FreeBSD/Linux Kernel Cross Reference
sys/kern/vfs_mount.c
1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1999-2004 Poul-Henning Kamp
5 * Copyright (c) 1999 Michael Smith
6 * Copyright (c) 1989, 1993
7 * The Regents of the University of California. All rights reserved.
8 * (c) UNIX System Laboratories, Inc.
9 * All or some portions of this file are derived from material licensed
10 * to the University of California by American Telephone and Telegraph
11 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12 * the permission of UNIX System Laboratories, Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include <sys/param.h>
43 #include <sys/conf.h>
44 #include <sys/smp.h>
45 #include <sys/devctl.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/libkern.h>
52 #include <sys/limits.h>
53 #include <sys/malloc.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/namei.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/filedesc.h>
60 #include <sys/reboot.h>
61 #include <sys/sbuf.h>
62 #include <sys/syscallsubr.h>
63 #include <sys/sysproto.h>
64 #include <sys/sx.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/taskqueue.h>
68 #include <sys/vnode.h>
69 #include <vm/uma.h>
70
71 #include <geom/geom.h>
72
73 #include <machine/stdarg.h>
74
75 #include <security/audit/audit.h>
76 #include <security/mac/mac_framework.h>
77
78 #define VFS_MOUNTARG_SIZE_MAX (1024 * 64)
79
80 static int vfs_domount(struct thread *td, const char *fstype, char *fspath,
81 uint64_t fsflags, struct vfsoptlist **optlist);
82 static void free_mntarg(struct mntarg *ma);
83
84 static int usermount = 0;
85 SYSCTL_INT(_vfs, OID_AUTO, usermount, CTLFLAG_RW, &usermount, 0,
86 "Unprivileged users may mount and unmount file systems");
87
88 static bool default_autoro = false;
89 SYSCTL_BOOL(_vfs, OID_AUTO, default_autoro, CTLFLAG_RW, &default_autoro, 0,
90 "Retry failed r/w mount as r/o if no explicit ro/rw option is specified");
91
92 static bool recursive_forced_unmount = false;
93 SYSCTL_BOOL(_vfs, OID_AUTO, recursive_forced_unmount, CTLFLAG_RW,
94 &recursive_forced_unmount, 0, "Recursively unmount stacked upper mounts"
95 " when a file system is forcibly unmounted");
96
97 static SYSCTL_NODE(_vfs, OID_AUTO, deferred_unmount,
98 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "deferred unmount controls");
99
100 static unsigned int deferred_unmount_retry_limit = 10;
101 SYSCTL_UINT(_vfs_deferred_unmount, OID_AUTO, retry_limit, CTLFLAG_RW,
102 &deferred_unmount_retry_limit, 0,
103 "Maximum number of retries for deferred unmount failure");
104
105 static int deferred_unmount_retry_delay_hz;
106 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, retry_delay_hz, CTLFLAG_RW,
107 &deferred_unmount_retry_delay_hz, 0,
108 "Delay in units of [1/kern.hz]s when retrying a failed deferred unmount");
109
110 static int deferred_unmount_total_retries = 0;
111 SYSCTL_INT(_vfs_deferred_unmount, OID_AUTO, total_retries, CTLFLAG_RD,
112 &deferred_unmount_total_retries, 0,
113 "Total number of retried deferred unmounts");
114
115 MALLOC_DEFINE(M_MOUNT, "mount", "vfs mount structure");
116 MALLOC_DEFINE(M_STATFS, "statfs", "statfs structure");
117 static uma_zone_t mount_zone;
118
119 /* List of mounted filesystems. */
120 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
121
122 /* For any iteration/modification of mountlist */
123 struct mtx_padalign __exclusive_cache_line mountlist_mtx;
124
125 EVENTHANDLER_LIST_DEFINE(vfs_mounted);
126 EVENTHANDLER_LIST_DEFINE(vfs_unmounted);
127
128 static void vfs_deferred_unmount(void *arg, int pending);
129 static struct timeout_task deferred_unmount_task;
130 static struct mtx deferred_unmount_lock;
131 MTX_SYSINIT(deferred_unmount, &deferred_unmount_lock, "deferred_unmount",
132 MTX_DEF);
133 static STAILQ_HEAD(, mount) deferred_unmount_list =
134 STAILQ_HEAD_INITIALIZER(deferred_unmount_list);
135 TASKQUEUE_DEFINE_THREAD(deferred_unmount);
136
137 static void mount_devctl_event(const char *type, struct mount *mp, bool donew);
138
139 /*
140 * Global opts, taken by all filesystems
141 */
142 static const char *global_opts[] = {
143 "errmsg",
144 "fstype",
145 "fspath",
146 "ro",
147 "rw",
148 "nosuid",
149 "noexec",
150 NULL
151 };
152
153 static int
154 mount_init(void *mem, int size, int flags)
155 {
156 struct mount *mp;
157
158 mp = (struct mount *)mem;
159 mtx_init(&mp->mnt_mtx, "struct mount mtx", NULL, MTX_DEF);
160 mtx_init(&mp->mnt_listmtx, "struct mount vlist mtx", NULL, MTX_DEF);
161 lockinit(&mp->mnt_explock, PVFS, "explock", 0, 0);
162 mp->mnt_pcpu = uma_zalloc_pcpu(pcpu_zone_16, M_WAITOK | M_ZERO);
163 mp->mnt_ref = 0;
164 mp->mnt_vfs_ops = 1;
165 mp->mnt_rootvnode = NULL;
166 return (0);
167 }
168
169 static void
170 mount_fini(void *mem, int size)
171 {
172 struct mount *mp;
173
174 mp = (struct mount *)mem;
175 uma_zfree_pcpu(pcpu_zone_16, mp->mnt_pcpu);
176 lockdestroy(&mp->mnt_explock);
177 mtx_destroy(&mp->mnt_listmtx);
178 mtx_destroy(&mp->mnt_mtx);
179 }
180
181 static void
182 vfs_mount_init(void *dummy __unused)
183 {
184 TIMEOUT_TASK_INIT(taskqueue_deferred_unmount, &deferred_unmount_task,
185 0, vfs_deferred_unmount, NULL);
186 deferred_unmount_retry_delay_hz = hz;
187 mount_zone = uma_zcreate("Mountpoints", sizeof(struct mount), NULL,
188 NULL, mount_init, mount_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
189 mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
190 }
191 SYSINIT(vfs_mount, SI_SUB_VFS, SI_ORDER_ANY, vfs_mount_init, NULL);
192
193 /*
194 * ---------------------------------------------------------------------
195 * Functions for building and sanitizing the mount options
196 */
197
198 /* Remove one mount option. */
199 static void
200 vfs_freeopt(struct vfsoptlist *opts, struct vfsopt *opt)
201 {
202
203 TAILQ_REMOVE(opts, opt, link);
204 free(opt->name, M_MOUNT);
205 if (opt->value != NULL)
206 free(opt->value, M_MOUNT);
207 free(opt, M_MOUNT);
208 }
209
210 /* Release all resources related to the mount options. */
211 void
212 vfs_freeopts(struct vfsoptlist *opts)
213 {
214 struct vfsopt *opt;
215
216 while (!TAILQ_EMPTY(opts)) {
217 opt = TAILQ_FIRST(opts);
218 vfs_freeopt(opts, opt);
219 }
220 free(opts, M_MOUNT);
221 }
222
223 void
224 vfs_deleteopt(struct vfsoptlist *opts, const char *name)
225 {
226 struct vfsopt *opt, *temp;
227
228 if (opts == NULL)
229 return;
230 TAILQ_FOREACH_SAFE(opt, opts, link, temp) {
231 if (strcmp(opt->name, name) == 0)
232 vfs_freeopt(opts, opt);
233 }
234 }
235
236 static int
237 vfs_isopt_ro(const char *opt)
238 {
239
240 if (strcmp(opt, "ro") == 0 || strcmp(opt, "rdonly") == 0 ||
241 strcmp(opt, "norw") == 0)
242 return (1);
243 return (0);
244 }
245
246 static int
247 vfs_isopt_rw(const char *opt)
248 {
249
250 if (strcmp(opt, "rw") == 0 || strcmp(opt, "noro") == 0)
251 return (1);
252 return (0);
253 }
254
255 /*
256 * Check if options are equal (with or without the "no" prefix).
257 */
258 static int
259 vfs_equalopts(const char *opt1, const char *opt2)
260 {
261 char *p;
262
263 /* "opt" vs. "opt" or "noopt" vs. "noopt" */
264 if (strcmp(opt1, opt2) == 0)
265 return (1);
266 /* "noopt" vs. "opt" */
267 if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
268 return (1);
269 /* "opt" vs. "noopt" */
270 if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
271 return (1);
272 while ((p = strchr(opt1, '.')) != NULL &&
273 !strncmp(opt1, opt2, ++p - opt1)) {
274 opt2 += p - opt1;
275 opt1 = p;
276 /* "foo.noopt" vs. "foo.opt" */
277 if (strncmp(opt1, "no", 2) == 0 && strcmp(opt1 + 2, opt2) == 0)
278 return (1);
279 /* "foo.opt" vs. "foo.noopt" */
280 if (strncmp(opt2, "no", 2) == 0 && strcmp(opt1, opt2 + 2) == 0)
281 return (1);
282 }
283 /* "ro" / "rdonly" / "norw" / "rw" / "noro" */
284 if ((vfs_isopt_ro(opt1) || vfs_isopt_rw(opt1)) &&
285 (vfs_isopt_ro(opt2) || vfs_isopt_rw(opt2)))
286 return (1);
287 return (0);
288 }
289
290 /*
291 * If a mount option is specified several times,
292 * (with or without the "no" prefix) only keep
293 * the last occurrence of it.
294 */
295 static void
296 vfs_sanitizeopts(struct vfsoptlist *opts)
297 {
298 struct vfsopt *opt, *opt2, *tmp;
299
300 TAILQ_FOREACH_REVERSE(opt, opts, vfsoptlist, link) {
301 opt2 = TAILQ_PREV(opt, vfsoptlist, link);
302 while (opt2 != NULL) {
303 if (vfs_equalopts(opt->name, opt2->name)) {
304 tmp = TAILQ_PREV(opt2, vfsoptlist, link);
305 vfs_freeopt(opts, opt2);
306 opt2 = tmp;
307 } else {
308 opt2 = TAILQ_PREV(opt2, vfsoptlist, link);
309 }
310 }
311 }
312 }
313
314 /*
315 * Build a linked list of mount options from a struct uio.
316 */
317 int
318 vfs_buildopts(struct uio *auio, struct vfsoptlist **options)
319 {
320 struct vfsoptlist *opts;
321 struct vfsopt *opt;
322 size_t memused, namelen, optlen;
323 unsigned int i, iovcnt;
324 int error;
325
326 opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK);
327 TAILQ_INIT(opts);
328 memused = 0;
329 iovcnt = auio->uio_iovcnt;
330 for (i = 0; i < iovcnt; i += 2) {
331 namelen = auio->uio_iov[i].iov_len;
332 optlen = auio->uio_iov[i + 1].iov_len;
333 memused += sizeof(struct vfsopt) + optlen + namelen;
334 /*
335 * Avoid consuming too much memory, and attempts to overflow
336 * memused.
337 */
338 if (memused > VFS_MOUNTARG_SIZE_MAX ||
339 optlen > VFS_MOUNTARG_SIZE_MAX ||
340 namelen > VFS_MOUNTARG_SIZE_MAX) {
341 error = EINVAL;
342 goto bad;
343 }
344
345 opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
346 opt->name = malloc(namelen, M_MOUNT, M_WAITOK);
347 opt->value = NULL;
348 opt->len = 0;
349 opt->pos = i / 2;
350 opt->seen = 0;
351
352 /*
353 * Do this early, so jumps to "bad" will free the current
354 * option.
355 */
356 TAILQ_INSERT_TAIL(opts, opt, link);
357
358 if (auio->uio_segflg == UIO_SYSSPACE) {
359 bcopy(auio->uio_iov[i].iov_base, opt->name, namelen);
360 } else {
361 error = copyin(auio->uio_iov[i].iov_base, opt->name,
362 namelen);
363 if (error)
364 goto bad;
365 }
366 /* Ensure names are null-terminated strings. */
367 if (namelen == 0 || opt->name[namelen - 1] != '\0') {
368 error = EINVAL;
369 goto bad;
370 }
371 if (optlen != 0) {
372 opt->len = optlen;
373 opt->value = malloc(optlen, M_MOUNT, M_WAITOK);
374 if (auio->uio_segflg == UIO_SYSSPACE) {
375 bcopy(auio->uio_iov[i + 1].iov_base, opt->value,
376 optlen);
377 } else {
378 error = copyin(auio->uio_iov[i + 1].iov_base,
379 opt->value, optlen);
380 if (error)
381 goto bad;
382 }
383 }
384 }
385 vfs_sanitizeopts(opts);
386 *options = opts;
387 return (0);
388 bad:
389 vfs_freeopts(opts);
390 return (error);
391 }
392
393 /*
394 * Merge the old mount options with the new ones passed
395 * in the MNT_UPDATE case.
396 *
397 * XXX: This function will keep a "nofoo" option in the new
398 * options. E.g, if the option's canonical name is "foo",
399 * "nofoo" ends up in the mount point's active options.
400 */
401 static void
402 vfs_mergeopts(struct vfsoptlist *toopts, struct vfsoptlist *oldopts)
403 {
404 struct vfsopt *opt, *new;
405
406 TAILQ_FOREACH(opt, oldopts, link) {
407 new = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK);
408 new->name = strdup(opt->name, M_MOUNT);
409 if (opt->len != 0) {
410 new->value = malloc(opt->len, M_MOUNT, M_WAITOK);
411 bcopy(opt->value, new->value, opt->len);
412 } else
413 new->value = NULL;
414 new->len = opt->len;
415 new->seen = opt->seen;
416 TAILQ_INSERT_HEAD(toopts, new, link);
417 }
418 vfs_sanitizeopts(toopts);
419 }
420
421 /*
422 * Mount a filesystem.
423 */
424 #ifndef _SYS_SYSPROTO_H_
425 struct nmount_args {
426 struct iovec *iovp;
427 unsigned int iovcnt;
428 int flags;
429 };
430 #endif
431 int
432 sys_nmount(struct thread *td, struct nmount_args *uap)
433 {
434 struct uio *auio;
435 int error;
436 u_int iovcnt;
437 uint64_t flags;
438
439 /*
440 * Mount flags are now 64-bits. On 32-bit archtectures only
441 * 32-bits are passed in, but from here on everything handles
442 * 64-bit flags correctly.
443 */
444 flags = uap->flags;
445
446 AUDIT_ARG_FFLAGS(flags);
447 CTR4(KTR_VFS, "%s: iovp %p with iovcnt %d and flags %d", __func__,
448 uap->iovp, uap->iovcnt, flags);
449
450 /*
451 * Filter out MNT_ROOTFS. We do not want clients of nmount() in
452 * userspace to set this flag, but we must filter it out if we want
453 * MNT_UPDATE on the root file system to work.
454 * MNT_ROOTFS should only be set by the kernel when mounting its
455 * root file system.
456 */
457 flags &= ~MNT_ROOTFS;
458
459 iovcnt = uap->iovcnt;
460 /*
461 * Check that we have an even number of iovec's
462 * and that we have at least two options.
463 */
464 if ((iovcnt & 1) || (iovcnt < 4)) {
465 CTR2(KTR_VFS, "%s: failed for invalid iovcnt %d", __func__,
466 uap->iovcnt);
467 return (EINVAL);
468 }
469
470 error = copyinuio(uap->iovp, iovcnt, &auio);
471 if (error) {
472 CTR2(KTR_VFS, "%s: failed for invalid uio op with %d errno",
473 __func__, error);
474 return (error);
475 }
476 error = vfs_donmount(td, flags, auio);
477
478 free(auio, M_IOV);
479 return (error);
480 }
481
482 /*
483 * ---------------------------------------------------------------------
484 * Various utility functions
485 */
486
487 /*
488 * Get a reference on a mount point from a vnode.
489 *
490 * The vnode is allowed to be passed unlocked and race against dooming. Note in
491 * such case there are no guarantees the referenced mount point will still be
492 * associated with it after the function returns.
493 */
494 struct mount *
495 vfs_ref_from_vp(struct vnode *vp)
496 {
497 struct mount *mp;
498 struct mount_pcpu *mpcpu;
499
500 mp = atomic_load_ptr(&vp->v_mount);
501 if (__predict_false(mp == NULL)) {
502 return (mp);
503 }
504 if (vfs_op_thread_enter(mp, mpcpu)) {
505 if (__predict_true(mp == vp->v_mount)) {
506 vfs_mp_count_add_pcpu(mpcpu, ref, 1);
507 vfs_op_thread_exit(mp, mpcpu);
508 } else {
509 vfs_op_thread_exit(mp, mpcpu);
510 mp = NULL;
511 }
512 } else {
513 MNT_ILOCK(mp);
514 if (mp == vp->v_mount) {
515 MNT_REF(mp);
516 MNT_IUNLOCK(mp);
517 } else {
518 MNT_IUNLOCK(mp);
519 mp = NULL;
520 }
521 }
522 return (mp);
523 }
524
525 void
526 vfs_ref(struct mount *mp)
527 {
528 struct mount_pcpu *mpcpu;
529
530 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
531 if (vfs_op_thread_enter(mp, mpcpu)) {
532 vfs_mp_count_add_pcpu(mpcpu, ref, 1);
533 vfs_op_thread_exit(mp, mpcpu);
534 return;
535 }
536
537 MNT_ILOCK(mp);
538 MNT_REF(mp);
539 MNT_IUNLOCK(mp);
540 }
541
542 /*
543 * Register ump as an upper mount of the mount associated with
544 * vnode vp. This registration will be tracked through
545 * mount_upper_node upper, which should be allocated by the
546 * caller and stored in per-mount data associated with mp.
547 *
548 * If successful, this function will return the mount associated
549 * with vp, and will ensure that it cannot be unmounted until
550 * ump has been unregistered as one of its upper mounts.
551 *
552 * Upon failure this function will return NULL.
553 */
554 struct mount *
555 vfs_register_upper_from_vp(struct vnode *vp, struct mount *ump,
556 struct mount_upper_node *upper)
557 {
558 struct mount *mp;
559
560 mp = atomic_load_ptr(&vp->v_mount);
561 if (mp == NULL)
562 return (NULL);
563 MNT_ILOCK(mp);
564 if (mp != vp->v_mount ||
565 ((mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_RECURSE)) != 0)) {
566 MNT_IUNLOCK(mp);
567 return (NULL);
568 }
569 KASSERT(ump != mp, ("upper and lower mounts are identical"));
570 upper->mp = ump;
571 MNT_REF(mp);
572 TAILQ_INSERT_TAIL(&mp->mnt_uppers, upper, mnt_upper_link);
573 MNT_IUNLOCK(mp);
574 return (mp);
575 }
576
577 /*
578 * Register upper mount ump to receive vnode unlink/reclaim
579 * notifications from lower mount mp. This registration will
580 * be tracked through mount_upper_node upper, which should be
581 * allocated by the caller and stored in per-mount data
582 * associated with mp.
583 *
584 * ump must already be registered as an upper mount of mp
585 * through a call to vfs_register_upper_from_vp().
586 */
587 void
588 vfs_register_for_notification(struct mount *mp, struct mount *ump,
589 struct mount_upper_node *upper)
590 {
591 upper->mp = ump;
592 MNT_ILOCK(mp);
593 TAILQ_INSERT_TAIL(&mp->mnt_notify, upper, mnt_upper_link);
594 MNT_IUNLOCK(mp);
595 }
596
597 static void
598 vfs_drain_upper_locked(struct mount *mp)
599 {
600 mtx_assert(MNT_MTX(mp), MA_OWNED);
601 while (mp->mnt_upper_pending != 0) {
602 mp->mnt_kern_flag |= MNTK_UPPER_WAITER;
603 msleep(&mp->mnt_uppers, MNT_MTX(mp), 0, "mntupw", 0);
604 }
605 }
606
607 /*
608 * Undo a previous call to vfs_register_for_notification().
609 * The mount represented by upper must be currently registered
610 * as an upper mount for mp.
611 */
612 void
613 vfs_unregister_for_notification(struct mount *mp,
614 struct mount_upper_node *upper)
615 {
616 MNT_ILOCK(mp);
617 vfs_drain_upper_locked(mp);
618 TAILQ_REMOVE(&mp->mnt_notify, upper, mnt_upper_link);
619 MNT_IUNLOCK(mp);
620 }
621
622 /*
623 * Undo a previous call to vfs_register_upper_from_vp().
624 * This must be done before mp can be unmounted.
625 */
626 void
627 vfs_unregister_upper(struct mount *mp, struct mount_upper_node *upper)
628 {
629 MNT_ILOCK(mp);
630 KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
631 ("registered upper with pending unmount"));
632 vfs_drain_upper_locked(mp);
633 TAILQ_REMOVE(&mp->mnt_uppers, upper, mnt_upper_link);
634 if ((mp->mnt_kern_flag & MNTK_TASKQUEUE_WAITER) != 0 &&
635 TAILQ_EMPTY(&mp->mnt_uppers)) {
636 mp->mnt_kern_flag &= ~MNTK_TASKQUEUE_WAITER;
637 wakeup(&mp->mnt_taskqueue_link);
638 }
639 MNT_REL(mp);
640 MNT_IUNLOCK(mp);
641 }
642
643 void
644 vfs_rel(struct mount *mp)
645 {
646 struct mount_pcpu *mpcpu;
647
648 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
649 if (vfs_op_thread_enter(mp, mpcpu)) {
650 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
651 vfs_op_thread_exit(mp, mpcpu);
652 return;
653 }
654
655 MNT_ILOCK(mp);
656 MNT_REL(mp);
657 MNT_IUNLOCK(mp);
658 }
659
660 /*
661 * Allocate and initialize the mount point struct.
662 */
663 struct mount *
664 vfs_mount_alloc(struct vnode *vp, struct vfsconf *vfsp, const char *fspath,
665 struct ucred *cred)
666 {
667 struct mount *mp;
668
669 mp = uma_zalloc(mount_zone, M_WAITOK);
670 bzero(&mp->mnt_startzero,
671 __rangeof(struct mount, mnt_startzero, mnt_endzero));
672 mp->mnt_kern_flag = 0;
673 mp->mnt_flag = 0;
674 mp->mnt_rootvnode = NULL;
675 mp->mnt_vnodecovered = NULL;
676 mp->mnt_op = NULL;
677 mp->mnt_vfc = NULL;
678 TAILQ_INIT(&mp->mnt_nvnodelist);
679 mp->mnt_nvnodelistsize = 0;
680 TAILQ_INIT(&mp->mnt_lazyvnodelist);
681 mp->mnt_lazyvnodelistsize = 0;
682 MPPASS(mp->mnt_ref == 0 && mp->mnt_lockref == 0 &&
683 mp->mnt_writeopcount == 0, mp);
684 MPASSERT(mp->mnt_vfs_ops == 1, mp,
685 ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
686 (void) vfs_busy(mp, MBF_NOWAIT);
687 atomic_add_acq_int(&vfsp->vfc_refcount, 1);
688 mp->mnt_op = vfsp->vfc_vfsops;
689 mp->mnt_vfc = vfsp;
690 mp->mnt_stat.f_type = vfsp->vfc_typenum;
691 mp->mnt_gen++;
692 strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
693 mp->mnt_vnodecovered = vp;
694 mp->mnt_cred = crdup(cred);
695 mp->mnt_stat.f_owner = cred->cr_uid;
696 strlcpy(mp->mnt_stat.f_mntonname, fspath, MNAMELEN);
697 mp->mnt_iosize_max = DFLTPHYS;
698 #ifdef MAC
699 mac_mount_init(mp);
700 mac_mount_create(cred, mp);
701 #endif
702 arc4rand(&mp->mnt_hashseed, sizeof mp->mnt_hashseed, 0);
703 mp->mnt_upper_pending = 0;
704 TAILQ_INIT(&mp->mnt_uppers);
705 TAILQ_INIT(&mp->mnt_notify);
706 mp->mnt_taskqueue_flags = 0;
707 mp->mnt_unmount_retries = 0;
708 return (mp);
709 }
710
711 /*
712 * Destroy the mount struct previously allocated by vfs_mount_alloc().
713 */
714 void
715 vfs_mount_destroy(struct mount *mp)
716 {
717
718 MPPASS(mp->mnt_vfs_ops != 0, mp);
719
720 vfs_assert_mount_counters(mp);
721
722 MNT_ILOCK(mp);
723 mp->mnt_kern_flag |= MNTK_REFEXPIRE;
724 if (mp->mnt_kern_flag & MNTK_MWAIT) {
725 mp->mnt_kern_flag &= ~MNTK_MWAIT;
726 wakeup(mp);
727 }
728 while (mp->mnt_ref)
729 msleep(mp, MNT_MTX(mp), PVFS, "mntref", 0);
730 KASSERT(mp->mnt_ref == 0,
731 ("%s: invalid refcount in the drain path @ %s:%d", __func__,
732 __FILE__, __LINE__));
733 MPPASS(mp->mnt_writeopcount == 0, mp);
734 MPPASS(mp->mnt_secondary_writes == 0, mp);
735 atomic_subtract_rel_int(&mp->mnt_vfc->vfc_refcount, 1);
736 if (!TAILQ_EMPTY(&mp->mnt_nvnodelist)) {
737 struct vnode *vp;
738
739 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes)
740 vn_printf(vp, "dangling vnode ");
741 panic("unmount: dangling vnode");
742 }
743 KASSERT(mp->mnt_upper_pending == 0, ("mnt_upper_pending"));
744 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers"));
745 KASSERT(TAILQ_EMPTY(&mp->mnt_notify), ("mnt_notify"));
746 MPPASS(mp->mnt_nvnodelistsize == 0, mp);
747 MPPASS(mp->mnt_lazyvnodelistsize == 0, mp);
748 MPPASS(mp->mnt_lockref == 0, mp);
749 MNT_IUNLOCK(mp);
750
751 MPASSERT(mp->mnt_vfs_ops == 1, mp,
752 ("vfs_ops should be 1 but %d found", mp->mnt_vfs_ops));
753
754 MPASSERT(mp->mnt_rootvnode == NULL, mp,
755 ("mount point still has a root vnode %p", mp->mnt_rootvnode));
756
757 if (mp->mnt_vnodecovered != NULL)
758 vrele(mp->mnt_vnodecovered);
759 #ifdef MAC
760 mac_mount_destroy(mp);
761 #endif
762 if (mp->mnt_opt != NULL)
763 vfs_freeopts(mp->mnt_opt);
764 crfree(mp->mnt_cred);
765 uma_zfree(mount_zone, mp);
766 }
767
768 static bool
769 vfs_should_downgrade_to_ro_mount(uint64_t fsflags, int error)
770 {
771 /* This is an upgrade of an exisiting mount. */
772 if ((fsflags & MNT_UPDATE) != 0)
773 return (false);
774 /* This is already an R/O mount. */
775 if ((fsflags & MNT_RDONLY) != 0)
776 return (false);
777
778 switch (error) {
779 case ENODEV: /* generic, geom, ... */
780 case EACCES: /* cam/scsi, ... */
781 case EROFS: /* md, mmcsd, ... */
782 /*
783 * These errors can be returned by the storage layer to signal
784 * that the media is read-only. No harm in the R/O mount
785 * attempt if the error was returned for some other reason.
786 */
787 return (true);
788 default:
789 return (false);
790 }
791 }
792
793 int
794 vfs_donmount(struct thread *td, uint64_t fsflags, struct uio *fsoptions)
795 {
796 struct vfsoptlist *optlist;
797 struct vfsopt *opt, *tmp_opt;
798 char *fstype, *fspath, *errmsg;
799 int error, fstypelen, fspathlen, errmsg_len, errmsg_pos;
800 bool autoro;
801
802 errmsg = fspath = NULL;
803 errmsg_len = fspathlen = 0;
804 errmsg_pos = -1;
805 autoro = default_autoro;
806
807 error = vfs_buildopts(fsoptions, &optlist);
808 if (error)
809 return (error);
810
811 if (vfs_getopt(optlist, "errmsg", (void **)&errmsg, &errmsg_len) == 0)
812 errmsg_pos = vfs_getopt_pos(optlist, "errmsg");
813
814 /*
815 * We need these two options before the others,
816 * and they are mandatory for any filesystem.
817 * Ensure they are NUL terminated as well.
818 */
819 fstypelen = 0;
820 error = vfs_getopt(optlist, "fstype", (void **)&fstype, &fstypelen);
821 if (error || fstypelen <= 0 || fstype[fstypelen - 1] != '\0') {
822 error = EINVAL;
823 if (errmsg != NULL)
824 strncpy(errmsg, "Invalid fstype", errmsg_len);
825 goto bail;
826 }
827 fspathlen = 0;
828 error = vfs_getopt(optlist, "fspath", (void **)&fspath, &fspathlen);
829 if (error || fspathlen <= 0 || fspath[fspathlen - 1] != '\0') {
830 error = EINVAL;
831 if (errmsg != NULL)
832 strncpy(errmsg, "Invalid fspath", errmsg_len);
833 goto bail;
834 }
835
836 /*
837 * We need to see if we have the "update" option
838 * before we call vfs_domount(), since vfs_domount() has special
839 * logic based on MNT_UPDATE. This is very important
840 * when we want to update the root filesystem.
841 */
842 TAILQ_FOREACH_SAFE(opt, optlist, link, tmp_opt) {
843 int do_freeopt = 0;
844
845 if (strcmp(opt->name, "update") == 0) {
846 fsflags |= MNT_UPDATE;
847 do_freeopt = 1;
848 }
849 else if (strcmp(opt->name, "async") == 0)
850 fsflags |= MNT_ASYNC;
851 else if (strcmp(opt->name, "force") == 0) {
852 fsflags |= MNT_FORCE;
853 do_freeopt = 1;
854 }
855 else if (strcmp(opt->name, "reload") == 0) {
856 fsflags |= MNT_RELOAD;
857 do_freeopt = 1;
858 }
859 else if (strcmp(opt->name, "multilabel") == 0)
860 fsflags |= MNT_MULTILABEL;
861 else if (strcmp(opt->name, "noasync") == 0)
862 fsflags &= ~MNT_ASYNC;
863 else if (strcmp(opt->name, "noatime") == 0)
864 fsflags |= MNT_NOATIME;
865 else if (strcmp(opt->name, "atime") == 0) {
866 free(opt->name, M_MOUNT);
867 opt->name = strdup("nonoatime", M_MOUNT);
868 }
869 else if (strcmp(opt->name, "noclusterr") == 0)
870 fsflags |= MNT_NOCLUSTERR;
871 else if (strcmp(opt->name, "clusterr") == 0) {
872 free(opt->name, M_MOUNT);
873 opt->name = strdup("nonoclusterr", M_MOUNT);
874 }
875 else if (strcmp(opt->name, "noclusterw") == 0)
876 fsflags |= MNT_NOCLUSTERW;
877 else if (strcmp(opt->name, "clusterw") == 0) {
878 free(opt->name, M_MOUNT);
879 opt->name = strdup("nonoclusterw", M_MOUNT);
880 }
881 else if (strcmp(opt->name, "noexec") == 0)
882 fsflags |= MNT_NOEXEC;
883 else if (strcmp(opt->name, "exec") == 0) {
884 free(opt->name, M_MOUNT);
885 opt->name = strdup("nonoexec", M_MOUNT);
886 }
887 else if (strcmp(opt->name, "nosuid") == 0)
888 fsflags |= MNT_NOSUID;
889 else if (strcmp(opt->name, "suid") == 0) {
890 free(opt->name, M_MOUNT);
891 opt->name = strdup("nonosuid", M_MOUNT);
892 }
893 else if (strcmp(opt->name, "nosymfollow") == 0)
894 fsflags |= MNT_NOSYMFOLLOW;
895 else if (strcmp(opt->name, "symfollow") == 0) {
896 free(opt->name, M_MOUNT);
897 opt->name = strdup("nonosymfollow", M_MOUNT);
898 }
899 else if (strcmp(opt->name, "noro") == 0) {
900 fsflags &= ~MNT_RDONLY;
901 autoro = false;
902 }
903 else if (strcmp(opt->name, "rw") == 0) {
904 fsflags &= ~MNT_RDONLY;
905 autoro = false;
906 }
907 else if (strcmp(opt->name, "ro") == 0) {
908 fsflags |= MNT_RDONLY;
909 autoro = false;
910 }
911 else if (strcmp(opt->name, "rdonly") == 0) {
912 free(opt->name, M_MOUNT);
913 opt->name = strdup("ro", M_MOUNT);
914 fsflags |= MNT_RDONLY;
915 autoro = false;
916 }
917 else if (strcmp(opt->name, "autoro") == 0) {
918 do_freeopt = 1;
919 autoro = true;
920 }
921 else if (strcmp(opt->name, "suiddir") == 0)
922 fsflags |= MNT_SUIDDIR;
923 else if (strcmp(opt->name, "sync") == 0)
924 fsflags |= MNT_SYNCHRONOUS;
925 else if (strcmp(opt->name, "union") == 0)
926 fsflags |= MNT_UNION;
927 else if (strcmp(opt->name, "export") == 0)
928 fsflags |= MNT_EXPORTED;
929 else if (strcmp(opt->name, "automounted") == 0) {
930 fsflags |= MNT_AUTOMOUNTED;
931 do_freeopt = 1;
932 } else if (strcmp(opt->name, "nocover") == 0) {
933 fsflags |= MNT_NOCOVER;
934 do_freeopt = 1;
935 } else if (strcmp(opt->name, "cover") == 0) {
936 fsflags &= ~MNT_NOCOVER;
937 do_freeopt = 1;
938 } else if (strcmp(opt->name, "emptydir") == 0) {
939 fsflags |= MNT_EMPTYDIR;
940 do_freeopt = 1;
941 } else if (strcmp(opt->name, "noemptydir") == 0) {
942 fsflags &= ~MNT_EMPTYDIR;
943 do_freeopt = 1;
944 }
945 if (do_freeopt)
946 vfs_freeopt(optlist, opt);
947 }
948
949 /*
950 * Be ultra-paranoid about making sure the type and fspath
951 * variables will fit in our mp buffers, including the
952 * terminating NUL.
953 */
954 if (fstypelen > MFSNAMELEN || fspathlen > MNAMELEN) {
955 error = ENAMETOOLONG;
956 goto bail;
957 }
958
959 error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
960 if (error == ENOENT) {
961 error = EINVAL;
962 if (errmsg != NULL)
963 strncpy(errmsg, "Invalid fstype", errmsg_len);
964 goto bail;
965 }
966
967 /*
968 * See if we can mount in the read-only mode if the error code suggests
969 * that it could be possible and the mount options allow for that.
970 * Never try it if "[no]{ro|rw}" has been explicitly requested and not
971 * overridden by "autoro".
972 */
973 if (autoro && vfs_should_downgrade_to_ro_mount(fsflags, error)) {
974 printf("%s: R/W mount failed, possibly R/O media,"
975 " trying R/O mount\n", __func__);
976 fsflags |= MNT_RDONLY;
977 error = vfs_domount(td, fstype, fspath, fsflags, &optlist);
978 }
979 bail:
980 /* copyout the errmsg */
981 if (errmsg_pos != -1 && ((2 * errmsg_pos + 1) < fsoptions->uio_iovcnt)
982 && errmsg_len > 0 && errmsg != NULL) {
983 if (fsoptions->uio_segflg == UIO_SYSSPACE) {
984 bcopy(errmsg,
985 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
986 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
987 } else {
988 copyout(errmsg,
989 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_base,
990 fsoptions->uio_iov[2 * errmsg_pos + 1].iov_len);
991 }
992 }
993
994 if (optlist != NULL)
995 vfs_freeopts(optlist);
996 return (error);
997 }
998
999 /*
1000 * Old mount API.
1001 */
1002 #ifndef _SYS_SYSPROTO_H_
1003 struct mount_args {
1004 char *type;
1005 char *path;
1006 int flags;
1007 caddr_t data;
1008 };
1009 #endif
1010 /* ARGSUSED */
1011 int
1012 sys_mount(struct thread *td, struct mount_args *uap)
1013 {
1014 char *fstype;
1015 struct vfsconf *vfsp = NULL;
1016 struct mntarg *ma = NULL;
1017 uint64_t flags;
1018 int error;
1019
1020 /*
1021 * Mount flags are now 64-bits. On 32-bit architectures only
1022 * 32-bits are passed in, but from here on everything handles
1023 * 64-bit flags correctly.
1024 */
1025 flags = uap->flags;
1026
1027 AUDIT_ARG_FFLAGS(flags);
1028
1029 /*
1030 * Filter out MNT_ROOTFS. We do not want clients of mount() in
1031 * userspace to set this flag, but we must filter it out if we want
1032 * MNT_UPDATE on the root file system to work.
1033 * MNT_ROOTFS should only be set by the kernel when mounting its
1034 * root file system.
1035 */
1036 flags &= ~MNT_ROOTFS;
1037
1038 fstype = malloc(MFSNAMELEN, M_TEMP, M_WAITOK);
1039 error = copyinstr(uap->type, fstype, MFSNAMELEN, NULL);
1040 if (error) {
1041 free(fstype, M_TEMP);
1042 return (error);
1043 }
1044
1045 AUDIT_ARG_TEXT(fstype);
1046 vfsp = vfs_byname_kld(fstype, td, &error);
1047 free(fstype, M_TEMP);
1048 if (vfsp == NULL)
1049 return (ENOENT);
1050 if (((vfsp->vfc_flags & VFCF_SBDRY) != 0 &&
1051 vfsp->vfc_vfsops_sd->vfs_cmount == NULL) ||
1052 ((vfsp->vfc_flags & VFCF_SBDRY) == 0 &&
1053 vfsp->vfc_vfsops->vfs_cmount == NULL))
1054 return (EOPNOTSUPP);
1055
1056 ma = mount_argsu(ma, "fstype", uap->type, MFSNAMELEN);
1057 ma = mount_argsu(ma, "fspath", uap->path, MNAMELEN);
1058 ma = mount_argb(ma, flags & MNT_RDONLY, "noro");
1059 ma = mount_argb(ma, !(flags & MNT_NOSUID), "nosuid");
1060 ma = mount_argb(ma, !(flags & MNT_NOEXEC), "noexec");
1061
1062 if ((vfsp->vfc_flags & VFCF_SBDRY) != 0)
1063 return (vfsp->vfc_vfsops_sd->vfs_cmount(ma, uap->data, flags));
1064 return (vfsp->vfc_vfsops->vfs_cmount(ma, uap->data, flags));
1065 }
1066
1067 /*
1068 * vfs_domount_first(): first file system mount (not update)
1069 */
1070 static int
1071 vfs_domount_first(
1072 struct thread *td, /* Calling thread. */
1073 struct vfsconf *vfsp, /* File system type. */
1074 char *fspath, /* Mount path. */
1075 struct vnode *vp, /* Vnode to be covered. */
1076 uint64_t fsflags, /* Flags common to all filesystems. */
1077 struct vfsoptlist **optlist /* Options local to the filesystem. */
1078 )
1079 {
1080 struct vattr va;
1081 struct mount *mp;
1082 struct vnode *newdp, *rootvp;
1083 int error, error1;
1084 bool unmounted;
1085
1086 ASSERT_VOP_ELOCKED(vp, __func__);
1087 KASSERT((fsflags & MNT_UPDATE) == 0, ("MNT_UPDATE shouldn't be here"));
1088
1089 /*
1090 * If the jail of the calling thread lacks permission for this type of
1091 * file system, or is trying to cover its own root, deny immediately.
1092 */
1093 if (jailed(td->td_ucred) && (!prison_allow(td->td_ucred,
1094 vfsp->vfc_prison_flag) || vp == td->td_ucred->cr_prison->pr_root)) {
1095 vput(vp);
1096 return (EPERM);
1097 }
1098
1099 /*
1100 * If the user is not root, ensure that they own the directory
1101 * onto which we are attempting to mount.
1102 */
1103 error = VOP_GETATTR(vp, &va, td->td_ucred);
1104 if (error == 0 && va.va_uid != td->td_ucred->cr_uid)
1105 error = priv_check_cred(td->td_ucred, PRIV_VFS_ADMIN);
1106 if (error == 0)
1107 error = vinvalbuf(vp, V_SAVE, 0, 0);
1108 if (vfsp->vfc_flags & VFCF_FILEMOUNT) {
1109 if (error == 0 && vp->v_type != VDIR && vp->v_type != VREG)
1110 error = EINVAL;
1111 /*
1112 * For file mounts, ensure that there is only one hardlink to the file.
1113 */
1114 if (error == 0 && vp->v_type == VREG && va.va_nlink != 1)
1115 error = EINVAL;
1116 } else {
1117 if (error == 0 && vp->v_type != VDIR)
1118 error = ENOTDIR;
1119 }
1120 if (error == 0 && (fsflags & MNT_EMPTYDIR) != 0)
1121 error = vfs_emptydir(vp);
1122 if (error == 0) {
1123 VI_LOCK(vp);
1124 if ((vp->v_iflag & VI_MOUNT) == 0 && vp->v_mountedhere == NULL)
1125 vp->v_iflag |= VI_MOUNT;
1126 else
1127 error = EBUSY;
1128 VI_UNLOCK(vp);
1129 }
1130 if (error != 0) {
1131 vput(vp);
1132 return (error);
1133 }
1134 vn_seqc_write_begin(vp);
1135 VOP_UNLOCK(vp);
1136
1137 /* Allocate and initialize the filesystem. */
1138 mp = vfs_mount_alloc(vp, vfsp, fspath, td->td_ucred);
1139 /* XXXMAC: pass to vfs_mount_alloc? */
1140 mp->mnt_optnew = *optlist;
1141 /* Set the mount level flags. */
1142 mp->mnt_flag = (fsflags &
1143 (MNT_UPDATEMASK | MNT_ROOTFS | MNT_RDONLY | MNT_FORCE));
1144
1145 /*
1146 * Mount the filesystem.
1147 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1148 * get. No freeing of cn_pnbuf.
1149 */
1150 error1 = 0;
1151 unmounted = true;
1152 if ((error = VFS_MOUNT(mp)) != 0 ||
1153 (error1 = VFS_STATFS(mp, &mp->mnt_stat)) != 0 ||
1154 (error1 = VFS_ROOT(mp, LK_EXCLUSIVE, &newdp)) != 0) {
1155 rootvp = NULL;
1156 if (error1 != 0) {
1157 MPASS(error == 0);
1158 rootvp = vfs_cache_root_clear(mp);
1159 if (rootvp != NULL) {
1160 vhold(rootvp);
1161 vrele(rootvp);
1162 }
1163 (void)vn_start_write(NULL, &mp, V_WAIT);
1164 MNT_ILOCK(mp);
1165 mp->mnt_kern_flag |= MNTK_UNMOUNT | MNTK_UNMOUNTF;
1166 MNT_IUNLOCK(mp);
1167 VFS_PURGE(mp);
1168 error = VFS_UNMOUNT(mp, 0);
1169 vn_finished_write(mp);
1170 if (error != 0) {
1171 printf(
1172 "failed post-mount (%d): rollback unmount returned %d\n",
1173 error1, error);
1174 unmounted = false;
1175 }
1176 error = error1;
1177 }
1178 vfs_unbusy(mp);
1179 mp->mnt_vnodecovered = NULL;
1180 if (unmounted) {
1181 /* XXXKIB wait for mnt_lockref drain? */
1182 vfs_mount_destroy(mp);
1183 }
1184 VI_LOCK(vp);
1185 vp->v_iflag &= ~VI_MOUNT;
1186 VI_UNLOCK(vp);
1187 if (rootvp != NULL) {
1188 vn_seqc_write_end(rootvp);
1189 vdrop(rootvp);
1190 }
1191 vn_seqc_write_end(vp);
1192 vrele(vp);
1193 return (error);
1194 }
1195 vn_seqc_write_begin(newdp);
1196 VOP_UNLOCK(newdp);
1197
1198 if (mp->mnt_opt != NULL)
1199 vfs_freeopts(mp->mnt_opt);
1200 mp->mnt_opt = mp->mnt_optnew;
1201 *optlist = NULL;
1202
1203 /*
1204 * Prevent external consumers of mount options from reading mnt_optnew.
1205 */
1206 mp->mnt_optnew = NULL;
1207
1208 MNT_ILOCK(mp);
1209 if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1210 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1211 mp->mnt_kern_flag |= MNTK_ASYNC;
1212 else
1213 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1214 MNT_IUNLOCK(mp);
1215
1216 /*
1217 * VIRF_MOUNTPOINT and v_mountedhere need to be set under the
1218 * vp lock to satisfy vfs_lookup() requirements.
1219 */
1220 VOP_LOCK(vp, LK_EXCLUSIVE | LK_RETRY);
1221 VI_LOCK(vp);
1222 vn_irflag_set_locked(vp, VIRF_MOUNTPOINT);
1223 vp->v_mountedhere = mp;
1224 VI_UNLOCK(vp);
1225 VOP_UNLOCK(vp);
1226 cache_purge(vp);
1227
1228 /*
1229 * We need to lock both vnodes.
1230 *
1231 * Use vn_lock_pair to avoid establishing an ordering between vnodes
1232 * from different filesystems.
1233 */
1234 vn_lock_pair(vp, false, newdp, false);
1235
1236 VI_LOCK(vp);
1237 vp->v_iflag &= ~VI_MOUNT;
1238 VI_UNLOCK(vp);
1239 /* Place the new filesystem at the end of the mount list. */
1240 mtx_lock(&mountlist_mtx);
1241 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
1242 mtx_unlock(&mountlist_mtx);
1243 vfs_event_signal(NULL, VQ_MOUNT, 0);
1244 VOP_UNLOCK(vp);
1245 EVENTHANDLER_DIRECT_INVOKE(vfs_mounted, mp, newdp, td);
1246 VOP_UNLOCK(newdp);
1247 mount_devctl_event("MOUNT", mp, false);
1248 mountcheckdirs(vp, newdp);
1249 vn_seqc_write_end(vp);
1250 vn_seqc_write_end(newdp);
1251 vrele(newdp);
1252 if ((mp->mnt_flag & MNT_RDONLY) == 0)
1253 vfs_allocate_syncvnode(mp);
1254 vfs_op_exit(mp);
1255 vfs_unbusy(mp);
1256 return (0);
1257 }
1258
1259 /*
1260 * vfs_domount_update(): update of mounted file system
1261 */
1262 static int
1263 vfs_domount_update(
1264 struct thread *td, /* Calling thread. */
1265 struct vnode *vp, /* Mount point vnode. */
1266 uint64_t fsflags, /* Flags common to all filesystems. */
1267 struct vfsoptlist **optlist /* Options local to the filesystem. */
1268 )
1269 {
1270 struct export_args export;
1271 struct o2export_args o2export;
1272 struct vnode *rootvp;
1273 void *bufp;
1274 struct mount *mp;
1275 int error, export_error, i, len;
1276 uint64_t flag;
1277 gid_t *grps;
1278
1279 ASSERT_VOP_ELOCKED(vp, __func__);
1280 KASSERT((fsflags & MNT_UPDATE) != 0, ("MNT_UPDATE should be here"));
1281 mp = vp->v_mount;
1282
1283 if ((vp->v_vflag & VV_ROOT) == 0) {
1284 if (vfs_copyopt(*optlist, "export", &export, sizeof(export))
1285 == 0)
1286 error = EXDEV;
1287 else
1288 error = EINVAL;
1289 vput(vp);
1290 return (error);
1291 }
1292
1293 /*
1294 * We only allow the filesystem to be reloaded if it
1295 * is currently mounted read-only.
1296 */
1297 flag = mp->mnt_flag;
1298 if ((fsflags & MNT_RELOAD) != 0 && (flag & MNT_RDONLY) == 0) {
1299 vput(vp);
1300 return (EOPNOTSUPP); /* Needs translation */
1301 }
1302 /*
1303 * Only privileged root, or (if MNT_USER is set) the user that
1304 * did the original mount is permitted to update it.
1305 */
1306 error = vfs_suser(mp, td);
1307 if (error != 0) {
1308 vput(vp);
1309 return (error);
1310 }
1311 if (vfs_busy(mp, MBF_NOWAIT)) {
1312 vput(vp);
1313 return (EBUSY);
1314 }
1315 VI_LOCK(vp);
1316 if ((vp->v_iflag & VI_MOUNT) != 0 || vp->v_mountedhere != NULL) {
1317 VI_UNLOCK(vp);
1318 vfs_unbusy(mp);
1319 vput(vp);
1320 return (EBUSY);
1321 }
1322 vp->v_iflag |= VI_MOUNT;
1323 VI_UNLOCK(vp);
1324 VOP_UNLOCK(vp);
1325
1326 vfs_op_enter(mp);
1327 vn_seqc_write_begin(vp);
1328
1329 rootvp = NULL;
1330 MNT_ILOCK(mp);
1331 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1332 MNT_IUNLOCK(mp);
1333 error = EBUSY;
1334 goto end;
1335 }
1336 mp->mnt_flag &= ~MNT_UPDATEMASK;
1337 mp->mnt_flag |= fsflags & (MNT_RELOAD | MNT_FORCE | MNT_UPDATE |
1338 MNT_SNAPSHOT | MNT_ROOTFS | MNT_UPDATEMASK | MNT_RDONLY);
1339 if ((mp->mnt_flag & MNT_ASYNC) == 0)
1340 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1341 rootvp = vfs_cache_root_clear(mp);
1342 MNT_IUNLOCK(mp);
1343 mp->mnt_optnew = *optlist;
1344 vfs_mergeopts(mp->mnt_optnew, mp->mnt_opt);
1345
1346 /*
1347 * Mount the filesystem.
1348 * XXX The final recipients of VFS_MOUNT just overwrite the ndp they
1349 * get. No freeing of cn_pnbuf.
1350 */
1351 error = VFS_MOUNT(mp);
1352
1353 export_error = 0;
1354 /* Process the export option. */
1355 if (error == 0 && vfs_getopt(mp->mnt_optnew, "export", &bufp,
1356 &len) == 0) {
1357 /* Assume that there is only 1 ABI for each length. */
1358 switch (len) {
1359 case (sizeof(struct oexport_args)):
1360 bzero(&o2export, sizeof(o2export));
1361 /* FALLTHROUGH */
1362 case (sizeof(o2export)):
1363 bcopy(bufp, &o2export, len);
1364 export.ex_flags = (uint64_t)o2export.ex_flags;
1365 export.ex_root = o2export.ex_root;
1366 export.ex_uid = o2export.ex_anon.cr_uid;
1367 export.ex_groups = NULL;
1368 export.ex_ngroups = o2export.ex_anon.cr_ngroups;
1369 if (export.ex_ngroups > 0) {
1370 if (export.ex_ngroups <= XU_NGROUPS) {
1371 export.ex_groups = malloc(
1372 export.ex_ngroups * sizeof(gid_t),
1373 M_TEMP, M_WAITOK);
1374 for (i = 0; i < export.ex_ngroups; i++)
1375 export.ex_groups[i] =
1376 o2export.ex_anon.cr_groups[i];
1377 } else
1378 export_error = EINVAL;
1379 } else if (export.ex_ngroups < 0)
1380 export_error = EINVAL;
1381 export.ex_addr = o2export.ex_addr;
1382 export.ex_addrlen = o2export.ex_addrlen;
1383 export.ex_mask = o2export.ex_mask;
1384 export.ex_masklen = o2export.ex_masklen;
1385 export.ex_indexfile = o2export.ex_indexfile;
1386 export.ex_numsecflavors = o2export.ex_numsecflavors;
1387 if (export.ex_numsecflavors < MAXSECFLAVORS) {
1388 for (i = 0; i < export.ex_numsecflavors; i++)
1389 export.ex_secflavors[i] =
1390 o2export.ex_secflavors[i];
1391 } else
1392 export_error = EINVAL;
1393 if (export_error == 0)
1394 export_error = vfs_export(mp, &export);
1395 free(export.ex_groups, M_TEMP);
1396 break;
1397 case (sizeof(export)):
1398 bcopy(bufp, &export, len);
1399 grps = NULL;
1400 if (export.ex_ngroups > 0) {
1401 if (export.ex_ngroups <= NGROUPS_MAX) {
1402 grps = malloc(export.ex_ngroups *
1403 sizeof(gid_t), M_TEMP, M_WAITOK);
1404 export_error = copyin(export.ex_groups,
1405 grps, export.ex_ngroups *
1406 sizeof(gid_t));
1407 if (export_error == 0)
1408 export.ex_groups = grps;
1409 } else
1410 export_error = EINVAL;
1411 } else if (export.ex_ngroups == 0)
1412 export.ex_groups = NULL;
1413 else
1414 export_error = EINVAL;
1415 if (export_error == 0)
1416 export_error = vfs_export(mp, &export);
1417 free(grps, M_TEMP);
1418 break;
1419 default:
1420 export_error = EINVAL;
1421 break;
1422 }
1423 }
1424
1425 MNT_ILOCK(mp);
1426 if (error == 0) {
1427 mp->mnt_flag &= ~(MNT_UPDATE | MNT_RELOAD | MNT_FORCE |
1428 MNT_SNAPSHOT);
1429 } else {
1430 /*
1431 * If we fail, restore old mount flags. MNT_QUOTA is special,
1432 * because it is not part of MNT_UPDATEMASK, but it could have
1433 * changed in the meantime if quotactl(2) was called.
1434 * All in all we want current value of MNT_QUOTA, not the old
1435 * one.
1436 */
1437 mp->mnt_flag = (mp->mnt_flag & MNT_QUOTA) | (flag & ~MNT_QUOTA);
1438 }
1439 if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
1440 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
1441 mp->mnt_kern_flag |= MNTK_ASYNC;
1442 else
1443 mp->mnt_kern_flag &= ~MNTK_ASYNC;
1444 MNT_IUNLOCK(mp);
1445
1446 if (error != 0)
1447 goto end;
1448
1449 mount_devctl_event("REMOUNT", mp, true);
1450 if (mp->mnt_opt != NULL)
1451 vfs_freeopts(mp->mnt_opt);
1452 mp->mnt_opt = mp->mnt_optnew;
1453 *optlist = NULL;
1454 (void)VFS_STATFS(mp, &mp->mnt_stat);
1455 /*
1456 * Prevent external consumers of mount options from reading
1457 * mnt_optnew.
1458 */
1459 mp->mnt_optnew = NULL;
1460
1461 if ((mp->mnt_flag & MNT_RDONLY) == 0)
1462 vfs_allocate_syncvnode(mp);
1463 else
1464 vfs_deallocate_syncvnode(mp);
1465 end:
1466 vfs_op_exit(mp);
1467 if (rootvp != NULL) {
1468 vn_seqc_write_end(rootvp);
1469 vrele(rootvp);
1470 }
1471 vn_seqc_write_end(vp);
1472 vfs_unbusy(mp);
1473 VI_LOCK(vp);
1474 vp->v_iflag &= ~VI_MOUNT;
1475 VI_UNLOCK(vp);
1476 vrele(vp);
1477 return (error != 0 ? error : export_error);
1478 }
1479
1480 /*
1481 * vfs_domount(): actually attempt a filesystem mount.
1482 */
1483 static int
1484 vfs_domount(
1485 struct thread *td, /* Calling thread. */
1486 const char *fstype, /* Filesystem type. */
1487 char *fspath, /* Mount path. */
1488 uint64_t fsflags, /* Flags common to all filesystems. */
1489 struct vfsoptlist **optlist /* Options local to the filesystem. */
1490 )
1491 {
1492 struct vfsconf *vfsp;
1493 struct nameidata nd;
1494 struct vnode *vp;
1495 char *pathbuf;
1496 int error;
1497
1498 /*
1499 * Be ultra-paranoid about making sure the type and fspath
1500 * variables will fit in our mp buffers, including the
1501 * terminating NUL.
1502 */
1503 if (strlen(fstype) >= MFSNAMELEN || strlen(fspath) >= MNAMELEN)
1504 return (ENAMETOOLONG);
1505
1506 if (jailed(td->td_ucred) || usermount == 0) {
1507 if ((error = priv_check(td, PRIV_VFS_MOUNT)) != 0)
1508 return (error);
1509 }
1510
1511 /*
1512 * Do not allow NFS export or MNT_SUIDDIR by unprivileged users.
1513 */
1514 if (fsflags & MNT_EXPORTED) {
1515 error = priv_check(td, PRIV_VFS_MOUNT_EXPORTED);
1516 if (error)
1517 return (error);
1518 }
1519 if (fsflags & MNT_SUIDDIR) {
1520 error = priv_check(td, PRIV_VFS_MOUNT_SUIDDIR);
1521 if (error)
1522 return (error);
1523 }
1524 /*
1525 * Silently enforce MNT_NOSUID and MNT_USER for unprivileged users.
1526 */
1527 if ((fsflags & (MNT_NOSUID | MNT_USER)) != (MNT_NOSUID | MNT_USER)) {
1528 if (priv_check(td, PRIV_VFS_MOUNT_NONUSER) != 0)
1529 fsflags |= MNT_NOSUID | MNT_USER;
1530 }
1531
1532 /* Load KLDs before we lock the covered vnode to avoid reversals. */
1533 vfsp = NULL;
1534 if ((fsflags & MNT_UPDATE) == 0) {
1535 /* Don't try to load KLDs if we're mounting the root. */
1536 if (fsflags & MNT_ROOTFS) {
1537 if ((vfsp = vfs_byname(fstype)) == NULL)
1538 return (ENODEV);
1539 } else {
1540 if ((vfsp = vfs_byname_kld(fstype, td, &error)) == NULL)
1541 return (error);
1542 }
1543 }
1544
1545 /*
1546 * Get vnode to be covered or mount point's vnode in case of MNT_UPDATE.
1547 */
1548 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1 | WANTPARENT,
1549 UIO_SYSSPACE, fspath);
1550 error = namei(&nd);
1551 if (error != 0)
1552 return (error);
1553 vp = nd.ni_vp;
1554 /*
1555 * Don't allow stacking file mounts to work around problems with the way
1556 * that namei sets nd.ni_dvp to vp_crossmp for these.
1557 */
1558 if (vp->v_type == VREG)
1559 fsflags |= MNT_NOCOVER;
1560 if ((fsflags & MNT_UPDATE) == 0) {
1561 if ((vp->v_vflag & VV_ROOT) != 0 &&
1562 (fsflags & MNT_NOCOVER) != 0) {
1563 vput(vp);
1564 error = EBUSY;
1565 goto out;
1566 }
1567 pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1568 strcpy(pathbuf, fspath);
1569 /*
1570 * Note: we allow any vnode type here. If the path sanity check
1571 * succeeds, the type will be validated in vfs_domount_first
1572 * above.
1573 */
1574 if (vp->v_type == VDIR)
1575 error = vn_path_to_global_path(td, vp, pathbuf,
1576 MNAMELEN);
1577 else
1578 error = vn_path_to_global_path_hardlink(td, vp,
1579 nd.ni_dvp, pathbuf, MNAMELEN,
1580 nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen);
1581 if (error == 0) {
1582 error = vfs_domount_first(td, vfsp, pathbuf, vp,
1583 fsflags, optlist);
1584 }
1585 free(pathbuf, M_TEMP);
1586 } else
1587 error = vfs_domount_update(td, vp, fsflags, optlist);
1588
1589 out:
1590 NDFREE_PNBUF(&nd);
1591 vrele(nd.ni_dvp);
1592
1593 return (error);
1594 }
1595
1596 /*
1597 * Unmount a filesystem.
1598 *
1599 * Note: unmount takes a path to the vnode mounted on as argument, not
1600 * special file (as before).
1601 */
1602 #ifndef _SYS_SYSPROTO_H_
1603 struct unmount_args {
1604 char *path;
1605 int flags;
1606 };
1607 #endif
1608 /* ARGSUSED */
1609 int
1610 sys_unmount(struct thread *td, struct unmount_args *uap)
1611 {
1612
1613 return (kern_unmount(td, uap->path, uap->flags));
1614 }
1615
1616 int
1617 kern_unmount(struct thread *td, const char *path, int flags)
1618 {
1619 struct nameidata nd;
1620 struct mount *mp;
1621 char *fsidbuf, *pathbuf;
1622 fsid_t fsid;
1623 int error;
1624
1625 AUDIT_ARG_VALUE(flags);
1626 if (jailed(td->td_ucred) || usermount == 0) {
1627 error = priv_check(td, PRIV_VFS_UNMOUNT);
1628 if (error)
1629 return (error);
1630 }
1631
1632 if (flags & MNT_BYFSID) {
1633 fsidbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1634 error = copyinstr(path, fsidbuf, MNAMELEN, NULL);
1635 if (error) {
1636 free(fsidbuf, M_TEMP);
1637 return (error);
1638 }
1639
1640 AUDIT_ARG_TEXT(fsidbuf);
1641 /* Decode the filesystem ID. */
1642 if (sscanf(fsidbuf, "FSID:%d:%d", &fsid.val[0], &fsid.val[1]) != 2) {
1643 free(fsidbuf, M_TEMP);
1644 return (EINVAL);
1645 }
1646
1647 mp = vfs_getvfs(&fsid);
1648 free(fsidbuf, M_TEMP);
1649 if (mp == NULL) {
1650 return (ENOENT);
1651 }
1652 } else {
1653 pathbuf = malloc(MNAMELEN, M_TEMP, M_WAITOK);
1654 error = copyinstr(path, pathbuf, MNAMELEN, NULL);
1655 if (error) {
1656 free(pathbuf, M_TEMP);
1657 return (error);
1658 }
1659
1660 /*
1661 * Try to find global path for path argument.
1662 */
1663 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1,
1664 UIO_SYSSPACE, pathbuf);
1665 if (namei(&nd) == 0) {
1666 NDFREE_PNBUF(&nd);
1667 error = vn_path_to_global_path(td, nd.ni_vp, pathbuf,
1668 MNAMELEN);
1669 if (error == 0)
1670 vput(nd.ni_vp);
1671 }
1672 mtx_lock(&mountlist_mtx);
1673 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
1674 if (strcmp(mp->mnt_stat.f_mntonname, pathbuf) == 0) {
1675 vfs_ref(mp);
1676 break;
1677 }
1678 }
1679 mtx_unlock(&mountlist_mtx);
1680 free(pathbuf, M_TEMP);
1681 if (mp == NULL) {
1682 /*
1683 * Previously we returned ENOENT for a nonexistent path and
1684 * EINVAL for a non-mountpoint. We cannot tell these apart
1685 * now, so in the !MNT_BYFSID case return the more likely
1686 * EINVAL for compatibility.
1687 */
1688 return (EINVAL);
1689 }
1690 }
1691
1692 /*
1693 * Don't allow unmounting the root filesystem.
1694 */
1695 if (mp->mnt_flag & MNT_ROOTFS) {
1696 vfs_rel(mp);
1697 return (EINVAL);
1698 }
1699 error = dounmount(mp, flags, td);
1700 return (error);
1701 }
1702
1703 /*
1704 * Return error if any of the vnodes, ignoring the root vnode
1705 * and the syncer vnode, have non-zero usecount.
1706 *
1707 * This function is purely advisory - it can return false positives
1708 * and negatives.
1709 */
1710 static int
1711 vfs_check_usecounts(struct mount *mp)
1712 {
1713 struct vnode *vp, *mvp;
1714
1715 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1716 if ((vp->v_vflag & VV_ROOT) == 0 && vp->v_type != VNON &&
1717 vp->v_usecount != 0) {
1718 VI_UNLOCK(vp);
1719 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1720 return (EBUSY);
1721 }
1722 VI_UNLOCK(vp);
1723 }
1724
1725 return (0);
1726 }
1727
1728 static void
1729 dounmount_cleanup(struct mount *mp, struct vnode *coveredvp, int mntkflags)
1730 {
1731
1732 mtx_assert(MNT_MTX(mp), MA_OWNED);
1733 mp->mnt_kern_flag &= ~mntkflags;
1734 if ((mp->mnt_kern_flag & MNTK_MWAIT) != 0) {
1735 mp->mnt_kern_flag &= ~MNTK_MWAIT;
1736 wakeup(mp);
1737 }
1738 vfs_op_exit_locked(mp);
1739 MNT_IUNLOCK(mp);
1740 if (coveredvp != NULL) {
1741 VOP_UNLOCK(coveredvp);
1742 vdrop(coveredvp);
1743 }
1744 vn_finished_write(mp);
1745 vfs_rel(mp);
1746 }
1747
1748 /*
1749 * There are various reference counters associated with the mount point.
1750 * Normally it is permitted to modify them without taking the mnt ilock,
1751 * but this behavior can be temporarily disabled if stable value is needed
1752 * or callers are expected to block (e.g. to not allow new users during
1753 * forced unmount).
1754 */
1755 void
1756 vfs_op_enter(struct mount *mp)
1757 {
1758 struct mount_pcpu *mpcpu;
1759 int cpu;
1760
1761 MNT_ILOCK(mp);
1762 mp->mnt_vfs_ops++;
1763 if (mp->mnt_vfs_ops > 1) {
1764 MNT_IUNLOCK(mp);
1765 return;
1766 }
1767 vfs_op_barrier_wait(mp);
1768 CPU_FOREACH(cpu) {
1769 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1770
1771 mp->mnt_ref += mpcpu->mntp_ref;
1772 mpcpu->mntp_ref = 0;
1773
1774 mp->mnt_lockref += mpcpu->mntp_lockref;
1775 mpcpu->mntp_lockref = 0;
1776
1777 mp->mnt_writeopcount += mpcpu->mntp_writeopcount;
1778 mpcpu->mntp_writeopcount = 0;
1779 }
1780 MPASSERT(mp->mnt_ref > 0 && mp->mnt_lockref >= 0 &&
1781 mp->mnt_writeopcount >= 0, mp,
1782 ("invalid count(s): ref %d lockref %d writeopcount %d",
1783 mp->mnt_ref, mp->mnt_lockref, mp->mnt_writeopcount));
1784 MNT_IUNLOCK(mp);
1785 vfs_assert_mount_counters(mp);
1786 }
1787
1788 void
1789 vfs_op_exit_locked(struct mount *mp)
1790 {
1791
1792 mtx_assert(MNT_MTX(mp), MA_OWNED);
1793
1794 MPASSERT(mp->mnt_vfs_ops > 0, mp,
1795 ("invalid vfs_ops count %d", mp->mnt_vfs_ops));
1796 MPASSERT(mp->mnt_vfs_ops > 1 ||
1797 (mp->mnt_kern_flag & (MNTK_UNMOUNT | MNTK_SUSPEND)) == 0, mp,
1798 ("vfs_ops too low %d in unmount or suspend", mp->mnt_vfs_ops));
1799 mp->mnt_vfs_ops--;
1800 }
1801
1802 void
1803 vfs_op_exit(struct mount *mp)
1804 {
1805
1806 MNT_ILOCK(mp);
1807 vfs_op_exit_locked(mp);
1808 MNT_IUNLOCK(mp);
1809 }
1810
1811 struct vfs_op_barrier_ipi {
1812 struct mount *mp;
1813 struct smp_rendezvous_cpus_retry_arg srcra;
1814 };
1815
1816 static void
1817 vfs_op_action_func(void *arg)
1818 {
1819 struct vfs_op_barrier_ipi *vfsopipi;
1820 struct mount *mp;
1821
1822 vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1823 mp = vfsopipi->mp;
1824
1825 if (!vfs_op_thread_entered(mp))
1826 smp_rendezvous_cpus_done(arg);
1827 }
1828
1829 static void
1830 vfs_op_wait_func(void *arg, int cpu)
1831 {
1832 struct vfs_op_barrier_ipi *vfsopipi;
1833 struct mount *mp;
1834 struct mount_pcpu *mpcpu;
1835
1836 vfsopipi = __containerof(arg, struct vfs_op_barrier_ipi, srcra);
1837 mp = vfsopipi->mp;
1838
1839 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1840 while (atomic_load_int(&mpcpu->mntp_thread_in_ops))
1841 cpu_spinwait();
1842 }
1843
1844 void
1845 vfs_op_barrier_wait(struct mount *mp)
1846 {
1847 struct vfs_op_barrier_ipi vfsopipi;
1848
1849 vfsopipi.mp = mp;
1850
1851 smp_rendezvous_cpus_retry(all_cpus,
1852 smp_no_rendezvous_barrier,
1853 vfs_op_action_func,
1854 smp_no_rendezvous_barrier,
1855 vfs_op_wait_func,
1856 &vfsopipi.srcra);
1857 }
1858
1859 #ifdef DIAGNOSTIC
1860 void
1861 vfs_assert_mount_counters(struct mount *mp)
1862 {
1863 struct mount_pcpu *mpcpu;
1864 int cpu;
1865
1866 if (mp->mnt_vfs_ops == 0)
1867 return;
1868
1869 CPU_FOREACH(cpu) {
1870 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1871 if (mpcpu->mntp_ref != 0 ||
1872 mpcpu->mntp_lockref != 0 ||
1873 mpcpu->mntp_writeopcount != 0)
1874 vfs_dump_mount_counters(mp);
1875 }
1876 }
1877
1878 void
1879 vfs_dump_mount_counters(struct mount *mp)
1880 {
1881 struct mount_pcpu *mpcpu;
1882 int ref, lockref, writeopcount;
1883 int cpu;
1884
1885 printf("%s: mp %p vfs_ops %d\n", __func__, mp, mp->mnt_vfs_ops);
1886
1887 printf(" ref : ");
1888 ref = mp->mnt_ref;
1889 CPU_FOREACH(cpu) {
1890 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1891 printf("%d ", mpcpu->mntp_ref);
1892 ref += mpcpu->mntp_ref;
1893 }
1894 printf("\n");
1895 printf(" lockref : ");
1896 lockref = mp->mnt_lockref;
1897 CPU_FOREACH(cpu) {
1898 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1899 printf("%d ", mpcpu->mntp_lockref);
1900 lockref += mpcpu->mntp_lockref;
1901 }
1902 printf("\n");
1903 printf("writeopcount: ");
1904 writeopcount = mp->mnt_writeopcount;
1905 CPU_FOREACH(cpu) {
1906 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1907 printf("%d ", mpcpu->mntp_writeopcount);
1908 writeopcount += mpcpu->mntp_writeopcount;
1909 }
1910 printf("\n");
1911
1912 printf("counter struct total\n");
1913 printf("ref %-5d %-5d\n", mp->mnt_ref, ref);
1914 printf("lockref %-5d %-5d\n", mp->mnt_lockref, lockref);
1915 printf("writeopcount %-5d %-5d\n", mp->mnt_writeopcount, writeopcount);
1916
1917 panic("invalid counts on struct mount");
1918 }
1919 #endif
1920
1921 int
1922 vfs_mount_fetch_counter(struct mount *mp, enum mount_counter which)
1923 {
1924 struct mount_pcpu *mpcpu;
1925 int cpu, sum;
1926
1927 switch (which) {
1928 case MNT_COUNT_REF:
1929 sum = mp->mnt_ref;
1930 break;
1931 case MNT_COUNT_LOCKREF:
1932 sum = mp->mnt_lockref;
1933 break;
1934 case MNT_COUNT_WRITEOPCOUNT:
1935 sum = mp->mnt_writeopcount;
1936 break;
1937 }
1938
1939 CPU_FOREACH(cpu) {
1940 mpcpu = vfs_mount_pcpu_remote(mp, cpu);
1941 switch (which) {
1942 case MNT_COUNT_REF:
1943 sum += mpcpu->mntp_ref;
1944 break;
1945 case MNT_COUNT_LOCKREF:
1946 sum += mpcpu->mntp_lockref;
1947 break;
1948 case MNT_COUNT_WRITEOPCOUNT:
1949 sum += mpcpu->mntp_writeopcount;
1950 break;
1951 }
1952 }
1953 return (sum);
1954 }
1955
1956 static bool
1957 deferred_unmount_enqueue(struct mount *mp, uint64_t flags, bool requeue,
1958 int timeout_ticks)
1959 {
1960 bool enqueued;
1961
1962 enqueued = false;
1963 mtx_lock(&deferred_unmount_lock);
1964 if ((mp->mnt_taskqueue_flags & MNT_DEFERRED) == 0 || requeue) {
1965 mp->mnt_taskqueue_flags = flags | MNT_DEFERRED;
1966 STAILQ_INSERT_TAIL(&deferred_unmount_list, mp,
1967 mnt_taskqueue_link);
1968 enqueued = true;
1969 }
1970 mtx_unlock(&deferred_unmount_lock);
1971
1972 if (enqueued) {
1973 taskqueue_enqueue_timeout(taskqueue_deferred_unmount,
1974 &deferred_unmount_task, timeout_ticks);
1975 }
1976
1977 return (enqueued);
1978 }
1979
1980 /*
1981 * Taskqueue handler for processing async/recursive unmounts
1982 */
1983 static void
1984 vfs_deferred_unmount(void *argi __unused, int pending __unused)
1985 {
1986 STAILQ_HEAD(, mount) local_unmounts;
1987 uint64_t flags;
1988 struct mount *mp, *tmp;
1989 int error;
1990 unsigned int retries;
1991 bool unmounted;
1992
1993 STAILQ_INIT(&local_unmounts);
1994 mtx_lock(&deferred_unmount_lock);
1995 STAILQ_CONCAT(&local_unmounts, &deferred_unmount_list);
1996 mtx_unlock(&deferred_unmount_lock);
1997
1998 STAILQ_FOREACH_SAFE(mp, &local_unmounts, mnt_taskqueue_link, tmp) {
1999 flags = mp->mnt_taskqueue_flags;
2000 KASSERT((flags & MNT_DEFERRED) != 0,
2001 ("taskqueue unmount without MNT_DEFERRED"));
2002 error = dounmount(mp, flags, curthread);
2003 if (error != 0) {
2004 MNT_ILOCK(mp);
2005 unmounted = ((mp->mnt_kern_flag & MNTK_REFEXPIRE) != 0);
2006 MNT_IUNLOCK(mp);
2007
2008 /*
2009 * The deferred unmount thread is the only thread that
2010 * modifies the retry counts, so locking/atomics aren't
2011 * needed here.
2012 */
2013 retries = (mp->mnt_unmount_retries)++;
2014 deferred_unmount_total_retries++;
2015 if (!unmounted && retries < deferred_unmount_retry_limit) {
2016 deferred_unmount_enqueue(mp, flags, true,
2017 -deferred_unmount_retry_delay_hz);
2018 } else {
2019 if (retries >= deferred_unmount_retry_limit) {
2020 printf("giving up on deferred unmount "
2021 "of %s after %d retries, error %d\n",
2022 mp->mnt_stat.f_mntonname, retries, error);
2023 }
2024 vfs_rel(mp);
2025 }
2026 }
2027 }
2028 }
2029
2030 /*
2031 * Do the actual filesystem unmount.
2032 */
2033 int
2034 dounmount(struct mount *mp, uint64_t flags, struct thread *td)
2035 {
2036 struct mount_upper_node *upper;
2037 struct vnode *coveredvp, *rootvp;
2038 int error;
2039 uint64_t async_flag;
2040 int mnt_gen_r;
2041 unsigned int retries;
2042
2043 KASSERT((flags & MNT_DEFERRED) == 0 ||
2044 (flags & (MNT_RECURSE | MNT_FORCE)) == (MNT_RECURSE | MNT_FORCE),
2045 ("MNT_DEFERRED requires MNT_RECURSE | MNT_FORCE"));
2046
2047 /*
2048 * If the caller has explicitly requested the unmount to be handled by
2049 * the taskqueue and we're not already in taskqueue context, queue
2050 * up the unmount request and exit. This is done prior to any
2051 * credential checks; MNT_DEFERRED should be used only for kernel-
2052 * initiated unmounts and will therefore be processed with the
2053 * (kernel) credentials of the taskqueue thread. Still, callers
2054 * should be sure this is the behavior they want.
2055 */
2056 if ((flags & MNT_DEFERRED) != 0 &&
2057 taskqueue_member(taskqueue_deferred_unmount, curthread) == 0) {
2058 if (!deferred_unmount_enqueue(mp, flags, false, 0))
2059 vfs_rel(mp);
2060 return (EINPROGRESS);
2061 }
2062
2063 /*
2064 * Only privileged root, or (if MNT_USER is set) the user that did the
2065 * original mount is permitted to unmount this filesystem.
2066 * This check should be made prior to queueing up any recursive
2067 * unmounts of upper filesystems. Those unmounts will be executed
2068 * with kernel thread credentials and are expected to succeed, so
2069 * we must at least ensure the originating context has sufficient
2070 * privilege to unmount the base filesystem before proceeding with
2071 * the uppers.
2072 */
2073 error = vfs_suser(mp, td);
2074 if (error != 0) {
2075 KASSERT((flags & MNT_DEFERRED) == 0,
2076 ("taskqueue unmount with insufficient privilege"));
2077 vfs_rel(mp);
2078 return (error);
2079 }
2080
2081 if (recursive_forced_unmount && ((flags & MNT_FORCE) != 0))
2082 flags |= MNT_RECURSE;
2083
2084 if ((flags & MNT_RECURSE) != 0) {
2085 KASSERT((flags & MNT_FORCE) != 0,
2086 ("MNT_RECURSE requires MNT_FORCE"));
2087
2088 MNT_ILOCK(mp);
2089 /*
2090 * Set MNTK_RECURSE to prevent new upper mounts from being
2091 * added, and note that an operation on the uppers list is in
2092 * progress. This will ensure that unregistration from the
2093 * uppers list, and therefore any pending unmount of the upper
2094 * FS, can't complete until after we finish walking the list.
2095 */
2096 mp->mnt_kern_flag |= MNTK_RECURSE;
2097 mp->mnt_upper_pending++;
2098 TAILQ_FOREACH(upper, &mp->mnt_uppers, mnt_upper_link) {
2099 retries = upper->mp->mnt_unmount_retries;
2100 if (retries > deferred_unmount_retry_limit) {
2101 error = EBUSY;
2102 continue;
2103 }
2104 MNT_IUNLOCK(mp);
2105
2106 vfs_ref(upper->mp);
2107 if (!deferred_unmount_enqueue(upper->mp, flags,
2108 false, 0))
2109 vfs_rel(upper->mp);
2110 MNT_ILOCK(mp);
2111 }
2112 mp->mnt_upper_pending--;
2113 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
2114 mp->mnt_upper_pending == 0) {
2115 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
2116 wakeup(&mp->mnt_uppers);
2117 }
2118
2119 /*
2120 * If we're not on the taskqueue, wait until the uppers list
2121 * is drained before proceeding with unmount. Otherwise, if
2122 * we are on the taskqueue and there are still pending uppers,
2123 * just re-enqueue on the end of the taskqueue.
2124 */
2125 if ((flags & MNT_DEFERRED) == 0) {
2126 while (error == 0 && !TAILQ_EMPTY(&mp->mnt_uppers)) {
2127 mp->mnt_kern_flag |= MNTK_TASKQUEUE_WAITER;
2128 error = msleep(&mp->mnt_taskqueue_link,
2129 MNT_MTX(mp), PCATCH, "umntqw", 0);
2130 }
2131 if (error != 0) {
2132 MNT_REL(mp);
2133 MNT_IUNLOCK(mp);
2134 return (error);
2135 }
2136 } else if (!TAILQ_EMPTY(&mp->mnt_uppers)) {
2137 MNT_IUNLOCK(mp);
2138 if (error == 0)
2139 deferred_unmount_enqueue(mp, flags, true, 0);
2140 return (error);
2141 }
2142 MNT_IUNLOCK(mp);
2143 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), ("mnt_uppers not empty"));
2144 }
2145
2146 /* Allow the taskqueue to safely re-enqueue on failure */
2147 if ((flags & MNT_DEFERRED) != 0)
2148 vfs_ref(mp);
2149
2150 if ((coveredvp = mp->mnt_vnodecovered) != NULL) {
2151 mnt_gen_r = mp->mnt_gen;
2152 VI_LOCK(coveredvp);
2153 vholdl(coveredvp);
2154 vn_lock(coveredvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
2155 /*
2156 * Check for mp being unmounted while waiting for the
2157 * covered vnode lock.
2158 */
2159 if (coveredvp->v_mountedhere != mp ||
2160 coveredvp->v_mountedhere->mnt_gen != mnt_gen_r) {
2161 VOP_UNLOCK(coveredvp);
2162 vdrop(coveredvp);
2163 vfs_rel(mp);
2164 return (EBUSY);
2165 }
2166 }
2167
2168 vfs_op_enter(mp);
2169
2170 vn_start_write(NULL, &mp, V_WAIT);
2171 MNT_ILOCK(mp);
2172 if ((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 ||
2173 (mp->mnt_flag & MNT_UPDATE) != 0 ||
2174 !TAILQ_EMPTY(&mp->mnt_uppers)) {
2175 dounmount_cleanup(mp, coveredvp, 0);
2176 return (EBUSY);
2177 }
2178 mp->mnt_kern_flag |= MNTK_UNMOUNT;
2179 rootvp = vfs_cache_root_clear(mp);
2180 if (coveredvp != NULL)
2181 vn_seqc_write_begin(coveredvp);
2182 if (flags & MNT_NONBUSY) {
2183 MNT_IUNLOCK(mp);
2184 error = vfs_check_usecounts(mp);
2185 MNT_ILOCK(mp);
2186 if (error != 0) {
2187 vn_seqc_write_end(coveredvp);
2188 dounmount_cleanup(mp, coveredvp, MNTK_UNMOUNT);
2189 if (rootvp != NULL) {
2190 vn_seqc_write_end(rootvp);
2191 vrele(rootvp);
2192 }
2193 return (error);
2194 }
2195 }
2196 /* Allow filesystems to detect that a forced unmount is in progress. */
2197 if (flags & MNT_FORCE) {
2198 mp->mnt_kern_flag |= MNTK_UNMOUNTF;
2199 MNT_IUNLOCK(mp);
2200 /*
2201 * Must be done after setting MNTK_UNMOUNTF and before
2202 * waiting for mnt_lockref to become 0.
2203 */
2204 VFS_PURGE(mp);
2205 MNT_ILOCK(mp);
2206 }
2207 error = 0;
2208 if (mp->mnt_lockref) {
2209 mp->mnt_kern_flag |= MNTK_DRAINING;
2210 error = msleep(&mp->mnt_lockref, MNT_MTX(mp), PVFS,
2211 "mount drain", 0);
2212 }
2213 MNT_IUNLOCK(mp);
2214 KASSERT(mp->mnt_lockref == 0,
2215 ("%s: invalid lock refcount in the drain path @ %s:%d",
2216 __func__, __FILE__, __LINE__));
2217 KASSERT(error == 0,
2218 ("%s: invalid return value for msleep in the drain path @ %s:%d",
2219 __func__, __FILE__, __LINE__));
2220
2221 /*
2222 * We want to keep the vnode around so that we can vn_seqc_write_end
2223 * after we are done with unmount. Downgrade our reference to a mere
2224 * hold count so that we don't interefere with anything.
2225 */
2226 if (rootvp != NULL) {
2227 vhold(rootvp);
2228 vrele(rootvp);
2229 }
2230
2231 if (mp->mnt_flag & MNT_EXPUBLIC)
2232 vfs_setpublicfs(NULL, NULL, NULL);
2233
2234 vfs_periodic(mp, MNT_WAIT);
2235 MNT_ILOCK(mp);
2236 async_flag = mp->mnt_flag & MNT_ASYNC;
2237 mp->mnt_flag &= ~MNT_ASYNC;
2238 mp->mnt_kern_flag &= ~MNTK_ASYNC;
2239 MNT_IUNLOCK(mp);
2240 vfs_deallocate_syncvnode(mp);
2241 error = VFS_UNMOUNT(mp, flags);
2242 vn_finished_write(mp);
2243 vfs_rel(mp);
2244 /*
2245 * If we failed to flush the dirty blocks for this mount point,
2246 * undo all the cdir/rdir and rootvnode changes we made above.
2247 * Unless we failed to do so because the device is reporting that
2248 * it doesn't exist anymore.
2249 */
2250 if (error && error != ENXIO) {
2251 MNT_ILOCK(mp);
2252 if ((mp->mnt_flag & MNT_RDONLY) == 0) {
2253 MNT_IUNLOCK(mp);
2254 vfs_allocate_syncvnode(mp);
2255 MNT_ILOCK(mp);
2256 }
2257 mp->mnt_kern_flag &= ~(MNTK_UNMOUNT | MNTK_UNMOUNTF);
2258 mp->mnt_flag |= async_flag;
2259 if ((mp->mnt_flag & MNT_ASYNC) != 0 &&
2260 (mp->mnt_kern_flag & MNTK_NOASYNC) == 0)
2261 mp->mnt_kern_flag |= MNTK_ASYNC;
2262 if (mp->mnt_kern_flag & MNTK_MWAIT) {
2263 mp->mnt_kern_flag &= ~MNTK_MWAIT;
2264 wakeup(mp);
2265 }
2266 vfs_op_exit_locked(mp);
2267 MNT_IUNLOCK(mp);
2268 if (coveredvp) {
2269 vn_seqc_write_end(coveredvp);
2270 VOP_UNLOCK(coveredvp);
2271 vdrop(coveredvp);
2272 }
2273 if (rootvp != NULL) {
2274 vn_seqc_write_end(rootvp);
2275 vdrop(rootvp);
2276 }
2277 return (error);
2278 }
2279
2280 mtx_lock(&mountlist_mtx);
2281 TAILQ_REMOVE(&mountlist, mp, mnt_list);
2282 mtx_unlock(&mountlist_mtx);
2283 EVENTHANDLER_DIRECT_INVOKE(vfs_unmounted, mp, td);
2284 if (coveredvp != NULL) {
2285 VI_LOCK(coveredvp);
2286 vn_irflag_unset_locked(coveredvp, VIRF_MOUNTPOINT);
2287 coveredvp->v_mountedhere = NULL;
2288 vn_seqc_write_end_locked(coveredvp);
2289 VI_UNLOCK(coveredvp);
2290 VOP_UNLOCK(coveredvp);
2291 vdrop(coveredvp);
2292 }
2293 mount_devctl_event("UNMOUNT", mp, false);
2294 if (rootvp != NULL) {
2295 vn_seqc_write_end(rootvp);
2296 vdrop(rootvp);
2297 }
2298 vfs_event_signal(NULL, VQ_UNMOUNT, 0);
2299 if (rootvnode != NULL && mp == rootvnode->v_mount) {
2300 vrele(rootvnode);
2301 rootvnode = NULL;
2302 }
2303 if (mp == rootdevmp)
2304 rootdevmp = NULL;
2305 if ((flags & MNT_DEFERRED) != 0)
2306 vfs_rel(mp);
2307 vfs_mount_destroy(mp);
2308 return (0);
2309 }
2310
2311 /*
2312 * Report errors during filesystem mounting.
2313 */
2314 void
2315 vfs_mount_error(struct mount *mp, const char *fmt, ...)
2316 {
2317 struct vfsoptlist *moptlist = mp->mnt_optnew;
2318 va_list ap;
2319 int error, len;
2320 char *errmsg;
2321
2322 error = vfs_getopt(moptlist, "errmsg", (void **)&errmsg, &len);
2323 if (error || errmsg == NULL || len <= 0)
2324 return;
2325
2326 va_start(ap, fmt);
2327 vsnprintf(errmsg, (size_t)len, fmt, ap);
2328 va_end(ap);
2329 }
2330
2331 void
2332 vfs_opterror(struct vfsoptlist *opts, const char *fmt, ...)
2333 {
2334 va_list ap;
2335 int error, len;
2336 char *errmsg;
2337
2338 error = vfs_getopt(opts, "errmsg", (void **)&errmsg, &len);
2339 if (error || errmsg == NULL || len <= 0)
2340 return;
2341
2342 va_start(ap, fmt);
2343 vsnprintf(errmsg, (size_t)len, fmt, ap);
2344 va_end(ap);
2345 }
2346
2347 /*
2348 * ---------------------------------------------------------------------
2349 * Functions for querying mount options/arguments from filesystems.
2350 */
2351
2352 /*
2353 * Check that no unknown options are given
2354 */
2355 int
2356 vfs_filteropt(struct vfsoptlist *opts, const char **legal)
2357 {
2358 struct vfsopt *opt;
2359 char errmsg[255];
2360 const char **t, *p, *q;
2361 int ret = 0;
2362
2363 TAILQ_FOREACH(opt, opts, link) {
2364 p = opt->name;
2365 q = NULL;
2366 if (p[0] == 'n' && p[1] == 'o')
2367 q = p + 2;
2368 for(t = global_opts; *t != NULL; t++) {
2369 if (strcmp(*t, p) == 0)
2370 break;
2371 if (q != NULL) {
2372 if (strcmp(*t, q) == 0)
2373 break;
2374 }
2375 }
2376 if (*t != NULL)
2377 continue;
2378 for(t = legal; *t != NULL; t++) {
2379 if (strcmp(*t, p) == 0)
2380 break;
2381 if (q != NULL) {
2382 if (strcmp(*t, q) == 0)
2383 break;
2384 }
2385 }
2386 if (*t != NULL)
2387 continue;
2388 snprintf(errmsg, sizeof(errmsg),
2389 "mount option <%s> is unknown", p);
2390 ret = EINVAL;
2391 }
2392 if (ret != 0) {
2393 TAILQ_FOREACH(opt, opts, link) {
2394 if (strcmp(opt->name, "errmsg") == 0) {
2395 strncpy((char *)opt->value, errmsg, opt->len);
2396 break;
2397 }
2398 }
2399 if (opt == NULL)
2400 printf("%s\n", errmsg);
2401 }
2402 return (ret);
2403 }
2404
2405 /*
2406 * Get a mount option by its name.
2407 *
2408 * Return 0 if the option was found, ENOENT otherwise.
2409 * If len is non-NULL it will be filled with the length
2410 * of the option. If buf is non-NULL, it will be filled
2411 * with the address of the option.
2412 */
2413 int
2414 vfs_getopt(struct vfsoptlist *opts, const char *name, void **buf, int *len)
2415 {
2416 struct vfsopt *opt;
2417
2418 KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2419
2420 TAILQ_FOREACH(opt, opts, link) {
2421 if (strcmp(name, opt->name) == 0) {
2422 opt->seen = 1;
2423 if (len != NULL)
2424 *len = opt->len;
2425 if (buf != NULL)
2426 *buf = opt->value;
2427 return (0);
2428 }
2429 }
2430 return (ENOENT);
2431 }
2432
2433 int
2434 vfs_getopt_pos(struct vfsoptlist *opts, const char *name)
2435 {
2436 struct vfsopt *opt;
2437
2438 if (opts == NULL)
2439 return (-1);
2440
2441 TAILQ_FOREACH(opt, opts, link) {
2442 if (strcmp(name, opt->name) == 0) {
2443 opt->seen = 1;
2444 return (opt->pos);
2445 }
2446 }
2447 return (-1);
2448 }
2449
2450 int
2451 vfs_getopt_size(struct vfsoptlist *opts, const char *name, off_t *value)
2452 {
2453 char *opt_value, *vtp;
2454 quad_t iv;
2455 int error, opt_len;
2456
2457 error = vfs_getopt(opts, name, (void **)&opt_value, &opt_len);
2458 if (error != 0)
2459 return (error);
2460 if (opt_len == 0 || opt_value == NULL)
2461 return (EINVAL);
2462 if (opt_value[0] == '\0' || opt_value[opt_len - 1] != '\0')
2463 return (EINVAL);
2464 iv = strtoq(opt_value, &vtp, 0);
2465 if (vtp == opt_value || (vtp[0] != '\0' && vtp[1] != '\0'))
2466 return (EINVAL);
2467 if (iv < 0)
2468 return (EINVAL);
2469 switch (vtp[0]) {
2470 case 't': case 'T':
2471 iv *= 1024;
2472 /* FALLTHROUGH */
2473 case 'g': case 'G':
2474 iv *= 1024;
2475 /* FALLTHROUGH */
2476 case 'm': case 'M':
2477 iv *= 1024;
2478 /* FALLTHROUGH */
2479 case 'k': case 'K':
2480 iv *= 1024;
2481 case '\0':
2482 break;
2483 default:
2484 return (EINVAL);
2485 }
2486 *value = iv;
2487
2488 return (0);
2489 }
2490
2491 char *
2492 vfs_getopts(struct vfsoptlist *opts, const char *name, int *error)
2493 {
2494 struct vfsopt *opt;
2495
2496 *error = 0;
2497 TAILQ_FOREACH(opt, opts, link) {
2498 if (strcmp(name, opt->name) != 0)
2499 continue;
2500 opt->seen = 1;
2501 if (opt->len == 0 ||
2502 ((char *)opt->value)[opt->len - 1] != '\0') {
2503 *error = EINVAL;
2504 return (NULL);
2505 }
2506 return (opt->value);
2507 }
2508 *error = ENOENT;
2509 return (NULL);
2510 }
2511
2512 int
2513 vfs_flagopt(struct vfsoptlist *opts, const char *name, uint64_t *w,
2514 uint64_t val)
2515 {
2516 struct vfsopt *opt;
2517
2518 TAILQ_FOREACH(opt, opts, link) {
2519 if (strcmp(name, opt->name) == 0) {
2520 opt->seen = 1;
2521 if (w != NULL)
2522 *w |= val;
2523 return (1);
2524 }
2525 }
2526 if (w != NULL)
2527 *w &= ~val;
2528 return (0);
2529 }
2530
2531 int
2532 vfs_scanopt(struct vfsoptlist *opts, const char *name, const char *fmt, ...)
2533 {
2534 va_list ap;
2535 struct vfsopt *opt;
2536 int ret;
2537
2538 KASSERT(opts != NULL, ("vfs_getopt: caller passed 'opts' as NULL"));
2539
2540 TAILQ_FOREACH(opt, opts, link) {
2541 if (strcmp(name, opt->name) != 0)
2542 continue;
2543 opt->seen = 1;
2544 if (opt->len == 0 || opt->value == NULL)
2545 return (0);
2546 if (((char *)opt->value)[opt->len - 1] != '\0')
2547 return (0);
2548 va_start(ap, fmt);
2549 ret = vsscanf(opt->value, fmt, ap);
2550 va_end(ap);
2551 return (ret);
2552 }
2553 return (0);
2554 }
2555
2556 int
2557 vfs_setopt(struct vfsoptlist *opts, const char *name, void *value, int len)
2558 {
2559 struct vfsopt *opt;
2560
2561 TAILQ_FOREACH(opt, opts, link) {
2562 if (strcmp(name, opt->name) != 0)
2563 continue;
2564 opt->seen = 1;
2565 if (opt->value == NULL)
2566 opt->len = len;
2567 else {
2568 if (opt->len != len)
2569 return (EINVAL);
2570 bcopy(value, opt->value, len);
2571 }
2572 return (0);
2573 }
2574 return (ENOENT);
2575 }
2576
2577 int
2578 vfs_setopt_part(struct vfsoptlist *opts, const char *name, void *value, int len)
2579 {
2580 struct vfsopt *opt;
2581
2582 TAILQ_FOREACH(opt, opts, link) {
2583 if (strcmp(name, opt->name) != 0)
2584 continue;
2585 opt->seen = 1;
2586 if (opt->value == NULL)
2587 opt->len = len;
2588 else {
2589 if (opt->len < len)
2590 return (EINVAL);
2591 opt->len = len;
2592 bcopy(value, opt->value, len);
2593 }
2594 return (0);
2595 }
2596 return (ENOENT);
2597 }
2598
2599 int
2600 vfs_setopts(struct vfsoptlist *opts, const char *name, const char *value)
2601 {
2602 struct vfsopt *opt;
2603
2604 TAILQ_FOREACH(opt, opts, link) {
2605 if (strcmp(name, opt->name) != 0)
2606 continue;
2607 opt->seen = 1;
2608 if (opt->value == NULL)
2609 opt->len = strlen(value) + 1;
2610 else if (strlcpy(opt->value, value, opt->len) >= opt->len)
2611 return (EINVAL);
2612 return (0);
2613 }
2614 return (ENOENT);
2615 }
2616
2617 /*
2618 * Find and copy a mount option.
2619 *
2620 * The size of the buffer has to be specified
2621 * in len, if it is not the same length as the
2622 * mount option, EINVAL is returned.
2623 * Returns ENOENT if the option is not found.
2624 */
2625 int
2626 vfs_copyopt(struct vfsoptlist *opts, const char *name, void *dest, int len)
2627 {
2628 struct vfsopt *opt;
2629
2630 KASSERT(opts != NULL, ("vfs_copyopt: caller passed 'opts' as NULL"));
2631
2632 TAILQ_FOREACH(opt, opts, link) {
2633 if (strcmp(name, opt->name) == 0) {
2634 opt->seen = 1;
2635 if (len != opt->len)
2636 return (EINVAL);
2637 bcopy(opt->value, dest, opt->len);
2638 return (0);
2639 }
2640 }
2641 return (ENOENT);
2642 }
2643
2644 int
2645 __vfs_statfs(struct mount *mp, struct statfs *sbp)
2646 {
2647 /*
2648 * Filesystems only fill in part of the structure for updates, we
2649 * have to read the entirety first to get all content.
2650 */
2651 if (sbp != &mp->mnt_stat)
2652 memcpy(sbp, &mp->mnt_stat, sizeof(*sbp));
2653
2654 /*
2655 * Set these in case the underlying filesystem fails to do so.
2656 */
2657 sbp->f_version = STATFS_VERSION;
2658 sbp->f_namemax = NAME_MAX;
2659 sbp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
2660 sbp->f_nvnodelistsize = mp->mnt_nvnodelistsize;
2661
2662 return (mp->mnt_op->vfs_statfs(mp, sbp));
2663 }
2664
2665 void
2666 vfs_mountedfrom(struct mount *mp, const char *from)
2667 {
2668
2669 bzero(mp->mnt_stat.f_mntfromname, sizeof mp->mnt_stat.f_mntfromname);
2670 strlcpy(mp->mnt_stat.f_mntfromname, from,
2671 sizeof mp->mnt_stat.f_mntfromname);
2672 }
2673
2674 /*
2675 * ---------------------------------------------------------------------
2676 * This is the api for building mount args and mounting filesystems from
2677 * inside the kernel.
2678 *
2679 * The API works by accumulation of individual args. First error is
2680 * latched.
2681 *
2682 * XXX: should be documented in new manpage kernel_mount(9)
2683 */
2684
2685 /* A memory allocation which must be freed when we are done */
2686 struct mntaarg {
2687 SLIST_ENTRY(mntaarg) next;
2688 };
2689
2690 /* The header for the mount arguments */
2691 struct mntarg {
2692 struct iovec *v;
2693 int len;
2694 int error;
2695 SLIST_HEAD(, mntaarg) list;
2696 };
2697
2698 /*
2699 * Add a boolean argument.
2700 *
2701 * flag is the boolean value.
2702 * name must start with "no".
2703 */
2704 struct mntarg *
2705 mount_argb(struct mntarg *ma, int flag, const char *name)
2706 {
2707
2708 KASSERT(name[0] == 'n' && name[1] == 'o',
2709 ("mount_argb(...,%s): name must start with 'no'", name));
2710
2711 return (mount_arg(ma, name + (flag ? 2 : 0), NULL, 0));
2712 }
2713
2714 /*
2715 * Add an argument printf style
2716 */
2717 struct mntarg *
2718 mount_argf(struct mntarg *ma, const char *name, const char *fmt, ...)
2719 {
2720 va_list ap;
2721 struct mntaarg *maa;
2722 struct sbuf *sb;
2723 int len;
2724
2725 if (ma == NULL) {
2726 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2727 SLIST_INIT(&ma->list);
2728 }
2729 if (ma->error)
2730 return (ma);
2731
2732 ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2733 M_MOUNT, M_WAITOK);
2734 ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2735 ma->v[ma->len].iov_len = strlen(name) + 1;
2736 ma->len++;
2737
2738 sb = sbuf_new_auto();
2739 va_start(ap, fmt);
2740 sbuf_vprintf(sb, fmt, ap);
2741 va_end(ap);
2742 sbuf_finish(sb);
2743 len = sbuf_len(sb) + 1;
2744 maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2745 SLIST_INSERT_HEAD(&ma->list, maa, next);
2746 bcopy(sbuf_data(sb), maa + 1, len);
2747 sbuf_delete(sb);
2748
2749 ma->v[ma->len].iov_base = maa + 1;
2750 ma->v[ma->len].iov_len = len;
2751 ma->len++;
2752
2753 return (ma);
2754 }
2755
2756 /*
2757 * Add an argument which is a userland string.
2758 */
2759 struct mntarg *
2760 mount_argsu(struct mntarg *ma, const char *name, const void *val, int len)
2761 {
2762 struct mntaarg *maa;
2763 char *tbuf;
2764
2765 if (val == NULL)
2766 return (ma);
2767 if (ma == NULL) {
2768 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2769 SLIST_INIT(&ma->list);
2770 }
2771 if (ma->error)
2772 return (ma);
2773 maa = malloc(sizeof *maa + len, M_MOUNT, M_WAITOK | M_ZERO);
2774 SLIST_INSERT_HEAD(&ma->list, maa, next);
2775 tbuf = (void *)(maa + 1);
2776 ma->error = copyinstr(val, tbuf, len, NULL);
2777 return (mount_arg(ma, name, tbuf, -1));
2778 }
2779
2780 /*
2781 * Plain argument.
2782 *
2783 * If length is -1, treat value as a C string.
2784 */
2785 struct mntarg *
2786 mount_arg(struct mntarg *ma, const char *name, const void *val, int len)
2787 {
2788
2789 if (ma == NULL) {
2790 ma = malloc(sizeof *ma, M_MOUNT, M_WAITOK | M_ZERO);
2791 SLIST_INIT(&ma->list);
2792 }
2793 if (ma->error)
2794 return (ma);
2795
2796 ma->v = realloc(ma->v, sizeof *ma->v * (ma->len + 2),
2797 M_MOUNT, M_WAITOK);
2798 ma->v[ma->len].iov_base = (void *)(uintptr_t)name;
2799 ma->v[ma->len].iov_len = strlen(name) + 1;
2800 ma->len++;
2801
2802 ma->v[ma->len].iov_base = (void *)(uintptr_t)val;
2803 if (len < 0)
2804 ma->v[ma->len].iov_len = strlen(val) + 1;
2805 else
2806 ma->v[ma->len].iov_len = len;
2807 ma->len++;
2808 return (ma);
2809 }
2810
2811 /*
2812 * Free a mntarg structure
2813 */
2814 static void
2815 free_mntarg(struct mntarg *ma)
2816 {
2817 struct mntaarg *maa;
2818
2819 while (!SLIST_EMPTY(&ma->list)) {
2820 maa = SLIST_FIRST(&ma->list);
2821 SLIST_REMOVE_HEAD(&ma->list, next);
2822 free(maa, M_MOUNT);
2823 }
2824 free(ma->v, M_MOUNT);
2825 free(ma, M_MOUNT);
2826 }
2827
2828 /*
2829 * Mount a filesystem
2830 */
2831 int
2832 kernel_mount(struct mntarg *ma, uint64_t flags)
2833 {
2834 struct uio auio;
2835 int error;
2836
2837 KASSERT(ma != NULL, ("kernel_mount NULL ma"));
2838 KASSERT(ma->error != 0 || ma->v != NULL, ("kernel_mount NULL ma->v"));
2839 KASSERT(!(ma->len & 1), ("kernel_mount odd ma->len (%d)", ma->len));
2840
2841 error = ma->error;
2842 if (error == 0) {
2843 auio.uio_iov = ma->v;
2844 auio.uio_iovcnt = ma->len;
2845 auio.uio_segflg = UIO_SYSSPACE;
2846 error = vfs_donmount(curthread, flags, &auio);
2847 }
2848 free_mntarg(ma);
2849 return (error);
2850 }
2851
2852 /* Map from mount options to printable formats. */
2853 static struct mntoptnames optnames[] = {
2854 MNTOPT_NAMES
2855 };
2856
2857 #define DEVCTL_LEN 1024
2858 static void
2859 mount_devctl_event(const char *type, struct mount *mp, bool donew)
2860 {
2861 const uint8_t *cp;
2862 struct mntoptnames *fp;
2863 struct sbuf sb;
2864 struct statfs *sfp = &mp->mnt_stat;
2865 char *buf;
2866
2867 buf = malloc(DEVCTL_LEN, M_MOUNT, M_NOWAIT);
2868 if (buf == NULL)
2869 return;
2870 sbuf_new(&sb, buf, DEVCTL_LEN, SBUF_FIXEDLEN);
2871 sbuf_cpy(&sb, "mount-point=\"");
2872 devctl_safe_quote_sb(&sb, sfp->f_mntonname);
2873 sbuf_cat(&sb, "\" mount-dev=\"");
2874 devctl_safe_quote_sb(&sb, sfp->f_mntfromname);
2875 sbuf_cat(&sb, "\" mount-type=\"");
2876 devctl_safe_quote_sb(&sb, sfp->f_fstypename);
2877 sbuf_cat(&sb, "\" fsid=0x");
2878 cp = (const uint8_t *)&sfp->f_fsid.val[0];
2879 for (int i = 0; i < sizeof(sfp->f_fsid); i++)
2880 sbuf_printf(&sb, "%02x", cp[i]);
2881 sbuf_printf(&sb, " owner=%u flags=\"", sfp->f_owner);
2882 for (fp = optnames; fp->o_opt != 0; fp++) {
2883 if ((mp->mnt_flag & fp->o_opt) != 0) {
2884 sbuf_cat(&sb, fp->o_name);
2885 sbuf_putc(&sb, ';');
2886 }
2887 }
2888 sbuf_putc(&sb, '"');
2889 sbuf_finish(&sb);
2890
2891 /*
2892 * Options are not published because the form of the options depends on
2893 * the file system and may include binary data. In addition, they don't
2894 * necessarily provide enough useful information to be actionable when
2895 * devd processes them.
2896 */
2897
2898 if (sbuf_error(&sb) == 0)
2899 devctl_notify("VFS", "FS", type, sbuf_data(&sb));
2900 sbuf_delete(&sb);
2901 free(buf, M_MOUNT);
2902 }
2903
2904 /*
2905 * Force remount specified mount point to read-only. The argument
2906 * must be busied to avoid parallel unmount attempts.
2907 *
2908 * Intended use is to prevent further writes if some metadata
2909 * inconsistency is detected. Note that the function still flushes
2910 * all cached metadata and data for the mount point, which might be
2911 * not always suitable.
2912 */
2913 int
2914 vfs_remount_ro(struct mount *mp)
2915 {
2916 struct vfsoptlist *opts;
2917 struct vfsopt *opt;
2918 struct vnode *vp_covered, *rootvp;
2919 int error;
2920
2921 KASSERT(mp->mnt_lockref > 0,
2922 ("vfs_remount_ro: mp %p is not busied", mp));
2923 KASSERT((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0,
2924 ("vfs_remount_ro: mp %p is being unmounted (and busy?)", mp));
2925
2926 rootvp = NULL;
2927 vp_covered = mp->mnt_vnodecovered;
2928 error = vget(vp_covered, LK_EXCLUSIVE | LK_NOWAIT);
2929 if (error != 0)
2930 return (error);
2931 VI_LOCK(vp_covered);
2932 if ((vp_covered->v_iflag & VI_MOUNT) != 0) {
2933 VI_UNLOCK(vp_covered);
2934 vput(vp_covered);
2935 return (EBUSY);
2936 }
2937 vp_covered->v_iflag |= VI_MOUNT;
2938 VI_UNLOCK(vp_covered);
2939 vfs_op_enter(mp);
2940 vn_seqc_write_begin(vp_covered);
2941
2942 MNT_ILOCK(mp);
2943 if ((mp->mnt_flag & MNT_RDONLY) != 0) {
2944 MNT_IUNLOCK(mp);
2945 error = EBUSY;
2946 goto out;
2947 }
2948 mp->mnt_flag |= MNT_UPDATE | MNT_FORCE | MNT_RDONLY;
2949 rootvp = vfs_cache_root_clear(mp);
2950 MNT_IUNLOCK(mp);
2951
2952 opts = malloc(sizeof(struct vfsoptlist), M_MOUNT, M_WAITOK | M_ZERO);
2953 TAILQ_INIT(opts);
2954 opt = malloc(sizeof(struct vfsopt), M_MOUNT, M_WAITOK | M_ZERO);
2955 opt->name = strdup("ro", M_MOUNT);
2956 opt->value = NULL;
2957 TAILQ_INSERT_TAIL(opts, opt, link);
2958 vfs_mergeopts(opts, mp->mnt_opt);
2959 mp->mnt_optnew = opts;
2960
2961 error = VFS_MOUNT(mp);
2962
2963 if (error == 0) {
2964 MNT_ILOCK(mp);
2965 mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE);
2966 MNT_IUNLOCK(mp);
2967 vfs_deallocate_syncvnode(mp);
2968 if (mp->mnt_opt != NULL)
2969 vfs_freeopts(mp->mnt_opt);
2970 mp->mnt_opt = mp->mnt_optnew;
2971 } else {
2972 MNT_ILOCK(mp);
2973 mp->mnt_flag &= ~(MNT_UPDATE | MNT_FORCE | MNT_RDONLY);
2974 MNT_IUNLOCK(mp);
2975 vfs_freeopts(mp->mnt_optnew);
2976 }
2977 mp->mnt_optnew = NULL;
2978
2979 out:
2980 vfs_op_exit(mp);
2981 VI_LOCK(vp_covered);
2982 vp_covered->v_iflag &= ~VI_MOUNT;
2983 VI_UNLOCK(vp_covered);
2984 vput(vp_covered);
2985 vn_seqc_write_end(vp_covered);
2986 if (rootvp != NULL) {
2987 vn_seqc_write_end(rootvp);
2988 vrele(rootvp);
2989 }
2990 return (error);
2991 }
2992
2993 /*
2994 * Suspend write operations on all local writeable filesystems. Does
2995 * full sync of them in the process.
2996 *
2997 * Iterate over the mount points in reverse order, suspending most
2998 * recently mounted filesystems first. It handles a case where a
2999 * filesystem mounted from a md(4) vnode-backed device should be
3000 * suspended before the filesystem that owns the vnode.
3001 */
3002 void
3003 suspend_all_fs(void)
3004 {
3005 struct mount *mp;
3006 int error;
3007
3008 mtx_lock(&mountlist_mtx);
3009 TAILQ_FOREACH_REVERSE(mp, &mountlist, mntlist, mnt_list) {
3010 error = vfs_busy(mp, MBF_MNTLSTLOCK | MBF_NOWAIT);
3011 if (error != 0)
3012 continue;
3013 if ((mp->mnt_flag & (MNT_RDONLY | MNT_LOCAL)) != MNT_LOCAL ||
3014 (mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
3015 mtx_lock(&mountlist_mtx);
3016 vfs_unbusy(mp);
3017 continue;
3018 }
3019 error = vfs_write_suspend(mp, 0);
3020 if (error == 0) {
3021 MNT_ILOCK(mp);
3022 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0);
3023 mp->mnt_kern_flag |= MNTK_SUSPEND_ALL;
3024 MNT_IUNLOCK(mp);
3025 mtx_lock(&mountlist_mtx);
3026 } else {
3027 printf("suspend of %s failed, error %d\n",
3028 mp->mnt_stat.f_mntonname, error);
3029 mtx_lock(&mountlist_mtx);
3030 vfs_unbusy(mp);
3031 }
3032 }
3033 mtx_unlock(&mountlist_mtx);
3034 }
3035
3036 void
3037 resume_all_fs(void)
3038 {
3039 struct mount *mp;
3040
3041 mtx_lock(&mountlist_mtx);
3042 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3043 if ((mp->mnt_kern_flag & MNTK_SUSPEND_ALL) == 0)
3044 continue;
3045 mtx_unlock(&mountlist_mtx);
3046 MNT_ILOCK(mp);
3047 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) != 0);
3048 mp->mnt_kern_flag &= ~MNTK_SUSPEND_ALL;
3049 MNT_IUNLOCK(mp);
3050 vfs_write_resume(mp, 0);
3051 mtx_lock(&mountlist_mtx);
3052 vfs_unbusy(mp);
3053 }
3054 mtx_unlock(&mountlist_mtx);
3055 }
Cache object: e7814fc474028e18cda091d7a7258251
|