL;  /* we're just an empty header */
  678                 bp->b_rcred = NOCRED;
  679                 bp->b_wcred = NOCRED;
  680                 bp->b_qindex = QUEUE_EMPTY;
  681                 bp->b_vflags = BV_INFREECNT;    /* buf is counted as free */
  682                 bp->b_xflags = 0;
  683                 LIST_INIT(&bp->b_dep);
  684                 BUF_LOCKINIT(bp);
  685                 TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
  686 #ifdef INVARIANTS
  687                 bq_len[QUEUE_EMPTY]++;
  688 #endif
  689         }
  690 
  691         /*
  692          * maxbufspace is the absolute maximum amount of buffer space we are 
  693          * allowed to reserve in KVM and in real terms.  The absolute maximum
  694          * is nominally used by buf_daemon.  hibufspace is the nominal maximum
  695          * used by most other processes.  The differential is required to 
  696          * ensure that buf_daemon is able to run when other processes might 
  697          * be blocked waiting for buffer space.
  698          *
  699          * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
  700          * this may result in KVM fragmentation which is not handled optimally
  701          * by the system.
  702          */
  703         maxbufspace = (long)nbuf * BKVASIZE;
  704         hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
  705         lobufspace = hibufspace - MAXBSIZE;
  706 
  707         /*
  708          * Note: The 16 MiB upper limit for hirunningspace was chosen
  709          * arbitrarily and may need further tuning. It corresponds to
  710          * 128 outstanding write IO requests (if IO size is 128 KiB),
  711          * which fits with many RAID controllers' tagged queuing limits.
  712          * The lower 1 MiB limit is the historical upper limit for
  713          * hirunningspace.
  714          */
  715         hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
  716             16 * 1024 * 1024), 1024 * 1024);
  717         lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE);
  718 
  719 /*
  720  * Limit the amount of malloc memory since it is wired permanently into
  721  * the kernel space.  Even though this is accounted for in the buffer
  722  * allocation, we don't want the malloced region to grow uncontrolled.
  723  * The malloc scheme improves memory utilization significantly on average
  724  * (small) directories.
  725  */
  726         maxbufmallocspace = hibufspace / 20;
  727 
  728 /*
  729  * Reduce the chance of a deadlock occuring by limiting the number
  730  * of delayed-write dirty buffers we allow to stack up.
  731  */
  732         hidirtybuffers = nbuf / 4 + 20;
  733         dirtybufthresh = hidirtybuffers * 9 / 10;
  734         numdirtybuffers = 0;
  735 /*
  736  * To support extreme low-memory systems, make sure hidirtybuffers cannot
  737  * eat up all available buffer space.  This occurs when our minimum cannot
  738  * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
  739  * BKVASIZE'd buffers.
  740  */
  741         while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
  742                 hidirtybuffers >>= 1;
  743         }
  744         lodirtybuffers = hidirtybuffers / 2;
  745 
  746 /*
  747  * Try to keep the number of free buffers in the specified range,
  748  * and give special processes (e.g. like buf_daemon) access to an 
  749  * emergency reserve.
  750  */
  751         lofreebuffers = nbuf / 18 + 5;
  752         hifreebuffers = 2 * lofreebuffers;
  753         numfreebuffers = nbuf;
  754 
  755         bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
  756             VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
  757         unmapped_buf = (caddr_t)kmem_alloc_nofault(kernel_map, MAXPHYS);
  758 }
  759 
  760 #ifdef INVARIANTS
  761 static inline void
  762 vfs_buf_check_mapped(struct buf *bp)
  763 {
  764 
  765         KASSERT((bp->b_flags & B_UNMAPPED) == 0,
  766             ("mapped buf %p %x", bp, bp->b_flags));
  767         KASSERT(bp->b_kvabase != unmapped_buf,
  768             ("mapped buf: b_kvabase was not updated %p", bp));
  769         KASSERT(bp->b_data != unmapped_buf,
  770             ("mapped buf: b_data was not updated %p", bp));
  771 }
  772 
  773 static inline void
  774 vfs_buf_check_unmapped(struct buf *bp)
  775 {
  776 
  777         KASSERT((bp->b_flags & B_UNMAPPED) == B_UNMAPPED,
  778             ("unmapped buf %p %x", bp, bp->b_flags));
  779         KASSERT(bp->b_kvabase == unmapped_buf,
  780             ("unmapped buf: corrupted b_kvabase %p", bp));
  781         KASSERT(bp->b_data == unmapped_buf,
  782             ("unmapped buf: corrupted b_data %p", bp));
  783 }
  784 
  785 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
  786 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
  787 #else
  788 #define BUF_CHECK_MAPPED(bp) do {} while (0)
  789 #define BUF_CHECK_UNMAPPED(bp) do {} while (0)
  790 #endif
  791 
  792 static void
  793 bpmap_qenter(struct buf *bp)
  794 {
  795 
  796         BUF_CHECK_MAPPED(bp);
  797 
  798         /*
  799          * bp->b_data is relative to bp->b_offset, but
  800          * bp->b_offset may be offset into the first page.
  801          */
  802         bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
  803         pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
  804         bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
  805             (vm_offset_t)(bp->b_offset & PAGE_MASK));
  806 }
  807 
  808 /*
  809  * bfreekva() - free the kva allocation for a buffer.
  810  *
  811  *      Since this call frees up buffer space, we call bufspacewakeup().
  812  */
  813 static void
  814 bfreekva(struct buf *bp)
  815 {
  816 
  817         if (bp->b_kvasize == 0)
  818                 return;
  819 
  820         atomic_add_int(&buffreekvacnt, 1);
  821         atomic_subtract_long(&bufspace, bp->b_kvasize);
  822         if ((bp->b_flags & B_UNMAPPED) == 0) {
  823                 BUF_CHECK_MAPPED(bp);
  824                 vm_map_remove(buffer_map, (vm_offset_t)bp->b_kvabase,
  825                     (vm_offset_t)bp->b_kvabase + bp->b_kvasize);
  826         } else {
  827                 BUF_CHECK_UNMAPPED(bp);
  828                 if ((bp->b_flags & B_KVAALLOC) != 0) {
  829                         vm_map_remove(buffer_map, (vm_offset_t)bp->b_kvaalloc,
  830                             (vm_offset_t)bp->b_kvaalloc + bp->b_kvasize);
  831                 }
  832                 atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
  833                 bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
  834         }
  835         bp->b_kvasize = 0;
  836         bufspacewakeup();
  837 }
  838 
  839 /*
  840  *      bremfree:
  841  *
  842  *      Mark the buffer for removal from the appropriate free list in brelse.
  843  *      
  844  */
  845 void
  846 bremfree(struct buf *bp)
  847 {
  848         int old;
  849 
  850         CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
  851         KASSERT((bp->b_flags & B_REMFREE) == 0,
  852             ("bremfree: buffer %p already marked for delayed removal.", bp));
  853         KASSERT(bp->b_qindex != QUEUE_NONE,
  854             ("bremfree: buffer %p not on a queue.", bp));
  855         BUF_ASSERT_HELD(bp);
  856 
  857         bp->b_flags |= B_REMFREE;
  858         /* Fixup numfreebuffers count.  */
  859         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
  860                 KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
  861                     ("buf %p not counted in numfreebuffers", bp));
  862                 if (bp->b_bufobj != NULL)
  863                         mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
  864                 bp->b_vflags &= ~BV_INFREECNT;
  865                 old = atomic_fetchadd_int(&numfreebuffers, -1);
  866                 KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
  867         }
  868 }
  869 
  870 /*
  871  *      bremfreef:
  872  *
  873  *      Force an immediate removal from a free list.  Used only in nfs when
  874  *      it abuses the b_freelist pointer.
  875  */
  876 void
  877 bremfreef(struct buf *bp)
  878 {
  879         mtx_lock(&bqlock);
  880         bremfreel(bp);
  881         mtx_unlock(&bqlock);
  882 }
  883 
  884 /*
  885  *      bremfreel:
  886  *
  887  *      Removes a buffer from the free list, must be called with the
  888  *      bqlock held.
  889  */
  890 static void
  891 bremfreel(struct buf *bp)
  892 {
  893         int old;
  894 
  895         CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
  896             bp, bp->b_vp, bp->b_flags);
  897         KASSERT(bp->b_qindex != QUEUE_NONE,
  898             ("bremfreel: buffer %p not on a queue.", bp));
  899         BUF_ASSERT_HELD(bp);
  900         mtx_assert(&bqlock, MA_OWNED);
  901 
  902         TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
  903 #ifdef INVARIANTS
  904         KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
  905             bp->b_qindex));
  906         bq_len[bp->b_qindex]--;
  907 #endif
  908         bp->b_qindex = QUEUE_NONE;
  909         /*
  910          * If this was a delayed bremfree() we only need to remove the buffer
  911          * from the queue and return the stats are already done.
  912          */
  913         if (bp->b_flags & B_REMFREE) {
  914                 bp->b_flags &= ~B_REMFREE;
  915                 return;
  916         }
  917         /*
  918          * Fixup numfreebuffers count.  If the buffer is invalid or not
  919          * delayed-write, the buffer was free and we must decrement
  920          * numfreebuffers.
  921          */
  922         if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
  923                 KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
  924                     ("buf %p not counted in numfreebuffers", bp));
  925                 if (bp->b_bufobj != NULL)
  926                         mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
  927                 bp->b_vflags &= ~BV_INFREECNT;
  928                 old = atomic_fetchadd_int(&numfreebuffers, -1);
  929                 KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
  930         }
  931 }
  932 
  933 /*
  934  * Get a buffer with the specified data.
  935  */
  936 int
  937 bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
  938     struct buf **bpp)
  939 {
  940 
  941         return (breadn_flags(vp, blkno, size, 0, 0, 0, cred, 0, bpp));
  942 }
  943 
  944 /*
  945  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
  946  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
  947  * the buffer is valid and we do not have to do anything.
  948  */
  949 void
  950 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
  951     int cnt, struct ucred * cred)
  952 {
  953         struct buf *rabp;
  954         int i;
  955 
  956         for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
  957                 if (inmem(vp, *rablkno))
  958                         continue;
  959                 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
  960 
  961                 if ((rabp->b_flags & B_CACHE) == 0) {
  962                         if (!TD_IS_IDLETHREAD(curthread))
  963                                 curthread->td_ru.ru_inblock++;
  964                         rabp->b_flags |= B_ASYNC;
  965                         rabp->b_flags &= ~B_INVAL;
  966                         rabp->b_ioflags &= ~BIO_ERROR;
  967                         rabp->b_iocmd = BIO_READ;
  968                         if (rabp->b_rcred == NOCRED && cred != NOCRED)
  969                                 rabp->b_rcred = crhold(cred);
  970                         vfs_busy_pages(rabp, 0);
  971                         BUF_KERNPROC(rabp);
  972                         rabp->b_iooffset = dbtob(rabp->b_blkno);
  973                         bstrategy(rabp);
  974                 } else {
  975                         brelse(rabp);
  976                 }
  977         }
  978 }
  979 
  980 /*
  981  * Operates like bread, but with getblk flags.
  982  */
  983 int
  984 bread_gb(struct vnode * vp, daddr_t blkno, int cnt, struct ucred * cred,
  985     int gbflags, struct buf **bpp)
  986 {
  987 
  988         return (breadn_flags(vp, blkno, cnt, NULL, NULL, 0,
  989                     cred, gbflags, bpp));
  990 }
  991 
  992 /*
  993  * Operates like bread, but also starts asynchronous I/O on
  994  * read-ahead blocks.
  995  */
  996 int
  997 breadn(struct vnode * vp, daddr_t blkno, int size,
  998     daddr_t * rablkno, int *rabsize,
  999     int cnt, struct ucred * cred, struct buf **bpp)
 1000 {
 1001 
 1002         return (breadn_flags(vp, blkno, size, rablkno, rabsize, cnt,
 1003                     cred, 0, bpp));
 1004 }
 1005 
 1006 /*
 1007  * Entry point for bread() and breadn().
 1008  *
 1009  * Get a buffer with the specified data.  Look in the cache first.  We
 1010  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
 1011  * is set, the buffer is valid and we do not have to do anything, see
 1012  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
 1013  */
 1014 int
 1015 breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
 1016     int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
 1017 {
 1018         struct buf *bp;
 1019         int rv = 0, readwait = 0;
 1020 
 1021         CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
 1022         /*
 1023          * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
 1024          */
 1025         *bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
 1026         if (bp == NULL)
 1027                 return (EBUSY);
 1028 
 1029         /* if not found in cache, do some I/O */
 1030         if ((bp->b_flags & B_CACHE) == 0) {
 1031                 if (!TD_IS_IDLETHREAD(curthread))
 1032                         curthread->td_ru.ru_inblock++;
 1033                 bp->b_iocmd = BIO_READ;
 1034                 bp->b_flags &= ~B_INVAL;
 1035                 bp->b_ioflags &= ~BIO_ERROR;
 1036                 if (bp->b_rcred == NOCRED && cred != NOCRED)
 1037                         bp->b_rcred = crhold(cred);
 1038                 vfs_busy_pages(bp, 0);
 1039                 bp->b_iooffset = dbtob(bp->b_blkno);
 1040                 bstrategy(bp);
 1041                 ++readwait;
 1042         }
 1043 
 1044         breada(vp, rablkno, rabsize, cnt, cred);
 1045 
 1046         if (readwait) {
 1047                 rv = bufwait(bp);
 1048         }
 1049         return (rv);
 1050 }
 1051 
 1052 /*
 1053  * Write, release buffer on completion.  (Done by iodone
 1054  * if async).  Do not bother writing anything if the buffer
 1055  * is invalid.
 1056  *
 1057  * Note that we set B_CACHE here, indicating that buffer is
 1058  * fully valid and thus cacheable.  This is true even of NFS
 1059  * now so we set it generally.  This could be set either here 
 1060  * or in biodone() since the I/O is synchronous.  We put it
 1061  * here.
 1062  */
 1063 int
 1064 bufwrite(struct buf *bp)
 1065 {
 1066         int oldflags;
 1067         struct vnode *vp;
 1068         int vp_md;
 1069 
 1070         CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1071         if (bp->b_flags & B_INVAL) {
 1072                 brelse(bp);
 1073                 return (0);
 1074         }
 1075 
 1076         if (bp->b_flags & B_BARRIER)
 1077                 barrierwrites++;
 1078 
 1079         oldflags = bp->b_flags;
 1080 
 1081         BUF_ASSERT_HELD(bp);
 1082 
 1083         if (bp->b_pin_count > 0)
 1084                 bunpin_wait(bp);
 1085 
 1086         KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
 1087             ("FFS background buffer should not get here %p", bp));
 1088 
 1089         vp = bp->b_vp;
 1090         if (vp)
 1091                 vp_md = vp->v_vflag & VV_MD;
 1092         else
 1093                 vp_md = 0;
 1094 
 1095         /*
 1096          * Mark the buffer clean.  Increment the bufobj write count
 1097          * before bundirty() call, to prevent other thread from seeing
 1098          * empty dirty list and zero counter for writes in progress,
 1099          * falsely indicating that the bufobj is clean.
 1100          */
 1101         bufobj_wref(bp->b_bufobj);
 1102         bundirty(bp);
 1103 
 1104         bp->b_flags &= ~B_DONE;
 1105         bp->b_ioflags &= ~BIO_ERROR;
 1106         bp->b_flags |= B_CACHE;
 1107         bp->b_iocmd = BIO_WRITE;
 1108 
 1109         vfs_busy_pages(bp, 1);
 1110 
 1111         /*
 1112          * Normal bwrites pipeline writes
 1113          */
 1114         bp->b_runningbufspace = bp->b_bufsize;
 1115         atomic_add_long(&runningbufspace, bp->b_runningbufspace);
 1116 
 1117         if (!TD_IS_IDLETHREAD(curthread))
 1118                 curthread->td_ru.ru_oublock++;
 1119         if (oldflags & B_ASYNC)
 1120                 BUF_KERNPROC(bp);
 1121         bp->b_iooffset = dbtob(bp->b_blkno);
 1122         bstrategy(bp);
 1123 
 1124         if ((oldflags & B_ASYNC) == 0) {
 1125                 int rtval = bufwait(bp);
 1126                 brelse(bp);
 1127                 return (rtval);
 1128         } else {
 1129                 /*
 1130                  * don't allow the async write to saturate the I/O
 1131                  * system.  We will not deadlock here because
 1132                  * we are blocking waiting for I/O that is already in-progress
 1133                  * to complete. We do not block here if it is the update
 1134                  * or syncer daemon trying to clean up as that can lead
 1135                  * to deadlock.
 1136                  */
 1137                 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
 1138                         waitrunningbufspace();
 1139         }
 1140 
 1141         return (0);
 1142 }
 1143 
 1144 void
 1145 bufbdflush(struct bufobj *bo, struct buf *bp)
 1146 {
 1147         struct buf *nbp;
 1148 
 1149         if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
 1150                 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
 1151                 altbufferflushes++;
 1152         } else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
 1153                 BO_LOCK(bo);
 1154                 /*
 1155                  * Try to find a buffer to flush.
 1156                  */
 1157                 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
 1158                         if ((nbp->b_vflags & BV_BKGRDINPROG) ||
 1159                             BUF_LOCK(nbp,
 1160                                      LK_EXCLUSIVE | LK_NOWAIT, NULL))
 1161                                 continue;
 1162                         if (bp == nbp)
 1163                                 panic("bdwrite: found ourselves");
 1164                         BO_UNLOCK(bo);
 1165                         /* Don't countdeps with the bo lock held. */
 1166                         if (buf_countdeps(nbp, 0)) {
 1167                                 BO_LOCK(bo);
 1168                                 BUF_UNLOCK(nbp);
 1169                                 continue;
 1170                         }
 1171                         if (nbp->b_flags & B_CLUSTEROK) {
 1172                                 vfs_bio_awrite(nbp);
 1173                         } else {
 1174                                 bremfree(nbp);
 1175                                 bawrite(nbp);
 1176                         }
 1177                         dirtybufferflushes++;
 1178                         break;
 1179                 }
 1180                 if (nbp == NULL)
 1181                         BO_UNLOCK(bo);
 1182         }
 1183 }
 1184 
 1185 /*
 1186  * Delayed write. (Buffer is marked dirty).  Do not bother writing
 1187  * anything if the buffer is marked invalid.
 1188  *
 1189  * Note that since the buffer must be completely valid, we can safely
 1190  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
 1191  * biodone() in order to prevent getblk from writing the buffer
 1192  * out synchronously.
 1193  */
 1194 void
 1195 bdwrite(struct buf *bp)
 1196 {
 1197         struct thread *td = curthread;
 1198         struct vnode *vp;
 1199         struct bufobj *bo;
 1200 
 1201         CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1202         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1203         KASSERT((bp->b_flags & B_BARRIER) == 0,
 1204             ("Barrier request in delayed write %p", bp));
 1205         BUF_ASSERT_HELD(bp);
 1206 
 1207         if (bp->b_flags & B_INVAL) {
 1208                 brelse(bp);
 1209                 return;
 1210         }
 1211 
 1212         /*
 1213          * If we have too many dirty buffers, don't create any more.
 1214          * If we are wildly over our limit, then force a complete
 1215          * cleanup. Otherwise, just keep the situation from getting
 1216          * out of control. Note that we have to avoid a recursive
 1217          * disaster and not try to clean up after our own cleanup!
 1218          */
 1219         vp = bp->b_vp;
 1220         bo = bp->b_bufobj;
 1221         if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
 1222                 td->td_pflags |= TDP_INBDFLUSH;
 1223                 BO_BDFLUSH(bo, bp);
 1224                 td->td_pflags &= ~TDP_INBDFLUSH;
 1225         } else
 1226                 recursiveflushes++;
 1227 
 1228         bdirty(bp);
 1229         /*
 1230          * Set B_CACHE, indicating that the buffer is fully valid.  This is
 1231          * true even of NFS now.
 1232          */
 1233         bp->b_flags |= B_CACHE;
 1234 
 1235         /*
 1236          * This bmap keeps the system from needing to do the bmap later,
 1237          * perhaps when the system is attempting to do a sync.  Since it
 1238          * is likely that the indirect block -- or whatever other datastructure
 1239          * that the filesystem needs is still in memory now, it is a good
 1240          * thing to do this.  Note also, that if the pageout daemon is
 1241          * requesting a sync -- there might not be enough memory to do
 1242          * the bmap then...  So, this is important to do.
 1243          */
 1244         if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
 1245                 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
 1246         }
 1247 
 1248         /*
 1249          * Set the *dirty* buffer range based upon the VM system dirty
 1250          * pages.
 1251          *
 1252          * Mark the buffer pages as clean.  We need to do this here to
 1253          * satisfy the vnode_pager and the pageout daemon, so that it
 1254          * thinks that the pages have been "cleaned".  Note that since
 1255          * the pages are in a delayed write buffer -- the VFS layer
 1256          * "will" see that the pages get written out on the next sync,
 1257          * or perhaps the cluster will be completed.
 1258          */
 1259         vfs_clean_pages_dirty_buf(bp);
 1260         bqrelse(bp);
 1261 
 1262         /*
 1263          * Wakeup the buffer flushing daemon if we have a lot of dirty
 1264          * buffers (midpoint between our recovery point and our stall
 1265          * point).
 1266          */
 1267         bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1268 
 1269         /*
 1270          * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 1271          * due to the softdep code.
 1272          */
 1273 }
 1274 
 1275 /*
 1276  *      bdirty:
 1277  *
 1278  *      Turn buffer into delayed write request.  We must clear BIO_READ and
 1279  *      B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
 1280  *      itself to properly update it in the dirty/clean lists.  We mark it
 1281  *      B_DONE to ensure that any asynchronization of the buffer properly
 1282  *      clears B_DONE ( else a panic will occur later ).  
 1283  *
 1284  *      bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
 1285  *      might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
 1286  *      should only be called if the buffer is known-good.
 1287  *
 1288  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1289  *      count.
 1290  *
 1291  *      The buffer must be on QUEUE_NONE.
 1292  */
 1293 void
 1294 bdirty(struct buf *bp)
 1295 {
 1296 
 1297         CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
 1298             bp, bp->b_vp, bp->b_flags);
 1299         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1300         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1301             ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1302         BUF_ASSERT_HELD(bp);
 1303         bp->b_flags &= ~(B_RELBUF);
 1304         bp->b_iocmd = BIO_WRITE;
 1305 
 1306         if ((bp->b_flags & B_DELWRI) == 0) {
 1307                 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
 1308                 reassignbuf(bp);
 1309                 atomic_add_int(&numdirtybuffers, 1);
 1310                 bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
 1311         }
 1312 }
 1313 
 1314 /*
 1315  *      bundirty:
 1316  *
 1317  *      Clear B_DELWRI for buffer.
 1318  *
 1319  *      Since the buffer is not on a queue, we do not update the numfreebuffers
 1320  *      count.
 1321  *      
 1322  *      The buffer must be on QUEUE_NONE.
 1323  */
 1324 
 1325 void
 1326 bundirty(struct buf *bp)
 1327 {
 1328 
 1329         CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1330         KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 1331         KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 1332             ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 1333         BUF_ASSERT_HELD(bp);
 1334 
 1335         if (bp->b_flags & B_DELWRI) {
 1336                 bp->b_flags &= ~B_DELWRI;
 1337                 reassignbuf(bp);
 1338                 atomic_subtract_int(&numdirtybuffers, 1);
 1339                 numdirtywakeup(lodirtybuffers);
 1340         }
 1341         /*
 1342          * Since it is now being written, we can clear its deferred write flag.
 1343          */
 1344         bp->b_flags &= ~B_DEFERRED;
 1345 }
 1346 
 1347 /*
 1348  *      bawrite:
 1349  *
 1350  *      Asynchronous write.  Start output on a buffer, but do not wait for
 1351  *      it to complete.  The buffer is released when the output completes.
 1352  *
 1353  *      bwrite() ( or the VOP routine anyway ) is responsible for handling 
 1354  *      B_INVAL buffers.  Not us.
 1355  */
 1356 void
 1357 bawrite(struct buf *bp)
 1358 {
 1359 
 1360         bp->b_flags |= B_ASYNC;
 1361         (void) bwrite(bp);
 1362 }
 1363 
 1364 /*
 1365  *      babarrierwrite:
 1366  *
 1367  *      Asynchronous barrier write.  Start output on a buffer, but do not
 1368  *      wait for it to complete.  Place a write barrier after this write so
 1369  *      that this buffer and all buffers written before it are committed to
 1370  *      the disk before any buffers written after this write are committed
 1371  *      to the disk.  The buffer is released when the output completes.
 1372  */
 1373 void
 1374 babarrierwrite(struct buf *bp)
 1375 {
 1376 
 1377         bp->b_flags |= B_ASYNC | B_BARRIER;
 1378         (void) bwrite(bp);
 1379 }
 1380 
 1381 /*
 1382  *      bbarrierwrite:
 1383  *
 1384  *      Synchronous barrier write.  Start output on a buffer and wait for
 1385  *      it to complete.  Place a write barrier after this write so that
 1386  *      this buffer and all buffers written before it are committed to 
 1387  *      the disk before any buffers written after this write are committed
 1388  *      to the disk.  The buffer is released when the output completes.
 1389  */
 1390 int
 1391 bbarrierwrite(struct buf *bp)
 1392 {
 1393 
 1394         bp->b_flags |= B_BARRIER;
 1395         return (bwrite(bp));
 1396 }
 1397 
 1398 /*
 1399  *      bwillwrite:
 1400  *
 1401  *      Called prior to the locking of any vnodes when we are expecting to
 1402  *      write.  We do not want to starve the buffer cache with too many
 1403  *      dirty buffers so we block here.  By blocking prior to the locking
 1404  *      of any vnodes we attempt to avoid the situation where a locked vnode
 1405  *      prevents the various system daemons from flushing related buffers.
 1406  */
 1407 
 1408 void
 1409 bwillwrite(void)
 1410 {
 1411 
 1412         if (numdirtybuffers >= hidirtybuffers) {
 1413                 mtx_lock(&nblock);
 1414                 while (numdirtybuffers >= hidirtybuffers) {
 1415                         bd_wakeup(1);
 1416                         needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
 1417                         msleep(&needsbuffer, &nblock,
 1418                             (PRIBIO + 4), "flswai", 0);
 1419                 }
 1420                 mtx_unlock(&nblock);
 1421         }
 1422 }
 1423 
 1424 /*
 1425  * Return true if we have too many dirty buffers.
 1426  */
 1427 int
 1428 buf_dirty_count_severe(void)
 1429 {
 1430 
 1431         return(numdirtybuffers >= hidirtybuffers);
 1432 }
 1433 
 1434 static __noinline int
 1435 buf_vm_page_count_severe(void)
 1436 {
 1437 
 1438         KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
 1439 
 1440         return vm_page_count_severe();
 1441 }
 1442 
 1443 /*
 1444  *      brelse:
 1445  *
 1446  *      Release a busy buffer and, if requested, free its resources.  The
 1447  *      buffer will be stashed in the appropriate bufqueue[] allowing it
 1448  *      to be accessed later as a cache entity or reused for other purposes.
 1449  */
 1450 void
 1451 brelse(struct buf *bp)
 1452 {
 1453         CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
 1454             bp, bp->b_vp, bp->b_flags);
 1455         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1456             ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1457 
 1458         if (BUF_LOCKRECURSED(bp)) {
 1459                 /*
 1460                  * Do not process, in particular, do not handle the
 1461                  * B_INVAL/B_RELBUF and do not release to free list.
 1462                  */
 1463                 BUF_UNLOCK(bp);
 1464                 return;
 1465         }
 1466 
 1467         if (bp->b_flags & B_MANAGED) {
 1468                 bqrelse(bp);
 1469                 return;
 1470         }
 1471 
 1472         if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
 1473             bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
 1474                 /*
 1475                  * Failed write, redirty.  Must clear BIO_ERROR to prevent
 1476                  * pages from being scrapped.  If the error is anything
 1477                  * other than an I/O error (EIO), assume that retrying
 1478                  * is futile.
 1479                  */
 1480                 bp->b_ioflags &= ~BIO_ERROR;
 1481                 bdirty(bp);
 1482         } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 1483             (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
 1484                 /*
 1485                  * Either a failed I/O or we were asked to free or not
 1486                  * cache the buffer.
 1487                  */
 1488                 bp->b_flags |= B_INVAL;
 1489                 if (!LIST_EMPTY(&bp->b_dep))
 1490                         buf_deallocate(bp);
 1491                 if (bp->b_flags & B_DELWRI) {
 1492                         atomic_subtract_int(&numdirtybuffers, 1);
 1493                         numdirtywakeup(lodirtybuffers);
 1494                 }
 1495                 bp->b_flags &= ~(B_DELWRI | B_CACHE);
 1496                 if ((bp->b_flags & B_VMIO) == 0) {
 1497                         if (bp->b_bufsize)
 1498                                 allocbuf(bp, 0);
 1499                         if (bp->b_vp)
 1500                                 brelvp(bp);
 1501                 }
 1502         }
 1503 
 1504         /*
 1505          * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release() 
 1506          * is called with B_DELWRI set, the underlying pages may wind up
 1507          * getting freed causing a previous write (bdwrite()) to get 'lost'
 1508          * because pages associated with a B_DELWRI bp are marked clean.
 1509          * 
 1510          * We still allow the B_INVAL case to call vfs_vmio_release(), even
 1511          * if B_DELWRI is set.
 1512          *
 1513          * If B_DELWRI is not set we may have to set B_RELBUF if we are low
 1514          * on pages to return pages to the VM page queues.
 1515          */
 1516         if (bp->b_flags & B_DELWRI)
 1517                 bp->b_flags &= ~B_RELBUF;
 1518         else if (buf_vm_page_count_severe()) {
 1519                 /*
 1520                  * The locking of the BO_LOCK is not necessary since
 1521                  * BKGRDINPROG cannot be set while we hold the buf
 1522                  * lock, it can only be cleared if it is already
 1523                  * pending.
 1524                  */
 1525                 if (bp->b_vp) {
 1526                         if (!(bp->b_vflags & BV_BKGRDINPROG))
 1527                                 bp->b_flags |= B_RELBUF;
 1528                 } else
 1529                         bp->b_flags |= B_RELBUF;
 1530         }
 1531 
 1532         /*
 1533          * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 1534          * constituted, not even NFS buffers now.  Two flags effect this.  If
 1535          * B_INVAL, the struct buf is invalidated but the VM object is kept
 1536          * around ( i.e. so it is trivial to reconstitute the buffer later ).
 1537          *
 1538          * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 1539          * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 1540          * buffer is also B_INVAL because it hits the re-dirtying code above.
 1541          *
 1542          * Normally we can do this whether a buffer is B_DELWRI or not.  If
 1543          * the buffer is an NFS buffer, it is tracking piecemeal writes or
 1544          * the commit state and we cannot afford to lose the buffer. If the
 1545          * buffer has a background write in progress, we need to keep it
 1546          * around to prevent it from being reconstituted and starting a second
 1547          * background write.
 1548          */
 1549         if ((bp->b_flags & B_VMIO)
 1550             && !(bp->b_vp->v_mount != NULL &&
 1551                  (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
 1552                  !vn_isdisk(bp->b_vp, NULL) &&
 1553                  (bp->b_flags & B_DELWRI))
 1554             ) {
 1555 
 1556                 int i, j, resid;
 1557                 vm_page_t m;
 1558                 off_t foff;
 1559                 vm_pindex_t poff;
 1560                 vm_object_t obj;
 1561 
 1562                 obj = bp->b_bufobj->bo_object;
 1563 
 1564                 /*
 1565                  * Get the base offset and length of the buffer.  Note that 
 1566                  * in the VMIO case if the buffer block size is not
 1567                  * page-aligned then b_data pointer may not be page-aligned.
 1568                  * But our b_pages[] array *IS* page aligned.
 1569                  *
 1570                  * block sizes less then DEV_BSIZE (usually 512) are not 
 1571                  * supported due to the page granularity bits (m->valid,
 1572                  * m->dirty, etc...). 
 1573                  *
 1574                  * See man buf(9) for more information
 1575                  */
 1576                 resid = bp->b_bufsize;
 1577                 foff = bp->b_offset;
 1578                 VM_OBJECT_LOCK(obj);
 1579                 for (i = 0; i < bp->b_npages; i++) {
 1580                         int had_bogus = 0;
 1581 
 1582                         m = bp->b_pages[i];
 1583 
 1584                         /*
 1585                          * If we hit a bogus page, fixup *all* the bogus pages
 1586                          * now.
 1587                          */
 1588                         if (m == bogus_page) {
 1589                                 poff = OFF_TO_IDX(bp->b_offset);
 1590                                 had_bogus = 1;
 1591 
 1592                                 for (j = i; j < bp->b_npages; j++) {
 1593                                         vm_page_t mtmp;
 1594                                         mtmp = bp->b_pages[j];
 1595                                         if (mtmp == bogus_page) {
 1596                                                 mtmp = vm_page_lookup(obj, poff + j);
 1597                                                 if (!mtmp) {
 1598                                                         panic("brelse: page missing\n");
 1599                                                 }
 1600                                                 bp->b_pages[j] = mtmp;
 1601                                         }
 1602                                 }
 1603 
 1604                                 if ((bp->b_flags & (B_INVAL | B_UNMAPPED)) == 0) {
 1605                                         BUF_CHECK_MAPPED(bp);
 1606                                         pmap_qenter(
 1607                                             trunc_page((vm_offset_t)bp->b_data),
 1608                                             bp->b_pages, bp->b_npages);
 1609                                 }
 1610                                 m = bp->b_pages[i];
 1611                         }
 1612                         if ((bp->b_flags & B_NOCACHE) ||
 1613                             (bp->b_ioflags & BIO_ERROR &&
 1614                              bp->b_iocmd == BIO_READ)) {
 1615                                 int poffset = foff & PAGE_MASK;
 1616                                 int presid = resid > (PAGE_SIZE - poffset) ?
 1617                                         (PAGE_SIZE - poffset) : resid;
 1618 
 1619                                 KASSERT(presid >= 0, ("brelse: extra page"));
 1620                                 if (pmap_page_wired_mappings(m) == 0)
 1621                                         vm_page_set_invalid(m, poffset, presid);
 1622                                 if (had_bogus)
 1623                                         printf("avoided corruption bug in bogus_page/brelse code\n");
 1624                         }
 1625                         resid -= PAGE_SIZE - (foff & PAGE_MASK);
 1626                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 1627                 }
 1628                 VM_OBJECT_UNLOCK(obj);
 1629                 if (bp->b_flags & (B_INVAL | B_RELBUF))
 1630                         vfs_vmio_release(bp);
 1631 
 1632         } else if (bp->b_flags & B_VMIO) {
 1633 
 1634                 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
 1635                         vfs_vmio_release(bp);
 1636                 }
 1637 
 1638         } else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
 1639                 if (bp->b_bufsize != 0)
 1640                         allocbuf(bp, 0);
 1641                 if (bp->b_vp != NULL)
 1642                         brelvp(bp);
 1643         }
 1644                         
 1645         /* enqueue */
 1646         mtx_lock(&bqlock);
 1647         /* Handle delayed bremfree() processing. */
 1648         if (bp->b_flags & B_REMFREE) {
 1649                 struct bufobj *bo;
 1650 
 1651                 bo = bp->b_bufobj;
 1652                 if (bo != NULL)
 1653                         BO_LOCK(bo);
 1654                 bremfreel(bp);
 1655                 if (bo != NULL)
 1656                         BO_UNLOCK(bo);
 1657         }
 1658         if (bp->b_qindex != QUEUE_NONE)
 1659                 panic("brelse: free buffer onto another queue???");
 1660 
 1661         /*
 1662          * If the buffer has junk contents signal it and eventually
 1663          * clean up B_DELWRI and diassociate the vnode so that gbincore()
 1664          * doesn't find it.
 1665          */
 1666         if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
 1667             (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
 1668                 bp->b_flags |= B_INVAL;
 1669         if (bp->b_flags & B_INVAL) {
 1670                 if (bp->b_flags & B_DELWRI)
 1671                         bundirty(bp);
 1672                 if (bp->b_vp)
 1673                         brelvp(bp);
 1674         }
 1675 
 1676         /* buffers with no memory */
 1677         if (bp->b_bufsize == 0) {
 1678                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1679                 if (bp->b_vflags & BV_BKGRDINPROG)
 1680                         panic("losing buffer 1");
 1681                 if (bp->b_kvasize) {
 1682                         bp->b_qindex = QUEUE_EMPTYKVA;
 1683                 } else {
 1684                         bp->b_qindex = QUEUE_EMPTY;
 1685                 }
 1686                 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
 1687         /* buffers with junk contents */
 1688         } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 1689             (bp->b_ioflags & BIO_ERROR)) {
 1690                 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 1691                 if (bp->b_vflags & BV_BKGRDINPROG)
 1692                         panic("losing buffer 2");
 1693                 bp->b_qindex = QUEUE_CLEAN;
 1694                 TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
 1695         /* remaining buffers */
 1696         } else {
 1697                 if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
 1698                     (B_DELWRI|B_NEEDSGIANT))
 1699                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1700                 else if (bp->b_flags & B_DELWRI)
 1701                         bp->b_qindex = QUEUE_DIRTY;
 1702                 else
 1703                         bp->b_qindex = QUEUE_CLEAN;
 1704                 if (bp->b_flags & B_AGE) {
 1705                         TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp,
 1706                             b_freelist);
 1707                 } else {
 1708                         TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp,
 1709                             b_freelist);
 1710                 }
 1711         }
 1712 #ifdef INVARIANTS
 1713         bq_len[bp->b_qindex]++;
 1714 #endif
 1715         mtx_unlock(&bqlock);
 1716 
 1717         /*
 1718          * Fixup numfreebuffers count.  The bp is on an appropriate queue
 1719          * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
 1720          * We've already handled the B_INVAL case ( B_DELWRI will be clear
 1721          * if B_INVAL is set ).
 1722          */
 1723 
 1724         if (!(bp->b_flags & B_DELWRI)) {
 1725                 struct bufobj *bo;
 1726 
 1727                 bo = bp->b_bufobj;
 1728                 if (bo != NULL)
 1729                         BO_LOCK(bo);
 1730                 bufcountwakeup(bp);
 1731                 if (bo != NULL)
 1732                         BO_UNLOCK(bo);
 1733         }
 1734 
 1735         /*
 1736          * Something we can maybe free or reuse
 1737          */
 1738         if (bp->b_bufsize || bp->b_kvasize)
 1739                 bufspacewakeup();
 1740 
 1741         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
 1742         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1743                 panic("brelse: not dirty");
 1744         /* unlock */
 1745         BUF_UNLOCK(bp);
 1746 }
 1747 
 1748 /*
 1749  * Release a buffer back to the appropriate queue but do not try to free
 1750  * it.  The buffer is expected to be used again soon.
 1751  *
 1752  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
 1753  * biodone() to requeue an async I/O on completion.  It is also used when
 1754  * known good buffers need to be requeued but we think we may need the data
 1755  * again soon.
 1756  *
 1757  * XXX we should be able to leave the B_RELBUF hint set on completion.
 1758  */
 1759 void
 1760 bqrelse(struct buf *bp)
 1761 {
 1762         struct bufobj *bo;
 1763 
 1764         CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 1765         KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 1766             ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 1767 
 1768         if (BUF_LOCKRECURSED(bp)) {
 1769                 /* do not release to free list */
 1770                 BUF_UNLOCK(bp);
 1771                 return;
 1772         }
 1773 
 1774         bo = bp->b_bufobj;
 1775         if (bp->b_flags & B_MANAGED) {
 1776                 if (bp->b_flags & B_REMFREE) {
 1777                         mtx_lock(&bqlock);
 1778                         if (bo != NULL)
 1779                                 BO_LOCK(bo);
 1780                         bremfreel(bp);
 1781                         if (bo != NULL)
 1782                                 BO_UNLOCK(bo);
 1783                         mtx_unlock(&bqlock);
 1784                 }
 1785                 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1786                 BUF_UNLOCK(bp);
 1787                 return;
 1788         }
 1789 
 1790         mtx_lock(&bqlock);
 1791         /* Handle delayed bremfree() processing. */
 1792         if (bp->b_flags & B_REMFREE) {
 1793                 if (bo != NULL)
 1794                         BO_LOCK(bo);
 1795                 bremfreel(bp);
 1796                 if (bo != NULL)
 1797                         BO_UNLOCK(bo);
 1798         }
 1799         if (bp->b_qindex != QUEUE_NONE)
 1800                 panic("bqrelse: free buffer onto another queue???");
 1801         /* buffers with stale but valid contents */
 1802         if (bp->b_flags & B_DELWRI) {
 1803                 if (bp->b_flags & B_NEEDSGIANT)
 1804                         bp->b_qindex = QUEUE_DIRTY_GIANT;
 1805                 else
 1806                         bp->b_qindex = QUEUE_DIRTY;
 1807                 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
 1808 #ifdef INVARIANTS
 1809                 bq_len[bp->b_qindex]++;
 1810 #endif
 1811         } else {
 1812                 /*
 1813                  * The locking of the BO_LOCK for checking of the
 1814                  * BV_BKGRDINPROG is not necessary since the
 1815                  * BV_BKGRDINPROG cannot be set while we hold the buf
 1816                  * lock, it can only be cleared if it is already
 1817                  * pending.
 1818                  */
 1819                 if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
 1820                         bp->b_qindex = QUEUE_CLEAN;
 1821                         TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
 1822                             b_freelist);
 1823 #ifdef INVARIANTS
 1824                         bq_len[QUEUE_CLEAN]++;
 1825 #endif
 1826                 } else {
 1827                         /*
 1828                          * We are too low on memory, we have to try to free
 1829                          * the buffer (most importantly: the wired pages
 1830                          * making up its backing store) *now*.
 1831                          */
 1832                         mtx_unlock(&bqlock);
 1833                         brelse(bp);
 1834                         return;
 1835                 }
 1836         }
 1837         mtx_unlock(&bqlock);
 1838 
 1839         if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI)) {
 1840                 if (bo != NULL)
 1841                         BO_LOCK(bo);
 1842                 bufcountwakeup(bp);
 1843                 if (bo != NULL)
 1844                         BO_UNLOCK(bo);
 1845         }
 1846 
 1847         /*
 1848          * Something we can maybe free or reuse.
 1849          */
 1850         if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
 1851                 bufspacewakeup();
 1852 
 1853         bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 1854         if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 1855                 panic("bqrelse: not dirty");
 1856         /* unlock */
 1857         BUF_UNLOCK(bp);
 1858 }
 1859 
 1860 /* Give pages used by the bp back to the VM system (where possible) */
 1861 static void
 1862 vfs_vmio_release(struct buf *bp)
 1863 {
 1864         int i;
 1865         vm_page_t m;
 1866 
 1867         if ((bp->b_flags & B_UNMAPPED) == 0) {
 1868                 BUF_CHECK_MAPPED(bp);
 1869                 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
 1870         } else
 1871                 BUF_CHECK_UNMAPPED(bp);
 1872         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 1873         for (i = 0; i < bp->b_npages; i++) {
 1874                 m = bp->b_pages[i];
 1875                 bp->b_pages[i] = NULL;
 1876                 /*
 1877                  * In order to keep page LRU ordering consistent, put
 1878                  * everything on the inactive queue.
 1879                  */
 1880                 vm_page_lock(m);
 1881                 vm_page_unwire(m, 0);
 1882                 /*
 1883                  * We don't mess with busy pages, it is
 1884                  * the responsibility of the process that
 1885                  * busied the pages to deal with them.
 1886                  */
 1887                 if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
 1888                     m->wire_count == 0) {
 1889                         /*
 1890                          * Might as well free the page if we can and it has
 1891                          * no valid data.  We also free the page if the
 1892                          * buffer was used for direct I/O
 1893                          */
 1894                         if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
 1895                                 vm_page_free(m);
 1896                         } else if (bp->b_flags & B_DIRECT) {
 1897                                 vm_page_try_to_free(m);
 1898                         } else if (buf_vm_page_count_severe()) {
 1899                                 vm_page_try_to_cache(m);
 1900                         }
 1901                 }
 1902                 vm_page_unlock(m);
 1903         }
 1904         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 1905         
 1906         if (bp->b_bufsize) {
 1907                 bufspacewakeup();
 1908                 bp->b_bufsize = 0;
 1909         }
 1910         bp->b_npages = 0;
 1911         bp->b_flags &= ~B_VMIO;
 1912         if (bp->b_vp)
 1913                 brelvp(bp);
 1914 }
 1915 
 1916 /*
 1917  * Check to see if a block at a particular lbn is available for a clustered
 1918  * write.
 1919  */
 1920 static int
 1921 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 1922 {
 1923         struct buf *bpa;
 1924         int match;
 1925 
 1926         match = 0;
 1927 
 1928         /* If the buf isn't in core skip it */
 1929         if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
 1930                 return (0);
 1931 
 1932         /* If the buf is busy we don't want to wait for it */
 1933         if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 1934                 return (0);
 1935 
 1936         /* Only cluster with valid clusterable delayed write buffers */
 1937         if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 1938             (B_DELWRI | B_CLUSTEROK))
 1939                 goto done;
 1940 
 1941         if (bpa->b_bufsize != size)
 1942                 goto done;
 1943 
 1944         /*
 1945          * Check to see if it is in the expected place on disk and that the
 1946          * block has been mapped.
 1947          */
 1948         if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 1949                 match = 1;
 1950 done:
 1951         BUF_UNLOCK(bpa);
 1952         return (match);
 1953 }
 1954 
 1955 /*
 1956  *      vfs_bio_awrite:
 1957  *
 1958  *      Implement clustered async writes for clearing out B_DELWRI buffers.
 1959  *      This is much better then the old way of writing only one buffer at
 1960  *      a time.  Note that we may not be presented with the buffers in the 
 1961  *      correct order, so we search for the cluster in both directions.
 1962  */
 1963 int
 1964 vfs_bio_awrite(struct buf *bp)
 1965 {
 1966         struct bufobj *bo;
 1967         int i;
 1968         int j;
 1969         daddr_t lblkno = bp->b_lblkno;
 1970         struct vnode *vp = bp->b_vp;
 1971         int ncl;
 1972         int nwritten;
 1973         int size;
 1974         int maxcl;
 1975         int gbflags;
 1976 
 1977         bo = &vp->v_bufobj;
 1978         gbflags = (bp->b_flags & B_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
 1979         /*
 1980          * right now we support clustered writing only to regular files.  If
 1981          * we find a clusterable block we could be in the middle of a cluster
 1982          * rather then at the beginning.
 1983          */
 1984         if ((vp->v_type == VREG) && 
 1985             (vp->v_mount != 0) && /* Only on nodes that have the size info */
 1986             (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 1987 
 1988                 size = vp->v_mount->mnt_stat.f_iosize;
 1989                 maxcl = MAXPHYS / size;
 1990 
 1991                 BO_LOCK(bo);
 1992                 for (i = 1; i < maxcl; i++)
 1993                         if (vfs_bio_clcheck(vp, size, lblkno + i,
 1994                             bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 1995                                 break;
 1996 
 1997                 for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 1998                         if (vfs_bio_clcheck(vp, size, lblkno - j,
 1999                             bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 2000                                 break;
 2001                 BO_UNLOCK(bo);
 2002                 --j;
 2003                 ncl = i + j;
 2004                 /*
 2005                  * this is a possible cluster write
 2006                  */
 2007                 if (ncl != 1) {
 2008                         BUF_UNLOCK(bp);
 2009                         nwritten = cluster_wbuild_gb(vp, size, lblkno - j,
 2010                             ncl, gbflags);
 2011                         return (nwritten);
 2012                 }
 2013         }
 2014         bremfree(bp);
 2015         bp->b_flags |= B_ASYNC;
 2016         /*
 2017          * default (old) behavior, writing out only one block
 2018          *
 2019          * XXX returns b_bufsize instead of b_bcount for nwritten?
 2020          */
 2021         nwritten = bp->b_bufsize;
 2022         (void) bwrite(bp);
 2023 
 2024         return (nwritten);
 2025 }
 2026 
 2027 static void
 2028 setbufkva(struct buf *bp, vm_offset_t addr, int maxsize, int gbflags)
 2029 {
 2030 
 2031         KASSERT((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
 2032             bp->b_kvasize == 0, ("call bfreekva(%p)", bp));
 2033         if ((gbflags & GB_UNMAPPED) == 0) {
 2034                 bp->b_kvabase = (caddr_t)addr;
 2035         } else if ((gbflags & GB_KVAALLOC) != 0) {
 2036                 KASSERT((gbflags & GB_UNMAPPED) != 0,
 2037                     ("GB_KVAALLOC without GB_UNMAPPED"));
 2038                 bp->b_kvaalloc = (caddr_t)addr;
 2039                 bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
 2040                 atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
 2041         }
 2042         bp->b_kvasize = maxsize;
 2043 }
 2044 
 2045 /*
 2046  * Allocate the buffer KVA and set b_kvasize. Also set b_kvabase if
 2047  * needed.
 2048  */
 2049 static int
 2050 allocbufkva(struct buf *bp, int maxsize, int gbflags)
 2051 {
 2052         vm_offset_t addr;
 2053         int rv;
 2054 
 2055         bfreekva(bp);
 2056         addr = 0;
 2057 
 2058         vm_map_lock(buffer_map);
 2059         if (vm_map_findspace(buffer_map, vm_map_min(buffer_map), maxsize,
 2060             &addr)) {
 2061                 vm_map_unlock(buffer_map);
 2062                 /*
 2063                  * Buffer map is too fragmented.  Request the caller
 2064                  * to defragment the map.
 2065                  */
 2066                 atomic_add_int(&bufdefragcnt, 1);
 2067                 return (1);
 2068         }
 2069         rv = vm_map_insert(buffer_map, NULL, 0, addr, addr + maxsize,
 2070             VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
 2071         KASSERT(rv == KERN_SUCCESS, ("vm_map_insert(buffer_map) rv %d", rv));
 2072         vm_map_unlock(buffer_map);
 2073         setbufkva(bp, addr, maxsize, gbflags);
 2074         atomic_add_long(&bufspace, bp->b_kvasize);
 2075         return (0);
 2076 }
 2077 
 2078 /*
 2079  * Ask the bufdaemon for help, or act as bufdaemon itself, when a
 2080  * locked vnode is supplied.
 2081  */
 2082 static void
 2083 getnewbuf_bufd_help(struct vnode *vp, int gbflags, int slpflag, int slptimeo,
 2084     int defrag)
 2085 {
 2086         struct thread *td;
 2087         char *waitmsg;
 2088         int fl, flags, norunbuf;
 2089 
 2090         mtx_assert(&bqlock, MA_OWNED);
 2091 
 2092         if (defrag) {
 2093                 flags = VFS_BIO_NEED_BUFSPACE;
 2094                 waitmsg = "nbufkv";
 2095         } else if (bufspace >= hibufspace) {
 2096                 waitmsg = "nbufbs";
 2097                 flags = VFS_BIO_NEED_BUFSPACE;
 2098         } else {
 2099                 waitmsg = "newbuf";
 2100                 flags = VFS_BIO_NEED_ANY;
 2101         }
 2102         mtx_lock(&nblock);
 2103         needsbuffer |= flags;
 2104         mtx_unlock(&nblock);
 2105         mtx_unlock(&bqlock);
 2106 
 2107         bd_speedup();   /* heeeelp */
 2108         if ((gbflags & GB_NOWAIT_BD) != 0)
 2109                 return;
 2110 
 2111         td = curthread;
 2112         mtx_lock(&nblock);
 2113         while (needsbuffer & flags) {
 2114                 if (vp != NULL && vp->v_type != VCHR &&
 2115                     (td->td_pflags & TDP_BUFNEED) == 0) {
 2116                         mtx_unlock(&nblock);
 2117                         /*
 2118                          * getblk() is called with a vnode locked, and
 2119                          * some majority of the dirty buffers may as
 2120                          * well belong to the vnode.  Flushing the
 2121                          * buffers there would make a progress that
 2122                          * cannot be achieved by the buf_daemon, that
 2123                          * cannot lock the vnode.
 2124                          */
 2125                         norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
 2126                             (td->td_pflags & TDP_NORUNNINGBUF);
 2127                         /* play bufdaemon */
 2128                         td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
 2129                         fl = buf_do_flush(vp);
 2130                         td->td_pflags &= norunbuf;
 2131                         mtx_lock(&nblock);
 2132                         if (fl != 0)
 2133                                 continue;
 2134                         if ((needsbuffer & flags) == 0)
 2135                                 break;
 2136                 }
 2137                 if (msleep(&needsbuffer, &nblock, (PRIBIO + 4) | slpflag,
 2138                     waitmsg, slptimeo))
 2139                         break;
 2140         }
 2141         mtx_unlock(&nblock);
 2142 }
 2143 
 2144 static void
 2145 getnewbuf_reuse_bp(struct buf *bp, int qindex)
 2146 {
 2147 
 2148         CTR6(KTR_BUF, "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
 2149             "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
 2150              bp->b_kvasize, bp->b_bufsize, qindex);
 2151         mtx_assert(&bqlock, MA_NOTOWNED);
 2152 
 2153         /*
 2154          * Note: we no longer distinguish between VMIO and non-VMIO
 2155          * buffers.
 2156          */
 2157         KASSERT((bp->b_flags & B_DELWRI) == 0,
 2158             ("delwri buffer %p found in queue %d", bp, qindex));
 2159 
 2160         if (qindex == QUEUE_CLEAN) {
 2161                 if (bp->b_flags & B_VMIO) {
 2162                         bp->b_flags &= ~B_ASYNC;
 2163                         vfs_vmio_release(bp);
 2164                 }
 2165                 if (bp->b_vp != NULL)
 2166                         brelvp(bp);
 2167         }
 2168 
 2169         /*
 2170          * Get the rest of the buffer freed up.  b_kva* is still valid
 2171          * after this operation.
 2172          */
 2173 
 2174         if (bp->b_rcred != NOCRED) {
 2175                 crfree(bp->b_rcred);
 2176                 bp->b_rcred = NOCRED;
 2177         }
 2178         if (bp->b_wcred != NOCRED) {
 2179                 crfree(bp->b_wcred);
 2180                 bp->b_wcred = NOCRED;
 2181         }
 2182         if (!LIST_EMPTY(&bp->b_dep))
 2183                 buf_deallocate(bp);
 2184         if (bp->b_vflags & BV_BKGRDINPROG)
 2185                 panic("losing buffer 3");
 2186         KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p.  qindex: %d",
 2187             bp, bp->b_vp, qindex));
 2188         KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
 2189             ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
 2190 
 2191         if (bp->b_bufsize)
 2192                 allocbuf(bp, 0);
 2193 
 2194         bp->b_flags &= B_UNMAPPED | B_KVAALLOC;
 2195         bp->b_ioflags = 0;
 2196         bp->b_xflags = 0;
 2197         KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
 2198             ("buf %p still counted as free?", bp));
 2199         bp->b_vflags = 0;
 2200         bp->b_vp = NULL;
 2201         bp->b_blkno = bp->b_lblkno = 0;
 2202         bp->b_offset = NOOFFSET;
 2203         bp->b_iodone = 0;
 2204         bp->b_error = 0;
 2205         bp->b_resid = 0;
 2206         bp->b_bcount = 0;
 2207         bp->b_npages = 0;
 2208         bp->b_dirtyoff = bp->b_dirtyend = 0;
 2209         bp->b_bufobj = NULL;
 2210         bp->b_pin_count = 0;
 2211         bp->b_fsprivate1 = NULL;
 2212         bp->b_fsprivate2 = NULL;
 2213         bp->b_fsprivate3 = NULL;
 2214 
 2215         LIST_INIT(&bp->b_dep);
 2216 }
 2217 
 2218 static int flushingbufs;
 2219 
 2220 static struct buf *
 2221 getnewbuf_scan(int maxsize, int defrag, int unmapped, int metadata)
 2222 {
 2223         struct buf *bp, *nbp;
 2224         int nqindex, qindex, pass;
 2225 
 2226         KASSERT(!unmapped || !defrag, ("both unmapped and defrag"));
 2227 
 2228         pass = 1;
 2229 restart:
 2230         atomic_add_int(&getnewbufrestarts, 1);
 2231 
 2232         /*
 2233          * Setup for scan.  If we do not have enough free buffers,
 2234          * we setup a degenerate case that immediately fails.  Note
 2235          * that if we are specially marked process, we are allowed to
 2236          * dip into our reserves.
 2237          *
 2238          * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
 2239          * for the allocation of the mapped buffer.  For unmapped, the
 2240          * easiest is to start with EMPTY outright.
 2241          *
 2242          * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
 2243          * However, there are a number of cases (defragging, reusing, ...)
 2244          * where we cannot backup.
 2245          */
 2246         nbp = NULL;
 2247         mtx_lock(&bqlock);
 2248         if (!defrag && unmapped) {
 2249                 nqindex = QUEUE_EMPTY;
 2250                 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
 2251         }
 2252         if (nbp == NULL) {
 2253                 nqindex = QUEUE_EMPTYKVA;
 2254                 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
 2255         }
 2256 
 2257         /*
 2258          * If no EMPTYKVA buffers and we are either defragging or
 2259          * reusing, locate a CLEAN buffer to free or reuse.  If
 2260          * bufspace useage is low skip this step so we can allocate a
 2261          * new buffer.
 2262          */
 2263         if (nbp == NULL && (defrag || bufspace >= lobufspace)) {
 2264                 nqindex = QUEUE_CLEAN;
 2265                 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
 2266         }
 2267 
 2268         /*
 2269          * If we could not find or were not allowed to reuse a CLEAN
 2270          * buffer, check to see if it is ok to use an EMPTY buffer.
 2271          * We can only use an EMPTY buffer if allocating its KVA would
 2272          * not otherwise run us out of buffer space.  No KVA is needed
 2273          * for the unmapped allocation.
 2274          */
 2275         if (nbp == NULL && defrag == 0 && (bufspace + maxsize < hibufspace ||
 2276             metadata)) {
 2277                 nqindex = QUEUE_EMPTY;
 2278                 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
 2279         }
 2280 
 2281         /*
 2282          * All available buffers might be clean, retry ignoring the
 2283          * lobufspace as the last resort.
 2284          */
 2285         if (nbp == NULL && !TAILQ_EMPTY(&bufqueues[QUEUE_CLEAN])) {
 2286                 nqindex = QUEUE_CLEAN;
 2287                 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
 2288         }
 2289 
 2290         /*
 2291          * Run scan, possibly freeing data and/or kva mappings on the fly
 2292          * depending.
 2293          */
 2294         while ((bp = nbp) != NULL) {
 2295                 qindex = nqindex;
 2296 
 2297                 /*
 2298                  * Calculate next bp (we can only use it if we do not
 2299                  * block or do other fancy things).
 2300                  */
 2301                 if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
 2302                         switch (qindex) {
 2303                         case QUEUE_EMPTY:
 2304                                 nqindex = QUEUE_EMPTYKVA;
 2305                                 nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
 2306                                 if (nbp != NULL)
 2307                                         break;
 2308                                 /* FALLTHROUGH */
 2309                         case QUEUE_EMPTYKVA:
 2310                                 nqindex = QUEUE_CLEAN;
 2311                                 nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
 2312                                 if (nbp != NULL)
 2313                                         break;
 2314                                 /* FALLTHROUGH */
 2315                         case QUEUE_CLEAN:
 2316                                 if (metadata && pass == 1) {
 2317                                         pass = 2;
 2318                                         nqindex = QUEUE_EMPTY;
 2319                                         nbp = TAILQ_FIRST(
 2320                                             &bufqueues[QUEUE_EMPTY]);
 2321                                 }
 2322                                 /*
 2323                                  * nbp is NULL. 
 2324                                  */
 2325                                 break;
 2326                         }
 2327                 }
 2328                 /*
 2329                  * If we are defragging then we need a buffer with 
 2330                  * b_kvasize != 0.  XXX this situation should no longer
 2331                  * occur, if defrag is non-zero the buffer's b_kvasize
 2332                  * should also be non-zero at this point.  XXX
 2333                  */
 2334                 if (defrag && bp->b_kvasize == 0) {
 2335                         printf("Warning: defrag empty buffer %p\n", bp);
 2336                         continue;
 2337                 }
 2338 
 2339                 /*
 2340                  * Start freeing the bp.  This is somewhat involved.  nbp
 2341                  * remains valid only for QUEUE_EMPTY[KVA] bp's.
 2342                  */
 2343                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 2344                         continue;
 2345                 if (bp->b_vp) {
 2346                         BO_LOCK(bp->b_bufobj);
 2347                         if (bp->b_vflags & BV_BKGRDINPROG) {
 2348                                 BO_UNLOCK(bp->b_bufobj);
 2349                                 BUF_UNLOCK(bp);
 2350                                 continue;
 2351                         }
 2352                         BO_UNLOCK(bp->b_bufobj);
 2353                 }
 2354 
 2355                 KASSERT(bp->b_qindex == qindex,
 2356                     ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
 2357 
 2358                 if (bp->b_bufobj != NULL)
 2359                         BO_LOCK(bp->b_bufobj);
 2360                 bremfreel(bp);
 2361                 if (bp->b_bufobj != NULL)
 2362                         BO_UNLOCK(bp->b_bufobj);
 2363                 mtx_unlock(&bqlock);
 2364                 /*
 2365                  * NOTE:  nbp is now entirely invalid.  We can only restart
 2366                  * the scan from this point on.
 2367                  */
 2368 
 2369                 getnewbuf_reuse_bp(bp, qindex);
 2370                 mtx_assert(&bqlock, MA_NOTOWNED);
 2371 
 2372                 /*
 2373                  * If we are defragging then free the buffer.
 2374                  */
 2375                 if (defrag) {
 2376                         bp->b_flags |= B_INVAL;
 2377                         bfreekva(bp);
 2378                         brelse(bp);
 2379                         defrag = 0;
 2380                         goto restart;
 2381                 }
 2382 
 2383                 /*
 2384                  * Notify any waiters for the buffer lock about
 2385                  * identity change by freeing the buffer.
 2386                  */
 2387                 if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
 2388                         bp->b_flags |= B_INVAL;
 2389                         bfreekva(bp);
 2390                         brelse(bp);
 2391                         goto restart;
 2392                 }
 2393 
 2394                 if (metadata)
 2395                         break;
 2396 
 2397                 /*
 2398                  * If we are overcomitted then recover the buffer and its
 2399                  * KVM space.  This occurs in rare situations when multiple
 2400                  * processes are blocked in getnewbuf() or allocbuf().
 2401                  */
 2402                 if (bufspace >= hibufspace)
 2403                         flushingbufs = 1;
 2404                 if (flushingbufs && bp->b_kvasize != 0) {
 2405                         bp->b_flags |= B_INVAL;
 2406                         bfreekva(bp);
 2407                         brelse(bp);
 2408                         goto restart;
 2409                 }
 2410                 if (bufspace < lobufspace)
 2411                         flushingbufs = 0;
 2412                 break;
 2413         }
 2414         return (bp);
 2415 }
 2416 
 2417 /*
 2418  *      getnewbuf:
 2419  *
 2420  *      Find and initialize a new buffer header, freeing up existing buffers
 2421  *      in the bufqueues as necessary.  The new buffer is returned locked.
 2422  *
 2423  *      Important:  B_INVAL is not set.  If the caller wishes to throw the
 2424  *      buffer away, the caller must set B_INVAL prior to calling brelse().
 2425  *
 2426  *      We block if:
 2427  *              We have insufficient buffer headers
 2428  *              We have insufficient buffer space
 2429  *              buffer_map is too fragmented ( space reservation fails )
 2430  *              If we have to flush dirty buffers ( but we try to avoid this )
 2431  *
 2432  *      To avoid VFS layer recursion we do not flush dirty buffers ourselves.
 2433  *      Instead we ask the buf daemon to do it for us.  We attempt to
 2434  *      avoid piecemeal wakeups of the pageout daemon.
 2435  */
 2436 static struct buf *
 2437 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
 2438     int gbflags)
 2439 {
 2440         struct buf *bp;
 2441         int defrag, metadata;
 2442 
 2443         KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
 2444             ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
 2445         if (!unmapped_buf_allowed)
 2446                 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 2447 
 2448         defrag = 0;
 2449         if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
 2450             vp->v_type == VCHR)
 2451                 metadata = 1;
 2452         else
 2453                 metadata = 0;
 2454         /*
 2455          * We can't afford to block since we might be holding a vnode lock,
 2456          * which may prevent system daemons from running.  We deal with
 2457          * low-memory situations by proactively returning memory and running
 2458          * async I/O rather then sync I/O.
 2459          */
 2460         atomic_add_int(&getnewbufcalls, 1);
 2461         atomic_subtract_int(&getnewbufrestarts, 1);
 2462 restart:
 2463         bp = getnewbuf_scan(maxsize, defrag, (gbflags & (GB_UNMAPPED |
 2464             GB_KVAALLOC)) == GB_UNMAPPED, metadata);
 2465         if (bp != NULL)
 2466                 defrag = 0;
 2467 
 2468         /*
 2469          * If we exhausted our list, sleep as appropriate.  We may have to
 2470          * wakeup various daemons and write out some dirty buffers.
 2471          *
 2472          * Generally we are sleeping due to insufficient buffer space.
 2473          */
 2474         if (bp == NULL) {
 2475                 mtx_assert(&bqlock, MA_OWNED);
 2476                 getnewbuf_bufd_help(vp, gbflags, slpflag, slptimeo, defrag);
 2477                 mtx_assert(&bqlock, MA_NOTOWNED);
 2478         } else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == GB_UNMAPPED) {
 2479                 mtx_assert(&bqlock, MA_NOTOWNED);
 2480 
 2481                 bfreekva(bp);
 2482                 bp->b_flags |= B_UNMAPPED;
 2483                 bp->b_kvabase = bp->b_data = unmapped_buf;
 2484                 bp->b_kvasize = maxsize;
 2485                 atomic_add_long(&bufspace, bp->b_kvasize);
 2486                 atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
 2487                 atomic_add_int(&bufreusecnt, 1);
 2488         } else {
 2489                 mtx_assert(&bqlock, MA_NOTOWNED);
 2490 
 2491                 /*
 2492                  * We finally have a valid bp.  We aren't quite out of the
 2493                  * woods, we still have to reserve kva space.  In order
 2494                  * to keep fragmentation sane we only allocate kva in
 2495                  * BKVASIZE chunks.
 2496                  */
 2497                 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 2498 
 2499                 if (maxsize != bp->b_kvasize || (bp->b_flags & (B_UNMAPPED |
 2500                     B_KVAALLOC)) == B_UNMAPPED) {
 2501                         if (allocbufkva(bp, maxsize, gbflags)) {
 2502                                 defrag = 1;
 2503                                 bp->b_flags |= B_INVAL;
 2504                                 brelse(bp);
 2505                                 goto restart;
 2506                         }
 2507                         atomic_add_int(&bufreusecnt, 1);
 2508                 } else if ((bp->b_flags & B_KVAALLOC) != 0 &&
 2509                     (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == 0) {
 2510                         /*
 2511                          * If the reused buffer has KVA allocated,
 2512                          * reassign b_kvaalloc to b_kvabase.
 2513                          */
 2514                         bp->b_kvabase = bp->b_kvaalloc;
 2515                         bp->b_flags &= ~B_KVAALLOC;
 2516                         atomic_subtract_long(&unmapped_bufspace,
 2517                             bp->b_kvasize);
 2518                         atomic_add_int(&bufreusecnt, 1);
 2519                 } else if ((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
 2520                     (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == (GB_UNMAPPED |
 2521                     GB_KVAALLOC)) {
 2522                         /*
 2523                          * The case of reused buffer already have KVA
 2524                          * mapped, but the request is for unmapped
 2525                          * buffer with KVA allocated.
 2526                          */
 2527                         bp->b_kvaalloc = bp->b_kvabase;
 2528                         bp->b_data = bp->b_kvabase = unmapped_buf;
 2529                         bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
 2530                         atomic_add_long(&unmapped_bufspace,
 2531                             bp->b_kvasize);
 2532                         atomic_add_int(&bufreusecnt, 1);
 2533                 }
 2534                 if ((gbflags & GB_UNMAPPED) == 0) {
 2535                         bp->b_saveaddr = bp->b_kvabase;
 2536                         bp->b_data = bp->b_saveaddr;
 2537                         bp->b_flags &= ~B_UNMAPPED;
 2538                         BUF_CHECK_MAPPED(bp);
 2539                 }
 2540         }
 2541         return (bp);
 2542 }
 2543 
 2544 /*
 2545  *      buf_daemon:
 2546  *
 2547  *      buffer flushing daemon.  Buffers are normally flushed by the
 2548  *      update daemon but if it cannot keep up this process starts to
 2549  *      take the load in an attempt to prevent getnewbuf() from blocking.
 2550  */
 2551 
 2552 static struct kproc_desc buf_kp = {
 2553         "bufdaemon",
 2554         buf_daemon,
 2555         &bufdaemonproc
 2556 };
 2557 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
 2558 
 2559 static int
 2560 buf_do_flush(struct vnode *vp)
 2561 {
 2562         int flushed;
 2563 
 2564         flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
 2565         /* The list empty check here is slightly racy */
 2566         if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
 2567                 mtx_lock(&Giant);
 2568                 flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
 2569                 mtx_unlock(&Giant);
 2570         }
 2571         if (flushed == 0) {
 2572                 /*
 2573                  * Could not find any buffers without rollback
 2574                  * dependencies, so just write the first one
 2575                  * in the hopes of eventually making progress.
 2576                  */
 2577                 flushbufqueues(vp, QUEUE_DIRTY, 1);
 2578                 if (!TAILQ_EMPTY(
 2579                             &bufqueues[QUEUE_DIRTY_GIANT])) {
 2580                         mtx_lock(&Giant);
 2581                         flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
 2582                         mtx_unlock(&Giant);
 2583                 }
 2584         }
 2585         return (flushed);
 2586 }
 2587 
 2588 static void
 2589 buf_daemon()
 2590 {
 2591         int lodirtysave;
 2592 
 2593         /*
 2594          * This process needs to be suspended prior to shutdown sync.
 2595          */
 2596         EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
 2597             SHUTDOWN_PRI_LAST);
 2598 
 2599         /*
 2600          * This process is allowed to take the buffer cache to the limit
 2601          */
 2602         curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
 2603         mtx_lock(&bdlock);
 2604         for (;;) {
 2605                 bd_request = 0;
 2606                 mtx_unlock(&bdlock);
 2607 
 2608                 kproc_suspend_check(bufdaemonproc);
 2609                 lodirtysave = lodirtybuffers;
 2610                 if (bd_speedupreq) {
 2611                         lodirtybuffers = numdirtybuffers / 2;
 2612                         bd_speedupreq = 0;
 2613                 }
 2614                 /*
 2615                  * Do the flush.  Limit the amount of in-transit I/O we
 2616                  * allow to build up, otherwise we would completely saturate
 2617                  * the I/O system.  Wakeup any waiting processes before we
 2618                  * normally would so they can run in parallel with our drain.
 2619                  */
 2620                 while (numdirtybuffers > lodirtybuffers) {
 2621                         if (buf_do_flush(NULL) == 0)
 2622                                 break;
 2623                         kern_yield(PRI_UNCHANGED);
 2624                 }
 2625                 lodirtybuffers = lodirtysave;
 2626 
 2627                 /*
 2628                  * Only clear bd_request if we have reached our low water
 2629                  * mark.  The buf_daemon normally waits 1 second and
 2630                  * then incrementally flushes any dirty buffers that have
 2631                  * built up, within reason.
 2632                  *
 2633                  * If we were unable to hit our low water mark and couldn't
 2634                  * find any flushable buffers, we sleep half a second.
 2635                  * Otherwise we loop immediately.
 2636                  */
 2637                 mtx_lock(&bdlock);
 2638                 if (numdirtybuffers <= lodirtybuffers) {
 2639                         /*
 2640                          * We reached our low water mark, reset the
 2641                          * request and sleep until we are needed again.
 2642                          * The sleep is just so the suspend code works.
 2643                          */
 2644                         bd_request = 0;
 2645                         msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 2646                 } else {
 2647                         /*
 2648                          * We couldn't find any flushable dirty buffers but
 2649                          * still have too many dirty buffers, we
 2650                          * have to sleep and try again.  (rare)
 2651                          */
 2652                         msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 2653                 }
 2654         }
 2655 }
 2656 
 2657 /*
 2658  *      flushbufqueues:
 2659  *
 2660  *      Try to flush a buffer in the dirty queue.  We must be careful to
 2661  *      free up B_INVAL buffers instead of write them, which NFS is 
 2662  *      particularly sensitive to.
 2663  */
 2664 static int flushwithdeps = 0;
 2665 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
 2666     0, "Number of buffers flushed with dependecies that require rollbacks");
 2667 
 2668 static int
 2669 flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
 2670 {
 2671         struct buf *sentinel;
 2672         struct vnode *vp;
 2673         struct mount *mp;
 2674         struct buf *bp;
 2675         int hasdeps;
 2676         int flushed;
 2677         int target;
 2678         int error;
 2679         bool unlock;
 2680 
 2681         if (lvp == NULL) {
 2682                 target = numdirtybuffers - lodirtybuffers;
 2683                 if (flushdeps && target > 2)
 2684                         target /= 2;
 2685         } else
 2686                 target = flushbufqtarget;
 2687         flushed = 0;
 2688         bp = NULL;
 2689         sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
 2690         sentinel->b_qindex = QUEUE_SENTINEL;
 2691         mtx_lock(&bqlock);
 2692         TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
 2693         while (flushed != target) {
 2694                 bp = TAILQ_NEXT(sentinel, b_freelist);
 2695                 if (bp != NULL) {
 2696                         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2697                         TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
 2698                             b_freelist);
 2699                 } else
 2700                         break;
 2701                 /*
 2702                  * Skip sentinels inserted by other invocations of the
 2703                  * flushbufqueues(), taking care to not reorder them.
 2704                  */
 2705                 if (bp->b_qindex == QUEUE_SENTINEL)
 2706                         continue;
 2707                 /*
 2708                  * Only flush the buffers that belong to the
 2709                  * vnode locked by the curthread.
 2710                  */
 2711                 if (lvp != NULL && bp->b_vp != lvp)
 2712                         continue;
 2713                 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 2714                         continue;
 2715                 if (bp->b_pin_count > 0) {
 2716                         BUF_UNLOCK(bp);
 2717                         continue;
 2718                 }
 2719                 BO_LOCK(bp->b_bufobj);
 2720                 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
 2721                     (bp->b_flags & B_DELWRI) == 0) {
 2722                         BO_UNLOCK(bp->b_bufobj);
 2723                         BUF_UNLOCK(bp);
 2724                         continue;
 2725                 }
 2726                 BO_UNLOCK(bp->b_bufobj);
 2727                 if (bp->b_flags & B_INVAL) {
 2728                         bremfreel(bp);
 2729                         mtx_unlock(&bqlock);
 2730                         brelse(bp);
 2731                         flushed++;
 2732                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2733                         mtx_lock(&bqlock);
 2734                         continue;
 2735                 }
 2736 
 2737                 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
 2738                         if (flushdeps == 0) {
 2739                                 BUF_UNLOCK(bp);
 2740                                 continue;
 2741                         }
 2742                         hasdeps = 1;
 2743                 } else
 2744                         hasdeps = 0;
 2745                 /*
 2746                  * We must hold the lock on a vnode before writing
 2747                  * one of its buffers. Otherwise we may confuse, or
 2748                  * in the case of a snapshot vnode, deadlock the
 2749                  * system.
 2750                  *
 2751                  * The lock order here is the reverse of the normal
 2752                  * of vnode followed by buf lock.  This is ok because
 2753                  * the NOWAIT will prevent deadlock.
 2754                  */
 2755                 vp = bp->b_vp;
 2756                 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 2757                         BUF_UNLOCK(bp);
 2758                         continue;
 2759                 }
 2760                 if (lvp == NULL) {
 2761                         unlock = true;
 2762                         error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
 2763                 } else {
 2764                         ASSERT_VOP_LOCKED(vp, "getbuf");
 2765                         unlock = false;
 2766                         error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
 2767                             vn_lock(vp, LK_TRYUPGRADE);
 2768                 }
 2769                 if (error == 0) {
 2770                         mtx_unlock(&bqlock);
 2771                         CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
 2772                             bp, bp->b_vp, bp->b_flags);
 2773                         if (curproc == bufdaemonproc)
 2774                                 vfs_bio_awrite(bp);
 2775                         else {
 2776                                 bremfree(bp);
 2777                                 bwrite(bp);
 2778                                 notbufdflashes++;
 2779                         }
 2780                         vn_finished_write(mp);
 2781                         if (unlock)
 2782                                 VOP_UNLOCK(vp, 0);
 2783                         flushwithdeps += hasdeps;
 2784                         flushed++;
 2785 
 2786                         /*
 2787                          * Sleeping on runningbufspace while holding
 2788                          * vnode lock leads to deadlock.
 2789                          */
 2790                         if (curproc == bufdaemonproc)
 2791                                 waitrunningbufspace();
 2792                         numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
 2793                         mtx_lock(&bqlock);
 2794                         continue;
 2795                 }
 2796                 vn_finished_write(mp);
 2797                 BUF_UNLOCK(bp);
 2798         }
 2799         TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
 2800         mtx_unlock(&bqlock);
 2801         free(sentinel, M_TEMP);
 2802         return (flushed);
 2803 }
 2804 
 2805 /*
 2806  * Check to see if a block is currently memory resident.
 2807  */
 2808 struct buf *
 2809 incore(struct bufobj *bo, daddr_t blkno)
 2810 {
 2811         struct buf *bp;
 2812 
 2813         BO_LOCK(bo);
 2814         bp = gbincore(bo, blkno);
 2815         BO_UNLOCK(bo);
 2816         return (bp);
 2817 }
 2818 
 2819 /*
 2820  * Returns true if no I/O is needed to access the
 2821  * associated VM object.  This is like incore except
 2822  * it also hunts around in the VM system for the data.
 2823  */
 2824 
 2825 static int
 2826 inmem(struct vnode * vp, daddr_t blkno)
 2827 {
 2828         vm_object_t obj;
 2829         vm_offset_t toff, tinc, size;
 2830         vm_page_t m;
 2831         vm_ooffset_t off;
 2832 
 2833         ASSERT_VOP_LOCKED(vp, "inmem");
 2834 
 2835         if (incore(&vp->v_bufobj, blkno))
 2836                 return 1;
 2837         if (vp->v_mount == NULL)
 2838                 return 0;
 2839         obj = vp->v_object;
 2840         if (obj == NULL)
 2841                 return (0);
 2842 
 2843         size = PAGE_SIZE;
 2844         if (size > vp->v_mount->mnt_stat.f_iosize)
 2845                 size = vp->v_mount->mnt_stat.f_iosize;
 2846         off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 2847 
 2848         VM_OBJECT_LOCK(obj);
 2849         for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 2850                 m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
 2851                 if (!m)
 2852                         goto notinmem;
 2853                 tinc = size;
 2854                 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 2855                         tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 2856                 if (vm_page_is_valid(m,
 2857                     (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
 2858                         goto notinmem;
 2859         }
 2860         VM_OBJECT_UNLOCK(obj);
 2861         return 1;
 2862 
 2863 notinmem:
 2864         VM_OBJECT_UNLOCK(obj);
 2865         return (0);
 2866 }
 2867 
 2868 /*
 2869  * Set the dirty range for a buffer based on the status of the dirty
 2870  * bits in the pages comprising the buffer.  The range is limited
 2871  * to the size of the buffer.
 2872  *
 2873  * Tell the VM system that the pages associated with this buffer
 2874  * are clean.  This is used for delayed writes where the data is
 2875  * going to go to disk eventually without additional VM intevention.
 2876  *
 2877  * Note that while we only really need to clean through to b_bcount, we
 2878  * just go ahead and clean through to b_bufsize.
 2879  */
 2880 static void
 2881 vfs_clean_pages_dirty_buf(struct buf *bp)
 2882 {
 2883         vm_ooffset_t foff, noff, eoff;
 2884         vm_page_t m;
 2885         int i;
 2886 
 2887         if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
 2888                 return;
 2889 
 2890         foff = bp->b_offset;
 2891         KASSERT(bp->b_offset != NOOFFSET,
 2892             ("vfs_clean_pages_dirty_buf: no buffer offset"));
 2893 
 2894         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 2895         vfs_drain_busy_pages(bp);
 2896         vfs_setdirty_locked_object(bp);
 2897         for (i = 0; i < bp->b_npages; i++) {
 2898                 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 2899                 eoff = noff;
 2900                 if (eoff > bp->b_offset + bp->b_bufsize)
 2901                         eoff = bp->b_offset + bp->b_bufsize;
 2902                 m = bp->b_pages[i];
 2903                 vfs_page_set_validclean(bp, foff, m);
 2904                 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 2905                 foff = noff;
 2906         }
 2907         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 2908 }
 2909 
 2910 static void
 2911 vfs_setdirty_locked_object(struct buf *bp)
 2912 {
 2913         vm_object_t object;
 2914         int i;
 2915 
 2916         object = bp->b_bufobj->bo_object;
 2917         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
 2918 
 2919         /*
 2920          * We qualify the scan for modified pages on whether the
 2921          * object has been flushed yet.
 2922          */
 2923         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
 2924                 vm_offset_t boffset;
 2925                 vm_offset_t eoffset;
 2926 
 2927                 /*
 2928                  * test the pages to see if they have been modified directly
 2929                  * by users through the VM system.
 2930                  */
 2931                 for (i = 0; i < bp->b_npages; i++)
 2932                         vm_page_test_dirty(bp->b_pages[i]);
 2933 
 2934                 /*
 2935                  * Calculate the encompassing dirty range, boffset and eoffset,
 2936                  * (eoffset - boffset) bytes.
 2937                  */
 2938 
 2939                 for (i = 0; i < bp->b_npages; i++) {
 2940                         if (bp->b_pages[i]->dirty)
 2941                                 break;
 2942                 }
 2943                 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2944 
 2945                 for (i = bp->b_npages - 1; i >= 0; --i) {
 2946                         if (bp->b_pages[i]->dirty) {
 2947                                 break;
 2948                         }
 2949                 }
 2950                 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 2951 
 2952                 /*
 2953                  * Fit it to the buffer.
 2954                  */
 2955 
 2956                 if (eoffset > bp->b_bcount)
 2957                         eoffset = bp->b_bcount;
 2958 
 2959                 /*
 2960                  * If we have a good dirty range, merge with the existing
 2961                  * dirty range.
 2962                  */
 2963 
 2964                 if (boffset < eoffset) {
 2965                         if (bp->b_dirtyoff > boffset)
 2966                                 bp->b_dirtyoff = boffset;
 2967                         if (bp->b_dirtyend < eoffset)
 2968                                 bp->b_dirtyend = eoffset;
 2969                 }
 2970         }
 2971 }
 2972 
 2973 /*
 2974  * Allocate the KVA mapping for an existing buffer. It handles the
 2975  * cases of both B_UNMAPPED buffer, and buffer with the preallocated
 2976  * KVA which is not mapped (B_KVAALLOC).
 2977  */
 2978 static void
 2979 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
 2980 {
 2981         struct buf *scratch_bp;
 2982         int bsize, maxsize, need_mapping, need_kva;
 2983         off_t offset;
 2984 
 2985         need_mapping = (bp->b_flags & B_UNMAPPED) != 0 &&
 2986             (gbflags & GB_UNMAPPED) == 0;
 2987         need_kva = (bp->b_flags & (B_KVAALLOC | B_UNMAPPED)) == B_UNMAPPED &&
 2988             (gbflags & GB_KVAALLOC) != 0;
 2989         if (!need_mapping && !need_kva)
 2990                 return;
 2991 
 2992         BUF_CHECK_UNMAPPED(bp);
 2993 
 2994         if (need_mapping && (bp->b_flags & B_KVAALLOC) != 0) {
 2995                 /*
 2996                  * Buffer is not mapped, but the KVA was already
 2997                  * reserved at the time of the instantiation.  Use the
 2998                  * allocated space.
 2999                  */
 3000                 bp->b_flags &= ~B_KVAALLOC;
 3001                 KASSERT(bp->b_kvaalloc != 0, ("kvaalloc == 0"));
 3002                 bp->b_kvabase = bp->b_kvaalloc;
 3003                 atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
 3004                 goto has_addr;
 3005         }
 3006 
 3007         /*
 3008          * Calculate the amount of the address space we would reserve
 3009          * if the buffer was mapped.
 3010          */
 3011         bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
 3012         offset = blkno * bsize;
 3013         maxsize = size + (offset & PAGE_MASK);
 3014         maxsize = imax(maxsize, bsize);
 3015 
 3016 mapping_loop:
 3017         if (allocbufkva(bp, maxsize, gbflags)) {
 3018                 /*
 3019                  * Request defragmentation. getnewbuf() returns us the
 3020                  * allocated space by the scratch buffer KVA.
 3021                  */
 3022                 scratch_bp = getnewbuf(bp->b_vp, 0, 0, size, maxsize, gbflags |
 3023                     (GB_UNMAPPED | GB_KVAALLOC));
 3024                 if (scratch_bp == NULL) {
 3025                         if ((gbflags & GB_NOWAIT_BD) != 0) {
 3026                                 /*
 3027                                  * XXXKIB: defragmentation cannot
 3028                                  * succeed, not sure what else to do.
 3029                                  */
 3030                                 panic("GB_NOWAIT_BD and B_UNMAPPED %p", bp);
 3031                         }
 3032                         atomic_add_int(&mappingrestarts, 1);
 3033                         goto mapping_loop;
 3034                 }
 3035                 KASSERT((scratch_bp->b_flags & B_KVAALLOC) != 0,
 3036                     ("scratch bp !B_KVAALLOC %p", scratch_bp));
 3037                 setbufkva(bp, (vm_offset_t)scratch_bp->b_kvaalloc,
 3038                     scratch_bp->b_kvasize, gbflags);
 3039 
 3040                 /* Get rid of the scratch buffer. */
 3041                 scratch_bp->b_kvasize = 0;
 3042                 scratch_bp->b_flags |= B_INVAL;
 3043                 scratch_bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
 3044                 brelse(scratch_bp);
 3045         }
 3046         if (!need_mapping)
 3047                 return;
 3048 
 3049 has_addr:
 3050         bp->b_saveaddr = bp->b_kvabase;
 3051         bp->b_data = bp->b_saveaddr; /* b_offset is handled by bpmap_qenter */
 3052         bp->b_flags &= ~B_UNMAPPED;
 3053         BUF_CHECK_MAPPED(bp);
 3054         bpmap_qenter(bp);
 3055 }
 3056 
 3057 /*
 3058  *      getblk:
 3059  *
 3060  *      Get a block given a specified block and offset into a file/device.
 3061  *      The buffers B_DONE bit will be cleared on return, making it almost
 3062  *      ready for an I/O initiation.  B_INVAL may or may not be set on 
 3063  *      return.  The caller should clear B_INVAL prior to initiating a
 3064  *      READ.
 3065  *
 3066  *      For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
 3067  *      an existing buffer.
 3068  *
 3069  *      For a VMIO buffer, B_CACHE is modified according to the backing VM.
 3070  *      If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
 3071  *      and then cleared based on the backing VM.  If the previous buffer is
 3072  *      non-0-sized but invalid, B_CACHE will be cleared.
 3073  *
 3074  *      If getblk() must create a new buffer, the new buffer is returned with
 3075  *      both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
 3076  *      case it is returned with B_INVAL clear and B_CACHE set based on the
 3077  *      backing VM.
 3078  *
 3079  *      getblk() also forces a bwrite() for any B_DELWRI buffer whos
 3080  *      B_CACHE bit is clear.
 3081  *      
 3082  *      What this means, basically, is that the caller should use B_CACHE to
 3083  *      determine whether the buffer is fully valid or not and should clear
 3084  *      B_INVAL prior to issuing a read.  If the caller intends to validate
 3085  *      the buffer by loading its data area with something, the caller needs
 3086  *      to clear B_INVAL.  If the caller does this without issuing an I/O, 
 3087  *      the caller should set B_CACHE ( as an optimization ), else the caller
 3088  *      should issue the I/O and biodone() will set B_CACHE if the I/O was
 3089  *      a write attempt or if it was a successfull read.  If the caller 
 3090  *      intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
 3091  *      prior to issuing the READ.  biodone() will *not* clear B_INVAL.
 3092  */
 3093 struct buf *
 3094 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
 3095     int flags)
 3096 {
 3097         struct buf *bp;
 3098         struct bufobj *bo;
 3099         int bsize, error, maxsize, vmio;
 3100         off_t offset;
 3101 
 3102         CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
 3103         KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
 3104             ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
 3105         ASSERT_VOP_LOCKED(vp, "getblk");
 3106         if (size > MAXBSIZE)
 3107                 panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
 3108         if (!unmapped_buf_allowed)
 3109                 flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 3110 
 3111         bo = &vp->v_bufobj;
 3112 loop:
 3113         /*
 3114          * Block if we are low on buffers.   Certain processes are allowed
 3115          * to completely exhaust the buffer cache.
 3116          *
 3117          * If this check ever becomes a bottleneck it may be better to
 3118          * move it into the else, when gbincore() fails.  At the moment
 3119          * it isn't a problem.
 3120          */
 3121         if (numfreebuffers == 0) {
 3122                 if (TD_IS_IDLETHREAD(curthread))
 3123                         return NULL;
 3124                 mtx_lock(&nblock);
 3125                 needsbuffer |= VFS_BIO_NEED_ANY;
 3126                 mtx_unlock(&nblock);
 3127         }
 3128 
 3129         BO_LOCK(bo);
 3130         bp = gbincore(bo, blkno);
 3131         if (bp != NULL) {
 3132                 int lockflags;
 3133                 /*
 3134                  * Buffer is in-core.  If the buffer is not busy, it must
 3135                  * be on a queue.
 3136                  */
 3137                 lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
 3138 
 3139                 if (flags & GB_LOCK_NOWAIT)
 3140                         lockflags |= LK_NOWAIT;
 3141 
 3142                 error = BUF_TIMELOCK(bp, lockflags,
 3143                     BO_MTX(bo), "getblk", slpflag, slptimeo);
 3144 
 3145                 /*
 3146                  * If we slept and got the lock we have to restart in case
 3147                  * the buffer changed identities.
 3148                  */
 3149                 if (error == ENOLCK)
 3150                         goto loop;
 3151                 /* We timed out or were interrupted. */
 3152                 else if (error)
 3153                         return (NULL);
 3154                 /* If recursed, assume caller knows the rules. */
 3155                 else if (BUF_LOCKRECURSED(bp))
 3156                         goto end;
 3157 
 3158                 /*
 3159                  * The buffer is locked.  B_CACHE is cleared if the buffer is 
 3160                  * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 3161                  * and for a VMIO buffer B_CACHE is adjusted according to the
 3162                  * backing VM cache.
 3163                  */
 3164                 if (bp->b_flags & B_INVAL)
 3165                         bp->b_flags &= ~B_CACHE;
 3166                 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 3167                         bp->b_flags |= B_CACHE;
 3168                 BO_LOCK(bo);
 3169                 bremfree(bp);
 3170                 BO_UNLOCK(bo);
 3171 
 3172                 /*
 3173                  * check for size inconsistencies for non-VMIO case.
 3174                  */
 3175                 if (bp->b_bcount != size) {
 3176                         if ((bp->b_flags & B_VMIO) == 0 ||
 3177                             (size > bp->b_kvasize)) {
 3178                                 if (bp->b_flags & B_DELWRI) {
 3179                                         /*
 3180                                          * If buffer is pinned and caller does
 3181                                          * not want sleep  waiting for it to be
 3182                                          * unpinned, bail out
 3183                                          * */
 3184                                         if (bp->b_pin_count > 0) {
 3185                                                 if (flags & GB_LOCK_NOWAIT) {
 3186                                                         bqrelse(bp);
 3187                                                         return (NULL);
 3188                                                 } else {
 3189                                                         bunpin_wait(bp);
 3190                                                 }
 3191                                         }
 3192                                         bp->b_flags |= B_NOCACHE;
 3193                                         bwrite(bp);
 3194                                 } else {
 3195                                         if (LIST_EMPTY(&bp->b_dep)) {
 3196                                                 bp->b_flags |= B_RELBUF;
 3197                                                 brelse(bp);
 3198                                         } else {
 3199                                                 bp->b_flags |= B_NOCACHE;
 3200                                                 bwrite(bp);
 3201                                         }
 3202                                 }
 3203                                 goto loop;
 3204                         }
 3205                 }
 3206 
 3207                 /*
 3208                  * Handle the case of unmapped buffer which should
 3209                  * become mapped, or the buffer for which KVA
 3210                  * reservation is requested.
 3211                  */
 3212                 bp_unmapped_get_kva(bp, blkno, size, flags);
 3213 
 3214                 /*
 3215                  * If the size is inconsistant in the VMIO case, we can resize
 3216                  * the buffer.  This might lead to B_CACHE getting set or
 3217                  * cleared.  If the size has not changed, B_CACHE remains
 3218                  * unchanged from its previous state.
 3219                  */
 3220                 if (bp->b_bcount != size)
 3221                         allocbuf(bp, size);
 3222 
 3223                 KASSERT(bp->b_offset != NOOFFSET, 
 3224                     ("getblk: no buffer offset"));
 3225 
 3226                 /*
 3227                  * A buffer with B_DELWRI set and B_CACHE clear must
 3228                  * be committed before we can return the buffer in
 3229                  * order to prevent the caller from issuing a read
 3230                  * ( due to B_CACHE not being set ) and overwriting
 3231                  * it.
 3232                  *
 3233                  * Most callers, including NFS and FFS, need this to
 3234                  * operate properly either because they assume they
 3235                  * can issue a read if B_CACHE is not set, or because
 3236                  * ( for example ) an uncached B_DELWRI might loop due 
 3237                  * to softupdates re-dirtying the buffer.  In the latter
 3238                  * case, B_CACHE is set after the first write completes,
 3239                  * preventing further loops.
 3240                  * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 3241                  * above while extending the buffer, we cannot allow the
 3242                  * buffer to remain with B_CACHE set after the write
 3243                  * completes or it will represent a corrupt state.  To
 3244                  * deal with this we set B_NOCACHE to scrap the buffer
 3245                  * after the write.
 3246                  *
 3247                  * We might be able to do something fancy, like setting
 3248                  * B_CACHE in bwrite() except if B_DELWRI is already set,
 3249                  * so the below call doesn't set B_CACHE, but that gets real
 3250                  * confusing.  This is much easier.
 3251                  */
 3252 
 3253                 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 3254                         bp->b_flags |= B_NOCACHE;
 3255                         bwrite(bp);
 3256                         goto loop;
 3257                 }
 3258                 bp->b_flags &= ~B_DONE;
 3259         } else {
 3260                 /*
 3261                  * Buffer is not in-core, create new buffer.  The buffer
 3262                  * returned by getnewbuf() is locked.  Note that the returned
 3263                  * buffer is also considered valid (not marked B_INVAL).
 3264                  */
 3265                 BO_UNLOCK(bo);
 3266                 /*
 3267                  * If the user does not want us to create the buffer, bail out
 3268                  * here.
 3269                  */
 3270                 if (flags & GB_NOCREAT)
 3271                         return NULL;
 3272                 bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
 3273                 offset = blkno * bsize;
 3274                 vmio = vp->v_object != NULL;
 3275                 if (vmio) {
 3276                         maxsize = size + (offset & PAGE_MASK);
 3277                 } else {
 3278                         maxsize = size;
 3279                         /* Do not allow non-VMIO notmapped buffers. */
 3280                         flags &= ~GB_UNMAPPED;
 3281                 }
 3282                 maxsize = imax(maxsize, bsize);
 3283 
 3284                 bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
 3285                 if (bp == NULL) {
 3286                         if (slpflag || slptimeo)
 3287                                 return NULL;
 3288                         goto loop;
 3289                 }
 3290 
 3291                 /*
 3292                  * This code is used to make sure that a buffer is not
 3293                  * created while the getnewbuf routine is blocked.
 3294                  * This can be a problem whether the vnode is locked or not.
 3295                  * If the buffer is created out from under us, we have to
 3296                  * throw away the one we just created.
 3297                  *
 3298                  * Note: this must occur before we associate the buffer
 3299                  * with the vp especially considering limitations in
 3300                  * the splay tree implementation when dealing with duplicate
 3301                  * lblkno's.
 3302                  */
 3303                 BO_LOCK(bo);
 3304                 if (gbincore(bo, blkno)) {
 3305                         BO_UNLOCK(bo);
 3306                         bp->b_flags |= B_INVAL;
 3307                         brelse(bp);
 3308                         goto loop;
 3309                 }
 3310 
 3311                 /*
 3312                  * Insert the buffer into the hash, so that it can
 3313                  * be found by incore.
 3314                  */
 3315                 bp->b_blkno = bp->b_lblkno = blkno;
 3316                 bp->b_offset = offset;
 3317                 bgetvp(vp, bp);
 3318                 BO_UNLOCK(bo);
 3319 
 3320                 /*
 3321                  * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 3322                  * buffer size starts out as 0, B_CACHE will be set by
 3323                  * allocbuf() for the VMIO case prior to it testing the
 3324                  * backing store for validity.
 3325                  */
 3326 
 3327                 if (vmio) {
 3328                         bp->b_flags |= B_VMIO;
 3329                         KASSERT(vp->v_object == bp->b_bufobj->bo_object,
 3330                             ("ARGH! different b_bufobj->bo_object %p %p %p\n",
 3331                             bp, vp->v_object, bp->b_bufobj->bo_object));
 3332                 } else {
 3333                         bp->b_flags &= ~B_VMIO;
 3334                         KASSERT(bp->b_bufobj->bo_object == NULL,
 3335                             ("ARGH! has b_bufobj->bo_object %p %p\n",
 3336                             bp, bp->b_bufobj->bo_object));
 3337                         BUF_CHECK_MAPPED(bp);
 3338                 }
 3339 
 3340                 allocbuf(bp, size);
 3341                 bp->b_flags &= ~B_DONE;
 3342         }
 3343         CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
 3344         BUF_ASSERT_HELD(bp);
 3345 end:
 3346         KASSERT(bp->b_bufobj == bo,
 3347             ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 3348         return (bp);
 3349 }
 3350 
 3351 /*
 3352  * Get an empty, disassociated buffer of given size.  The buffer is initially
 3353  * set to B_INVAL.
 3354  */
 3355 struct buf *
 3356 geteblk(int size, int flags)
 3357 {
 3358         struct buf *bp;
 3359         int maxsize;
 3360 
 3361         maxsize = (size + BKVAMASK) & ~BKVAMASK;
 3362         while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
 3363                 if ((flags & GB_NOWAIT_BD) &&
 3364                     (curthread->td_pflags & TDP_BUFNEED) != 0)
 3365                         return (NULL);
 3366         }
 3367         allocbuf(bp, size);
 3368         bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
 3369         BUF_ASSERT_HELD(bp);
 3370         return (bp);
 3371 }
 3372 
 3373 
 3374 /*
 3375  * This code constitutes the buffer memory from either anonymous system
 3376  * memory (in the case of non-VMIO operations) or from an associated
 3377  * VM object (in the case of VMIO operations).  This code is able to
 3378  * resize a buffer up or down.
 3379  *
 3380  * Note that this code is tricky, and has many complications to resolve
 3381  * deadlock or inconsistant data situations.  Tread lightly!!! 
 3382  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
 3383  * the caller.  Calling this code willy nilly can result in the loss of data.
 3384  *
 3385  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
 3386  * B_CACHE for the non-VMIO case.
 3387  */
 3388 
 3389 int
 3390 allocbuf(struct buf *bp, int size)
 3391 {
 3392         int newbsize, mbsize;
 3393         int i;
 3394 
 3395         BUF_ASSERT_HELD(bp);
 3396 
 3397         if (bp->b_kvasize < size)
 3398                 panic("allocbuf: buffer too small");
 3399 
 3400         if ((bp->b_flags & B_VMIO) == 0) {
 3401                 caddr_t origbuf;
 3402                 int origbufsize;
 3403                 /*
 3404                  * Just get anonymous memory from the kernel.  Don't
 3405                  * mess with B_CACHE.
 3406                  */
 3407                 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 3408                 if (bp->b_flags & B_MALLOC)
 3409                         newbsize = mbsize;
 3410                 else
 3411                         newbsize = round_page(size);
 3412 
 3413                 if (newbsize < bp->b_bufsize) {
 3414                         /*
 3415                          * malloced buffers are not shrunk
 3416                          */
 3417                         if (bp->b_flags & B_MALLOC) {
 3418                                 if (newbsize) {
 3419                                         bp->b_bcount = size;
 3420                                 } else {
 3421                                         free(bp->b_data, M_BIOBUF);
 3422                                         if (bp->b_bufsize) {
 3423                                                 atomic_subtract_long(
 3424                                                     &bufmallocspace,
 3425                                                     bp->b_bufsize);
 3426                                                 bufspacewakeup();
 3427                                                 bp->b_bufsize = 0;
 3428                                         }
 3429                                         bp->b_saveaddr = bp->b_kvabase;
 3430                                         bp->b_data = bp->b_saveaddr;
 3431                                         bp->b_bcount = 0;
 3432                                         bp->b_flags &= ~B_MALLOC;
 3433                                 }
 3434                                 return 1;
 3435                         }               
 3436                         vm_hold_free_pages(bp, newbsize);
 3437                 } else if (newbsize > bp->b_bufsize) {
 3438                         /*
 3439                          * We only use malloced memory on the first allocation.
 3440                          * and revert to page-allocated memory when the buffer
 3441                          * grows.
 3442                          */
 3443                         /*
 3444                          * There is a potential smp race here that could lead
 3445                          * to bufmallocspace slightly passing the max.  It
 3446                          * is probably extremely rare and not worth worrying
 3447                          * over.
 3448                          */
 3449                         if ( (bufmallocspace < maxbufmallocspace) &&
 3450                                 (bp->b_bufsize == 0) &&
 3451                                 (mbsize <= PAGE_SIZE/2)) {
 3452 
 3453                                 bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
 3454                                 bp->b_bufsize = mbsize;
 3455                                 bp->b_bcount = size;
 3456                                 bp->b_flags |= B_MALLOC;
 3457                                 atomic_add_long(&bufmallocspace, mbsize);
 3458                                 return 1;
 3459                         }
 3460                         origbuf = NULL;
 3461                         origbufsize = 0;
 3462                         /*
 3463                          * If the buffer is growing on its other-than-first allocation,
 3464                          * then we revert to the page-allocation scheme.
 3465                          */
 3466                         if (bp->b_flags & B_MALLOC) {
 3467                                 origbuf = bp->b_data;
 3468                                 origbufsize = bp->b_bufsize;
 3469                                 bp->b_data = bp->b_kvabase;
 3470                                 if (bp->b_bufsize) {
 3471                                         atomic_subtract_long(&bufmallocspace,
 3472                                             bp->b_bufsize);
 3473                                         bufspacewakeup();
 3474                                         bp->b_bufsize = 0;
 3475                                 }
 3476                                 bp->b_flags &= ~B_MALLOC;
 3477                                 newbsize = round_page(newbsize);
 3478                         }
 3479                         vm_hold_load_pages(
 3480                             bp,
 3481                             (vm_offset_t) bp->b_data + bp->b_bufsize,
 3482                             (vm_offset_t) bp->b_data + newbsize);
 3483                         if (origbuf) {
 3484                                 bcopy(origbuf, bp->b_data, origbufsize);
 3485                                 free(origbuf, M_BIOBUF);
 3486                         }
 3487                 }
 3488         } else {
 3489                 int desiredpages;
 3490 
 3491                 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
 3492                 desiredpages = (size == 0) ? 0 :
 3493                         num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 3494 
 3495                 if (bp->b_flags & B_MALLOC)
 3496                         panic("allocbuf: VMIO buffer can't be malloced");
 3497                 /*
 3498                  * Set B_CACHE initially if buffer is 0 length or will become
 3499                  * 0-length.
 3500                  */
 3501                 if (size == 0 || bp->b_bufsize == 0)
 3502                         bp->b_flags |= B_CACHE;
 3503 
 3504                 if (newbsize < bp->b_bufsize) {
 3505                         /*
 3506                          * DEV_BSIZE aligned new buffer size is less then the
 3507                          * DEV_BSIZE aligned existing buffer size.  Figure out
 3508                          * if we have to remove any pages.
 3509                          */
 3510                         if (desiredpages < bp->b_npages) {
 3511                                 vm_page_t m;
 3512 
 3513                                 if ((bp->b_flags & B_UNMAPPED) == 0) {
 3514                                         BUF_CHECK_MAPPED(bp);
 3515                                         pmap_qremove((vm_offset_t)trunc_page(
 3516                                             (vm_offset_t)bp->b_data) +
 3517                                             (desiredpages << PAGE_SHIFT),
 3518                                             (bp->b_npages - desiredpages));
 3519                                 } else
 3520                                         BUF_CHECK_UNMAPPED(bp);
 3521                                 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 3522                                 for (i = desiredpages; i < bp->b_npages; i++) {
 3523                                         /*
 3524                                          * the page is not freed here -- it
 3525                                          * is the responsibility of 
 3526                                          * vnode_pager_setsize
 3527                                          */
 3528                                         m = bp->b_pages[i];
 3529                                         KASSERT(m != bogus_page,
 3530                                             ("allocbuf: bogus page found"));
 3531                                         while (vm_page_sleep_if_busy(m, TRUE,
 3532                                             "biodep"))
 3533                                                 continue;
 3534 
 3535                                         bp->b_pages[i] = NULL;
 3536                                         vm_page_lock(m);
 3537                                         vm_page_unwire(m, 0);
 3538                                         vm_page_unlock(m);
 3539                                 }
 3540                                 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 3541                                 bp->b_npages = desiredpages;
 3542                         }
 3543                 } else if (size > bp->b_bcount) {
 3544                         /*
 3545                          * We are growing the buffer, possibly in a 
 3546                          * byte-granular fashion.
 3547                          */
 3548                         vm_object_t obj;
 3549                         vm_offset_t toff;
 3550                         vm_offset_t tinc;
 3551 
 3552                         /*
 3553                          * Step 1, bring in the VM pages from the object, 
 3554                          * allocating them if necessary.  We must clear
 3555                          * B_CACHE if these pages are not valid for the 
 3556                          * range covered by the buffer.
 3557                          */
 3558 
 3559                         obj = bp->b_bufobj->bo_object;
 3560 
 3561                         VM_OBJECT_LOCK(obj);
 3562                         while (bp->b_npages < desiredpages) {
 3563                                 vm_page_t m;
 3564 
 3565                                 /*
 3566                                  * We must allocate system pages since blocking
 3567                                  * here could interfere with paging I/O, no
 3568                                  * matter which process we are.
 3569                                  *
 3570                                  * We can only test VPO_BUSY here.  Blocking on
 3571                                  * m->busy might lead to a deadlock:
 3572                                  *  vm_fault->getpages->cluster_read->allocbuf
 3573                                  * Thus, we specify VM_ALLOC_IGN_SBUSY.
 3574                                  */
 3575                                 m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
 3576                                     bp->b_npages, VM_ALLOC_NOBUSY |
 3577                                     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
 3578                                     VM_ALLOC_RETRY | VM_ALLOC_IGN_SBUSY |
 3579                                     VM_ALLOC_COUNT(desiredpages - bp->b_npages));
 3580                                 if (m->valid == 0)
 3581                                         bp->b_flags &= ~B_CACHE;
 3582                                 bp->b_pages[bp->b_npages] = m;
 3583                                 ++bp->b_npages;
 3584                         }
 3585 
 3586                         /*
 3587                          * Step 2.  We've loaded the pages into the buffer,
 3588                          * we have to figure out if we can still have B_CACHE
 3589                          * set.  Note that B_CACHE is set according to the
 3590                          * byte-granular range ( bcount and size ), new the
 3591                          * aligned range ( newbsize ).
 3592                          *
 3593                          * The VM test is against m->valid, which is DEV_BSIZE
 3594                          * aligned.  Needless to say, the validity of the data
 3595                          * needs to also be DEV_BSIZE aligned.  Note that this
 3596                          * fails with NFS if the server or some other client
 3597                          * extends the file's EOF.  If our buffer is resized, 
 3598                          * B_CACHE may remain set! XXX
 3599                          */
 3600 
 3601                         toff = bp->b_bcount;
 3602                         tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 3603 
 3604                         while ((bp->b_flags & B_CACHE) && toff < size) {
 3605                                 vm_pindex_t pi;
 3606 
 3607                                 if (tinc > (size - toff))
 3608                                         tinc = size - toff;
 3609 
 3610                                 pi = ((bp->b_offset & PAGE_MASK) + toff) >> 
 3611                                     PAGE_SHIFT;
 3612 
 3613                                 vfs_buf_test_cache(
 3614                                     bp, 
 3615                                     bp->b_offset,
 3616                                     toff, 
 3617                                     tinc, 
 3618                                     bp->b_pages[pi]
 3619                                 );
 3620                                 toff += tinc;
 3621                                 tinc = PAGE_SIZE;
 3622                         }
 3623                         VM_OBJECT_UNLOCK(obj);
 3624 
 3625                         /*
 3626                          * Step 3, fixup the KVM pmap.
 3627                          */
 3628                         if ((bp->b_flags & B_UNMAPPED) == 0)
 3629                                 bpmap_qenter(bp);
 3630                         else
 3631                                 BUF_CHECK_UNMAPPED(bp);
 3632                 }
 3633         }
 3634         if (newbsize < bp->b_bufsize)
 3635                 bufspacewakeup();
 3636         bp->b_bufsize = newbsize;       /* actual buffer allocation     */
 3637         bp->b_bcount = size;            /* requested buffer size        */
 3638         return 1;
 3639 }
 3640 
 3641 extern int inflight_transient_maps;
 3642 
 3643 void
 3644 biodone(struct bio *bp)
 3645 {
 3646         struct mtx *mtxp;
 3647         void (*done)(struct bio *);
 3648         vm_offset_t start, end;
 3649         int transient;
 3650 
 3651         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3652         mtx_lock(mtxp);
 3653         bp->bio_flags |= BIO_DONE;
 3654         if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
 3655                 start = trunc_page((vm_offset_t)bp->bio_data);
 3656                 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
 3657                 transient = 1;
 3658         } else {
 3659                 transient = 0;
 3660                 start = end = 0;
 3661         }
 3662         done = bp->bio_done;
 3663         if (done == NULL)
 3664                 wakeup(bp);
 3665         mtx_unlock(mtxp);
 3666         if (done != NULL)
 3667                 done(bp);
 3668         if (transient) {
 3669                 pmap_qremove(start, OFF_TO_IDX(end - start));
 3670                 vm_map_remove(bio_transient_map, start, end);
 3671                 atomic_add_int(&inflight_transient_maps, -1);
 3672         }
 3673 }
 3674 
 3675 /*
 3676  * Wait for a BIO to finish.
 3677  *
 3678  * XXX: resort to a timeout for now.  The optimal locking (if any) for this
 3679  * case is not yet clear.
 3680  */
 3681 int
 3682 biowait(struct bio *bp, const char *wchan)
 3683 {
 3684         struct mtx *mtxp;
 3685 
 3686         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 3687         mtx_lock(mtxp);
 3688         while ((bp->bio_flags & BIO_DONE) == 0)
 3689                 msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
 3690         mtx_unlock(mtxp);
 3691         if (bp->bio_error != 0)
 3692                 return (bp->bio_error);
 3693         if (!(bp->bio_flags & BIO_ERROR))
 3694                 return (0);
 3695         return (EIO);
 3696 }
 3697 
 3698 void
 3699 biofinish(struct bio *bp, struct devstat *stat, int error)
 3700 {
 3701         
 3702         if (error) {
 3703                 bp->bio_error = error;
 3704                 bp->bio_flags |= BIO_ERROR;
 3705         }
 3706         if (stat != NULL)
 3707                 devstat_end_transaction_bio(stat, bp);
 3708         biodone(bp);
 3709 }
 3710 
 3711 /*
 3712  *      bufwait:
 3713  *
 3714  *      Wait for buffer I/O completion, returning error status.  The buffer
 3715  *      is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
 3716  *      error and cleared.
 3717  */
 3718 int
 3719 bufwait(struct buf *bp)
 3720 {
 3721         if (bp->b_iocmd == BIO_READ)
 3722                 bwait(bp, PRIBIO, "biord");
 3723         else
 3724                 bwait(bp, PRIBIO, "biowr");
 3725         if (bp->b_flags & B_EINTR) {
 3726                 bp->b_flags &= ~B_EINTR;
 3727                 return (EINTR);
 3728         }
 3729         if (bp->b_ioflags & BIO_ERROR) {
 3730                 return (bp->b_error ? bp->b_error : EIO);
 3731         } else {
 3732                 return (0);
 3733         }
 3734 }
 3735 
 3736  /*
 3737   * Call back function from struct bio back up to struct buf.
 3738   */
 3739 static void
 3740 bufdonebio(struct bio *bip)
 3741 {
 3742         struct buf *bp;
 3743 
 3744         bp = bip->bio_caller2;
 3745         bp->b_resid = bp->b_bcount - bip->bio_completed;
 3746         bp->b_resid = bip->bio_resid;   /* XXX: remove */
 3747         bp->b_ioflags = bip->bio_flags;
 3748         bp->b_error = bip->bio_error;
 3749         if (bp->b_error)
 3750                 bp->b_ioflags |= BIO_ERROR;
 3751         bufdone(bp);
 3752         g_destroy_bio(bip);
 3753 }
 3754 
 3755 void
 3756 dev_strategy(struct cdev *dev, struct buf *bp)
 3757 {
 3758         struct cdevsw *csw;
 3759         int ref;
 3760 
 3761         KASSERT(dev->si_refcount > 0,
 3762             ("dev_strategy on un-referenced struct cdev *(%s) %p",
 3763             devtoname(dev), dev));
 3764 
 3765         csw = dev_refthread(dev, &ref);
 3766         dev_strategy_csw(dev, csw, bp);
 3767         dev_relthread(dev, ref);
 3768 }
 3769 
 3770 void
 3771 dev_strategy_csw(struct cdev *dev, struct cdevsw *csw, struct buf *bp)
 3772 {
 3773         struct bio *bip;
 3774 
 3775         KASSERT(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE,
 3776             ("b_iocmd botch"));
 3777         KASSERT(((dev->si_flags & SI_ETERNAL) != 0 && csw != NULL) ||
 3778             dev->si_threadcount > 0,
 3779             ("dev_strategy_csw threadcount cdev *(%s) %p", devtoname(dev),
 3780             dev));
 3781         if (csw == NULL) {
 3782                 bp->b_error = ENXIO;
 3783                 bp->b_ioflags = BIO_ERROR;
 3784                 bufdone(bp);
 3785                 return;
 3786         }
 3787         for (;;) {
 3788                 bip = g_new_bio();
 3789                 if (bip != NULL)
 3790                         break;
 3791                 /* Try again later */
 3792                 tsleep(&bp, PRIBIO, "dev_strat", hz/10);
 3793         }
 3794         bip->bio_cmd = bp->b_iocmd;
 3795         bip->bio_offset = bp->b_iooffset;
 3796         bip->bio_length = bp->b_bcount;
 3797         bip->bio_bcount = bp->b_bcount; /* XXX: remove */
 3798         bdata2bio(bp, bip);
 3799         bip->bio_done = bufdonebio;
 3800         bip->bio_caller2 = bp;
 3801         bip->bio_dev = dev;
 3802         (*csw->d_strategy)(bip);
 3803 }
 3804 
 3805 /*
 3806  *      bufdone:
 3807  *
 3808  *      Finish I/O on a buffer, optionally calling a completion function.
 3809  *      This is usually called from an interrupt so process blocking is
 3810  *      not allowed.
 3811  *
 3812  *      biodone is also responsible for setting B_CACHE in a B_VMIO bp.
 3813  *      In a non-VMIO bp, B_CACHE will be set on the next getblk() 
 3814  *      assuming B_INVAL is clear.
 3815  *
 3816  *      For the VMIO case, we set B_CACHE if the op was a read and no
 3817  *      read error occured, or if the op was a write.  B_CACHE is never
 3818  *      set if the buffer is invalid or otherwise uncacheable.
 3819  *
 3820  *      biodone does not mess with B_INVAL, allowing the I/O routine or the
 3821  *      initiator to leave B_INVAL set to brelse the buffer out of existance
 3822  *      in the biodone routine.
 3823  */
 3824 void
 3825 bufdone(struct buf *bp)
 3826 {
 3827         struct bufobj *dropobj;
 3828         void    (*biodone)(struct buf *);
 3829 
 3830         CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 3831         dropobj = NULL;
 3832 
 3833         KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 3834         BUF_ASSERT_HELD(bp);
 3835 
 3836         runningbufwakeup(bp);
 3837         if (bp->b_iocmd == BIO_WRITE)
 3838                 dropobj = bp->b_bufobj;
 3839         /* call optional completion function if requested */
 3840         if (bp->b_iodone != NULL) {
 3841                 biodone = bp->b_iodone;
 3842                 bp->b_iodone = NULL;
 3843                 (*biodone) (bp);
 3844                 if (dropobj)
 3845                         bufobj_wdrop(dropobj);
 3846                 return;
 3847         }
 3848 
 3849         bufdone_finish(bp);
 3850 
 3851         if (dropobj)
 3852                 bufobj_wdrop(dropobj);
 3853 }
 3854 
 3855 void
 3856 bufdone_finish(struct buf *bp)
 3857 {
 3858         BUF_ASSERT_HELD(bp);
 3859 
 3860         if (!LIST_EMPTY(&bp->b_dep))
 3861                 buf_complete(bp);
 3862 
 3863         if (bp->b_flags & B_VMIO) {
 3864                 vm_ooffset_t foff;
 3865                 vm_page_t m;
 3866                 vm_object_t obj;
 3867                 struct vnode *vp;
 3868                 int bogus, i, iosize;
 3869 
 3870                 obj = bp->b_bufobj->bo_object;
 3871                 KASSERT(obj->paging_in_progress >= bp->b_npages,
 3872                     ("biodone_finish: paging in progress(%d) < b_npages(%d)",
 3873                     obj->paging_in_progress, bp->b_npages));
 3874 
 3875                 vp = bp->b_vp;
 3876                 KASSERT(vp->v_holdcnt > 0,
 3877                     ("biodone_finish: vnode %p has zero hold count", vp));
 3878                 KASSERT(vp->v_object != NULL,
 3879                     ("biodone_finish: vnode %p has no vm_object", vp));
 3880 
 3881                 foff = bp->b_offset;
 3882                 KASSERT(bp->b_offset != NOOFFSET,
 3883                     ("biodone_finish: bp %p has no buffer offset", bp));
 3884 
 3885                 /*
 3886                  * Set B_CACHE if the op was a normal read and no error
 3887                  * occured.  B_CACHE is set for writes in the b*write()
 3888                  * routines.
 3889                  */
 3890                 iosize = bp->b_bcount - bp->b_resid;
 3891                 if (bp->b_iocmd == BIO_READ &&
 3892                     !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 3893                     !(bp->b_ioflags & BIO_ERROR)) {
 3894                         bp->b_flags |= B_CACHE;
 3895                 }
 3896                 bogus = 0;
 3897                 VM_OBJECT_LOCK(obj);
 3898                 for (i = 0; i < bp->b_npages; i++) {
 3899                         int bogusflag = 0;
 3900                         int resid;
 3901 
 3902                         resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 3903                         if (resid > iosize)
 3904                                 resid = iosize;
 3905 
 3906                         /*
 3907                          * cleanup bogus pages, restoring the originals
 3908                          */
 3909                         m = bp->b_pages[i];
 3910                         if (m == bogus_page) {
 3911                                 bogus = bogusflag = 1;
 3912                                 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
 3913                                 if (m == NULL)
 3914                                         panic("biodone: page disappeared!");
 3915                                 bp->b_pages[i] = m;
 3916                         }
 3917                         KASSERT(OFF_TO_IDX(foff) == m->pindex,
 3918                             ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
 3919                             (intmax_t)foff, (uintmax_t)m->pindex));
 3920 
 3921                         /*
 3922                          * In the write case, the valid and clean bits are
 3923                          * already changed correctly ( see bdwrite() ), so we 
 3924                          * only need to do this here in the read case.
 3925                          */
 3926                         if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
 3927                                 KASSERT((m->dirty & vm_page_bits(foff &
 3928                                     PAGE_MASK, resid)) == 0, ("bufdone_finish:"
 3929                                     " page %p has unexpected dirty bits", m));
 3930                                 vfs_page_set_valid(bp, foff, m);
 3931                         }
 3932 
 3933                         vm_page_io_finish(m);
 3934                         vm_object_pip_subtract(obj, 1);
 3935                         foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 3936                         iosize -= resid;
 3937                 }
 3938                 vm_object_pip_wakeupn(obj, 0);
 3939                 VM_OBJECT_UNLOCK(obj);
 3940                 if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
 3941                         BUF_CHECK_MAPPED(bp);
 3942                         pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3943                             bp->b_pages, bp->b_npages);
 3944                 }
 3945         }
 3946 
 3947         /*
 3948          * For asynchronous completions, release the buffer now. The brelse
 3949          * will do a wakeup there if necessary - so no need to do a wakeup
 3950          * here in the async case. The sync case always needs to do a wakeup.
 3951          */
 3952 
 3953         if (bp->b_flags & B_ASYNC) {
 3954                 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
 3955                         brelse(bp);
 3956                 else
 3957                         bqrelse(bp);
 3958         } else
 3959                 bdone(bp);
 3960 }
 3961 
 3962 /*
 3963  * This routine is called in lieu of iodone in the case of
 3964  * incomplete I/O.  This keeps the busy status for pages
 3965  * consistant.
 3966  */
 3967 void
 3968 vfs_unbusy_pages(struct buf *bp)
 3969 {
 3970         int i;
 3971         vm_object_t obj;
 3972         vm_page_t m;
 3973 
 3974         runningbufwakeup(bp);
 3975         if (!(bp->b_flags & B_VMIO))
 3976                 return;
 3977 
 3978         obj = bp->b_bufobj->bo_object;
 3979         VM_OBJECT_LOCK(obj);
 3980         for (i = 0; i < bp->b_npages; i++) {
 3981                 m = bp->b_pages[i];
 3982                 if (m == bogus_page) {
 3983                         m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 3984                         if (!m)
 3985                                 panic("vfs_unbusy_pages: page missing\n");
 3986                         bp->b_pages[i] = m;
 3987                         if ((bp->b_flags & B_UNMAPPED) == 0) {
 3988                                 BUF_CHECK_MAPPED(bp);
 3989                                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 3990                                     bp->b_pages, bp->b_npages);
 3991                         } else
 3992                                 BUF_CHECK_UNMAPPED(bp);
 3993                 }
 3994                 vm_object_pip_subtract(obj, 1);
 3995                 vm_page_io_finish(m);
 3996         }
 3997         vm_object_pip_wakeupn(obj, 0);
 3998         VM_OBJECT_UNLOCK(obj);
 3999 }
 4000 
 4001 /*
 4002  * vfs_page_set_valid:
 4003  *
 4004  *      Set the valid bits in a page based on the supplied offset.   The
 4005  *      range is restricted to the buffer's size.
 4006  *
 4007  *      This routine is typically called after a read completes.
 4008  */
 4009 static void
 4010 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 4011 {
 4012         vm_ooffset_t eoff;
 4013 
 4014         /*
 4015          * Compute the end offset, eoff, such that [off, eoff) does not span a
 4016          * page boundary and eoff is not greater than the end of the buffer.
 4017          * The end of the buffer, in this case, is our file EOF, not the
 4018          * allocation size of the buffer.
 4019          */
 4020         eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
 4021         if (eoff > bp->b_offset + bp->b_bcount)
 4022                 eoff = bp->b_offset + bp->b_bcount;
 4023 
 4024         /*
 4025          * Set valid range.  This is typically the entire buffer and thus the
 4026          * entire page.
 4027          */
 4028         if (eoff > off)
 4029                 vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
 4030 }
 4031 
 4032 /*
 4033  * vfs_page_set_validclean:
 4034  *
 4035  *      Set the valid bits and clear the dirty bits in a page based on the
 4036  *      supplied offset.   The range is restricted to the buffer's size.
 4037  */
 4038 static void
 4039 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 4040 {
 4041         vm_ooffset_t soff, eoff;
 4042 
 4043         /*
 4044          * Start and end offsets in buffer.  eoff - soff may not cross a
 4045          * page boundry or cross the end of the buffer.  The end of the
 4046          * buffer, in this case, is our file EOF, not the allocation size
 4047          * of the buffer.
 4048          */
 4049         soff = off;
 4050         eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 4051         if (eoff > bp->b_offset + bp->b_bcount)
 4052                 eoff = bp->b_offset + bp->b_bcount;
 4053 
 4054         /*
 4055          * Set valid range.  This is typically the entire buffer and thus the
 4056          * entire page.
 4057          */
 4058         if (eoff > soff) {
 4059                 vm_page_set_validclean(
 4060                     m,
 4061                    (vm_offset_t) (soff & PAGE_MASK),
 4062                    (vm_offset_t) (eoff - soff)
 4063                 );
 4064         }
 4065 }
 4066 
 4067 /*
 4068  * Ensure that all buffer pages are not busied by VPO_BUSY flag. If
 4069  * any page is busy, drain the flag.
 4070  */
 4071 static void
 4072 vfs_drain_busy_pages(struct buf *bp)
 4073 {
 4074         vm_page_t m;
 4075         int i, last_busied;
 4076 
 4077         VM_OBJECT_LOCK_ASSERT(bp->b_bufobj->bo_object, MA_OWNED);
 4078         last_busied = 0;
 4079         for (i = 0; i < bp->b_npages; i++) {
 4080                 m = bp->b_pages[i];
 4081                 if ((m->oflags & VPO_BUSY) != 0) {
 4082                         for (; last_busied < i; last_busied++)
 4083                                 vm_page_busy(bp->b_pages[last_busied]);
 4084                         while ((m->oflags & VPO_BUSY) != 0)
 4085                                 vm_page_sleep(m, "vbpage");
 4086                 }
 4087         }
 4088         for (i = 0; i < last_busied; i++)
 4089                 vm_page_wakeup(bp->b_pages[i]);
 4090 }
 4091 
 4092 /*
 4093  * This routine is called before a device strategy routine.
 4094  * It is used to tell the VM system that paging I/O is in
 4095  * progress, and treat the pages associated with the buffer
 4096  * almost as being VPO_BUSY.  Also the object paging_in_progress
 4097  * flag is handled to make sure that the object doesn't become
 4098  * inconsistant.
 4099  *
 4100  * Since I/O has not been initiated yet, certain buffer flags
 4101  * such as BIO_ERROR or B_INVAL may be in an inconsistant state
 4102  * and should be ignored.
 4103  */
 4104 void
 4105 vfs_busy_pages(struct buf *bp, int clear_modify)
 4106 {
 4107         int i, bogus;
 4108         vm_object_t obj;
 4109         vm_ooffset_t foff;
 4110         vm_page_t m;
 4111 
 4112         if (!(bp->b_flags & B_VMIO))
 4113                 return;
 4114 
 4115         obj = bp->b_bufobj->bo_object;
 4116         foff = bp->b_offset;
 4117         KASSERT(bp->b_offset != NOOFFSET,
 4118             ("vfs_busy_pages: no buffer offset"));
 4119         VM_OBJECT_LOCK(obj);
 4120         vfs_drain_busy_pages(bp);
 4121         if (bp->b_bufsize != 0)
 4122                 vfs_setdirty_locked_object(bp);
 4123         bogus = 0;
 4124         for (i = 0; i < bp->b_npages; i++) {
 4125                 m = bp->b_pages[i];
 4126 
 4127                 if ((bp->b_flags & B_CLUSTER) == 0) {
 4128                         vm_object_pip_add(obj, 1);
 4129                         vm_page_io_start(m);
 4130                 }
 4131                 /*
 4132                  * When readying a buffer for a read ( i.e
 4133                  * clear_modify == 0 ), it is important to do
 4134                  * bogus_page replacement for valid pages in 
 4135                  * partially instantiated buffers.  Partially 
 4136                  * instantiated buffers can, in turn, occur when
 4137                  * reconstituting a buffer from its VM backing store
 4138                  * base.  We only have to do this if B_CACHE is
 4139                  * clear ( which causes the I/O to occur in the
 4140                  * first place ).  The replacement prevents the read
 4141                  * I/O from overwriting potentially dirty VM-backed
 4142                  * pages.  XXX bogus page replacement is, uh, bogus.
 4143                  * It may not work properly with small-block devices.
 4144                  * We need to find a better way.
 4145                  */
 4146                 if (clear_modify) {
 4147                         pmap_remove_write(m);
 4148                         vfs_page_set_validclean(bp, foff, m);
 4149                 } else if (m->valid == VM_PAGE_BITS_ALL &&
 4150                     (bp->b_flags & B_CACHE) == 0) {
 4151                         bp->b_pages[i] = bogus_page;
 4152                         bogus++;
 4153                 }
 4154                 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 4155         }
 4156         VM_OBJECT_UNLOCK(obj);
 4157         if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
 4158                 BUF_CHECK_MAPPED(bp);
 4159                 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 4160                     bp->b_pages, bp->b_npages);
 4161         }
 4162 }
 4163 
 4164 /*
 4165  *      vfs_bio_set_valid:
 4166  *
 4167  *      Set the range within the buffer to valid.  The range is
 4168  *      relative to the beginning of the buffer, b_offset.  Note that
 4169  *      b_offset itself may be offset from the beginning of the first
 4170  *      page.
 4171  */
 4172 void   
 4173 vfs_bio_set_valid(struct buf *bp, int base, int size)
 4174 {
 4175         int i, n;
 4176         vm_page_t m;
 4177 
 4178         if (!(bp->b_flags & B_VMIO))
 4179                 return;
 4180 
 4181         /*
 4182          * Fixup base to be relative to beginning of first page.
 4183          * Set initial n to be the maximum number of bytes in the
 4184          * first page that can be validated.
 4185          */
 4186         base += (bp->b_offset & PAGE_MASK);
 4187         n = PAGE_SIZE - (base & PAGE_MASK);
 4188 
 4189         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 4190         for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 4191                 m = bp->b_pages[i];
 4192                 if (n > size)
 4193                         n = size;
 4194                 vm_page_set_valid(m, base & PAGE_MASK, n);
 4195                 base += n;
 4196                 size -= n;
 4197                 n = PAGE_SIZE;
 4198         }
 4199         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 4200 }
 4201 
 4202 /*
 4203  *      vfs_bio_clrbuf:
 4204  *
 4205  *      If the specified buffer is a non-VMIO buffer, clear the entire
 4206  *      buffer.  If the specified buffer is a VMIO buffer, clear and
 4207  *      validate only the previously invalid portions of the buffer.
 4208  *      This routine essentially fakes an I/O, so we need to clear
 4209  *      BIO_ERROR and B_INVAL.
 4210  *
 4211  *      Note that while we only theoretically need to clear through b_bcount,
 4212  *      we go ahead and clear through b_bufsize.
 4213  */
 4214 void
 4215 vfs_bio_clrbuf(struct buf *bp) 
 4216 {
 4217         int i, j, mask, sa, ea, slide;
 4218 
 4219         if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
 4220                 clrbuf(bp);
 4221                 return;
 4222         }
 4223         bp->b_flags &= ~B_INVAL;
 4224         bp->b_ioflags &= ~BIO_ERROR;
 4225         VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 4226         if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
 4227             (bp->b_offset & PAGE_MASK) == 0) {
 4228                 if (bp->b_pages[0] == bogus_page)
 4229                         goto unlock;
 4230                 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
 4231                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
 4232                 if ((bp->b_pages[0]->valid & mask) == mask)
 4233                         goto unlock;
 4234                 if ((bp->b_pages[0]->valid & mask) == 0) {
 4235                         pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
 4236                         bp->b_pages[0]->valid |= mask;
 4237                         goto unlock;
 4238                 }
 4239         }
 4240         sa = bp->b_offset & PAGE_MASK;
 4241         slide = 0;
 4242         for (i = 0; i < bp->b_npages; i++, sa = 0) {
 4243                 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
 4244                 ea = slide & PAGE_MASK;
 4245                 if (ea == 0)
 4246                         ea = PAGE_SIZE;
 4247                 if (bp->b_pages[i] == bogus_page)
 4248                         continue;
 4249                 j = sa / DEV_BSIZE;
 4250                 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
 4251                 VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
 4252                 if ((bp->b_pages[i]->valid & mask) == mask)
 4253                         continue;
 4254                 if ((bp->b_pages[i]->valid & mask) == 0)
 4255                         pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
 4256                 else {
 4257                         for (; sa < ea; sa += DEV_BSIZE, j++) {
 4258                                 if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
 4259                                         pmap_zero_page_area(bp->b_pages[i],
 4260                                             sa, DEV_BSIZE);
 4261                                 }
 4262                         }
 4263                 }
 4264                 bp->b_pages[i]->valid |= mask;
 4265         }
 4266 unlock:
 4267         VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 4268         bp->b_resid = 0;
 4269 }
 4270 
 4271 void
 4272 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
 4273 {
 4274         vm_page_t m;
 4275         int i, n;
 4276 
 4277         if ((bp->b_flags & B_UNMAPPED) == 0) {
 4278                 BUF_CHECK_MAPPED(bp);
 4279                 bzero(bp->b_data + base, size);
 4280         } else {
 4281                 BUF_CHECK_UNMAPPED(bp);
 4282                 n = PAGE_SIZE - (base & PAGE_MASK);
 4283                 VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
 4284                 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 4285                         m = bp->b_pages[i];
 4286                         if (n > size)
 4287                                 n = size;
 4288                         pmap_zero_page_area(m, base & PAGE_MASK, n);
 4289                         base += n;
 4290                         size -= n;
 4291                         n = PAGE_SIZE;
 4292                 }
 4293                 VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
 4294         }
 4295 }
 4296 
 4297 /*
 4298  * vm_hold_load_pages and vm_hold_free_pages get pages into
 4299  * a buffers address space.  The pages are anonymous and are
 4300  * not associated with a file object.
 4301  */
 4302 static void
 4303 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 4304 {
 4305         vm_offset_t pg;
 4306         vm_page_t p;
 4307         int index;
 4308 
 4309         BUF_CHECK_MAPPED(bp);
 4310 
 4311         to = round_page(to);
 4312         from = round_page(from);
 4313         index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 4314 
 4315         for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 4316 tryagain:
 4317                 /*
 4318                  * note: must allocate system pages since blocking here
 4319                  * could interfere with paging I/O, no matter which
 4320                  * process we are.
 4321                  */
 4322                 p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
 4323                     VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
 4324                 if (p == NULL) {
 4325                         VM_WAIT;
 4326                         goto tryagain;
 4327                 }
 4328                 pmap_qenter(pg, &p, 1);
 4329                 bp->b_pages[index] = p;
 4330         }
 4331         bp->b_npages = index;
 4332 }
 4333 
 4334 /* Return pages associated with this buf to the vm system */
 4335 static void
 4336 vm_hold_free_pages(struct buf *bp, int newbsize)
 4337 {
 4338         vm_offset_t from;
 4339         vm_page_t p;
 4340         int index, newnpages;
 4341 
 4342         BUF_CHECK_MAPPED(bp);
 4343 
 4344         from = round_page((vm_offset_t)bp->b_data + newbsize);
 4345         newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 4346         if (bp->b_npages > newnpages)
 4347                 pmap_qremove(from, bp->b_npages - newnpages);
 4348         for (index = newnpages; index < bp->b_npages; index++) {
 4349                 p = bp->b_pages[index];
 4350                 bp->b_pages[index] = NULL;
 4351                 if (p->busy != 0)
 4352                         printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
 4353                             (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
 4354                 p->wire_count--;
 4355                 vm_page_free(p);
 4356                 atomic_subtract_int(&cnt.v_wire_count, 1);
 4357         }
 4358         bp->b_npages = newnpages;
 4359 }
 4360 
 4361 /*
 4362  * Map an IO request into kernel virtual address space.
 4363  *
 4364  * All requests are (re)mapped into kernel VA space.
 4365  * Notice that we use b_bufsize for the size of the buffer
 4366  * to be mapped.  b_bcount might be modified by the driver.
 4367  *
 4368  * Note that even if the caller determines that the address space should
 4369  * be valid, a race or a smaller-file mapped into a larger space may
 4370  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
 4371  * check the return value.
 4372  */
 4373 int
 4374 vmapbuf(struct buf *bp, int mapbuf)
 4375 {
 4376         caddr_t kva;
 4377         vm_prot_t prot;
 4378         int pidx;
 4379 
 4380         if (bp->b_bufsize < 0)
 4381                 return (-1);
 4382         prot = VM_PROT_READ;
 4383         if (bp->b_iocmd == BIO_READ)
 4384                 prot |= VM_PROT_WRITE;  /* Less backwards than it looks */
 4385         if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 4386             (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
 4387             btoc(MAXPHYS))) < 0)
 4388                 return (-1);
 4389         bp->b_npages = pidx;
 4390         if (mapbuf || !unmapped_buf_allowed) {
 4391                 pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
 4392                 kva = bp->b_saveaddr;
 4393                 bp->b_saveaddr = bp->b_data;
 4394                 bp->b_data = kva + (((vm_offset_t)bp->b_data) & PAGE_MASK);
 4395                 bp->b_flags &= ~B_UNMAPPED;
 4396         } else {
 4397                 bp->b_flags |= B_UNMAPPED;
 4398                 bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
 4399                 bp->b_saveaddr = bp->b_data;
 4400                 bp->b_data = unmapped_buf;
 4401         }
 4402         return(0);
 4403 }
 4404 
 4405 /*
 4406  * Free the io map PTEs associated with this IO operation.
 4407  * We also invalidate the TLB entries and restore the original b_addr.
 4408  */
 4409 void
 4410 vunmapbuf(struct buf *bp)
 4411 {
 4412         int npages;
 4413 
 4414         npages = bp->b_npages;
 4415         if (bp->b_flags & B_UNMAPPED)
 4416                 bp->b_flags &= ~B_UNMAPPED;
 4417         else
 4418                 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
 4419         vm_page_unhold_pages(bp->b_pages, npages);
 4420         
 4421         bp->b_data = bp->b_saveaddr;
 4422 }
 4423 
 4424 void
 4425 bdone(struct buf *bp)
 4426 {
 4427         struct mtx *mtxp;
 4428 
 4429         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4430         mtx_lock(mtxp);
 4431         bp->b_flags |= B_DONE;
 4432         wakeup(bp);
 4433         mtx_unlock(mtxp);
 4434 }
 4435 
 4436 void
 4437 bwait(struct buf *bp, u_char pri, const char *wchan)
 4438 {
 4439         struct mtx *mtxp;
 4440 
 4441         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4442         mtx_lock(mtxp);
 4443         while ((bp->b_flags & B_DONE) == 0)
 4444                 msleep(bp, mtxp, pri, wchan, 0);
 4445         mtx_unlock(mtxp);
 4446 }
 4447 
 4448 int
 4449 bufsync(struct bufobj *bo, int waitfor)
 4450 {
 4451 
 4452         return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
 4453 }
 4454 
 4455 void
 4456 bufstrategy(struct bufobj *bo, struct buf *bp)
 4457 {
 4458         int i = 0;
 4459         struct vnode *vp;
 4460 
 4461         vp = bp->b_vp;
 4462         KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
 4463         KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
 4464             ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
 4465         i = VOP_STRATEGY(vp, bp);
 4466         KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
 4467 }
 4468 
 4469 void
 4470 bufobj_wrefl(struct bufobj *bo)
 4471 {
 4472 
 4473         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 4474         ASSERT_BO_LOCKED(bo);
 4475         bo->bo_numoutput++;
 4476 }
 4477 
 4478 void
 4479 bufobj_wref(struct bufobj *bo)
 4480 {
 4481 
 4482         KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 4483         BO_LOCK(bo);
 4484         bo->bo_numoutput++;
 4485         BO_UNLOCK(bo);
 4486 }
 4487 
 4488 void
 4489 bufobj_wdrop(struct bufobj *bo)
 4490 {
 4491 
 4492         KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
 4493         BO_LOCK(bo);
 4494         KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
 4495         if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
 4496                 bo->bo_flag &= ~BO_WWAIT;
 4497                 wakeup(&bo->bo_numoutput);
 4498         }
 4499         BO_UNLOCK(bo);
 4500 }
 4501 
 4502 int
 4503 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
 4504 {
 4505         int error;
 4506 
 4507         KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
 4508         ASSERT_BO_LOCKED(bo);
 4509         error = 0;
 4510         while (bo->bo_numoutput) {
 4511                 bo->bo_flag |= BO_WWAIT;
 4512                 error = msleep(&bo->bo_numoutput, BO_MTX(bo),
 4513                     slpflag | (PRIBIO + 1), "bo_wwait", timeo);
 4514                 if (error)
 4515                         break;
 4516         }
 4517         return (error);
 4518 }
 4519 
 4520 void
 4521 bpin(struct buf *bp)
 4522 {
 4523         struct mtx *mtxp;
 4524 
 4525         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4526         mtx_lock(mtxp);
 4527         bp->b_pin_count++;
 4528         mtx_unlock(mtxp);
 4529 }
 4530 
 4531 void
 4532 bunpin(struct buf *bp)
 4533 {
 4534         struct mtx *mtxp;
 4535 
 4536         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4537         mtx_lock(mtxp);
 4538         if (--bp->b_pin_count == 0)
 4539                 wakeup(bp);
 4540         mtx_unlock(mtxp);
 4541 }
 4542 
 4543 void
 4544 bunpin_wait(struct buf *bp)
 4545 {
 4546         struct mtx *mtxp;
 4547 
 4548         mtxp = mtx_pool_find(mtxpool_sleep, bp);
 4549         mtx_lock(mtxp);
 4550         while (bp->b_pin_count > 0)
 4551                 msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
 4552         mtx_unlock(mtxp);
 4553 }
 4554 
 4555 /*
 4556  * Set bio_data or bio_ma for struct bio from the struct buf.
 4557  */
 4558 void
 4559 bdata2bio(struct buf *bp, struct bio *bip)
 4560 {
 4561 
 4562         if ((bp->b_flags & B_UNMAPPED) != 0) {
 4563                 KASSERT(unmapped_buf_allowed, ("unmapped"));
 4564                 bip->bio_ma = bp->b_pages;
 4565                 bip->bio_ma_n = bp->b_npages;
 4566                 bip->bio_data = unmapped_buf;
 4567                 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 4568                 bip->bio_flags |= BIO_UNMAPPED;
 4569                 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
 4570                     PAGE_SIZE == bp->b_npages,
 4571                     ("Buffer %p too short: %d %jd %d", bp, bip->bio_ma_offset,
 4572                     (uintmax_t)bip->bio_length, bip->bio_ma_n));
 4573         } else {
 4574                 bip->bio_data = bp->b_data;
 4575                 bip->bio_ma = NULL;
 4576         }
 4577 }
 4578 
 4579 #include "opt_ddb.h"
 4580 #ifdef DDB
 4581 #include <ddb/ddb.h>
 4582 
 4583 /* DDB command to show buffer data */
 4584 DB_SHOW_COMMAND(buffer, db_show_buffer)
 4585 {
 4586         /* get args */
 4587         struct buf *bp = (struct buf *)addr;
 4588 
 4589         if (!have_addr) {
 4590                 db_printf("usage: show buffer <addr>\n");
 4591                 return;
 4592         }
 4593 
 4594         db_printf("buf at %p\n", bp);
 4595         db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
 4596             (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
 4597             PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
 4598         db_printf(
 4599             "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 4600             "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
 4601             "b_dep = %p\n",
 4602             bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 4603             bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
 4604             (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
 4605         if (bp->b_npages) {
 4606                 int i;
 4607                 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 4608                 for (i = 0; i < bp->b_npages; i++) {
 4609                         vm_page_t m;
 4610                         m = bp->b_pages[i];
 4611                         db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
 4612                             (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
 4613                         if ((i + 1) < bp->b_npages)
 4614                                 db_printf(",");
 4615                 }
 4616                 db_printf("\n");
 4617         }
 4618         db_printf(" ");
 4619         BUF_LOCKPRINTINFO(bp);
 4620 }
 4621 
 4622 DB_SHOW_COMMAND(lockedbufs, lockedbufs)
 4623 {
 4624         struct buf *bp;
 4625         int i;
 4626 
 4627         for (i = 0; i < nbuf; i++) {
 4628                 bp = &buf[i];
 4629                 if (BUF_ISLOCKED(bp)) {
 4630                         db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4631                         db_printf("\n");
 4632                 }
 4633         }
 4634 }
 4635 
 4636 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
 4637 {
 4638         struct vnode *vp;
 4639         struct buf *bp;
 4640 
 4641         if (!have_addr) {
 4642                 db_printf("usage: show vnodebufs <addr>\n");
 4643                 return;
 4644         }
 4645         vp = (struct vnode *)addr;
 4646         db_printf("Clean buffers:\n");
 4647         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
 4648                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4649                 db_printf("\n");
 4650         }
 4651         db_printf("Dirty buffers:\n");
 4652         TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
 4653                 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 4654                 db_printf("\n");
 4655         }
 4656 }
 4657 
 4658 DB_COMMAND(countfreebufs, db_coundfreebufs)
 4659 {
 4660         struct buf *bp;
 4661         int i, used = 0, nfree = 0;
 4662 
 4663         if (have_addr) {
 4664                 db_printf("usage: countfreebufs\n");
 4665                 return;
 4666         }
 4667 
 4668         for (i = 0; i < nbuf; i++) {
 4669                 bp = &buf[i];
 4670                 if ((bp->b_vflags & BV_INFREECNT) != 0)
 4671                         nfree++;
 4672                 else
 4673                         used++;
 4674         }
 4675 
 4676         db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
 4677             nfree + used);
 4678         db_printf("numfreebuffers is %d\n", numfreebuffers);
 4679 }
 4680 #endif /* DDB */

Cache object: 677e46838adfb6ba02ab1d212f2bf98b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.