The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_cache.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: vfs_cache.c,v 1.80 2008/10/25 14:20:17 yamt Exp $      */
    2 
    3 /*-
    4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   26  * POSSIBILITY OF SUCH DAMAGE.
   27  */
   28 
   29 /*
   30  * Copyright (c) 1989, 1993
   31  *      The Regents of the University of California.  All rights reserved.
   32  *
   33  * Redistribution and use in source and binary forms, with or without
   34  * modification, are permitted provided that the following conditions
   35  * are met:
   36  * 1. Redistributions of source code must retain the above copyright
   37  *    notice, this list of conditions and the following disclaimer.
   38  * 2. Redistributions in binary form must reproduce the above copyright
   39  *    notice, this list of conditions and the following disclaimer in the
   40  *    documentation and/or other materials provided with the distribution.
   41  * 3. Neither the name of the University nor the names of its contributors
   42  *    may be used to endorse or promote products derived from this software
   43  *    without specific prior written permission.
   44  *
   45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   55  * SUCH DAMAGE.
   56  *
   57  *      @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94
   58  */
   59 
   60 #include <sys/cdefs.h>
   61 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.80 2008/10/25 14:20:17 yamt Exp $");
   62 
   63 #include "opt_ddb.h"
   64 #include "opt_revcache.h"
   65 
   66 #include <sys/param.h>
   67 #include <sys/systm.h>
   68 #include <sys/time.h>
   69 #include <sys/mount.h>
   70 #include <sys/vnode.h>
   71 #include <sys/namei.h>
   72 #include <sys/errno.h>
   73 #include <sys/pool.h>
   74 #include <sys/mutex.h>
   75 #include <sys/atomic.h>
   76 #include <sys/kthread.h>
   77 #include <sys/kernel.h>
   78 #include <sys/cpu.h>
   79 #include <sys/evcnt.h>
   80 
   81 #define NAMECACHE_ENTER_REVERSE
   82 /*
   83  * Name caching works as follows:
   84  *
   85  * Names found by directory scans are retained in a cache
   86  * for future reference.  It is managed LRU, so frequently
   87  * used names will hang around.  Cache is indexed by hash value
   88  * obtained from (dvp, name) where dvp refers to the directory
   89  * containing name.
   90  *
   91  * For simplicity (and economy of storage), names longer than
   92  * a maximum length of NCHNAMLEN are not cached; they occur
   93  * infrequently in any case, and are almost never of interest.
   94  *
   95  * Upon reaching the last segment of a path, if the reference
   96  * is for DELETE, or NOCACHE is set (rewrite), and the
   97  * name is located in the cache, it will be dropped.
   98  * The entry is dropped also when it was not possible to lock
   99  * the cached vnode, either because vget() failed or the generation
  100  * number has changed while waiting for the lock.
  101  */
  102 
  103 /*
  104  * Per-cpu namecache data.
  105  */
  106 struct nchcpu {
  107         kmutex_t        cpu_lock;
  108         struct nchstats cpu_stats;
  109 };
  110 
  111 /*
  112  * Structures associated with name cacheing.
  113  */
  114 LIST_HEAD(nchashhead, namecache) *nchashtbl;
  115 u_long  nchash;                         /* size of hash table - 1 */
  116 #define NCHASH(cnp, dvp)        \
  117         (((cnp)->cn_hash ^ ((uintptr_t)(dvp) >> 3)) & nchash)
  118 
  119 LIST_HEAD(ncvhashhead, namecache) *ncvhashtbl;
  120 u_long  ncvhash;                        /* size of hash table - 1 */
  121 #define NCVHASH(vp)             (((uintptr_t)(vp) >> 3) & ncvhash)
  122 
  123 long    numcache;                       /* number of cache entries allocated */
  124 static u_int    cache_gcpend;           /* number of entries pending GC */
  125 static void     *cache_gcqueue;         /* garbage collection queue */
  126 
  127 TAILQ_HEAD(, namecache) nclruhead =             /* LRU chain */
  128         TAILQ_HEAD_INITIALIZER(nclruhead);
  129 #define COUNT(c,x)      (c.x++)
  130 struct  nchstats nchstats;              /* cache effectiveness statistics */
  131 
  132 static pool_cache_t namecache_cache;
  133 
  134 MALLOC_DEFINE(M_CACHE, "namecache", "Dynamically allocated cache entries");
  135 
  136 int cache_lowat = 95;
  137 int cache_hiwat = 98;
  138 int cache_hottime = 5;                  /* number of seconds */
  139 int doingcache = 1;                     /* 1 => enable the cache */
  140 
  141 static struct evcnt cache_ev_scan;
  142 static struct evcnt cache_ev_gc;
  143 static struct evcnt cache_ev_over;
  144 static struct evcnt cache_ev_under;
  145 static struct evcnt cache_ev_forced;
  146 
  147 /* A single lock to serialize modifications. */
  148 static kmutex_t *namecache_lock;
  149 
  150 static void cache_invalidate(struct namecache *);
  151 static inline struct namecache *cache_lookup_entry(
  152     const struct vnode *, const struct componentname *);
  153 static void cache_thread(void *);
  154 static void cache_invalidate(struct namecache *);
  155 static void cache_disassociate(struct namecache *);
  156 static void cache_reclaim(void);
  157 static int cache_ctor(void *, void *, int);
  158 static void cache_dtor(void *, void *);
  159 
  160 /*
  161  * Invalidate a cache entry and enqueue it for garbage collection.
  162  */
  163 static void
  164 cache_invalidate(struct namecache *ncp)
  165 {
  166         void *head;
  167 
  168         KASSERT(mutex_owned(&ncp->nc_lock));
  169 
  170         if (ncp->nc_dvp != NULL) {
  171                 ncp->nc_vp = NULL;
  172                 ncp->nc_dvp = NULL;
  173                 do {
  174                         head = cache_gcqueue;
  175                         ncp->nc_gcqueue = head;
  176                 } while (atomic_cas_ptr(&cache_gcqueue, head, ncp) != head);
  177                 atomic_inc_uint(&cache_gcpend);
  178         }
  179 }
  180 
  181 /*
  182  * Disassociate a namecache entry from any vnodes it is attached to,
  183  * and remove from the global LRU list.
  184  */
  185 static void
  186 cache_disassociate(struct namecache *ncp)
  187 {
  188 
  189         KASSERT(mutex_owned(namecache_lock));
  190         KASSERT(ncp->nc_dvp == NULL);
  191 
  192         if (ncp->nc_lru.tqe_prev != NULL) {
  193                 TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
  194                 ncp->nc_lru.tqe_prev = NULL;
  195         }
  196         if (ncp->nc_vhash.le_prev != NULL) {
  197                 LIST_REMOVE(ncp, nc_vhash);
  198                 ncp->nc_vhash.le_prev = NULL;
  199         }
  200         if (ncp->nc_vlist.le_prev != NULL) {
  201                 LIST_REMOVE(ncp, nc_vlist);
  202                 ncp->nc_vlist.le_prev = NULL;
  203         }
  204         if (ncp->nc_dvlist.le_prev != NULL) {
  205                 LIST_REMOVE(ncp, nc_dvlist);
  206                 ncp->nc_dvlist.le_prev = NULL;
  207         }
  208 }
  209 
  210 /*
  211  * Lock all CPUs to prevent any cache lookup activity.  Conceptually,
  212  * this locks out all "readers".
  213  */
  214 static void
  215 cache_lock_cpus(void)
  216 {
  217         CPU_INFO_ITERATOR cii;
  218         struct cpu_info *ci;
  219         struct nchcpu *cpup;
  220         long *s, *d, *m;
  221 
  222         for (CPU_INFO_FOREACH(cii, ci)) {
  223                 cpup = ci->ci_data.cpu_nch;
  224                 mutex_enter(&cpup->cpu_lock);
  225 
  226                 /* Collate statistics. */
  227                 d = (long *)&nchstats;
  228                 s = (long *)&cpup->cpu_stats;
  229                 m = s + sizeof(nchstats) / sizeof(long);
  230                 for (; s < m; s++, d++) {
  231                         *d += *s;
  232                         *s = 0;
  233                 }
  234         }
  235 }
  236 
  237 /*
  238  * Release all CPU locks.
  239  */
  240 static void
  241 cache_unlock_cpus(void)
  242 {
  243         CPU_INFO_ITERATOR cii;
  244         struct cpu_info *ci;
  245         struct nchcpu *cpup;
  246 
  247         for (CPU_INFO_FOREACH(cii, ci)) {
  248                 cpup = ci->ci_data.cpu_nch;
  249                 mutex_exit(&cpup->cpu_lock);
  250         }
  251 }
  252 
  253 /*
  254  * Find a single cache entry and return it locked.  'namecache_lock' or
  255  * at least one of the per-CPU locks must be held.
  256  */
  257 static struct namecache *
  258 cache_lookup_entry(const struct vnode *dvp, const struct componentname *cnp)
  259 {
  260         struct nchashhead *ncpp;
  261         struct namecache *ncp;
  262 
  263         ncpp = &nchashtbl[NCHASH(cnp, dvp)];
  264 
  265         LIST_FOREACH(ncp, ncpp, nc_hash) {
  266                 if (ncp->nc_dvp != dvp ||
  267                     ncp->nc_nlen != cnp->cn_namelen ||
  268                     memcmp(ncp->nc_name, cnp->cn_nameptr, (u_int)ncp->nc_nlen))
  269                         continue;
  270                 mutex_enter(&ncp->nc_lock);
  271                 if (__predict_true(ncp->nc_dvp == dvp)) {
  272                         ncp->nc_hittime = hardclock_ticks;
  273                         return ncp;
  274                 }
  275                 /* Raced: entry has been nullified. */
  276                 mutex_exit(&ncp->nc_lock);
  277         }
  278 
  279         return NULL;
  280 }
  281 
  282 /*
  283  * Look for a the name in the cache. We don't do this
  284  * if the segment name is long, simply so the cache can avoid
  285  * holding long names (which would either waste space, or
  286  * add greatly to the complexity).
  287  *
  288  * Lookup is called with ni_dvp pointing to the directory to search,
  289  * ni_ptr pointing to the name of the entry being sought, ni_namelen
  290  * tells the length of the name, and ni_hash contains a hash of
  291  * the name. If the lookup succeeds, the vnode is locked, stored in ni_vp
  292  * and a status of zero is returned. If the locking fails for whatever
  293  * reason, the vnode is unlocked and the error is returned to caller.
  294  * If the lookup determines that the name does not exist (negative cacheing),
  295  * a status of ENOENT is returned. If the lookup fails, a status of -1
  296  * is returned.
  297  */
  298 int
  299 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp)
  300 {
  301         struct namecache *ncp;
  302         struct vnode *vp;
  303         struct nchcpu *cpup;
  304         int error;
  305 
  306         if (__predict_false(!doingcache)) {
  307                 cnp->cn_flags &= ~MAKEENTRY;
  308                 *vpp = NULL;
  309                 return -1;
  310         }
  311 
  312         cpup = curcpu()->ci_data.cpu_nch;
  313         mutex_enter(&cpup->cpu_lock);
  314         if (__predict_false(cnp->cn_namelen > NCHNAMLEN)) {
  315                 COUNT(cpup->cpu_stats, ncs_long);
  316                 cnp->cn_flags &= ~MAKEENTRY;
  317                 mutex_exit(&cpup->cpu_lock);
  318                 *vpp = NULL;
  319                 return -1;
  320         }
  321         ncp = cache_lookup_entry(dvp, cnp);
  322         if (__predict_false(ncp == NULL)) {
  323                 COUNT(cpup->cpu_stats, ncs_miss);
  324                 mutex_exit(&cpup->cpu_lock);
  325                 *vpp = NULL;
  326                 return -1;
  327         }
  328         if ((cnp->cn_flags & MAKEENTRY) == 0) {
  329                 COUNT(cpup->cpu_stats, ncs_badhits);
  330                 /*
  331                  * Last component and we are renaming or deleting,
  332                  * the cache entry is invalid, or otherwise don't
  333                  * want cache entry to exist.
  334                  */
  335                 cache_invalidate(ncp);
  336                 mutex_exit(&ncp->nc_lock);
  337                 mutex_exit(&cpup->cpu_lock);
  338                 *vpp = NULL;
  339                 return -1;
  340         } else if (ncp->nc_vp == NULL) {
  341                 /*
  342                  * Restore the ISWHITEOUT flag saved earlier.
  343                  */
  344                 KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
  345                 cnp->cn_flags |= ncp->nc_flags;
  346                 if (__predict_true(cnp->cn_nameiop != CREATE ||
  347                     (cnp->cn_flags & ISLASTCN) == 0)) {
  348                         COUNT(cpup->cpu_stats, ncs_neghits);
  349                         mutex_exit(&ncp->nc_lock);
  350                         mutex_exit(&cpup->cpu_lock);
  351                         return ENOENT;
  352                 } else {
  353                         COUNT(cpup->cpu_stats, ncs_badhits);
  354                         /*
  355                          * Last component and we are renaming or
  356                          * deleting, the cache entry is invalid,
  357                          * or otherwise don't want cache entry to
  358                          * exist.
  359                          */
  360                         cache_invalidate(ncp);
  361                         mutex_exit(&ncp->nc_lock);
  362                         mutex_exit(&cpup->cpu_lock);
  363                         *vpp = NULL;
  364                         return -1;
  365                 }
  366         }
  367 
  368         vp = ncp->nc_vp;
  369         if (vtryget(vp)) {
  370                 mutex_exit(&ncp->nc_lock);
  371                 mutex_exit(&cpup->cpu_lock);
  372         } else {
  373                 mutex_enter(&vp->v_interlock);
  374                 mutex_exit(&ncp->nc_lock);
  375                 mutex_exit(&cpup->cpu_lock);
  376                 error = vget(vp, LK_NOWAIT | LK_INTERLOCK);
  377                 if (error) {
  378                         KASSERT(error == EBUSY);
  379                         /*
  380                          * This vnode is being cleaned out.
  381                          * XXX badhits?
  382                          */
  383                         COUNT(cpup->cpu_stats, ncs_falsehits);
  384                         *vpp = NULL;
  385                         return -1;
  386                 }
  387         }
  388 
  389 #ifdef DEBUG
  390         /*
  391          * since we released nb->nb_lock,
  392          * we can't use this pointer any more.
  393          */
  394         ncp = NULL;
  395 #endif /* DEBUG */
  396 
  397         if (vp == dvp) {        /* lookup on "." */
  398                 error = 0;
  399         } else if (cnp->cn_flags & ISDOTDOT) {
  400                 VOP_UNLOCK(dvp, 0);
  401                 error = vn_lock(vp, LK_EXCLUSIVE);
  402                 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
  403         } else {
  404                 error = vn_lock(vp, LK_EXCLUSIVE);
  405         }
  406 
  407         /*
  408          * Check that the lock succeeded.
  409          */
  410         if (error) {
  411                 /* Unlocked, but only for stats. */
  412                 COUNT(cpup->cpu_stats, ncs_badhits);
  413                 vrele(vp);
  414                 *vpp = NULL;
  415                 return -1;
  416         }
  417 
  418         /* Unlocked, but only for stats. */
  419         COUNT(cpup->cpu_stats, ncs_goodhits);
  420         *vpp = vp;
  421         return 0;
  422 }
  423 
  424 int
  425 cache_lookup_raw(struct vnode *dvp, struct vnode **vpp,
  426     struct componentname *cnp)
  427 {
  428         struct namecache *ncp;
  429         struct vnode *vp;
  430         struct nchcpu *cpup;
  431         int error;
  432 
  433         if (__predict_false(!doingcache)) {
  434                 cnp->cn_flags &= ~MAKEENTRY;
  435                 *vpp = NULL;
  436                 return (-1);
  437         }
  438 
  439         cpup = curcpu()->ci_data.cpu_nch;
  440         mutex_enter(&cpup->cpu_lock);
  441         if (__predict_false(cnp->cn_namelen > NCHNAMLEN)) {
  442                 COUNT(cpup->cpu_stats, ncs_long);
  443                 cnp->cn_flags &= ~MAKEENTRY;
  444                 mutex_exit(&cpup->cpu_lock);
  445                 *vpp = NULL;
  446                 return -1;
  447         }
  448         ncp = cache_lookup_entry(dvp, cnp);
  449         if (__predict_false(ncp == NULL)) {
  450                 COUNT(cpup->cpu_stats, ncs_miss);
  451                 mutex_exit(&cpup->cpu_lock);
  452                 *vpp = NULL;
  453                 return -1;
  454         }
  455         vp = ncp->nc_vp;
  456         if (vp == NULL) {
  457                 /*
  458                  * Restore the ISWHITEOUT flag saved earlier.
  459                  */
  460                 KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
  461                 cnp->cn_flags |= ncp->nc_flags;
  462                 COUNT(cpup->cpu_stats, ncs_neghits);
  463                 mutex_exit(&ncp->nc_lock);
  464                 mutex_exit(&cpup->cpu_lock);
  465                 return ENOENT;
  466         }
  467         if (vtryget(vp)) {
  468                 mutex_exit(&ncp->nc_lock);
  469                 mutex_exit(&cpup->cpu_lock);
  470         } else {
  471                 mutex_enter(&vp->v_interlock);
  472                 mutex_exit(&ncp->nc_lock);
  473                 mutex_exit(&cpup->cpu_lock);
  474                 error = vget(vp, LK_NOWAIT | LK_INTERLOCK);
  475                 if (error) {
  476                         KASSERT(error == EBUSY);
  477                         /*
  478                          * This vnode is being cleaned out.
  479                          * XXX badhits?
  480                          */
  481                         COUNT(cpup->cpu_stats, ncs_falsehits);
  482                         *vpp = NULL;
  483                         return -1;
  484                 }
  485         }
  486 
  487         /* Unlocked, but only for stats. */
  488         COUNT(cpup->cpu_stats, ncs_goodhits); /* XXX can be "badhits" */
  489         *vpp = vp;
  490         return 0;
  491 }
  492 
  493 /*
  494  * Scan cache looking for name of directory entry pointing at vp.
  495  *
  496  * Fill in dvpp.
  497  *
  498  * If bufp is non-NULL, also place the name in the buffer which starts
  499  * at bufp, immediately before *bpp, and move bpp backwards to point
  500  * at the start of it.  (Yes, this is a little baroque, but it's done
  501  * this way to cater to the whims of getcwd).
  502  *
  503  * Returns 0 on success, -1 on cache miss, positive errno on failure.
  504  */
  505 int
  506 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp)
  507 {
  508         struct namecache *ncp;
  509         struct vnode *dvp;
  510         struct ncvhashhead *nvcpp;
  511         char *bp;
  512 
  513         if (!doingcache)
  514                 goto out;
  515 
  516         nvcpp = &ncvhashtbl[NCVHASH(vp)];
  517 
  518         mutex_enter(namecache_lock);
  519         LIST_FOREACH(ncp, nvcpp, nc_vhash) {
  520                 mutex_enter(&ncp->nc_lock);
  521                 if (ncp->nc_vp == vp &&
  522                     (dvp = ncp->nc_dvp) != NULL &&
  523                     dvp != vp) {                /* avoid pesky . entries.. */
  524 
  525 #ifdef DIAGNOSTIC
  526                         if (ncp->nc_nlen == 1 &&
  527                             ncp->nc_name[0] == '.')
  528                                 panic("cache_revlookup: found entry for .");
  529 
  530                         if (ncp->nc_nlen == 2 &&
  531                             ncp->nc_name[0] == '.' &&
  532                             ncp->nc_name[1] == '.')
  533                                 panic("cache_revlookup: found entry for ..");
  534 #endif
  535                         COUNT(nchstats, ncs_revhits);
  536 
  537                         if (bufp) {
  538                                 bp = *bpp;
  539                                 bp -= ncp->nc_nlen;
  540                                 if (bp <= bufp) {
  541                                         *dvpp = NULL;
  542                                         mutex_exit(&ncp->nc_lock);
  543                                         mutex_exit(namecache_lock);
  544                                         return (ERANGE);
  545                                 }
  546                                 memcpy(bp, ncp->nc_name, ncp->nc_nlen);
  547                                 *bpp = bp;
  548                         }
  549 
  550                         /* XXX MP: how do we know dvp won't evaporate? */
  551                         *dvpp = dvp;
  552                         mutex_exit(&ncp->nc_lock);
  553                         mutex_exit(namecache_lock);
  554                         return (0);
  555                 }
  556                 mutex_exit(&ncp->nc_lock);
  557         }
  558         COUNT(nchstats, ncs_revmiss);
  559         mutex_exit(namecache_lock);
  560  out:
  561         *dvpp = NULL;
  562         return (-1);
  563 }
  564 
  565 /*
  566  * Add an entry to the cache
  567  */
  568 void
  569 cache_enter(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
  570 {
  571         struct namecache *ncp;
  572         struct namecache *oncp;
  573         struct nchashhead *ncpp;
  574         struct ncvhashhead *nvcpp;
  575 
  576 #ifdef DIAGNOSTIC
  577         if (cnp->cn_namelen > NCHNAMLEN)
  578                 panic("cache_enter: name too long");
  579 #endif
  580         if (!doingcache)
  581                 return;
  582 
  583         if (numcache > desiredvnodes) {
  584                 mutex_enter(namecache_lock);
  585                 cache_ev_forced.ev_count++;
  586                 cache_reclaim();
  587                 mutex_exit(namecache_lock);
  588         }
  589 
  590         ncp = pool_cache_get(namecache_cache, PR_WAITOK);
  591         mutex_enter(namecache_lock);
  592         numcache++;
  593 
  594         /*
  595          * Concurrent lookups in the same directory may race for a
  596          * cache entry.  if there's a duplicated entry, free it.
  597          */
  598         oncp = cache_lookup_entry(dvp, cnp);
  599         if (oncp) {
  600                 cache_invalidate(oncp);
  601                 mutex_exit(&oncp->nc_lock);
  602         }
  603 
  604         /* Grab the vnode we just found. */
  605         mutex_enter(&ncp->nc_lock);
  606         ncp->nc_vp = vp;
  607         ncp->nc_flags = 0;
  608         ncp->nc_hittime = 0;
  609         ncp->nc_gcqueue = NULL;
  610         if (vp == NULL) {
  611                 /*
  612                  * For negative hits, save the ISWHITEOUT flag so we can
  613                  * restore it later when the cache entry is used again.
  614                  */
  615                 ncp->nc_flags = cnp->cn_flags & ISWHITEOUT;
  616         }
  617         /* Fill in cache info. */
  618         ncp->nc_dvp = dvp;
  619         LIST_INSERT_HEAD(&dvp->v_dnclist, ncp, nc_dvlist);
  620         if (vp)
  621                 LIST_INSERT_HEAD(&vp->v_nclist, ncp, nc_vlist);
  622         else {
  623                 ncp->nc_vlist.le_prev = NULL;
  624                 ncp->nc_vlist.le_next = NULL;
  625         }
  626         ncp->nc_nlen = cnp->cn_namelen;
  627         TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
  628         memcpy(ncp->nc_name, cnp->cn_nameptr, (unsigned)ncp->nc_nlen);
  629         ncpp = &nchashtbl[NCHASH(cnp, dvp)];
  630 
  631         /*
  632          * Flush updates before making visible in table.  No need for a
  633          * memory barrier on the other side: to see modifications the
  634          * list must be followed, meaning a dependent pointer load.
  635          * The below is LIST_INSERT_HEAD() inlined, with the memory
  636          * barrier included in the correct place.
  637          */
  638         if ((ncp->nc_hash.le_next = ncpp->lh_first) != NULL)
  639                 ncpp->lh_first->nc_hash.le_prev = &ncp->nc_hash.le_next;
  640         ncp->nc_hash.le_prev = &ncpp->lh_first;
  641         membar_producer();
  642         ncpp->lh_first = ncp;
  643 
  644         ncp->nc_vhash.le_prev = NULL;
  645         ncp->nc_vhash.le_next = NULL;
  646 
  647         /*
  648          * Create reverse-cache entries (used in getcwd) for directories.
  649          * (and in linux procfs exe node)
  650          */
  651         if (vp != NULL &&
  652             vp != dvp &&
  653 #ifndef NAMECACHE_ENTER_REVERSE
  654             vp->v_type == VDIR &&
  655 #endif
  656             (ncp->nc_nlen > 2 ||
  657             (ncp->nc_nlen > 1 && ncp->nc_name[1] != '.') ||
  658             (/* ncp->nc_nlen > 0 && */ ncp->nc_name[0] != '.'))) {
  659                 nvcpp = &ncvhashtbl[NCVHASH(vp)];
  660                 LIST_INSERT_HEAD(nvcpp, ncp, nc_vhash);
  661         }
  662         mutex_exit(&ncp->nc_lock);
  663         mutex_exit(namecache_lock);
  664 }
  665 
  666 /*
  667  * Name cache initialization, from vfs_init() when we are booting
  668  */
  669 void
  670 nchinit(void)
  671 {
  672         int error;
  673 
  674         namecache_cache = pool_cache_init(sizeof(struct namecache), 
  675             coherency_unit, 0, 0, "ncache", NULL, IPL_NONE, cache_ctor,
  676             cache_dtor, NULL);
  677         KASSERT(namecache_cache != NULL);
  678 
  679         namecache_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
  680 
  681         nchashtbl = hashinit(desiredvnodes, HASH_LIST, true, &nchash);
  682         ncvhashtbl =
  683 #ifdef NAMECACHE_ENTER_REVERSE
  684             hashinit(desiredvnodes, HASH_LIST, true, &ncvhash);
  685 #else
  686             hashinit(desiredvnodes/8, HASH_LIST, true, &ncvhash);
  687 #endif
  688 
  689         error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, cache_thread,
  690             NULL, NULL, "cachegc");
  691         if (error != 0)
  692                 panic("nchinit %d", error);
  693 
  694         evcnt_attach_dynamic(&cache_ev_scan, EVCNT_TYPE_MISC, NULL,
  695            "namecache", "entries scanned");
  696         evcnt_attach_dynamic(&cache_ev_gc, EVCNT_TYPE_MISC, NULL,
  697            "namecache", "entries collected");
  698         evcnt_attach_dynamic(&cache_ev_over, EVCNT_TYPE_MISC, NULL,
  699            "namecache", "over scan target");
  700         evcnt_attach_dynamic(&cache_ev_under, EVCNT_TYPE_MISC, NULL,
  701            "namecache", "under scan target");
  702         evcnt_attach_dynamic(&cache_ev_forced, EVCNT_TYPE_MISC, NULL,
  703            "namecache", "forced reclaims");
  704 }
  705 
  706 static int
  707 cache_ctor(void *arg, void *obj, int flag)
  708 {
  709         struct namecache *ncp;
  710 
  711         ncp = obj;
  712         mutex_init(&ncp->nc_lock, MUTEX_DEFAULT, IPL_NONE);
  713 
  714         return 0;
  715 }
  716 
  717 static void
  718 cache_dtor(void *arg, void *obj)
  719 {
  720         struct namecache *ncp;
  721 
  722         ncp = obj;
  723         mutex_destroy(&ncp->nc_lock);
  724 }
  725 
  726 /*
  727  * Called once for each CPU in the system as attached.
  728  */
  729 void
  730 cache_cpu_init(struct cpu_info *ci)
  731 {
  732         struct nchcpu *cpup;
  733         size_t sz;
  734 
  735         sz = roundup2(sizeof(*cpup), coherency_unit) + coherency_unit;
  736         cpup = kmem_zalloc(sz, KM_SLEEP);
  737         cpup = (void *)roundup2((uintptr_t)cpup, coherency_unit);
  738         mutex_init(&cpup->cpu_lock, MUTEX_DEFAULT, IPL_NONE);
  739         ci->ci_data.cpu_nch = cpup;
  740 }
  741 
  742 /*
  743  * Name cache reinitialization, for when the maximum number of vnodes increases.
  744  */
  745 void
  746 nchreinit(void)
  747 {
  748         struct namecache *ncp;
  749         struct nchashhead *oldhash1, *hash1;
  750         struct ncvhashhead *oldhash2, *hash2;
  751         u_long i, oldmask1, oldmask2, mask1, mask2;
  752 
  753         hash1 = hashinit(desiredvnodes, HASH_LIST, true, &mask1);
  754         hash2 =
  755 #ifdef NAMECACHE_ENTER_REVERSE
  756             hashinit(desiredvnodes, HASH_LIST, true, &mask2);
  757 #else
  758             hashinit(desiredvnodes/8, HASH_LIST, true, &mask2);
  759 #endif
  760         mutex_enter(namecache_lock);
  761         cache_lock_cpus();
  762         oldhash1 = nchashtbl;
  763         oldmask1 = nchash;
  764         nchashtbl = hash1;
  765         nchash = mask1;
  766         oldhash2 = ncvhashtbl;
  767         oldmask2 = ncvhash;
  768         ncvhashtbl = hash2;
  769         ncvhash = mask2;
  770         for (i = 0; i <= oldmask1; i++) {
  771                 while ((ncp = LIST_FIRST(&oldhash1[i])) != NULL) {
  772                         LIST_REMOVE(ncp, nc_hash);
  773                         ncp->nc_hash.le_prev = NULL;
  774                 }
  775         }
  776         for (i = 0; i <= oldmask2; i++) {
  777                 while ((ncp = LIST_FIRST(&oldhash2[i])) != NULL) {
  778                         LIST_REMOVE(ncp, nc_vhash);
  779                         ncp->nc_vhash.le_prev = NULL;
  780                 }
  781         }
  782         cache_unlock_cpus();
  783         mutex_exit(namecache_lock);
  784         hashdone(oldhash1, HASH_LIST, oldmask1);
  785         hashdone(oldhash2, HASH_LIST, oldmask2);
  786 }
  787 
  788 /*
  789  * Cache flush, a particular vnode; called when a vnode is renamed to
  790  * hide entries that would now be invalid
  791  */
  792 void
  793 cache_purge1(struct vnode *vp, const struct componentname *cnp, int flags)
  794 {
  795         struct namecache *ncp, *ncnext;
  796 
  797         mutex_enter(namecache_lock);
  798         if (flags & PURGE_PARENTS) {
  799                 for (ncp = LIST_FIRST(&vp->v_nclist); ncp != NULL;
  800                     ncp = ncnext) {
  801                         ncnext = LIST_NEXT(ncp, nc_vlist);
  802                         mutex_enter(&ncp->nc_lock);
  803                         cache_invalidate(ncp);
  804                         mutex_exit(&ncp->nc_lock);
  805                         cache_disassociate(ncp);
  806                 }
  807         }
  808         if (flags & PURGE_CHILDREN) {
  809                 for (ncp = LIST_FIRST(&vp->v_dnclist); ncp != NULL;
  810                     ncp = ncnext) {
  811                         ncnext = LIST_NEXT(ncp, nc_dvlist);
  812                         mutex_enter(&ncp->nc_lock);
  813                         cache_invalidate(ncp);
  814                         mutex_exit(&ncp->nc_lock);
  815                         cache_disassociate(ncp);
  816                 }
  817         }
  818         if (cnp != NULL) {
  819                 ncp = cache_lookup_entry(vp, cnp);
  820                 if (ncp) {
  821                         cache_invalidate(ncp);
  822                         cache_disassociate(ncp);
  823                         mutex_exit(&ncp->nc_lock);
  824                 }
  825         }
  826         mutex_exit(namecache_lock);
  827 }
  828 
  829 /*
  830  * Cache flush, a whole filesystem; called when filesys is umounted to
  831  * remove entries that would now be invalid.
  832  */
  833 void
  834 cache_purgevfs(struct mount *mp)
  835 {
  836         struct namecache *ncp, *nxtcp;
  837 
  838         mutex_enter(namecache_lock);
  839         for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
  840                 nxtcp = TAILQ_NEXT(ncp, nc_lru);
  841                 mutex_enter(&ncp->nc_lock);
  842                 if (ncp->nc_dvp != NULL && ncp->nc_dvp->v_mount == mp) {
  843                         /* Free the resources we had. */
  844                         cache_invalidate(ncp);
  845                         cache_disassociate(ncp);
  846                 }
  847                 mutex_exit(&ncp->nc_lock);
  848         }
  849         cache_reclaim();
  850         mutex_exit(namecache_lock);
  851 }
  852 
  853 /*
  854  * Scan global list invalidating entries until we meet a preset target. 
  855  * Prefer to invalidate entries that have not scored a hit within
  856  * cache_hottime seconds.  We sort the LRU list only for this routine's
  857  * benefit.
  858  */
  859 static void
  860 cache_prune(int incache, int target)
  861 {
  862         struct namecache *ncp, *nxtcp, *sentinel;
  863         int items, recent, tryharder;
  864 
  865         KASSERT(mutex_owned(namecache_lock));
  866 
  867         items = 0;
  868         tryharder = 0;
  869         recent = hardclock_ticks - hz * cache_hottime;
  870         sentinel = NULL;
  871         for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
  872                 if (incache <= target)
  873                         break;
  874                 items++;
  875                 nxtcp = TAILQ_NEXT(ncp, nc_lru);
  876                 if (ncp->nc_dvp == NULL)
  877                         continue;
  878                 if (ncp == sentinel) {
  879                         /*
  880                          * If we looped back on ourself, then ignore
  881                          * recent entries and purge whatever we find.
  882                          */
  883                         tryharder = 1;
  884                 }
  885                 if (!tryharder && ncp->nc_hittime > recent) {
  886                         if (sentinel == NULL)
  887                                 sentinel = ncp;
  888                         TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
  889                         TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
  890                         continue;
  891                 }
  892                 mutex_enter(&ncp->nc_lock);
  893                 if (ncp->nc_dvp != NULL) {
  894                         cache_invalidate(ncp);
  895                         cache_disassociate(ncp);
  896                         incache--;
  897                 }
  898                 mutex_exit(&ncp->nc_lock);
  899         }
  900         cache_ev_scan.ev_count += items;
  901 }
  902 
  903 /*
  904  * Collect dead cache entries from all CPUs and garbage collect.
  905  */
  906 static void
  907 cache_reclaim(void)
  908 {
  909         struct namecache *ncp, *next;
  910         int items;
  911 
  912         KASSERT(mutex_owned(namecache_lock));
  913 
  914         /*
  915          * If the number of extant entries not awaiting garbage collection
  916          * exceeds the high water mark, then reclaim stale entries until we
  917          * reach our low water mark.
  918          */
  919         items = numcache - cache_gcpend;
  920         if (items > (uint64_t)desiredvnodes * cache_hiwat / 100) {
  921                 cache_prune(items, (int)((uint64_t)desiredvnodes *
  922                     cache_lowat / 100));
  923                 cache_ev_over.ev_count++;
  924         } else
  925                 cache_ev_under.ev_count++;
  926 
  927         /*
  928          * Stop forward lookup activity on all CPUs and garbage collect dead
  929          * entries.
  930          */
  931         cache_lock_cpus();
  932         ncp = cache_gcqueue;
  933         cache_gcqueue = NULL;
  934         items = cache_gcpend;
  935         cache_gcpend = 0;
  936         while (ncp != NULL) {
  937                 next = ncp->nc_gcqueue;
  938                 cache_disassociate(ncp);
  939                 KASSERT(ncp->nc_dvp == NULL);
  940                 if (ncp->nc_hash.le_prev != NULL) {
  941                         LIST_REMOVE(ncp, nc_hash);
  942                         ncp->nc_hash.le_prev = NULL;
  943                 }
  944                 pool_cache_put(namecache_cache, ncp);
  945                 ncp = next;
  946         }
  947         cache_unlock_cpus();
  948         numcache -= items;
  949         cache_ev_gc.ev_count += items;
  950 }
  951 
  952 /*
  953  * Cache maintainence thread, awakening once per second to:
  954  *
  955  * => keep number of entries below the high water mark
  956  * => sort pseudo-LRU list
  957  * => garbage collect dead entries
  958  */
  959 static void
  960 cache_thread(void *arg)
  961 {
  962 
  963         mutex_enter(namecache_lock);
  964         for (;;) {
  965                 cache_reclaim();
  966                 kpause("cachegc", false, hz, namecache_lock);
  967         }
  968 }
  969 
  970 #ifdef DDB
  971 void
  972 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
  973 {
  974         struct vnode *dvp = NULL;
  975         struct namecache *ncp;
  976 
  977         TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
  978                 if (ncp->nc_vp == vp && ncp->nc_dvp != NULL) {
  979                         (*pr)("name %.*s\n", ncp->nc_nlen, ncp->nc_name);
  980                         dvp = ncp->nc_dvp;
  981                 }
  982         }
  983         if (dvp == NULL) {
  984                 (*pr)("name not found\n");
  985                 return;
  986         }
  987         vp = dvp;
  988         TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
  989                 if (ncp->nc_vp == vp) {
  990                         (*pr)("parent %.*s\n", ncp->nc_nlen, ncp->nc_name);
  991                 }
  992         }
  993 }
  994 #endif

Cache object: 9c4cac27398eba35ee13a1d2e708f4cd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.