The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_bio.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: vfs_bio.c,v 1.167.2.1 2007/10/24 22:32:39 xtraeme Exp $        */
    2 
    3 /*-
    4  * Copyright (c) 1982, 1986, 1989, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  * (c) UNIX System Laboratories, Inc.
    7  * All or some portions of this file are derived from material licensed
    8  * to the University of California by American Telephone and Telegraph
    9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
   10  * the permission of UNIX System Laboratories, Inc.
   11  *
   12  * Redistribution and use in source and binary forms, with or without
   13  * modification, are permitted provided that the following conditions
   14  * are met:
   15  * 1. Redistributions of source code must retain the above copyright
   16  *    notice, this list of conditions and the following disclaimer.
   17  * 2. Redistributions in binary form must reproduce the above copyright
   18  *    notice, this list of conditions and the following disclaimer in the
   19  *    documentation and/or other materials provided with the distribution.
   20  * 3. Neither the name of the University nor the names of its contributors
   21  *    may be used to endorse or promote products derived from this software
   22  *    without specific prior written permission.
   23  *
   24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   34  * SUCH DAMAGE.
   35  *
   36  *      @(#)vfs_bio.c   8.6 (Berkeley) 1/11/94
   37  */
   38 
   39 /*-
   40  * Copyright (c) 1994 Christopher G. Demetriou
   41  *
   42  * Redistribution and use in source and binary forms, with or without
   43  * modification, are permitted provided that the following conditions
   44  * are met:
   45  * 1. Redistributions of source code must retain the above copyright
   46  *    notice, this list of conditions and the following disclaimer.
   47  * 2. Redistributions in binary form must reproduce the above copyright
   48  *    notice, this list of conditions and the following disclaimer in the
   49  *    documentation and/or other materials provided with the distribution.
   50  * 3. All advertising materials mentioning features or use of this software
   51  *    must display the following acknowledgement:
   52  *      This product includes software developed by the University of
   53  *      California, Berkeley and its contributors.
   54  * 4. Neither the name of the University nor the names of its contributors
   55  *    may be used to endorse or promote products derived from this software
   56  *    without specific prior written permission.
   57  *
   58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   68  * SUCH DAMAGE.
   69  *
   70  *      @(#)vfs_bio.c   8.6 (Berkeley) 1/11/94
   71  */
   72 
   73 /*
   74  * Some references:
   75  *      Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
   76  *      Leffler, et al.: The Design and Implementation of the 4.3BSD
   77  *              UNIX Operating System (Addison Welley, 1989)
   78  */
   79 
   80 #include "fs_ffs.h"
   81 #include "opt_bufcache.h"
   82 #include "opt_softdep.h"
   83 
   84 #include <sys/cdefs.h>
   85 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.167.2.1 2007/10/24 22:32:39 xtraeme Exp $");
   86 
   87 #include <sys/param.h>
   88 #include <sys/systm.h>
   89 #include <sys/kernel.h>
   90 #include <sys/proc.h>
   91 #include <sys/buf.h>
   92 #include <sys/vnode.h>
   93 #include <sys/mount.h>
   94 #include <sys/malloc.h>
   95 #include <sys/resourcevar.h>
   96 #include <sys/sysctl.h>
   97 #include <sys/conf.h>
   98 #include <sys/kauth.h>
   99 
  100 #include <uvm/uvm.h>
  101 
  102 #include <miscfs/specfs/specdev.h>
  103 
  104 #ifndef BUFPAGES
  105 # define BUFPAGES 0
  106 #endif
  107 
  108 #ifdef BUFCACHE
  109 # if (BUFCACHE < 5) || (BUFCACHE > 95)
  110 #  error BUFCACHE is not between 5 and 95
  111 # endif
  112 #else
  113 # define BUFCACHE 15
  114 #endif
  115 
  116 u_int   nbuf;                   /* XXX - for softdep_lockedbufs */
  117 u_int   bufpages = BUFPAGES;    /* optional hardwired count */
  118 u_int   bufcache = BUFCACHE;    /* max % of RAM to use for buffer cache */
  119 
  120 /* Function prototypes */
  121 struct bqueue;
  122 
  123 static void buf_setwm(void);
  124 static int buf_trim(void);
  125 static void *bufpool_page_alloc(struct pool *, int);
  126 static void bufpool_page_free(struct pool *, void *);
  127 static inline struct buf *bio_doread(struct vnode *, daddr_t, int,
  128     kauth_cred_t, int);
  129 static struct buf *getnewbuf(int, int, int);
  130 static int buf_lotsfree(void);
  131 static int buf_canrelease(void);
  132 static inline u_long buf_mempoolidx(u_long);
  133 static inline u_long buf_roundsize(u_long);
  134 static inline caddr_t buf_malloc(size_t);
  135 static void buf_mrelease(caddr_t, size_t);
  136 static inline void binsheadfree(struct buf *, struct bqueue *);
  137 static inline void binstailfree(struct buf *, struct bqueue *);
  138 int count_lock_queue(void); /* XXX */
  139 #ifdef DEBUG
  140 static int checkfreelist(struct buf *, struct bqueue *);
  141 #endif
  142 
  143 /*
  144  * Definitions for the buffer hash lists.
  145  */
  146 #define BUFHASH(dvp, lbn)       \
  147         (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
  148 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
  149 u_long  bufhash;
  150 #if !defined(SOFTDEP) || !defined(FFS)
  151 struct bio_ops bioops;  /* I/O operation notification */
  152 #endif
  153 
  154 /*
  155  * Insq/Remq for the buffer hash lists.
  156  */
  157 #define binshash(bp, dp)        LIST_INSERT_HEAD(dp, bp, b_hash)
  158 #define bremhash(bp)            LIST_REMOVE(bp, b_hash)
  159 
  160 /*
  161  * Definitions for the buffer free lists.
  162  */
  163 #define BQUEUES         3               /* number of free buffer queues */
  164 
  165 #define BQ_LOCKED       0               /* super-blocks &c */
  166 #define BQ_LRU          1               /* lru, useful buffers */
  167 #define BQ_AGE          2               /* rubbish */
  168 
  169 struct bqueue {
  170         TAILQ_HEAD(, buf) bq_queue;
  171         uint64_t bq_bytes;
  172 } bufqueues[BQUEUES];
  173 int needbuffer;
  174 
  175 /*
  176  * Buffer queue lock.
  177  * Take this lock first if also taking some buffer's b_interlock.
  178  */
  179 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
  180 
  181 /*
  182  * Buffer pool for I/O buffers.
  183  */
  184 static POOL_INIT(bufpool, sizeof(struct buf), 0, 0, 0, "bufpl",
  185     &pool_allocator_nointr);
  186 
  187 
  188 /* XXX - somewhat gross.. */
  189 #if MAXBSIZE == 0x2000
  190 #define NMEMPOOLS 5
  191 #elif MAXBSIZE == 0x4000
  192 #define NMEMPOOLS 6
  193 #elif MAXBSIZE == 0x8000
  194 #define NMEMPOOLS 7
  195 #else
  196 #define NMEMPOOLS 8
  197 #endif
  198 
  199 #define MEMPOOL_INDEX_OFFSET 9  /* smallest pool is 512 bytes */
  200 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
  201 #error update vfs_bio buffer memory parameters
  202 #endif
  203 
  204 /* Buffer memory pools */
  205 static struct pool bmempools[NMEMPOOLS];
  206 
  207 struct vm_map *buf_map;
  208 
  209 /*
  210  * Buffer memory pool allocator.
  211  */
  212 static void *
  213 bufpool_page_alloc(struct pool *pp, int flags)
  214 {
  215 
  216         return (void *)uvm_km_alloc(buf_map,
  217             MAXBSIZE, MAXBSIZE,
  218             ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
  219             | UVM_KMF_WIRED);
  220 }
  221 
  222 static void
  223 bufpool_page_free(struct pool *pp, void *v)
  224 {
  225 
  226         uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
  227 }
  228 
  229 static struct pool_allocator bufmempool_allocator = {
  230         .pa_alloc = bufpool_page_alloc,
  231         .pa_free = bufpool_page_free,
  232         .pa_pagesz = MAXBSIZE,
  233 };
  234 
  235 /* Buffer memory management variables */
  236 uint64_t bufmem_valimit;
  237 uint64_t bufmem_hiwater;
  238 uint64_t bufmem_lowater;
  239 uint64_t bufmem;
  240 
  241 /*
  242  * MD code can call this to set a hard limit on the amount
  243  * of virtual memory used by the buffer cache.
  244  */
  245 int
  246 buf_setvalimit(vsize_t sz)
  247 {
  248 
  249         /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
  250         if (sz < NMEMPOOLS * MAXBSIZE)
  251                 return EINVAL;
  252 
  253         bufmem_valimit = sz;
  254         return 0;
  255 }
  256 
  257 static void
  258 buf_setwm(void)
  259 {
  260 
  261         bufmem_hiwater = buf_memcalc();
  262         /* lowater is approx. 2% of memory (with bufcache = 15) */
  263 #define BUFMEM_WMSHIFT  3
  264 #define BUFMEM_HIWMMIN  (64 * 1024 << BUFMEM_WMSHIFT)
  265         if (bufmem_hiwater < BUFMEM_HIWMMIN)
  266                 /* Ensure a reasonable minimum value */
  267                 bufmem_hiwater = BUFMEM_HIWMMIN;
  268         bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
  269 }
  270 
  271 #ifdef DEBUG
  272 int debug_verify_freelist = 0;
  273 static int
  274 checkfreelist(struct buf *bp, struct bqueue *dp)
  275 {
  276         struct buf *b;
  277 
  278         TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
  279                 if (b == bp)
  280                         return 1;
  281         }
  282         return 0;
  283 }
  284 #endif
  285 
  286 /*
  287  * Insq/Remq for the buffer hash lists.
  288  * Call with buffer queue locked.
  289  */
  290 static inline void
  291 binsheadfree(struct buf *bp, struct bqueue *dp)
  292 {
  293 
  294         KASSERT(bp->b_freelistindex == -1);
  295         TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
  296         dp->bq_bytes += bp->b_bufsize;
  297         bp->b_freelistindex = dp - bufqueues;
  298 }
  299 
  300 static inline void
  301 binstailfree(struct buf *bp, struct bqueue *dp)
  302 {
  303 
  304         KASSERT(bp->b_freelistindex == -1);
  305         TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
  306         dp->bq_bytes += bp->b_bufsize;
  307         bp->b_freelistindex = dp - bufqueues;
  308 }
  309 
  310 void
  311 bremfree(struct buf *bp)
  312 {
  313         struct bqueue *dp;
  314         int bqidx = bp->b_freelistindex;
  315 
  316         LOCK_ASSERT(simple_lock_held(&bqueue_slock));
  317 
  318         KASSERT(bqidx != -1);
  319         dp = &bufqueues[bqidx];
  320         KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
  321         KASSERT(dp->bq_bytes >= bp->b_bufsize);
  322         TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
  323         dp->bq_bytes -= bp->b_bufsize;
  324 #if defined(DIAGNOSTIC)
  325         bp->b_freelistindex = -1;
  326 #endif /* defined(DIAGNOSTIC) */
  327 }
  328 
  329 u_long
  330 buf_memcalc(void)
  331 {
  332         u_long n;
  333 
  334         /*
  335          * Determine the upper bound of memory to use for buffers.
  336          *
  337          *      - If bufpages is specified, use that as the number
  338          *        pages.
  339          *
  340          *      - Otherwise, use bufcache as the percentage of
  341          *        physical memory.
  342          */
  343         if (bufpages != 0) {
  344                 n = bufpages;
  345         } else {
  346                 if (bufcache < 5) {
  347                         printf("forcing bufcache %d -> 5", bufcache);
  348                         bufcache = 5;
  349                 }
  350                 if (bufcache > 95) {
  351                         printf("forcing bufcache %d -> 95", bufcache);
  352                         bufcache = 95;
  353                 }
  354                 n = physmem / 100 * bufcache;
  355         }
  356 
  357         n <<= PAGE_SHIFT;
  358         if (bufmem_valimit != 0 && n > bufmem_valimit)
  359                 n = bufmem_valimit;
  360 
  361         return (n);
  362 }
  363 
  364 /*
  365  * Initialize buffers and hash links for buffers.
  366  */
  367 void
  368 bufinit(void)
  369 {
  370         struct bqueue *dp;
  371         int use_std;
  372         u_int i;
  373 
  374         /*
  375          * Initialize buffer cache memory parameters.
  376          */
  377         bufmem = 0;
  378         buf_setwm();
  379 
  380         if (bufmem_valimit != 0) {
  381                 vaddr_t minaddr = 0, maxaddr;
  382                 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
  383                                           bufmem_valimit, 0, FALSE, 0);
  384                 if (buf_map == NULL)
  385                         panic("bufinit: cannot allocate submap");
  386         } else
  387                 buf_map = kernel_map;
  388 
  389         /* On "small" machines use small pool page sizes where possible */
  390         use_std = (physmem < atop(16*1024*1024));
  391 
  392         /*
  393          * Also use them on systems that can map the pool pages using
  394          * a direct-mapped segment.
  395          */
  396 #ifdef PMAP_MAP_POOLPAGE
  397         use_std = 1;
  398 #endif
  399 
  400         bufmempool_allocator.pa_backingmap = buf_map;
  401         for (i = 0; i < NMEMPOOLS; i++) {
  402                 struct pool_allocator *pa;
  403                 struct pool *pp = &bmempools[i];
  404                 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
  405                 char *name = malloc(8, M_TEMP, M_WAITOK);
  406                 if (__predict_true(size >= 1024))
  407                         (void)snprintf(name, 8, "buf%dk", size / 1024);
  408                 else
  409                         (void)snprintf(name, 8, "buf%db", size);
  410                 pa = (size <= PAGE_SIZE && use_std)
  411                         ? &pool_allocator_nointr
  412                         : &bufmempool_allocator;
  413                 pool_init(pp, size, 0, 0, 0, name, pa);
  414                 pool_setlowat(pp, 1);
  415                 pool_sethiwat(pp, 1);
  416         }
  417 
  418         /* Initialize the buffer queues */
  419         for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
  420                 TAILQ_INIT(&dp->bq_queue);
  421                 dp->bq_bytes = 0;
  422         }
  423 
  424         /*
  425          * Estimate hash table size based on the amount of memory we
  426          * intend to use for the buffer cache. The average buffer
  427          * size is dependent on our clients (i.e. filesystems).
  428          *
  429          * For now, use an empirical 3K per buffer.
  430          */
  431         nbuf = (bufmem_hiwater / 1024) / 3;
  432         bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
  433 }
  434 
  435 static int
  436 buf_lotsfree(void)
  437 {
  438         int try, thresh;
  439         struct lwp *l = curlwp;
  440 
  441         /* Always allocate if doing copy on write */
  442         if (l->l_flag & L_COWINPROGRESS)
  443                 return 1;
  444 
  445         /* Always allocate if less than the low water mark. */
  446         if (bufmem < bufmem_lowater)
  447                 return 1;
  448 
  449         /* Never allocate if greater than the high water mark. */
  450         if (bufmem > bufmem_hiwater)
  451                 return 0;
  452 
  453         /* If there's anything on the AGE list, it should be eaten. */
  454         if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
  455                 return 0;
  456 
  457         /*
  458          * The probabily of getting a new allocation is inversely
  459          * proportional to the current size of the cache, using
  460          * a granularity of 16 steps.
  461          */
  462         try = random() & 0x0000000fL;
  463 
  464         /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
  465         thresh = (bufmem - bufmem_lowater) /
  466             ((bufmem_hiwater - bufmem_lowater) / 16);
  467 
  468         if (try >= thresh)
  469                 return 1;
  470 
  471         /* Otherwise don't allocate. */
  472         return 0;
  473 }
  474 
  475 /*
  476  * Return estimate of bytes we think need to be
  477  * released to help resolve low memory conditions.
  478  *
  479  * => called at splbio.
  480  * => called with bqueue_slock held.
  481  */
  482 static int
  483 buf_canrelease(void)
  484 {
  485         int pagedemand, ninvalid = 0;
  486 
  487         LOCK_ASSERT(simple_lock_held(&bqueue_slock));
  488 
  489         if (bufmem < bufmem_lowater)
  490                 return 0;
  491 
  492         if (bufmem > bufmem_hiwater)
  493                 return bufmem - bufmem_hiwater;
  494 
  495         ninvalid += bufqueues[BQ_AGE].bq_bytes;
  496 
  497         pagedemand = uvmexp.freetarg - uvmexp.free;
  498         if (pagedemand < 0)
  499                 return ninvalid;
  500         return MAX(ninvalid, MIN(2 * MAXBSIZE,
  501             MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
  502 }
  503 
  504 /*
  505  * Buffer memory allocation helper functions
  506  */
  507 static inline u_long
  508 buf_mempoolidx(u_long size)
  509 {
  510         u_int n = 0;
  511 
  512         size -= 1;
  513         size >>= MEMPOOL_INDEX_OFFSET;
  514         while (size) {
  515                 size >>= 1;
  516                 n += 1;
  517         }
  518         if (n >= NMEMPOOLS)
  519                 panic("buf mem pool index %d", n);
  520         return n;
  521 }
  522 
  523 static inline u_long
  524 buf_roundsize(u_long size)
  525 {
  526         /* Round up to nearest power of 2 */
  527         return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
  528 }
  529 
  530 static inline caddr_t
  531 buf_malloc(size_t size)
  532 {
  533         u_int n = buf_mempoolidx(size);
  534         caddr_t addr;
  535         int s;
  536 
  537         while (1) {
  538                 addr = pool_get(&bmempools[n], PR_NOWAIT);
  539                 if (addr != NULL)
  540                         break;
  541 
  542                 /* No memory, see if we can free some. If so, try again */
  543                 if (buf_drain(1) > 0)
  544                         continue;
  545 
  546                 /* Wait for buffers to arrive on the LRU queue */
  547                 s = splbio();
  548                 simple_lock(&bqueue_slock);
  549                 needbuffer = 1;
  550                 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
  551                         "buf_malloc", 0, &bqueue_slock);
  552                 splx(s);
  553         }
  554 
  555         return addr;
  556 }
  557 
  558 static void
  559 buf_mrelease(caddr_t addr, size_t size)
  560 {
  561 
  562         pool_put(&bmempools[buf_mempoolidx(size)], addr);
  563 }
  564 
  565 /*
  566  * bread()/breadn() helper.
  567  */
  568 static inline struct buf *
  569 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
  570     int async)
  571 {
  572         struct buf *bp;
  573         struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);     /* XXX */
  574         struct proc *p = l->l_proc;
  575         struct mount *mp;
  576 
  577         bp = getblk(vp, blkno, size, 0, 0);
  578 
  579 #ifdef DIAGNOSTIC
  580         if (bp == NULL) {
  581                 panic("bio_doread: no such buf");
  582         }
  583 #endif
  584 
  585         /*
  586          * If buffer does not have data valid, start a read.
  587          * Note that if buffer is B_INVAL, getblk() won't return it.
  588          * Therefore, it's valid if its I/O has completed or been delayed.
  589          */
  590         if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
  591                 /* Start I/O for the buffer. */
  592                 SET(bp->b_flags, B_READ | async);
  593                 if (async)
  594                         BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
  595                 else
  596                         BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
  597                 VOP_STRATEGY(vp, bp);
  598 
  599                 /* Pay for the read. */
  600                 p->p_stats->p_ru.ru_inblock++;
  601         } else if (async) {
  602                 brelse(bp);
  603         }
  604 
  605         if (vp->v_type == VBLK)
  606                 mp = vp->v_specmountpoint;
  607         else
  608                 mp = vp->v_mount;
  609 
  610         /*
  611          * Collect statistics on synchronous and asynchronous reads.
  612          * Reads from block devices are charged to their associated
  613          * filesystem (if any).
  614          */
  615         if (mp != NULL) {
  616                 if (async == 0)
  617                         mp->mnt_stat.f_syncreads++;
  618                 else
  619                         mp->mnt_stat.f_asyncreads++;
  620         }
  621 
  622         return (bp);
  623 }
  624 
  625 /*
  626  * Read a disk block.
  627  * This algorithm described in Bach (p.54).
  628  */
  629 int
  630 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
  631     struct buf **bpp)
  632 {
  633         struct buf *bp;
  634 
  635         /* Get buffer for block. */
  636         bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
  637 
  638         /* Wait for the read to complete, and return result. */
  639         return (biowait(bp));
  640 }
  641 
  642 /*
  643  * Read-ahead multiple disk blocks. The first is sync, the rest async.
  644  * Trivial modification to the breada algorithm presented in Bach (p.55).
  645  */
  646 int
  647 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
  648     int *rasizes, int nrablks, kauth_cred_t cred, struct buf **bpp)
  649 {
  650         struct buf *bp;
  651         int i;
  652 
  653         bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
  654 
  655         /*
  656          * For each of the read-ahead blocks, start a read, if necessary.
  657          */
  658         for (i = 0; i < nrablks; i++) {
  659                 /* If it's in the cache, just go on to next one. */
  660                 if (incore(vp, rablks[i]))
  661                         continue;
  662 
  663                 /* Get a buffer for the read-ahead block */
  664                 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
  665         }
  666 
  667         /* Otherwise, we had to start a read for it; wait until it's valid. */
  668         return (biowait(bp));
  669 }
  670 
  671 /*
  672  * Read with single-block read-ahead.  Defined in Bach (p.55), but
  673  * implemented as a call to breadn().
  674  * XXX for compatibility with old file systems.
  675  */
  676 int
  677 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
  678     int rabsize, kauth_cred_t cred, struct buf **bpp)
  679 {
  680 
  681         return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
  682 }
  683 
  684 /*
  685  * Block write.  Described in Bach (p.56)
  686  */
  687 int
  688 bwrite(struct buf *bp)
  689 {
  690         int rv, sync, wasdelayed, s;
  691         struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);     /* XXX */
  692         struct proc *p = l->l_proc;
  693         struct vnode *vp;
  694         struct mount *mp;
  695 
  696         KASSERT(ISSET(bp->b_flags, B_BUSY));
  697 
  698         vp = bp->b_vp;
  699         if (vp != NULL) {
  700                 if (vp->v_type == VBLK)
  701                         mp = vp->v_specmountpoint;
  702                 else
  703                         mp = vp->v_mount;
  704         } else {
  705                 mp = NULL;
  706         }
  707 
  708         /*
  709          * Remember buffer type, to switch on it later.  If the write was
  710          * synchronous, but the file system was mounted with MNT_ASYNC,
  711          * convert it to a delayed write.
  712          * XXX note that this relies on delayed tape writes being converted
  713          * to async, not sync writes (which is safe, but ugly).
  714          */
  715         sync = !ISSET(bp->b_flags, B_ASYNC);
  716         if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
  717                 bdwrite(bp);
  718                 return (0);
  719         }
  720 
  721         /*
  722          * Collect statistics on synchronous and asynchronous writes.
  723          * Writes to block devices are charged to their associated
  724          * filesystem (if any).
  725          */
  726         if (mp != NULL) {
  727                 if (sync)
  728                         mp->mnt_stat.f_syncwrites++;
  729                 else
  730                         mp->mnt_stat.f_asyncwrites++;
  731         }
  732 
  733         s = splbio();
  734         simple_lock(&bp->b_interlock);
  735 
  736         wasdelayed = ISSET(bp->b_flags, B_DELWRI);
  737 
  738         CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
  739 
  740         /*
  741          * Pay for the I/O operation and make sure the buf is on the correct
  742          * vnode queue.
  743          */
  744         if (wasdelayed)
  745                 reassignbuf(bp, bp->b_vp);
  746         else
  747                 p->p_stats->p_ru.ru_oublock++;
  748 
  749         /* Initiate disk write.  Make sure the appropriate party is charged. */
  750         V_INCR_NUMOUTPUT(bp->b_vp);
  751         simple_unlock(&bp->b_interlock);
  752         splx(s);
  753 
  754         if (sync)
  755                 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
  756         else
  757                 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
  758 
  759         VOP_STRATEGY(vp, bp);
  760 
  761         if (sync) {
  762                 /* If I/O was synchronous, wait for it to complete. */
  763                 rv = biowait(bp);
  764 
  765                 /* Release the buffer. */
  766                 brelse(bp);
  767 
  768                 return (rv);
  769         } else {
  770                 return (0);
  771         }
  772 }
  773 
  774 int
  775 vn_bwrite(void *v)
  776 {
  777         struct vop_bwrite_args *ap = v;
  778 
  779         return (bwrite(ap->a_bp));
  780 }
  781 
  782 /*
  783  * Delayed write.
  784  *
  785  * The buffer is marked dirty, but is not queued for I/O.
  786  * This routine should be used when the buffer is expected
  787  * to be modified again soon, typically a small write that
  788  * partially fills a buffer.
  789  *
  790  * NB: magnetic tapes cannot be delayed; they must be
  791  * written in the order that the writes are requested.
  792  *
  793  * Described in Leffler, et al. (pp. 208-213).
  794  */
  795 void
  796 bdwrite(struct buf *bp)
  797 {
  798         struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);     /* XXX */
  799         struct proc *p = l->l_proc;
  800         const struct bdevsw *bdev;
  801         int s;
  802 
  803         /* If this is a tape block, write the block now. */
  804         bdev = bdevsw_lookup(bp->b_dev);
  805         if (bdev != NULL && bdev->d_type == D_TAPE) {
  806                 bawrite(bp);
  807                 return;
  808         }
  809 
  810         /*
  811          * If the block hasn't been seen before:
  812          *      (1) Mark it as having been seen,
  813          *      (2) Charge for the write,
  814          *      (3) Make sure it's on its vnode's correct block list.
  815          */
  816         s = splbio();
  817         simple_lock(&bp->b_interlock);
  818 
  819         KASSERT(ISSET(bp->b_flags, B_BUSY));
  820 
  821         if (!ISSET(bp->b_flags, B_DELWRI)) {
  822                 SET(bp->b_flags, B_DELWRI);
  823                 p->p_stats->p_ru.ru_oublock++;
  824                 reassignbuf(bp, bp->b_vp);
  825         }
  826 
  827         /* Otherwise, the "write" is done, so mark and release the buffer. */
  828         CLR(bp->b_flags, B_DONE);
  829         simple_unlock(&bp->b_interlock);
  830         splx(s);
  831 
  832         brelse(bp);
  833 }
  834 
  835 /*
  836  * Asynchronous block write; just an asynchronous bwrite().
  837  */
  838 void
  839 bawrite(struct buf *bp)
  840 {
  841         int s;
  842 
  843         s = splbio();
  844         simple_lock(&bp->b_interlock);
  845 
  846         KASSERT(ISSET(bp->b_flags, B_BUSY));
  847 
  848         SET(bp->b_flags, B_ASYNC);
  849         simple_unlock(&bp->b_interlock);
  850         splx(s);
  851         VOP_BWRITE(bp);
  852 }
  853 
  854 /*
  855  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
  856  * Call at splbio() and with the buffer interlock locked.
  857  * Note: called only from biodone() through ffs softdep's bioops.io_complete()
  858  */
  859 void
  860 bdirty(struct buf *bp)
  861 {
  862         struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);     /* XXX */
  863         struct proc *p = l->l_proc;
  864 
  865         LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
  866         KASSERT(ISSET(bp->b_flags, B_BUSY));
  867 
  868         CLR(bp->b_flags, B_AGE);
  869 
  870         if (!ISSET(bp->b_flags, B_DELWRI)) {
  871                 SET(bp->b_flags, B_DELWRI);
  872                 p->p_stats->p_ru.ru_oublock++;
  873                 reassignbuf(bp, bp->b_vp);
  874         }
  875 }
  876 
  877 /*
  878  * Release a buffer on to the free lists.
  879  * Described in Bach (p. 46).
  880  */
  881 void
  882 brelse(struct buf *bp)
  883 {
  884         struct bqueue *bufq;
  885         int s;
  886 
  887         /* Block disk interrupts. */
  888         s = splbio();
  889         simple_lock(&bqueue_slock);
  890         simple_lock(&bp->b_interlock);
  891 
  892         KASSERT(ISSET(bp->b_flags, B_BUSY));
  893         KASSERT(!ISSET(bp->b_flags, B_CALL));
  894 
  895         /* Wake up any processes waiting for any buffer to become free. */
  896         if (needbuffer) {
  897                 needbuffer = 0;
  898                 wakeup(&needbuffer);
  899         }
  900 
  901         /* Wake up any proceeses waiting for _this_ buffer to become free. */
  902         if (ISSET(bp->b_flags, B_WANTED)) {
  903                 CLR(bp->b_flags, B_WANTED|B_AGE);
  904                 wakeup(bp);
  905         }
  906 
  907         /*
  908          * Determine which queue the buffer should be on, then put it there.
  909          */
  910 
  911         /* If it's locked, don't report an error; try again later. */
  912         if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
  913                 CLR(bp->b_flags, B_ERROR);
  914 
  915         /* If it's not cacheable, or an error, mark it invalid. */
  916         if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
  917                 SET(bp->b_flags, B_INVAL);
  918 
  919         if (ISSET(bp->b_flags, B_VFLUSH)) {
  920                 /*
  921                  * This is a delayed write buffer that was just flushed to
  922                  * disk.  It is still on the LRU queue.  If it's become
  923                  * invalid, then we need to move it to a different queue;
  924                  * otherwise leave it in its current position.
  925                  */
  926                 CLR(bp->b_flags, B_VFLUSH);
  927                 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
  928                         KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
  929                         goto already_queued;
  930                 } else {
  931                         bremfree(bp);
  932                 }
  933         }
  934 
  935   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
  936   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
  937   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
  938 
  939         if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
  940                 /*
  941                  * If it's invalid or empty, dissociate it from its vnode
  942                  * and put on the head of the appropriate queue.
  943                  */
  944                 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
  945                         (*bioops.io_deallocate)(bp);
  946                 CLR(bp->b_flags, B_DONE|B_DELWRI);
  947                 if (bp->b_vp) {
  948                         reassignbuf(bp, bp->b_vp);
  949                         brelvp(bp);
  950                 }
  951                 if (bp->b_bufsize <= 0)
  952                         /* no data */
  953                         goto already_queued;
  954                 else
  955                         /* invalid data */
  956                         bufq = &bufqueues[BQ_AGE];
  957                 binsheadfree(bp, bufq);
  958         } else {
  959                 /*
  960                  * It has valid data.  Put it on the end of the appropriate
  961                  * queue, so that it'll stick around for as long as possible.
  962                  * If buf is AGE, but has dependencies, must put it on last
  963                  * bufqueue to be scanned, ie LRU. This protects against the
  964                  * livelock where BQ_AGE only has buffers with dependencies,
  965                  * and we thus never get to the dependent buffers in BQ_LRU.
  966                  */
  967                 if (ISSET(bp->b_flags, B_LOCKED))
  968                         /* locked in core */
  969                         bufq = &bufqueues[BQ_LOCKED];
  970                 else if (!ISSET(bp->b_flags, B_AGE))
  971                         /* valid data */
  972                         bufq = &bufqueues[BQ_LRU];
  973                 else {
  974                         /* stale but valid data */
  975                         int has_deps;
  976 
  977                         if (LIST_FIRST(&bp->b_dep) != NULL &&
  978                             bioops.io_countdeps)
  979                                 has_deps = (*bioops.io_countdeps)(bp, 0);
  980                         else
  981                                 has_deps = 0;
  982                         bufq = has_deps ? &bufqueues[BQ_LRU] :
  983                             &bufqueues[BQ_AGE];
  984                 }
  985                 binstailfree(bp, bufq);
  986         }
  987 
  988 already_queued:
  989         /* Unlock the buffer. */
  990         CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
  991         SET(bp->b_flags, B_CACHE);
  992 
  993         /* Allow disk interrupts. */
  994         simple_unlock(&bp->b_interlock);
  995         simple_unlock(&bqueue_slock);
  996         splx(s);
  997         if (bp->b_bufsize <= 0) {
  998 #ifdef DEBUG
  999                 memset((char *)bp, 0, sizeof(*bp));
 1000 #endif
 1001                 pool_put(&bufpool, bp);
 1002         }
 1003 }
 1004 
 1005 /*
 1006  * Determine if a block is in the cache.
 1007  * Just look on what would be its hash chain.  If it's there, return
 1008  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
 1009  * we normally don't return the buffer, unless the caller explicitly
 1010  * wants us to.
 1011  */
 1012 struct buf *
 1013 incore(struct vnode *vp, daddr_t blkno)
 1014 {
 1015         struct buf *bp;
 1016 
 1017         /* Search hash chain */
 1018         LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
 1019                 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
 1020                     !ISSET(bp->b_flags, B_INVAL))
 1021                 return (bp);
 1022         }
 1023 
 1024         return (NULL);
 1025 }
 1026 
 1027 /*
 1028  * Get a block of requested size that is associated with
 1029  * a given vnode and block offset. If it is found in the
 1030  * block cache, mark it as having been found, make it busy
 1031  * and return it. Otherwise, return an empty block of the
 1032  * correct size. It is up to the caller to insure that the
 1033  * cached blocks be of the correct size.
 1034  */
 1035 struct buf *
 1036 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
 1037 {
 1038         struct buf *bp;
 1039         int s, err;
 1040         int preserve;
 1041 
 1042 start:
 1043         s = splbio();
 1044         simple_lock(&bqueue_slock);
 1045         bp = incore(vp, blkno);
 1046         if (bp != NULL) {
 1047                 simple_lock(&bp->b_interlock);
 1048                 if (ISSET(bp->b_flags, B_BUSY)) {
 1049                         simple_unlock(&bqueue_slock);
 1050                         if (curproc == uvm.pagedaemon_proc) {
 1051                                 simple_unlock(&bp->b_interlock);
 1052                                 splx(s);
 1053                                 return NULL;
 1054                         }
 1055                         SET(bp->b_flags, B_WANTED);
 1056                         err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
 1057                                         "getblk", slptimeo, &bp->b_interlock);
 1058                         splx(s);
 1059                         if (err)
 1060                                 return (NULL);
 1061                         goto start;
 1062                 }
 1063 #ifdef DIAGNOSTIC
 1064                 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
 1065                     bp->b_bcount < size && vp->v_type != VBLK)
 1066                         panic("getblk: block size invariant failed");
 1067 #endif
 1068                 SET(bp->b_flags, B_BUSY);
 1069                 bremfree(bp);
 1070                 preserve = 1;
 1071         } else {
 1072                 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
 1073                         simple_unlock(&bqueue_slock);
 1074                         splx(s);
 1075                         goto start;
 1076                 }
 1077 
 1078                 binshash(bp, BUFHASH(vp, blkno));
 1079                 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
 1080                 bgetvp(vp, bp);
 1081                 preserve = 0;
 1082         }
 1083         simple_unlock(&bp->b_interlock);
 1084         simple_unlock(&bqueue_slock);
 1085         splx(s);
 1086         /*
 1087          * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
 1088          * if we re-size buffers here.
 1089          */
 1090         if (ISSET(bp->b_flags, B_LOCKED)) {
 1091                 KASSERT(bp->b_bufsize >= size);
 1092         } else {
 1093                 allocbuf(bp, size, preserve);
 1094         }
 1095         BIO_SETPRIO(bp, BPRIO_DEFAULT);
 1096         return (bp);
 1097 }
 1098 
 1099 /*
 1100  * Get an empty, disassociated buffer of given size.
 1101  */
 1102 struct buf *
 1103 geteblk(int size)
 1104 {
 1105         struct buf *bp;
 1106         int s;
 1107 
 1108         s = splbio();
 1109         simple_lock(&bqueue_slock);
 1110         while ((bp = getnewbuf(0, 0, 0)) == 0)
 1111                 ;
 1112 
 1113         SET(bp->b_flags, B_INVAL);
 1114         binshash(bp, &invalhash);
 1115         simple_unlock(&bqueue_slock);
 1116         simple_unlock(&bp->b_interlock);
 1117         splx(s);
 1118         BIO_SETPRIO(bp, BPRIO_DEFAULT);
 1119         allocbuf(bp, size, 0);
 1120         return (bp);
 1121 }
 1122 
 1123 /*
 1124  * Expand or contract the actual memory allocated to a buffer.
 1125  *
 1126  * If the buffer shrinks, data is lost, so it's up to the
 1127  * caller to have written it out *first*; this routine will not
 1128  * start a write.  If the buffer grows, it's the callers
 1129  * responsibility to fill out the buffer's additional contents.
 1130  */
 1131 void
 1132 allocbuf(struct buf *bp, int size, int preserve)
 1133 {
 1134         vsize_t oldsize, desired_size;
 1135         caddr_t addr;
 1136         int s, delta;
 1137 
 1138         desired_size = buf_roundsize(size);
 1139         if (desired_size > MAXBSIZE)
 1140                 printf("allocbuf: buffer larger than MAXBSIZE requested");
 1141 
 1142         bp->b_bcount = size;
 1143 
 1144         oldsize = bp->b_bufsize;
 1145         if (oldsize == desired_size)
 1146                 return;
 1147 
 1148         /*
 1149          * If we want a buffer of a different size, re-allocate the
 1150          * buffer's memory; copy old content only if needed.
 1151          */
 1152         addr = buf_malloc(desired_size);
 1153         if (preserve)
 1154                 memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
 1155         if (bp->b_data != NULL)
 1156                 buf_mrelease(bp->b_data, oldsize);
 1157         bp->b_data = addr;
 1158         bp->b_bufsize = desired_size;
 1159 
 1160         /*
 1161          * Update overall buffer memory counter (protected by bqueue_slock)
 1162          */
 1163         delta = (long)desired_size - (long)oldsize;
 1164 
 1165         s = splbio();
 1166         simple_lock(&bqueue_slock);
 1167         if ((bufmem += delta) > bufmem_hiwater) {
 1168                 /*
 1169                  * Need to trim overall memory usage.
 1170                  */
 1171                 while (buf_canrelease()) {
 1172                         if (curcpu()->ci_schedstate.spc_flags &
 1173                             SPCF_SHOULDYIELD) {
 1174                                 simple_unlock(&bqueue_slock);
 1175                                 splx(s);
 1176                                 preempt(1);
 1177                                 s = splbio();
 1178                                 simple_lock(&bqueue_slock);
 1179                         }
 1180 
 1181                         if (buf_trim() == 0)
 1182                                 break;
 1183                 }
 1184         }
 1185 
 1186         simple_unlock(&bqueue_slock);
 1187         splx(s);
 1188 }
 1189 
 1190 /*
 1191  * Find a buffer which is available for use.
 1192  * Select something from a free list.
 1193  * Preference is to AGE list, then LRU list.
 1194  *
 1195  * Called at splbio and with buffer queues locked.
 1196  * Return buffer locked.
 1197  */
 1198 struct buf *
 1199 getnewbuf(int slpflag, int slptimeo, int from_bufq)
 1200 {
 1201         struct buf *bp;
 1202 
 1203 start:
 1204         LOCK_ASSERT(simple_lock_held(&bqueue_slock));
 1205 
 1206         /*
 1207          * Get a new buffer from the pool; but use NOWAIT because
 1208          * we have the buffer queues locked.
 1209          */
 1210         if (!from_bufq && buf_lotsfree() &&
 1211             (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
 1212                 memset((char *)bp, 0, sizeof(*bp));
 1213                 BUF_INIT(bp);
 1214                 bp->b_dev = NODEV;
 1215                 bp->b_vnbufs.le_next = NOLIST;
 1216                 bp->b_flags = B_BUSY;
 1217                 simple_lock(&bp->b_interlock);
 1218 #if defined(DIAGNOSTIC)
 1219                 bp->b_freelistindex = -1;
 1220 #endif /* defined(DIAGNOSTIC) */
 1221                 return (bp);
 1222         }
 1223 
 1224         if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
 1225             (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
 1226                 simple_lock(&bp->b_interlock);
 1227                 bremfree(bp);
 1228         } else {
 1229                 /*
 1230                  * XXX: !from_bufq should be removed.
 1231                  */
 1232                 if (!from_bufq || curproc != uvm.pagedaemon_proc) {
 1233                         /* wait for a free buffer of any kind */
 1234                         needbuffer = 1;
 1235                         ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
 1236                             "getnewbuf", slptimeo, &bqueue_slock);
 1237                 }
 1238                 return (NULL);
 1239         }
 1240 
 1241 #ifdef DIAGNOSTIC
 1242         if (bp->b_bufsize <= 0)
 1243                 panic("buffer %p: on queue but empty", bp);
 1244 #endif
 1245 
 1246         if (ISSET(bp->b_flags, B_VFLUSH)) {
 1247                 /*
 1248                  * This is a delayed write buffer being flushed to disk.  Make
 1249                  * sure it gets aged out of the queue when it's finished, and
 1250                  * leave it off the LRU queue.
 1251                  */
 1252                 CLR(bp->b_flags, B_VFLUSH);
 1253                 SET(bp->b_flags, B_AGE);
 1254                 simple_unlock(&bp->b_interlock);
 1255                 goto start;
 1256         }
 1257 
 1258         /* Buffer is no longer on free lists. */
 1259         SET(bp->b_flags, B_BUSY);
 1260 
 1261         /*
 1262          * If buffer was a delayed write, start it and return NULL
 1263          * (since we might sleep while starting the write).
 1264          */
 1265         if (ISSET(bp->b_flags, B_DELWRI)) {
 1266                 /*
 1267                  * This buffer has gone through the LRU, so make sure it gets
 1268                  * reused ASAP.
 1269                  */
 1270                 SET(bp->b_flags, B_AGE);
 1271                 simple_unlock(&bp->b_interlock);
 1272                 simple_unlock(&bqueue_slock);
 1273                 bawrite(bp);
 1274                 simple_lock(&bqueue_slock);
 1275                 return (NULL);
 1276         }
 1277 
 1278         /* disassociate us from our vnode, if we had one... */
 1279         if (bp->b_vp)
 1280                 brelvp(bp);
 1281 
 1282         if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
 1283                 (*bioops.io_deallocate)(bp);
 1284 
 1285         /* clear out various other fields */
 1286         bp->b_flags = B_BUSY;
 1287         bp->b_dev = NODEV;
 1288         bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
 1289         bp->b_iodone = 0;
 1290         bp->b_error = 0;
 1291         bp->b_resid = 0;
 1292         bp->b_bcount = 0;
 1293 
 1294         bremhash(bp);
 1295         return (bp);
 1296 }
 1297 
 1298 /*
 1299  * Attempt to free an aged buffer off the queues.
 1300  * Called at splbio and with queue lock held.
 1301  * Returns the amount of buffer memory freed.
 1302  */
 1303 static int
 1304 buf_trim(void)
 1305 {
 1306         struct buf *bp;
 1307         long size = 0;
 1308 
 1309         /* Instruct getnewbuf() to get buffers off the queues */
 1310         if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
 1311                 return 0;
 1312 
 1313         KASSERT(!ISSET(bp->b_flags, B_WANTED));
 1314         simple_unlock(&bp->b_interlock);
 1315         size = bp->b_bufsize;
 1316         bufmem -= size;
 1317         simple_unlock(&bqueue_slock);
 1318         if (size > 0) {
 1319                 buf_mrelease(bp->b_data, size);
 1320                 bp->b_bcount = bp->b_bufsize = 0;
 1321         }
 1322         /* brelse() will return the buffer to the global buffer pool */
 1323         brelse(bp);
 1324         simple_lock(&bqueue_slock);
 1325         return size;
 1326 }
 1327 
 1328 int
 1329 buf_drain(int n)
 1330 {
 1331         int s, size = 0, sz;
 1332 
 1333         s = splbio();
 1334         simple_lock(&bqueue_slock);
 1335 
 1336         while (size < n && bufmem > bufmem_lowater) {
 1337                 sz = buf_trim();
 1338                 if (sz <= 0)
 1339                         break;
 1340                 size += sz;
 1341         }
 1342 
 1343         simple_unlock(&bqueue_slock);
 1344         splx(s);
 1345         return size;
 1346 }
 1347 
 1348 /*
 1349  * Wait for operations on the buffer to complete.
 1350  * When they do, extract and return the I/O's error value.
 1351  */
 1352 int
 1353 biowait(struct buf *bp)
 1354 {
 1355         int s, error;
 1356 
 1357         s = splbio();
 1358         simple_lock(&bp->b_interlock);
 1359         while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
 1360                 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
 1361 
 1362         /* check errors. */
 1363         if (ISSET(bp->b_flags, B_ERROR))
 1364                 error = bp->b_error ? bp->b_error : EIO;
 1365         else
 1366                 error = 0;
 1367 
 1368         simple_unlock(&bp->b_interlock);
 1369         splx(s);
 1370         return (error);
 1371 }
 1372 
 1373 /*
 1374  * Mark I/O complete on a buffer.
 1375  *
 1376  * If a callback has been requested, e.g. the pageout
 1377  * daemon, do so. Otherwise, awaken waiting processes.
 1378  *
 1379  * [ Leffler, et al., says on p.247:
 1380  *      "This routine wakes up the blocked process, frees the buffer
 1381  *      for an asynchronous write, or, for a request by the pagedaemon
 1382  *      process, invokes a procedure specified in the buffer structure" ]
 1383  *
 1384  * In real life, the pagedaemon (or other system processes) wants
 1385  * to do async stuff to, and doesn't want the buffer brelse()'d.
 1386  * (for swap pager, that puts swap buffers on the free lists (!!!),
 1387  * for the vn device, that puts malloc'd buffers on the free lists!)
 1388  */
 1389 void
 1390 biodone(struct buf *bp)
 1391 {
 1392         int s = splbio();
 1393 
 1394         simple_lock(&bp->b_interlock);
 1395         if (ISSET(bp->b_flags, B_DONE))
 1396                 panic("biodone already");
 1397         SET(bp->b_flags, B_DONE);               /* note that it's done */
 1398         BIO_SETPRIO(bp, BPRIO_DEFAULT);
 1399 
 1400         if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
 1401                 (*bioops.io_complete)(bp);
 1402 
 1403         if (!ISSET(bp->b_flags, B_READ))        /* wake up reader */
 1404                 vwakeup(bp);
 1405 
 1406         /*
 1407          * If necessary, call out.  Unlock the buffer before calling
 1408          * iodone() as the buffer isn't valid any more when it return.
 1409          */
 1410         if (ISSET(bp->b_flags, B_CALL)) {
 1411                 CLR(bp->b_flags, B_CALL);       /* but note callout done */
 1412                 simple_unlock(&bp->b_interlock);
 1413                 (*bp->b_iodone)(bp);
 1414         } else {
 1415                 if (ISSET(bp->b_flags, B_ASYNC)) {      /* if async, release */
 1416                         simple_unlock(&bp->b_interlock);
 1417                         brelse(bp);
 1418                 } else {                        /* or just wakeup the buffer */
 1419                         CLR(bp->b_flags, B_WANTED);
 1420                         wakeup(bp);
 1421                         simple_unlock(&bp->b_interlock);
 1422                 }
 1423         }
 1424 
 1425         splx(s);
 1426 }
 1427 
 1428 /*
 1429  * Return a count of buffers on the "locked" queue.
 1430  */
 1431 int
 1432 count_lock_queue(void)
 1433 {
 1434         struct buf *bp;
 1435         int n = 0;
 1436 
 1437         simple_lock(&bqueue_slock);
 1438         TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
 1439                 n++;
 1440         simple_unlock(&bqueue_slock);
 1441         return (n);
 1442 }
 1443 
 1444 /*
 1445  * Wait for all buffers to complete I/O
 1446  * Return the number of "stuck" buffers.
 1447  */
 1448 int
 1449 buf_syncwait(void)
 1450 {
 1451         struct buf *bp;
 1452         int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
 1453 
 1454         dcount = 10000;
 1455         for (iter = 0; iter < 20;) {
 1456                 s = splbio();
 1457                 simple_lock(&bqueue_slock);
 1458                 nbusy = 0;
 1459                 for (ihash = 0; ihash < bufhash+1; ihash++) {
 1460                     LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
 1461                         if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
 1462                                 nbusy++;
 1463                         /*
 1464                          * With soft updates, some buffers that are
 1465                          * written will be remarked as dirty until other
 1466                          * buffers are written.
 1467                          */
 1468                         if (bp->b_vp && bp->b_vp->v_mount
 1469                             && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
 1470                             && (bp->b_flags & B_DELWRI)) {
 1471                                 simple_lock(&bp->b_interlock);
 1472                                 bremfree(bp);
 1473                                 bp->b_flags |= B_BUSY;
 1474                                 nbusy++;
 1475                                 simple_unlock(&bp->b_interlock);
 1476                                 simple_unlock(&bqueue_slock);
 1477                                 bawrite(bp);
 1478                                 if (dcount-- <= 0) {
 1479                                         printf("softdep ");
 1480                                         splx(s);
 1481                                         goto fail;
 1482                                 }
 1483                                 simple_lock(&bqueue_slock);
 1484                         }
 1485                     }
 1486                 }
 1487 
 1488                 simple_unlock(&bqueue_slock);
 1489                 splx(s);
 1490 
 1491                 if (nbusy == 0)
 1492                         break;
 1493                 if (nbusy_prev == 0)
 1494                         nbusy_prev = nbusy;
 1495                 printf("%d ", nbusy);
 1496                 tsleep(&nbusy, PRIBIO, "bflush",
 1497                     (iter == 0) ? 1 : hz / 25 * iter);
 1498                 if (nbusy >= nbusy_prev) /* we didn't flush anything */
 1499                         iter++;
 1500                 else
 1501                         nbusy_prev = nbusy;
 1502         }
 1503 
 1504         if (nbusy) {
 1505 fail:;
 1506 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
 1507                 printf("giving up\nPrinting vnodes for busy buffers\n");
 1508                 s = splbio();
 1509                 for (ihash = 0; ihash < bufhash+1; ihash++) {
 1510                     LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
 1511                         if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
 1512                                 vprint(NULL, bp->b_vp);
 1513                     }
 1514                 }
 1515                 splx(s);
 1516 #endif
 1517         }
 1518 
 1519         return nbusy;
 1520 }
 1521 
 1522 static void
 1523 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
 1524 {
 1525 
 1526         o->b_flags = i->b_flags;
 1527         o->b_error = i->b_error;
 1528         o->b_prio = i->b_prio;
 1529         o->b_dev = i->b_dev;
 1530         o->b_bufsize = i->b_bufsize;
 1531         o->b_bcount = i->b_bcount;
 1532         o->b_resid = i->b_resid;
 1533         o->b_addr = PTRTOUINT64(i->b_un.b_addr);
 1534         o->b_blkno = i->b_blkno;
 1535         o->b_rawblkno = i->b_rawblkno;
 1536         o->b_iodone = PTRTOUINT64(i->b_iodone);
 1537         o->b_proc = PTRTOUINT64(i->b_proc);
 1538         o->b_vp = PTRTOUINT64(i->b_vp);
 1539         o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
 1540         o->b_lblkno = i->b_lblkno;
 1541 }
 1542 
 1543 #define KERN_BUFSLOP 20
 1544 static int
 1545 sysctl_dobuf(SYSCTLFN_ARGS)
 1546 {
 1547         struct buf *bp;
 1548         struct buf_sysctl bs;
 1549         char *dp;
 1550         u_int i, op, arg;
 1551         size_t len, needed, elem_size, out_size;
 1552         int error, s, elem_count;
 1553 
 1554         if (namelen == 1 && name[0] == CTL_QUERY)
 1555                 return (sysctl_query(SYSCTLFN_CALL(rnode)));
 1556 
 1557         if (namelen != 4)
 1558                 return (EINVAL);
 1559 
 1560         dp = oldp;
 1561         len = (oldp != NULL) ? *oldlenp : 0;
 1562         op = name[0];
 1563         arg = name[1];
 1564         elem_size = name[2];
 1565         elem_count = name[3];
 1566         out_size = MIN(sizeof(bs), elem_size);
 1567 
 1568         /*
 1569          * at the moment, these are just "placeholders" to make the
 1570          * API for retrieving kern.buf data more extensible in the
 1571          * future.
 1572          *
 1573          * XXX kern.buf currently has "netbsd32" issues.  hopefully
 1574          * these will be resolved at a later point.
 1575          */
 1576         if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
 1577             elem_size < 1 || elem_count < 0)
 1578                 return (EINVAL);
 1579 
 1580         error = 0;
 1581         needed = 0;
 1582         s = splbio();
 1583         simple_lock(&bqueue_slock);
 1584         for (i = 0; i < BQUEUES; i++) {
 1585                 TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
 1586                         if (len >= elem_size && elem_count > 0) {
 1587                                 sysctl_fillbuf(bp, &bs);
 1588                                 error = copyout(&bs, dp, out_size);
 1589                                 if (error)
 1590                                         goto cleanup;
 1591                                 dp += elem_size;
 1592                                 len -= elem_size;
 1593                         }
 1594                         if (elem_count > 0) {
 1595                                 needed += elem_size;
 1596                                 if (elem_count != INT_MAX)
 1597                                         elem_count--;
 1598                         }
 1599                 }
 1600         }
 1601 cleanup:
 1602         simple_unlock(&bqueue_slock);
 1603         splx(s);
 1604 
 1605         *oldlenp = needed;
 1606         if (oldp == NULL)
 1607                 *oldlenp += KERN_BUFSLOP * sizeof(struct buf);
 1608 
 1609         return (error);
 1610 }
 1611 
 1612 static void
 1613 sysctl_bufvm_common(void)
 1614 {
 1615         int64_t t;
 1616 
 1617         /* Drain until below new high water mark */
 1618         while ((t = (int64_t)bufmem - (int64_t)bufmem_hiwater) >= 0) {
 1619                 if (buf_drain(t / (2 * 1024)) <= 0)
 1620                         break;
 1621         }
 1622 }
 1623 
 1624 static int
 1625 sysctl_bufcache_update(SYSCTLFN_ARGS)
 1626 {
 1627         int t, error;
 1628         struct sysctlnode node;
 1629 
 1630         node = *rnode;
 1631         node.sysctl_data = &t;
 1632         t = *(int *)rnode->sysctl_data;
 1633         error = sysctl_lookup(SYSCTLFN_CALL(&node));
 1634         if (error || newp == NULL)
 1635                 return (error);
 1636 
 1637         if (t < 0 || t > 100)
 1638                 return EINVAL;
 1639         bufcache = t;
 1640         buf_setwm();
 1641 
 1642         sysctl_bufvm_common();
 1643         return 0;
 1644 }
 1645 
 1646 static int
 1647 sysctl_bufvm_update(SYSCTLFN_ARGS)
 1648 {
 1649         int64_t t;
 1650         int error;
 1651         struct sysctlnode node;
 1652 
 1653         node = *rnode;
 1654         node.sysctl_data = &t;
 1655         t = *(int64_t *)rnode->sysctl_data;
 1656         error = sysctl_lookup(SYSCTLFN_CALL(&node));
 1657         if (error || newp == NULL)
 1658                 return (error);
 1659 
 1660         if (t < 0)
 1661                 return EINVAL;
 1662         if (rnode->sysctl_data == &bufmem_lowater) {
 1663                 if (bufmem_hiwater - t < 16)
 1664                         return (EINVAL);
 1665                 bufmem_lowater = t;
 1666         } else if (rnode->sysctl_data == &bufmem_hiwater) {
 1667                 if (t - bufmem_lowater < 16)
 1668                         return (EINVAL);
 1669                 bufmem_hiwater = t;
 1670         } else
 1671                 return (EINVAL);
 1672 
 1673         sysctl_bufvm_common();
 1674 
 1675         return 0;
 1676 }
 1677 
 1678 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
 1679 {
 1680 
 1681         sysctl_createv(clog, 0, NULL, NULL,
 1682                        CTLFLAG_PERMANENT,
 1683                        CTLTYPE_NODE, "kern", NULL,
 1684                        NULL, 0, NULL, 0,
 1685                        CTL_KERN, CTL_EOL);
 1686         sysctl_createv(clog, 0, NULL, NULL,
 1687                        CTLFLAG_PERMANENT,
 1688                        CTLTYPE_NODE, "buf",
 1689                        SYSCTL_DESCR("Kernel buffer cache information"),
 1690                        sysctl_dobuf, 0, NULL, 0,
 1691                        CTL_KERN, KERN_BUF, CTL_EOL);
 1692 }
 1693 
 1694 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
 1695 {
 1696 
 1697         sysctl_createv(clog, 0, NULL, NULL,
 1698                        CTLFLAG_PERMANENT,
 1699                        CTLTYPE_NODE, "vm", NULL,
 1700                        NULL, 0, NULL, 0,
 1701                        CTL_VM, CTL_EOL);
 1702 
 1703         sysctl_createv(clog, 0, NULL, NULL,
 1704                        CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
 1705                        CTLTYPE_INT, "bufcache",
 1706                        SYSCTL_DESCR("Percentage of physical memory to use for "
 1707                                     "buffer cache"),
 1708                        sysctl_bufcache_update, 0, &bufcache, 0,
 1709                        CTL_VM, CTL_CREATE, CTL_EOL);
 1710         sysctl_createv(clog, 0, NULL, NULL,
 1711                        CTLFLAG_PERMANENT|CTLFLAG_READONLY,
 1712                        CTLTYPE_QUAD, "bufmem",
 1713                        SYSCTL_DESCR("Amount of kernel memory used by buffer "
 1714                                     "cache"),
 1715                        NULL, 0, &bufmem, 0,
 1716                        CTL_VM, CTL_CREATE, CTL_EOL);
 1717         sysctl_createv(clog, 0, NULL, NULL,
 1718                        CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
 1719                        CTLTYPE_QUAD, "bufmem_lowater",
 1720                        SYSCTL_DESCR("Minimum amount of kernel memory to "
 1721                                     "reserve for buffer cache"),
 1722                        sysctl_bufvm_update, 0, &bufmem_lowater, 0,
 1723                        CTL_VM, CTL_CREATE, CTL_EOL);
 1724         sysctl_createv(clog, 0, NULL, NULL,
 1725                        CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
 1726                        CTLTYPE_QUAD, "bufmem_hiwater",
 1727                        SYSCTL_DESCR("Maximum amount of kernel memory to use "
 1728                                     "for buffer cache"),
 1729                        sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
 1730                        CTL_VM, CTL_CREATE, CTL_EOL);
 1731 }
 1732 
 1733 #ifdef DEBUG
 1734 /*
 1735  * Print out statistics on the current allocation of the buffer pool.
 1736  * Can be enabled to print out on every ``sync'' by setting "syncprt"
 1737  * in vfs_syscalls.c using sysctl.
 1738  */
 1739 void
 1740 vfs_bufstats(void)
 1741 {
 1742         int s, i, j, count;
 1743         struct buf *bp;
 1744         struct bqueue *dp;
 1745         int counts[(MAXBSIZE / PAGE_SIZE) + 1];
 1746         static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
 1747 
 1748         for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
 1749                 count = 0;
 1750                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
 1751                         counts[j] = 0;
 1752                 s = splbio();
 1753                 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
 1754                         counts[bp->b_bufsize/PAGE_SIZE]++;
 1755                         count++;
 1756                 }
 1757                 splx(s);
 1758                 printf("%s: total-%d", bname[i], count);
 1759                 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
 1760                         if (counts[j] != 0)
 1761                                 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
 1762                 printf("\n");
 1763         }
 1764 }
 1765 #endif /* DEBUG */
 1766 
 1767 /* ------------------------------ */
 1768 
 1769 static POOL_INIT(bufiopool, sizeof(struct buf), 0, 0, 0, "biopl", NULL);
 1770 
 1771 static struct buf *
 1772 getiobuf1(int prflags)
 1773 {
 1774         struct buf *bp;
 1775         int s;
 1776 
 1777         s = splbio();
 1778         bp = pool_get(&bufiopool, prflags);
 1779         splx(s);
 1780         if (bp != NULL) {
 1781                 BUF_INIT(bp);
 1782         }
 1783         return bp;
 1784 }
 1785 
 1786 struct buf *
 1787 getiobuf(void)
 1788 {
 1789 
 1790         return getiobuf1(PR_WAITOK);
 1791 }
 1792 
 1793 struct buf *
 1794 getiobuf_nowait(void)
 1795 {
 1796 
 1797         return getiobuf1(PR_NOWAIT);
 1798 }
 1799 
 1800 void
 1801 putiobuf(struct buf *bp)
 1802 {
 1803         int s;
 1804 
 1805         s = splbio();
 1806         pool_put(&bufiopool, bp);
 1807         splx(s);
 1808 }
 1809 
 1810 /*
 1811  * nestiobuf_iodone: b_iodone callback for nested buffers.
 1812  */
 1813 
 1814 void
 1815 nestiobuf_iodone(struct buf *bp)
 1816 {
 1817         struct buf *mbp = bp->b_private;
 1818         int error;
 1819         int donebytes;
 1820 
 1821         KASSERT(bp->b_bcount <= bp->b_bufsize);
 1822         KASSERT(mbp != bp);
 1823 
 1824         error = 0;
 1825         if ((bp->b_flags & B_ERROR) != 0) {
 1826                 error = EIO;
 1827                 /* check if an error code was returned */
 1828                 if (bp->b_error)
 1829                         error = bp->b_error;
 1830         } else if ((bp->b_bcount < bp->b_bufsize) || (bp->b_resid > 0)) {
 1831                 /*
 1832                  * Not all got transfered, raise an error. We have no way to
 1833                  * propagate these conditions to mbp.
 1834                  */
 1835                 error = EIO;
 1836         }
 1837 
 1838         donebytes = bp->b_bufsize;
 1839 
 1840         putiobuf(bp);
 1841         nestiobuf_done(mbp, donebytes, error);
 1842 }
 1843 
 1844 /*
 1845  * nestiobuf_setup: setup a "nested" buffer.
 1846  *
 1847  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
 1848  * => 'bp' should be a buffer allocated by getiobuf or getiobuf_nowait.
 1849  * => 'offset' is a byte offset in the master buffer.
 1850  * => 'size' is a size in bytes of this nested buffer.
 1851  */
 1852 
 1853 void
 1854 nestiobuf_setup(struct buf *mbp, struct buf *bp, int offset, size_t size)
 1855 {
 1856         const int b_read = mbp->b_flags & B_READ;
 1857         struct vnode *vp = mbp->b_vp;
 1858 
 1859         KASSERT(mbp->b_bcount >= offset + size);
 1860         bp->b_vp = vp;
 1861         bp->b_flags = B_BUSY | B_CALL | B_ASYNC | b_read;
 1862         bp->b_iodone = nestiobuf_iodone;
 1863         bp->b_data = mbp->b_data + offset;
 1864         bp->b_resid = bp->b_bcount = size;
 1865         bp->b_bufsize = bp->b_bcount;
 1866         bp->b_private = mbp;
 1867         BIO_COPYPRIO(bp, mbp);
 1868         if (!b_read && vp != NULL) {
 1869                 int s;
 1870 
 1871                 s = splbio();
 1872                 V_INCR_NUMOUTPUT(vp);
 1873                 splx(s);
 1874         }
 1875 }
 1876 
 1877 /*
 1878  * nestiobuf_done: propagate completion to the master buffer.
 1879  *
 1880  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
 1881  * => 'error' is an errno(2) that 'donebytes' has been completed with.
 1882  */
 1883 
 1884 void
 1885 nestiobuf_done(struct buf *mbp, int donebytes, int error)
 1886 {
 1887         int s;
 1888 
 1889         if (donebytes == 0) {
 1890                 return;
 1891         }
 1892         s = splbio();
 1893         KASSERT(mbp->b_resid >= donebytes);
 1894         if (error) {
 1895                 mbp->b_flags |= B_ERROR;
 1896                 mbp->b_error = error;
 1897         }
 1898         mbp->b_resid -= donebytes;
 1899         if (mbp->b_resid == 0) {
 1900                 if ((mbp->b_flags & B_ERROR) != 0) {
 1901                         mbp->b_resid = mbp->b_bcount; /* be conservative */
 1902                 }
 1903                 biodone(mbp);
 1904         }
 1905         splx(s);
 1906 }

Cache object: a61f2457adc08acbf27de4264afa826b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.